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Izvleček:

V zadnjih letih je bilo objavljenih veliko člankov z različno stopnjo kakovosti in vpliva.

Število citatov je pomembna metrika za določanje vpliva in kakovosti članka. V tej

nalogi preučujemo problem napovedovanja števila citatov, ki jih bo prejelo znanstveno

delo. Napovedovanje števila citatov člankov je dobro znan in dobro preučen prob-

lem, za katerega so bili predlagani različni pristopi, vključno s preučevanjem citatnega

omrežja, omrežja soavtorjev in uporabo informacij po objavi, kot so npr. povzetek,

naslov, prizorǐsče in pretklo število citatov. Predlagamo nov pristop za napovedovanje
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napovedovanje števila citatov člankov. Ker ta metoda temelji izključno na časovnih

omrežjih, ima široko paleto aplikacij na različnih področjih, kot so socialna omrežja,

svetovni splet, biološka omrežja itd.
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Abstract:

In the recent years, a large number of papers have been published with varying degrees

of quality and influence. The citation count is an important metric for determining a

paper’s impact and quality. In this thesis we look into the problem of forecasting the

number of citations a scientific work will receive. Predicting the citation count of pa-

pers is a well-known and well-studied problem for which various approaches have been

proposed, including studying the citation network, co-authorship network, and utiliz-

ing information after publication, such as abstract, title, venue, and previous citation

counts, among others. We propose a novel approach for predicting long-term citation

count of papers based on the structure and evolution of temporal citation networks.

Experiments show that our unique method exceeds state-of-the-art approaches for pre-

dicting the citation counts of papers. Since this method is based solely on temporal

networks, it has a wide range of applications in different fields, such as social networks,

the World Wide Web, biological networks and so on.
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1 INTRODUCTION

1.1 MOTIVATION

Many industries, including chemistry, physics, biology, health, business, finance, and

social media, have realized the importance of networks [3, 18, 42]. In a broad sense,

a network is a set of nodes joined by links, which represent relationships between

nodes [58]. As a result, networks may be used to simulate complex relationships within

a system, such as chemical compound interactions, protein interaction networks in

biology, consumer behavior networks and economic networks in business, and social

networks. Our primary focus is on citation networks and predicting citation counts for

articles by invoking a network based approach.

Citations of scientific articles have become perhaps the most commonly used metric

of the scientific influence of an article [11, 14, 17]. A standard argument is that the

number of citations for a highly cited paper reflects its influence and contributions to

the advancement of scientific knowledge. Large numbers of publication databases store

information about authors, titles of articles, publishing venues, and publication year.

This data can be used to create a directed network based on whether an article cites

the other, which are called citation networks.

In academia, determining the impact of a paper is an important task. Despite

its widespread use, citations can only assess the current and past scientific impact

of papers, whereas in many cases, people prefer to go beyond that to forecast future

scientific impact. As a result, we require not only the current citations of a paper,

but also a prediction of its future citations, which can recognize its future scientific

impact [1, 32, 38,44,56].

Price [44] showed that the number of citations that a paper receives in a network or

the number of links to a paper had a heavy-tailed distribution which follows a power

law. This led to the definition of scale-free networks, which are networks whose degree

distribution sequence follow a power law [6]. The presence of highly connected nodes

in a network causes the degree distribution to have a long tail, indicating the presence

of nodes with significantly higher degrees than the majority of other nodes.

Interest in such networks arose by the end of the last century, when Barabási

and Albert [5] investigated the structure of a number of large networks, including

the Internet and a scientific coauthorship network, and concluded that they follow a
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scale-free power-law distribution. This was discovered to be the result of two generic

processes:

1. networks develop over time by adding new vertices continuously, and

2. new vertices attach to nodes that are already highly connected (also known as

preferential attachment).

These two processes are common features of real-world networks such as citation

networks, the Internet, metabolic networks, telephone call networks, social networks

etc.

The problem of predicting citation counts for articles has numerous applications

in several disciplines, due to the increasing number of published articles. Therefore,

researchers must identify the most influential applications ahead of time in order to plan

their future research work, and so various prediction techniques have been discussed

in [1,10,11,16,32,33,38,56]. Since there are so many distinct types of citation patterns,

projecting citation counts is a challenging feat. Some publications go unnoticed for

years before gaining a lot of attention, while others lose their relevance and progressively

lose citations.

In [1], Abrishami and Aliakbary present a novel method for predicting an article’s

long-term citations based on the amount of citations received in the first few years after

publication. They use an artificial neural network to train a citation count prediction

model, and their model outperforms other methods with respect to prediction accuracy

in both yearly and total citation prediction.

Weihs and Etzioni’s research work [56] is another noteworthy article because of the

vast amount of data used and the impressive results. They concentrate on features

that may be extracted from the citation graph, coauthor graph, and paper metadata

such as authors and venue. Their implementation is based on the assumption that

citation counts are modeled using preferential attachments, and they performed exten-

sive feature engineering followed by supervised learning with a regression model. The

major takeaway from this article is that long-term forecasting, and not only short-term

forecasting, is possible.

In this Master’s thesis we consider the data set used by Weihs and Etzioni in [56].

We propose a novel feature extraction technique using properties from temporal citation

networks. Two different models based on Deep Neural Networks and Gradient Boosting

Decision Trees are implemented to predict citation counts up to ten years in advance

by utilizing the extracted features. We reproduce the models described by Abrishami

and Aliakbary [1] and Weihs and Etzioni in [56], and we apply various comparison

methods to measure the performance of each model. We then show that our novel

model significantly outperforms both models for the first five years. In addition, we
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employ the network-based features in conjunction with the Weihs and Etzioni [56]

properties in a joint model to examine how it compares to the others. The latter

model outperforms all the other models for the whole timespan. We conclude that

features extracted from temporal networks provide more insights to better predict the

target variable and thus yield a greater feature importance than features employed by

Weihs and Etzioni.

Since we focus only on the structure of temporal citation networks, this innovative

approach is applicable for making predictions in various networks, such as the social

networks, World Wide Web, protein-protein interaction networks, airline networks,

interbank payment networks, etc.

1.2 STRUCTURE OF THE THESIS

In Chapter 2, we introduce the preliminary theory, which includes the necessary defini-

tions for networks and machine learning that are mentioned in this work. In particular,

we present citation networks, scale-free networks, Deep Neural Networks and Gradient

Boosted Decision Trees.

This thesis primarily focuses on predicting citation counts so we dedicate Chap-

ter 3 to become acquainted with the concept of citation networks and related work on

predicting scientific impact. We provide an overview of the most relevant papers on

this topic and categorize previous work into three categories.

In Chapter 4 we provide a comprehensive summary of the research methods used in

this thesis. We begin by explaining the origin and other details of the data set, such as

network statistics, as well as providing some key information about the journals confer-

ences, most cited papers and our novel feature engineering methodology. We conclude

this chapter by describing the implemented models and the selection procedure.

We summarize the models in Chapter 5, where we present the results of our exper-

iments and compare the models. The results are interpreted in detail and visualized

via different measurement criteria. We perform other types of analyses on randomly

chosen data points and we show the relative importance of features extracted from the

citation network.

Finally, we conclude the thesis with an overview of all of the findings and we give

a discussion about further research work.
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2 PRELIMINARIES

This chapter describes the preliminary theory needed throughout this thesis. We begin

with the theory behind networks and graphs [3, 42, 58], then continue with the theory

behind machine learning [24,41].

2.1 NETWORKS AND GRAPHS

The birth of graph theory is often associated with the problem of the bridges of Königs-

berg [58]. Prussia used to have a city named Königsberg (now Kaliningrad, Russia)

which was located on the Pregel river. The city occupied two islands and both areas of

land on each side of the river. The islands and both parts of the lands were connected

by bridges. The problem arose when the citizens began to wonder whether they could

leave home, cross every bridge exactly once, and return home. The graphical represen-

tation of this problem can be seen in Figure 1 where on the right side we represent the

land areas with dots and the bridges with curves.

Figure 1: Königsberg’s bridges.

Euler observed that if there is a path going through all the bridges, but never

crossing the same bridge twice, then all points must have an even number of curves

since we enter and leave each node. Based on this observation, Euler concluded that

the tour desired by the citizens was not possible. This was the first case where graphs

were introduced as formal abstract models. Furthermore, Euler generalized this result

to detect whether any graph has a path going through all the dots and visiting each

link exactly once. In his honor, this type of path was then called an Eulerian tour and
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he proved that a graph has an Eulerian tour if and only if all the dots have an even

number of curves. We will now introduce graphs formally.

A network (or a graph) is a collection of elements called nodes (or vertices) and the

direct interaction between them is called links (or edges). Formally, a network G is a

pair (V (G), E(G)) where V (G) is the node set and

E(G) = {{v, u} : v, u ∈ V (G)} ⊆ V (G)× V (G)

is the link set.

This representation of the node-link structure allows us to use it for a variety of

different systems that need network representation, as shown in Figure 2.

Figure 2: Different networks, same graph structure.

Let G be a network with vertex set V (G) and edge set E(G). The size of a network

G is represented by |V (G)|, which denotes the number of nodes in the network. The

number of interactions between nodes is represented by the total number of links in

the network, denoted with |E(G)|. In Figure 2 we see that the size of both networks

is 4, and the total number of interactions is 4.

If E(G) is a multiset and its elements are also multisets then the graph G can have

loops (edges joining vertices to themselves) and multiple edges (more than one edge

between a pair of vertices). A graph without loops or multiple edges is called a simple

graph.

Assigning an orientation to each link e of E(G) we obtain a directed network (di-

rected graph or digraph). Then E(G) consists of ordered pairs (v, u) for v, u ∈ V (G)

which are called directed links. Here v is called the source or initial node and u is

called the target or terminal node. If there exists a link (v, u) in G, then we say that

v is a predecessor of u and u is a successor of v.

Throughout this thesis we will only consider simple graphs and digraphs with at

most one edge in each direction for all nodes. If we do not specify if the graph is

directed, we assume that it is undirected.
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Let G be a graph with node set V (G) and link set E(G). Two nodes v, u in G are

adjacent if {v, u} is a link in G and the link is said to be incident to v and u. We

also say that v and u are neighbours. The degree of a node v, denoted deg(v), is the

number of its neighbours. We can get the total number of links |E(G)| expressed as

the sum of the node degrees:

|E(G)| = 1

2

∑
v∈V (G)

deg(v).

We count each link twice therefore we divide the total sum by 2.

In a directed network we have two types of node degrees: the incoming degree and

the outgoing degree. The incoming degree or in-degree of node v ∈ G, denoted indeg(v),

is the number of links for which v is the target node. The outgoing degree or out-degree

of node v ∈ G, denoted outdeg(v), is the number of links that for which v is the source

node. Removing directions from the network we get the underlying network. In a

directed network G = (V,E), the degree of node v is given by

deg(v) = indeg(v) + outdeg(v),

and the total number of links is

|E| =
∑

v∈V (G)

indeg(v) =
∑

v∈V (G)

outdeg(v),

and here we do not divide by 2 since we count the in-degrees and out-degrees separately.

A network is often represented through its adjacency matrix. The adjacency matrix

A of an undirected network G with |V (G)| nodes has |V (G)| rows and |V (G)| columns,

where Aij = 1 if nodes i and j are adjacent, otherwise Aij = 0. The adjacency matrix

of an undirected network is symmetric since there is a link between node i and node j

if and only if there is a link between node j and node i, hence AT = A. The adjacency

matrix of a directed network has the same structure except that entry Aij = 1 if node

j is a terminal point of node i, and Aij = 0 if node i and j are not adjacent.

Example 2.1. In Figure 3, we have one directed network and one undirected network.

We will find the adjacency matrices of these networks.

Figure 3: An undirected and a directed network.
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The adjacency matrices for the undirected and directed network are:

Aundirected =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 Adirected =


0 1 0 0

0 0 0 0

0 1 0 0

1 0 1 0


Let G be a network with node set V (G) and link set E(G), such that each node

is adjacent to all the other nodes. Let |V (G)| = n. This type of network is called a

complete network of size n and we denote it by Kn. The total number of links in this

network is given by

|E(G)| = n(n− 1)

2
.

Often, real networks have a much smaller number of links. A network G of size

|V (G)| is sparse if |E(G)| � |E(Kn)|. The number of links in a sparse network is

proportional to the number of nodes, and using the little o notation to indicate how

fast the number of links grows in comparison to the number of nodes, we can write

|E(G)| = o(|V (G)|).

Let G be a directed network with node set V (G) and link set E(G), such that each

node is adjacent to all the other nodes. Let |V (G)| = n. This type of directed network

is called complete directed network of size n and we denote it by ~Kn. The total number

of links in G is given by

|E(G)| = n(n− 1).

A sequence v1, v2, . . . , vk of nodes of a network G is called a walk in G if vi and

vi+1 are adjacent for all 1 ≤ i ≤ k − 1. A path is a walk in which no node is repeated.

A cycle is a path that starts and ends at the same node. A directed network is said

to be strongly connected if for each pair of nodes u and v, there is a path from u to

v. In the undirected case, we simply say that the network is connected. In a directed

network, we denote the length of the shortest directed path from u to v by d(u, v). For

undirected networks, d(u, v) = d(v, u) for any two nodes u, v and we call d(u, v) the

distance between node u and v.

2.1.1 Real world networks

Real world networks can be classified into several categories, namely social networks,

information networks, technological networks, biological networks, etc. Citation net-

works are one of the most famous examples of information networks.

The degree distribution pk gives the probability that a randomly selected node in

the network has degree k. For a network with n nodes, the degree distribution is given
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by

pk =
nk
n
,

where nk denotes the number of nodes with degree k. The degree sequence of a network

is the non-increasing sequence of its node degrees. Following the discovery of scale-free

networks, the degree distribution has taken on a central role in network theory. A

scale-free network is a network whose degree distribution follows a power law.

The distribution of a random variable x follows a power law if its probability dis-

tribution satisfies P (x) ∝ x−α, where α is the characterizing scaling exponent and

typically is bounded by 2 < α < 3. The number of nodes with extremely large num-

bers of links is substantially higher in the power-law distribution than in the normal

distribution. In a normal distribution, however, well-connected nodes are more com-

mon.

It was observed that the distribution of numbers of papers written by scientists

follows a power of law. In [44] Price, among other results, emphasises that both the

in-degree and the out-degree distribution of the citation networks follow power laws.

One of the other aims of network science is to create models that replicate the

properties of real networks. Most real networks lack the regularity (obedience to a set

of principles) that we want, but they seem to have a dose of randomness. To mimic

the complexity of real systems, network theory builds and characterizes networks that

are truly random via placing links between the nodes randomly.

Let G be a network with n nodes, such that any two nodes are adjacent indepen-

dently with probability p, where p is predefined. We call G a random network and

denote it by G(n, p). Pál Erdös and Alfréd Rényi are two mathematicians that have

played a key role in the interpretation of random network properties. In their honor, a

random network is called the Erdös-Rényi network, where edge probabilities are inde-

pendent [19,20]. The degree distribution sequence of Erdös-Rényi networks follows the

Poisson distribution. The distribution of a random variable x follows a Poisson distri-

bution, with parameter λ > 0, if its probability distribution satisfies P (x) ∝ λke−k

k!
.

One interesting phenomenon that been observed in real and random networks is the

small-world phenomenon [55]. The small-world effect follows from the well-known six

degrees of separation phenomenon, which originated from early works of Karinthy [31]

and the Small-world experiment conducted by Milgram [39]. Karinthy mentions that

“it’s always easier to find someone who knows a famous or popular figure than some

runthe-mill, insignificant person”. The small-world phenomenon extends this theory

and implies that any two randomly chosen nodes in a network are at distance at most

six. Small-world networks have no official definition, but some common characteristics

include a high clustering coefficient (which is the measure of the degree to which nodes

in a network tend to group together), link sparsity and small distances between any
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two randomly chosen nodes.

The Zachary karate club network is a very famous social network example described

and used for the first time in [61]. This network has 34 members of karate club,

and it documents links between members who interact outside the club. During the

research, a disagreement emerged between the administrator John and the instructor

Jack, resulting in the club being split in half. Half of the members created a new club

around Jack, while the other half either found a new instructor or stopped doing karate

altogether. Zachary successfully placed all but one member of the club to the clubs

they really joined after the split based on the data he gathered.

Let us use the Zachary karate club network as a real-world example and the Erdös-

Rényi network (G(34, 0.14)) as a randomly generated example. This example reflects

the difference between a scale-free network and an Erdös-Rényi random network, which

has the same size and expected number of links as the Zachary network. In Figure 4

we can see both networks.

Figure 4: Zachary karate club and G(34, 0.14) networks.

The parameters n = 34 and p = 0.14 for generating the Erdös-Rényi network where

chosen in such a way that we have the same number of nodes and links as in the Zachary

karate club network. The total number of links in a complete network is n(n−1)
2

so since

we have 78 links in the Zachary karate club network then probability is p = 78
34(34−1)

2

.

As described above real world networks have a power law degree distribution se-

quence and randomly generated graphs have a Poisson degree distribution sequence

which we can also see that this holds for these two networks in Figure 5. Even though

the graphs are small with only 34 nodes and 78 links we can clearly see the degree

distribution.
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Figure 5: Zachary karate club and G(34, 0.14) degree distributions.

The clustering coefficient for the Zachary karate club network is 0.57 and for

G(34, 0.14) is 0.08 which is expected since scale-free networks share the same prop-

erties as small-world networks, in this case a high clustering coefficient number. The

average shortest path for both networks is relatively close to one another since for the

Zachary karate club network is 2.41 and for the G(43, 0.14) network is 2.38. Checking

the same properties for bigger networks that have more nodes and links then we would

see bigger differences.

2.2 MACHINE LEARNING

Machine learning is the study of computer algorithms that improve automatically

through experience and by the use of data or information. Machine learning entails

translating experience into expertise or knowledge in order to extract information or

knowledge from data. It is also referred to as statistical learning or predictive analyt-

ics. This field is the intersection of statistics, artificial intelligence, mathematics, and

computer science.

Machine learning methods are used widely today from applications like recommen-

dation of products to buy or movies to watch, to automated self-driving cars and many

more. Giant tech companies like Tesla, Facebook, Netflix, Amazon or Google rely

heavily on the use of machine learning models but also spend a huge amount of their

capital in research and development of new methods for machine learning. A learning

algorithm’s input is training data, which represents experience, and its output is some

expertise, which typically takes the form of another computer program that can perform

some task. We also measure the success of the learning algorithm as the probability
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that the algorithm does not predict the correct output on a random instance drawn

from the data set. For a formal mathematical treatment of machine learning see [51].

Before machine learning advancements, “intelligent” applications were systems that

required hand-coded rules of “if” and “else” statements to process data. This approach

was not time efficient and required a lot of people to work on a single model, and a

slight change in the task might require to rewrite the whole system. An example where

this approach may not be feasible is the construction of a set of rules to detect a face

in an image since every face is unique.

Generalizations from previously known examples are the most used kinds of ma-

chine learning algorithms. We distinguish four types of machine learning algorithms

according to the amount and type of supervision we offer during training: supervised

learning, unsupervised learning, semisupervised learning and reinforcement learning.

The former three are passive learning techniques, while the latter is an active learning

technique. The phrase active learning refers to a learning system in which the learner

plays a part in deciding what data will be utilized to train it. In contrast, passive

learning involves the learner being presented with a training set over which it has no

influence.

In supervised learning, we feed the training set and the desired output to the algo-

rithm. Classification problems are a typical supervised learning task. A classification

model tries to deduce something from observed data, by predicting the value of one or

more outputs given one or more inputs. Let us consider an example.

Example 2.2. Suppose that we want to build a system that know how to differentiate

a spam email from legit ones.

Figure 6: Spam classification problem.

The model is trained with example emails along with their class (spam or good),

and the goal is to learn to classify new emails. Besides classifying new instances,

another task is to predict a target, for example the temperature for the following days,
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given a set of features (temperature of the previous days, month, season, etc.) called

predictors. Tasks like this are called regression problems.

Unsupervised learning does not have labeled training data, so the system tries

to learn by itself. Unsupervised learning algorithms are used for clustering, anomaly

detection and novelty detection, dimensionality reduction, and association rule learning.

Clustering aims to automatically group data in such a way that items in a group are

more similar to each other than items outside the group. The term similarity refers

to how similar two data objects are, for example, in terms of distance (Euclidean,

Manhattan, Minkowski) or other types of measures such as Cosine Similarity or Jaccard

Similarity (for a detailed description of these measures see [34,51]). On the other hand,

dissimilarity tells us how different two data items are. We illustrate these notions in

Example 2.3.

Example 2.3. Suppose that you have a group of friends and you want to see which

of them have similar hobbies. We run a clustering algorithm to detect similar groups.

Figure 7: Clustering.

Anomaly detection is a data mining process that detects data points, events, or

observations that differ from the expected behavior of a data set. Novelty detection

identifies novel or unusual data from the data set. Dimensionality reduction aims to

transform data from a high-dimensional space into a low-dimensional one, in such a

way that it preserves some relevant properties of the original data. Association rule

learning searches for associations among data points by examining whether one data

item is dependent on another. Labeling data is often very costly and time-consuming,

and we typically have a few labeled instances and a lot more unlabeled instances. This

is what semisupervised learning algorithms deals with.
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Figure 8: Semisupervised learning with two classes.

Reinforcement learning is the study of how intelligent agents should operate in a

given environment to maximize the concept of cumulative reward. More specifically, in

this scenario, the learning system, referred to as an agent, can observe the environment,

select and conduct actions, and receive rewards (or penalties in the form of negative

rewards). It must then learn on its own what is the best strategy, known as a policy,

to maximize reward over time.

Figure 9: Reinforcement learning.

In this thesis we will focus on supervised learning techniques. There is a wide va-

riety of supervised learning algorithms, each with its strengths and weaknesses. There

can not be a single learning algorithm that performs best on all supervised learning

problems (for a proof see [59]). In our model we take decision based and neural network

based approaches which we describe in the next two sections.

2.2.1 Gradient Boosted Decision Trees

One of the most used models for classification and regression tasks are decision trees.

A decision tree learns a hierarchy of if/else questions, leading to a decision.

Example 2.4. Let us build a model that can distinguish between types of transporta-

tion vehicles.
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Figure 10: A decision tree to distinguish types of transportation vehicles.

Here each node represents a question or a terminal node that contains the answer.

In machine learning, this models is built to distinguish between four classes of trans-

portation vehicles (bicycle, car, ship, and airplane) using these features: “can fly”, “has

wheels”, “has pedals”. Instead of checking everything by hand, we can learn them from

the data using supervised learning.

Some of the most famous supervised learning approaches train a group of regressors

or classifiers, each on a different random subset of the training set. The class that takes

the most “votes” from the obtained predictions of the individual trees is the output

of this predictor. Most of the time this approach of aggregating the prediction from a

group of predictors yields a better result than using a single predictor. An ensemble is a

group of predictors, and the technique of using a group of predictors is called Ensemble

learning. Ensemble methods are algorithms from Ensemble Learning. Some famous

Ensemble methods such are: bagging, boosting, stacking, Gradient Boosted Decision

Trees, Random Forest etc. The last two methods are a group of Decision Tree regressors

or classifiers.

The combination of several weak learners (simple models such as shallow trees) into

a strong learner is an Ensemble method called boosting. The main idea of most boosting

methods is to train predictors sequentially, and each trying to correct its predecessor.

Let us now describe Gradient Boosting [22], which is a very popular boosting algorithm.

The central goal of Gradient Boosting is to enhance an imperfect model by adding a

new learner. We present the layout in Algorithm 1.
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Algorithm 1: Gradient Boost

Input: Training set {(x1, y1), . . . , (xn, yn)}, L(yi, F (~x))

Output: A function that best approximates the output variable from the

values of input variables via minimizing the loss function L(yi, F (~x))

1 F0(~x) = arg minρ
n∑
i=1

L(yi, ρ);

2 for m = 1 to M

3 ri = −
[
∂L(yi,F (~xi))
∂F (~xi)

]
F (~x)=Fm−1(~xi)

, i = 1, . . . , n;

4 Fit a weak learner hm using {(x1, r1), . . . , (xn, rn)};

5 ρm = arg minρ
n∑
i=1

L(ri, Fm−1(xi) + ρhm(xi));

6 Fm(~x) = Fm−1(~x) + ρmhm(~x)

7 return FM(~x)

The cost or loss function L(yi, F (~x)) is a differentiable function which finds the dif-

ference between initial prediction of an algorithm and the ground truth. It is initialized

with a model of constant value F0(~x).

Then we compute the residuals ri, which can be interpreted as the negative gradient

of the predefined loss function. The next learner hm, which is a decision tree in the

Gradient Boosting Decision Tree algorithm, is trained on the residual set. In essence,

the learner function h is derived by using a gradient descent [51, Section 14] method,

which estimates the local minimum of a differentiable function. Next, we compute the

weights ρm which minimize the loss function, and finally the latest learner Fm(~x) is

added to the ensemble model.

Let us consider a simplified example where we use Gradient Boosting for a regression

problem (from [30]). Let us try to predict house prices in London, where the data looks

like in Table 1.

Table 1: House prices in London data.

House size Garden size Garage True House Price

1000 700 Garage £1m

770 580 No Garage £0.75m

660 200 Garage £0.72m

We make an initial prediction for each of the house prices based on an initial model

f0. Initial models are often very simple, predicting the mean of the target variable of
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the training data. An error (residual) e1 is defined for each sample as e1 = y − f0,

where y is the true value and f0 is our initial prediction. In Table 2 we can see the

true values, initial prediction and error.

Table 2: Initial prediction and error.

True House Price Initial Prediction f0 Error e1

£1m £0.82m £0.18m

£0.75m £0.82m -£0.07m

£0.72m £0.82m -£0.1m

As we see from Table 2 our initial prediction is not very accurate since it is just

the mean. To improve this result we introduce a new model f1 to predict the error e1

from the sample feature values. In gradient boosted decision trees, this model itself is

a decision tree. Now we can predict the error e1 for each sample using f1.

Table 3: Predicting error e1.

True House Price Initial Prediction f0 Error e1 Predicted Error f1

£1m £0.82m £0.18m £0.17m

£0.75m £0.82m -£0.07m £-0.09m

£0.72m £0.82m -£0.1m £-0.1m

Looking at the first house our f0 was £0.82m and knowing the true value we have

an error e1 of £0.18m. Then we trained a decision tree f1 to predict e1 for each sample.

Now we could combine the two models into a new second prediction F1 by adding the

predicted error f1 to the initial prediction f0, shown in Table 4.

Table 4: Additive model.

True House Price Initial Prediction f0 Predicted Error f1 Prediction F1 = f0 + f1

£1m £0.82m £0.17m £0.99m

£0.75m £0.82m £-0.09m £0.73m

£0.72m £0.82m £-0.1m £0.71m

Now that we have a second prediction F1 we can continue in a sequential manner,

calculating again the error of our second prediction e2 and training a tree f2 to predict

the second error. Again we have F2 = F1 + f2, and we continue in this manner. This

approach is known as an additive model, since we are summing up models. The general

formula is given by

Fm = Fm−1 + fm,
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where Fm−1 is the current prediction Fm−1 and the prediction of the error fm ∼ em =

y − Fm−1.

The number of weak learners is a hyperparameter you have to choose. A hyper-

parameter is a parameter of a learning algorithm. We set it prior to training and it

remains like that during the training, so it is not affected by the learning algorithm it-

self. Tuning hyperparameters is one of the most important parts of building a Machine

Learning system. By tuning hyperparameters we want to find the right parameters

that maximize the accuracy (or minimize the error).

Example 2.5. Let us consider an example of visualizing Gradient Boosting trees for

a classification problem.
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Figure 11: An example of Gradient Boosting Decision Trees

From Figure 11 we see that this algorithm needed only three iterations to learn how

to classify the objects in their corresponding classes.

2.2.2 Neural Networks and Deep Learning

Nature has inspired countless innovations and one of the most important ones that

we use today in machine learning was inspired by looking at our brain’s architecture

to build an intelligent machine. The biological network of neurons in our brains were

the reason that artificial neural networks (ANNs) were invented. A biological neuron

is an electrically excitable cell. These kind of cells communicate with one-another via

specialized connections called synapses. It is the main component of nervous tissue

in all animals except sponges and placozoa [52]. There are three types of neurons

classified by their function. Inter neurons help connect neurons to the other neurons

within the same region. Stimuli like touch, light, or sound is noticed by sensory neurons

which then send the signals to the brain or spinal cord. Finally motor neurons control

everything like muscle contractions, and the signals that they receive come directly

from the brain and spinal cord. A group of connected neurons is called a neural

circuit. Neurons consist of the soma, dendrites and a single axon. Dendrites and the

soma help neurons receive signals and the axon forwards the signals out.
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Figure 12: Biological neuron. [53]

Although ANNs were inspired by the biological neurons, they slowly evolved to

loosely emmulate them. The first ones to introduce ANNs were the neurophysiologist

Warren McCulloch and the mathematician Walter Pitts in 1943 [37]. Their proposed

model artificial neuron has one or more binary inputs and one binary output. In

this paper, McCulloch and Pitts demonstrate with examples how this simple model is

capable of solving any logical proposition by building a network of artificial neurons.

Example 2.6. Let us solve some logical computations by building ANNs, assuming

that an artificial neuron activates when two or more inputs are active.

Figure 13: Logical computations with artificial neurons.
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In the first network we see that if A is activated then C gets activated as well, but

if A is not activated then neither is C. In the second network, we see that C gets

activated if and only if both A and B are activated. The last network shows that C is

activated when one of A or B are activated.

The Threshold logic unit (TLU) is an artificial neuron, also known as the linear

threshold unit (LTU). The input and output are numbers and each input connection

is associated with a weight. The TLU computes a weighted sum of the inputs for the

occurring TLU

x = w0a1 + w2a2 + . . .+ wnan = ~aT ~w,

and after that it applies a step function to the weighted sum and outputs the result

h~w(~a) = step(~aT ~w).

Similar to Logistic Regression [23] or a linear Support Vector Machine (SVM) [13],

TLU computes a linear combination of the inputs, and if the outcome passes a certain

threshold, the output of the model is the positive class, otherwise the output is the

negative class. Training a TLU means finding the right values for the weights.

A different artificial neuron known as the Perceptron was invented by Frank Rosen-

blatt [46], which was moderately different from TLU. If we have one layer of TLUs,

where all the inputs are connected to all the TLUs, then we get the Perceptron. A

dense layer (or fully connected layer) means that all the neurons in a layer are con-

nected to all the neurons in the previous layer. Feeding data to the Precepron is done

via the input neurons which immediately output the data that is fed without changing

anything. Combining all the input neurons we form the input layer. After the input

layer, we have a different type of neuron called the bias neuron which adds 1 all the

time. In Figure 14, we have an example of the architecture of a Perceptron that has

one input neuron, one bias neuron and two output neurons.
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Figure 14: Perceptron with one input neuron, one bias neuron and two output neurons.

The mathematical formula for computing the outcome of a layer for several samples

at once is:

h ~W,~b = φ( ~X ~W +~b).

Here ~X is the matrix of the input features (one row per sample and one column per

feature). The matrix ~W has all the connection weights from the input neurons (one row

per input neuron and one column per artificial neuron in the layer). The bias vector ~b

has all the connection weights between the bias neuron and the artificial neurons (one

bias term per artificial neuron). The function φ is called an activation function. When

working with TLUs, this function is the same as the step function.

Training this algorithm was inspired by Hebb’s rule [28] and was proposed by Rosen-

blatt. Hebb suggested that the bond between two neurons grows stronger when a neu-

ron triggers another neuron often. We train the Perceptron by giving one instance at

a time, and for that instance it makes the prediction. If we have a wrong prediction

the connection weight is reinforced from the input that would have contributed to the

correct prediction. The prediction learning rule is

w1
i,j = w0

i,j + η(yj − ŷj)xi,

where wi,j is the connection weight between the ith input neuron and the jth output

neuron, and the upper indices 0 and 1 stand for the current step and the next step

respectively. The current training instance of the ith input value is denoted by xi. For

the jth output neuron for the current training instance ŷj is the output, and yj is the

target output. The learning rate is denoted by η. They way that the Perceptron learns

is very similar to Stochastic Gradient Descent [47].

The Perceptron has some limitations , for example, as shown by Minsky and Pa-

pert [40] it can not solve the XOR classification problem. Given two binary inputs, an
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XOR function should return a true value if the two inputs are not equal and a false

value if they are equal. A possible solution is stacking multiple Perceptrons, which is

called a Multilayer Perceptron (MLP). An MLP has one input layer, one or more layers

of TLUs, known as hidden layers, and the last layer of TLUs is called the output layer.

Deep neural networks are ANNs that have multiple hidden layers, see Figure 15.

Figure 15: A deep neural network with input, hidden, and output layers.

The backpropagation training algorithm was introduced in [48], which we still use

today. We feed the training instances to the input layer and for each instance the

backpropagation algorithm makes a prediction called forward pass, and measures the

error. Then it goes in revere through all the layers to measure the error contribution

from each connection, called reverse pass. At the end it tweaks the connection weights

and biases to reduce the error. Let us describe this algorithm in more detail.

1. We can feed one mini-batch at a time (a batch contains multiple instances). An

Epoch is the number of times we go through the full training set. Both of these

are hyperparameters.

2. The input layer gets the mini-batch inputs and it passes them to the first hidden

layer. All the necessary computations are done in this layer and the results are

then passed to the other hidden layer, and this is repeated until the last hidden

layer is reached, which is the output layer. We save all the in-between results

since we need them for later computation. This step is called the forward pass.
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3. We will use a loss function, to compare the predicted value with the true value,

and returns the error.

4. We apply the chain rule for derivatives of composite functions analytically to find

the connection weights that caused this error.

5. We repeat the previous step going backward and measuring all the error gradients

until we reach the input layer.

6. Gradient Descent is used in the final step of the algorithm to modify all the

connection weights using the computed error gradients.

Since the step function in the original implementation of TLUs contains only flat

segments, it was substituted with the sigmoid function

φ(z) =
1

1 + e−z
.

This function has a well-defined nonzero derivative everywhere, thus Gradient Descent

can learn in each step. There are also several other famous activation functions that

gradually replaced sigmoid function, such as Rectified Linear Unit function: ReLU(z) =

max(0, z) or the hyperbolic tangent activation function defined as

tanh(z) =
(ez–e−z)

(ez + e−z)
.

The number of output neurons depends on the task that we are trying to solve. If

we have a binary classification problem, then you only need one output neuron. The

predicted value is associated with the positive class, and one minus the predicted value

is the negative class. This number can be interpreted as the estimated probability that

the event will be of the positive or the negative class. An example when we would

have more than one output neuron is when we have a number classification problem

such as recognizing whether a picture has one of the numbers from zero to nine. In

this case the there would be there would be ten output neurons, one for each of the

numbers from zero to nine. The number of output neurons for regression tasks differs

on the type of problem that we are trying to solve, if we want to predict a single value

for example weather temperature for tomorrow then we need a single output neuron,

but if we want to predict the coordinates of an object in the plane then we need two

output neurons.

Now that we are familiar with the way neural networks works, we will introduce a

different type of a deep learning model. Recurrent Neural Networks are very similar to

a feedforward network. The main difference is that RNNs also have connections going

backwards. The output that is produced in an RNN is then sent back to itself, as in

Figure 16. We feed the input ~x(t) and the previous output ~yt−1 to the recurrent neuron.
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If we do not have a previous frame, then we have a vector of 0’s or a vector of 1’s. We

can unroll the network through time and we can clearly see how at time step t, the

input neuron gets the input vector and the output vector from the previous time step

t− 1.

Figure 16: A recurrent neuron, and the unrolled neuron through time.

Since we have a different architecture, the formula used to make prediction changes.

The formula used to calculate the output of a recurrent layer for a single instance is

~y(t) = φ( ~W>
x ~x(t) + ~W>

y ~y(t−1) +~b),

where ~Wi for i ∈ x, y is the weight matrix and ~b is the bias vector. We observe that

compared to the formula of a neural network, we have an extra weight matrix. We

can again compute the output of a recurrent layer for a whole mini-batch with the

following formula

~Y(t) = φ
(
~X(t)

~Wx + ~Yt−1 ~Wy +~b
)

= φ
([

~X(t)
~Y(t−1)

]
~W +~b

)
where ~W =

[
~Wx

~Wy

]
.

Similarly as before, ~b is the vector containing bias term for each neuron, ~X(t) is the

matrix containing all the inputs for all the instances in the mini-batch, and ~Y(t) is

the matrix of the outputs for each instance in the mini-batch at time t. The weight

matrices ~Wx and ~Wy contain the weights of the inputs at the current time stamp and

the previous time stamp, respectively.

A memory cell is a part of a neural network that saves some state across time steps.

We denote the state of a cell at time step t by ~h(t) which is a function of an input at

time step t and its state at time step t− 1 is given by ~h(t) = f(~h(t−1), ~x(t)).
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We have four different types of RNNs based on the desired input and output of

the model. An RNN that has a sequence as an input and also produces a sequence as

an output is called sequence-to-sequence network (see Figure 17). This specific type of

RNN is useful for predicting time series, such as temperature of the weather. You feed

the temperatures of the weather over the past N days as an input, and it outputs the

temperature for the following days.

Figure 17: Sequence-to-sequence network.

The second type of RNN is a sequence-to-vector network (see Figure 18), where the

input is a sequence and for the output, all but the last output is ignored. A typically

example of such an RNN can be feeding the sequence of words (lyrics) of a song to a

network and the output is a sentiment score.

Figure 18: Sequence-to-vector network.

We can also feed a vector and get a sequence as an output. This type is called

a vector-to-sequence network (see Figure 19). A typical example that used such a

network is feeding an image to the input neurons and getting a description for that

image as an output.
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Figure 19: Vector-to-sequence network.

The last type of networks has two components: a sequence-to-vector network called

an encoder, and a vector-to-sequence network called a decoder. A typical example of

this type of RNN is to translate sentences from one language to another. We feed

the sentence to the encoder which outputs a vector and then it feeds that vector to

the decoder which outputs the sentence in another language. This model is known as

Encoder-Decoder (see Figure 20).

Figure 20: Encoder-Decoder network.

To train an RNN we use a strategy called backpropagation through time, which is a

regular backpropagation but we first need to unroll the network through time. Then

we evaluate the output sequence using a loss function. After this step the gradients

of the loss function are propagated backwards, and the model parameters are updated

using the gradients computed through the unrolled network through time.
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3 PREDICTING SCIENTIFIC

SUCCESS

Information networks, also known as knowledge networks, are a very significant type of

network. The network of citations between academic works is a famous example of an

information network. The majority of publications mention previous works on related

topics by others to give credit to the ideas and work of other researchers. Citation

networks consist of articles citing previous work that is relevant to their particular

field of study. These citations comprise a network, with the nodes being articles, and

directed links from A to B indicating that A cites B.

The citation network’s structure then mirrors the structure of the information held

at its nodes, hence the term information network. Citation networks do not contain

cycles because papers can only cite previously published papers. As a result, all network

edges point backwards in time, making closed paths impossible or highly rare.

Price [44] underlines the structure of networks of scientific papers and it is perhaps

the first reported example of a scale-free network. It is also worth mentioning the work

of Newman [42] on the structure and function of complex networks, which is the first

comprehensive study of the complex networks. He discussed the small-world effect,

degree distributions, clustering, random graph models, models of network growth and

preferential attachment, and dynamical processes taking place on networks.

Egghe and Rousseau [17] are among the pioneers that utilize quantitative methods

on bibliometrics, which is the application of statistical approaches to the analysis of

books, papers, and other publications. They also introduce various ways for citation

analysis.

Predicting the success and impact of scientific works is a well known problem and

many studies with different approaches have been conducted. Most of the papers

have different objectives such as predicting the h-index (it is the highest value of h

for an author or journal that has produced at least h papers, each of which has been

referenced at least h times) of researchers [2, 4, 16], predicting the impact factor of

scientific journals [32, 45, 60], citation count prediction for scientific papers [11, 15, 16],

and predicting highly cited papers [32, 43,50].

Rocha-e-Silva [45] wanted to find out whether trends of Journal Impact Factor

variation can be objectively predicted for the upcoming year. He created citation

curves for publications written in the two years preceding the current year, as well as
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their citations in the current year. For the first and second years, separate curves were

formed. He defined a parameter INDEX R and calculated it for a sample of 10 journals

chosen at random with Impact Factors ranging from 1 to 3. INDEX R was observed

to have a quasi-normal distribution (with a slight skew toward higher values) with a

slight adherence to the Gauss distribution (central tendency) and thus he managed to

show that by looking at INDEX R, it is possible to forecast the trend for the Impact

Factor for the following year.

Cao, Chen and Liu [11] present a simple but efficient and robust data analytic

approach for predicting potential citations of papers from various disciplines. The

proposed approach can provide a reliable estimate of possible citations using relatively

short-term (3 years after the paper is published) citation data, outperforming state-

of-the-art prediction methods significantly. This approach is focused on the idea that

future citation dynamics are linked to past citation dynamics. The proposed method

is called Gaussian Mixture Model (GMM) which predicts several possible trends of

the future citations of a paper. This method clusters matched citation dynamics into

K clusters by fitting a GMM with K Gaussian components, then it predicts the K

Gaussian means of the K Gaussian components as the top K possible trends of the

paper’s future citations.

Newman [43] proposed an alternative measure of impact. He suggests that instead

of looking for papers with high total citation counts, we should look for papers with

citation counts higher than expected given their date of publication. We can look at

this by counting the number of citations a paper has received and compare it to the

number of citations received by other articles on the same subject published at the

same time. He measures the mean number of citations and its standard deviation for

papers published in a window close to a paper’s publication date, and also measures

the number of standard deviations by which the citation count of that paper differs

from the mean. The articles with higher score were assumed to be more important

within the field.

In [1] Abrishami and Aliakbary categorize the existing papers based on their infor-

mation sources for scientific impact prediction. According to their findings, here are

three key groups that papers fall under.

1. Papers in the first category use the graph of the scientific papers as the main

source of information [14]. Further, some of these papers tackle this problem as a

link prediction problem in the citation network [14], some use the co-authorship

network [56], and some use the paper neighborhood properties [38].

Daud et al. [14] address the problem of predicting reciprocal connections in cita-

tion networks as a classification problem. Understanding the structure of recip-

rocal connections allows one to comprehend the underlying community structure
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of co-authorship and citations, as well as how authors interact, influence, and cite

one another. The aim of this study was to use classification models to predict

reciprocal links using a variety of textual and graph-based features. The main

question that the authors try to answer is: “If you cite an author, will they cite

you back?”. The results show that features such as paper, author, and field of

research are effective for reciprocal link prediction.

McNamara et al. in [38] proposed a new method for predicting a paper’s future

impact using features of the paper’s neighbourhood in the citation network, in-

cluding measures of interdisciplinarity. Predictors of high impact papers include

features such as: high early citation counts of the paper, high citation counts by

the paper, citations of and by highly cited papers, and interdisciplinary citations

of the paper and of papers that cite it. Their findings indicate that nodes that are

highly connected and span network boundaries are more likely to be influential.

2. In the second category we have papers that use the information about other

papers just after the publication [16, 56]. This includes the text of the paper,

conference, journal, research area and information associated with the authors

and references.

Dong, Johnson and Chawla [16] state that citations are hard to predict due

to their heavily-tailed distribution. Because of this they chose to answer two

questions: “How will h-index evolve over time?” and “Which of previously or

newly published papers of an author will contribute to their own h-index?”

First, they create a model that predicts potential h-indices for authors based on

their current scientific impact. Second, they examine whether newly published or

previously published papers cause papers to be more popular, and thus increasing

future h-indices of authors. They achieve an R2-score of 0.92 for predicting

the authors’ h-index in five years and a 0.99 F1 score for predicting whether a

previously (newly) published paper would lead to this future h-index.

3. In the last category, the information about the papers is extracted after publica-

tion [11, 33]. Here authors try to predict the long-term citation count based on

the short-term citation count of the papers or by getting extra information about

papers in the web and social networks.

Lamb, Gilbert and Ford [33] measure the association between citation rates and

the Altmetric Attention Score, which is an indicator of the amount and reach of

the attention an article has received. Attention Score was found to be positively

correlated with citation rates. They found that the passage of time (years since

publication) increased citation rates, with letters and notes receiving fewer cita-

tions than traditional articles and review papers receiving more citations than
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both other article types. However, in recent years, they discovered that increas-

ing media exposure did not correspond to the same number of citations as in

previous years, indicating diminishing returns in recent years.

Abrishami and Aliakbary [1] proceed to claim that we do not need many types

of features and only the citation count of the first three to five years are enough

to have an intuition about how a paper’s citation count will perform in the future.

According to their categorization, their own article [1] belongs to the third category.

They use Recurrent Neural Networks as a tool to make the predictions, which yields

good results even with limited information. We shall reproduce their model according

to their setup and further compare it with our models. We go into detail about the

model in Chapter 4.

A different approach to predicting paper impact was taken by Weihs and Etzioni

in [56]. They predict the author impact and paper impact 10 years into the future.

The information they use is extracted from co-author networks of papers, citation net-

works and extra information such as the type of scientific work (a paper or a survey),

number of years since the paper was published, venue of the publication etc. Their best

performing algorithm is Gradient Boosted Regression Trees (GBRT) which we intro-

duced in Section 2.2.1. Following the categorization by Abrishami and Aliakbary [1],

the paper [56] belongs to the first and third category since it uses the graph of the

scientific papers but also information of the paper after publication. We used the same

data set as Weihs and Etzioni in [56] to develop our own methodology since their large

and qualitative data collection was available.
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4 METHODOLOGY

To address the problem of predicting citation counts of scientific papers, we propose

a novel technique based on feature extraction from temporal citation networks. In

other words, we capture snapshots of citation networks evolving through time and

extract data that allow us to compute various measurements regarding nodes from

each snapshot. In the framework of machine learning approaches, this task is classified

as a regression problem because the model should predict the citation count as a non-

negative integer value. We create a customized neural network and a Gradient Boosting

Regression Tree as majors components of our proposed method since artificial neural

networks and ensemble methods are one of the most powerful methods for regression

learning. The prediction algorithms are trained using some papers from a data set of

existing papers with known citation histories in the training phase, and then the rest

of the papers are used as the test set to evaluate the accuracy of the trained neural

network and GBRT in the testing phase. We utilize the data set that is made available

by Weihs and Etzioni [56], which contains more than four million papers from computer

science. Their approach also provides results that are an improvement over previous

efforts and thus serves as a baseline against which we measure our progress. Since

Abrishami and Aliakbary’s work [1] is very innovative and only requires few features

for training, we replicate their model and data engineering method. We show that

our approach outperforms both mentioned models and this chapter is devoted to a

comprehensive discussion of this framework.

We present the machine learning pipeline starting with the exploratory data analysis

part, where we analyze the data set and summarize the main characteristics via data

visualization methods and statistical tables. We then proceed to understand the model

pipeline of [56] since we use their model as a baseline against which we compare our

models. To replicate and test the Encoder-Decoder model from [1], we first engineer

the data set employing their own data cleaning pipeline. Finally, we implement our

innovative feature extraction technique and define the optimal hyperparameters for our

model to achieve the best possible results. Let us describe the pipeline implementation

in detail.

In Section 4.1 we explain the origin, the availability of the data set and the feature

engineering process performed in [56]. We describe the data set in detail by giving

statistics such as the number of papers, number of authors, number of venues, the

years spanned in this data set etc. We also fit an exponential line to see the increase
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in the number of paper over the years, and we try to deduce expected results from the

graph.

Furthermore, we give additional statistical information for the citation network

including measures such as the average degree, density, connectivity, number of com-

ponents etc.

We then visualize the popularity of venues in this data set. This is important

because some journals have a greater impact than others, and selecting the appropriate

journal to publish research work is critical for reaching the intended audience.

The most cited papers in this data collection are then represented graphically. We

summarize all the features used in [56] and their descriptions via Table 7.

In Section 4.2 we explain the feature engineering process for the Encoder-Decoder

model and the Network based model. We then give details of the features that we

need to extract from the data set in Section 4.2.1. The programming language and the

packages used for feature engineering and visualization are described and explained in

this section too.

The most important section of this thesis is Section 4.2.2. Here we show our novel

feature engineering approach using temporal networks to address the problem of pre-

dicting success of papers in the future. The concept of temporal networks is a modeling

paradigm that extends the concept of complex networks to provide details about when

nodes interact. They can be used to investigate how a network grows, improves, or

evolves over time. This shift in time may represent how knowledge travels across any

type of network.

We begin this section by illustrating and visualizing the feature extraction approach

from the citation network. Afterwards, we present the features extracted from the

citation network, as well as additional descriptions and explanations for each of them.

We conclude this section with an example of a randomly generated directed network

and perform our feature extraction technique on this network.

In Section 4.3 we explain the methods and measurement criteria used in [56], where

we choose their best performing model as a baseline model for comparison with our

approach. Furthermore, we describe the implementation details of Encoder-Decoder

model in Section 4.3.1, which is known as a sequence-to-sequence model. We implement

this model using the neural network framework Keras, and include additional model

information for replicability purposes.

In Section 4.3.2 we introduce the pipeline of the Network based model, starting

with the sizes of the train, test and validation sets, then the DNN and GBRT algo-

rithm hyperparameters for selecting the best performing hyperparameters using the

Grid Search algorithm, and then we summarize all the steps of the predictive model.

For the sake of replicability, we also include additional implementation specifics and

descriptions for both the DNN and the GBRT models.
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4.1 DATA SET

The data set that we used is made publicly available1 in [56], which includes paper

published between 1975 and 2016. There are approximately 4 million papers that come

from the field of computer science, covering paper published in over 7000 conferences

and journals, which are written by around 800, 000 authors. Weihs and Etzioni [56]

use information available in 2005 to predict impact in the upcoming 10 year period

(2006-2015).

Figure 21: The exponential fit and the cumulative number of published papers in this

data set over 1975− 2015 time period.

From Figure 21, we see how the number of papers increases over time, and the

exponential fit suggests that the number of papers is expected to double approximately

every six years.

Table 5: Citation network statistics.

Year

range
Nodes Edges

Average

degree
Density

Is

connected

Connected

components

Largest

component

Smallest

component

1975 3594 3699 2.058431 0.000573 False 2 3592 2

≤ 1986 82221 126304 3.072305 0.000037 False 4 82213 2

≤ 1996 363938 951772 5.230407 0.000014 False 20 363890 2

≤ 2006 1366613 5827844 8.528887 0.000006 False 109 1366338 2

≤ 2016 3674639 19180176 10.439216 0.000003 False 147 3674281 2

In Table 5, we present some statistics of the citation network (of the underlying

1Here you can find the data set together with the code to reproduce the results of [56]: https:

//github.com/Lucaweihs/impact-prediction

https://github.com/Lucaweihs/impact-prediction
https://github.com/Lucaweihs/impact-prediction
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network) used in [56]. We observe the network in five time periods: in the first one we

include papers published in 1975, in the second one we include papers published from

1975 to 1986, the third one includes papers published from 1975 to 1996, the fourth

one includes papers published from 1975 to 2006, and the last group includes papers

published from 2007 to year 2016. We observe that the number of nodes is growing

almost exponentially, and the number of edges is growing even faster. The average

degree of the citation network in 1975 is 2.06. After 11 years the average degree grows

to 3.07. In the time period 1975 to 1996 the average degree stands at 5.23, then it

grows to 8.53 in the time period from 1975 to 2006, and lastly the average degree of

all papers in the data set from 1975 to 2016 is 10.44.

Quantitative metrics can distinguish networks, we can learn about their topologies

and their properties. One of the most popular metrics is network density. Network

density is the ratio of the edges in the network to all possible edges in the network.

If our network consists of n nodes the maximum number of edges in an undirected

network is
(
n
2

)
. If we have a density of zero, then there are no connections at all, so we

have only isolated nodes. If the density is one, then we have all the possible edges in

the network, otherwise known as a complete graph Kn.

Citation networks are acyclic directed networks, but in some extreme events there

may be that two papers are citing each other. These situations do not influence the

magnitude therefore using the formula for calculating the density of a simple directed

network can be applied also here. In this citation network 0.001% of the links have

an opposite direction. In the first group, we see that density is 0.000573, which is on

the lower end of the scale and it means that there are very few connections. Even

though the density is very small, we observe that when the network is growing the

density becomes even smaller. By observing the first row of Table 5, we see that we

have almost as many edges as nodes, which is not the case for the other rows, as we

have way more edges than nodes. Since we have more nodes, then the number of all

possible edges also increases. Thus shrinking the density even further on the density

scale.

Some other important properties to check in networks are the size of the largest

and smallest connected component. All of the other connected components, except the

largest one, have a small number of nodes which does not exceed 10 nodes. From this

statistic, we suspect that this citation network follows a power law degree distribution

since the majority of the nodes is grouped together in a component. In [44], Price

shows that the in-degree and the out-degree in a directed network have a power law

distribution sequence. To show that this is indeed the case with this citation network,

we plot the in-degree and out-degree distribution sequence of this citation network in

Figure 22. Note that the majority of the nodes have a small in-degree and out-degree,

and only a few nodes large in-degree and out-degree.
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Figure 22: In-degree and out-degree distribution sequence of the citation network.

Since this data set consists of over 7000 conferences and journals, we can see which

ones are the top 15 publishing venues in Figure 23.

Figure 23: Most popular conferences and journals.

Most of the papers in our data set are published in arXiv, which is an open-access

repository of electronic preprints and postprints, that are not peer-reviewed but are
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approved for posting after moderation. The second most popular venue in our data set

is the IEEE International Conference on Acoustics, Speech, and Signal Processing, the

third one is the Conference of the International Speech Communication Association,

the fourth one is IEEE International Conference on Image Processing, which are top

conferences in computer science backed by the IEEE organization. As noted before we

see that all of the journals and conferences are from the field of computer science.

This data set consists of almost twenty million edges indicating that there are almost

twenty million citations. In Figure 24, we see which papers (their Semantic Scholar

IDs) are the most cited ones, and how many citations they received.

Figure 24: Most cited papers in this data set.

In Table 6, we present the titles of the aforementioned papers to see which are the

exact ones with the most influence. It is important to note that the ID of “Multiple

View Geometry in Computer Vision” paper was later changed to another ID2.

2It was changed to “339093c7ed71919ce59a7e78979a77abd25bad0c” instead of

“e8efdabf9f2aba8929c6fad8661a36db4800df6e” appearing in Figure 24 and in Table 6
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Table 6: Paper titles and their IDs.

IDs Paper Title

4c3f5edf92dfdaf796addc96009c62e83b7b5480
Computers and Intractability: A Guide to the Theory

of NP-Completeness

1a998506899da3bc703455bde45114bd4c228947 Distinctive Image Features from Scale-Invariant Keypoints

d921036a6cb7e340b019afa557a19bc65586a1ad Elements of information theory (2. ed.)

146bb2ea1fbdd86f81cd0dae7d3fd63decac9f5c
Genetic Algorithms in Search Optimization and

Machine Learning

3d61f2a50285fe4d96fe8bfd0d92a8e4cb8187d5 The Nature Of Statistical Learning Theory

badc25554d9e73448227a265625bf73e71069d00
Probabilistic reasoning in intelligent systems - networks of

plausible inference

0404bd58e5f1edbd288cd69fcbc224485af415bf The Mathematical Theory of Communication

e96dc1d785ffd64e12ccf025de7a5e4f277d0cc9 C4.5: Programs for Machine Learning

bd22b7b3797a06bf9dd7b4bb8561db8903f6a18f Reinforcement Learning: An Introduction

6873a4db9703c9bf38ddabf9abed17ac5b673b59
A Tutorial on Hidden Markov Models and Selected

Applications

1e56ed3d2c855f848ffd91baa90f661772a279e1 Latent Dirichlet Allocation

e8efdabf9f2aba8929c6fad8661a36db4800df6e Multiple View Geometry in Computer Vision

3979cf5a013063e98ad0caf2e7110c2686cf1640 Basic local alignment search tool.

0f16f6f478b5c788dce466eb50e36c612273c36e LIBSVM: A library for support vector machines

572dd2d5d75227bb878430c9375b9be92cc7e6e9 Statistical learning theory

The process of extracting features from raw data is known as feature engineering,

whose aim is to improve the accuracy and performance of machine learning algorithms.

This process involves a few steps such as selecting the most useful features to train

known as feature selection, combining existing features known as feature extraction,

and creating new features by acquiring new data. This ensures that the data set

contains enough relevant features.

The feature engineering process in [56] focused on features that can be extracted

from the citation graph, coauthor graph, and paper metadata. They came up with 63

features as shown in Table 7.

In the following section we present our feature engineering pipeline for the Encoder-

Decoder model and the Network based model. In our data set we will not include fea-

tures from the co-authorship network because, although we have the available data, we

aim to make our framework easily reproducible since data acquisition of co-authorship

networks is generally difficult.
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Table 7: Features used by Weihs and Etzioni.

Features Description

author hindex {mean, min, max} H-indices of authors

author hindex delta {mean, min, max} Change in h-indices of authors in last 2 years

author citations {mean, min, max} Cumulative citations for each author

author key citations {mean, min, max} Cumulative key citations for each author

author key citations delta {mean, min, max}
Change in cumulative key citations for each

author in last 2 years

author mean citations {mean, min, max} Mean citations per paper for each author

author mean citations delta {mean, min, max}
Change in mean citations per paper for each

author in last 2 years

author papers {mean, min, max} Number of papers published for each author

author papers delta {mean, min, max}
Number of papers published for each author

in last 2 years

author unweighted pagerank {mean, min, max}
PageRank of each author in the unweighted

coauthorship network

author weighted pagerank {mean, min, max}
PageRank of each author in the weighted

coauthorship network

author mean citation rank {mean, min, max}
Rank of each author among all authors

in terms of mean citations per paper

author recent num coauthor {mean, min, max}
Number of coauthors each author had in last

2 years

author max single paper citations {mean, min, max}
Maximum citations a single paper of each author

has received

total num authors Total number of authors for the paper

venue hindex H-index of the venue

venue hindex delta Change in h-index of the venue in last 2 years

venue mean citations Mean citations per paper published in the venue

venue mean citations delta
Change in mean citations per paper

published in the venue in last 2 years

venue papers Number of papers published in the venue

venue papers delta
Number of papers published in the venue

in last 2 years

venue rank
Rank of the venue among all venues in terms

of mean citations per paper

venue max single paper citations
Maximum number of citations any paper

published in the venue has received

paper age Age of the paper in years (rounded up)

paper citations Cumulative citation count

paper key citations Cumulative key citation count

paper mean citations per year Average number of citations received per year

is survey Whether or not the paper is a survey

paper citations delta {0,1}
Number of citations the paper received in the

last year and the year before that

paper key citations delta {0,1}
Number of key citations the paper received in

the last year and the year before that
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4.2 FEATURE ENGINEERING

We will use the same citation graph, coauthorship graph, and paper metadata as Weihs

and Etzioni to extract features needed for the Encoder-Decoder model and the Network

based model.

4.2.1 Feature engineering for Encoder-Decoder model

Abrishami and Aliakbary show in [1] that we do not need a lot of features to have good

predictions. They use only these 9 features as shown in Table 8.

Table 8: Features used by Abrishami and Aliakbary.

Features

paper id

journal id

publication year

citations in year 0

citations in year 1

citations in year 2

citations in year 3

citations in year 4

citations in year 5

We observe that Abrishami and Aliakbary use a totally different approach compared

to Weihs and Etzioni. We use Python 3 [54] as a programming language to do all the

data manipulation process. The main packages that we use in the process of feature

engineering are:

• pandas [57], which is an open source data analysis and manipulation tool built

on top of the Python.

• NumPy [27], which is a Python library that assists with large, multi-dimensional

arrays and matrices, and includes mathematical functions to operate on these

arrays.

• NetworkX [26], which is a Python package for the creation, manipulation, and

study of structure, dynamics, and functions of complex networks.

• json [9], which is a data interchanged format based on JavaScript object syntax

to represent structured data.
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• Matplotlib [29], which is a plotting library for Python.

Visualization is a crucial step in analyzing data sets and getting further insights, so we

use Matplotlib as a visualization tool. The networks were in json file format therefore

we use the respective Python library named json to load the data sets. To manipulate

with the data we use the pandas library. To replicate Abrishami and Aliakbary’s feature

extraction process, we select papers that have at least 16 years of history since their

publication date. More precisely, we extract the citation count of papers in 2001−2005

as an input variable in order to predict citation count of papers in the upcoming years

2006−2015. We use NetworkX to extract this information from the citation graph and

then we count the in-degree of each paper for 16 consecutive years. Each node has its

unique identifier “paper id” and the edges represent the year that a paper cited another

paper. The journal or conference that the paper was published in is extracted from

paper metadata which is in a csv (comma-separated values) format. Table 9 illustrates

how the data set looks like after feature engineering for five sample papers.

Table 9: Features of five sampled papers for Encoder-Decoder model.

id venue year c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

2a368cc463ae66611a683dba202528a055ac3475 iccs 2001 2 7 8 9 12 14 16 16 19 19 20 21 22 22 22

91fe40b93f877df9b5230f7aa9a5f5a814fc6093 tsp 1997 4 8 9 9 10 12 12 12 12 12 12 12 12 12 12

736435d881ce14243725d746c66d3d803f9a7fa4 esa 2001 0 2 9 11 13 15 17 20 20 20 21 21 21 21 21

080a875ff8d444a7efcde0237d6edfa7136ecbd9 iva 2001 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2

a67b0f5072f929ffecb062592316823f2ea5db9c tcsv 1994 16 18 20 21 24 26 26 29 30 32 32 32 34 34 34

Since machine learning algorithms do not accept strings as input we transform the

first two columns of the data set, namely “id” and “venue”, to numerical variables.

The columns ci where i ∈ [1, 2, . . . , 15] represent citation count after i years. The first

8 columns are the predictors and the other 10 columns are the response variables.

4.2.2 Feature engineering for Network based model

In this section, we describe our novel feature engineering approach based on net-

work properties. To implement this approach we use the same citation network, co-

authorship network and paper metadata as in [56]. Up to now, we have seen two

approaches that were used to handle this type of data, which have the same goal of

predicting citation count up to 10 years in advance. The h-index is typically regarded

as an author-level indicator that assesses a scientist’s or scholar’s productivity as well

as the effect of his or her publications in terms of citations. The approach in [56] is to

predict citation count based on h-indices of authors, number of authors, venue h-index,

age of papers and many other variables that can be extracted from the co-authorship

network, citation network and paper metadata. The approach in [1] is to predict cita-
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tion count based on the venue where the paper was published, year it was published

and the first five years after it was published.

Among many other differences these two approaches have, they also differ by the

number of predictors used, since the first approach uses approximately eight times

more predictors. None of these two approaches explain which are the most important

features that authors need to tweak in order to maximize the citation number their

papers in the future.

Our method relies strictly on the position of a paper in the network. We show that

the position of a paper in the network suffices to have strong predictions. Instead of

looking for variables such as h-indices of the venues, h-indices of the co-authors, or

even waiting for some years to use the past years’ citation count as predictors for the

future, we utilize network properties of nodes that will be extracted from the citation

network through time.

In Figure 25 we show an example of the evolution of a network through time known

as a temporal network. A temporal network is a sequence of n networks

G(Vi, Ei, ti) with 1 ≤ i ≤ n

such that ti is a time stamp, and Vi+1 and Ei+1 are constructed from Vi and Ei by

adding or removing nodes and links. In the case of citation networks, we only add

nodes and links so Ei ⊆ Ei+1 and Vi ⊆ Vi+1.

From here we observe that the network is growing over time as new nodes are being

added at each new time stamp. The introduction of new nodes at each time step ti

changes the network structure, global network properties, and network properties of

each node.

Figure 25: Evolution of network through time.
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In our data set, we take advantage of these changes as we will record the network

properties of nodes at each time stamp ti and by doing this, the amount of instances

(rows) increases approximately six-fold. This means that the older a paper is, the more

instances of it we have in our data set. Since the network is changing at every time

step, none of the features that we extract will remain the same, thus while increasing

the size of our data set we are not introducing any bias.

We start this feature engineering process by first removing all the isolated nodes,

which will decrease the number of papers in this data set as shown in Figure 26.

Figure 26: The exponential fit and the cumulative number of published papers after

feature engineering.

After removing all the isolated nodes we start recording the properties of nodes from

1975 up to 2005. In Table 10 we display all the features that will be extracted from

the network using the Python library NetworkX. Again in this step, we use pandas

and NumPy to transform and manipulate with the data. For most of the features in

Table 10 there are implemented functions in NetworkX. The functions that are not

implemented in NetworkX are the ones that check properties of successors.
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Table 10: Network based features.

Features

In-degree

Out-degree

Degree Centrality

In-degree Centrality

Out-degree Centrality

Eigenvector Centrality

Katz Centrality

Average Neighbour Degree

PageRank

Clustering Coefficient

Squares Clustering Coefficient

Minimum of successors in-degrees

Maximum of successors in-degrees

Mean of successors in-degrees

Sum of successors in-degrees

Minimum of successors PageRank

Maximum of successors PageRank

Mean of successors PageRank

Sum of successors PageRank

Age

Since we want to predict the success of each node, then an appropriate approach

to take is the extraction of information about the importance of each node in the

network. As mentioned before, citation networks are scale-free networks, which follow

a power law degree distribution. Preferential attachment is suggested as a method for

explaining power law degree distributions in real networks [5]. This implies that nodes

with a higher number of citations will continue to receive additional citations, or in

other words, “the rich get richer”. As a result, extracting these measure of importance

for nodes will provide a good summary of the expected number of citations that a

scientific paper will receive in the future.

Let us describe the features from Table 10 for a comprehensive understanding of

the feature engineering process. Let v be a node from the set of all nodes V (G), where

G is the citation network. The in-degree of node v is the number of current citations

that the node has received. The out-degree of node v is the number of papers that v

has cited (used as references).

The most important nodes in network analysis and graph theory are identified



Qarkaxhija L. Network based predictive modelling.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 44

by indicators of centrality [36]. Centrality measures provide rankings which identify

the most important nodes based on different functions. Based on how centrality is

constructed, we can classify nodes in two classes: radial or medial. Radial centralities

count walks which start or end from a given node, while medial centralities count walks

which pass through a given node.

Social network analysis is the area where centrality concepts where first developed,

thus applications of centrality include identifying the most influential people in social

media, but also other applications such as finding the super-spreaders of a disease.

In a directed network G = (V,E), the degree centrality of a node v is the ratio of

the number of links incident to v to the maximum possible degree in a simple graph,

which equals |V | − 1. The in-degree centrality for a node v is the ratio of the number

of incoming links to |V | − 1. The out-degree centrality for a node v is the ratio of

the number of outgoing links to |V | − 1. In what follows, we consider the underlying

network for calculations if the network is directed, unless it is specified otherwise.

Eigenvector centrality [7] computes the centrality of a node v based on the centrality

of its neighbours. The eigenvector centrality for a node v is given by Ax = λx, where

A is the adjacency matrix of the graph G, λ is a scalar and x consists of values of the

centrality measure of neighbours of v. The scalar λ is called an eigenvalue and x is

called an eigenvector. In general, the matrix A will have multiple eigenvalues, but the

Perron-Frobenius theorem [8] guarantees that if all the entries of the eigenvector x are

positive, then there is only one eigenvalue that satisfies this requirement. Therefore,

we can assign a unique centrality score to each node.

Similar to eigenvector centrality, Katz centrality [25] is a measure which computes

the centrality for a node based on the centrality of its neighbours. It generalizes the

eigenvector centrality. To compute the Katz centrality for node v we have the following

formula:

xv = α
∑
u

Av,uxu + β,

where A is the adjacency matrix of graph G, the parameter α is bounded above by the

reciprocal of λmax, where λmax denotes the largest eigenvalue, β is a constant initial

weight assigned to each node in order to account for nodes with zero in-degree or out-

degree, and xv and xu are vectors. If α = 1
λmax

and β = 0, then Katz centrality is the

same as eigenvector centrality. It thus extends the concept of eigenvector centrality

to directed networks that are not strongly connected. From the formula, we see that

Katz centrality computes the relative influence of a node by measuring the number of

neighbours.

PageRank [21] is an iterative algorithm used by Google Search to rank web-pages

in their search engine outputs. PageRank was originally a function that assigns a

real number to each page in the web, and now it is a widely used network analytics
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technique. A page’s rank is a value between 0 and 1, each page starts with some

amount of rank and the sum of all pages’ PageRanks is 1. There are a lot of varieties

of PageRank algorithm. A basic PageRank formula is:

PR(v) =
∑
u

PR(u)

|outdeg(u)|
,

where the sum runs over all predecessors u of v. We calculate the page rank of each

node using the equation above repeatedly until convergence.

The clustering coefficient [49] for directed graphs is calculated as follows:

C3(v) =
T (v)

deg(v) · (deg(v)− 1)− 2
deg(v)

,

where T (v) is the number of triangles (a set of three nodes such that any two of them

are connected by a link) through node v. This coefficient gives the probability that

two neighbours of node v are adjacent.

The squares clustering coefficient [35] for directed graphs is calculated as follows:

C4(v) =

∑kv
u=1

∑kv
w=u+1 qv(u,w)∑kv

u=1

∑kv
w=u+1[av(u,w) + qv(u,w)]

,

where qv(u,w) is number of shared neighbours of u and w without considering node v,

and

av(u,w) = (ku(1 + qv(u,w) + θu,v))(kw − (1 + qv(u,w) + θu,w)),

where θu,w = 1 if u and w are adjacent and 0 otherwise. This coefficient gives the

probability that two neighbours of node v share a common neighbour different from v.

The minimum of successors in-degrees is calculated as:

min{deg(u) : u is a successor of v}.

The maximum, mean, sum of successors in-degrees are calculated similarly, by switching

to the appropriate operations.

The minimum of successors PageRank is calculated as:

min{PR(u) : u is a successor of v}.

The age is the year that indicates when a certain paper was published.

The average neighbour degree of a node v is the sum of degrees of all the neighbours

of v divided by the number of neighbours of v. If the network is directed, we will use

the sum of out-degrees of nodes that have v as a source node.

Example 4.1. Let D be the digraph from Figure 27. Let us see how the network

based features would differ when we extract the aforementioned features. The digraph

from Figure 27 randomly generated and drawn using the NetworkX package.
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Figure 27: A randomly generated digraph with 10 nodes and 25 arcs.

In Table 11 we explore the variability of the features from Table 10 for the digraph

from Figure 27.

Table 11: Network based features of the random generated graph D.

Features/Nodes 0 1 2 3 4 5 6 7 8 9

In-degree 3 4 1 4 1 1 2 0 4 5

Out-degree 3 5 2 3 4 3 2 2 1 0

Degree Centrality 0.666667 1 0.333333 0.777778 0.555556 0.444444 0.444444 2.222222e-01 0.555556 0.555556

In-degree Centrality 0.333333 0.444444 0.111111 0.444444 0.111111 0.111111 0.222222 0 0.444444 0.555556

Out-degree Centrality 0.333333 0.555556 0.222222 0.333333 0.444444 0.333333 0.222222 2.222222e-01 0.111111 0

Eigenvector Centrality 0.323088 0.409976 0.154782 0.352870 0.078879 0.179829 0.247723 4.198040e-10 0.476328 0.502240

Katz Centrality 0.327721 0.357245 0.271019 0.351870 0.262988 0.271556 0.298658 2.358319e-01 0.363099 0.384904

Average Neighbour Degree 3 1.8 2.5 2.666667 2.75 3 3 5.000000e-01 0 0

PageRank 0.100347 0.125821 0.071829 0.137916 0.048093 0.054142 0.084670 3.275272e-02 0.135571 0.208858

Clustering Coefficient 0.392857 0.25 0.5 0.25 0.4 0.5 0.5 5.000000e-01 0.3 0.3

Squares Clustering Coefficient 2 0.666667 0 2 4 2 0.666667 0 0 0

Minimum of successors in-degrees 4 1 2 1 3 1 3 4 5 0

Maximum of successors in-degrees 4 5 4 4 5 5 4 5 5 0

Mean of successors in-degrees 4 3 3 3 4 3.333333 3.5 4.5 5 0

Sum of successors in-degrees 12 15 6 9 16 10 7 9 5 0

Minimum of successors PageRank 0.125821 0.054142 0.084670 0.071829 0.100347 0.048093 0.100347 1.355707e-01 0.208858 0

Maximum of successors PageRank 0.137916 0.208858 0.137916 0.135571 0.208858 0.208858 0.137916 2.088577e-01 0.208858 0

Mean of successors PageRank 0.133103 0.116718 0.111293 0.111074 0.143236 0.127591 0.119132 1.722142e-01 0.208858 0

Sum of successors PageRank 0.399308 0.583588 0.222586 0.333221 0.572942 0.382772 0.238263 3.444284e-01 0.208858 0

4.3 MODEL SELECTION

After performing an exploratory data analysis and feature engineering, the next step

in a data science project pipeline is feeding the data to a machine learning model. In
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this section we present the Encoder-Decoder model into which we feed the data from

Section 4.2.1. Furthermore, we build two machine learning models into which we feed

the data from our novel feature engineering technique from Section 4.2.2.

Before continuing with the next sections, we first analyze the machine learning

model which Weihs and Etzioni used in [56]. There are six different machine learning

algorithms that are compared with one another based on the R2 metric or R2-score.

This metric compares the relative performance of a model against a predictor that

returns the mean of the labels. The formula to calculate the R2-score is

R2(y, ŷ) = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

, (4.1)

where N is the total number of papers, yi is the citation count of the ith paper, ŷi is

the predicted citation count for the paper, and ȳ = 1
N

∑N
i=1 yi is the average citation

count over all papers.

The six models used in [56] are:

1. Plus-k, which is a baseline model that adds a fixed constant to all citation counts

every year, this constant is chosen by linear regression using Hubber loss (a loss

function that is less sensitive to outliers in data).

2. Simple Markov, which is a linear regression model that is only given features

describing citation counts in 2005 and the change in paper’s citation count from

2003 to 2005.

3. Lasso, which is a regularized linear regression model that uses all features with

the regularization parameter chosen by 10-fold cross validation.

4. Random forest, which is an ensemble of regression trees using randomization

techniques to improve performance.

5. Gradient boosted regression trees, which is a collection of simple regression trees

that are trained iteratively by a type of functional gradient descent.

6. Reinforced Poisson Process, which is a probabilistic model for predicting citation

counts of individual papers.

After all the experiments that were conducted, the Gradient boosted regression

trees model outperforms all the other models and Reinforced Poisson Process is a very

close runner-up. We will refer to the best performing model here as a baseline model

in the up-coming sections.
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4.3.1 Encoder-Decoder model

In [1], Abrishami and Aliakbary build a model that learns to predict citation count of

a paper in the future based on its citation history. Predicting citation count of a paper

in the future is defined as a regression problem in the context of machine learning

methods. Since Artificial Neural Networks are one of the most popular and powerful

methods for regression learning, they propose a neural network that learns to predict

ĉk+1, ĉk+2, . . . , ĉn values based on c0, c1, . . . , ck values, where ci for i ∈ 1, 2, . . . , k are

the past citation counts of a paper and ĉi for i ∈ k + 1, k + 2, . . . , n are the predicted

citation count for the future of that paper. The neural network is first trained on a

subset of the data and then the rest of the data is used as a test set to evaluate the

accuracy of the trained neural network.

From the definition of this problem we see that both the history of a paper’s citation

count (input) and the future of a paper’s citation count (output) form a sequence

of consecutive values. Since Recurrent Neural Networks are known to be the most

effective for learning sequence of the values, the authors make use of this algorithm.

The data sequence that is fed to RNNs is processed in their intrinsic order and a

hidden memory is built as the sequence is being processed, based on the past values of

that sequence. Thus a model that has a sequence-to-vector and a vector-to-sequence

architecture was designed for this problem, which is called a many-to-many or Encoder-

Decoder RNN architecture, which we defined in Section 2.2.2. This model is composed

of two independent neural networks called the encoder and the decoder.

Figure 28: The proposed RNN architecture.

In Figure 28 we see that the input sequence is fed to the encoder, then the output

of the encoder is fed as an input for the decoder, and finally the output of the decoder

gives the actual predictions.

Keras [12] is a very famous framework that is used to implement various deep neu-

ral networks. The SimpleRNN module of Keras is used for implementing the proposed

neural network. To make better generalizations and learn complex functions, the re-

current layers include 512 neurons, which implies that the output of the encoder will be
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a 512 dimensional vector. The decoder has a Dense layer to generate the predictions.

The Rectified Linear Unit activation function is used on all layers of the neural net-

work. Overfitting is always a problem in machine learning algorithms so the Dropout

technique with rate 0.2 is used avoid it. Dropout is a very popular and one of the most

used regularization techniques for DNNs. During training, some layer outputs are dis-

regarded or dropped out at random. The probability of a neuron being temporarily

ignored during a certain step is called the dropout rate.

To minimize risk of overfitting we use 100 epochs. The optimization algorithm that

we use is RMSProp with a learning rate of 10−5, which is an algorithm that accumulates

only the gradients from the most recent iterations and thus ensures convergence to the

global optimum. The data is fed to the network in batches of size 256. The summary

of this model is presented in Table 12.

Table 12: The implementation details of the Encoder-Decoder model.

Neural network API Keras

RNN module SimpleRNN

Output dimensions of the encoder 512

The output layer Dense layer

Activation function ReLU

Overfitting prevention technique Dropout with 0.2 rate

Epochs 100

Optimization algorithm RMSProp

Learning rate 10−5

Batch size 256

4.3.2 Network based model

In this section, we describe two different models into which we fed the data from

Section 4.2.2. The first model that we present is a Gradient boosted regression trees

model. The framework that we use for this model is scikit-learn, and the algorithm’s

name is GradientBoostingRegressor. We also try different parameters so we can get

the best generalization. GridSeachCV is the module used to find the best parameters,

since the data set is big (see Table 13) and finding the best parameters can take a long

time.
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Table 13: Data set and the number of instances.

Data set Size

Train set 3705675

Validation set 463186

Test set 465621

We first train the Gradient boosted regression trees algorithm independently for

each year. We need to train this model 10 times, and for each year, we need to

use GridSearchCV for hyperparameter tuning. Before feeding the data to our model,

we first scale the data set by using StandardScaler, which standardizes features by

subtracting the mean and scaling to unit variance. The hyperparameters that we

choose to tune are shown in Table 14, together with the ranges that the data set was

trained on.

Table 14: GBRT hyperparameters.

Parameters Range

n estimators (100, 200, 300, 400, 500, 600)

max depth (2, 3, 4, 5, 6, 7, 8)

loss lad

min samples leaf (2, 3, 4, 5)

min samples split (2, 3, 4, 5)

subsample (0.8, 0.9, 1)

The hyperparameter “n estimators” is the number of boosting stages to perform.

Maximum depth of the individual regression estimators is the “max depth” parameter.

The parameter “loss” represents the loss function which is used to compute the quantity

that a model should seek to minimize during training. We choose “lad” for the “loss”

hyperparamter which refers to least absolute deviation. It is a highly robust loss

function based on order information of the input variables. The “min sample leaf”

hyperparameter is the minimum number of samples required to be at a leaf node,

which is a node of degree 1, and “min sample split” hyperparameter is the minimum

number of samples required to split a non-leaf node. Finally, the hyperparameter

“subsample” is the fraction of samples to be used for fitting the individual base learners.

The other hyperparameters of the module GradientBoostingRegressor are left in their

default setting. The pseudo-code for this approach to find the best model regarding

the hyperparameters is shown in Algorithm 2.

The second model that we implement is a Deep Neural Network. The reason that

we choose to implement a DNN is because of the amount of data that we have. DNNs
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often perform better than other models when they are fed a lot of data, and in this case

we have more than four million instances in our train set and validation set together

(see Table 13). Keras framework is used again to implement this model. As with

GBRT, we use GridSearchCV from scikit-learn to find the best hyperparameters for

this model. The algorithm is the same, except that we change the model to a DNN

and the hyperparameter space changes.

Algorithm 2: Model selection and evaluation metric

Input: train val set, all possible hyperparameters

Output: Evaluation of the model and the model trained with the best

hyper-parameters

1 metric for all models = [ ];

2 for hyper para in all possible hyperparameters

3 fold metric = [ ];

4 for fold in cross validation fold(3)

5 train fold, test fold = split(fold);

6 model = train(train fold, hyper para);

7 metric = evaluate(model, test fold);

8 fold metric.append(metric) ;

9 metric for all models.append((mean(fold metric), hyper para));

10 best hyper para = sort(metric for all models); /* Sort based on the

metric */

11 best model = train(train set, best hyper para[0][1]); /* train the model

with the best hyperparameters */

12 test metric = evaluate(model, test set);

13 return test metric, best model

We again train this model for each year separately and although we use 3-fold cross-

validation, we then run the best performing model three more times and average the

results over all the runs. This is because the weights are randomly assigned first and

they tend to play a role in the outputs as well. The hyperparameters that we chose to

tune for this model are “n hidden”, “n neurons” and “learning rate”. In Table 15 we

can see the ranges for all hyperparameters.
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Table 15: DNN hyperparameters.

Parameters Range

n hidden (1,2,3,4,5,6)

n neurons (150, 200, 250, 300, 320, 360, 400)

learning rate (0.0003, 0.03)

Next, we create a Sequential model. This is the simplest kind of Keras model for

neural networks, which are composed of a single stack of layers connected sequentially.

Then we add an InputLayer as a first layer and set the input shape. After that, we

add a Dense hidden layer with “n neurons”.

Each Dense layer manages its own weight matrix, containing all the connection

weights between the neurons and their inputs. It also manages a vector of bias terms.

The term “n hidden” determines how many Dense hidden layers we will have. The

final layer is a Dense output layer with one neuron since we we will predict only one

number (citation count) per paper.

After the model is created, we must compile it and specify the loss function and the

optimizer to use. The loss function that we chose is the Mean Squared Error, and the

optimizer is adaptive moment estimation, or Adam, which is an optimization function

that keeps track of an exponentially decaying average of past gradients. The reason we

use Adam as an optimizer is that training large deep neural networks is a slow process

and Adam is faster than the regular Gradient Descent.

When fitting the model we add callbacks, which are arguments that let us specify a

list of objects that Keras will call at the start and end of training. We use EarlyStopping

callback. It interrupts training when it measures no progress on the validation set for

a number of epochs (defined by the patience argument, in our case we set it to 15, and

it optionally rolls back to the best model). The number of epochs that we use is 600

and the batch size is 256. The ReLU activation function is not perfect since during

training, some neurons stop outputting anything other than zero. A neuron dies when

its weights get tweaked in such a way that the weighted sum of its inputs are negative

for all instances in the training set. The dropout rate is set at 30%.

We use the Scaled Exponential Linear Units (SELU) activation function which is

defined by:

f(x) =

λx if x ≥ 0

λα(ex − 1) if x < 0
,

where α ∼ 1.6733 and λ ∼ 1.0507. Since all hidden layers will use SELU activation

function, then the network will self-normalize: the output of each layer will tend to
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preserve a mean of zero and standard deviation of one during training. Because of this,

the SELU activation function often significantly outperforms other activation functions.
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5 RESULTS

In this chapter, we will present the results of our experiments and proceed to compare

the models. In Section 5.1 we define theRMSE which is another measurement criterion

of our models. We use the R2-score and the RMSE to monitor and measure the

performance of our model. Moreover, we describe the correct interpretations of both

criteria.

In Section 5.2 we analyze, interpret and visualize the results of the Encoder-Decoder

model. We have given a thorough introduction of the model in Section 4.3.1 and now

we utilize it for our predictions. First, we visualize the R2-score and the RMSE for

each of the ten years that we are forecasting and we interpret the possible outcomes.

Then, from the test set, we choose six papers at random to visualize and compare the

predicted citation count trajectory to the ground truth citation trajectory. We also

compare the citation count predictability of papers published in the top four venues.

In Section 5.3 we analyze and compare the results of the models introduced in

Section 4.3.2, namely DNN and GBRT. A similar analysis to the Encoder-Decoder

model via visualizing the R2-score and the RMSE for each of the ten years is performed

for both models. Moreover, we show the relative importance of each feature (feature

importance) over time and how that importance shifts throughout the years.

In Section 5.4, we make comparisons of all the models, namely, the Network based

model using DNN, the Network based model using GBRT, the Encoder-Decoder model,

the baseline model, and the Network based model combined with the baseline model.

We see that our novel Network based model outperforms the baseline model by a

great margin for the first five years. This shows that the amount of instances added

and the potential of network features extracted from the temporal networks can pro-

duce remarkable results for predicting the short-term future. Furthermore we combine

the Network based features with the baseline features and outperform state-of-the-art

methods for short-term and long-term predictions. Checking also the feature impor-

tance of Network based features and baseline features we see that the Network based

features are more important in describing the correlation between the predictors and

response variable.
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5.1 MEASUREMENT CRITERIA

To evaluate the proposed methods we make use of two popular metrics: R2 and root

mean square error (RMSE). We have seen the formula for the R2-score specifically

given for citation counts in the previous section. The general formula is:

R2(y, ŷ) = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

, (5.1)

where y is the vector of observed values, ŷ is the vector of predicted values, and ȳ is

the mean value of yi. Note that the R2-score is the measure of the correlation between

the ground truth and the predicted values. The value of R2 is always in the range of 0

and 1, and R2 = 1 means that there is a perfect correlation between the predicted and

ground truth values, while R2 = 0 means there is no correlation at all. Thus, higher

values of R2 preferable. The second metric is RMSE, which measures the variation

of the predicted values to the ground truth values, thus lower values of RMSE are

preferable. The formula to calculate the RMSE is given by:

RMSE(y, ŷ) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (5.2)

where y is the vector of observed values, ŷ is the vector of predicted values.

5.2 ENCODER-DECODER MODEL

We feed the citation counts of the first five years of the papers after they are published

to the Encoder-Decoder model, and predict the citation count for the following ten

years. The accuracy of this method is computed according to the criteria mentioned

in Section 5.1. In Figure 29 we can see the R2-scores over ten years of predictions. On

the x-axis we present the years, on the y-axis we present the R2-scores and the red line

corresponds to the change of R2 score over the years.
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Figure 29: Encoder-Decoder R2 scores over 10 years.

Here R2 is the percentage of dependent variable variation that the model explains.

From Figure 29 we see that this model explains almost 95% of the variation in the

response variable around its mean for the first year. We observe that the highest

R2-score is recorded when predicting the first year in our set of dependent variables.

This is somewhat expected since predicting short-term events is easier than predicting

long-term events. Even though the R2-score is decreases after each consecutive year,

the R2-score of the 10th predicted year explains almost 85% of the variation in the

response variable around its mean. These are very promising results which can also be

attributed to the internal state (memory) architecture of the RNN model.

The RMSE is the square root of the variance of the residuals. It can also be

interpreted as the standard deviation of the unexplained variance. It checks how close

the observed data points are to the model’s predicted values, and thus it stipulates the

absolute fit of the model to the data. The RMSE of citation counts for each predicted

year is shown in Figure 30.
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Figure 30: Encoder-Decoder RMSE scores over 10 years.

Observe that the RMSE is increasing after each year, which again shows that it is

easier to predict the short-term events rather than long-term ones. The features that

we fed to this model indicate that predicting the citation count after ten years from

the citation count of the present time give worse results than when predicting the first

few years. The RMSE value for predicting the first year is around 10.

To see how this model makes predictions, in Figure 31 we show six randomly chosen

papers from the test set and we visualize the citation count trajectory. The trajectory

starts from the first five years, which are used as an input, and continues to the ten

years that we predict. These citation counts are calculated from the papers that are

included in our network, so note that the papers in the real world network may have a

bigger citation count.
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Figure 31: Predicted and ground truth citation counts for randomly selected papers

using Encoder-Decoder.
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The arXiv, ICASSP, INTERSPEECH, and ICIP are the most prominent publishing

venues in our network. In Figure 32 we visualized the RMSE for each venue, we see

that we can predict citation counts of papers that were published in INTERSPEECH

better than in the other three venues, whereas the predictability of citation count of

papers published in ICIP is in the second place for a small margin from the first place.

The citation count of papers published in ICASSP is the third most difficult to predict

among these four venues, and the citation count of papers published in arXiv is the

most difficult to predict.

Figure 32: RMSE of 4 most popular venues using Encoder-Decoder.

5.3 NETWORK BASED MODEL

As described in Section 4.3.2, we feed the network based properties to two different

models: DNN and GBRT.

After training these models 10 times each to predict 10 consecutive years, we mea-

sure the accuracy of our prediction according to the measurement criteria described in

Section 5.1. In Figure 33 we see the R2-scores over ten years of predictions for both

models.
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Figure 33: R2 for DNN and GBRT models.

For all of the forecast years, the R2-scores for both models are relatively similar to

each other. DNN explain almost 98 percent of the variation in the response variable

around its mean, while GBRT’s R2-score is just below 90 percent. The gap between the

models narrows after the first year, and DNN marginally outperforms GBRT until the

sixth year, after which R2-scores switch positions often. Similarly to the RNN model,

we see that the R2-scores decrease over time because long-term predictions are more

difficult than short-term predictions.

In Figure 34, we illustrate the RMSE for both models. We can see that the R2-score

and the RMSE show a similar pattern. It is easy to observe that DNN considerably

outperforms GBRT in the first year, and it continues to slightly outperform it until

the sixth year, after which again they interchange positions.
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Figure 34: RMSE for DNN and GBRT models.

The importance of each feature of the training data set varies. Feature importance

is one of the most commonly used summary types for the importance of a feature.

We calculate the increase in the model’s prediction error after permuting a feature to

determine its significance. Since the model relies on the feature for prediction, a feature

is said to be important if shuffling its values increases the model error. This number

ranges from 0 to 1, with 0 indicating that the feature is never used and 1 indicating

that it perfectly predicts the response variable.

In Figures 35(a)-35(j) we present the feature importance for predicting citation

count of papers throughout each training period of 10 years.
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(a) (b)

(c) (d)

Figure 35: (a)-(d) Feature importance (without considering in-degree) for predicting

citation count of years ahead.
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(e) (f)

(g) (h)

Figure 35: (e)-(h) Feature importance (without considering in-degree) for predicting

citation count of years ahead.
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(i) (j)

Figure 35: (i)-(j) Feature importance (without considering in-degree) for predicting

citation count of years ahead.

We observe that the centrality measures such as Katz centrality, in-degree centrality,

degree centrality, PageRank are some of the most important features for predicting the

citation count. The clustering coefficient, age, and out-degree are also essential features

over the years. Features that provide information about in-degrees of successors are

also relevant, however, those that provide information on PageRank of successors are

the least important out of all the other features we described above, because some of

them do not appear for all years.

We forecast the citation count trajectory for the same randomly selected papers (see

Figure 31) from Section 5.2 to demonstrate how our Network based predictive model

performs on specific examples. The results from our model are shown in Figure 36.



Qarkaxhija L. Network based predictive modelling.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 65

Figure 36: Predicted and ground truth citation counts for randomly selected papers

using GBRT.

Figure 37 shows how well we can predict the number of citations for papers pub-

lished in one of our data set’s four most popular venues. The citation count of papers

published in ICASSP was predicted the best, with INTERSPEECH coming in second

as an immediate runner-up. The predictability of citation count of papers published
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in ICIP was ranked third, the predictability of citation counts of papers published in

arXiv was the most difficult to predict once again. We can also observe from Figure 37

that the RMSE is bigger compared to the RNN model.

Figure 37: RMSE of 4 most popular venues using GBRT.

5.4 COMPARISON OF DIFFERENT MODELS

In this section we shall compare all the different methods that we have introduced until

now. In Figure 38 we have plotted the R2-score for all the model thorough-out all the

10 years that we predict and we now proceed to discuss these results.

We note that the Network based properties perform better than properties from [56],

which we consider as baseline properties, up to the fourth year, and then the baseline

properties take over. This shows that Network based properties extracted from the

temporal citation network for predicting the future up to 5 years are more significant

than other data that needs to be gathered from other sources (i.e. author information,

citation count of the previous years etc.). The latter typically requires additional work

and resources and often difficult to acquire. We observe that the additional properties

that can not be extracted from the citation network are necessary to predict with better

accuracy after the 5th year.
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Figure 38 also shows that the Encoder-Decoder model outperforms the Network

based properties models and baseline model for most of the years even though it uses

less features. This is due to the architecture of the model, since for each year that

passes, the model also sends some information about the predicted output of the pre-

vious year. The other models are trained separately for each year and do not possess

any information about the previous years.

Since Network based properties give remarkable results for the first 5 years and the

baseline properties perform better for the other upcoming years, we decided to combine

the Network properties with the baseline features and create another model using a

GBRT as the predictive algorithm. In Figure 38 we observe that after combining these

two groups of features, this model outperforms all the other models, and especially in

the last three years the Encoder-Decoder model marginally exceeds it.

Figure 38: R2 all the models.

Since the combined model performs better by using Network based features and

baseline features, we plot the feature importance values of 15 most important features

in Figure 39 and Figure 40. The baseline features are explained in Table 7, whereas

the Network properties are described in Section 4.2.2. In Figure 38 we observed that

Network based features perform better than the baseline features, which matches the

feature importance when predicting the first five years shown in Figure 39, which lists

more important features from the Network based properties. Next, by checking the

feature importance when predicting the last five years shown in Figure 40, we note

that we have more features from the baseline properties as expected.
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Figure 39: Feature importance of Network based and baseline properties, for predicting

the first five years.

Figure 40: Feature importance of Network based and baseline properties, for predicting

the last five years.
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To summarize, we have demonstrated that our unique method for predicting citation

counts of scientific papers outperforms state-of-the-art methods and may thus be used

as a benchmark for future progress. We have shown the effectiveness of our technique

by reviewing several comparison measures that compare our Network based predictive

model, which employs Deep Neural Networks and Gradient Boosting Regression Trees

as predictive algorithms, to the baseline model proposed by Weihs and Etzioni [56] and

the Encoder-Decoder model proposed by Abrishami and Aliakbary [1].



Qarkaxhija L. Network based predictive modelling.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 70

6 CONCLUSION

Networks allow scientists to investigate patterns of connection in a variety of physical

and social phenomena, from chemistry and biology to business and finance. Mod-

ern network research has revealed that most of the nodes in real networks are fairly

poorly connected, while some nodes have extremely high connection [6] and many real

networks have power law features. One type of such networks are citation networks.

In this thesis, we focused on predicting scientific impact of papers, which is a very

important issue in academia, as shown in [1, 11, 16, 32, 38, 56]. Researchers strive for

fruitful research work and thus recognizing the most impactful articles is vital.

After providing the preliminary theory regarding networks and machine learning,

we analyzed important related work and addressed the problem of predicting citation

counts in detail. This a well-known problem which has been studied exhaustively

using various techniques. The most relevant articles for our research work have been

published by Abrishami and Aliakbary [1] and Weihs and Etzioni [56]. Both studies

predict citation counts, although the former utilizes short-term citation counts while the

latter utilizes long-term citation counts and other features from the citation network,

co-authorship network and other paper metadata.

We presented a detailed overview of the research methodology implemented in this

work by delving into the data set and its relevant statistical features. We show our

innovative feature engineering technique in Section 4.2.2, which is the most essential

part of this thesis. We used temporal networks, which are networks that evolve over

time, to tackle the topic of predicting the success of papers in the future. Moreover, we

reproduced the Encoder-Decoder model and the feature engineering process proposed

by Abrishami and Aliakbary [1] for this specific task.

We finally gave a thorough analysis of the results of our novel approach by compar-

ing it with state-of-the-art methods using different measurement criteria. Furthermore,

we showed that our innovative technique outperforms every other method for the first

five years, and when combined with Weihs and Etzioni’s [56] model, it outperforms

them for all ten years.

After comparing the feature importance of the Network based features and the

features used by Weihs and Etzioni, we conclude that features extracted from tem-

poral networks produce more important features and have better correlation with the

respondent variables.

As future work, we propose the implementation of a vec-to-seq Recurrent Neural
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Network using the Network based properties because of the advantages that RNNs offer.

RNNs process the input vector in its natural order, and as the vector is processed, a

hidden memory is constructed based on the previously visited input data, effectively

considering the input sequence. For longer-term predictions, this architecture may

yield superior results.

We may then utilize temporal co-authorship networks to perform a similar feature

extraction technique combined with node properties from temporal citation networks.

This adds extra features to the data set, such as the relevance of the authors, which

gives the prediction algorithm additional information and, as a result, may provide

better results.

Finally, we may also extract features based on the content of the article’s text to

gain more insights for each publication, which will allow us to follow trending subjects

and could lead to interesting outcomes.

It is noteworthy to mention that this research work is based solely on the structure

of temporal networks and can thus be applied to make predictions in a variety of

network-related disciplines, including but not limited to computer science, biology,

and business.



Qarkaxhija L. Network based predictive modelling.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 72

7 DALJŠI POVZETEK V

SLOVENSKEM JEZIKU

Številna področja, vključno s kemijo, fiziko, biologijo, zdravstvom, podjetnǐstvom, fi-

nancami in socialnimi mediji, so spoznale pomembnost omrežij [3, 18, 42]. V širšem

smislu je omrežje niz vozlǐsč, katerim se pridruži povezave, ki predstavljajo razmerja

med vozlǐsči [58]. Naš glavni poudarek je na omrežjih citatov in predvidevanju števila

citatov člankov z uporabo omrežnega pristopa.

Magistrsko nalogo začnemo s poglavjem 2, kjer predstavimo osnovne teorije, ki

vključuje potrebne definicije omrežij in strojnega učenja, ki so omenjene v tem delu. Ve-

lik poudarek namenjamo opisu omrežja za citiranje, brezobsežnega omrežja globokega

nevronskega omrežja in odločitvenega drevesa, ki temelji na uporabi gradientov.

Poglavje 3 posvečamo predsavitvi koncepta citatnih omrežij in s tem povezanih

del o napovedovanju znanstvenega vpliva. Navedbe znanstvenih člankov so postale

morda najpogosteje uporabljena metrika znanstvenega vpliva članka [11,14,17]. Stan-

dardni argument je, da število citatov visoko citiranega prispevka odraža njegov vpliv

in prispevek k napredku znanstvenih spoznanj.

Problem napovedovanja števila citatov za članke ima zaradi vse večjega števila ob-

javljenih člankov številne aplikacije. Raziskovalci so zato primorani vnaprej določiti na-

jvplivneǰse aplikacije, da lahko načrtujejo svoje prihodnje raziskovalno delo. V povezavi

s temo so bile obravnavane različne tehnike napovedovanja, glej [1, 11,16,32,38,56].

Po podaji onsonvih defnicij o omrežjih in strojnem učenju smo analizirali pomem-

bna sorodna dela in podrobno obravnavali problem napovedovanja števila citatov. Na-

jpomembneǰsa članka za to magistrso delo so objavili Abrishami in Aliakbary [1] ter

Weihs in Etzioni [56]. V [1] Abrishami in Aliakbary predstavljata novo metodo za

napovedovanje dolgoročnih citatov članka na podlagi količine citatov, prejetih v prvih

nekaj letih po objavi.

Raziskovalno delo Weihsa in Etzionia [56] je za nas pomembno zaradi velike količine

uporabljenih podatkov in impresivnih rezultatov. V delu se avtorja osredotočatan na

značilnosti, ki jih je mogoče povzeti iz grafa zgrajenega na citatih, grafa soavtorejv in

metapodatkov o članku, kot so avtorji in prizorǐsče.

V poglavju 4 podajamo izčrpen povzetek raziskovalnih metod, uporabljenih v tej

nalogi. Upoštevamo množico podatkov, ki sta jo uporabila Weihs in Etzioni v [56].

Predlagamo novo tehniko ekstrakcije lastnosti z uporabo lastnosti iz časovnih omrežji
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citiranja. Našo inovativno tehniko inženirstva prikažemo v poglavju 4.2.2, ki pred-

stavlja najpomembneǰsi del te magistrske naloge. Za reševanje problema napovedovanja

uspeha člankov smo uporabili časovna omrežja, ki so omrežja, ki se sčasoma spremin-

jajo.

Implementirana sta dva različna modela, ki temeljita na globokih nevronskih omrežjih

in odločitvenih drevesih, ki temeljijo na uporabi gradienta, za napovedovanje števila

citatov do deset let vnaprej, z uporabo povzetih podatkov. Ponovno ustvarimo modela

opisana s strani Abrishamia in Aliakbarya [1] ter Weihsa in Etzionia [56], ter upora-

bimo različne primerjalne metode za merjenje učinkovitosti posameznega modela. Nato

pokažemo, da je naš novi model v prvih petih letih bistveno bolǰsi od obeh že znanih.

Poleg tega, v skupnem modelu, uporabimo značilnosti omrežij v povezavi z lastnostmi

Weihsa in Etzionia [56], da preučimo primerjavo z drugimi modeli. Slednji model v

celotnem časovnem obdobju prekaša vse ostale modele.

Ker smo se v magistrski nalogi osredotočili le na strukturo časovnih omrežij citi-

ranja, je ta inovativen pristop uporaben za napovedovanje v različnih omrežjih, kot so

socialna omrežja, svetovni splet, omrežja za interakcijo proteinov in beljakovin, letalska

omrežja, medbančna plačilna omrežja itd.
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APPENDIX A Network based feature

extraction

# imported packages

import pandas as pd

import numpy as np

import networkx as nx

# imported func t i on s

from networkx . a lgor i thms . c e n t r a l i t y import d e g r e e c e n t r a l i t y

from networkx . a lgor i thms . c e n t r a l i t y import i n d e g r e e c e n t r a l i t y

from networkx . a lgor i thms . c e n t r a l i t y import o u t d e g r e e c e n t r a l i t y

from networkx . a lgor i thms . c e n t r a l i t y import e i g e n v e c t o r c e n t r a l i t y

from networkx . a lgor i thms . c e n t r a l i t y import k a t z c e n t r a l i t y

from networkx . a lgor i thms . a s s o r t a t i v i t y import ave rage ne i ghbor deg r ee

from networkx . a lgor i thms . l i n k a n a l y s i s import pagerank

from networkx . a lgor i thms . c l u s t e r import c l u s t e r i n g

from networkx . a lgor i thms . c l u s t e r import s q u a r e c l u s t e r i n g

# he lpe r func t i on to ex t ra c t in−degree and PageRank o f s u c c e s s o r s

de f pagerank indeg sum mean min max (G, dataframe , paper ) :

n e i g h l i s t = l i s t (G. ne ighbors ( paper ) )

ne i gh d f = dataframe [ dataframe . id . i s i n ( n e i g h l i s t ) ]

# PageRank o f s u c c e s s o r s

pg sum neigh = ne i gh d f . PageRank . sum( )

pg mean neigh = np .mean( ne i gh d f . PageRank )

pg min neigh = np . min ( ne i gh d f . PageRank )

pg max neigh = np .max( ne i gh d f . PageRank )

# InDegree o f s u c c e s s o r s

indeg sum neigh = ne i gh d f . InDegree . sum()

indeg mean neigh = np .mean( ne i gh d f . InDegree )

indeg min ne igh = np . min ( ne i gh d f . InDegree )

indeg max neigh = np .max( ne i gh d f . InDegree )

re turn pg sum neigh , pg mean neigh , pg min neigh , pg max neigh ,\
indeg sum neigh , indeg mean neigh , indeg min neigh , indeg max neigh

# generate a random d i r e t ed network

G = nx . gnm random graph (10 , 25 , d i r e c t ed=True )

# dataframe to save the ext rac ted f e a t u r e s

p r o c e s s ed d f = pd . DataFrame({ ’ id ’ : [ i f o r i in range (10) ]} )

# Degree Cent ra l i t y

DegreeCentra l i ty = d e g r e e c e n t r a l i t y (G)

Degre eCent ra l i t y d f = pd . DataFrame ( DegreeCentra l i ty . i tems ( ) , columns=[ ’ id ’ , ’ DegreeCentra l i ty ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , DegreeCentra l i ty d f , how=’ l e f t ’ , on=’ id ’ )

# In Degree Cent ra l i t y

InDegreeCentra l i ty = i n d e g r e e c e n t r a l i t y (G)

InDegre eCent ra l i t y d f = pd . DataFrame ( InDegreeCentra l i ty . i tems ( ) , columns=[ ’ id ’ , ’ InDegreeCentra l i ty ’

] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , InDegreeCent ra l i ty d f , how=’ l e f t ’ , on=’ id ’ )

# Out Degree Cent ra l i t y

OutDegreeCentral i ty = ou t d e g r e e c e n t r a l i t y (G)

OutDegreeCentra l i ty df = pd . DataFrame ( OutDegreeCentral i ty . i tems ( ) , columns=[ ’ id ’ , ’

OutDegreeCentral i ty ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , OutDegreeCentra l i ty df , how=’ l e f t ’ , on=’ id ’ )

# Eigen Cent ra l i t y

E igenCentra l i ty = e i g e n v e c t o r c e n t r a l i t y (G, max iter =1000)

E ig enCent ra l i t y d f = pd . DataFrame ( EigenCentra l i ty . i tems ( ) , columns=[ ’ id ’ , ’ E igenCentra l i ty ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , E igenCent ra l i ty d f , how=’ l e f t ’ , on=’ id ’ )



# Katz Cent ra l i t y

KatzCentra l i ty = ka t z c e n t r a l i t y (G)

KatzCent ra l i ty d f = pd . DataFrame ( KatzCentra l i ty . i tems ( ) , columns=[ ’ id ’ , ’ KatzCentra l i ty ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , KatzCentra l i ty d f , how=’ l e f t ’ , on=’ id ’ )

# Average Neighbor Degree

AverageNeigborDegree = average ne i ghbor deg r ee (G)

AverageNeigborDegree df = pd . DataFrame ( AverageNeigborDegree . i tems ( ) , columns=[ ’ id ’ , ’

AverageNeigborDegree ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , AverageNeigborDegree df , how=’ l e f t ’ , on=’ id ’ )

# PageRank

PageRank = pagerank (G)

PageRank df = pd . DataFrame (PageRank . items ( ) , columns=[ ’ id ’ , ’PageRank ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , PageRank df , how=’ l e f t ’ , on=’ id ’ )

# Clus t e r ing Co e f f i c i e n t

C l u s t e r i n gCo e f f i c i e n t = c l u s t e r i n g (G)

C l u s t e r i n gCo e f f i c i e n t d f = pd . DataFrame ( C l u s t e r i n gCo e f f i c i e n t . i tems ( ) , columns=[ ’ id ’ , ’

C l u s t e r i n gCo e f f i c i e n t ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , C l u s t e r i n gCo e f f i c i e n t d f , how=’ l e f t ’ , on=’ id ’ )

# Square C lus t e r ing Co e f f i c i e n t

Squa r eC lu s t e r i ngCoe f f i c i e n t = squa r e c l u s t e r i n g (G)

Squa r eC lu s t e r i n gCoe f f i c i e n t d f = pd . DataFrame ( Squa r eC lu s t e r i ngCoe f f i c i e n t . i tems ( ) ,

columns=[ ’ id ’ , ’ Squa r eC lu s t e r i ngCoe f f i c i e n t ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , Squa r eC lu s t e r i n gCoe f f i c i e n t d f , how=’ l e f t ’ , on=’ id ’ )

# In Degree

InDegree = d i c t (G. i n deg r e e ( ) )

InDegree d f = pd . DataFrame ( InDegree . i tems ( ) , columns=[ ’ id ’ , ’ InDegree ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , InDegree df , how=’ l e f t ’ , on=’ id ’ )

# Out Degree

OutDegree = d i c t (G. out degree ( ) )

OutDegree df = pd . DataFrame (OutDegree . i tems ( ) , columns=[ ’ id ’ , ’ OutDegree ’ ] )

p r o c e s s ed d f = pd . merge ( proce s s ed d f , OutDegree df , how=’ l e f t ’ , on=’ id ’ )

# Succe s so r s : PageRank and InDegree

p ro c e s s ed d f [ ’ SuccesorPageRankSum ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorPageRankMean ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorPageRankMin ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorPageRankMax ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorInDegreeSum ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorInDegreeMean ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorInDegreeMin ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

p r o c e s s ed d f [ ’ SuccesorInDegreeMax ’ ] = np . z e ro s ( p r o c e s s ed d f . shape [ 0 ] )

f o r paper in range ( p ro c e s s ed d f . shape [ 0 ] ) :

SuccesorPageRankSum , SuccesorPageRankMean , SuccesorPageRankMin , SuccesorPageRankMax ,\
SuccesorInDegreeSum , SuccesorInDegreeMean , SuccesorInDegreeMin , SuccesorInDegreeMax = \

pagerank indeg sum mean min max (G, proce s s ed d f , p r o c e s s ed d f . id [ paper ] )

p r o c e s s ed d f . l o c [ paper , ’ SuccesorPageRankSum ’ ] = SuccesorPageRankSum

proc e s s ed d f . l o c [ paper , ’ SuccesorPageRankMean ’ ] = SuccesorPageRankMean

pro c e s s ed d f . l o c [ paper , ’ SuccesorPageRankMin ’ ] = SuccesorPageRankMin

p ro c e s s ed d f . l o c [ paper , ’ SuccesorPageRankMax ’ ] = SuccesorPageRankMax

pro c e s s ed d f . l o c [ paper , ’ SuccesorInDegreeSum ’ ] = SuccesorInDegreeSum

proc e s s ed d f . l o c [ paper , ’ SuccesorInDegreeMean ’ ] = SuccesorInDegreeMean

pro c e s s ed d f . l o c [ paper , ’ SuccesorInDegreeMin ’ ] = SuccesorInDegreeMin

p ro c e s s ed d f . l o c [ paper , ’ SuccesorInDegreeMax ’ ] = SuccesorInDegreeMax

# save the ext rac ted data

p ro c e s s ed d f . t o c sv ( ’ e x t r a c t e d f e a t u r e s . csv ’ , index=False )
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