
UNIVERSITY OF PRIMORSKA
FACULTY OF MATHEMATICS, NATURAL SCIENCES AND

INFORMATION TECHNOLOGIES

DOKTORSKA DISERTACIJA
(DOCTORAL DISSERTATION)

UPORABA RAZVRŠČANJA V SKUPINE NA
KLASIFIKACIJSKIH ASOCIACIJSKIH PRAVILIH ZA

TVORBO SMISELNIH IN NATANČNIH KLASIFIKATORJEV

(CLUSTERING CLASS ASSOCIATION RULES TO FORM A
MEANINGFUL AND ACCURATE CLASSIFIER)

JAMOLBEK MATTIEV

KOPER, 2020

UNIVERSITY OF PRIMORSKA
FACULTY OF MATHEMATICS, NATURAL SCIENCES AND

INFORMATION TECHNOLOGIES

DOKTORSKA DISERTACIJA
(DOCTORAL DISSERTATION)

UPORABA RAZVRŠČANJA V SKUPINE NA
KLASIFIKACIJSKIH ASOCIACIJSKIH PRAVILIH ZA

TVORBO SMISELNIH IN NATANČNIH KLASIFIKATORJEV

(CLUSTERING CLASS ASSOCIATION RULES TO FORM A
MEANINGFUL AND ACCURATE CLASSIFIER)

JAMOLBEK MATTIEV

KOPER, 2020 MENTOR: DOC. DR. BRANKO KAVŠEK
SOMENTOR: IZR. PROF. DR. JERNEJ VIČIČ

Acknowledgement

Firstly, I would like to express my sincere gratitude to my mentor Assist. Prof.
Branko Kavšek for the continuous support of my Ph.D study, related research, per-
sonal life and administrative issues, for his patience, motivation, and immense knowl-
edge. His guidance helped me during all the time of my research and writing of this
thesis. I could not have imagined having a better advisor and mentor for my Ph.D
study.

Besides my mentor, I would like to thank my co-mentor Assoc. Prof Jernej Vičič
and the rest of my thesis committee: Prof. Dunja Mladenić, Assoc. Prof. Kljun
Matjaž, and Assist. Prof. Klen Čopič Pucihar for their insightful comments and
encouragement, but also for the hard questions which motivated me to widen my
research from various perspectives.

I would like to acknowledge the European Commission for funding the InnoRe-
newCoE project (Grant Agreement #739574) under the Horizon 2020 Widespread-
Teaming program and the Republic of Slovenia (Investment funding of the Republic
of Slovenia and the European Union of the European Regional Development Fund). I
would like also to acknowledge the “El-Yurt-Umidi” foundation under the Cabinet of
Ministers of the Republic of Uzbekistan for the financial support during my mobility
time.

I am also very grateful and extend my sincere thanks to Prof. Klavdija Kutnar
and Prof. Ademir Hujdurović for their valuable support. A special thanks goes
to the other colleagues Aleš Oven, Tina Franca, Tanja Labus who supported me
in administrative issues. I would also like to thank all my best friends, namely
Cuauhtli Campos Mijangos, Sead Jahić, Leon Kopitar and others. You helped me a
lot in making my time in Slovenia enjoyable both in research and personal life.

Last but not least, I would like to thank my family: my father, brother, sister and
my wife for supporting me spiritually throughout the writing of this thesis and my
life in general. Furthermore, I would like to express my gratitude to Prof. Gorazd
Drevenšek and his wife Martina for spending their valuable time for us to organize
family activities.

Dedicated to my family!

Abstract

Clustering class association rules to form a meaningful and
accurate classifier

Huge amounts of data are being collected and analyzed nowadays. By using the
popular rule-learning algorithms, the number of rules discovered on “big” datasets
can easily exceed thousands. Thus, building accurate and compact classifiers in real-
world applications is nowadays one of the crucial tasks in data mining. To produce
compact, understandable and accurate classifiers, such rules have to be grouped and
pruned, so that only a reasonable number of them are presented to the end user for
inspection and further analysis.

Existing classification rule-learning algorithms use mainly greedy heuristic search
to find regularities in datasets for classification. In recent years, extensive research
on association rule mining is being done in the machine learning community. The
main objective of this research is to find all rules in data that satisfy some user-
specified constraints. Although the whole set of rules may not be used directly for
accurate classification, effective and efficient classifiers have been built using the so-
called classification association rules or class association rules (CARs) for short.

In this research work, we propose new methods that are able to reduce the num-
ber of class association rules (CARs) produced by “classical” class association rule
classifiers, while maintaining an accurate classification model that is comparable (in
terms of classification accuracy) to the ones generated by state-of-the-art classifica-
tion algorithms.

In the preliminary step of our research, we propose two simple associative classi-
fiers (ACs): SA (Simple Associative classifier) and J&B (Coverage-based Associative
Classifier, named using the initials of the authors). The first one - SA - is used to
investigate the effect of confidence (the main constraint for choosing "good" CARs)
and class distribution on pruning the initial associative classifier, while the other -
J&B - uses CARs coverage of examples for the same purpose. Both simple ACs
prove that it is possible to reduce the number of CARs, while maintaining the classi-
fication accuracy and size of the models comparable to state-of-the-art rule-learning
algorithms.

Since neither of our simple AC methods significantly outperforms state-of-the-art
rule-learning algorithms in terms of model size, we propose new associative classi-
fiers, called DC (which is built based on Direct distance measure and the method for
extracting a representative class association rules (CARs) is based on cluster Center),

DDC (which is formed based on Direct distance measure and the method for extract-
ing a representative CAR is based on Dataset Coverage) and CDC (which is formed
based on Combined distance measure and the method for extracting a representative
CAR is based on Dataset Coverage), in the main part of our research.

DC, DDC and CDC firstly generate "strong" class association rules - we use the
term "strong" referring to CARs exceeding the two user-defined constraints: min-
imum support and minimum confidence. Then, the distance-based agglomerative
hierarchical clustering algorithm is utilized as a post-processing step to reduce the
number of rules and in the rule-selection step, we use different strategies to extract
representative class association rules (based on dataset coverage and cluster center)
for each cluster to produce the final compact and understandable associative classifier
for each algorithm. We also discuss how overall coverage of such classifiers affects
their classification accuracy.

Experimental results performed on selected datasets from the UCI ML reposi-
tory show that our algorithms are able to learn classifiers containing significantly
fewer rules (DC: 22, DDC: 22, CDC: 36 rules on average) than state-of-the-art
rule-learning algorithms (DTNB: 457, DT: 494, c4.5: 300, PT: 302, FR: 71, RDR:
61, CBA: 74, SA: 108). On the other hand, the classification accuracy (DC: 82.5%,
DDC: 83.3%, CDC: 83.8% on average) of our proposed algorithms is not significantly
different from state-of-the-art rule-learners on most of the datasets.

The advantage of our proposed method is that the size of the produced classifi-
cation models (measured in number of classification rules) is 2–4 times smaller on
average compared to the other (selected) rule-learners, while this ratio is even bigger
on datasets with higher number of examples.

Key words: Frequent Itemset, Class Association Rule (CAR), Classification, Sta-
tistical Significance Testing, Overall Coverage, Associative Classification, Agglomer-
ative Clustering, Representative Rule.

Izvleček

Uporaba razvrščanja v skupine na klasifikacijskih asociacijskih
pravilih za tvorbo smiselnih in natančnih klasifikatorjev

Dandanes se zbirajo in analizirajo ogromne količine podatkov. Z uporabo priljubljenih
algoritmov za učenje pravil lahko število pravil, odkritih na teh “velikih” naborih po-
datkov, zlahka presežejo tudi nekaj tisoč pravil. Gradnja natančnih in kompaktnih
klasifikatorjev v resničnih aplikacijah je zato v današnjem času ena ključnih nalog pri
podatkovnem rudarjenju. Za izdelavo kompaktnih, razumljivih in natančnih klasifika-
torjev je treba takšna pravila razvrstiti v skupine in jih porezati tako, da je končnemu
uporabniku v pregled in nadaljnjo analizo predstavljeno le razumno število pravil.

Obstoječi klasifikacijski algoritmi za učenje pravil uporabljajo predvsem požrešna
hevristična iskanja pri odkrivanju zakonitosti v naborih podatkov za potrebe napove-
dovanja. V zadnjih letih so bile izvedene obsežne raziskave na področju rudarjenja
asociacijskih pravil z uporabo izčrpnih hevristik preiskovanja. Glavni cilj teh raziskav
je najti vsa pravila v podatkih, ki izpolnjujejo neke omejitve, določene s strani uporab-
nika. Čeprav se celotne množice pravil ne uporablja neposredno za natančno klasi-
fikacijo, so ta t.i. klasifikacijska asociacijska pravila bila uporabljena za gradnjo us-
pešnih in učinkovitih klasifikatorjev.

V tem raziskovalnem delu predlagamo nove metode za zmanjšanje števila klasi-
fikacijskih asociacijskih pravil, ki jih proizvajajo “klasični” asociacijski klasifikatorji,
hkrati pa naše metode ohranjajo natančen klasifikacijski model, primerljiv s tistimi
modeli, ki jih generirajo najsodobnejši klasifikacijski algoritmi.

V preliminarni raziskavi najprej predlagamo dva preprosta asociativna klasifika-
torja: SA (Simple Associative Classifier) - preprosti asociativni klasifikator in J&B -
asociativni klasifikator, ki temelji na pokritju primerov (poimenovan je po začetnicah
imen prvih avtorjev). Prvega - SA - uporabimo za preučitev učinka zaupanja (glavna
omejitev pri izbiri "dobrih" klasifikacijskih asociacijskih pravil) in porazdelitve razreda
na rezanje začetnega asociativnega klasifikatorja. Drugi - J&B - za isti namen
uporablja pokritost primerov s klasifikacijskimi asociacijskimi pravili. Oba preprosta
asociativna klasifikatorja dokazujeta, da je mogoče zmanjšati število klasifikacijskih
asociacijskih pravil, hkrati pa ohraniti klasifikacijsko točnost in velikost modelov, ki
je primerljiva z najsodobnejšimi algoritmi za učenje pravil.

Ker noben od predlaganih asociativnih klasifikatorjev iz preliminarne raziskave
signifikantno ne prekaša najsodobnejših klasifikacijskih algoritmov glede velikosti naučenih
modelov, v glavni raziskavi predlagamo nove asociativne klasifikatorje imenovane DC

(ki pri razvrščanju v skupine klasifikacijskih asociacijskih pravil uporablja direktno
oddaljenost pravil, metoda za identifikacijo reprezentativnega klasifikacijskega aso-
ciacijskega pravila pa temelji na centroidih skupin), DDC (ki pri razvrščanju v skupine
klasifikacijskih asociacijskih pravil prav tako uporablja direktno oddaljenost pravil,
metoda za identifikacijo reprezentativnega klasifikacijskega asociacijskega pravila pa
temelji na pokritosti primerov) in pa CDC (ki pri razvrščanju v skupine klasifikaci-
jskih asociacijskih pravil uporablja kombinacijo direktne in indirektne oddaljenosti
pravil, metoda za identifikacijo reprezentativnega klasifikacijskega asociacijskega prav-
ila pa temelji na pokritosti primerov).

DC, DDC in CDC najprej generirajo “močna” klasifikacijska asociacijska pravila,
nato je, v koraku postprocesiranja množice pravil, uporabljen algoritem aglomera-
tivnega hierarhičnega združevanja v skupine za zmanjšanje števila pravil, kjer se pri
izluščanju reprezentativnih klasifikacijskih asociacijskih pravil iz skupin pravil uporabl-
jajo različne strategije (ki temeljijo tako na pokritosti podatkov kot na centroidih
skupin). Prav ta reprezentativna klasifikacijska asociacijska pravila na koncu tvorijo
končni, kompaktni in razumljiv asociativni klasifikator. Razpravljamo tudi o tem,
kako skupna pokritost primerov takšnih klasifikatorjev vpliva na njihovo klasifikaci-
jsko točnost.

Eksperimentalni rezultati na izbranih naborih podatkov iz repozitorija UCI ML
kažejo, da se naši algoritmi lahko naučijo klasifikatorjev, ki vsebujejo manj pravil
(DC: 22, DDC: 22, CDC: 36 pravil v povprečju) od najsodobnejših algoritmov za
učenje pravil. Po drugi strani pa se njihova klasifikacijska točnost (DC: 82,5%, DDC:
83,3%, CDC: 83,8% v povprečju) bistveno ne razlikuje od najsodobnejših algoritmov
za učenje pravil na večini podatkovnih zbirk.

Prednost predlaganih klasifikatorjev je v tem, da so števila pravil, ki jih le-ti vse-
bujejo, v povprečju manjša za 2 do 4 krat v primerjavi z ostalimi “dobro poznanimi”
klasifikatorji, medtem ko je to razmerje še večje pri naborih podatkov z večjim številom
primerov.

Ključne besede: podosta množica postavk, klasifikacijska asociacijska pravila,
klasifikacija, test statistične značilnosti, skupna pokritost, asociativna klasifikacija,
združevanje v skupine, reprezentativno pravilo.

Contents

List of Figures viii

List of Algorithms ix

List of Tables x

1 Introduction 1
1.1 Scientific Background . 1

1.1.1 Association Rules . 3
1.1.2 Classification Rules . 3
1.1.3 Cluster Analysis . 7

1.2 Literature Review . 9
1.3 Contribution to Science and Methodology 12
1.4 Content Guide . 14

2 Discovery of Class Association Rules 17
2.1 Frequent Itemsets Mining Algorithms 17

2.1.1 Brute-Force (Naive) Method 18
2.1.2 APRIORI (Level-Wise) Approach 19
2.1.3 ECLAT algorithm . 20
2.1.4 Frequent Pattern Tree Approach: FP-Growth algorithm . . . 21

2.2 Class Association Rules . 23

3 Associative Classification 25
3.1 Simple Associative Classification Approach (SA) 25

3.1.1 Experimental Evaluations of SA Approach 28
3.2 J&B Associative Classification Approach 31

3.2.1 Experimental Evaluations of J&B Approach 39

4 Distance Metrics 47
4.1 Indirect Distance Metrics . 47
4.2 The New “Direct” Distance Metric 50
4.3 The New “Combined” Distance Metric 51

CONTENTS vii

5 Identifying the Clusters of CARs 53
5.1 Partitional clustering algorithms . 53
5.2 Hierarchical clustering algorithms . 55

6 Identifying the Cluster Representative Class Association Rule 59
6.1 Representative CAR based on cluster center (RCC) 59
6.2 Representative CAR based on dataset coverage (RDC) 59
6.3 Final associative classifier . 60

7 Experimental Evaluations and Discussion 64
7.1 Discussion of Results . 71

8 Conclusion and Future Work 75

Bibliography 76

Index 86

Povzetek v slovenskem jeziku 87
8.1 Uvod . 87
8.2 Znanstvena izhodišča . 88

8.2.1 Klasifikacijska pravila . 88
8.2.2 Pogoste podmnožice in asociacijska pravila 88
8.2.3 Klasifikacijska asociacijska pravila 89

8.3 Opredelitev problema . 89
8.4 Raziskovalna vprašanja, hipoteze in cilji 89

8.4.1 Definicija mere podobnosti klasifikacijskih asociacijskih pravil 90
8.4.2 Ugotavljanje skupin za klasifikacijska asociacijska pravila . . . 90
8.4.3 Ugotavljanje reprezentativnega klasifikacijskega asociacijskega

pravila za posamezno skupino pravil 90
8.4.4 Eksperimentalna evalvacija 90

8.5 Rezultati . 91
8.5.1 Diskusija . 94

8.6 Zaključek in nadaljnje delo . 97
8.7 Prispevki k znanosti . 99

Kazalo 102

Stvarno kazalo 104

List of Figures

1.1 The data classification process. 5
1.2 A decision tree for the concept buys_computer. 6
1.3 Represented classification models in various forms, as (a) IF-THEN

rules, (b) a decision tree, (c) a neural network. 7
1.4 2-D plot of customers with respect to customer locations in a city. . 8

3.1 The effect of confidence and numrules thresholds to the accuracy on
“Nursery” dataset. 31

3.2 Associative classification working procedure 32
3.3 Confusion matrix for binary class classification 38
3.4 Confusion matrix for multi-class classification problems 39
3.5 Comparison of rule-based classification methods on the average num-

ber of rules. 44
3.6 Comparison of the J&B classifier on accuracy, precision, recall and

f-measure. 45

5.1 Clustering of a set of objects based on the k-means method. (The
mean of each cluster is marked by a “+”.) 55

5.2 Agglomerative and divisive hierarchical clustering on data objects {a,
b, c, d, e . 56

5.3 Dendrogram representation for hierarchical clustering of data objects
{a, b, c, d, e . 57

7.1 Comparison of performance of our proposed associative classification
models . 70

7.2 Comparison between our proposed associative classification models on
accuracy for selected datasets . 72

7.3 Comparison between our proposed associative classification models on
size for selected datasets . 73

8.1 Primerjava uspešnosti našega predlaganega asociativnega klasifikatorja. 96
8.2 Primerjava med našim predlaganim asociacijskim klasifikatorjem in

ostalimi modeli glede velikosti na izbranih naborih podatkov. 98

List of Algorithms

1 “BruteForce” algorithm for finding the frequent itemsets 18
2 “Compute_support” algorithm for calculating the support of an item-

set . 19
3 “APRIORI” algorithm for finding the frequent itemsets 20
4 ECLAT algorithm . 21
5 FP-Growth Algorithm . 22
6 Simple and accurate classification algorithm 26
7 Building compact and accurate classifier 33
8 Classification process of J&B approach 34
9 Overall coverage and accuracy of the classifier 35
10 The k-means algorithm for partitioning, where each cluster’s center is

represented by the mean value of the objects in the cluster. 54
11 Agglomerative Hierarchical Clustering with Complete Linkage (AHC-

CLH: Heights || AHCCLC: Clusters) 58
12 Computing the optimal number of clusters 58
13 A Representative CAR based on Cluster Center (RCC) 60
14 A Representative CAR based on Dataset Coverage (RDC) 61
15 Learning the proposed associative classifier 61
16 Classification process of proposed associative classifiers 62

List of Tables

3.1 List of CARs generated from input dataset. 27
3.2 Ordered class association rules. 27
3.3 Grouped CARs based on class value. 28
3.4 Final simple associative classifier. 28
3.5 The comparison between SA method and some classification algorithms. 29
3.6 The results of second experiment (with different default parameters). 30
3.7 Generated CARs from training dataset 36
3.8 Training dataset . 36
3.9 Sorted CARs based on support and confidence thresholds 37
3.10 Final compact and accurate classifier 37
3.11 Description of datasets and parameters of AC algorithms 40
3.12 The comparison between J&B method and other classification algo-

rithms on accuracy. 41
3.13 Statistically significant wins/losses counts of J&B method on accuracy 42
3.14 The number of classification rules generated by the classifiers 42
3.15 Statistically significant wins/losses counts of J&B method on rules . 42

7.1 Default parameters of associative classifiers and datasets description. 65
7.2 Overall accuracies with standard deviations. 66
7.3 Statistically significant wins/losses counts of DC method on accuracy 67
7.4 Statistically significant wins/losses counts of DDC method on accuracy 67
7.5 Statistically significant wins/losses counts of CDC method on accuracy 67
7.6 number of CARs . 67
7.7 Statistically significant wins/losses counts of DC and DDC method on

rules . 68
7.8 Statistically significant wins/losses counts of CDC method on rules . 68
7.9 Overall Coverage . 69

8.1 Privzeti parametri asociativnih klasifikatorjev in opis naborov podatkov. 91
8.2 Klasifikacijske točnost s standardnimi odkloni - skupno. 93
8.3 Število KAP . 94
8.4 Skupna pokritost . 94

Chapter 1

Introduction

In this chapter, we will introduce the scientific background and motivation of our
proposed research in Section 1.1. Then, we will introduce the existing associative
classifiers that are related to our research in Section 1.2. Section 1.3 discusses the
contribution of the dissertation and methodology. Finally, the content guide of the
dissertation will be given in Section 1.4.

1.1 Scientific Background

Huge amounts of data are being generated and stored every day in corporate
computer database systems. Mining association rules [1] from transactional data is
becoming a popular and important knowledge discovery technique. For example,
association rules (ARs) of retail data can provide valuable information on customer
buying behavior. The number of rules discovered in a real-life dataset can easily
exceed thousands of rules. To manage this knowledge, rules have to be pruned and
grouped, so that only a reasonable number of rules have to be inspected and analyzed.

Data mining is the process of extracting hidden regularities from large data sets,
which are novel knowledge. This can be achieved by combining methods from statis-
tics and artificial intelligence. Data mining plays an important role in the analysis
of real-life datasets as well as collections of observations.

Classification rule mining aims to discover a small set of rules in the dataset that
forms an accurate classifier, while association rule mining finds all the rules existing
in the dataset that satisfy user-defined minimum support (support is an indication
of how frequently the items appear in the dataset described in Section 2.2) and
confidence (confidence indicates the number of times the IF-THEN statements have
been found to be true) constraints (described in Section 1.1.1). Various types of
classification approaches (supervised learning) have been proposed (e.g., KNN [31],
Bayesian classifiers [2], decision trees [25], neural networks [32] and others [43, 44]).

Associative Classification (AC) is a combination of these two important data min-
ing techniques, namely, classification and association rule mining. AC aims to build
accurate and efficient classifiers based on association rules. Recently, researchers
have proposed several classification algorithms (described in section 1.2) based on
association rules called associative classification methods such as CBA: Classifica-

2 1.1 Scientific Background

tion based Association [18], CMAR: Classification based on Multiple Association
Rules [17], MCAR: Mining Class Association Rules [76], and CPAR: Classification
based on Predicted Association Rules [30], MMSCBA: Associative classifier with
multiple minimum support [45], CBC: Associative classifier with a small number
of rules [46], MMAC: Multi-class, multi-label associative classification [47], ARCID:
Association Rule-based Classification for Imbalanced Datasets [48].

Experimental evaluations [5,18,30,45–48] show that associative classification ap-
proaches achieve higher accuracy than some traditional classification algorithms pro-
duced by decision trees [3,24,25,37–40] and non-rule-based approaches [2,31,32,43,
44]. Most of the associative classification methods [17, 19, 49–55] tend to build ac-
curate and compact classifiers that include a limited number of effective rules by
using rule selection or pruning techniques. In comparison with some traditional
rule-based classification approaches, associative classification has two main char-
acteristics. Firstly, it generates a large number of association classification rules.
Secondly, support and confidence thresholds are applied to evaluate the significance
of classification association rules. However, associative classification has some draw-
backs. Firstly, it often generates a very large number of classification association
rules in association rule mining that is computationally expensive, especially when
the training dataset is large. It takes great effort to select a set of high-quality
classification rules among them. Secondly, the accuracy of associative classification
depends on the setting of the minimum support and the minimum confidence con-
straints, that is, imbalanced datasets [94] may heavily affect the accuracy of the
classifiers. Furthermore, the efficiency of associative classification depends on the
minimum support (if minimum support is applied low, larger number of rules are
generated and analyzing the larger number of rules to produce AC may lead a low
efficiency) and the training dataset (if the learning dataset is large and dense). Al-
though associative classification [17,18,30] has some drawbacks, it can achieve higher
accuracy than rule and tree-based classification algorithms on some real-life datasets
(such as “Breast cancer”, “Hayes-root”, “Lymp”, “Tic-Tac-Toe” shown in Table 8.2).

Another important approach is clustering methods (unsupervised learning) stud-
ied in [16, 22, 23]. These clustering techniques are split into two main parts: parti-
tional and hierarchical clustering. In partitional clustering [20, 26, 28], objects are
grouped into disjoint clusters such that objects in the same cluster are more similar
to each other than objects in other cluster. Hierarchical clustering [27], on the other
hand, is a nested sequence of partitions. In the bottom-up method, larger clusters
are built by merging smaller clusters, while it starts with the one cluster containing
all objects and divides into smaller clusters in the top-down method.

Researchers have proposed associative classifiers based on clustering approaches
[12,57,77,81,82]. The main goal of cluster-based approaches is to reduce the number
of classification rules and increase the accuracy of the classifiers. The advantage of
such classifiers compared to associative or traditional classifiers is that ACs based
on clustering produce more compact rules and those approaches build more under-
standable, descriptive and accurate models.

Introduction 3

1.1.1 Association Rules

Association rule mining is one important data mining task that is nowadays ap-
plied to solve different kinds of problems in weak formalization fields. The main
goal of association rule mining is to find all rules in datasets that satisfy some basic
requirements such as minimum support and minimum confidence. It was initially
proposed by Agrawal [1] to solve the market basket problem in transactional datasets
and it has now been developed to solve many other problems such as classification,
clustering et al. The discovery of correlations and associations between items in large
datasets is performed by frequent itemset mining. The discovery of interesting cor-
relation relationships between real-life transactions can simplify the decision-making
processes in many business activities, such as cross-marketing, catalog design, med-
ical diagnosis and customer shopping behavior analysis.

Frequent patterns mean that patterns occur frequently in a dataset. There are
many kinds of frequent patterns, including itemsets, subsequences, and substruc-
tures. A frequent itemset is a set of items that frequently appear together in a trans-
actional dataset. A frequent sequential pattern means the itemset that customers
tend to buy first some items followed by other items, for example, first a cheese-
burger, followed by french-fries, and then a coca cola. Mining frequent patterns leads
to the discovery of interesting associations and correlations within data.

Example: Let us suppose that we are working at a fast food restaurant as
marketing manager and we would like to report to the director about the items that
are bought frequently within the same transactions. One example of such rules that
can be mined from the fast food restaurant transactional database is as follows:

(Trans_id: product=“hamburger ”)→product =“coca cola”), [support = 5%; con-
fidence = 75%]

The above single-dimensional association rule contains a single attribute (buys),
where Trans_id is a variable representing a transaction’s id which is done by a
customer, and product expresses the single attribute. A 5% support of a rule means
that in 5% of all transactions, hamburger and coca cola were purchased together.
A 75% confidence of a rule means that if a customer buys a hamburger, there is a
75% chance of buying coca cola as well. Simply, the above rule can be defined as
“hamburger→coca cola [5%, 75%]”.

Next, we are given the fast food restaurant relational dataset related to purchases.
The following association rules may be generated:

(Trans_id: age= “18. . . 28” and status= “student”)→(buys= “student menu”)
[support = 3%, confidence = 60%]
Since each attribute is referred to as a dimension, we have given the multi-

dimensional dataset. The multi-dimensional association rule (age, status and buys
attributes) indicates that 3% of customers are ages between 18-28 years with student
status and have purchased a student menu. There is a 60% probability that a student
in the above age group will buy a student menu. Typically, interesting association
rules must satisfy both minimum support and minimum confidence thresholds.

1.1.2 Classification Rules

Classification and prediction are two important tasks of data mining that can

4 1.1 Scientific Background

be used to extract the hidden regularities from datasets (data objects whose class
labels are known) to form accurate models (classifiers); classification approaches aim
to build classifiers (models) to predict the class label of a future data object. Such
analysis can help us to understand the data comprehensively. Data classification
is a two-step process, consisting of a learning step (where a classification model is
constructed) and a classification step (where the model is used to predict class labels
for given data). Classification methods have been widely used in many real-world
applications, such as customer relationship management [34], medical diagnosis [35],
and industrial design [36].

The data classification process is shown for the sample loan application data in
Figure 1.1.

(a) defines the learning part of the classification: Training data are analyzed by a
classification algorithm. Here, the class attribute is “loan decision”, and the learned
model or classifier is represented in the form of classification rules. (b) illustrates the
classification part: Test data are used to estimate the accuracy of the classification
rules. If the accuracy is considered acceptable, the rules can be applied to the
classification of new data examples.

For example: A bank loans officer needs analysis of her data to learn which loan
applicants are “safe” and which are “risky” for the bank or a marketing manager at
“AllElectronics” needs data analysis to help guess whether a customer with a given
profile will buy a new computer or a medical researcher wants to analyze “Breast
cancer” data to predict which one of three specific treatments a patient should receive.
In each of these examples, the data analysis task is classification, where a model or
classifier is constructed to predict class (categorical) labels, such as “safe” or “risky”
for the loan application data; “yes” or “no” for the marketing data; or “treatment A,”
“treatment B,” or “treatment C” for the medical data.

Classification rule-learning algorithms are basically divided into two parts: tree-
based and rule-based.

Decision tree induction is the learning of decision trees from class-labeled training
examples. A decision tree is a flowchart-like tree structure, where each internal node
(non-leaf node) denotes a test on an attribute, each branch represents an outcome of
the test, and each leaf node (or terminal node) holds a class label. The topmost node
in a tree is the root node. Classification rules are extracted easily from the decision
tree: Each path from the root to the leaves is considered as a rule, so, the number
of rules extracted from the decision tree is equal to the number of leaves. A typical
decision tree is shown in Figure 1.2. It represents the concept buys_computer, that
is, it predicts whether a customer at “AllElectronics” is likely to purchase a computer.
Internal nodes are denoted by rectangles, and leaf nodes are denoted by ovals.

Tree-based algorithms [3,24,25,37–40] adopt a greedy approach in which decision
trees are constructed by top-down and divide-and-conquer approaches which start
with a training dataset, then, the training dataset is recursively partitioned into
smaller subsets while a tree is being built. The attribute selection procedure employs
measures (such as information_gain, information_gain_ratio or the gini_index)
[95]. In the rule-based classification [4, 6, 7, 11, 13, 14, 41, 42], learned models are
represented as a set of IF-THEN rules, that is, IF condition THEN conclusion. An
example is rule R1,

Introduction 5

Figure 1.1: The data classification process.

R1 : IF age = youth AND student = yes THEN buys_computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or pre-
condition. The “THEN” part (or right side) is the rule consequent. In the rule
antecedent, the condition consists of one or more attribute tests (e.g., age = youth
and student = yes) that are logically AND. The rule’s consequent contains a class
prediction (in this case, we are predicting whether a customer will buy a computer).
If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a
given example, we say that the rule antecedent is satisfied (or simply, that the rule
is satisfied) and that the rule covers the example.

6 1.1 Scientific Background

Figure 1.2: A decision tree for the concept buys_computer.

We first examine how such rules are used for classification, then we study ways in
which they can be generated, either from a decision tree or directly from the training
data by using a sequential covering approach.

Extracting classification rules from a decision tree: The decision tree of Figure
1.2 can be converted to classification IF-THEN rules by tracing the path from the
root node to each leaf node in the tree. The rules extracted from Figure 8.2 are as
follows:
R1 : IF age = youth AND student = no THEN buys_computer = no
R2 : IF age = youth AND student = yes THEN buys_computer = yes
R3 : IF age = middle_aged THEN buys_computer = yes
R4 : IF age = senior AND creditrating = excellent THEN buys_computer = yes
R5 : IF age = senior AND credit_rating = fair THEN buys_computer = no

A disjunction (logical OR) is implied between each of the extracted rules. Be-
cause the rules are extracted directly from the tree, they are mutually exclusive
and exhaustive. Mutually exclusive means that we cannot have rule conflicts here
because no two rules will be triggered for the same example. (We have one rule per
leaf, and any example can map to only one leaf.) Exhaustive means there is one
rule for each possible attribute–value combination, so that this set of rules does not
require a default rule. Therefore, the order of the rules does not matter—they are
unordered. IF-THEN rules can be extracted directly from the training data (i.e.,
without having to generate a decision tree first) using a sequential covering algo-
rithm. The name comes from the notion that the rules are learned sequentially (one
at a time), where each rule for a given class will ideally cover many of the class’s
examples (and hopefully none of the examples of other classes). Sequential covering
algorithms are the most widely used approach to mining disjunctive sets of classi-
fication rules, The general strategy is as follows: rules are learned one at a time.
Each time a rule is learned, the tuples covered by the rule are removed, and the
process repeats on the remaining examples. This sequential learning of rules is in

Introduction 7

contrast to decision tree induction, because the path to each leaf in a decision tree
corresponds to a rule, we can consider decision tree induction as learning a set of
rules simultaneously.

The classification models can be expressed in different ways, such as classification
rules (IF-THEN), decision trees or neural networks (shown in Figure 1.3). A neural
network is typically a collection of neuron-like processing units with weighted con-
nections between the units when it is used for classification. There are many other
methods for constructing classification models, such as naïve Bayesian classification,
support vector machines, and k -nearest neighbor classification.

Figure 1.3: Represented classification models in various forms, as (a) IF-THEN rules,
(b) a decision tree, (c) a neural network.

1.1.3 Cluster Analysis

Cluster analysis [78–80, 84] is different than classification and prediction. Clus-
tering analyzes (unsupervised) data objects without class labels, while classification
and prediction analyze class-labeled data objects. In general, the class labels are
not presented in the training dataset, because they are initially unknown. Cluster-
ing can be used to generate such labels. The main goal of clustering techniques is
maximizing the intraclass similarity and minimizing the interclass similarity inside
the clusters when clustering or grouping the data objects. That is, objects within
the same cluster have high similarity in comparison to one another, but are very
dissimilar to objects in other clusters. Each cluster that is formed can be viewed as
a class of objects, from which rules can be derived. Example of cluster analy-
sis: Cluster analysis can be performed on AllElectronics customer data in order to

8 1.1 Scientific Background

identify homogeneous sub-populations of customers. These clusters may represent
individual target groups for marketing. Figure 1.4 shows a 2-D plot of customers
with respect to customer locations in a city. Three clusters of data points are evident,
Each cluster “center” is marked with a “+”.

Figure 1.4: 2-D plot of customers with respect to customer locations in a city.

We propose new associative classification algorithms (by using classification, as-
sociation and clustering techniques) based on hierarchical agglomerative clustering
(complete linkage) method. We define the new normalized distance metrics based on
“direct” and “indirect” measures to measure the similarities between CARs, which we
later use to cluster CARs in a bottom-up hierarchical agglomerative fashion (firstly,
we group the class association rules based on their class label and then rules that are
in the same group are clustered together). Once we cluster the rules, the optimal
number of clusters is identified for each group of CARs by cutting the dendrogram
from the point that achieves the maximum difference between two consecutive cluster
heights.

Once CARs are clustered, we define a “representative” CAR within each cluster.
We propose two methods of extracting the “representative” CAR for each cluster, (1)
we choose the CAR based on dataset coverage and (2) based on cluster center.

Introduction 9

1.2 Literature Review

In computer science literature, there are a lot of rule-based, tree-based and prob-
abilistic classification models proposed by prominent researchers. Since we propose
associative classification methods based on dataset coverage and clustering in our
PhD thesis, we discuss the performed research works in the associative classification
field that are related to our proposed approaches in this section. We first describe
some associative classification methods based on dataset coverage.

The CPAR [30] (Classification based on Predictive Association rules) algorithm
proposed by Yin and Han combines the advantages of associative classification and
traditional rule-based classification. CPAR utilizes a greedy algorithm and inher-
its the basic idea of First-Order Inductive Learner (FOIL) [69] method to generate
rules, and it generates the rules directly from the training dataset, instead of gen-
erating a large candidate rules from frequent itemsets as in other associative clas-
sification methods. To avoid overfitting, CPAR uses expected accuracy to evaluate
each rule and the classification process is also different than traditional classification
approaches: First, CPAR selects all rules whose bodies match the testing example;
second, it extracts the best k rules for each class among the rules selected in step
1; and finally, CPAR compares the average expected accuracy of the best k rules
for each class found in step 2 and predicts the class label which achieves the highest
expected accuracy.

CMAR, an associative classification method, also uses multiple association rules
for classification. This method first extends FP-growth [73] (an efficient frequent
pattern mining described in section 2.1.4) to mine large datasets. Next, CMAR
employs a novel data structure to improve the overall accuracy and efficiency, called
a CR-tree. The main goal of using a CR-tree is to store and retrieve a large number
of rules compactly and efficiently. A CR-tree is a prefix tree structure to explore the
sharing among rules, which achieves substantial compactness. A CR-tree itself is also
an index structure for rules and serves rule retrieval efficiently. In the rule-selection
process, CMAR extracts the highly confident, highly related rules based on dataset
coverage and analyzes the correlation between those rules. More precisely, for each
rule R, all the examples are found covered by rule R and if R correctly classifies
one example, then R will be included to the final classifier and cover count (cover
count threshold C is applied at the beginning) of those examples covered by R is
increased by 1. If the cover count of an example is exceeded by C, then that example
is removed. This process continues while both the training data set and rule set are
not empty.

CBA [18] (Classification Based on Associations), a heuristic approach proposed
by Liu, Hsu and Ma in 1998, had two main steps as in all other associative classifica-
tion algorithms, rule-generation and rule-selection parts. CBA utilizes the iterative
approach that is similar to the APRIORI algorithm [1] (described in section 2.1.2) in
the rule-generation part. CBA generates all the frequent rule-items by making multi-
ple passes over the data and then strong class association rules are generated through
those frequent itemsets. The pruning method is also used in the rule-generation step
based on pessimistic error rate. In the rule-selection phase, rules are extracted based
on dataset coverage. More precisely, if a rule can classify at least one example cor-

10 1.2 Literature Review

rectly, that rule is considered as a potential rule for the classifier. At the end, rules
are included into the final classifier based on total error.

The MCAR [76] (Mining Class Association Rules) approach is also aimed to
produce an accurate associative classifier. In this method, the dataset only needs to
be scanned once because the dataset is transformed into the vertical layout format.
The cross-support operation and vertical data format are used for easily computing
the support of the frequent items. The concept of class frequent items is taken
into consideration to remove the rules, not only using the minimum support and
minimum confidence thresholds to prune the candidate set as in other associative
classification approaches. MCAR achieved some improvements: first, instead of
scanning a dataset several times, MCAR just constructs the rule set at once. Second,
it has developed a criterion of redundant class-frequent items to prune weak rules
before they are actually generated. Third, to improve the complex structure such
as frequent-pattern tree (FP-tree) (FP-tree is a prefix tree. For each example in the
training data set, attributes values appearing in FP-tree are extracted and sorted
according to FP-tree, the class label is attached to the last node in the path. All
nodes with same attribute value are linked together as a queue) or CR-tree (CR-tree
is also a prefix tree structure which is built for the set of rules. CR-tree is also used as
index structure for rules and serves rule retrieval efficiently.), MCAR transforms the
data format from horizontal to vertical by scanning the dataset once and counting the
support by intersecting the C-Tidset (Data can be presented in item-CTID format
(that is, {item: Class-Tidset}), where item is an item name, class is a finite set of
class labels, and TID-set is the set of example identifiers containing the item).

The authors in [55] argue that when training examples are discarded after a rule
is evaluated, this removal affects other lower-ranked rules since rules normally have
common training data examples. Specifically, this method aims to build a classifier
based on rule-pruning, and applies the vertical mining [61] (TidList) approach to
discover the class association rules based on minimum support and confidence con-
straints. In the rule-selecting process, if any rule is able to cover at least one training
example, it is inserted into the final classifier. When a rule is being evaluated to be
a potential candidate for a classifier, ranking of the remaining untested rules is also
updated constantly after removing the training examples covered by that rule.

The MMSCBA [45] (Associative classifier with multiple minimum support) clas-
sification method is based on multiple minimum supports (MMSs). The proposed
method supplies the user-specified minimum support for each item and each class
label. MMSCBA is proposed to discover a complete set of classification rules with
multiple minimum supports to form a MMSCBA-based classifier. Once all the clas-
sification rules are generated, they are used them for prediction of uncertain data
example. The prediction phase is split into two parts in AC methods: prediction
based on the highest ranked single-rule item and multiple-rule item. MMSCBA uti-
lizes the four measurements in classification process, namely, Maximum likelihood,
Max X2, Laplace and Scoring.

A recently proposed associative classifier called ARCID [48] (Association Rule-
based Classification for Imbalanced Datasets) aims to extract hidden regularities and
knowledge from imbalanced datasets by emphasizing information extracted from
minor classes. For managing the overwhelming number of CARs generated from

Introduction 11

real-life datasets and removing the redundant rules that have the same information,
ARCID applies the informative generic base (IGB) [60] algorithm. ARCID starts
by scanning the training dataset to create groups of instances based on their class
labels. Each resulting group contains instances belonging to the same class. Then, for
each group, the support measure is applied to reduce the search space and generate
frequent rules. In the rule-selection process, ARCID selects the best k rules based
on the combination of two different criteria (measures): first, rules that have higher
accuracy (rules that have higher supports can have higher predictive accuracy) and
belong to major classes; second, rare rules that have lower support and belong to
minor classes. In the class prediction phase, ARCID employs two methods. The first
method selects the class label of the highest-ranked rule (based on Lift or Laplace
measures) which matches the test instance. The second method selects the class label
by using an aggregate value (the highest). This value corresponds to the average of
a defined measure (Lift or Laplace) for each group of rules predicting the same class
and matching the test instance. If any rule cannot classify the test instance, the
minor class is predicted.

In the associative classification method [68], researchers proposed a new measure,
called “condenseness”, to evaluate the infrequent rule items. Authors argued that
infrequent rule items which are not satisfied with the minimum support threshold
could produce strong association rules for classification. “Condenseness” of infrequent
rule items is the average of lift of all association rules that can be generated from
those rule items. A rule item with a high condenseness means that its items are
closely related and can produce potential rules for AC although it does not have
enough support. A New associative classifier, (CARC)- Condensed Association Rules
for Classification is presented based on the concept of “condenseness”. Association
rules are generated by using the modified “APRIORI” algorithm and develop the
new strategy of rule inference with the condenseness.

The following associative classification methods are mainly constructed based on
some clustering techniques, the main goal of these methods is to produce compact and
meaningful associative classifiers while maintaining the classification accuracy. There
are two main branches of clustering that can be applied to associative classification
models, namely partitional and hierarchical (distance based) clustering.

In [59], researchers have proposed a new method to cluster the association rules
by the K-means (partitional) clustering algorithm. The main goal of this research is
clustering of discovered association rules to make it easy for users choosing the best
rules. The algorithm is divided into 4 steps: (1) association rules generated from
frequent patterns by the APRIORI algorithm are extracted; (2) Interestingness mea-
sures [62, 63] such as Lift, Cosinus, Conviction and Information Gain are computed
for all rules generated in step 1; (3) A set of association rules are partitioned into
disjoint clusters by using the K-means algorithm, they try to cluster the rules which
have the smallest similarities degree between them. Euclidian and Degree of similar-
ity distances are used to apply the K-means algorithm; (4) finally, they classify the
group of rules from the best to the worst by using a centroid of each cluster.

Another approach is distance-based clustering of association rules proposed in
[12]. In hierarchical agglomerative clustering methods, choosing the best and ap-
propriate distance metric is very important. Therefore, they propose new distance

12 1.3 Contribution to Science and Methodology

metrics (similarity measures) called conditional market basket difference (CMBP)
and conditional market basket log-likelihood methods based on indirect measures
such as support and confidence to group the association rules. Based on the dis-
tances, agglomerative clustering is applied to cluster the rules. The rules are further
embedded in a vector space with the use of multi3-dimensional scaling and clustered
using self-organizing maps.

Mining clusters with association rules [29] is another related approach. Here the
rules are first generated using the APRIORI algorithm, but the Hamming distance
metric is later used to find the similarities between rules. Association rules having
high confidence are then clustered using a top-down hierarchical clustering method
for finding clusters in a population of customers, where the list of products bought by
the individual clients is given. Once the rules are clustered, a specific distance metric
is introduced to measure the quality of the clustering. Experimental results show that
the success of this approach depends on the structure of the items in the datasets. If
the set of possible products is large, association rules tend to have low confidence and
this may affect badly to make informative clusters, however, clustering makes sense
in this case. On the other hand, if the number of products is small, more reliable
association rules are generated which produce an implied clustering.

Another interesting clustering-based approach [57] is “Tightness” which quantifies
the strength of binding between the items of an association rule. The idea is that
certain items in an application domain might get bound together because they are
so strongly correlated that they often occur together in transactions. This tightness
of binding is not covered by traditional measures like support or confidence. They
build their indirect distance function on the basis of “tightness”, that is, the items in
association rules that obtain the maximum and minimum support. The association
rules are clustered by applying the proposed distance function and average-linkage
method of agglomerative hierarchical clustering.

1.3 Contribution to Science and Methodology

The results of this PhD thesis will contribute to knowledge in Computer Science,
more precisely in the field of data mining and machine learning. The expected novel
contributions of the dissertation work to the science are as follows:

• We develop new meaningful distance metrics (similarity measure) to compute
the similarity between class association rules. Since there are not enough sim-
ilarity measure functions (distance metrics) of class association rules, this will
be an important contribution to this field. In this research work, we propose
two normalized distance metrics: first, direct distance metric (based on direct
measures); second, combined (based on direct and indirect measures) distance
metric;

• We identify the cluster of class association rules by using normalized similarity
measure and automatically determine the optimal number of clusters for each
class value;

Introduction 13

• We define two methods (based on cluster center and dataset coverage) of ex-
tracting a representative CAR for each cluster to produce the final, compact
and meaningful classifier;

• We implement a new application to solve real-world problems, that is, we apply
our proposed classifiers to real-life and well-known datasets.

Furthermore, we produce classification models based on association rules (simple
and accurate associative classifiers) within proposed scientific research. To achieve
the above-mentioned goals, various methods from the data mining field are used to
develop new associative classifiers, namely, classification, association, clustering and
evaluation. We use “WEKA” software [33] to generate class association rules and to
perform statistical significance testing. WEKA is appropriate open-source software
to perform experimental evaluations because it has all necessary algorithms in the
field of data mining and is easy to implement.

We use also R software [83] to execute the recently proposed classification al-
gorithms and to find relationships between association rules or attributes as well
as visualizing the clusters. We chose this software because it is easy to visualize
two-dimensional and three-dimensional spaces, that is, all the necessary packages for
visualization are supplied by them. Furthermore, R software has most of the recent
works (such as CMAR, MCAR and CPAR) that are not included by WEKA.

The proposed research work consists of three steps. First, we generate the strong
class association rules. In this step, we apply the APRIORI algorithm to generate
the frequent itemsets, since APRIORI is the most widely-used algorithm for mining
association rules in large databases, we used this approach to make our results as
comparable to other existing results and the time complexity of APRIORI is better
than other association rule generation algorithms. Second, we produce a compact
and descriptive associative classifier by using Java programming language. Once our
proposed classifier is built, we perform the experimental evaluations in the final step.
We compare our algorithms with well-known rule-based and tree-based classification
methods (Naïve Bayes, OneR [13], Decision Table [14], Simple Associative Classifier
[64], PART [11], C4.5 [25], FURIA [65], Decision Table and Naïve Bayes [66], Ripple
Down Rules [67], CBA, Prism [4], Random Forest [3] and JRip [7]) on accuracy,
the number of classifications rules and some other relevance measures (described in
section 3.2). To analyze the result, we use the experimenter tool of WEKA software.
The visualization part and comparison of the result with recent works are performed
by R software. We perform our experiments on well-known and real-world datasets
taken from the UCI Machine Learning Repository [9].

The results of this PhD Thesis are published in the following articles:

• Mattiev, J., Kavšek, B.: Coverage based classification using association rule
mining. Applied Sciences 10(20), Basel, Switzerland (2020).

• Mattiev, J., Kavšek, B.: Distance based Clustering of Class Association Rules
to Build a Compact, Accurate and Descriptive Classifier Computer Science and
Information Systems, Serbia (2020).

14 1.4 Content Guide

• Mattiev, J., Kavšek, B.: CMAC: Clustering class association rules to form
a descriptive and Meaningful Associative Classifier, Machine Learning, Opti-
mization, and Data Science, LOD 2020. Nicosia G., Pardalos P., Umeton R.,
Giuffrida G., Sciacca V. Eds. vol.11943, Springer, Siena, Italy (2020).

• Mattiev, J., Kavšek, B.: Simple and Accurate Classification Method Based
on Class Association Rules Performs Well on Well-Known Datasets, Machine
Learning, Optimization, and Data Science, LOD 2019. Nicosia G., Pardalos
P., Umeton R., Giuffrida G., Sciacca V. Eds. vol.11943, Springer, Siena, Italy
(2019), pp. 192–204.

• Mattiev, J., Kavšek, B.: A compact and understandable associative classifier
based on overall coverage, The 11th International Conference on Ambient Sys-
tems, Networks and Technologies, Procedia computer science, Vol.170, Warsaw,
Poland (2020), pp. 1161-1167.

• Mattiev, J., Kavšek, B.: How overall coverage of class association rules affects
the accuracy of the classifier?, Data Mining and Data Warehouses - SiKDD :
proceedings of the 22nd International Multiconference Information Society, IS
2019, Ljubljana, Slovenia (2019), pp. 49–52.

• Mattiev, J., Kavšek, B.: Using constrained exhaustive search vs. greedy heuris-
tic search for classification rule learning, Proceedings of the 5th Student Com-
puter Science Research Conference, StuCoSReC-2018, Koper, Sloveniya (2018),
pp. 35-38.

1.4 Content Guide

In this PhD thesis, we focus on developing new associative classification methods
based on hierarchical agglomerative clustering (complete linkage). The rest of the
thesis is structured as follows:

Chapter 2 discusses how to generate the class association rules. To discover the
CARs, we first need to generate the frequent itemsets, therefore we also discuss the
well-known frequent itemset mining algorithms in the second chapter.

Our preliminary approaches are illustrated in Chapter 3. The first part of this
chapter is about the SA (Simple Associative Classifier) method, and the J&B (Cov-
erage based Associative Classifier) approach is introduced in the second part of the
chapter. Experimental evaluations and examples based on those methods are also
defined within this chapter.

Chapter 4 emphasizes the distance metrics to measure the similarity between
class association rules. This chapter is also divided into three parts: distance metric
based on “direct”, “indirect” and “combined” measures. In this chapter, new distance
metrics are introduced and existing distance metrics will be discussed as well.

The Chapter 5 identifies the cluster of class association rules. Partitional and
Hierarchical clustering algorithms are highlighted and the new algorithm is expressed
to identify the optimal number of clusters in this chapter.

Extracting the representative class association rule (for each cluster) is discussed
in Chapter 6. Two new approaches of the representative CAR selection are intro-
duced in this chapter, based on cluster center and dataset coverage. Experimental

Introduction 15

results of the main research work and the discussion of results are analyzed in Chap-
ter 7, and the Chapter 8 concludes the PhD thesis.

Chapter 2

Discovery of Class Association
Rules

It is interesting to know how often two or more objects of interest co-occur in many
applications. For example, consider a laptop seller company, which enters all records
into its database in relational form. Each record includes the features of a laptop such
as CPU, memory, screen resolution and so on categorized according to their price.
Analyzing such a dataset, one might be interested in finding out what kind of laptops
are cheaper or more expensive. Such “frequent” sets of laptop features give clues
to laptop prices and can be used to build classification models. The quest to mine
frequent patterns appears in many other domains. The popular application is market
basket analysis, that is, mining the sets of items that are frequently bought together at
a supermarket by analyzing customer shopping carts (the so-called “market baskets”).
Once we mine the frequent sets, they allow us to extract association rules among
the item sets, where we make some statement about how likely two sets of items
are to co-occur or to conditionally occur. For example, in the laptop seller company
scenario frequent sets allow us to extract rules like, “CPU=Core i3, Memory=1TB,
Screen resolution=Full-HD Laptop price=expensive”; by these rules, we will be able
to find out the features of expensive, cheaper or medium-range price laptops. In the
case of market baskets, we can find rules such as “Customers who buy milk and bread
also tend to buy butter”. We begin this chapter with algorithms to mine frequent
itemsets, and then show how they can be used to extract association rules.

Association rule generation is usually split up into two main steps:
1. In the first step, Minimum support threshold is applied to find all frequent

itemsets from the training dataset.
2. Minimum confidence constraint is applied to generate strong class association

rules (CAR) from the frequent itemsets.

2.1 Frequent Itemsets Mining Algorithms

The step of finding frequent itemsets in associative classification is the most im-
portant and computationally expensive step [30, 45]. Several different approaches
to discover frequent rule-items from a data set have been adopted from association

18 2.1 Frequent Itemsets Mining Algorithms

rule discovery. For example, some AC methods [5, 70] employ the APRIORI candi-
date generation method. Other AC methods [17,71,72] mainly apply the FP-growth
approach [73] to generate association rules. The CPAR algorithm utilizes a greedy
strategy produced in FOIL. “Tid-lists” methods of vertical data layout [74, 75] are
used in [47,76]. In this section, we discuss the frequent itemset mining algorithms.

2.1.1 Brute-Force (Naive) Method

We begin by describing an exhaustive or brute-force algorithm. The brute-force
method generates all possible itemsets X ⊆ I, and support of each such subset is
computed in the input dataset D. The method is divided into two main steps: (1)
candidate generation and (2) support computation.

Since each itemset is potentially a candidate frequent pattern, all the subsets
(candidates) of I are generated in the candidate generation step. The candidate
itemset search space is clearly exponential because there are 2|I| potentially frequent
itemsets. The structure of the itemset search space is instructive; the set of all
itemsets forms a lattice structure where any two itemsets X and Y are connected by
a link if X is an immediate subset of Y, that is, X ⊆ Y and |X| = |Y | − 1. In terms
of a practical search strategy, the itemsets in the lattice can be enumerated by using
either a breadth-first (BFS) [85] or depth-first (DFS) [86] search on the prefix tree,
where two itemsets X, Y are connected by a link if X is an immediate subset and
prefix of Y. This allows one to enumerate itemsets starting with an empty set, and
adding one more item at a time.

In the support computation step, the support of each candidate pattern X is
computed and frequent candidates are determined. For each record 〈t, i(t)〉 in the
database, we determine if X is a subset of i(t). If so, we increment the support of X.
The pseudo-code of brute-force method is highlighted in Algorithm 1. It enumerates
each itemset X ⊆ I, and then computes its support by checking if X ⊆ i(t) for each
t ∈ T .

Algorithm 1 “BruteForce” algorithm for finding the frequent itemsets
Input: D: a dataset of records, I: itemsets and min_sup: the minimum support
threshold
Output: L, frequent itemsets in D
1: L = ∅;
2: for all i ∈ I do
3: supp(i) = Compute_support(i,D) :
4: if supp(i) ≥ min_sup then
5: L = L ∪ {(i, sup(i))};
6: end if
7: end for
8: return L

The brute-force algorithm finds all the frequent itemsets in an exhaustive way.
It checks all possible itemsets (line 2-7) as a potential candidate. Support of each
itemset is found in line 3 described in Algorithm 2 and store those (line 4-6) that

Discovery of Class Association Rules 19

satisfy the user-defined minimum support threshold.

Algorithm 2 “Compute_support” algorithm for calculating the support of an item-
set
Input: i, itemset and D, a dataset of records
Output: S, support of itemset i
1: S = 0;
2: for all d ∈ D do
3: if i ⊆ d then
4: S = S + 1;
5: end if
6: end for
7: return S

We shall see next how to systematically improve on the brute-force approach, by
improving both the candidate generation and support counting steps.

2.1.2 APRIORI (Level-Wise) Approach

The generation of frequent itemsets by Apriori algorithm is accomplished in lev-
els, wherein on each level APRIORI uses itemsets found to be frequent in the previous
level to produce new candidate itemsets. APRIORI utilizes the ‘downward-closure’
property to speed up the searching process by reducing the number of candidate
itemsets at any level. The main feature of ‘downward-closure’ is that all subsets
of a frequent itemset must be frequent. Infrequent itemsets found at any level are
removed, because it is not possible to make frequent itemset from an infrequent one.
For example: if a itemset "abc" is infrequent (itemset "abc" is not satisfied by the
minimum support threshold), then, itemset "abcd" (generated from infrequent item-
set "abc") will be infrequent as well. Because support of a itemset "abcd" becomes
lower or equal (it cannot be higher) to the support of a itemset "abc". APRIORI
does this process to prune infrequent itemsets before computing their support at any
level. This should reduce the time complexity to produce and compute the support
for all items combinations in the datasets. The APRIORI algorithm applies an it-
erative approach called “ level-wise” search, where k -itemsets are used to generate
(k+1)-itemsets. Let L be a set of frequent itemsets, the set of frequent 1-itemsets is
found by scanning the dataset, that is, it calculates the support count for each item
and collects those items that satisfy minimum support threshold. The resulting set is
denoted as L1. Next, L1 is used to generate L2, the set of frequent 2-itemsets, which
is used to generate L3, and so on, until no more frequent k -itemsets can be found.
The dataset needs to be fully scanned once to find each frequent itemset. It can be
seen from the algorithm definition that time complexity of generating all frequent
itemsets from the given dataset is reasonably high since it exhaustively searches (all
possible combinations) the entire example space to find all possible itemsets. The set
of all possible itemsets has the size of 2n−1. Although the combinatorial complexity
grows exponentially by depending on the number of items n in L, method search effi-
ciently by using the “downward-closure” (support based pruning) property of support

20 2.1 Frequent Itemsets Mining Algorithms

which guarantees that all subsets of the frequent itemset must be also frequent and,
all supersets of the infrequent itemset must be infrequent. The APRIORI algorithm
is defined in Algorithm 3.

Algorithm 3 “APRIORI” algorithm for finding the frequent itemsets
Input: D, a dataset of records, min_sup, the minimum support count threshold
Output: L, frequent itemsets in D
1: L1= find_frequent_1-itemsets(D);
2: for (k = 2;Lk−1)! = ∅; k ++) do
3: Ck= apriori_gen(Lk−1));
4: for each record t ∈ D do . scan D for counts
5: Ct= subset(Ck,t);
6: for each candidate c ∈ Ct do
7: c.count++; . Increment the count of all candidates in Ck that are

contained in t
8: end for
9: Lk = {c ∈ C|c.count ≥ min_sup};

10: end for
11: end for
12: return L = ∪kLk;

The frequent 1-itemsets, are found by the APRIORI algorithm from the given
dataset in line 1. Lines 2-12 represent that candidate Ck is generated by using Lk−1
to find Lk for k ≥ 2. Candidate itemsets are generated by the apriori_gen function
and it uses them to eliminate those having an infrequent subset (line 3). The fourth
line scans the dataset after all of the candidates are generated. A subset function
in line 5 finds all subsets of the record that are candidates for each record, and the
count for each of those candidates that satisfy minimum support threshold (lines
6-9) to form the set of frequent itemsets, L in line 12.

2.1.3 ECLAT algorithm

The ECLAT algorithm [87] is a more efficient and scalable version of the APRI-
ORI algorithm. The support counting step can be improved significantly by indexing
the database in such a way that it allows us to compute the frequency faster. In the
level-wise approach, we have to generate subsets of each record and check whether
they exist in the prefix tree for computing the support. This can be computationally
expensive because we may generate many subsets that do not exist in the prefix tree.

The ECLAT algorithm leverages the Transaction Id Sets (tidsets) directly for
support computation. The basic idea is that the support of a candidate itemset can
be computed by intersecting the tidsets of suitably chosen subsets. In general, given
t(X) and t(Y) for any two frequent itemsets X and Y, we have t(XY) = t(X)∩t(Y).
The support of candidate XY is simply the cardinality of t(XY), that is, sup(XY) =
|t(XY)|. ECLAT intersects the tidsets only if the frequent itemsets share a common
prefix, and it traverses the prefix search tree in a DFS-like manner, processing a
group of itemsets that have the same prefix. The pseudo-code of ECLAT is given in

Discovery of Class Association Rules 21

Algorithm 4.

Algorithm 4 ECLAT algorithm
Initialization: F = ∅, P = {〈i, t(i)〉|i ∈ I, |t(i)| ≥ minsup}
Input: P : potential (assumed) frequent itemsets, F : frequent itemsets and
min_sup: the minimum support threshold
Output: L, frequent itemsets
1: for 〈Xa, t(Xa)〉 ∈ P do
2: L = L ∪ {(Xa, sup(Xa)};
3: Pa = 0;
4: for 〈Xb, t(Xb)〉 ∈ P and Xb > Xa do
5: Xab = Xa ∪Xb;
6: t(Xab) = t(Xa) ∩ t(Xb) ;
7: if sup(Xab) ≥ minsup then
8: Pa = Pa ∪ {(Xab, t(Xab))};
9: end if

10: end for
11: if Pa 6= 0 then
12: ECLAT (Pa,minsup, L);
13: end if
14: end for
15: return L;

ECLAT employs a vertical representation of the binary database D. Thus, the
input is the set of tuples 〈i, t(i)〉 for all frequent items i ∈ I, which comprise an
equivalence class P (they all share the empty prefix); it is assumed that P contains
only frequent itemsets. In general, given a prefix equivalence class P, for each frequent
itemset Xa ∈ P (line 1), we try to intersect its tidset with the tidsets of all other
itemsets Xb ∈ P (line 2-10). The candidate pattern is Xab = Xa ∪Xb (line 5), and
we check the cardinality of the intersection t(Xa)∩t(Xb) to determine whether it is
frequent in line 7. If so, Xab is added to the new equivalence class Pa that contains
all itemsets that share Xa as a prefix (line 8). A recursive call to ECLAT (line 11-13)
then finds all extensions of the Xa branch in the search tree. This process continues
until no extensions are possible over all branches.

2.1.4 Frequent Pattern Tree Approach: FP-Growth algorithm

Another frequent pattern approach is FP-Growth that indexes the database for
fast support computation by using an augmented prefix tree called the frequent pat-
tern tree (FP-tree). Each node in the tree is labeled with a single item, and each
child node represents a different item. Each node also stores the support information
for the itemset comprising the items on the path from the root to that node. The
FP-tree is constructed as follows: initially the root node of the tree contains null item
∅. Next, for each tuple 〈t, X〉 ∈ D, where X = i(t), we insert the itemset X into
the FP-tree, incrementing the count of all nodes along the path that represents X. If
X shares a prefix with some previously inserted record, then X will follow the same

22 2.1 Frequent Itemsets Mining Algorithms

path until the common prefix. For the remaining items in X, new nodes are created
under the common prefix, with counts initialized to 1. The FP-tree is complete when
all records have been inserted.

The FP-tree can be considered as a prefix compressed representation of the
database D. Because the main goal is to build the tree as compact as possible and
the most frequent items to be at the top of the tree. FP-Growth therefore sorts
the items in support descending order. It first computes the support of all single
items i ∈ I from the initial database, then it discards the infrequent items, and sorts
the frequent items by support descending order. Finally, each tuple 〈t, X〉 ∈ D is
inserted into the FP-tree after reordering X by decreasing item support. Once the
FP-tree has been constructed, it is used as an index instead of the original database.
All frequent itemsets can be mined from the tree directly via the FP-Growth method.
Pseudo-code of the FP-Growth is shown in Algorithm 5.

Algorithm 5 FP-Growth Algorithm
Initialization: F = ∅, P = ∅, R = FP − tree(D);
Input: R: FP-tree that is constructed from the input dataset, P : current itemset
prefix, F : frequent itemsets and min_sup: the minimum support threshold
Output: L, frequent itemsets
1: Remove infrequent items from R
2: if isPath(R) . insert subset of R into F then
3: for each Y ⊆ R do
4: X = P ∪ Y ;
5: sup(X) = minx∈Y {cnt(x)};
6: L = L ∪ {(X, sup(X))};
7: end for
8: else . process projected FP-trees for each frequent item i
9: for each i ⊆ Rinincreasingorderofsup(i) do

10: X = P ∪ {i};
11: sup(X) = sup(i); . sum of cnt(i) for all nodes labeled i
12: L = L ∪ {(X, sup(X))};
13: Rx = ∅; . projected FP-tree for X
14: for each path ∈ PathFromRoot(i) do
15: cnt(i) = countofiinpath :
16: insertpathexcludingiintoFP − treeRxwithcountcnt(i);
17: end for
18: if Rx 6= 0 then
19: FP −Growth(Rx, X, L,minsup);
20: end if
21: end for
22: end if
23: return L;

The method gets as input an FP-tree R constructed from the input database
D, and the current itemset prefix P, which is initially empty. Given a FP-tree R,
projected FP-trees are built for each frequent item i in R in increasing order of

Discovery of Class Association Rules 23

support, therefore, we remove infrequent items from R in line 1. To project R on
item i, we find all the occurrences of i in the tree, and for each occurrence, we
determine the corresponding path from the root to i (line 14). The count of item i
on a given path is recorded in cnt(i) (line 15), and the path is inserted into the new
projected tree RX , where X is the itemset obtained by extending the prefix P with
the item i. While inserting the path, the count of each node in RX along the given
path is incremented by the path count cnt(i).We omit the item i from the path, as
it is now part of the prefix. The resulting FP-tree is a projection of the itemset X
that comprises the current prefix extended with item i (line 10). We then call FP-
Growth recursively with projected FP-tree RX and the new prefix itemset X as the
parameters (lines 18-19). The base case for the recursion happens when the input
FP-tree R is a single path. FP-trees that are paths are handled by enumerating all
itemsets that are subsets of the path (lines 2–6).

2.2 Class Association Rules

An association rule has two parts, an antecedent (if) and a consequent (then).
An antecedent is an item found in the data. A consequent is an item that is found
in combination with the antecedent. In CARs, the antecedent (left-hand side of the
rule) is an itemset and the consequent (right-hand side of the rule) is a class label.
CARs are created by analyzing data for frequent IF-THEN patterns and using the cri-
teria support and confidence to identify the most important relationships. Support is
an indication of how frequently the items appear in the dataset. Confidence indicates
the number of times the IF-THEN statements have been found to be true. In data
mining, association rules are useful for analyzing and predicting customer behavior.
They play an important role in shopping basket data analysis, product clustering,
catalog design and store layout.

Let D be a dataset with n attributes {A1, A2, . . . , An} that are classified into M
known classes and |D| objects (cases). Let Y = {y1, y2, . . . , ym} be a list of class
labels. A specific value of an attribute Ai and class Y is denoted by lower-case letters
aim and cj respectively.

Definition 1. An itemset is a set of some pairs of attributes and a specific value,
denoted {(Ai1, ai1), (Ai2, ai2), . . . , (Aim, aim)}.

Definition 2. A CAR R has the form {(Ai1, ai1), . . . , (Aim, aim)} ⇒ yj where
{(Ai1, ai1), . . . , (Aim, aim)} is an itemset and yj ∈ Y is a class label.

Definition 3. The actual occurrence ActOcc(R) of a rule R in D is the number
of records of D that match R’s antecedent (left-hand side).

Definition 4. The support of rule R, denoted by Supp(R), is the number of
records of D that match R’s antecedent and are labeled with R′s class.

Definition 5. The confidence of rule R, denoted by Conf(R), is defined as
follows: Conf(R) = Supp(R)/ActOcc(R).

In this research work, we use the APRIORI algorithm to find frequent itemsets de-
scribed in 2.1.2, APRIORI is widely-used algorithm, hence we used this approach to
make our results as comparable to other existing results. Once we found all frequent
itemsets from learning datasets, it is a straightforward approach to generate strong

24 2.2 Class Association Rules

CARs that satisfy both minimum support and minimum confidence constraints from
the frequent itemsets. This can be done using following equation for confidence, we
define for the rule: X → C,

Confidence(X → C) =
support_count(X ∪ C)
support_count(X)

(2.1)

The equation 2.1 is expressed in terms of itemsets support count, where X is
antecedent (itemsets that is, left-hand side of the rule), C is consequence (class
label that is, right-hand side of the rule), support_count(X ∪ C) is the number of
records containing the itemsets X ∪ C, and support_count(X) is the number of
records containing the itemsets A. Based on this equation, CARs can be generated
as follows:

• For each frequent itemsets L and class label C, generate all nonempty subsets
of L;

• For every nonempty subset S of L, output the rule R in the form of S → C,
if support_count(R)

support_count(S) ≥ min_conf , where min_conf is the minimum confidence
threshold.

Frequent patterns and their corresponding CARs characterize interesting rela-
tionships between attribute condition and class labels. Thus, it has been used widely
for effective and accurate classification models. The general idea is that we can search
for strong associations between frequent patterns and class labels, because class as-
sociation rules explore highly confident associations among multiple attributes.

Chapter 3

Associative Classification

Results of this chapter are published in the following articles:

• Mattiev, J., Kavšek, B.: Simple and Accurate Classification Method Based
on Class Association Rules Performs Well on Well-Known Datasets, Machine
Learning, Optimization, and Data Science, LOD 2019. Nicosia G., Pardalos
P., Umeton R., Giuffrida G., Sciacca V. Eds. vol.11943, Springer, Siena, Italy,
(2019), pp. 192–204.

• Mattiev, J., Kavšek, B.: Coverage based classification using association rule
mining. Applied Sciences., Basel, Switzerland, (2020), 485–490.

• Mattiev, J., Kavšek, B.: QA compact and understandable associative classi-
fier based on overall coverage, ANT 2020, The 11th International Conference
on Ambient Systems, Networks and Technologies, Procedia computer science,
Vol.170, Warsaw, Poland, (2020), pp. 1161-1167.

In this chapter, we discuss our proposed associative classification models in pre-
liminary step. We assume that we have been given a normal relational table which
consist of N examples described by L distinct attributes and all examples are classi-
fied intoM known classes. Attribute type can be categorical (nominal) or continuous
(numeric). Our proposed research supports only categorical (nominal) attributes,
therefore, we treat all the attributes uniformly. We map the categorical attribute’s
values to consecutive positive integers. Numeric attributes are discretized into in-
tervals (bins), and the intervals are also mapped to consecutive positive integers.
Since association rule learning does not support numeric attributes, all numeric at-
tributes (in all datasets) were pre-discretized with “class-dependent” discretization
method (that is able to automatically determine the number of bins for each numeric
attribute) of WEKA software.

3.1 Simple Associative Classification Approach (SA)

In the first approach, we propose a simple and accurate classification method based
on class association rules. We extract the reasonable number of strong class asso-
ciation rules for each class value by simple pruning to form a simple classifier. A
reasonable number is selected by analyzing the dataset (it depends on the size of

26 3.1 Simple Associative Classification Approach (SA)

the dataset and class distribution), because there are no any methods to select this
number. SA method differs from other AC algorithms by its simplified rule-selection
phase and class-imbalanced problem is avoided manually in SA, while this step is
missed on most of ACs. This is a preliminary study that aims to show that an
adequate choice of the “right” class association rules by considering the dependent
(class) attribute distribution of values can produce a compact, understandable and
relatively accurate classifier. Our proposed method is outlined in Algorithm 6.

Algorithm 6 Simple and accurate classification algorithm
Input: a set of CARs with their support and confidence constraints, test_example
Output: a predicted_class
1: F = frequentitemsets(D);
2: R = genCARs(F);
3: R = sort(R,minconf,minsup);
4: G = Group(R);
5: for k = 1 : k ≤ numClass; k ++ do
6: X = extract(class[k] , numrules);
7: Y = Y.add(X);
8: end for
9: for each y ∈ Y do

10: if yclassifytest_example then
11: class_count[y.class] + +;;
12: end if
13: end for
14: if max(class_count) == 0 then
15: predicted_class = majority_class(D);
16: else
17: predicted_class = index_of_max(class_count);
18: end if
19: return predicted_class

The First line finds all frequent itemsets in the dataset by APRIORI algorithm
described in 2.1.2, strong class association rules that satisfy the minimum support
and confidence constrains are generated from frequent itemsets in line 2. Once the
class associations rules are generated, then, we sort them by confidence and support
descending order in line 3 as follow: Given two rules R1 and R2, R1 is said to have
higher rank than R2, denoted as R1 > R2,

• If and only if, conf(R1) > conf(R2); or

• If conf(R1) = conf(R2) but, supp(R1) > supp(R2): or

• If conf(R1) = conf(R2) and supp(R1) = supp(R2), R1 has fewer attribute
values in its left-hand side than R2 does;

• if all the parameters of the rules are equal, we choose any of them randomly.

Line 4 illustrates the grouping of class association rules by their class labels (for
example, if the class has three values, then rules are clustered into three groups).

Associative Classification 27

From lines 5-8, we extract the reasonable number of rules per class that are equal to
numrules to form a simple and accurate classifier. These set of rules become our final
classifier. In lines 9-12, classification is performed by extracted CARs in lines 5-8, if
the rule can classify the example correctly, then we increase the corresponding class
count by one and store that rule. By lines 13-16, if none of the rules can classify the
example correctly, then the algorithm returns the majority class value in the training
dataset. Otherwise, it returns the majority class value of correctly classified rules.

Example. Let us assume that we have generated (shown in Table 3.1) the
following class association rules (satisfied the user specified minimum support and
confidence thresholds) described in the previous section.

Table 3.1: List of CARs generated from input dataset.
CARs Support Confidence

{a1=1, a3=2, a4=1, a5=3} → {1} 4 72%
{a1=1, a2=5, a5=2} → {3} 7 100%
{a1=1, a3=5, a4=4} → {3 9 95%
{a2=3, a3=4, a4=4, a5=4} → {1} 3 100%
{a1=2, a2=3, a3=1} → {2} 11 85%
{a3=1, a4=1, a5=2} → {1} 8 90%
{a1=1, a2=5, a3=5, a5=2} → {2} 11 85%
{a1=1, a2=2, a3=1, a4=3, a5=1} → {3} 4 64%
{a2=2, a5=5} → {2} 6 69%

In the first step, we obtain the following result (presented in Table 3.2) by sorting
the CARs in confidence and support descending order:

Table 3.2: Ordered class association rules.
CARs Support Confidence

{a1=1, a2=5, a5=2} → {3} 7 100%
{a2=3, a3=4, a4=4, a5=4} → {1} 3 100%
{a1=1, a3=5, a4=4} → {3 9 95%
{a3=1, a4=1, a5=2} → {1} 8 90%
{a1=2, a2=3, a3=1} → {2} 11 85%
{a1=1, a2=5, a3=5, a5=2} → {2} 11 85%
{a1=1, a3=2, a4=1, a5=3} → {1} 4 72%
{a2=2, a5=5} → {2} 6 69%
{a1=1, a2=2, a3=1, a4=3, a5=1} → {3} 4 64%

In the next step (3.3), CARs are distributed into groups that are equal to the
number of classes. We can achieve this result by sorting the CARs on class label.

Last but not least, we extracted the highly qualitative rules (already sorted by
support and confidence) that are equal to the intended user specified numrules pa-
rameter for our classifier. Let us apply numrules is equal to 2, the final associative
classifier is shown in Table 3.4.

28 3.1 Simple Associative Classification Approach (SA)

Table 3.3: Grouped CARs based on class value.
CARs Support Confidence

{a2=3, a3=4, a4=4, a5=4} → {1} 3 100%
{a3=1, a4=1, a5=2} → {1} 8 90%
{a1=1, a3=2, a4=1, a5=3} → {1} 4 72%
{a1=2, a2=3, a3=1} → {2} 11 85%
{a1=1, a2=5, a3=5, a5=2} → {2} 11 85%
{a2=2, a5=5} → {2} 6 69%
{a1=1, a2=5, a5=2} → {3} 7 100%
{a1=1, a3=5, a4=4} → {3 9 95%
{a1=1, a2=2, a3=1, a4=3, a5=1} → {3} 4 64%

Table 3.4: Final simple associative classifier.
CARs Support Confidence

1. {a2=3, a3=4, a4=4, a5=4} → {1} 3 100%
2. {a3=1, a4=1, a5=2} → {1} 8 90%
.
3. {a1=2, a2=3, a3=1} → {2} 11 85%
4. {a1=1, a2=5, a3=5, a5=2} → {2} 11 85%
.
5. {a1=1, a2=5, a5=2} → {3} 7 100%
6. {a1=1, a3=5, a4=4} → {3} 9 95%

Now, we classify the following example;
{a1 = 1, a2 = 5, a3 = 5, a4 = 4, a5 = 2} → ?

So, this example is classified by rules 4, 5, 6. Class label of the rules that
classified the example correctly is 2, 3, 3. Our classifier predicts that the class of the
new example is 3 (because the third class value has max count).

3.1.1 Experimental Evaluations of SA Approach

We evaluated the accuracy of our model (SA) by performing two experiments
on 12 datasets (only nominal datasets were selected, because SA cannot handle
the numeric datasets) taken from the UCI Machine Learning Database Repository
and compared the results with 8 well-known classification algorithms, namely, Naive
Bayes (NB), Decision Table (DT), C4.5, PART (PT), 1R, Prism (PR), Random
Forest (RF) and JRip (JR). The WEKA software is used to explore all 8 classification
algorithms with default parameters. Two widely-used (standard) percentage split
methods are utilized in the experiment, namely, 75% (learning):25% (testing) and
66% (learning):34% (testing).

Experiment 1 : In the first experiment we set up the same default parameters
for all datasets and all classification algorithms. For all classification algorithms and
our method, we used the percentage split (75% is for learning, 25% is for testing,

Associative Classification 29

preserved order of split) method to split the dataset into learning and test set. All
classification algorithms parameters are default values. For our method, we set up
the following default values for the first experiment: minsup=0.5%, minconf=50%,
numrules=10. The results of the first experiment are shown in Table 3.5.

Table 3.5: The comparison between SA method and some classification algorithms.
Dataset #attr #Cls #recs Accuracy(%)

NB DT C4.5 PT 1R JR PR RF SA
Breast.Can 10 2 286 78 79 69 68 69 78 62 71 81
Balance 5 3 625 89 67 64 76 57 69 59 80 76
Car.Evn 7 4 1728 84 59 66 77 59 62 59 64 59
Vote 17 2 435 91 96 95 94 98 97 95 99 95

Tic-Tac 10 2 958 73 77 86 93 74 99 95 96 86
Contact.Len 5 3 24 83 83 83 83 66 83 83 83 83
Nursery 9 5 12960 92 94 96 99 71 96 96 98 80

Mushroom 23 2 8124 94 100 100 100 98 100 100 100 92
Hayes-root 6 3 160 81 54 75 78 54 84 72 84 72

Lymp 19 4 148 89 64 72 81 72 70 72 75 72
Monks 7 2 554 73 100 100 100 73 100 99 100 90
Spect.H 23 2 267 80 93 93 89 93 93 80 97 89

Average Accuracy (%) 83.9 80.5 83.3 86.5 73.7 85.9 81 87.3 81.3

Table 3.5 shows that in the first experiment, our proposed method achieved better
average accuracy than Decision Table, OneR and Prism algorithms with 81.3%, while
the Random Forest method gained the highest average accuracy..

Experiment 2 : All classification algorithms parameters are also set up as default
values in the second experiment and the percentage split (66% is for learning, 34% is
for testing, preserved order of split) method is used to split the dataset into learning
and test sets; the randomize function is also used on some datasets to apply the
percentage split method with preserved order function. We test the decision tree
and rule-based models on accuracy and obtained results are reported in Table 3.6.

For our method, we set up different default parameters for different datasets
to obtain the intended number of rules per class (at least 5-10 rules for each class
value, this situation mainly happens with imbalanced datasets) and to increase the
accuracy. We also take into consideration the class distribution to keep balance
when we are extracting the rules, for example, if the class has three values that
distributed 60%, 20%, 20% respectively, then our classifier should have 20, 5, 5 rules
approximately for each class and we apply numrules higher to achieve the intended
number of rules for each class. #attr (number of attributes), #cls (number of class
values), #recs (number of records) are the same as Table 3.5. Results are shown in
Table 3.6.

As can be seen from the results, our proposed method outperforms Naive Bayes,
OneR and Prism on accuracy, more specifically, it wins more than 50% of datasets
among these three algorithms and our method has similar results with the Decision
Table method, winning half of the datasets on accuracy. Even though our method
gained lower average accuracy than Naive Bayes and C4.5 algorithms (81.3, 83.9 and
83.3 respectively) in the first experiment, it got higher average accuracy than these
algorithms in the second experiment (82.2, 81.8 and 81.7 respectively). Although

30 3.1 Simple Associative Classification Approach (SA)

Table 3.6: The results of second experiment (with different default parameters).
Dataset Min

Sup
Min
Conf

#Rules
per Class

Accuracy (%)
NB DT C4.5 PT 1R JR PR RF SA

Breast.Can 1% 75% 10 77 74 75 71 71 70 60 69 80
Balance 0.3% 60% 15 90 65 65 76 57 71 60 76 74
Car.Evn 0.5% 60% 72 72 62 65 72 59 61 61 64 63
Vote 1% 80% 15 92 94 95 97 96 96 91 97 94
Tic-Tac 1% 90% 30 70 73 79 95 73 98 92 94 92
Contact.Len 1% 80% 6 75 75 75 75 63 75 75 75 75
Nursery 2% 60% 55 89 93 95 98 71 93 96 98 89
Mushroom 25% 90% 100 94 100 100 100 98 100 100 100 94
Hayes-root 0.5% 50% 20 86 57 71 64 51 91 73 82 71
Lymp 5% 80% 18 81 76 76 74 72 74 68 74 74
Monks 1% 70% 30 74 100 92 100 74 100 94 98 92
Spect.H 3% 60% 25 81 92 92 89 92 92 70 95 88

Average Accuracy (%) 81.8 80.1 81.7 84.3 73.1 85.1 78.3 85.2 82.2

our algorithm loses around 70% of the datasets to C4.5, PART, JRip and Random
Forest algorithms, it achieves the best accuracy on the “Breast.Can” dataset in both
experiments. We obtained slightly higher accuracy in the second experiment com-
pared to the first one with 82.16 and 81.25 respectively, because we modified the
default parameters and minsup, minconf constraints.

We tested our method with different confidence and numrules thresholds on all
datasets and here, the experiments on the “Nursery” dataset are reported to show
how we analyzed and selected the best numrules and confidence thresholds which
achieve the highest accuracy. On some datasets, higher confidence and a higher
number of rules achieve higher accuracy (most probably in larger datasets). On
some datasets (mainly on imbalanced datasets), lower confidence plays an important
role to achieve higher accuracy because we can generate the intended number of class
association rules by applying lower minimum confidence constraint on imbalanced
datasets. Results are shown in Figure 3.1.

Figure 3.1 illustrates that the peaks of accuracy are achieved at numrules>=50
of all curves. The best accuracy (89%) in “Nursery” dataset is gained when numrules
is 55 and confidence is 60%, that is, there is optimal settings for both thresholds.

Accuracy and efficiency are crucial factors in classification tasks in data mining.
Several research studies [88–92] showed that associative classification gets higher
accuracy than some traditional rule-based classification approaches in some cases.
However, it generates a large number of association classification rules. Therefore,
the efficiency of associative classification is not high when the minimum support is
set to be low and the training dataset is large.

Our experiments on 12 datasets from the UCI machine learning repository show
that our method is consistent, accurate, and comparative with other well-known clas-
sification methods. It achieved the fourth highest average accuracy (82.2%) among
all classification methods on the selected UCI datasets. This is just a preliminary
research and a step to our final goal of producing a more comprehensive and inter-
actively explorable classifier using class association rules and clustering.

Associative Classification 31

Figure 3.1: The effect of confidence and numrules thresholds to the accuracy on
“Nursery” dataset.

3.2 J&B Associative Classification Approach

In the second approach, we propose a relatively simple, descriptive and accurate
method to produce a compact and understandable classifier by exhaustively searching
the entire example space. More precisely, we select the strong class association rules
according to their contribution for improving the overall coverage of the learning
set. Our proposed classifier has an advantage that it produces smaller classifier on
bigger datasets compared to traditional classifiers, because our method has a stopping
criterion in the rule-selection process based on the training dataset’s coverage, that
is, our algorithm does not depend on the size of the dataset, while other classical
classification methods are sensitive to the dataset’s size. Once we build the classifier,
we compute the relevance measures such as “Precision”, “Recall” and “F-measure”
and also overall coverage of the classifier to show how overall coverage affects the
accuracy of the classifier, because overall coverage also plays an important role in
forming compact and accurate classifiers that we showed in our previous research
[56]. We then perform the statistical significance testing by using the paired T-
test method [93] between our method and other classification methods. We have
performed experiments on 12 datasets from the UCI Machine Learning Database
Repository and compare the experimental result with 8 well-known classification
algorithms (Decision Table (DT), Simple Associative Classifier (SA), PART (PT),
C4.5, FURIA (FR), Decision Table and Naïve Bayes (DTNB), Ripple Down Rules
(RDR), CBA).

Our goals are stated below:

• Our first goal is to generate the complete set of strong class association rules

32 3.2 J&B Associative Classification Approach

that satisfy the user-specified minimum support and minimum confidence con-
straints.

• The second and main goal is to build a simple and accurate classifier by straight-
forward pruning, more precisely, we select the strong rules that have the higher
contribution to the improvement of overall coverage.

• The third goal is to find the overall coverage, the number of rules, and accuracy
of the intended classifier.

• The fourth goal is to compute relevance measures such as “Precision”, “Recall”
and “F-measure” to compare performance of our approach and other classical
classification approaches.

• Finally, we aim to perform the statistical significance testing between our in-
tended classifier and other well-known classifiers on accuracy and the number
of rules by using the paired T-test method.

We can define the building of an accurate and compact classifier by using AC in
the following steps:

Figure 3.2: Associative classification working procedure

Figure 3.2 shows the general steps used in the AC approach. The first step
is computationally expensive because it is similar to the association rule discovery
which exhaustively searches the entire example space to discover the frequent item-
sets (Step 1). In the second step, we generate strong class association rules from
frequent itemsets that satisfy a user-defined minimum confidence threshold. A sin-
gle rule is represented in AC by implication X C, where C is the consequence (class
label) and X is the antecedent (Itemset) of the rule, that is, the highest frequency
of class associated with its antecedent X in the learning dataset. Once the strong
class association rules are generated, building an accurate and compact classifier is a
straightforward approach, because no support counting or no scanning of the training
data set is required. The most important task is to select the most effective ordered
subset of rules to form an intended classifier. In that step, we select the strong class
association rules that highly contribute to increase the training dataset coverage un-
til we meet the stopping criterion to build an accurate, compact and understandable
classifier. In the last step, we measure the quality of the classifier on some real-life

Associative Classification 33

datasets. Since we use the existing approaches in the first and second steps, the key
innovation steps are the third and last steps in this research work.

Our intended classifier
We propose our classifier by using the class association rules described in Chapter

2. Our proposed method is outlined in Algorithm 7.

Algorithm 7 Building compact and accurate classifier
Input: A training dataset D, minimum support and confidence constraints, in-
tended coverage
Output: A subset of strong class association rules for classificationa subset of strong
class association rules for classification
1: D=taining_dataset;
2: F=frequent_itemsets(D);
3: Rule=genCARs(F);
4: Rule=sort(R,minconf,minsup);
5: Fill(classified_traindata, false):
6: for (i = 1; i ≤ Rule.length; i++) do
7: for (j = 1; j ≤ D.length; j ++) do
8: if classified_traindate[j] =false then
9: if Rule[i].premise classifies D[j].premise then

10: classified_traindate[j] =true;
11: contribution = contribution+1;
12: end if
13: end if
14: end for
15: if contribution > 0 then
16: overall_coverage = overall_coverage+ contribution:
17: Classifier = Classifier.add(rule[i]);
18: end if
19: if (overall_coverage/D, length) ≥ min_coverage then
20: break;
21: end if
22: end for
23: return Classifier

1-2 lines find all frequent itemsets in the training dataset by using the APRIORI
algorithm. The third line generates the strong class association rules that satisfy the
minimum support and confidence constrains from frequent itemsets defined in 2.2.
Class association rules (generated in line 3) are sorted by confidence and support in
descending order in fourth line by the following criteria: Given two rules R1 and R2,
R1 is said having higher rank than R2, denoted as R1 > R2,

• If and only if, conf(R1) > conf(R2); or

• If conf(R1) = conf(R2) but, supp(R1) > supp(R2); or

34 3.2 J&B Associative Classification Approach

• If conf(R1) = conf(R2) and supp(R1) = supp(R2), R1 has fewer attribute
values in its left-hand side than R2 does;

• If all the parameters of the rules are equal, we can choose any of them.

Initial values of the classified_traindata array are filled with false value in line
5, this array is used later to compute the overall coverage of the training data.
Basically, the classifier is built in lines 6-23. We scan the training dataset for each
rule (lines 6-7), if the rule classifies a new unclassified example (that is, the rule’s body
matches the new example’s body), then, we increase the contribution (this is, the
rule’s contribution to increase the overall coverage) in lines 8-12. If the contribution is
higher than 0, that is, the rule classified new example(s), then, we increase the overall
coverage by contribution and we add that rule to our final classifier in lines 15-18.
If the rule can classify training examples, but cannot contribute to the improvement
of the overall coverage, then we do not evaluate that rule as a potential rule for
our classifier. Line 19 stops the procedure if the classifier achieves the intended
overall coverage that is higher than the user-defined intended_coverage threshold.
The classification process of our method is shown in algorithm 8.

Algorithm 8 Classification process of J&B approach
Input: A Classifier and test dataset
Output: Predicted class
1: for each rule y ∈ Classifier do
2: if y classify test_example then
3: class_count[y.class]++;
4: end if
5: end for
6: if max(class_count)==0 then
7: predicted_class = majority_classifier;
8: else predicted_class = max_index(class_count);
9: end if

10: return predicted_class

Algorithm 8 predicts the class label of the test example by using the classifier.
For each rule in the classifier (line 1), if the rule can classify the example correctly,
then we increase the corresponding class count by one and store it (lines 2-4). In lines
6-9, if none of the rules can classify the new example correctly, then the algorithm
returns the majority class value. Otherwise, it returns the majority class value of
correctly classified rules.

Overall coverage and accuracy
After our classifier is built, it is straightforward to compute the overall coverage

and accuracy of the classifier that is defined in Algorithm 9. To compute the overall
coverage, we count the examples that are covered by the classifier and divide them by
the total number of examples in the dataset. For accuracy, we count all the examples
that are classified by classifier and divide it by the total number of examples in the
dataset.

Associative Classification 35

Algorithm 9 Overall coverage and accuracy of the classifier
Input: Dataset and classifier
Output: Overall coverage and accuracy of the classifier
1: n = D.length;
2: C = Classifier;
3: Fill(classified_testdata, false):
4: Fill(classified_testdata_withclass, false):
5: for (i = 1; i ≤ C.length; i++) do
6: for (j = 1; j ≤ n; j ++) do
7: if C[i].premise classifies D[j].premise then
8: if classified_testdate[j] =false then
9: classified_testdata[j] =true;

10: end if
11: end if
12: if C[i] classifies D[j] then
13: if classified_testdata_withclass[j] =false then
14: classified_testdata_withclass[j] =true;
15: end if
16: end if
17: end for
18: end for
19: for (i = 1; i ≤ n; i++) do
20: if classified_testdata[i] then
21: testcoverage++;
22: end if
23: if classified_testdata_withclass[i] then
24: accuracy++;
25: end if
26: end for
27: Overallcoverage_testdata = testcoverage/n;
28: Overallaccuracy_testdata = accuracy/n;
29: return Overallaccuracy_testdata,Overallcoverage_testdata

The first line finds the length of the dataset. We form our classifier from the
training dataset in line 2. In the third and fourth lines, we fill all initial values of clas-
sified_testdata (to compute the overall coverage) and classified_testdata_withclass
(to compute the overall accuracy) arrays as false. Lines 5-18 generally switch the
status of the test example, without class label to compute the overall coverage in
lines 7-11 and with class label to calculate the accuracy in lines 12-16. The number
of correctly classified examples by classifier without class labels and with class labels
is counted in lines 19-26 to calculate the overall coverage of the classifier and overall
accuracy is computed in lines 27-28. The last line returns the obtained results.

Example. Let us assume that we have the following class association rules
(shown in Table 3.7) (satisfied the user specified minimum support and confidence
thresholds) generated from a dataset. We apply here the minimum coverage thresh-

36 3.2 J&B Associative Classification Approach

old as 80%, that is, when our intended classifier covers at least 80% of the training
examples, then we stop.

Table 3.7: Generated CARs from training dataset
CARs Support (%) Confidence (%)

{a1=3, a3=2, a4=1, a5=3} → {1} 4 72
{a1=1, a2=5} → {3} 5 100
{a1=3, a4=1} → {1} 8 100
{a1=1, a3=5, a4=4} → {3} 5 100
{a1=2, a2=2, a3=2} → {2} 5 63
{a2=3, a3=1, a4=4, a5=2} → {1} 3 80
{a1=2, a2=3, a3=4} → {2} 11 85
{a3=1, a5=2} → {1} 8 90
{a1=1, a2=5, a5=5} → {3} 6 65
{a1=1, a3=4, a5=2} → {2} 10 85
{a1=1, a2=2, a3=1, a4=3, a5=1} → {3} 4 64
{a2=2, a5=5} → {2} 6 100

And, learning dataset (Table 3.8) is to build the model

Table 3.8: Training dataset
a1 a2 a3 a4 a5 Class

1 3 4 2 1 3 1
2 5 3 1 4 2 2
3 1 5 2 4 2 1
4 3 2 3 1 2 3
5 ? 2 ? 3 5 1
6 1 3 5 4 3 2
7 2 2 1 2 2 2
8 1 4 4 2 2 1
9 1 ? 2 4 3 2
10 1 5 1 1 5 3
11 1 2 1 1 5 2
12 1 4 4 4 2 1
13 1 3 ? ? ? 2
14 1 4 5 4 4 3
15 3 2 2 1 2 1

In the first step, we sort the class association rules by confidence and support
descending order, the result is shown in Table 3.9.

In the next step, we form our classifier by selecting the strong rules. We select
strong rules which contribute to improve the overall coverage, we continue until
achieving the intended training dataset coverage. Table 3.10 illustrates our final
classifier.

Associative Classification 37

Table 3.9: Sorted CARs based on support and confidence thresholds
CARs Support (%) Confidence (%)

{a1=3, a4=1} → {1} 8 100
{a2=2, a5=5} → {2} 6 100
{a1=1, a2=5} → {3} 5 100
{a1=1, a3=5, a4=4} → {3} 5 100
{a3=1, a5=2} → {1} 8 90
{a1=2, a2=3, a3=4} → {2} 11 85
{a1=1, a3=4, a5=2} → {2} 10 85
{a2=3, a3=1, a4=4, a5=2} → {1} 3 80
{a1=3, a3=2, a4=1, a5=3} → {1} 4 72
{a1=1, a2=5, a5=5} → {3} 6 65
{a1=1, a2=2, a3=1, a4=3, a5=1} → {3} 4 64
{a1=2, a2=2, a3=2} → {2} 5 63

Table 3.10: Final compact and accurate classifier
N Classifier Rules # Classified examples

1. {a1=3, a4=1} → {1} 3
2. {a2=2, a5=5} → {2} 1
3. {a1=1, a2=5} → {3} 2
4. {a1=1, a3=5, a4=4} → {3} 2
5. {a3=1, a5=2} → {1} 2
6. {a1=1, a3=4, a5=2} → {2} 2

Our classifier includes 6 rules. In this example, intended coverage is equal to
80% and 6 classification rules in the classifier cover 80% of the learning set. Since
our training dataset has some examples with missing values, our classifier covered
the whole training dataset (examples without missing values). Other rules also may
cover unclassified examples, but we cannot exceed the user-defined training dataset
coverage threshold. This is our stopping criterion and we cannot include other rules
into our classifier. We also cannot include classification rules which cover only clas-
sified examples (this means it does not contribute to the improvement of overall
coverage). Now, we classify the following unseen example:

{a1=1, a2=5, a3=5, a4=4, a5=5} → ?
So, this example is classified by third and fourth classification rules. The class

value of the rules which correctly classified the new example are 3 and 3. So, our
classifier predicts that the class value of the new example is 3 (because the majority
class value is 3).

Relevance measures of the classifier. Once we have built our model, another
important task is to evaluate the performance of our model, this means how good
is our model and predictions. In this research, we evaluate the performance of our
model (classifier) by relevance measures such as Precision, Recall and F-measure. We
compute all the relevance measures by constructing the confusion matrix for binary

38 3.2 J&B Associative Classification Approach

class classification as shown in Figure 3.3.

Figure 3.3: Confusion matrix for binary class classification

True positive and true negative statements shown in green are correctly predicted.
Our main goal in building a classifier is to minimize the false positive and false
negative remarks shown in red.

True Positives (TP) - are the correctly classified positive values which means
both predicted and actual class values are yes. E.g. if the actual class value indicates
that this person has cancer and the predicted class tells you the same.

True Negatives (TN) - are the correctly classified negative values which means
both predicted and actual class values are yes. E.g. if the actual class says this
passenger does not have cancer and the predicted class tells you the same.

False positives and false negative statements mean that the predicted class value
opposes the actual class value.

False Positives (FP) – are the incorrectly classified positive values which means
the predicted class values are yes and actual class values are no. E.g. if the actual
class says this person is not cancer but the predicted class tells you that this person
is cancer.

False Negatives (FN) – are the incorrectly classified negative values which
means the predicted class values are no and actual class values are yes. E.g. if the
actual class value indicates that this person is cancer and predicted class tells you
that this person is not cancer.

Once we construct the confusion matrix and define all parameters, Precision,
Recall and F-measure relevance measures are computed according to those four pa-
rameters.

Precision (Positive predictive values) is the fraction of correctly classified posi-
tive statements to the total number of predicted positive statements.

Precision =
TP

(TP + FP)
(3.1)

Recall (Sensitivity) is the fraction of correctly classified positive statements to
the total number of statements that actual class values are yes.

Recall =
TP

(TP + FN)
(3.2)

Associative Classification 39

F-measure is the harmonic mean of Precision and Recall.

F −measure = 2× (Precision×Recall)
(Precision+Recall)

(3.3)

For multi-class classification problems, we construct the confusion matrix with
multi-classes (A, B, C, and so on) as shown in Figure 3.4. TPA is the number of
true positive examples in class A, i.e., the number of correctly classified examples
from class A, and DAB is the examples from class A that are incorrectly classified as
class B. Thus, the false negative in the A class (FNA) is the sum of DAB, DAC , etc.
(FNA = DAB + DAC + . . .) which means the sum of all examples belong to class
A that are incorrectly classified as other class B, C, etc. False positive in Class A
(FPA) is the sum of DBA, DCA, etc. (FPA = DBA +DCA + . . .) which means the
sum of all examples belong to another class values B, C, etc. that are incorrectly
classified as class A.

Figure 3.4: Confusion matrix for multi-class classification problems

3.2.1 Experimental Evaluations of J&B Approach

We tested our model on 12 real-life datasets taken from the UCI Machine Learn-
ing Repository. We evaluate our classifier (J&B) by comparing it with 8 well-known
classification methods on the accuracy, relevance measures and the number of clas-
sification rules. All differences were tested for statistical significance by performing
a paired t-test (with a 95% significance threshold).

J&B was run with default parameters minimum support = 1% and minimum
confidence = 60% (on some datasets (marked with bold in Table 3.11), however,
minimum support was lowered to 0.5% or even 0.1% to ensure enough CARs to be
generated for each class value). For all other 8 rule learners we used their WEKA
workbench implementation with default parameters. We applied 90% as a required
coverage (training dataset) threshold that is the stopping point of selecting rules to

40 3.2 J&B Associative Classification Approach

our classifier. The description of the datasets and input parameters is shown in Table
3.11.

Table 3.11: Description of datasets and parameters of AC algorithms

Dataset # of
attributes

of
classes

of
records

Min
support

Min
confidence

Breast.Can 10 2 286 1% 60%
Balance 5 3 625 1% 50%
Car.Evn 7 4 1728 1% 50%
Vote 17 2 435 1% 60%

Tic-Tac-Toe 10 2 958 1% 60%
Nursery 9 5 12960 0.5% 50%

Hayes-root 6 3 160 0.1% 50%
Lymp 19 4 148 1% 60%

Spect.H 23 2 267 0.5% 50%
Adult 15 2 45221 0.5% 60%
Chess 37 2 3196 0.5% 60%

Connect4 43 3 67557 1% 60%

Furthermore, all experimental results were produced by using a 10-fold cross-
validation evaluation protocol.

Experimental results on classification accuracies (average values over the 10-fold
cross-validation with standard deviations) are shown in Table 3.12 (OC: Overall
Coverage).

Our observations (Table 3.12) on selected datasets show that our proposed clas-
sifier achieved better performance than Decision Table, C4.5, DTNB, RDR and SA
(84.9% and 79.3%, 83.6%, 81.5%, 83.6, 82.3%) on average accuracy. Our proposed
method achieved the best accuracy on “Breast.Can”, “Hayes-root” and “Connect4”
datasets.

Standard deviations ranged around 4.0 in all classification methods and were
higher for all methods on “Breast.Can”, “Hayes-root”, “Lymp” and “Connect4” datasets
(above 4), that is, the differences between accuracies fluctuated and were reasonably
high in 10-fold cross-validation experiments. When the overall coverage is above
90%, our proposed method tends to get reasonably high accuracy on all datasets.
On the other hand, overall coverage of J&B was lower than its accuracy on “Vote”
and “Nursery” datasets. This fact is not surprising since uncovered examples get
classified by the majority classifier.

Statistically significant testing (wins/losses counts) on accuracy between J&B and
other classification models is shown in Table 3.13. W: our approach was significantly
better than compared algorithm; L: the selected rule-learning algorithm significantly
outperformed our algorithm; N: no significant difference has been detected in the
comparison.

Table 3.13 illustrates that the performance of the J&B method on accuracy was
better than DTNB, DT, RDR and SA methods. Although J&B obtained similar
results to FR and CBA (there is no statistical difference on 8 datasets out of 12), it

Associative Classification 41

T
ab

le
3.
12
:
T
he

co
m
pa

ri
so
n
be

tw
ee
n
J&

B
m
et
ho

d
an

d
ot
he

r
cl
as
si
fic

at
io
n
al
go

ri
th
m
s
on

ac
cu

ra
cy
.

42 3.2 J&B Associative Classification Approach

Table 3.13: Statistically significant wins/losses counts of J&B method on accuracy
DTNB DT C4.5 PT FR RDR CBA SA

W 6 6 4 2 2 4 2 6
L 3 2 3 4 2 1 2 1
N 3 4 5 6 8 7 8 5

is beaten by the PT algorithm according to win/losses counts. However, on average,
the classification accuracies of J&B are not much different from those of the other 8
rule-learners.

Results show (Table 3.14) that J&B generates a reasonably smaller number of
compact rules which is not sensitive to the size of the training datasets while the
number of rules produced by traditional classification methods such as “DT”, “C4.5”,
“PT”, “DTNB” algorithms depend on the dataset’s size. Even though not achieving
the best classification accuracies on “Nursery” and “Adult” datasets, it produced the
lowest number of rules on those datasets among all classification models.

Table 3.14: The number of classification rules generated by the classifiers
Dataset DTNB DT C4.5 PT FR RDR CBA SA J&B

Breast.Can 122 22 10 20 13 13 63 20 47
Balance 31 35 35 27 44 22 77 45 79
Car.Evn 144 432 123 62 100 119 72 160 41
Vote 270 24 11 8 17 7 22 30 13
Tic-Tac-Toe 258 121 88 37 21 13 23 60 14
Nursery 1240 804 301 172 288 141 141 175 109
Hayes-root 5 8 22 14 11 10 34 45 34
Lymp 129 19 20 10 17 11 23 60 29
Spect.H 145 2 9 13 17 12 4 50 11
Adult 737 1571 279 571 150 175 126 130 97
Chess 507 101 31 29 29 30 12 120 24
Connect4 3826 4952 3973 3973 403 341 349 600 273

Average(%): 618 674 409 411 93 75 79 125 64

Statistically significant counts (wins/losses) of the J&B against to other rule-
based classification models on classification rules is shown in Table 3.15.

Table 3.15: Statistically significant wins/losses counts of J&B method on rules
DTNB DT C4.5 PT FR RDR CBA SA

W 10 7 6 6 8 5 7 10
L 2 5 4 6 4 5 3 2
N 0 0 2 0 0 2 2 0

Associative Classification 43

Table 3.15 proves that J&B produced statistically smaller classifiers than DTNB,
SA methods on 10 datasets and DT, FR, CBAmethods on 7 (or more than 7) datasets
out of 12. Most importantly, J&B generated statistically smaller classifiers than all
other models on bigger datasets, which was our main goal in this research. Exper-
imental evaluations on bigger datasets (over 10000 samples) are shown in Figure
3.5.

Figure 3.5 proves the advantage of the J&B method, it produced the smallest
classifier among all rule-based classification models on selected datasets.

Our experiment on relevance measure (average results) such as “Precision”, “Re-
call” and “F-measure” is highlighted in Figure 3.6. The detailed result for each
dataset can be found in appendix A.

J&B produces classifiers that have on average far fewer rules than those produced
by the “classical” rule-learning methods and a slightly smaller number of rules com-
pared to associative classification models included in the comparison. J&B generated
a reasonably smaller number of rules on bigger datasets compared to all other clas-
sification methods. J&B achieved the best accuracy on “Breast.Can”, “Hayes-root”
and “Connect4” datasets among all methods (80.5%, 79.3%, and 81.2% respectively),
while it got slightly worse results on “Nursery” and “Car.Evn” datasets. On other
datasets, J&B achieved almost similar results with all rule-based classification meth-
ods.

We used the WEKA software to generate class association rules and to explore
other classification algorithms because WEKA is open-source software that includes
all the necessary classification approaches and it is relatively easy to use and program.
Our proposed algorithm has some advantages and limitations:

• In this research work, one of the novel approaches is to apply the intended
coverage constraint which becomes the stopping criterion for selecting rules
for our classifier. We aim here to show that it is possible to achieve good
accuracy without covering the whole dataset (especially when the dataset has
some missing or noisy examples). This criterion becomes an advantage of our
method that produces significantly smaller number of classification rules on
bigger datasets.

• The J&B produced an accurate and compact classifier on datasets which have
a large number of attributes and records (especially with balanced datasets
on class-distribution), while the performance of J&B is slightly worse with
datasets having a small number of attributes and a large number of records
(proved on “Nursery” and “Car.Evn” datasets).

• To get “enough” class association rules (“enough” means at least 5-10 rules for
each class value, this situation mainly happens with imbalanced datasets) for
each class value and achieve a reasonable overall coverage, we need to apply
appropriate minimum support and minimum confidence thresholds for J&B
method.

• We tried to solve the outer-class overlapping problem (that means some samples
from different classes have very similar characteristics) by grouping the CARs

44 3.2 J&B Associative Classification Approach

F
igure

3.5:
C
om

parison
of

rule-based
classification

m
ethods

on
the

average
num

ber
of

rules.

Associative Classification 45

F
ig
ur
e
3.
6:

C
om

pa
ri
so
n
of

th
e
J&

B
cl
as
si
fie

r
on

ac
cu

ra
cy
,p

re
ci
si
on

,r
ec
al
la

nd
f-
m
ea
su
re
.

46 3.2 J&B Associative Classification Approach

according to their class value, and the inter-class overlapping problem (several
rules that belong to the same class may cover the same samples) by selecting
the rules based on dataset coverage.

• Our method may get slightly worse results in terms of classification accuracy
than other traditional classification methods on imbalanced datasets, because
unbalanced class distribution may affect the rule-generation part of our algo-
rithm.

Our experiments on accuracy and number of rules show that our method is com-
pact, accurate and comparable with other 8 well-known classification methods. Al-
though it did not achieve the best average classification accuracy, it produced signif-
icantly smaller number of rules on bigger datasets compared to other classification
algorithms. Our proposed classifier achieved reasonably high average coverage with
91.3%.

Statistical significance testing shows that our method was statistically better
than or equal to other classification methods on some datasets, while it obtained
worse results than those methods on some other datasets. The most important
achievement in this research was that J&B got significantly better results in terms of
an average number of classification rules than all other classification methods while
it had comparable results to those methods on accuracy.

Chapter 4

Distance Metrics

Distance metrics play an important role in clustering purposes, especially when
the hierarchical clustering methods are used. Since we intend to apply hierarchical
agglomerative clustering, we must define a way of measuring the similarity between
CARs, that is, how far two rules are apart. Unfortunately, there are no distance
metrics for class association rules. However, researchers have proposed some indirect
distance metrics [12] for association rules. In this section, we discuss the existing
distance metrics and our proposed (novel) distance metrics. Distance metrics for
class association rules can be divided into two parts: based on indirect measures
(obtained from the data) and direct measures (such as support, confidence, lift and
so on).

4.1 Indirect Distance Metrics

To cluster rules, we first need a way of quantifying how far two rules are apart.
Indirect distance metrics are basically built based on indirect measures that are
computed from the data. Unfortunately, there is no intuitive distance metric for
class association rules. A Euclidean distance could be defined on rule features such
as support, confidence, lift or the bit-vector representation of both sides of the rule
(BS). These direct features are very limited in capturing the interaction of rules on
the data and characterize only a single rule. However, for a deeper analysis of the
relationship of two rules, we have to resort to their common origin: the data. We call
rule distances that are obtained from the data Indirect Distance Metrics. An indirect
distance is defined as a function of the market basket (MB) sets that support the
two considered rules. For the purpose of distance computation, we assign all rules
with the same set of supporting market-baskets the same association rule identifier.
For example, the following six rules are considered equivalent, because all involve
the item-set {A, B, C} and all have the same set of supporting market-baskets.

A⇒ B,C
A,B ⇒ C
A,C ⇒ B
B ⇒ A,C
B,C ⇒ A

48 4.1 Indirect Distance Metrics

C ⇒ A,B

The following four indirect distance metrics for association rules are discussed
in this section, namely, Absolute Market Basket Difference (AMBD), Conditional
Market basket Probability (CMBP), and Conditional Market basket Log-likelihood
(CMBL) and Tightness.

A. Absolute Market basket Difference Distance
In the context of association rule mining [58] introduced their approach to al-

leviate the rule quantity problem through pruning and grouping techniques. Their
pruning technique is based on the creation of so-called rule covers which are related
to the pruning of redundant rules. In short, rules are discarded when more general
rules exist which cover the same database entries. However, after pruning their initial
rule sets, [58] still faced a large number of remaining rules, therefore, they decided
to cluster them. They introduced the simple distance measure between association
rules with the same consequent. Let rule1 : A ⇒ C and rule2 : B ⇒ C be two
association rules. They defined the distance between rules in terms of the number
of market-baskets that they differ in (meaning one rule is supported, but not the
other). Based on the number of non-overlapping market-baskets, a distance metric
dAMBD between rule1 and rule2 can be defined by the following equation:

dAMBD
rule1,rule2 = |m(BSrule1)|+ |m(BSrule2)| − 2 ∗ |m(BSrule1, BSrule2)| (4.1)

Where BS is the both side of the rule, that is, the itemset for the association rule
and m(BS) is the support of that rule.

Equation 4.1 illustrates that rules valid for exactly the same baskets have a
distance of zero. Rules applying to disjoint sets of baskets have a distance equal
to the sum of the numbers of transactions for which each rule is valid. There are
several problems with this measure. One such problem is that it grows as the number
of market-baskets in the database increases. This can be corrected by normalizing
(divide the measure by the size of the database) and it is appropriate for rules only
with the same consequent while this approach is intuitive. However, the measure
is still strongly correlated with support. High support rules will on average tend to
have higher distances to everybody else. This is an undesired property. For example,
two pairs of rules, both pairs consisting of non-overlapping rules, may have different
distances. High support pairs have a higher distance than low support pairs.

B. Conditional Market basket Probability Distance
Based on the previous approach, another indirect distance measure [12] is pro-

posed as an improvement of [58] using the support values of two association rules.
They tried to solve two problems occurring in [58], that it grows as the database
grows and that, due to the focus on support values, rules with a high support will
on average tend to have higher distances to everybody else. To solve the above-
mentioned problems they proposed the new indirect distance metric based on condi-
tional probabilities. Using a probability estimate for distance computation has many
advantages. Probabilities are well understood, are intuitive, and a good measure for
further processing. The distance dCMBP between two rules rule1 and rule2 is the

Distance Metrics 49

(estimated) probability that one rule does not hold for a market basket, given at
least one rule holds for the same basket. This distance is defined in equation 4.2:

dCMBP
rule1,rule2 = 1− |m(BSrule1, BSrule2

|m(BSrule1)|+ |m(BSrule2)| − |m(BSrule1, BSrule2)|
(4.2)

With this metric, rules having no common MBs are at a distance of 1, and rules
valid for an identical set of baskets are at a distance of 0. This metric can also be
interpreted as a normalized AMBD. The CMBP is computed as the AMBD divided
by the number of baskets in the joint set of each rule’s supporting basket set. The
CMBP does not suffer from the support correlation problem of AMBD. Let us call a
distance interesting if it is neither 0 nor 1. Rule pairs with an interesting distance are
called good neighbors. In most real databases, the majority of all rule pairs are not
good neighbors. Manual exploration of a rule’s good neighbors showed that intuitive
relatedness was captured very well by this metric. For example, rules involving
different items but serving equal purposes were found to be close good neighbors.
Super-set relationships of the item-sets associated to the rules often lead to very
small distances.

C. Conditional Market basket Log-likelihood Distance
Due to its probabilistic nature, the range of the CMBP distance space is limited

between 0 and 1. Natural distances usually range from 0 to infinity. Also, most of the
interesting distances are in the open interval between 0.9 and 1 and the majority of
the distances are exactly 1. This property may induce a high embedding dimension-
ality and, hence, cause problems in the clustering stage. A better-behaved distance
dCMBL between two rules rule1 and rule2 is given by the log-likelihood distance,
which is defined by equation 4.3:

dCMBP
rule1,rule2 = − log(

|m(BSrule1, BSrule2
|m(BSrule1)|+ |m(BSrule2)| − |m(BSrule1, BSrule2)|

) (4.3)

Equation 4.3 defines that non-overlapping rules are at a distance of infinity. Rules
with identical support have a distance of 0. This metric monotonically spreads the
CMBP range of 0 to 1 onto 0 to infinity. Thus, at any point the distance-based
ordering or ranking will remain the same as for the CMBP. However, the area of
good neighborhood is ‘magnified’. Thus, interesting patterns in this region may be
easier to identify for the user when visualized. Also, this seems better suitable for
the clustering discussed later.

D. Tightness
For the purpose of clustering association rules [57] presented a new measure

called tightness which quantifies the strength of binding between the items of an
association rule. The idea is that certain items in an application domain might get
bound together because they are so strongly related that they often occur together
in transactions. This tightness of binding is not covered by traditional measures like
support or confidence. Support, on the one hand, does not consider transactions that
contain only some of the bound items and confidence only describes the predictive
ability of a rule.

50 4.2 The New “Direct” Distance Metric

Let {x1x2. . . xm} ⇒ {xm+1 . . . xn} be an association rule and the xi, i = 1 . . . n
its respective items. Sxi denotes the support of item xi. Support values for the most
and least frequent items of an association rule r are given by Srmax = max(Sxi , . . . , Sxn)
and Srmin = min(Sxi , . . . , Sxn). An increase in support of a rule Sr tightens the
binding between its constituent items, therefore an increase in Sr also increases the
tightness measure. On the other hand consider the expression

(
Srmax+Srmin

2

)
− Sr.

It roughly estimates the presence of items of r in other transactions that are not
covered by r. That is if this value increases, items of r occur more often separately
in different transactions and therefore the tightness between those items decreases.
Combining these two effects yields the tightness measure:

Tr =
Sr

(
Srmax+Srmin

2)− Sr
(4.4)

Tr reaches its maximum (i.e.∞) when Srmax = Srmin = Sr . Based on the notion
of tightness the following distance measure has been introduced:

d(ri, rj) =
|Tri − Trj |
Tri + Trj

(4.5)

As [57] have shown in the context of MB analysis, equation (9) is able to discover
similar purchasing behavior in different item domains. That is, it groups association
rules across several item domains.

4.2 The New “Direct” Distance Metric

In 4.1, we discussed the existing indirect distance metrics. In this section, we propose
a new distance metric based on direct measures (such as support, confidence, lift,
rule items and so on).

Our main goal of proposing the direct distance metrics is to cluster class as-
sociation rules and reduce the number of rules. When we apply indirect distance
measures described in previous section to cluster the CARS, we get a larger number
of clusters, that is, our proposed classifier includes a larger number of rules, and this
was a conflict to our main goal. Therefore, we propose a new normalized Item Based
Distance Metric (IBDM) in this research work by considering the differences in rule
items.

Let R = {r1, r2,, rn} be a set of class association rules found from relational
dataset D that are defined by A = {a1, a2,, am} distinct items (attribute’s value)
classified into C = {c1, c2,, cl} known classes. Each rule is denoted as follows:

r = {x1, x2,, xk} → {c}, where, {x1, x2,, xk} ⊆ A and c ∈ C for ∀r ∈ R.
Given two rules rule1, rule2 ∈ R:

rule1 = {y1, y2,, ys} → {c}

rule2 = {z1, z2,, zt} → {c}

where {y1, y2,, ys} ⊆ .A, {z1, z2,, zt} ⊆ .A, and c ∈ C. We compute the
similarity between rule1 and rule2 as follows:

Distance Metrics 51

distanceq (rule1, rule2) =

if yq = zq | yq= ∅ & zq = ∅ , 0;

else if yq= ∅ & zq 6= ∅ | yq 6= ∅ & zq = ∅ , 1;

else 2 (yq 6= zq).
(4.6)

Where q is the index of rule items that cannot exceed border value (computed
below).

Equation 4.6 expresses how close two rules are one from another. If rules have
similar items, then the distance function has a low value. An empty rule item is
considered closer than a different rule item.

border =Max (s, t) ; (4.7)

border is the length of the longest rule, equation 4.7 is used to normalize the
distance metric. The distance between two rules is denoted as follows:

dIBDM
rule1,rule2 =

∑border
i=1 distancei
2× border

(4.8)

Distance (4.8) ranges between 0 and 1. CARs having the same items and the
same size are at a distance of 0, CARs containing the different items are at a distance
of 1.

4.3 The New “Combined” Distance Metric

We analyzed both direct and indirect distance metrics by experiments (we applied
those distance measures for clustering the rules) and found that our final classifier
tends to get a larger number of rules with higher coverage when we utilize the indirect
distance metrics. On the other hand, we got slightly lower coverage with smaller
number of rules (comparing to the experiment where we applied indirect distance
metric) when we applied the direct distance metric. That is why we decided to
propose a new distance metric by combining the direct and indirect distance metrics
for producing the compact classifier while maintaining the overall coverage.

Since conditional market-basket distance is appropriate for the rules having the
same consequent, we decided to propose a new Weighted and Combined Distance
Metric (WCDM) by combining direct (IBDM) and indirect distance (CMBP) mea-
sures. When we applied CMBP distance to our proposed method, we got a larger
number of clusters on some datasets. WCDM combines direct measure (rule items)
and indirect measure (rule coverage). Both distance metrics (IBDM and WCDM)
have their advantage: on some datasets IBDM produces the lower number of rules
with higher accuracy while WCDM achieves better results on some other datasets.
The weighted distance dWCDM between two rules rule1 and rule2 is defined as
follows:

dWCDM
rule1,rule2 = α× dIBDM

rule1,rule2 + (1− α)× dCMBP
rule1,rule2 (4.9)

where, α is a weighted measure. We set α = 0.5 parameter, the final weighted
and combined distance measure is described as follows:

52 4.3 The New “Combined” Distance Metric

dWCDM
rule1,rule2 = 0.5× dIBDM

rule1,rule2 + 0.5× dCMBP
rule1,rule2. (4.10)

Equation 4.10 describes that if both direct and indirect distances are 0 (that
means if two rules have the same items or cover the same examples), then the pro-
posed distance dWCDM gets 0. dWCDM gets 1 when two rules have dissimilar items
or cover the non-overlapping examples.

Chapter 5

Identifying the Clusters of CARs

Once the class associations rules are generated and the distance metrics are
proposed, our next goal is to cluster class association rules discussed widely in
[10, 15, 21, 29] by using some clustering method. Clustering is a machine learning
technique that involves the grouping of data points, that is, grouping of CARs.
Given a set of CARs, we can use a clustering algorithm to classify each CAR into a
specific group. In theory, CARs that are in the same group should have similar prop-
erties and/or features, while CARs in different groups should have highly dissimilar
properties and/or features. Clustering is a method of unsupervised learning and is
a common technique for statistical data analysis used in many fields. Clustering
algorithms are basically split into two parts, partitional and hierarchical. We discuss
both methods in the following subsections.

5.1 Partitional clustering algorithms

Given D, a data set of n objects, and k, the number of clusters to form, a partitioning
algorithm organizes the objects into k partitions (k ≤ n), where each partition
represents a cluster. The clusters are formed to optimize an objective partitioning
criterion, such as a dissimilarity function based on distance, so that the objects
within a cluster are “similar”, whereas the objects of different clusters are “dissimilar”
in terms of the data set attributes.

k-Means [8] and k-Medoids [16] are the most well-known partitional clustering
algorithms. It is taught in a lot of introductory data science and machine learning
classes. K-Means is easy to understand and implement in code. The K-Means
algorithm takes k as an input parameter and partitions the given n objects into k
clusters. So, resulting intra cluster similarity is high but the inter-cluster similarity
is low. Cluster similarity is calculated by the mean value of the objects in a cluster,
that can be viewed as the cluster’s centroid.

The k-means algorithm proceeds as follows: First, it randomly selects k of the
objects, each of which initially represents a cluster mean or center. For each of the
remaining objects, an object is assigned to the cluster to which it is the most similar,
based on the distance between the object and the cluster mean. It then computes
the new mean for each cluster. This process iterates until the criterion function

54 5.1 Partitional clustering algorithms

converges. Typically, the square-error criterion is used, defined as

E =

k∑
i=1

∑
p∈Ci

|p−mi|2 (5.1)

where E is the sum of the square error for all objects in the data set; p is the
point in space representing a given object; and m_i is the mean of cluster C_i (both
p and m_i are multidimensional). In other words, for each object in each cluster,
the distance from the object to its cluster center is squared, and the distances are
summed. This criterion tries to make the resulting k clusters as compact and as
separate as possible. The k-means procedure is summarized in algorithm 10.

Algorithm 10 The k-means algorithm for partitioning, where each cluster’s center
is represented by the mean value of the objects in the cluster.
Input: k: the number of clusters, D: a data set containing n objects
Output: A set of k clusters
1: Arbitrarily choose k objects from D as the initial cluster centers;
2: repeat
3: (re)assign each object to the cluster to which the object is the most similar,

based on the mean value of the objects in the cluster;
4: update the cluster means, i.e., calculate the mean value of the objects for

each cluster;
5: until no change.

Example of clustering by k-means partitioning: Lest us suppose that there
is a set of objects located in space as depicted in the rectangle shown in Figure 5.1
(a). Let k = 3; that is, the user would like the objects to be partitioned into three
clusters.

According to the Algorithm 10, we arbitrarily choose three objects as the three
initial cluster centers, where cluster centers are marked by a “+”. Each object is
distributed to a cluster based on the cluster center to which it is the nearest. Such
a distribution forms silhouettes encircled by dotted curves, as shown in Figure 5.1
(a). Next, the cluster centers are updated. That is, the mean value of each cluster
is recalculated based on the current objects in the cluster.Using the new cluster
centers, the objects are redistributed to the clusters based on which cluster center is
the nearest. Such a redistribution forms new silhouettes encircled by dashed curves,
as shown in Figure 5.1 (b). This process iterates, leading to Figure 5.1 (c). The
process of iteratively re-assigning objects to clusters to improve the partitioning is
referred to as iterative relocation. Eventually, no redistribution of the objects in any
cluster occurs, and so the process terminates. The resulting clusters are returned by
the clustering process.

The algorithm attempts to determine k partitions that minimize the square-error
function. It works well when the clusters are compact clouds that are rather well
separated from one another.

The K-Means algorithm is sensitive to outliers because an object with large value
may substantially deform the distribution of data. We can treat this problem with K-

Identifying the Clusters of CARs 55

Figure 5.1: Clustering of a set of objects based on the k-means method. (The mean
of each cluster is marked by a “+”.)

medoids algorithm. Instead of taking mean value of the objects as a reference point,
we can pick actual objects to represent the clusters by using one representative object
per cluster. Each remaining object is clustered with the representative object. The
partitioning method is then performed based on the principle of minimizing the sum
of the dissimilarities between each object and its corresponding reference point. That
is, an absolute-error criterion is used, defined as

E =

k∑
j=1

∑
p∈Cj

|p− oj | (5.2)

where E is the sum of the absolute error for all objects in the data set; p is
the point in space representing a given object in cluster C_j; and o_j is the rep-
resentative object of C_j. In general, the algorithm iterates until, eventually, each
representative object is actually the medoid, or most centrally located object, of its
cluster. This is the basis of the k-medoids method for grouping n objects into k
clusters.

K-Means has some advantages in that it is pretty fast, easy to compute the
distances between points and group centers, and utilizes very few computations. On
the other hand, K-Means has a couple of disadvantages: firstly, you have to select how
many groups/classes there are in advance. This is not always trivial and ideal with
a clustering algorithm. Secondly, K-means starts with a random choice of cluster
centers and therefore it may yield different clustering results on different runs of the
algorithm, thus, the results may not be repeatable and lack consistency.

5.2 Hierarchical clustering algorithms

Hierarchical clustering algorithms [27] are split into 2 parts: top-down (divisive hier-
archical clustering) and bottom-up (hierarchical agglomerative clustering). Bottom-
up algorithms initially assume each example as a single cluster and then merge the
two closest clusters in every iteration until all clusters have been merged into a unique
cluster that contains all examples. The resulting hierarchy of clusters is represented

56 5.2 Hierarchical clustering algorithms

as a tree (or dendrogram). The root of the tree is the unique cluster that gathers all
the examples; the leaves are considered as clusters with only one sample. The top-
down approach is the opposite of the hierarchical agglomerative clustering method.
It considers all examples in a single cluster, and then it splits the clusters into smaller
parts until each example forms a cluster or until it satisfies the stopping condition.

Example of agglomerative divisive hierarchical clustering. Figure 7.6
shows the application of agglomerative neSting, an agglomerative hierarchical clus-
tering method, and divisive analysis, a divisive hierarchical clustering method, to a
data set of five objects, {a, b, c, d, e}. Initially, each object is placed into unique
cluster in agglomerative nesting method. The clusters are then merged step-by-step
according to some criterion. For example, clusters C_1 and C_2 may be merged
if an object in C_1 and an object in C_2 form the minimum Euclidean distance
between any two objects from different clusters. This is a single-linkage approach in
that each cluster is represented by all of the objects in the cluster, and the similarity
between two clusters is measured by the similarity of the closest pair of data points
belonging to different clusters. The cluster merging process repeats until all of the
objects are eventually merged into one cluster. In divisive analysis, all of the objects
are used to form one initial cluster. The cluster is split according to some principle,
such as the maximum Euclidean distance between the closest neighboring objects in
the cluster. The cluster splitting process repeats until, eventually, each new cluster
contains only a single object.

Figure 5.2: Agglomerative and divisive hierarchical clustering on data objects {a, b,
c, d, e

}

In either agglomerative or divisive hierarchical clustering, the user can specify
the desired number of clusters as a termination condition.

A tree structure called a dendrogram is commonly used to represent the process
of hierarchical clustering. It shows how objects are grouped together step by step.
Figure 5.3 shows a dendrogram for the five objects presented in Figure 5.2, where
l = 0 shows the five objects as singleton clusters at level 0. At l = 1, objects a
and b are grouped together to form the first cluster, and they stay together at all

Identifying the Clusters of CARs 57

subsequent levels. We can also use a vertical axis to show the similarity scale between
clusters. For example, when the similarity of two groups of objects, {a, b} and {c,
d, e}, is roughly 0.16, they are merged together to form a single cluster.

Figure 5.3: Dendrogram representation for hierarchical clustering of data objects {a,
b, c, d, e

}

Hierarchical clustering does not require us to specify the number of clusters and
we can even select which number of clusters looks best since we are building a tree.
Additionally, the algorithm is not sensitive to the choice of distance metric; all of
them tend to work equally well whereas with other clustering algorithms, the choice
of distance metric is critical.

Since hierarchical clustering algorithms are more consistent than partitional al-
gorithms, we apply the complete linkage method of hierarchical agglomerative clus-
tering in our research work. In the complete linkage (farthest neighbor) method, the
similarity of two clusters is the similarity of their most dissimilar examples, therefore,
the distance between the farthest groups is taken as an intra-cluster distance. We
assume that we have given N ×N distance matrix d, where N is the total number of
rules (that is, total number of clusters). The clusters are numbered 0, 1,.., (N -1) and
m is the sequence number of clusters. L[k] is the level of the k-th clustering and the
distance between two clusters cl1 and cl2 is defined as d[cl1,cl2]. Complete linkage
of the hierarchical agglomerative clustering algorithm is outlined in Algorithm 11.

We need to apply the hierarchical clustering algorithm twice: first, we apply the
AHCCLH algorithm to find the cluster heights that we will use later to identify the
optimal number of clusters. In this case, the number of cluster S=1 and distance
matrix are defined as input parameters. Because if S=1, then, AHCCLH iterates
N-1 times to find the heights of all cluster. Second, AHCCLC is utilized to identify
the cluster of class association rules. In AHCCLC, we provide the number of cluster
S (found by using the cluster heights) and distance matrix to identify the clusters of
CARs.

When we cluster the rules, we need to find the number of clusters. We get the
optimal number of clusters by cutting the dendrogram at the point that represents

58 5.2 Hierarchical clustering algorithms

Algorithm 11 Agglomerative Hierarchical Clustering with Complete Linkage
(AHCCLH: Heights || AHCCLC: Clusters)
Input: a distance matrix d and number of clusters S
Output: Cluster heights (AHCCLH), Cluster of CARs (AHCCLC)
1: Initialization: Each rule is a unique cluster C at level 0 (L[0]=0), sequence

number m=0 and the optimal number of cluster S is identified, so, to get the
intended number of clusters (S), the algorithm should iterate K times K=N –S ;

2: Compute: Find the most similar pair of clusters, cl1 and cl2 and merge them
into a single cluster C to form the next clustering sequence m. Increase the
sequence number by one: m=m+1 and set the new level L[m]=d[cl1,cl2] ;

3: Update: Update the distance matrix D, by removing the rows and columns
corresponding to cl1 and cl2 and adding a new row and column corresponding
to the new cluster. The distance between the new cluster (cl1,cl2) and old cluster
k is calculated as d[(cl1, cl2),k]=max{d[k,cl1], d[k,cl2]};

4: Stopping condition: if m=K then return L (AHCCLH) || C (AHCCLC) and
stop, otherwise go to step 2.:

the maximum distance between two consecutive cluster merges. The algorithm that
identifies the optimal number of clusters is presented in Algorithm 12.

Algorithm 12 Computing the optimal number of clusters
Input: an array of cluster heights
Output: Optimal number of cluster
1: Max_height_difference = cluster_height[1]− cluster_height[0];
2: Opt_number_of_cluster = 1;
3: N = cluster_height.length;
4: for (k = 2; k ≤ N ; k ++) do
5: if cluster_height[k] − cluster_height[k − 1]) > Max_height_difference

then
6: Max_height_difference = cluster_height[k]− cluster_height[k − 1];
7: Opt_number_of_cluster = N − k;
8: end if
9: end for

10: return Opt_number_of_cluster

The input to Algorithm 12 is a set of cluster distances that are calculated dur-
ing the building of the dendrogram (so-called cluster “heights”). The output is
the optimal number of clusters. In lines 1-3 the total number of clusters gener-
ated by hierarchical clustering is stored. Lines 4-7 outline the main part of the
algorithm, Opt_number_of_clusters gets to the point where the difference be-
tween two consecutive cluster heights will be maximum. Since we start from 0,
Opt_number_of_clusters is equal to (N-k). The last line returns the obtained re-
sult.

Chapter 6

Identifying the Cluster
Representative Class Association
Rule

Once we have found all clusters, our final goal is to extract the representative
class association rule (CAR) for each cluster to form our meaningful, compact and
descriptive associative classifier. In this research work, we propose two methods of
extracting the representative CAR: based on cluster center and based on dataset
coverage.

6.1 Representative CAR based on cluster center (RCC)

In this method, we choose the CAR which is closer to the center of the cluster as
a representative, that is, the representative CAR must have the minimum average
distance to all other rules. Algorithm 13 defines the procedure.

The first line gets the number of CARs. We use the distance array “Dist” (line
2) to compute the distance from the selected CAR to all other CARs (we use the
direct distance metric (IBDM) or combined distance metric (WCDM) described in
Section 4). The initial value of min_avg_distance in line 3 is the maximum value
of the integer and it is used to store the minimum average distance in line 10. Lines
4-9 find the index of the representative CAR that has the minimum average distance
to all other rules and the last line returns the representative CAR.

6.2 Representative CAR based on dataset coverage
(RDC)

We decided to propose this method to improve the overall coverage and classification
accuracy, while the first method (representative CAR based on cluster center) (RCC)
struggles to achieve reasonable coverage on some certain datasets. Since we are
clustering similar rules having the same class value, it is unnecessary to think about
the outer class overlapping problem (that means some samples from different classes

60 6.3 Final associative classifier

Algorithm 13 A Representative CAR based on Cluster Center (RCC)
Input: a set of class association rules in CARs array
Output: A representative class association rule
1: N=CARs.length;
2: Fill(Dist, 0);
3: min_avg_distance=Integer.Max.value;
4: for (i = 0; i ≤ N ; i++) do
5: for (j = 0; j ≤ N ; j ++) do
6: Dist[i] = Dist[i]+IBDM(CARs[i], CARs[j])|WCDM(CARs[i], CARs[j]);
7: end for
8: avg_distance = Dist[i]/N ;
9: if avg_distance < min_avg_distance then

10: min_avg_distance = avg_distance;
11: representative_CAR_index = i;
12: end if
13: end for
14: return CARs[representative_CAR_index]

have very similar characteristics), but we should avoid the inter class overlapping
problem (several rules that belong to same class may cover the same samples). We
bypass this problem by selecting the representative CAR based on dataset coverage.
First, we find a rule that has maximum dataset coverage, then we check if the first
CAR classifies at least one new example, then we get it as a representative CAR,
otherwise we continue. Once we find the representative CAR, we remove all the
examples covered by it. The procedure is outlined in Algorithm 14.

In this approach (RDC), we first sort (line 2) the class association rules in coverage
descending order, and we start checking rules from first to last (line 4). If a rule
classifies at least one new example (line 13), we return that rule as a representative
(line 13-18), otherwise we continue. If any rule cannot be a representative, then,
the algorithm returns the first rule (line 3) which has the highest coverage as a
representative.

6.3 Final associative classifier

After extracting the representative class association rules, we produce our mean-
ingful, compact and descriptive model (classifier). Since we present two different
distance metrics (direct and combined) and two methods of extracting the represen-
tative CAR, we produce three distinct models (associative classifiers) in our research
work. Our proposed approach is represented in Algorithm 15.

Lines 1-2 generate the strong CARs that satisfy the user-specified minimum sup-
port and minimum confidence constraints from training dataset D by using the
APRIORI algorithm. The third line sorts the CARs in confidence and supports
descending order according to the following criteria:

R1 and R2 are two CARs, R1 is said to have a higher rank than R2, denoted as

Identifying the Cluster Representative Class Association Rule 61

Algorithm 14 A Representative CAR based on Dataset Coverage (RDC)
Input: a set of class association rules in CARs array, a training dataset D and
classified_traindata array
Output: A representative class association rule
1: N=CARs.length;
2: CARs= sort(CARs, coverage);
3: Representative_CAR = CARs[1] :
4: for (i = 1; i ≤ N ; i++) do
5: for (j = 0; j ≤ D.length; j ++) do
6: if classified_traindata[j] = false then
7: if CARs[i].premise classifies D[j].premise then
8: classified_traindata[j] = true;
9: contribution = contribution+ 1;

10: end if
11: end if
12: end for
13: if contribution > 0 then
14: Representative_CAR = CARs[i];
15: break;
16: end if
17: end for
18: return Representative_CAR

Algorithm 15 Learning the proposed associative classifier
Input: A training dataset D, minimum support and minimum confidence
Output: Associative classifier
1: F=frequent_itemsets(D, minsup);
2: R=genCARs(F, minconf);
3: R=sort(R, minsup, minconf);
4: G=Group(R)
5: for (i = 0; i ≤ number_of_class; i++) do
6: Distance=IBDM(G[i]) | WCDM (G [i]);
7: Cluster_heights= AHCCLH (Distance, 1)
8: N=optimal_number_of cluster(Cluster_heights);
9: Cluster= AHCCLC (N, Distance);

10: Fill(classified_traindate, false);
11: for (j = 0; j ≤ N ; j ++) do
12: Y= RDC (Cluster [i], D,classified_traindata) | RCC (Cluster [i]);
13: Associative_Classifier.add(Y);
14: end for
15: end for
16: return Associative_Classifier

R1 > R2,

62 6.3 Final associative classifier

• If and only if, conf(R1) > conf(R2); or

• If conf(R1) = conf(R2) but, supp(R1) > supp(R2); or

• If conf(R1) = conf(R2) and supp(R1) = supp(R2), R1 has fewer attribute
values in its left-hand side than R2 does;

• If all the parameters of the rules are equal, we can choose any of them.

CARs are grouped according to their class label in line 4. For each group of CARs
(lines 5-15), the distance matrix is constructed by using one of the distance measures
defined in chapter 4 (line 6), the hierarchical clustering algorithm complete linkage
method (AHCCLH) computes the cluster heights (distances between clusters) by
using the distance matrix in line 7 and these heights (distances) are used to find
the optimal number of clusters (line 8). Then, we apply the hierarchical clustering
algorithm (AHCCLC) again to identify the cluster of CARs (a Cluster array stores
the list of clustered CARs). Since we are clustering the class association rules class by
class, we need “classified_traindata” array to store the information about classified
examples, that is, we update this array for the same class only. When we start the
clustering of CARs for a new class, we need to initialize the “classified_traindata”
array. In lines 11-14, the representative CAR is extracted by using one of the methods
described in section 6 for each cluster and added to our final classifier. The last line
returns the descriptive, compact and meaningful classifier. The classification process
of proposed methods is shown in Algorithm 16.

Algorithm 16 Classification process of proposed associative classifiers
Input: A Classifier and A test_example
Output: Predicted class
1: Fill(class_count, 0);
2: for each rule y ∈ Classifier do
3: if y classify test_example then
4: class_count[y.class]++;
5: end if
6: end for
7: if max(class_count)==0 then
8: predicted_class = majority_classifier;
9: else predicted_class = max_index(class_count);

10: end if
11: return predicted_class

Algorithm 16 predicts the class label of the test example by using the classifier.
The first line files the class_count array with 0 (the size of class_count array equals
to the number of classes). For each rule in the classifier (line 1), if the rule can
classify the example correctly, then we increase the corresponding class count by one
and store it (lines 2-4). In lines 6-9, if none of the rules can classify the new example
correctly, then the algorithm returns the majority class value. Otherwise, it returns
the majority class value of correctly classified rules.

Identifying the Cluster Representative Class Association Rule 63

We built the following different classifiers: the first method (DC) is built based
on Direct distance measure (IBDM) and the method for extracting a representative
CAR is based on cluster Center (RCC), the second method (DDC) is formed based
on Direct distance measure (IBDM) and the method for extracting a representative
CAR is based on Dataset Coverage (RDC), and the third method (CDC) is formed
based on Combined distance measure (WCDM) and the method for extracting a
representative CAR is based on Dataset Coverage (RDC).

Chapter 7

Experimental Evaluations and
Discussion

The achievement of the scientific objectives was validated by experimental eval-
uation. We tested our models on 17 real-life datasets taken from the UCI Machine
Learning Database Repository. We evaluated our classifiers (DC, DDC and CDC) by
comparing them with eight well-known rule-based classification algorithms (DTNB,
DT, C4.5, PT, FR, RDR and CBA) on classification accuracy and the number of
rules. All differences were tested for statistical significance by performing a paired
t-test (with a 95% significance threshold).

Associative classifiers were run with default parameters minimum support = 1%
and minimum confidence = 60% (on some datasets (marked with bold in the Table
7.1), however, minimum support was lowered to 0.5% or even 0.1% and confidence
was lowered to 50% to ensure “enough” CARs (“enough” means at least 5-10 rules
for each class value- this situation mainly happens with imbalanced datasets)). For
all other classification models we used their WEKA workbench implementation with
default parameters. The description of the datasets and input parameters are shown
in Table 7.1.

All experimental results were produced by using a 10-fold cross-validation evalu-
ation protocol. Experimental results on classification accuracies (average values over
the 10-fold cross-validation with standard deviations) are shown in Table 7.2.

We can observe from Table 7.2 that our proposed associative classifiers achieved
comparable accuracies (DC: 82.5%, DDC:83.3% and CDC:83.8% respectively) with
other classification models on selected datasets. Interestingly, CDC significantly
outperforms all rule-learners on the “Breast.Can” (except DDC), “Hayes-root” and
“Lymp” datasets, while on the “Car.Evn”, “Nursery” and “Monks” datasets, our pro-
posed methods obtained worse accuracy than all other algorithms. Standard de-
viations of accuracy results decreases with an increasing number of examples in a
dataset, which is expected behavior. Standard deviation of all classification methods
was a bit higher (above 4) on “Breast.Can”, “Hayes-root”, “Lymp” and “Connect4”
datasets, that is, differences of accuracies over 10-fold cross-validation experiment
fluctuated.

Statistically significant testing (wins/losses counts) on accuracy between DC and

Experimental Evaluations and Discussion 65

Table 7.1: Default parameters of associative classifiers and datasets description.

Dataset # of
attributes

of
classes

of
records

Min
support

Min
confidence

of analyzed
rules

Breast.Can 10 2 286 1% 60% 1000
Balance 5 3 625 1% 50% 218
Car.Evn 7 4 1728 1% 50% 1000
Vote 17 2 435 1% 60% 500

Tic-Tac-Toe 10 2 958 1% 60% 3000
Nursery 9 5 12960 0.5% 50% 3000
Mushroom 23 2 8124 1% 60% 3000
Hayes-root 6 3 160 0.1% 50% 1000

Lymp 19 4 148 1% 60% 1500
Monks 7 2 432 1% 50% 800
Spect.H 23 2 267 0.5% 50% 3000
Abalone 9 3 4177 1% 60% 1000
Adult 15 2 45221 0.5% 60% 5000

Insurance 7 3 1338 1% 50% 722
Laptop 11 3 1303 1% 50% 1480
Chess 37 2 3196 0.5% 60% 3000
Connec4 43 3 67557 1% 60% 5000

other classification models is shown in Table 7.3. W: our approach was significantly
better than the compared algorithm; L: selected rule-learning algorithm significantly
outperformed our algorithm; N: no significant difference has been detected in the
comparison.

Table 7.3 illustrates that the performance of the DC method on accuracy was
better than DTNB and DT methods. Although DC obtained similar result to CBA
and DDC (there is no statistical difference on 8 and 13 datasets out of 17), it is
beaten by all other methods according to win/losses counts. However, on average,
the classification accuracy of DC are not much different from those of the other 8
rule-learners.

The same experiment on DDC is shown in Table 7.4. Since DC is compared with
DDC in Table 7.3, it is not included in Table 7.4.

It can be seen from the table that DDC’s performance on accuracy is better than
DC. It outperformed the DTNB, DT and DC methods (by win/losses counts). Even
though DDC got statistically worse results in terms of win/losses counts than RDR,
PT and FR, there is no statistical difference on 8, 9 and 11 datasets out of 17 between
them. DDC obtained almost the same result with C4.5 and CBA algorithms (4/4/9).

CDC achieved (shown in Table 7.5) statistically comparable results in terms of
average classification accuracy with “classical” and “associative” classification ap-
proaches. CDC statistically lost to C4.5 and FR methods on 7 datasets out of 17,
while it outperformed the rest of the algorithms except PT.

The comparison between our methods and other classification methods on the
number of classification rules is shown in Table 7.6. Since DC and DDC differ in the
representative CAR selection process, the number of classification rules generated
by both methods stays the same. Thus, DC and DDC methods are merged in Table

66

T
able

7.2:
O
verallaccuracies

w
ith

standard
deviations.

Experimental Evaluations and Discussion 67

Table 7.3: Statistically significant wins/losses counts of DC method on accuracy
DTNB DT C4.5 PT FR RDR CBA DDC CDC

W 7 7 4 2 3 3 4 1 1
L 6 5 6 8 6 6 5 3 4
N 5 5 7 7 8 8 8 13 12

Table 7.4: Statistically significant wins/losses counts of DDC method on accuracy
DTNB DT C4.5 PT FR RDR CBA CDC

W 6 6 4 2 2 3 4 2
L 4 4 4 6 4 6 4 3
N 7 7 9 9 11 8 9 12

Table 7.5: Statistically significant wins/losses counts of CDC method on accuracy
DTNB DT C4.5 PT FR RDR CBA

W 8 7 6 4 5 6 6
L 6 5 7 6 7 4 6
N 3 5 4 7 5 7 5

7.6.

Table 7.6: number of CARs
Dataset DTNB DT C4.5 PT FR RDR CBA DC&DDC CDC

Breast.Can 122 22 10 20 13 13 63 8 9
Balance 31 35 35 27 44 22 77 34 79
Car.Evn 144 432 123 62 100 119 72 32 32
Vote 270 24 11 8 17 7 22 6 6
Tic-Tac-Toe 258 121 88 37 21 13 23 24 17
Nursery 1240 804 301 172 288 141 141 79 80
Hayes-root 5 8 22 14 11 10 34 19 80
Lymp 129 19 20 10 17 11 23 5 7
Spect.H 145 2 9 13 17 12 4 8 5
Abalone 165 60 49 71 20 57 131 14 14
Adult 737 1571 279 571 150 175 126 13 88
Insurance 23 48 21 49 22 22 84 18 20
Monks 12 36 14 8 12 10 40 14 14
Laptop 101 101 72 60 28 32 41 19 18
Mushroom 50 50 26 12 11 8 8 7 11
Chess 507 101 31 23 29 30 12 12 17
Connect4 3826 4952 3973 3973 403 341 349 59 102

Average(%): 457 494 300 302 71 61 74 22 36

Experimental evaluations on the number of classification rules show that DC and

68

DDC significantly outperform all other rule-learners on 8 datasets out of 17 (except
CDC) and it produces classifiers that have on average far fewer rules than those
produced by the other 8 rule-learning methods included in the comparison. More
precisely, our proposed methods achieved almost two times better result than FR,
RDR and CBA on average number of rules, while this ratio was even bigger (more
than 10 times) with DTNB, DT, C4.5 and PT algorithms,

CDC also achieved statistically best results on 8 datasets out of 17 on rules,
although it got slightly worse result than DC&DDC in terms of average classification
rules.

Our proposed methods generated a reasonably smaller number of rules on bigger
datasets compared to other classification methods. Even though our approaches
could not achieve the best classification accuracies on “Car.Evn”, “Nursery” and
“Laptop” datasets, it produced the statistically smallest classifier on those datasets.

CDC got an unexpected larger number of rules (this is mainly imbalanced and
discretized datasets) on “Hayes-root” and “Balance” datasets.

Detailed information on statistical significant win/losses counts of our methods
against other classification models on the number of rules is shown in Table 7.7 and
Table 7.8.

Table 7.7: Statistically significant wins/losses counts of DC and DDC method on
rules

DTNB DT C4.5 PT FR RDR CBA CDC

W 14 14 13 13 14 10 13 3
L 2 2 0 3 2 4 1 2
N 1 1 4 1 1 3 3 9

Table 7.7 shows that C4.5 method could not produce statistically smaller classi-
fiers than DC and DDC methods on any datasets. Most importantly, DC and DDC
generated statistically smaller classifiers than all other models on bigger datasets
(over 1000 examples), which was our main goal in this research. DTNB, DT, FR,
CBA and CDC algorithms produced statistically larger classifiers only on 2 (or less)
datasets.

Table 7.8: Statistically significant wins/losses counts of CDC method on rules
DTNB DT C4.5 PT FR RDR CBA

W 14 14 12 12 12 10 12
L 2 3 2 3 2 5 3
N 1 0 3 2 3 2 2

Unexpectedly, CDC statistically got the worse result among all methods on “Bal-
ance” (except CBA) and “Hayes-root” datasets in terms of classification rules. How-
ever, the CDC method could achieve statistically better results in terms of rules than
all classification models (except DC&DDC) on more than (or equal to) 10 datasets.

Experimental Evaluations and Discussion 69

Table 7.9: Overall Coverage
Dataset DC DDC CDC

Breast.Can 65.2 72.0 72.7
Balance 74.5 82.8 86.3
Car.Evn 88.7 100.0 100.0
Vote 88.4 86.9 85.1
Tic-Tac-Toe 89.0 92.0 86.0
Nursery 90.4 98.1 100.0
Hayes-root 100.0 100.0 100.0
Lymp 81.0 90.0 88.4
Spect.H 80.9 80.7 79.4
Abalone 74.1 87.6 78.9
Adult 100.0 100.0 100.0
Insurance 81.5 89.5 100.0
Monks 82.4 86.7 90.6
Laptop 86.1 99.0 100.0
Mushroom 96.1 96.2 98.1
Chess 92.5 96.0 96.8
Connect4 91.4 98.4 98.7

Average(%): 86.0 91.5 91.8

Our main goal in proposing the DDC and CDC methods is to improve the overall
coverage (shown in Table 7.9) and accuracy achieved by the DC method. Experi-
mental results show that we could achieve our goal: DDC and CDC gained better
average classification accuracy with 83.3% and 83.8% (this is still not the best result
in terms of average accuracy, but 0.8% and 1.3% higher than the average accuracy of
the DC method). Average coverage of DDC (91.5%) and CDC (91.8%) increased to
around 5.5% compared to DC (86.0%). More precisely, the overall coverage of DDC
and CDC was improved on 12 datasets and they achieved better classification accu-
racies on 9 datasets out of 17 compared to DC. However, DC produced a comparable
associative classifier with all other classical and associative classifiers.

On the other hand, accuracy of DC, DDC and CDC was higher than their cover-
age on “Breast.Can”, “Vote” and “Monks” datasets. This fact is not surprising, since
uncovered examples get classified by the majority class value. When the overall cov-
erage is above 85%, the proposed methods tend to get a reasonably high accuracy
on all datasets. Empirical evaluation of our proposed classifiers is shown in Figure
7.1.

Figure 7.1 illustrates that all three methods obtained similar average accuracy
(DC:82.5%; DDC: 83.3%; CDC: 83.8%) and average coverage (DC:86.0%; DDC:
91.5%; CDC: 91.8%). But DC&DDC obtained slightly better results than CDC
in terms of classification rules with 22 and 36 respectively. Although CDC gained
better coverage than DC, it got worse results in terms of classification rules than
that method.

The most important advantage of our proposed methods was to generate a smaller

70

F
igure

7.1:
C
om

parison
of

perform
ance

of
our

proposed
associative

classification
m
odels

Experimental Evaluations and Discussion 71

classifier on bigger datasets, therefore, we analyze the results obtained by DC, DDC
and CDC methods on some bigger datasets which have over 4000 examples. Com-
parison on accuracy is illustrated in Figure 7.2.

We can observe from Figure 7.2 that all three methods obtained comparable re-
sults on all selected datasets except the “Nursery” dataset (the CDC method achieved
fairly higher accuracy than DC and DDC). Figure 7.3 presents the comparison be-
tween proposed associative classifiers on the number of classification rules.

Since the size of DC and DDC methods is the same, we merged them in the
resulting figure. We can see from the result that the CDC method produced larger
classifier than DC and DDC on bigger datasets. More precisely, when the size of the
dataset increases, CDC tends to generate larger classifiers than DC and DDC.

7.1 Discussion of Results

In this section, we discuss the pros and cons of the proposed associative classifiers
within the scientific research.

We used the WEKA software to generate the class association rules for all as-
sociative classifiers and to explore other classification algorithms because WEKA is
open-source software that includes all necessary classification approaches and it is
relatively easy to use and program. Our proposed algorithms namely, SA (Simple
Associative classifier), J&B (coverage based associative classifier), DC, DDC and
CDC has some limitations:

• To get “enough” class association rules (“enough” means at least 5-10 rules for
each class value, this situation mainly happens with imbalanced datasets) for
each class value and achieve a reasonable overall coverage, we need to apply
appropriate minimum support and minimum confidence thresholds. That is,
we need to take into consideration the class distribution of each dataset.

• It is unnecessary to remove the missing values from the dataset because all
classical classification algorithms and our method can handle missing values
directly.

• Numeric attributes need to be discretized because associative classification
models can handle only the nominal attributes.

• Number of rules per class threshold should be applied for SA method accord-
ing to analysis of the dataset, because this threshold depends on the class
distribution.

• We need to apply the intended coverage constraint which becomes the stop-
ping criteria of selecting rules for J&B classifier. This novel parameter is not
sensitive to the size of the dataset or imbalanced class distribution.

• We tried to solve the outer-class overlapping problem (that means some samples
from different classes have very similar characteristics) by grouping the CARs
according to their class value, and the inter-class overlapping problem (several

72 7.1 Discussion of Results

F
igure

7.2:
C
om

parison
betw

een
our

proposed
associative

classification
m
odels

on
accuracy

for
selected

datasets

Experimental Evaluations and Discussion 73

F
ig
ur
e
7.
3:

C
om

pa
ri
so
n
be

tw
ee
n
ou

r
pr
op

os
ed

as
so
ci
at
iv
e
cl
as
si
fic

at
io
n
m
od

el
s
on

si
ze

fo
r
se
le
ct
ed

da
ta
se
ts

74 7.1 Discussion of Results

rules that belong to same class may cover the same samples) by selecting the
rules based on database coverage.

To begin with, SA method was the preliminary research in this thesis. We in-
tended to develop a simple classification model that can be comparable to other
rule-based and non rule-based classification models (such as OneR, C4.5, Decision
Table, Naive Bayes, Random Forest and son on) on accuracy. Reducing the number
of rules was not our main goal in SA, therefore, we included also non rule-based
models into the comparison. SA is sensitive to the size of the dataset on generating
the classification rules, on bigger datasets such as “"Adult"”, “Connect4”, “Nursery”,
SA produced larger classifiers.

The J&B produced an accurate and compact classifier on datasets which have a
large number of attributes and records (especially with balanced datasets on class-
distribution), while the performance of J&B is slightly worse with datasets having a
small number of attributes and a large number of records (proved on “Nursery” and
“Car.Evn” datasets).

Since SA and J&B algorithms were discussed in Chapter 3 comprehensively and
the number of rules generated by these algorithms depend on the user-defined pa-
rameters (number_of_rules_per_class in SA and intended_coverage), we did not
include them into the main comparison table.

DC and DDC algorithms produce classifiers that have on average far fewer rules
than those produced by the classical and associative rule-learning methods included
in the comparison. DC and DDC generated a reasonably smaller number of rules on
bigger datasets compared to all other classification methods while CDC generated
a slightly higher number of classification rules compared to DC and DDC, but on
average all of our proposed methods achieved the best results in terms of classification
rules.

DC, DDC and CDC classifiers achieved the best accuracy on “Breast.Can” and
“Spect.H” datasets among all rule-learner approaches.

The accuracy of the CDC method on “Hayes-root”, “Adult”, “Lymp” and “Con-
nect4” was the best one compared to all other rule-based classification models in-
cluding DC and DDC.

The main drawback of the DC method is achieving a higher coverage on some
smaller datasets. This fact is not surprising since the representative CAR is selected
based on cluster center and not checking the coverage. DDC and CDC do not
suffer from that problem, because a novel approach for improving the coverage and
accuracy is proposed in the representative CAR selection process.

Chapter 8

Conclusion and Future Work

In this thesis, we presented five associative classifiers. The first two – SA: simple
associative classifier (pre-determined number of strong CARs are selected for each
class value) and J&B: coverage based associative classifier (rules are selected based
on dataset coverage) – were introduced as part of preliminary research to show that
decreasing the minimum confidence of CARs, increasing their number and overall
dataset coverage results in an increase of classification accuracy of the final models.
Using this information, the last three proposed associative classifiers, as part of
our main research, are novel methods that aim at significantly reducing the size of
produced models, while maintaining their classification accuracy.

The three novel associative classifiers are: DC (the DC method is built based on
direct distance measure (IBDM) and the method for extracting a representative CAR
is based on cluster center (RCC)), DDC (the DDC method is formed based on direct
distance measure (IBDM) and the method for extracting a representative CAR is
based on dataset coverage (RDC)), and CDC (the CDC method is formed based on
combined distance measure (WCDM) and the method for extracting a representative
CAR is based on dataset coverage (RDC)). They are all associative classifiers based
on clustering.

Experimental evaluations show that we achieved our intended research goal of
producing a compact and meaningful, yet accurate, classifier by exhaustively search-
ing the entire example space using constraints and clustering. Our DC, DDC, and
CDC classifiers were able to significantly reduce the number of classification rules
while maintaining a classification accuracy that was not signifacantly different from
that of state-of-the-art rule-learning classification algorithms. Moreover, experiments
show that the number of learnt rules by our classifiers, compared to state-of-the-art
classification rule-learners, was 2–4 times lower on average. This ratio is even greater
on datasets with higher numbers of examples.

The main drawback of our proposed methods is their time efficiency. While some
classification algorithms (e.g. C4.5 or PART) use the divide-and-conquer greedy
approach, which is very fast, others use the separate-and-conquer, covering and/or
other more exhaustive approaches, that are much slower. Our proposed methods fall
into the latter category of methods that use exhaustive search to find “good” CARs.
Moreover, after finding the initial set of CARs, they use clustering on top of that to
further reduce the number of CARs, which adds additional computation time to the

76

algorithms.
In future work, we plan to optimize DC, DDC, and CDC to bring their time

complexities at least a bit closer to state-of-the-art divide-and-conquer rule-learning
algorithms and make our methods adequate for analyzing big data. Moreover, a
time-complexity analysis of our methods is needed first to identify the parts of our
algorithms that can be optimized or parallelized.

Another promising direction for future research on associative classifiers is to
investigate ways of including numeric attributes into the models. There is already
ongoing research in this area, but using clustering on CARs may open new potentially
interesting perspectives on the matter.

In our research, we used the hierarchical agglomerative clustering method with
default parameters to cluster CARs. Using different sets of clustering parameters or
even different clustering algorithms and/or different distance metrics are all possible
directions for future research on learning accurate, efficient, meaningful and compact
classification models.

The results of this PhD Thesis are published in the following articles:

• Mattiev, J., Kavšek, B.: Coverage based classification using association rule
mining. Applied Sciences 10(20), Basel, Switzerland (2020).

• Mattiev, J., Kavšek, B.: Distance based Clustering of Class Association Rules
to Build a Compact, Accurate and Descriptive Classifier Computer Science and
Information Systems, Serbia (2020).

• Mattiev, J., Kavšek, B.: CMAC: Clustering class association rules to form
a descriptive and Meaningful Associative Classifier, Machine Learning, Opti-
mization, and Data Science, LOD 2020. Nicosia G., Pardalos P., Umeton R.,
Giuffrida G., Sciacca V. Eds. vol.11943, Springer, Siena, Italy (2020).

• Mattiev, J., Kavšek, B.: Simple and Accurate Classification Method Based
on Class Association Rules Performs Well on Well-Known Datasets, Machine
Learning, Optimization, and Data Science, LOD 2019. Nicosia G., Pardalos
P., Umeton R., Giuffrida G., Sciacca V. Eds. vol.11943, Springer, Siena, Italy,
(2019), pp. 192–204.

• Mattiev, J., Kavšek, B.: A compact and understandable associative classi-
fier based on overall coverage, ANT 2020, The 11th International Conference
on Ambient Systems, Networks and Technologies, Procedia computer science,
Vol.170, Warsaw, Poland, (2020), pp. 1161-1167.

• Mattiev, J., Kavšek, B.: How overall coverage of class association rules affects
the accuracy of the classifier?, Data Mining and Data Warehouses - SiKDD :
proceedings of the 22nd International Multiconference Information Society, IS
2019, Ljubljana, Slovenia (2019), 49–52.

• Mattiev, J., Kavšek, B.: Using constrained exhaustive search vs. greedy heuris-
tic search for classification rule learning, Proceedings of the 5th Student Com-
puter Science Research Conference, StuCoSReC-2018, Koper, Sloveniya (2018),
35-38.

Bibliography

[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules.
In: VLDB ’94 Proceedings of the 20th International Conference on Very
Large Data Bases, pp. 487-499. Chile (1994).

[2] Baralis, E., Cagliero, L., Garza, P.: A novel pattern-based Bayesian clas-
sifier. IEEE Transactions on Knowledge and Data Engineering 25(12),
pp. 2780–2795 (2013).

[3] Breiman, L.: Random Forests. Machine Learning 45(1), pp. 5-32 (2001).

[4] Cendrowska, J.: PRISM: An algorithm for inducing modular rules. In-
ternational Journal of Man-Machine Studies 27(4), pp. 349-370 (1987).

[5] Chen, G., Liu, H., Yu, L., Wei, Q., Zhang, X.: A new approach to
classification based on association rule mining. Decision Support Systems
42(2), pp. 674–689 (2006).

[6] Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning
3(4), pp. 261–283 (1989).

[7] Cohen, W., W.: Fast Effective Rule Induction. In: ICML’95 Proceedings
of the Twelfth International Conference on Machine Learning, pp. 115-
123, Tahoe City, California (1995).

[8] David, A., K., Sergei, V.: K-means++: the advantages of careful seed-
ing. In: Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, Louisiana, USA (2007).

[9] Dua, D., Graff, C.: UCI Machine Learning Repository. Irvine, CA: Uni-
versity of California (2019).

[10] Eui-Hong, S., H., George, K., Vipin, K., Bamshad, M.: Clustering Based
on Association Rules Hypergraphs. Workshop on Research Issues on
Data Mining and Knowledge Discovery. December (1999).

[11] Frank, E., Witten, I.: Generating Accurate Rule Sets Without Global
Optimization. In: Fifteenth International Conference on Machine Learn-
ing, pp. 144-151, USA (1998).

78 BIBLIOGRAPHY

[12] Gupta, K., G., Strehl, A., Ghosh, J.: Distance based clustering of as-
sociation rules. Proceedings of artificial neural networks in engineering
conference, pp. 759-764, USA (1999).

[13] Holte, R.: Very simple classification rules perform well on most com-
monly used datasets. Machine Learning 11(1), pp. 63-91 (1993).

[14] Kohavi, R.: The Power of Decision Tables. In: 8th European Conference
on Machine Learning, pp. 174-189, Greece (1995).

[15] Lent, B., Swami, A., Widom, J.: Clustering association rules. In: Pro-
ceedings of the Thirteenth International Conference on Data Engineer-
ing, pp. 220-231, England (1997).

[16] Leonard, K., Peter, J., R.: Finding Groups in Data: An Introduction to
Cluster Analysis. New Jersey, USA (1990).

[17] Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification
based on multiple class-association rules. In Proceedings of the 1st IEEE
International Conference on Data Mining, pp. 369–376, California, USA
(2001).

[18] Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule
mining. In Proceedings of the 4th International Conference on Knowl-
edge Discovery and Data Mining, pp. 80–86, New York, USA (1998).

[19] Man, Z., Xiu, Ch., Qianzhou, H.: An Algorithm of Mining Class Asso-
ciation Rules. In: Z. Cai, Z. Li, Z. Kang, Y. Liu. (editors), Advances in
Computation and Intelligence. ISICA 2009. Lecture Notes in Computer
Science, Vol. 5821, pp. 269-275, Heidelberg, Germany (2009).

[20] Martin, E., Hans-Peter, K., Xiaowei, X.: Knowledge discovery in large
spatial databases: Focusing techniques for efficient class identification.
In Proceedings of the 4th International Symposium on Large Special
Databases, pp. 67-82, Portland (1995).

[21] Michael, H., Radoslaw, K.: Visualizing Association Rules in Hierarchical
Groups. Journal of Business Economics 87(3), pp. 317-335 (2017).

[22] Mohamed, Z., Hammou, M.: A Comparative Study of Clustering Meth-
ods. Future Generation Computer Systems, 13(2-3), pp. 149-159 (1997).

[23] Phipps, A., Lawrence, J., H.: An Overview of Combinatorial Data Anal-
ysis. In: Phipps, A., Lawrence, J., H., Geert, D., S (editors), Clustering
and Classification, pp. 5-63, New Jersey, USA (1996).

[24] Quinlan, J.: Induction of Decision trees. Machine Learning 1(1), pp.81-
106 (1986).

[25] Quinlan, J.: C4.5: Programs for Machine Learning. Machine Learning
16(3), pp. 235-240 (1993).

BIBLIOGRAPHY 79

[26] Raymond, T., Ng., Jiawei, H.: Efficient and Effective Clustering Meth-
ods for Spatial Data Mining. In: J.B. Bocca, M. Jarke, C. Zaniolo (edi-
tors), Proceedings of the 20th Conference on Very Large Data Bases, pp.
144-155, Santiago, Chile (1994).

[27] Sergios, T., Konstantinos, K.: Hierarchical Algorithms. Pattern Recog-
nition 4(13), pp. 653-700 (2009).

[28] Tian, Z., Raghu, R., Miron, L.: BIRCH: An Efficient Data Clustering
Method for Very Large Databases. In: H.V. Jagadish, I.S. Mumick (edi-
tors), Proceedings of the 1996 ACM-SIGMOD International Conference
on Management of Data, pp.103-114, Montreal, Canada (1996).

[29] Kosters, W., Marchiori, E., Oerlemans, A.: Mining Clusters with Associ-
ation Rules. Lecture Notes in Computer Science (1999), DOI:10.1007/3-
540-48412-4_4.

[30] Xiaoxin, Y., Jiawei, H.: CPAR: Classification based on Predictive As-
sociation Rules. Proceedings of the SIAM International Conference on
Data Mining, pp. 331-335, San Francisco, USA (2003).

[31] Zhang, M., Zhou Z.: A k-nearest neighbor based algorithm for multi-
label classification. In: Proceedings of the 1st IEEE International Con-
ference on Granular Computing, Vol. 2, pp. 718–721, China (2005).

[32] Zhou, Z., Liu, X.: Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Transactions on Knowl-
edge and Data Engineering 18(1), pp. 63–77 (2006).

[33] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, I, H.: The WEKA Data Mining Software: An Update. SIGKDD
Explorations. Vol 11(1), (2009).

[34] Eric, N., Xiu, L., Chau, D.: Application of data mining techniques in
customer relationship management, a literature review and classifica-
tion. Expert Systems with Applications 36(2), pp. 2592–2602 (2009).

[35] Jyoti, S., Ujma, A., Dipesh, S., Sunita, S.: Predictive data mining for
medical diagnosis: an overview of heart disease prediction. International
Journal of Computer Applications 17(8), pp. 43–48 (2011).

[36] Yoon, Y., Lee, G.: Two scalable algorithms for associative text classi-
fication. Information Processing and Management 49(2), pp. 484–496
(2013).

[37] Bayardo, R, J.: Brute-force mining of high-confidence classification rules.
In Proceedings of the Third International Conference on Knowledge Dis-
covery and Data Mining, pp. 123-126, USA (1997).

80 BIBLIOGRAPHY

[38] Shafer, J, C., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel clas-
sifier for data mining. In Proceedings of 22nd International Conference
in Very Large databases, pp. 544-555, Italy (1996).

[39] Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic
relational models. Sixteenth International Joint Conference on Artificial
Intelligence, pp. 307-335, Sweden, (1999).

[40] Ahmed, A, M., Rizaner, A., Ulusoy, A, H.: A novel decision tree clas-
sification based on post-pruning with Bayes minimum risk. PLoS ONE
13(4), e0194168, (2018)

[41] Qabajeh, I., Thabtah, F., Chiclana, F.: A dynamic rule-induction
method for classification in data mining, Journal of Management An-
alytics, vol. 2(3), pp. 233-253, (2015).

[42] Pham, D., Bigot, S., Dimov, S.: RULES-5: A rule induction algorithm
for classification problems involving continuous attributes. The Institu-
tion of Mechanical Engineers Part C-journal of Mechanical Engineering
Science 217(12). pp. 1273-1286 (2003).

[43] Vapnik, V, N.: An overview of statistical learning theory. IEEE Trans-
actions on Neural Networks 10(5), pp. 988–999 (1999).

[44] Donato, M., Michelangelo, C., Annalisa, A.: A relational approach to
probabilistic classification in a transductive Setting. Engineering. Appli-
cations of AI 22(1). pp. 109-116 (2009).

[45] Hu, L, Y., Hu, Y, H., Tsai, C, F., Wang, J, S., Huang, M, W.: Building
an associative classifier with multiple minimum supports. SpringerPlus
5(528), (2016).

[46] Deng, H., Runger, G., Tuv, E., Bannister, W.: CBC: an associative
classifier with a small number of rules. Decision Support Systems 50(1),
pp. 163–170 (2014).

[47] Thabtah, F, A., Cowling, P., Peng, Y.: MMAC: a new multi-class, multi-
label associative classification Approach. In: Proceedings of the fourth
IEEE international conference on data mining, pp. 217–224, Brighton,
UK (2004).

[48] Abdellatif, S., Ben Hassine, M, A., Ben Yahia, S., Bouzeghoub, A.: AR-
CID: A New Approach to Deal with Imbalanced Datasets Classification.
44th International Conference on Current Trends in Theory and Practice
of Computer Science, Lecture Notes in Computer Science. Vol 10706, pp.
569-580, Austria, (2008).

[49] Thabtah, F., A., Cowling, P., I.: A greedy classification algorithm based
on association rule. Applied Soft Computing Journal 7(3), pp. 1102–1111
(2007).

BIBLIOGRAPHY 81

[50] Liu, Y., Jiang, Y., Liu, X., Yang, S.-L.: CSMC: a combination strat-
egy for multi-class classification based on multiple association rules.
Knowledge-Based Systems 21(8), pp. 786–793, (2008).

[51] Dua, S., Singh, H., Thompson, H., W.: Associative classification of mam-
mograms using weighted rules. Expert Systems with Applications 36(5),
pp. 9250–9259 (2009).

[52] Song, J., Ma, Z., Xu, Y.: DRAC: a direct rule mining approach for
associative classification. In Proceedings of the International Conference
on Artificial Intelligence and Computational Intelligence, pp. 150–154,
Sanya, China, (2010).

[53] Lin, M., Li, T., Hsueh, S.-C.: Improving classification accuracy of as-
sociative classifiers by using k-conflict-rule preservation. In Proceedings
of the 7th International Conference on Ubiquitous Information Manage-
ment and Communication, Malaysia (2013).

[54] Wang, W., Zhou, Z.: A review of associative classification approaches.
Transaction on IoT and Cloud Computing 2(2), pp. 31–42 (2014).

[55] Khairan, D, R.: New Associative Classification Method Based on Rule
Pruning for Classification of Datasets. IEEE Access 7(1), pp. 157783-
157795 (2019).

[56] Mattiev, J., Kavšek, B.: How overall coverage of class association rules
affect affects the accuracy of the classifier?. Proceedings of 22th Interna-
tional Multi-conference on Data Mining and Data Warehouse, pp. 49-52,
Slovenia (2019).

[57] Natarajan, R., Shekar, B..: Tightness: A novel heuristic and a clus-
tering mechanism to improve the interpretation of association rules. In
Proceedings of the IEEE International Conference on Information Reuse
and Integration, pp. 308-313, USA (2008).

[58] Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K., and Man-
nila, H.: Pruning and grouping discovered association rules. In ECML-95
Workshop on Statistics, Machine Learning, and Knowledge Discovery in
Databases, pp. 47-52, Greece (1995).

[59] Dahbi, A., Mouhir, M., Balouki, Y., Gadi, T.: Classification of associ-
ation rules based on K-means algorithm. 4th IEEE International Col-
loquium on Information Science and Technology, pp. 300-305, Tangier,
Morocco (2016).

[60] Gasmi, G., Yahia, S.B., Nguifo, E.M., Slimani, Y.: IGB: A new informa-
tive generic base of association rules. In: Advances in Knowledge Dis-
covery and Data Mining, 9th Pacific-Asia Conference, pp. 81–90, Hanoi,
Vietnam (2005).

82 BIBLIOGRAPHY

[61] Zaki, M.J., Parthasarathy, S, Ogihara, M, Li, W..: New algorithms for
fast discovery of association rules. In Proceedings of the third Interna-
tional conference on Knowledge Discovery and Data Mining, pp. 283-286,
USA (1997).

[62] Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interest-
ingness measures for association rules: User oriented description and
multiple criteria decision aid. European journal of Operational Research
184(2), pp. 610–626 (2008).

[63] Tan, P.-N., Kumar, V., Srivastava, J., Selecting the Right Interestingness
Measure for Association Patterns. Proceedings of eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Vol.
2, pp. 32–41, USA (2002).

[64] Mattiev, J., Kavšek, B.: Simple and Accurate Classification Method
Based on Class Association Rules Performs Well on Well-Known
Datasets. In: Machine Learning, Optimization, and Data Science.
Nicosia G., Pardalos P., Umeton R., Giuffrida G., Sciacca V. Eds. Vol.
11943, pp. 192–204, Italy (2019).

[65] Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy
rule induction. Data Mining and Knowledge Discovery 19(1), pp. 293–
319 (2019). doi.org/10.1007/s10618-009-0131-8

[66] Richards, D.: Ripple down rules: a technique for acquiring knowledge.
Decision making support systems: achievements, trends and challenges
for. IGI Global, pp. 207–226, USA (2002).

[67] Hall, M., Frank, E.: Combining Naive Bayes and Decision Tables. Pro-
ceedings of Twenty-First International Florida Artificial Intelligence Re-
search Society Conference, D.L. Wilson, H. Chad. Editors. pp. 318-319,
USA (2008).

[68] Wu, CH-H., Wang, J.Y.: Associative classification with a new condense-
ness measure. Journal of the Chinese Institute of Engineers 38(4), pp.
458-468 (2015).

[69] Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. Pro-
ceedings of the 6th European conference on Machine Learning. Brazdil,
P.B. Editors. pp. 1-20, Austria (1993).

[70] Meretakis, D., Wüthrich. B.: Classification as Mining and Use of La-
beled Itemsets. Proceedings ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Fayyad, U., Chaudhuri, S.,
Madigan, D Editors. USA (1999).

[71] Baralis, E., Garza, P.: A lazy approach to pruning classification
rules. Proceedings of IEEE International Conference on Data Mining.
pp. 35-42, Japan (2002).

BIBLIOGRAPHY 83

[72] Baralis, E., Chiusano, S., Garza, P.: On support thresholds in asso-
ciative classification. Proceedings of the ACM Symposium on Applied
Computing, pp. 553-558, Cyprus, (2004).

[73] Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: Proceedings of the 2000 ACM-SIGMID International
Conference on Management of Data. pp. 1-12, New York, USA (2000).

[74] Zaki, M.J., Parthasarathy, S., Ogihara, M., Li. W.: New algorithm for
fast discovery of association rules. Proceedings of the 3rdInternational
conference on Knowledge discovery and Data Mining. Heckerman, D.,
Mannila, H. Editors. pp. 286-289, USA (1997).

[75] Zaki, M., Gouda, K.: Fast vertical mining using diffsets. Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Pedro, D. Editors. pp. 326-335, USA (2003).

[76] Thabtah, F.A., Cowling, P., Peng, Y.: MCAR: multi-class classification
based on association rule. In: Proceedings of the 3rd ACS/IEEE inter-
national conference on computer systems and applications. pp. 127–133,
Egypt (2005).

[77] Bui-Thi, D., Meysman, P., Laukens, K.: Clustering association rules to
build beliefs and discover unexpected patterns. Applied Intelligence. Vol.
50, pp. 1943–1954 (2020).

[78] Raykov, Y.P., Boukouvalas, A., Baig, F., Little, M.A.: What to Do
When K-Means Clustering Fails: A Simple yet Principled Alternative
Algorithm. PLoS ONE 11(9), pp. 1–28 (2016).

[79] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-based Algo-
rithm for Discovering Clusters in Large Spatial Databases with Noise.
In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. pp. 226–231, Portland, USA (1996).

[80] Rodriguez, M.Z., Comin, C.H., Casanova, D., Bruno, O.M., Amancio,
D.R., Costa, L.F.: Clustering algorithms: A comparative approach.
PLoS ONE. 14(1) (2019).

[81] Yildirim, N., Uzunoglu, B.: Association Rules for Clustering Algorithms
for Data Mining of Temporal Power Ramp Balance. International Con-
ference on Cyberworlds, pp. 224-228, Sweden (2015).

[82] Dechang, P., Xiaolin, Q.: A New Fuzzy Clustering Algorithm on Associa-
tion Rules for Knowledge Management. Information Technology Journal
7(1), pp. 119-124 (2008).

[83] RStudio Team. RStudio: Integrated Development for R (2020). RStudio,
PBC, Boston, USA.

84 BIBLIOGRAPHY

[84] Mahamed, O., Andries, E., Ayed, S.: An overview of clustering methods.
Intelligence. Data Analysis 11(1), pp. 583-605 (2007).

[85] Thomas, C.H., Charles, L.E., Ronald, R.L., Clifford, S.: 22.2 Breadth-
first search. Introduction to Algorithms (2nd ed.). MIT Press and
McGraw-Hill. pp. 531–539 (2001).

[86] Shimon, E.: Depth-First Search.Graph Algorithms (2nd ed.), Cambridge
University Press, pp. 46–48 (2011).

[87] Urvashi, B.: ECLAT Algorithm for Frequent Item sets Generation. In-
ternational Journal of Computer System 1(3), pp. 82-84 (2014).

[88] Suzan, W.: Review and Comparison of Associative Classification Data
Mining Approaches. International Journal of Industrial and Manufac-
turing Engineering 8(1), pp. 34-45 (2014).

[89] Veloso, A., Meira, W., Gonçalves, M., Zaki, M.: Multi-label Lazy Asso-
ciative Classification. Proceedings of the Principles of Data Mining and
Knowledge Discovery - PKDD, pp. 605-612, Warsaw, Poland (2007).

[90] Niu, Q., Xia, S., Zhang, L.: Association Classification Based on Com-
pactness of Rules. Proceedings of the Second International Workshop on
Knowledge Discovery and Data Mining - WKDD, pp.245-247, Chicago,
USA (2009).

[91] Li, X., Qin, D., Yu, C.: ACCF: Associative Classification Based on
Closed Frequent Itemsets. Proceedings of the Fifth International Confer-
ence on Fuzzy Systems and Knowledge Discovery - FSKD. pp. 380-384,
China (2008).

[92] Ye, Y., Jiang, Q., Zhuang, W.: Associative classification and post-
processing techniques used for malware detection. Proceedings of the
second International Conference on Anti-counterfeiting, Security and
Identification –ASID, pp. 276-279, USA (2008).

[93] Hsu, H., Lachenbruch, P.A.: Paired t test.Wiley Encyclopedia of Clinical
Trials (2008).

[94] Chawla, Nitesh: Data Mining for Imbalanced Datasets: An Overview.
Data Mining and Knowledge Discovery Handbook 1(5), pp. 853-867
(2005).

[95] Han, J., Kamber, M., Pei, J.: Data mining: Concepts and techniques,
third edition. Waltham, Mass.: Morgan Kaufmann Publishers (2012).

Index

ActOcc(R), 23
Conf(R), 23
Supp(R), 23
dCMBP, 48
α, 51
dWCDM, 51
dAMBD, 48
dCMBL, 49
AHCCLC, 57
border, 51
numrules, 27
“class-dependent” discretization, 25

AHCCLH, 57

accuracy, 2
antecedent, 23
APRIORI, 18
artificial intelligence, 1
association rules (ARs), 1
Associative Classification (AC), 1
attribute, 3

bottom-up, 2

C-Tidset, 10
CDC, 63
class, 12
class association rules, 8
Classification rule mining, 1
classifier, 25
clustering, 2
Combined Distance Metric (WCDM),

51
compact, 26
complete linkage (farthest neighbor),

57

consequent, 23
cross-validation, 40
customer relationship management, 4
cutting the dendrogram, 8

Data mining, 1
dataset coverage, 9
DC, 63
DDC, 63
decision trees, 7
decision-making processes, 3
direct distance metric, 12

Euclidean distance, 47
exhaustively searching, 75

F-measure, 39
FP-growth, 18
FP-tree, 22
frequent itemset mining, 3

hierarchical clustering, 2

imbalanced datasets, 2
indirect measures, 12
inter class overlapping problem, 60
Interestingness measures, 11
intra-cluster similarity, 53
Item Based Distance Metric (IBDM),

50

L, 65

majority class value, 69
market basket problem, 3
medical diagnosis, 4
minimum confidence, 2

86 INDEX

minimum support, 2
missing values, 71
multi-dimensional dataset, 3

N, 65
non-overlapping rules, 48

objects, 53
optimal number of clusters, 8
outer-class overlapping problem, 59
outliers, 54
overall coverage, 31
overfitting, 9

paired T-test, 31
Precision, 38
prefix tree, 20
pruning techniques, 2

RCC, 59
RDC, 60
real-life dataset, 1
Recall, 38
record, 17
reduce the number of classification

rules, 2

reference point, 55
relevance measures, 31
representative CAR, 13
rule-based, 2

SA, 26
similarity measure, 12
simple associative classifier, 75
statistical significance testing, 31
statistically comparable, 65
statistics, 1
stopping criterion, 31
supervised learning, 1

test set, 29
tightness, 12
time efficiency, 75
top-down, 12
transactional, 1

unsupervised learning, 2

vertical layout format, 10

W, 65

Povzetek v slovenskem jeziku

Uporaba razvrščanja v skupine na klasifikacijskih asociacijskih
pravilih za tvorbo smiselnih in natančnih klasifikatorjev

8.1 Uvod

Ogromne količine podatkov se vsakodnevno generirajo in shranjujejo v najrazličnejših
oblikah in sistemih za upravljanje s podatki, zato potrebujemo načine za obvladovanje
in analizo teh podatkov. Eden od načinov za spopadanje s tem problemom, ki v
zadnjih letih vedno bolj pridobiva na popularnosti, je podatkovno rudarjenje.

Podatkovno rudarjenje je proces odkrivanja skritih povezav v podatkih, ki pred-
stavljajo novo znanje. Je pa tudi znanstveno področje, ki črpa dognanja iz po-
dročij matematičnega modeliranja, statistike, umetne inteligence in upravljanja po-
datkovnih baz. Dandanes je podatkovno rudarjenje eno ključnih področij, ko gre
za reševanje realnih problemov, ki temeljijo na zbiranju in obdelavi velikih količin
podatkov. Ena glavnih prvin v procesu podatkovnega rudarjenja so algoritmi stro-
jnega učenja, s pomočjo katerih lahko odkrivanje znanja v podatkih do velike mere
avtomatiziramo.

Glede na namen podatkovnega rudarjenja ter vrsto in obliko znanja, ki ga v po-
datkih želimo odkriti, lahko algoritme strojnega učenja uporabljamo za: klasifikacijo,
regresijo, razvrščanje v skupine, iskanje pogostih vzorcev, iskanje osamelcev, podporo
odločanju. . . Najpogosteje uporabljani in najbolj preučevani so zagotovo klasifikaci-
jski algoritmi med katerimi so najbolj poznani: k-NN [31], naivni Bayesov klasifikator
[2], odločitvena drevesa [25], nevronske mreže [32], idr. Cilj klasifikacijskih algorit-
mov je odkriti relativno majhno množico pravil, ki skupaj tvorijo karseda natančen
klasifikacijski model in pri tem pokrivajo čim večji del vseh primerov v podatkih.

Odkrivanje asociacijskih pravil v transakcijskih bazah podatkov postaja v zad-
njem času ena priljubljenejših metod podatkovnega rudarjenja [1,6]. Pri tej metodi
govorimo o odkrivanju pogostih vzorcev, katerega cilj je odkriti vsa obstoječa (aso-
ciacijska) pravila v neki bazi podatkov, ki ustrezajo določenim omejitvam (minimalne
podpore in zaupanja). Tako odkrita pravila so tudi bolj splošna od klasifikacijskih.

V zadnjih letih so klasifikacijska asociacijska pravila predmet številnih raziskav
[17,18,19,30]. Klasifikacijska asociacijska pravila združujejo metodologijo asociaci-
jskih pravil s klasifikacijo. Eksperimenti na podatkih [5,17,18] kažejo, da klasifikaci-
jska asociacijska pravila lahko dosegajo celo višje klasifikacijske točnosti kot klasični
klasifikacijski algoritmi kot npr. odločitvena drevesa [25].

88 8.2 Znanstvena izhodišča

8.2 Znanstvena izhodišča

Obstoječi algoritmi za učenje klasifikacijskih pravil temeljijo predvsem na požrešnem
preiskovanju prostora možnih rešitev, v glavnem po principu deli-in-vladaj. V zad-
njih letih potekajo raziskave v smeri izčrpnih preiskovalnih metod, ki po principu
razveji-in-omeji preiščejo celoten prostor rešitev, a pri tem upoštevajo določene ome-
jitve, ki omogočajo prihranek časa in prostora pri samem preiskovanju. Slednje ima
za posledico generiranje klasifikatorjev, ki vsebujejo zelo velike količine »pravil«, ki
pa so veljavna le na zelo majhnih podmnožicah celotnega prostora ter se med seboj
prekrivajo. Posledično je takšne klasifikatorje potrebno naknadno poenostaviti in v
doktorski disertaciji bomo skušali razviti metodo za poenostavitev tovrstnih klasifika-
torjev – v našem primeru so to klasifikacijska asociacijska pravila, ki so kombinacija
»klasičnih« klasifikacijskih pravil in pa asociacijskih pravil.

8.2.1 Klasifikacijska pravila

Klasifikacijska ali odločitvena pravila so vrsta logični pravil tipa ČE . . . POTEM
. . . , kjer ČE delu pravimo tudi pogojni del ali pogoj, POTEM delu pa posledični del
ali posledica. Pogoj je, v tipičnih aplikacijah podatkovnega rudarjenja, sestavljen iz
konjunkcije neodvisnih spremenljivk (atributov) in njihovih vrednosti, posledica pa
predstavlja odvisno spremenljivko (razred) in njeno vrednost.

Klasifikacijska pravila delimo v dve skupini: odločitvena pravila in odločitvena
drevesa. V prvi skupini je klasifikator predstavljen z množico (ne)urejenih klasi-
fikacijskih pravil. V skupini odločitvenih dreves pa je moč klasifikatorje zapisati v
obliki dreves, kjer vsaka pot od korena do lista drevesa predstavlja eno klasifikacijsko
pravilo (pravil je torej toliko, kot je listov v drevesu).

Tipični predstavniki prve skupine so algoritmi PART [11], RIPPER [7], CN2 [6],
PRISM [4], odločitvene tabele [14], OneR [13], ipd. V drugo skupino pa bi lahko
uvrščali algoritme, kot so ID3 [24], C4.5 [25], naključni gozdovi [3], ipd.

8.2.2 Pogoste podmnožice in asociacijska pravila

Asociacijsko pravilo sestoji iz dveh delov: pogojnega dela (če) in posledice (potem).
Tako pogojni del kot posledica lahko vsebujeta več postavk (items). Postavke v
posledičnem delu se vedno pojavljajo skupaj s postavkami v pogojnem delu. Ko v
podatkih odkrivamo asociacijska pravila, pravimo tudi, da iščemo če/potem vzorce.
Pri iskanju si največkrat pomačamo z dvema merama: podporo (support) in zaupan-
jem (confidence). Podpora pove koliko pogosto se neka podmnožica postavk pojavlja
v podatkih, zaupanje pa meri pogojno verjetnost posledičnega dela pravila glede na
njegov pogojni del. Pri podatkovnem rudarjenju se asociacijska pravila največkrat
uporabljajo analizo nakupovalnih navad strank (market basket analysis). Odkrivanje
asociacijskih pravil sodi med nenadzorovane metode strojnega učenja.

Osnovne definicije podpore, zaupanja, pogostih podmnožic ter ostalih pojmov,
ki se nanašajo na asociacijska pravila so podane v [1].

INDEX 89

8.2.3 Klasifikacijska asociacijska pravila

Klasifikacijska asociacijska pravila predstavljajo kombinacijo klasifikacijskih in aso-
ciacijskih pravil. Naučena so na enak način kot asociacijska pravila, le da desno
stran (posledico) pravila vedno omejimo le na odvisno spremenljivko (razred) in
njeno vrednost.

8.3 Opredelitev problema

Glavna omejitev algoritmov, ki pri učenju uporabljajo izčrpno preiskovanje prostora
rešitev po principu razveji-in-omeji, kamor sodijo tudi (klasifikacijska) asociacijska
pravila, je njihova odvisnost od parametrov, ki pogojujejo »omeji« del. Izbira le-
teh lahko zelo vpliva na zahtevnost algoritma ter velikost naučenih (napovednih)
modelov.

V doktorski disertaciji se ne bomo pretirano ukvarjali s samo izbiro parametrov,
posvetili se bomo predvsem velikosti modelov ter njihovi »poenostavitvi«. V ta na-
men bomo naučena klasifikacijska asociacijska pravila najprej poskusili združiti v
skupine glede na podobnost med njimi ter nato v vsaki skupini poiskati reprezen-
tativno pravilo, ki naj bi predstavljalo celotno skupino. Namesto celotne množice
pravil tako na koncu »prikažemo« le množico reprezentativnih pravil, kar zelo poenos-
tavi celoten model in ga naredi bolj razumljivega. Hkrati lahko končni uporab-
nik, po potrebi, interaktivno razišče vsako množico pravil, ki pripada posameznemu
reprezentativnemu pravilu, če želi natančnejši vpogled v informacije. Za razvoj us-
treznega »poenostavitvenega« algoritma so bistvenega pomena: definicija ustrezne
mere podobnosti med klasifikacijskimi asociacijskimi pravili, kar omogoča kasne-
jše razvrščanje v skupine, uporaba ustreznega algoritma razvrščanja v skupine, us-
trezen način izbire reprezentativnega klasifikacijskega asociacijskega pravila za vsako
skupino ter nenazadnje zagotovitev ustrezne klasifikacijske moči končnih modelov.

Pri razvrščanju v skupine bomo v doktorski disertaciji preizkusili tako parti-
cijske metode, kamor sodita metodi k-means in njena izpeljanka k-medoids, kot
tudi hierarhične metode. Ostale prvine predlaganega algoritma (mera podobnosti,
izbira reprezentativnega klasifikacijskega asociacijskega pravila za vsako skupino ter
zagotovitev ustrezne klasifikacijske moči končnih modelov) so opisane v naslednjem
poglavju »Raziskovalna vprašanja, hipoteze in cilji«.

8.4 Raziskovalna vprašanja, hipoteze in cilji

Kot je bilo že opisano v prejšnjem poglavju »Opredelitev problema«, so za razvoj
novega algoritma za razvrščanje v skupine klasifikacijskih asociacijskih pravil bistveni
4 koraki, ki hkrati predstavljajo cilje te disertacije:

• definicija ustrezne mere podobnosti med klasifikacijskimi asociacijskimi pravili
(kar omogoča kasnejše razvrščanje v skupine),

• uporaba ustreznega algoritma razvrščanja v skupine,

90 8.4 Raziskovalna vprašanja, hipoteze in cilji

• ustrezen način izbire reprezentativnega klasifikacijskega asociacijskega pravila
za vsako skupino ter

• zagotovitev ustrezne klasifikacijske moči naučenih modelov.

Vsak od zgoraj naštetih ciljev je v nadaljevanju podrobneje predstavljen.

8.4.1 Definicija mere podobnosti klasifikacijskih asociacijskih pravil

Pri klasifikacijskih asociacijskih pravilih gre, kot pri »navadnih« klasifikacijskih prav-
ilih, za ČE . . . POTEM . . . tip pravil, kjer POTEM del predstavlja razred ter
vrednost razreda. V doktorski disertaciji se bomo ukvarjali izključno z diskretnimi
razredi. Prvi korak k definiciji mere podobnosti bo torej ureditev klasifikacijskih aso-
ciacijskih pravil glede na vrednost razreda. Znotraj množice pravil, ki napovedujejo
isto vrednost razreda pa lahko nato merimo podobnost pravil glede na njihov pogoj
(ČE del).

Ker so pogoji pravil vedno predstavljeni v obliki konjunkcije atribut-vrednosti,
jih lahko poenostavljeno predstavimo kot množice atribut-vrednosti. Sedaj nam
preostane le, da definiramo mero podobnosti med posameznimi množicami.

V disertaciji bomo to mero podobnosti definirali glede na 3 postopke merjenja
razdalje med množicami: razdalja na podlagi absolutnih razlik med elementi množic,
razdalja na podlagi verjetnosti ter razdalja na podlagi logaritma sličnosti (log-
likelihood).

8.4.2 Ugotavljanje skupin za klasifikacijska asociacijska pravila

Sem sodi preizkušanje različnih algoritmov za razvrščanje v skupine, kot je to opisano
v prejšnjem poglavju »Opredelitev problema«. Razvrščanje v skupine je dobro
raziskana metoda strojnega učenja, ki pokriva paleto možnih algoritmov, med ka-
terimi so najbolj poznani hierarhični in pa k-ta povprečja [10,15,21,29]. V disertaciji
bomo preizkusili hierarhično združevanje v skupine, združevanje v skupine na podlagi
k-tih povprečij ter združevanje v skupine na podlagi k-tih median.

8.4.3 Ugotavljanje reprezentativnega klasifikacijskega asociaci-
jskega pravila za posamezno skupino pravil

Po fazi razvrščanja v skupine bo vsako klasifikacijsko asociacijsko pravilo pripadalo
natanko eni skupini pravil. Da bi zmanjšali število pravil v končnemmodelu, si želimo
končnemu uporabniku, namesto pravil, na nem način prikazati skupine pravil. V ta
namen bomo poskušali za vsako skupino poiskati tisto pravilo, ki jo najbolje opisuje
= reprezentativno pravilo. Na koncu bo naš model sestavljen le iz reprezentativnih
pravil, ostala pravila v skupinah bodo končnemu uporabniku zakrita, a jih bo lahko
(po potrebi) še vedno prikazal.

8.4.4 Eksperimentalna evalvacija

Čeprav bo tako dobljen končni napovedni model bolj kompakten in tako tudi
razumljivejši za končnega uporabnika, moramo zagotoviti, da bo njegova napovedna

INDEX 91

moč primerljiva z ostalimi »boljšimi« klasifikacijskimi algoritmi. To lahko zago-
tovimo le tako, da z ustreznimi eksperimentalnimi primerjavami parametre naše
metode izberemo na način, ki zagotavlja ohranitev napovedne moči klasifikatorja.
V ta namen bomo razvit algoritem primerjali z danes najbolj poznanimi klasifikaci-
jskimi algoritmi: CBA, RIPPER, naivni Bayes, odločitvene tabele, C4.5, naključni
gozdovi, SVM, idr.

8.5 Rezultati

Doseganje znanstvenih ciljev je bilo preverjeno z eksperimentalno oceno. Svoje
modele smo preizkusili na 17 resničnih naborih podatkov, ki so bili vzeti iz repozi-
torija baze podatkov UCI MachineLearning. Naše klasifikatorje smo ovrednotili tako,
da smo jih primerjali z 8 znanimi algoritmi klasifikacije, ki temeljijo na pravilih, glede
natančnosti klasifikacije in števila pravil. Vse razlike so bile testirane na statistično
pomembnost z izvedbo parnega t-testa (s 95-odstotnim pragom pomembnosti).

Asociativni klasifikatorji so se izvajali s privzetimi parametri najmanjša podpora
= 1% in minimalna zanesljivost = 60% (pri nekaterih naborih podatkov (označena
s krepkim tiskom v Tabeli 8.1, pa je bila minimalna podpora znižana na 0,5% ali
celo 0,1% in zaupanje znižano na 50% da bi zagotovili, da je bilo za vsako vrednost
razreda ustvarjenih dovolj CAR-ov.) Za vse druge klasifikacijske modele smo upora-
bili njihovo izvedbo delovne mize WEKA s privzetimi parametri. Ker učenje pravil
pridruževanja ne podpira številskih atributov, so bili vsi numerični atributi (v vseh
naborih podatkov) predhodno diskretizirani z WEKA-jevo metodo diskretizacije, ki
je odvisna od razreda (ki lahko samodejno določi število zabojev za vsak številski
atribut). Opis naborov podatkov in vhodnih parametrov je prikazan v Tabeli 8.1.

Table 8.1: Privzeti parametri asociativnih klasifikatorjev in opis naborov podatkov.
Podatki # atributov # razredov # primerov Min

podpora
Min

zaupanje
analiziranih

pravil
Breast Can 10 2 286 1% 60% 1000
Balance 5 3 625 1% 50% 218
Car.Evn 7 4 1728 1% 50% 1000
Vote 17 2 435 1% 60% 500

Tic-Tac-Toe 10 2 958 1% 60% 3000
Nursery 9 5 12960 0.5% 50% 3000
Mushroom 23 2 8124 1% 60% 3000
Hayes-root 6 3 160 0.1% 50% 1000

Lymp 19 4 148 1% 60% 1500
Monks 7 2 432 1% 50% 800
Spect.H 23 2 267 0.5% 50% 3000
Abalone 9 3 4177 1% 60% 1000
Adult 15 2 45221 0.5% 60% 5000

Insurance 7 3 1338 1% 50% 722
Laptop 11 3 1303 1% 50% 1480
Chess 37 2 3196 0.5% 60% 3000
Connec4 43 3 67557 1% 60% 5000

Vsi eksperimentalni rezultati so bili pridobljeni z uporabo 10-kratnega prečnega
preverjanja. Eksperimentalni rezultati o natančnosti razvrščanja (povprečne vred-

92 8.5 Rezultati

nosti pri 10-kratnem prečnem preverjanju s standardnimi odkloni) so prikazani v
Tabeli 8.2.

Iz Tabele 8.2 lahko opazimo, da so predlagani asociativni klasifikatorji dosegli
primerljivo natančnost (DC: 82,5%, DDC: 83,3% in CDC: 83,8%) z drugimi modeli
klasifikacije na izbranih naborih podatkov. Zanimivo je, da CDC bistveno presega vse
tiste, ki se učijo pravil pri naborih podatkov »Rak dojke« (razen DDC), »Hayes.R«
in »Lymp«, medtem ko je v naborih podatkov »Car.Evn«, »Nursery« in »Monks«
naš strokovnjak Predlagane metode so dosegle slabšo natančnost kot vsi drugi al-
goritmi (razen SA). Standardna odstopanja rezultatov natančnosti se zmanjšujejo
z naraščajočim številom primerov v naboru podatkov, kar je pričakovano vedenje.
Standardni odmik vseh metod razvrščanja je bil nekoliko višji (nad 4) pri naborih
podatkov »Rak dojk«, »Hayes.R«, »Lymp« in »Connect4«, to pomeni, da so razlike
v natančnosti pri 10-kratnem navzkrižnem preverjanju nihale.

Primerjava med našimi metodami in drugimi metodami razvrščanja glede na
število klasifikacijskih pravil je prikazana v Tabeli 8.3. Ker se DC in DDC razlikujeta
v reprezentativnem postopku izbire CAR, število pravil razvrščanja, ustvarjenih z
obema metodama, ostane enako. Tako sta v Tabeli 8.3 združeni metodi DC in DDC.

Eksperimentalne ocene števila pravil razvrščanja kažejo, da DC in DDC bistveno
presegata vse druge, ki se učijo pravil, na osmih nizih podatkov od 17 (razen CDC)
in da klasifikatorje, ki imajo v povprečju veliko manj pravil kot tista, ki jih pripravijo
ostalih 8 metod učenja pravil vključena v primerjavo.

CDC je dosegel tudi statistično najboljše rezultate na osmih nizih podatkov
od 17 o pravilih, čeprav je dosegel nekoliko slabši rezultat glede povprečnih pravil
razvrščanja.

Predlagane metode so ustvarile razmeroma manjše število pravil o večjih na-
borih podatkov v primerjavi z drugimi metodami razvrščanja. Čeprav naši pristopi
niso mogli doseči najboljše natančnosti razvrščanja v naborih podatkov "Car.Evn",
"Nursery" in "Laptop", je na teh naborih podatkov ustvaril statistično najmanjši
razvrščevalec.

CDC je dobil nepričakovano večje število pravil (to so predvsem neuravnoteženi
in diskretizirani nabori podatkov) za nabore podatkov "Hayes-root" in "Balance".

Naš glavni cilj pri predlaganju metod DDC in CDC je izboljšati splošno pokritost
(prikazano v Tabeli 8.4) in natančnost, doseženo z DC metodo. Izkušeni rezultati
kažejo, da bi lahko dosegli svoj cilj: DDC in CDC sta dosegla natančnost med
povprečjem klasifikacije z 83,3% in 83,8% (to še vedno ni najboljši rezultat glede
povprečne natančnosti, vendar 0,8% in 1,3% višja od povprečne natančnosti DC
metoda). Povprečna pokritost DDC (91,5%) in CDC (91,8%) se je povečala na pri-
bližno 5,5% v primerjavi z DC (86,0%). Natančneje, splošna pokritost DDC in CDC
je bila izboljšana na 12 naborih podatkov in dosegli so boljšo natančnost razvrščanja
na 9 naborih podatkov od 17 v primerjavi z DC. Vendar je DC izdelal primerljiv
asociativni klasifikator z vsemi drugimi klasičnimi in asociativnimi klasifikatorji.

Po drugi strani pa je bila natančnost DC, DDC in CDC višja od njihovega obsega
v podatkovnih nizih "Rak dojke", "Vote" in "Monks". To dejstvo ni presenetljivo, saj
se odkriti primeri razvrstijo po vrednosti večinskega razreda. Ko je splošna pokritost
nad 85%, predlagane metode ponavadi dobijo razmeroma visoko natančnost vseh
nizov podatkov.

INDEX 93

T
ab

le
8.
2:

K
la
si
fik

ac
ijs
ke

to
čn

os
t
s
st
an

da
rd
ni
m
io

dk
lo
ni

-
sk
up

no
.

94 8.5 Rezultati

Table 8.3: Število KAP
Podatki DTNB DT C4.5 PT FR RDR CBA SA DC&DDC CDC

Breast.Can 122 22 10 20 13 13 63 20 8 9
Balance 31 35 35 27 44 22 77 45 34 79
Car.Evn 144 432 123 62 100 119 72 160 32 32
Vote 270 24 11 8 17 7 22 30 6 6
Tic-Tac-Toe 258 121 88 37 21 13 23 60 24 17
Nursery 1240 804 301 172 288 141 141 175 79 80
Hayes-root 5 8 22 14 11 10 34 45 19 80
Lymp 129 19 20 10 17 11 23 60 5 7
Spect.H 145 2 9 13 17 12 4 50 8 5
Abalone 165 60 49 71 20 57 131 155 14 14
Adult 737 1571 279 571 150 175 126 130 13 88
Insurance 23 48 21 49 22 22 84 62 18 20
Monks 12 36 14 8 12 10 40 26 14 14
Laptop 101 101 72 60 28 32 41 75 19 18
Mushroom 50 50 26 12 11 8 8 20 7 11
Chess 507 101 31 23 29 30 12 120 12 17
Connect4 3826 4952 3973 3973 403 341 349 600 59 102

Povprečje(%): 457 494 300 302 71 61 74 108 22 36

Table 8.4: Skupna pokritost
Podatki DC DDC CDC

Breast Cancer 65.2 72.0 72.7
Balance 74.5 82.8 86.3
Car.Evn 88.7 100.0 100.0
Vote 88.4 86.9 85.1
Tic-Tac-Toe 89.0 92.0 86.0
Nursery 90.4 98.1 100.0
Hayes-root 100.0 100.0 100.0
Lymp 81.0 90.0 88.4
Spect.H 80.9 80.7 79.4
Abalone 74.1 87.6 78.9
Adult 100.0 100.0 100.0
Insurance 81.5 89.5 100.0
Monks 82.4 86.7 90.6
Laptop 86.1 99.0 100.0
Mushroom 96.1 96.2 98.1
Chess 92.5 96.0 96.8
Connect4 91.4 98.4 98.7

Povprečje(%): 86.0 91.5 91.8

8.5.1 Diskusija

V tem poglavju v znanstvenih raziskavah obravnavamo prednosti in slabosti predla-
ganih asociativnih klasifikatorjev.

INDEX 95

S programsko opremo WEKA smo ustvarili pravila o združenju razredov za vse
asociativne klasifikatorje in raziskali druge algoritme klasifikacije, ker je WEKA
odprtokodna programska oprema, ki vključuje vse potrebne pristope klasifikacije
in je razmeroma enostavna za uporabo in programiranje. Predlagani algoritem ima
nekaj omejitev:

• Da bi dobili "dovolj" pravil za zvezo razredov ("dovolj" pomeni vsaj 5-10 pravil
za vsako vrednost razreda - to se v glavnem zgodi pri neuravnoteženih na-
borih podatkov) za vsako vrednost razreda in dosegli primerno splošno pokri-
tost, moramo uporabiti ustrezno minimalno podporo in minimalno pragovi
zaupanja. To pomeni, da bi morali upoštevati porazdelitev razredov vsakega
nabora podatkov.

• Manjkajoče vrednosti ni treba odstraniti iz nabora podatkov, ker lahko vsi
klasični algoritmi klasifikacije in naša metoda neposredno obravnavajo man-
jkajoče vrednosti.

• Numerične atribute je treba diskretizirati, ker lahko asociativni klasifikacijski
modeli obdelujejo samo nominalne atribute.

• Problem prekrivanja zunanjega razreda (to pomeni, da imajo nekateri vzorci iz
različnih razredov zelo podobne značilnosti) smo poskušali rešiti tako, da smo
KAP razvrstili glede na vrednost njihovega razreda in problem prekrivanja med
razredi (lahko zajema več pravil, ki spadajo v isti razred vzorci) z izbiro pravil
glede na pokritost baze podatkov.

Za začetek algoritmi DC in DDC proizvajajo klasifikatorje, ki imajo v povprečju
veliko manj pravil kot tisti, ki jih izdelajo klasične in asociativne metode učenja
pravil, vključene v primerjavo. DC in DDC sta ustvarili razmeroma manjše število
pravil o večjih naborih podatkov v primerjavi z vsemi drugimi metodami razvrščanja,
medtem ko je CDC ustvaril nekoliko večje število pravil razvrščanja v primerjavi z
DC inDDC, vendar so v povprečju vse predlagane metode dosegle najboljše rezultate
glede razvrščanja pravila.

Vsi predlagani klasifikatorji so med vsemi pristopi, ki se učijo pravil, dosegli
najboljšo natančnost nabora podatkov »Rak dojke« in »Spect.H«.

Natančnost metode CDC na “Hayes.R”, “Adult”, “Lymp” in “Connect4” je bila na-
jboljša v primerjavi z vsemi drugimi klasifikacijskimi modeli, ki temeljijo na pravilih,
vključno z DC in DDC.

Glavna pomanjkljivost metode DC je doseganje večje pokritosti nekaterih manjših
naborov podatkov. To dejstvo ni presenetljivo, saj je reprezentativni CAR izbran na
podlagi središča grozda in ne preverja pokritosti. DDC in CDC nimata te težave, ker
je nov pristop za izboljšanje pokritosti in natančnosti predlagan v reprezentativnem
postopku izbire CAR. Empirična ocena predlaganih klasifikatorjev je prikazana na
Sliki 8.1.

Slika 8.1 prikazuje, da so vse tri metode dosegle podobno povprečno natančnost
(DC: 82,5%; DDC: 83,3%; CDC: 83,8%) in povprečno pokritost (DC: 86,0%; DDC:
91,5%; CDC: 91,8%). Toda DC in DDC sta dosegla nekoliko boljše rezultate kot CDC

96 8.5 Rezultati

F
igure

8.1:
P
rim

erjava
uspešnostinašega

predlaganega
asociativnega

klasifikatorja.

INDEX 97

glede klasifikacijskih pravil z 22 oziroma 36. Čeprav je CDC dosegel boljšo pokritost
kot DC, je dosegel slabše rezultate glede klasifikacijskih pravil kot ta metoda.

Slika 8.2 predstavlja primerjavo med predlaganimi asociativnimi klasifikatorji
glede števila klasifikacijskih pravil.

Ker sta metodi DC in DDC enaki, smo jih združili v dobljeni sliki. Iz rezultata
lahko razberemo, da je metoda CDC ustvarila večji klasifikator kot DC in DDC na
večjih naborih podatkov. Natančneje, ko se velikost nabora podatkov poveča, CDC
običajno ustvari večje klasifikatorje kot DC in DDC.

8.6 Zaključek in nadaljnje delo

V tej disertaciji smo predstavili pet asociativnih klasifikatorjev. Prva dva - SA: enos-
tavni asociativni klasifikator (za vsako vrednost razreda je izbrano vnaprej določeno
število klasifikacijskih asociacijskih pravil) in J&B: asociativni klasifikator, ki temelji
na pokritosti (pravila se izberejo na podlagi pokritosti učnih primerov) - sta bila
uvedena kot del preliminarnih raziskav, da bi pokazali, da zmanjšanje minimalnega
zaupanja klasifikacijskih asociacijskih pravil, povečanje njihovega števila in pokritosti
učnih primerov povzroči večjo klasifikacijsko točnost naučenih modelov. Z uporabo
teh informacij so zadnji trije predlagani asociativni klasifikatorji, del naše glavne
raziskave, nove metode, katerih cilj je bistveno zmanjšati velikost naučenih modelov,
hkrati pa ohraniti njihovo klasifikacijsko točnost.

Trije novo-predlagani asociativni klasifikatorji so: DC (DC metoda temelji na
neposredni mere razdalje (IBDM), metoda za identifikacijo reprezentativnega klasi-
fikacijskega asociacijskega pravila pa temelji na središču skupine (RCC)), DDC
(metoda DDC temelji na neposredni meri razdalje (IBDM), metoda za identifikacijo
reprezentativnega klasifikacijskega asociacijskega pravila pa temelji na pokritosti
učnih primerov (RDC)) in CDC (metoda CDC temelji na kombinirani meri razdalje
(WCDM), metoda za identifikacijo reprezentativnega klasifikacijskega asociacijskega
pravila pa temelji na pokritosti učnih primerov (RDC)). Vsi trije asociativni klasi-
fikatorji temeljijo na združevanju v skupine.

Rezultati eksperimentalne evalvacije kažejo, da smo zastavljene raziskovalne cilje
dosegli, saj naše predlagane metode producirajo kompaktne in smiselne, a hkrati
natančne klasifikatorje z uporabo izčrpnega preiskovanja prostora učnih primerov ter
uporabo omejitev in razvrščanja v skupine. Predlagane metode DC, DDC in CDC so
tako znatno zmanjšale število klasifikacijskih pravil, hkrati pa ohranile klasifikacijsko
točnost, ki ni bila signifikantno različna od tiste pri najsodobnejših algoritmih za
klasifikacijo. Poleg tega eksperimenti kažejo, da je bilo število naučenih pravil pri
naših klasifikatorjih, v primerjavi s sodobnimi klasifikacijskimi algoritmi, v povprečju
2 do 4-krat manjše. To razmerje je bilo še večje pri učnih množicah z večjim številom
primerov.

Glavna pomanjkljivost predlaganih metod je njihova časovna zahtevnost.
Medtem ko nekateri algoritmi za klasifikacijo (npr. C4.5 ali PART) uporabljajo
požrešni pristop deli-in-vladaj, ki je zelo hiter, drugi uporabljajo pristope razveji-in-
omeji, prekrivni pristop in/ali druge t.i. "izčrpne" pristope, ki so veliko počasnejši.
Naše predlagane metode spadajo v slednjo kategorijo metod, ki uporabljajo izčrpno

98 8.6 Zaključek in nadaljnje delo

F
igure

8.2:
P
rim

erjava
m
ed

našim
predlaganim

asociacijskim
klasifikatorjem

in
ostalim

i
m
odeli

glede
velikosti

na
izbranih

naborih
podatkov.

INDEX 99

preiskovanje prostora učnih primerov za iskanje "dobrih" klasifikacijskih asociacijskih
pravil. Poleg tega pa, v fazi post-procesiranja, uporabijo še razvrščanje v skupine,
da bi še dodatno zmanjšale število klasifikacijskih asociacijskih pravil, kar se dodatno
pozna na časovni in prostorski zahtevnosti.

V nadaljnjem delu nameravamo predlagane metode DC, DDC in CDC opti-
mizirati ter tako njihovo časovno zahtevnost vsaj nekoliko približali najsodobnejšim
algoritmom za učenje pravil, ki temeljijo na principu "deli-in-vladaj", kar jih bo
naredilo primernejše za analizo masovnih podatkov. Poleg tega je najprej potrebna
analiza časovne zahtevnosti naših metod, da se opredelijo deli naših algoritmov, ki
jih je mogoče optimizirati ali povzporediti.

Druga obetavna usmeritev za nadaljnje raziskave asociativnih klasifikatorjev je
raziskati načine vključevanja numeričnih atributov v modele. Na tem področju že
potekajo raziskave, vendar lahko uporaba razvrščanje v skupine na klasifikacijskih
asociacijskih pravilih odpre nove, potencialno zanimive poglede na to področje.

V naši raziskavi smo za razvrščanje v skupine klasifikacijskih asociacijskih pravil
uporabili hierarhično aglomerativno metodo razvrščanja v skupine s privzetimi
parametri. Uporaba različnih sklopov parametrov razvrščanja v skupine ali celo
različnih algoritmov razvrščanja v skupine in/ali različne mere razdalje so vse možne
usmeritve za prihodnje raziskave glede učenja natančnih, učinkovitih, smiselnih in
kompaktnih klasifikatorjev.

8.7 Prispevki k znanosti

Rezultati te doktorske disertacije bodo prispevali k znanosti na področju raču-
nalništva, natančneje na področjih podatkovnega rudarjenja in strojnega učenja.
Prispevki doktorske disertacije k znanosti so sledeči:

• Predlagali smo nove (smiselne) mere razdalje (podobnosti) za izračun podob-
nosti med klasifikacijskimi asociacijskimi pravili. Ker v literaturi ni najti dovolj
mer podobnosti (razdalje) med klasifikacijskimi asociacijskimi pravili, bo to
pomembno prispevalo k znanosti na tem področju. V tem raziskovalnem delu
smo predlagali dve normalizirani meri razdalje: prva, neposredna mera razdalje
(ki upošteva strukturo klasifikacijskih asociacijskih pravil) in druga, kombini-
rana mera razdalje (ki upošteva tako strukturo pravil, kot njihovo pokritost
učnih primerov) - združuje neposredno in posredno mero razdalje;

• Z uporabo normalizirane mere podobnosti (razdalje) identificiramo skupine
klasifikacijskih asociacijskih pravil in samodejno določimo optimalno število
identificiranih skupin;

• Definiramo dve metodi (na podlagi težišča skupin in skupne pokritosti učnih
primerov za posamezno skupino) za identifikacijo reprezentativnega klasifikaci-
jskega asociacijskega pravila znotraj vsake skupine pravil. Ta reprezentativna
klasifikacijska asociacijska pravila na koncu tvorijo kompaktni in smiselni klasi-
fikator;

100 8.7 Prispevki k znanosti

• Implementiramo vse predlagane metode v novo aplikacijo, ki jo uporabimo za
reševanje realnih problemov na "dobro poznanih" množicah učnih primerov.

Kazalo vsebine

Kazalo slik viii

Kazalo algoritmov ix

Kazalo tabel x

1 Uvod 1
1.1 Znanstveno ozadje . 1

1.1.1 Asociacijska pravila . 3
1.1.2 Klasifikacijska pravila . 3
1.1.3 Razvrščanje v skupine . 7

1.2 Pregled literature . 9
1.3 Prispevki k znanosti in metodologija 12
1.4 Pregled vsebine . 14

2 Odkrivanje klasifikacijskih asociacijskih pravil 17
2.1 Algoritmi za rudarjenje pogostih postavk 17

2.1.1 (naivna) Metoda s surova silo 18
2.1.2 APRIORI (nivojski) pristop 19
2.1.3 ECLAT algoritem . 20
2.1.4 Pristop pogostih dreves vzorcev: algoritem FP-Growth 21

2.2 Klasifikacijska asociacijska pravila . 23

3 Asociativna klasifikacija 25
3.1 Preprost pristop k asociativni klasifikaciji (SA) 25

3.1.1 Eksperimentalna evalvacija SA pristopa 28
3.2 Asociativna klasifikacija po J&B pristopu 31

3.2.1 Eksperimentalna evalvacija J&B pristopa 39

4 Mere razdalje 47
4.1 Indirektne mere razdalje . 47
4.2 Nova “direktna” mera razdalje . 50
4.3 Nova “kombinirana” mera razdalje 51

102 8.7 Prispevki k znanosti

5 Identifikacija skupin klasifikacijskih asociacijskih pravil (CAR) 53
5.1 Particijski algoritem razvrščanja v skupine 53
5.2 Hierarhični algoritem razvrščanja v skupine 55

6 Identifikacija reprezentativnega klasifikacijskega asociacijskega
pravila znotraj skupine 59
6.1 Reprezentativno pravilo (CAR), ki temelji na težišču skupine 59
6.2 Reprezentativno pravilo (CAR), ki temelji na pokritosti primerov . . 59
6.3 Končni asociativni klasifikator . 60

7 Eksperimentalna evalvacija in diskusija 64
7.1 Diskusija rezultatov . 71

8 Zaključki in nadaljnje delo 75

Literatura in viri 76

Stvarno kazalo 86

Povzetek v slovenskem jeziku 87

Kazalo (v slovenskem jeziku) 101

Stvarno Kazalo (v slovenskem jeziku) 103

Stvarno Kazalo

ActOcc(R), 23
Conf(R), 23
Supp(R), 23
dCMBP, 48
α, 51
dWCDM, 51
dAMBD, 48
dCMBL, 49
AHCCLC, 57
AHCCLH, 57
numrules, 27
“razredno odvisna” diskretizacija, 25

APRIORI, 18
asociacijska pravila (AP), 1
asociativna klasifikacija (AK), 1
atribut, 3

C-množica ID-jev, 10
CDC, 63

DC, 63
DDC, 63
direktna mera razdalje, 12

evklidska razdalja, 47

F-mera, 39
FP-drevo, 22
FP-growth, 18

hierarhično razvrščanje v skupine, 2

indirektne mere, 12
izčrpno iskanje, 75

klasifikacijska asociacijska pravila, 8
klasifikator, 25

kombinirana mera razdalje (WCDM),
51

kompaktno, 26

L, 65

manjkajoče vrednosti, 71
meja, 51
mera podobnosti, 12
mera razdalje temelječa na postavkah

(IBDM), 50
mere ustreznosti, 31
mere zanimivosti, 11
minimalna podpora, 2
minimalno zaupanje, 2

N, 65
nadzorovano učenje, 1
natančnost, 38
nenadzorovano učenje, 2
neprekrivajoča se pravila, 48
neuravnovešene podatkovne množice,

2

objekti, 53
od spodaj navzgor, 2
od zgoraj navzdol, 12
odločitvena drevesa, 7
optimalno število skupin, 8
osamelci, 54

parni T-test, 31
podatkovno rudarjenje, 1
podobnost znotraj skupine, 53
pogojni del, 23
pokritost primerov, 9

popolna povezanost (najoddaljenejši
sosed), 57

posledični del, 23
predponsko drevo, 20
prekomerno prileganje, 9
preprost asociativni klasifikator, 75
prečno preverjanje, 40
priklic, 38
problem nakupovalnih košaric, 3
problem prekrivanja znotraj razreda,

60
problem prekrivanja zunaj razreda, 59
proces odločanja, 3

razred, 12
razvrščanje v skupine, 2
RCC, 59
RDC, 60
realni podatki, 1
referenčna točka, 55
reprezentativni CAR, 13
rezanje dendrograma, 8
rudarjenje klasifikacijskih pravil, 1
rudarjenje množic pogostih postavk, 3

SA, 26
skupno pokritje, 31

statistika, 1
statistično primerljivo, 65

tehnike rezanja, 2
temelječ na pravilih, 2
tesnost, 12
testiranje statistične značilnosti, 31
testna množica, 29
točnost, 2
transakcijski, 1

umetna inteligenca , 1
upravljanje odnosov s strankami, 4
ustavitveni kriterij, 31

vertikalni format, 10
več-dimenzionalna množica podatkov,

3
večinska razredna vrednost, 69

W, 65

zapis, 17
zdravstvena diagnoza, 4
zmanjšati število klasifikacijskih

pravil, 2

časovna učinkovitost, 75

Declaration

I declare that this PhD Thesis does not contain any materials previously published
or written by another person except where due reference is made in the text.

JAMOLBEK MATTIEV

	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Scientific Background
	Association Rules
	Classification Rules
	Cluster Analysis

	Literature Review
	Contribution to Science and Methodology
	Content Guide

	Discovery of Class Association Rules
	Frequent Itemsets Mining Algorithms
	Brute-Force (Naive) Method
	APRIORI (Level-Wise) Approach
	ECLAT algorithm
	Frequent Pattern Tree Approach: FP-Growth algorithm

	Class Association Rules

	Associative Classification
	Simple Associative Classification Approach (SA)
	Experimental Evaluations of SA Approach

	J&B Associative Classification Approach
	Experimental Evaluations of J&B Approach

	Distance Metrics
	Indirect Distance Metrics
	The New “Direct” Distance Metric
	The New “Combined” Distance Metric

	Identifying the Clusters of CARs
	Partitional clustering algorithms
	Hierarchical clustering algorithms

	Identifying the Cluster Representative Class Association Rule
	Representative CAR based on cluster center (RCC)
	Representative CAR based on dataset coverage (RDC)
	Final associative classifier

	Experimental Evaluations and Discussion
	Discussion of Results

	Conclusion and Future Work
	Bibliography
	Index
	Povzetek v slovenskem jeziku
	Uvod
	Znanstvena izhodišca
	Klasifikacijska pravila
	Pogoste podmnožice in asociacijska pravila
	Klasifikacijska asociacijska pravila

	Opredelitev problema
	Raziskovalna vprašanja, hipoteze in cilji
	Definicija mere podobnosti klasifikacijskih asociacijskih pravil
	Ugotavljanje skupin za klasifikacijska asociacijska pravila
	Ugotavljanje reprezentativnega klasifikacijskega asociacijskega pravila za posamezno skupino pravil
	Eksperimentalna evalvacija

	Rezultati
	Diskusija

	Zakljucek in nadaljnje delo
	Prispevki k znanosti

	Kazalo
	Stvarno kazalo

