
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Master’s thesis

(Magistrsko delo)

Graph search algorithms and structure of graph search trees

(Algoritmi iskanja na grafih in struktura iskalnih dreves)

Ime in priimek: Nevena Pivač

Študijski program: Računalnǐstvo in informatika, 2. stopnja

Mentor: doc. dr. Matjaž Krnc

Koper, avgust 2020

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Nevena PIVAČ

Naslov magistrskega dela: Algoritmi iskanja na grafih in struktura iskalnih dreves

Kraj: Koper

Leto: 2020

Število listov: 90 Število slik: 28 Število tabel: 3

Število referenc: 43

Mentor: doc. dr. Matjaž Krnc

UDK: 519.17(043.2)

Ključne besede: iskanje na grafih, iskalno drevo, polinomski algoritem, iskanje v širino,

iskanje v globino, seznam vozlǐsč

Math. Subj. Class. (2020): 05C85, 68R10, 05C75

Izvleček:

V magistrskem delu obravnavmo metode iskanja na grafih. Iskanje na grafih pred-

stavlja sistematičen obisk vozlǐsč grafa, tako da začnemo v enem vozlǐsču grafa in se

sprehajamo po grafu, pri čemer v naslednjem koraku iteracije obǐsčemo vozlǐsče, ki

že ima obiskanega soseda v tem grafu. V delu opǐsemo naslednje metode iskanja na

grafih: iskanje v širino (BFS), iskanje v globino (DFS), leksikografsko iskanje v širino

(LexBFS), leksikografsko iskanje v globino (LexDFS), iskanje po maksimalni kardinal-

nosti (MCS) in iskanje po maksimalni soseščini (MNS).

V delu podamo pregled znanih rezultatov omenjenih metod iskanja, posebnosti časovno

učinkovite implementacije in karakteriziramo sezname vozlǐsč v grafu, ki so lahko rezul-

tat določenega iskanja na grafu. Potem se osredotočimo na zveze vsebovanosti med

določenimi metodami iskanja na grafih in karakteriziramo grafe, za katere drži, da je

vsak iskalni seznam vozlǐsč iskalne metode A tudi rezultat iskalne metode B.

V zadnjem delu naloge se osredotočimo na iskalna drevesa. Študiramo problem pre-

poznavanja iskalnih dreves in predstavimo NP-težke različice problema. Podamo tudi

polinomske algoritme za določene različice problema (prepoznavanje iskalnih dreves

za BFS, DFS, in LexDFS). Omenjene polinomske algoritme za prepoznavanje iskalnih

dreves grafa implementiramo v programskem jeziku SageMath.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 III

Key document information

Name and SURNAME: Nevena PIVAČ

Title of the thesis: Graph search algorithms and structure of graph search trees

Place: Koper

Year: 2020

Number of pages: 90 Number of figures: 28 Number of tables: 3

Number of references: 43

Mentor: Assist. Prof. Matjaž Krnc, PhD

UDC: 519.17(043.2)

Keywords: graph search, search tree, polynomial-time algorithms, BFS, DFS

Math. Subj. Class. (2020): 05C85, 68R10, 05C75

Abstract: In the thesis we consider graph search methods, the methods of systematic

visiting the vertices of a graph so that at every step we visit a neighbor of some

already visited vertex. In the thesis we describe the following search methods: Breadth

First Search (BFS), Depth First Search (DFS), Lexicographic Breadth First Search

(LexBFS), Lexicographic Depth First Search (LexDFS), Maximum Cardinality Search

(MCS), and Maximal Neighborhood Search (MNS). There are two possible outcomes

of a graph search method: a search ordering and a search tree.

In the first part of the thesis we give an overview of known results of the proposed search

methods, details of efficient implementations and structural results characterizing when

a given ordering of vertices in G is a search ordering of a given type.

In the second part of the thesis we study the inclusion relations among various search

methods, and characterize graphs in which every search ordering of a type A is also a

search ordering of type B.

The last part of the thesis is devoted to search trees. We study the problem of search

tree recognition and give hardness results for some variants of the problem. Further, we

give polynomial-time algorithms that solve some variants of a problem (polynomial-

time algorithms for solving the search tree recognition problem for BFS, DFS and

LexDFS). Finally, we implement the proposed polynomial-time algorithms in the pro-

gramming language SageMath.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 IV

Acknowledgements

I express my deep gratitude to my advisor Matjaž Krnc for his time, patience and

all suggestions during the development of my Master’s thesis. Also, I would like to

thank Martin Milanič, as well as to Nina Chiarelli, Ekki Köhler, Martin Strehler, Jesse

Beisegel and Robert Scheffler for giving me the opportunity to collaborate with them

and to study the problems presented in this thesis.

Hvala mojoj porodici.

Posebno hvala Darku za svu podršku, toleranciju, razumijevanje, i ljubav.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 V

List of Contents

1 Introduction 1

2 Theoretical background 4

2.1 Graphs and digraphs . 4

2.2 Complexity theory . 7

3 Graph Search Algorithms 11

3.1 Generic Search . 12

3.2 Breadth First Search . 14

3.3 Depth First Search . 16

3.4 Lexicographic Breadth First Search . 19

3.5 Lexicographic Depth First Search . 26

3.6 Maximum Cardinality Search . 29

3.7 Maximal Neighborhood Search . 33

4 Relations Among Search Orderings 37

4.1 Breadth First Search vs Lexicographic Breadth First Search 38

4.2 Depth First Search vs Lexicographic Depth

First Search . 42

4.3 Maximal Neighborhood Search vs Maximum Cardinality Search 45

4.4 Maximal Neighborhood Search vs Lexicographic BFS/DFS 46

5 Graph Search Trees 51

5.1 Last-in Trees . 53

5.1.1 DFS trees . 54

5.1.2 LexDFS trees . 56

5.2 First-in Trees . 59

5.2.1 BFS trees . 59

5.2.2 NP-hardness . 66

6 Implementation 70

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 VI

7 Conclusion 75

8 Povzetek naloge v slovenskem jeziku 76

9 References 78

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 VII

List of Tables

1 Partition refinement example. 22

2 Complexity of the L-tree recognition problem. 54

3 Complexity of the F -tree recognition problem. 59

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 VIII

List of Figures

1 Conjectured relationships between some complexity classes. 9

2 Relations between various graph search methods. 11

3 The ordering σ is not a generic search ordering. 13

4 Generic search ordering characterization. 14

5 The ordering σ is not a BFS ordering. 15

6 BFS ordering characterization. 16

7 DFS ordering characterization. 18

8 An example of a LexBFS ordering. 20

9 The iteration steps of LexBFS. 21

10 LexBFS ordering. 24

11 An example of a LexDFS ordering. 27

12 The iteration steps of LexDFS. 27

13 LexDFS ordering characterization. 28

14 The ordering σ = (a, b, c, e, d, f, g) is an MCS ordering of G. 30

15 MCS ordering characterization. 32

16 MNS ordering characterization. 34

17 Relations between various graph search methods. 38

18 The orderings of a graph and its induced subgraph. 39

19 Some orderings of a paw and a diamond. 40

20 Orderings that are MNS and not MCS. 46

21 MNS orderigns that are not LexBFS or LexDFS. 47

22 A graph and its spanning trees. 52

23 Examples of graphs with their search trees. 53

24 A graph G with a spanning tree T . 58

25 An example of a BFS tree. 61

26 The recognition of a BFS tree on a graph G. 64

27 The tree-recognition is NP-hard for LexBFS. 67

28 The tree-recognition is NP-hard for MNS and MCS. 68

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 IX

List of Abbreviations

i.e. that is

e.g. for example

BFS Breadth First Search

DFS Depth First Search

LexBFS Lexicographic Breadtg First Search

LexDFS Lexicographic Depth First Search

MCS Maximum Cardinality Search

MNS Maximal Neighborhood Search

PEO perfect elimination order

itn. in tako naprej

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 1

1 Introduction

Graph search represents one of the fundamental algorithmic concepts in graph theory

and theoretical computer science. In general, graph search is defined as a method of

systematically visiting the vertices in a graph starting from a chosen vertex, and visiting

all the vertices in a graph so that at every step a vertex selected to be visited next is

a neighbor of some already visited vertex. Such a general definition of a selection rule

implies the existence of many vertices satisfying the requirement that they have some

already visited neighbor, so it leaves much freedom for which vertex will be selected

next. There exist various restrictions of the selection rule, and such restrictions define

the specific search methods. Among the oldest known search methods we can find the

Breadth First Search (BFS) and Depth First Search (DFS) [19]. Breadth First Search

is known as a method that at every step of iteration selects a vertex with the earliest

visited neighbor, while Depth First Search is known as a method that at every step of

iteration selects a vertex with most recently visited neighbor.

The selection rule can be defined in many different ways. For example, one may

require that at every step we select a vertex with the largest number of already vis-

ited neighbors, or a vertex whose visited neighborhood is not properly contained in

the neighborhood of some other unvisited vertex, etc. Various selection rules define

the new search methods. Besides BFS and DFS, in this thesis we consider their lexi-

cographic instance, Lexicographic Breadth First Search (LexBFS) and Lexicographic

Depth First Search (LexDFS), as well as Maximum Cardinality Search (MCS) and

Maximal Neighborhood Search (MNS).

There are two possible outcomes of a graph search: a search ordering and a search

tree. A search order of a graph G is a sequence of vertices in G in the order they

were visited by the search. A search tree of a connected graph G is a spanning tree

of G satisfying the requirement that every vertex is adjacent in T to exactly one its

previously visited neighbor from G. Clearly, the previously visited neighbor of a vertex

v is not uniquely determined. In the literature we can find two distinct formulations of

a search tree, known as F -tree and L-tree. In an F -tree every vertex is adjacent to its

first visited neighbor, while in an L-tree every vertex is adjacent to its most recently

visited neighbor.

We present the proposed graph search methods and give an overview of the related

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 2

known results in the field, as well as the details of the time-efficient implementation for

every search method. Furthermore, for every search method we give a characterization

of vertex orderings that can be obtained as a result of that search method.

As already mentioned, every search method is defined using some particular selec-

tion rule. If some selection rule is more restrictive than the other one, then the cor-

responding search method is a restriction (or a special instance) of the search method

defined with the more general selection rule. For instance, as we will see later, from

the definition of BFS and LexBFS it follows that LexBFS is a special instance of BFS,

meaning that the every LexBFS ordering of a graph G is a BFS ordering of a graph G.

A natural question that arises is: which conditions must hold for a graph G if every

LexBFS ordering of G is a BFS ordering of G? If the sets of vertex orderings pro-

duced by two different search methods are equal, we say that the corresponding search

methods are equivalent. We study the equivalence relations between the following pairs

of search methods: BFS and LexBFS, DFS and LexDFS, MNS and MCS, MNS and

LexDFS, MNS and LexBFS, and for almost all of them we characterize the graphs G

for which the particular equivalence holds.

Another possible outcome of a graph search method is a search tree. In literature

we can find the search tree recognition problem: the problem of determining whether

a given spanning tree of a graph G is a search tree of a graph G of given type. This

problem was first introduced by Hagerup in 1985 [24].

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V,E) and a spanning tree T .

Task: Decide whether there is a graph search of the given type such that

T is its F -tree (L-tree) of G.

We present the hardness results proving that the recognition of search trees is NP-

hard for F -trees of LexBFS, LexDFS, MCS and MNS on weakly chordal graphs [4].

Further, we give polynomial-time algorithms that solve some variants of a problem. In

particular, we present algorithms that solve the following problems:

1. An algorithm that recognizes whether a tree T is a DFS search tree of a graph

G rooted at vertex r ∈ V (G) [24],

2. An algorithm that recognizes whether a tree T is a LexDFS search tree of a graph

G rooted at vertex r ∈ V (G) [1],

3. An algorithm that recognizes whether a tree T is a BFS search tree of a graph G

rooted at vertex r ∈ V (G) [33].

In the last part of the thesis we present the implementation of the above-mentioned

polynomial-time algorithms in the programming software SageMath.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 3

Structure of the thesis. In Chapter 2 we give an overview of notations, definitions,

and fundamental theoretical results used in the thesis. The proposed search methods

and related known results are presented in Chapter 3. In Chapter 4 we study the

equivalence relations between different search methods. Chapter 5 is devoted to the

description of search trees, while Chapter 6 contains the details of the implementation of

the polynomial-time algorithms for the recognition of search trees in the programming

software SageMath.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 4

2 Theoretical background

In this chapter we provide the necessary definitions, notation, and fundamental results

used throughout the thesis. In the first section we introduce the basic graph theoretic

concepts and graph classes. The second section is devoted to classes of problems,

defined with respect to the computational complexity of a problem.

2.1 Graphs and digraphs

All graphs in this thesis are finite, either directed, or undirected. A simple undirected

graph without loops is denoted by G = (V,E), where V is a set of vertices and E ⊂
V × V a set of edges. In this work we will use the term graph for a simple undirected

graph. The number of vertices and edges in G is the cardinality of sets V and E, and

is denoted by n and m, respectively. An edge of a graph G between vertices u and v

is denoted by uv. Two vertices of a graph G = (V,E) are adjacent if uv ∈ E, and in

that case we say that u and v are neighbors in G. The set of all neighbors of a vertex

v ∈ V is denoted by NG(v), and the degree of a vertex v is defined as the number of

neighbors of v in G and is denoted by dG(v). The complement of a graph G = (V,E)

is the graph G whose vertex set is V , and edge set is {uv | u, v ∈ V, u 6= v, uv /∈ E}.
A simple directed graph, or a digraph, is denoted by D = (V,A) where V is a set

of vertices and A a set of arcs (or directed edges). In digraphs all arcs have distinct

endpoints, and two arcs forming a cycle of a length two are allowed. A directed edge

from u to v is denoted by u → v. Given a vertex v ∈ V , the set of incoming (resp.,

outcoming) directed edges of a vertex v is a set of all directed edges in D of type u→ v

(resp., v → u) in A.

An orientation of a graph G = (V,E) is a digraph obtained by assigning each edge

of G a direction. The underlying graph of a digraph D is the undirected graph created

using all of the vertices in D, and replacing all arcs in D with undirected edges, so that

multiple edges in the resulting graph are not allowed.

For a graph G = (V,E), a walk is defined as a sequence of alternating vertices and

edges such as v0, e1, v1, e2, ..., ek, vk where each edge ei = vi−1vi. A trail is a walk with

no repeated edges, while a path is a trail with no repeated vertices (and consequently

v0 6= vk). A cycle is defined as a trail satisfying v0 = vk where no other vertices are

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 5

repeated. A Hamiltonian path in a graph is a path between two vertices of a graph

that visits each vertex of the graph exactly once. With Cn and Pn we denote the cycle

and the path graphs on n vertices. The distance between two vertices u and v in G is

the length of a shortest path between u and v in G and is denoted by dG(u, v) (if no

path between u and v exists, then it is infinity). The eccentricity of a vertex v ∈ V (G)

is denoted by εG(v) and defined as εG(v) = maxu∈V (G) dG(u, v). If G is clear from the

context, we simply omit G from notation and write N(v), d(v), d(u, v), ε(v).

A clique in a G is a set of pairwise adjacent vertices in G, while an independent set

in G is a set of pairwise non-adjacent vertices in G. A graph G = (V,E) is complete if V

is a clique, and a complete graph on n vertices is denoted by Kn. A vertex is simplicial

if its neighborhood is a clique, universal if it is adjacent to every other vertex in the

graph, and isolated if it has degree 0.

Given a set S ⊆ V , the subgraph of G induced by S is a graph denoted by G[S] and

defined with vertex set S and edge set {uv ∈ E | u, v ∈ S}. An induced subgraph of

G is a graph induced by some set S ⊆ V . With G − S we denote the subgraph of G

induced by V (G) \ S. Given a graphs G and H, we say that G is H-free if G does not

contain H as an induced subgraph.

An ordering of vertices in a graph G is a bijection σ : V (G)→ {1, 2, . . . , n}. For an

arbitrary ordering σ of vertices in G we denote by σ(v) the position of a vertex v, and

by σ−1(i) the vertex placed on position i, for i ∈ {1, . . . , n}. Two vertices u, v ∈ V (G)

satisfy the relation u <σ v if σ(u) < σ(v), and in that case we say that u is to the left

of v and that v is to the right of u. If a directed graph D contains no cycle in which

all edges are oriented into the same direction, then D is a directed acyclic graph. A

topological sort or topological ordering of a directed acyclic graph is a linear ordering

of its vertices such that for every directed edge u → v from vertex u to vertex v, u

comes before v in the ordering.

A connected component of G = (V,E) is a subgraph of G induced by a maximal

set of vertices in G such that each pair of vertices is connected by a path. A vertex

v ∈ V is a cut-vertex (or a separating vertex) in G if its removal increases the number

of connected components in G. A graph G is connected if it has exactly one connected

component, 2-connected if it has at least three vertices and for all S ⊆ V containing

at most two vertices the graph G−S is connected, and (biconnected) if it is connected

and has no cut-vertices. An edge in a graph is called a bridge if its removal increases

the number of connected components in the graph.

The n-pan graph, denoted as C+
n , is the graph obtained by joining to a cycle Cn an

isolated vertex with a bridge. A graph is a pan if it is n-pan for some n. A paw is the

3-pan graph, a triangle is a C3, and a diamond is a C4 with one additional edge. A tree

is a connected graph in which every two vertices are connected by exactly one path,

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 6

or equivalently, it is an acyclic connected graph. A forest is a graph each connected

component of which is a tree. A rooted tree is a tree in which one vertex is determined

to be a root of the tree. In a rooted tree, an ancestor of a vertex v is any vertex on

the path from the root to vertex v, and a descendant of v is any vertex with ancestor

v. The parent of a non-root vertex v is the ancestor of v adjacent to v, while a child

of a vertex v is any vertex whose parent is v. Given a tree T and a vertex v in T ,

the subtree of v in T is a subtree of T consisting of v and all its descendants. Given a

connected graph G, a spanning tree in G is any tree T that has the same vertex set as

G and satisfies that E(T) ⊆ E(G).

Graph classes

A graph class is hereditary if it is closed under deletion of vertices (equivalently, if

it closed under induced subgraphs). An interval graph is a graph whose vertices can

be represented as intervals on the real line, with two vertices being adjacent if and

only if the corresponding intervals intersect. If additionally all intervals are of the

same length, then we have a unit interval graph. A graph is chordal if it does not

contain any induced cycle of length at least 4. A perfect elimination order (or a perfect

elimination scheme, abbreviated PEO) in G = (V,E) is an ordering of the vertices in

G such that for every vertex v ∈ V the neighbors of v that occur after v in the order

form a clique. Equivalently, it means that every vertex vi is simplicial in the subgraph

induced by all vertices that occur after vi (including vi) in the order. In the following

theorem we give a known characterization of chordal graphs.

Theorem 2.1 (Fulkerson and Gross [20]). A graph G is chordal if and only if G has

a perfect vertex elimination order. Moreover, any simplicial vertex can start a perfect

elimination order.

A graph is weakly chordal if neither the graph nor its complement contain an in-

duced cycle of a length at least 5. A k-partite graph is a graph whose vertices can

be partitioned into k pairwise disjoint independent sets. If there is an edge between

any two vertices in different independent sets, then the graph is a complete k-partite

graph. A graph is complete multipartite if it is complete k-partite for some k ≥ 1. A

(complete) 2-partite graph is also called a (complete) bipartite graph. A graph G is

bipartite permutation if it is bipartite and if there exists some pair P,Q of permutations

of V (G) such that there is an edge between vertices x and y if and only if x precedes

y in one of P,Q, while y precedes x in the other.

A transitive orientation of a graph G = (V,E) is an orientation (V,A) of all edges

in G such that for any three vertices a, b, c ∈ V it holds that a → b ∈ A and b →
c ∈ A imply that a → c ∈ A. A comparability graph is a graph that has a transitive

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 7

orientation. A cocomparability graph is a graph whose complement is comparability.

The ordering σ = (v1, . . . , vn) of vertices in a graph G is said to be a cocomparability

ordering if for any i, j, k ∈ {1, . . . , n} with i < j < k we have that vivk ∈ E implies

that vivj ∈ E or vjvk ∈ E. Kratch and Stewart showed that a graph G = (V,E) is a

cocomparability graph if and only if it has a cocomparability ordering [29].

An asteroidal triple in a graph G = (V,E) is an independent triple of vertices such

that for any two of them there is a path that does not intersect the closed neighborhood

of the third one. An asteroidal-triple-free graph (AT-free) graph is a graph that does

not contain any asteroidal triple.

In the following we give a result by Olariu, characterizing the paw-free graphs,

which will be used in some proofs in this thesis.

Theorem 2.2 (Olariu [36]). A paw-free graph is either triangle-free, or complete mul-

tipartite.

2.2 Complexity theory

One of the most important things in the study of particular decision or optimization

problems is the time needed to get a solution of the problem. Clearly, the time necessary

to solve a given problem depends on input size. The running time of an algorithm is

standardly defined as the function mapping a given positive integer n to the maximum

number of arithmetic operations and comparisons that the algorithm performs on an

input instance of size n. In complexity theory, problems are divided into classes with

respect to the running time of algorithms that solve them. So we say that a problem

is solvable in polynomial time if there exists an algorithm that solves it in time that is

bounded by a polynomial function of input size.

A fundamental complexity class is class P, which consists of problems solvable in

polynomial time. Class P is considered to be the set of problems that can be solved

efficiently. Inside the class P we can distinguish problems depending on the degree of

the polynomial function that bounds the time necessary to solve them. So the easiest

among them are problems for which that function does not depend on the size of the

input - the problems solvable in constant time. This means that there is a constant

c such that the running time of the algorithm that solves the problem is at most c,

no matter how large the input is. In general, we can think about the function f as

f(n) = c = cn0, meaning that f has as a factor the size of input to the power 0.

If we go one step further, we get problems for which the algorithm has to sequentially

read its entire input, that is, there is no constant c that bounds the time complexity

of the algorithm that solves the problem. The easiest among them are problems for

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 8

which the time needed to solve the problem increases at most linearly with the size

of the input. More precisely, a function f is a linear function in the size of input -

it has a factor of input to the power at most 1. If a problem is bounded by function

linear in the size of input, we say that it is solvable in linear time. In the particular

problem on a graph G = (V,E) can be solved in linear time, then the algorithm that

solves the problem sequentially read the vertices and the edges of G, meaning that the

execution time of the algorithm is O(|V |+ |E|). Linear time is the best possible time

complexity in situations where the time complexity is not bounded by constant, and

much research has been invested into discovering algorithms exhibiting linear time or,

at least, nearly linear time.

A decision problem Π for which it may not be known whether there exists a

polynomial-time algorithm that solves it, but for any input I such that Π(I) gives

answer yes, there exists a certificate C such that using C, the fact that Π(I) gives an-

swer yes can be verified in time polynomial in the size of input I, is said to be solvable

in non-deterministic polynomial time. Such problems define the complexity class NP.

Clearly, a yes instance of any polynomial-time solvable problem Π can be verified in

polynomial time, so it is true that P ⊆ NP. Whether the converse inclusion holds is

far from trivial and is a major open question, with a conjecture that P 6= NP. In par-

ticular, the conjectured set of problems that are supposed to belong to class NP and

not to the class P is of special research interest. A problem Π is said to be NP-hard if

the existence of a polynomial-time algorithm that solves Π implies the existence of a

polynomial-time algorithm for any problem in the class NP. It means that the existence

of a polynomial-time algorithm for at least one NP-hard problem implies the equality

between sets P and NP.

Among the NP-hard problems, problems belonging to the class NP are of special

interest. We say that a problem Π is NP-complete if it is in NP and if every problem

in NP polynomially reduces to Π. Clearly, every NP-complete problem is NP-hard,

but there are also NP-hard problems that are not in NP. A conjectured relationships

between complexity classes mentioned here are displayed in Fig. 1.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 9

NP

P

NP-hard

NP-complete

Figure 1: Conjectured relationships between some complexity classes.

Under the assumption that the set of NP-complete problems is non-empty, we can

say that NP-complete problems are the hardest problems in NP [21]. The existence of a

polynomial-time algorithm for any one of them implies the existence of a polynomial-

time algorithm for all of them. One of the fundamental results in this area is the

first NP-completeness proof in the literature, guaranteeing that the set of NP-complete

problems is non-empty. It is known as Cook’s Theorem and proves the NP-completeness

of a problem called Satisfiability [10].

Satisfiability

Instance: A set U of binary variables x1, x2, . . . , xn, a collection C of clauses

representing disjunctions of elements in U or their negations.

Question: Is there a satisfying truth assignment for C?

The family of known NP-complete problems is growing rapidly, so nowadays there

are thousands of problems proved to be NP-complete. Among them we can find a

problem known under the name 3-Satisfiability (abbreviated 3-Sat) representing

the special case of Satisfiability where each clause has exactly three elements.

3-Satisfiability

Instance: A set U of binary variables x1, x2, . . . , xn, a collection C of clauses

representing disjunctions of exactly 3 elements, either in U or their

negations.

Question: Is there a satisfying truth assignment for C?

In order to prove that some problem Π belongs to the class of NP-complete prob-

lems, it suffices to show that Π ∈ NP and that Π is at least as hard as some other

problem in NP, or, in other words, that using a polynomial-time algorithm for prob-

lem Π we can construct a polynomial-time algorithm for some problem in NP. Such a

correspondence between two problems is called a polynomial reduction.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 10

Definition 2.3. A decision problem Π1 can be polynomially reduced to a decision

problem Π2 if there exists a function f that, given an input I1 for Π1, constructs an

input I2 = f(I1) for Π2 and has the following properties:

1. f(I1) can be computed in time that is polynomial in the size of I1,

2. problem Π1 has answer yes for input I1 if and only if problem Π2 has answer yes

for input f(I1).

Such a reduction is also called Karp’s reduction [26].

The following theorem by Garey et al. [21] characterizes NP-complete problems

using the notion of polynomial reduction.

Theorem 2.4. A problem Π is NP-complete if and only if it is in NP and there exists

an NP-complete problem that polynomially reduces to Π.

Here we list some known NP-complete problems that appear in this work (for details

see [21]).

Hamiltonian path

Instance: A graph G = (V,E).

Task: Decide whether there is a Hamiltonian path in G.

Maximum independent set

Instance: A graph G = (V,E).

Task: Find an independent set of maximum cardinality in G.

Minimum clique cover

Instance: A graph G = (V,E).

Task: Find a partition (V1, . . . , Vk) of V with minimum k such that every

Vi, i ∈ {1, . . . , k} is a clique.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 11

3 Graph Search Algorithms

Graph search represents a fundamental concept in theoretical computer science. It is

known as a general method for traversing the vertices of a graph, and many graph

algorithms use some graph search method for traversing the vertices in a given graph.

In general, graph search is a method of systematically visiting all vertices in the given

graph, starting in some initial vertex and iteratively visiting vertices in a graph such

that a new vertex is visited only if it is has a neighbor that is already visited [15]. In a

most general instance of a graph search method, at every step of iteration we can have

many unvisited vertices satisfying the requirement that each of them have some visited

neigbor; in that case one can choose arbitrarily the next visited vertex. Graph search

methods are an old and well studied concept in theoretical computer science, and some

particular types of graph search methods were used in 19th century for solving the

maze problems (see [15]).

A very general definition of a graph search leaves much freedom for a selection rule

determining which node is chosen next. By defining some specific rule that restricts

this choice, various different graph search methods can be defined. If no such rule is

defined, then we have a generic search method. Other search methods presented in

this work are Breadth First Search, Depth First Search, Lexicographic Breadth First

Search, Lexicographic Depth First Search, Maximum Cardinality Search and Maximal

Neighborhood Search. The relations between the proposed graph search methods are

presented in Fig. 2.

Generic Search

BFS DFS
MNS

MCSLexBFS LexDFS

Figure 2: Relations between various graph search methods.

Some important concepts regarding a graph search method are its implementation

and its outcome. There are two usual outcomes of a graph search: a search ordering

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 12

and a search tree. The algorithms we present here mostly work for connected graphs,

while for disconnected graphs, the algorithm should be executed on each connected

component. In this section we present some known search methods and give their

vertex ordering characterizations, while in Chapter 5 we focus on graph search trees.

3.1 Generic Search

A generic search represents a most general search method. The only requirement that

the search should satisfy is to visit at each step a neighbor of some of already visited

vertices, without any additional requirements. It means that given a connected graph

G whose all vertices are unnumbered, we take some vertex s ∈ V (G) to be a starting

vertex, and we choose one of the edges incident with s to traverse. This leads us to a

new vertex. Every time we reach some vertex, we assign a number to it, and proceed

traversing edges incident with numbered vertices. Every edge is traversed at most

once, and if an edge leads us to some already numbered vertex, we traverse another

one. Then we repeat the process until all the vertices are numbered. The generic search

algorithm is given in Algorithm 1.

Algorithm 1: Generic search.

Input: Connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 S ← {s};
3 for i← 1 to n do

4 pick and remove an unnumbered vertex v from S;

5 σ(v)← i;

6 foreach unnumbered vertex w adjacent to v do

7 add w to S;

Any vertex ordering produced as a result of some search method on a graph is

also generic search ordering, so sometimes the ordering of vertices produced by generic

search is called just a search order. However, it is not true that any ordering of the

vertices of a graph is a (generic) search order.

Example 3.1. Let G be a graph on Fig. 3. It is not difficult to see that, for instance,

the orderings σ1 = (a, b, c, d, e), or σ2 = (b, d, c, e, a) are (generic) search orderings,

while the ordering σ3 = (a, b, e, c, d) cannot be the result of a generic search on the

graph G, since at the moment when the vertex e is added to σ3, it was not the neighbor

of any already visited vertex.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 13

If σ is a generic search ordering of a graph G, then for any vertices a, b ∈ V (G)

such that a <σ b and ab /∈ E(G) there should exist some vertex d that appears before

b in σ and satisfies that db ∈ E(G). In order to recognize the orderings of vertices in a

graph that can be the result of a generic search on that graph, in the following theorem

we give a characterization of a generic search ordering, showed by Corneil and Krueger

in [15] (see Fig. 4).

a

b d

c

e

Figure 3: The ordering σ = (a, b, e, c, d) is not a generic search ordering of this graph.

Theorem 3.2 (Corneil and Krueger [15]). Let G = (V,E) be a graph. An ordering σ

of V is a search ordering of G if and only if the following holds: if a <σ b <σ c and

ac ∈ E and ab /∈ E, then there exists a vertex d such that d <σ b and db ∈ E.

Proof. Let G be a graph and let σ be a generic search ordering of G. Let a <σ b <σ c

be arbitrary triple of vertices in G such that ac ∈ E and ab /∈ E. In the moment

when b was added to σ, it was an element of a set S from Algorithm 1. From step 6 of

algorithm it follows that the only possibility for b to become an element of S is to be a

neighbor of some vertex numbered before b. Let d be such a vertex. Then σ(d) < σ(b)

and db ∈ E.

For a proof of the other direction, assume that σ is an ordering of vertices in G such

that for every a <σ b <σ c with ac ∈ E, ab /∈ E, there exists a vertex d, d <σ b and

db ∈ E. Assume that σ is not a generic search ordering of G, and let v1, v2, . . . , vi be the

maximal initial segment (prefix) of σ that can be obtained by Algorithm Algorithm 1,

with i ≥ 1. This means that v1, v2, . . . , vi, vi+1 cannot be obtained by Algorithm 1, and

the vertex vi+1 is the first vertex that cannot be obtained by generic search algorithm.

At each step of the algorithm we choose a vertex from the set S, so it follows that in

the moment when we wanted to add (i+ 1)-st vertex to σ, vi+1 was not an element of

S, so vi+1 is not adjacent with any vertex in {v1, . . . , vi}. Let w be a vertex that could

be chosen by Algorithm 1 after vi. It follows that in the (i + 1)-st step of iteration

w ∈ S and thus w has a neighbor among vertices {v1, . . . , vi}. Let vj be a neighbor of

w, such that j ∈ {1, . . . , i}. Consider now the vertices vj, vi+1 and w. In ordering σ

they satisfy vj <σ vi+1 <σ w. From the discussion above we have that vjw ∈ E, and

vjvi+1 /∈ E. The property of σ then implies that there exists a vertex d, with d <σ vi+1

such that dvi+1 ∈ E. But vertices satisfying d <σ vi+1 in σ are {v1, . . . , vi}, and none

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 14

of them is a neighbor of vi+1; a contradiction. It follows that σ is a search ordering of

G.

a b c

d

Figure 4: A vertex ordering corresponding to Theorem 3.2. Solid lines represent

edges, dashed line represents the non-edge.

3.2 Breadth First Search

Breadth First Search (BFS) represents one of the fundamental algorithms and subrou-

tines in computer science. It is a restriction of a generic search which puts unvisited

vertices in a queue and visits a first vertex from the queue in the next iteration. After

visiting a particular vertex, all its unvisited neighbors are put at the end of the queue,

in arbitrary order (see Algorithm 2).

Algorithm 2: Breadth First Search.

Input: A connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 Q = {s}; i = 1;

3 foreach v ∈ Q do

4 σ(v)← i; i++;

5 foreach unvisited neighbor w of v with w /∈ Q do

6 append w to Q

7 return σ

BFS was first introduced in 1959 by Moore [35] and was used for solving the maze

traversal problems. A nice property of BFS is that any BFS starting in a vertex v of

a graph G results in a rooted tree (with root v), which contains all the shortest paths

from v to any other vertex in G (see [19]). This results in a layered structure of the

vertices of given graph, with every layer containing the vertices that are at the same

distance from the root. BFS can be implemented to run in time O(|V (G)| + |E(G)|),
so it represents a subroutine in many efficient graph algorithms. In particular, using

BFS to find an augmenting path provides a polynomial-time implementation of the

Ford-Fulkerson maximum flow algorithm [18].

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 15

Theorem 3.3 (Even [19]). Let G be a graph and let v ∈ V (G). If σ is an ordering

of vertices of G produced by BFS starting on v in G, then for any distinct vertices

u,w ∈ V (G) \ {v} with dG(v, u) > dG(v, w) it holds that σ(u) > σ(w).

Although BFS results in an ordering that preserves the distances from the starting

vertex, the converse is not true. That is, there exists a graph G, and an ordering σ

of vertices in G that satisfies σ(v) = 1 such that for any two distinct vertices u,w ∈
V (G) \ {v} it holds that dG(v, u) > dG(v, w) implies that σ(u) > σ(w), but σ is not a

BFS ordering on G.

Example 3.4. Let G be the graph consisting of six vertices, depicted in Fig. 5. Let

σ = (a, b, c, f, d, e) be an ordering of vertices in G. It is clear that σ satisfies the

requirement of non-decreasing distances from vertex a. However, it is not true that σ

is a BFS ordering on G, since once we start BFS in the vertex a, no matter how we

proceed, it will be true that vertex e either appears before vertex d, or before vertex

f in a queue, meaning that e cannot be the last visited vertex in a BFS on G starting

in a.

e

f

d

c

b

a

Figure 5: The ordering σ1 = (a, b, c, f, d, e) cannot be the result of any BFS, although

it represents the distance-layered structure of the graph. An example of a BFS

ordering is σ2 = (a, b, c, d, e, f).

The above example motivates the study of properties of BFS orderings on some

graph, so in the following theorem we present the characterization of a BFS ordering

(see Fig. 6).

Theorem 3.5 ([Corneil and Krueger [15]). [30]] An ordering σ of V is a BFS-ordering

if and only if the following holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there

exists a vertex d such that d <σ a and db ∈ E.

Proof. Let σ be a BFS ordering of a graph G = (V,E). We want to prove that σ

satifies the desired property from theorem. Let a, b, c be arbitrary vertices satisfying

a <σ b <σ c, ac ∈ E and ab /∈ E. We have that b <σ c, so b was added to queue Q

before c, and by Algorithm 2 it follows that either b and c were added to Q in the same

step of iteration, or b was added earlier. In any case, b has a neighbor d that is visited

not after a. If d = a, then db = ab /∈ E, so d 6= a, and it follows that d <σ a, as we

wanted to show.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 16

For a proof of the other direction, let σ = (v1, . . . , vn) be an ordering of vertices in

G, satisfying that for any a <σ b <σ c such that ac ∈ E and ab /∈ E there exists a

vertex d such that d < a and db ∈ E (call this property property (P)). Assume that σ

is not a BFS ordering of G, and let (v1, v2, . . . , vk), k < n be a maximal initial segment

of σ that can be obtained by BFS, starting from v1. Then the vertex vk+1 cannot be

chosen next, and by Algorithm 2 it follows that after the vertex vk was chosen, there

was a vertex vi before vk+1 in Q, and from definition of σ it follows that i > k + 1.

Furthermore, the fact that vi was before vk+1 in Q implies that there is a vertex vj

that is the first neighbor of vi in σ, j < k + 1, and vj is non-adjacent to vk+1 in G.

Consider now the vertices vi, vk+1, vj. We know that vj <σ vk+1 <σ vi, and vjvi ∈ E,

while vjvk+1 /∈ E. We assumed at the beginning that σ satisfies property (P), and

applied for the mentioned vertices, it implies that there exists a vertex d < vj such

that dvk+1 ∈ E. But vj was the first vertex in σ adjacent to vi, so dvi /∈ E, vi cannot

be visited before vk+1 in a BFS that extends (v1, . . . , vk); a contradiction. It follows

that σ is a BFS ordering of vertices in G.

a b cd

Figure 6: A vertex ordering corresponding to Theorem 3.5. Solid lines represent

edges, dashed line represents non-edge.

3.3 Depth First Search

Similarly as Breadth First Search, Depth First Search (DFS) represents one of the

fundamental search algorithms in computer science. Although in the literature BFS

and DFS are appearing together and represent a well studied concept in computer

science, DFS is very different from BFS, in the sense that it traverses the graph as

deep as possible, visiting a neighbor of last visited vertex whenever it is possible,

and backtracking only when all the neighbors of last visited vertex are already visited.

While in BFS the unvisited vertices are put at the end of a queue, in DFS the unvisited

vertices are put on top of a stack, so visiting a first vertex in a stack means that we

always visit a neighbor of the most recently visited vertex (see Algorithm 3).

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 17

Algorithm 3: Depth First Search.

Input: Connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 S = {s}; n = |V (G)|;
3 for i← 1 to n do

4 pop v from top of S

5 σ(v)← i

6 foreach unnumbered vertex w adjacent to v do

7 if w is already in S then

8 remove w from S

9 push w on top of S

10 return σ

In the literature we can find the notions of a discovery DFS ordering and a finishing

DFS ordering [15]. The former represents the standard notion of a search ordering,

meaning the order in which vertices are visited, while a finishing DFS ordering indicates

the order in which each vertex’s neighborhood is fully explored with all incident edges

traversed and causing a backtracking step. In this thesis we focus on discovery DFS

ordering, and simply call it a DFS ordering.

A DFS on a graph G can be done in time O(|V (G)|+ |V (E)|) and such an efficient

implementation of DFS influence its use in many graph algorithms. The algorithm has

been known since the nineteenth century as a technique for threading mazes; in that

time it was known under the name Trémaux’s algorithm (see [31]). In 1970s, Hopcroft

and Tarjan discovered several applications of DFS in graph algorithms and then the

method became widely recognized as a method for solving various graph problems. In

particular, they developed algorithms for testing whether a graph is biconnected [40],

or whether it can be embedded on a plane [25]. Moreover, they considered the DFS on

a directed graph and developed the DFS-based algorithm to test whether a directed

graph is strongly connected, meaning that for any pair of vertices u and v in a graph

there exist a directed paths from u to v and from v to u [40]. One more important

application of DFS to directed graphs is computation of a topological ordering for an

acyclic digraph. Recall that a topological ordering of an acyclic digraph is a linear

ordering of its vertices such that every directed edge u → v of a digraph satisfies

that u is before v in that ordering. Using DFS, a topological ordering of an acyclic

digraph can be found in linear time, and is used as a subroutine in many algorithms

on digraphs [41].

Many graph algorithms use DFS at some step of their execution, and the proofs of

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 18

correctness of such algorithms rely on a structural characterization of a DFS orderings,

presented in the following theorem (see Fig. 7).

Theorem 3.6 (Corneil and Krueger [15]). An ordering σ of V is a DFS-ordering if

and only if the following holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there

exists a vertex d such that a <σ d <σ b and db ∈ E.

Proof. Let σ be a DFS ordering of a graph G = (V,E). We want to prove that σ

satifies the desired property. Let a, b, c be arbitrary vertices satisfying a <σ b <σ c,

ac ∈ E and ab /∈ E. We have that b <σ c, so by Algorithm 3 it follows that in the

moment when a was added to σ, the neighbors of a were pushed on top of a stack S,

and thus c was before b in S. We know that at each step of iteration in DFS, vertices

are chosen from the top of the stack S, so there must be a vertex d visited after a and

before b that pushed b on top of S (otherwise c <σ b). This implies that db ∈ E, as we

wanted to show.

For the proof of other direction, let σ = (v1, . . . , vn) be an ordering of vertices in

G, satisfying that for any a <σ b <σ c such that ac ∈ E and ab /∈ E there exists a

vertex d such that a <σ d <σ b and db ∈ E (call this property property (P)). Assume

that σ is not a DFS ordering of G, and let (v1, v2, . . . , vk), k < n be a maximal initial

segment of σ that can be obtained by DFS starting in v1. Then the vertex vk+1 cannot

be chosen next, and by Alg. Algorithm 3 it follows that after the vertex vk was chosen,

there was a vertex vi 6= vk+1 on top of a stack S, and from the definition of σ it follows

that i > k + 1.

Furthermore, the fact that vi is on the top of S implies that there is a right-most

vertex vj in σ, j ≤ k, that is a neighbor of vi and a non-neighbor of vk+1 in G. Consider

now the vertices vj, vk+1, vi. We know that vj <σ vk+1 <σ vi, and vjvi ∈ E, while

vjvk+1 /∈ E. We assumed at the beginning that σ satisfies property (P), and applied

for the mentioned vertices, this implies that there exists a vertex d, vj <σ d <σ vk+1

such that dvk+1 ∈ E. But vj was the last vertex in vi, . . . , vk adjacent to vi, so dvi /∈ E.

Then vertex d pushes its neighbors on the top of a stack S, and it cannot happen that

vi is visited before vk+1 in a DFS that extends (v1, . . . , vk); a contradiction. It follows

that σ is a DFS ordering of vertices in G.

a b cd

Figure 7: A vertex ordering corresponding to Theorem 3.6. Solid lines represent

edges, dashed line represents the non-edge.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 19

3.4 Lexicographic Breadth First Search

Lexicographic Breadth First Search was introduced in the 1970s by Rose, Tarjan and

Lueker [37] as part of an algorithm for recognizing chordal graphs in linear time. Since

then, it has been used in many graph algorithms mainly for the recognition of various

graph classes. Lexicographic Breadth First Search is a restricted version of Breadth

First Search, where usual queue of vertices is replaced by a queue of unordered subsets

of the vertices which is sometimes refined, but never reordered. The LexBFS can be

described as follows: we start a search in some vertex v ∈ V (G) and we produce an

ordering σ of vertices in G, with σ(v) = 1. For every unvisited neighbor of v we add the

value n+1−σ(v) to the end of its label, and select a vertex with lexicographic maximal

label to be a next visited vertex (see Algorithm 4); we iteratively repeat the process

until all vertices are visited. For each vertex, its label consists of a set of numbers listed

in decreasing order.

The lexicographic order is the order that appears in dictionaries. More precisely,

given a two strings s1 = (a1, a2, . . . , ak) and s2 = (b1, b2, . . . , b`), of symbols over the

alphabet U = {1, 2, . . . , n} with a total order <U , it holds that s1 <U s2 (that is, s1 is

lexicographically smaller than s2, or s2 is lexicographically larger than s1), if and only

if the following conditions hold:

1. k < ` and ai = bi for all i ∈ {1, . . . , k}, or

2. there is some index j < min{k, `} such that ai = bi for all i ∈ {1, . . . , j − 1} and

aj <U bj.

It means that, for example, 34 is lexicographically smaller than 342, and that 5643 is

lexicographically smaller than 5735.

If at some step of iteration several vertices have the same label, which is lexico-

graphically maximal, then these vertices are said to be tied. A set of all tied vertices

is called a slice. All vertices from the same slice appear consecutively in the LexBFS

ordering σ where at each step of iteration we can choose any among the vertices from

the same slice. The concept of slices is used as the main tool in the implementation of

LexBFS, and it is known under the name partition refinement.

Example 3.7. Let us find a Lexicographic Breadth First Search ordering of graph G

on Fig. 8. Assume we start our search in vertex a. The labels of all other vertices in

G are equal to empty sets, and we add a number n = 7 to the labels of all neighbors

of a. Then the vertices with non-empty labels are b, c and d, and all of them have the

same label 7, so they form one slice, and we can take an arbitrary vertex among them.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 20

Algorithm 4: Lexicographic Breadth First Search.

Input: Connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 foreach v ∈ V do `(v) = ∅;
3 `(s) = {0}; n = |V (G)|
4 for i← n to 1 do

5 v ← unnumbered vertex with lexicographically largest label `(v);

6 σ(v)← n− i;
7 foreach unnumbered neighbor w of v do

8 append i to `(w)

9 return σ

Assume we take c to be next visited vertex: σ(c) = 2. Then the labels of all unvisited

neighbors of c are updated, so that n− 1 = 6 is appended to the existing labels: now

the labels are `(b) = `(d) = {76}, `(e) = `(g) = `(f) = {6}. We can select any among

vertices b and d, so assume we take vertex b: σ(b) = 3. The new labels are `(d) = {76},
`(e) = `(g) = {65}, `(f) = {6}. Among them the lexicographically largest label is {76},
so we take vertex d. Vertex d gets number 4, and its neighbors get label 4, so the labels

are `(e) = {65}, `(g) = {654}, `(f) = {64}, and vertex g has the lexicographically

largest label. Then σ(g) = 5, and new labels are `(e) = {653}, `(f) = {643}, so

the next visited vertex is e, meaning that f is the last visited vertex. The produced

LexBFS ordering is σ = (a, c, b, d, g, e, f). The iteration steps are presented in Fig. 9.

a

b d

c

e f

g

Figure 8: The ordering σ = (a, c, b, d, g, e, f) is a LexBFS ordering of G.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 21

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

a

b
c

d
e
f
g

7 ∅
{7}
{7}
{7}
∅
∅
∅

7

6

∅
{76}
{7}
{76}
{6}
{6}
{6}

7
5
6

∅
{76}
{7}
{76}
{65}
{6}
{65}

7
5
6
4

∅
{76}
{7}
{76}
{65}
{64}
{654}

7
5
6
4

3

∅
{76}
{7}
{76}
{653}
{643}
{654}

7
5
6
4
2
1
3

∅
{76}
{7}
{76}
{653}
{6432}
{654}

Figure 9: The iteration steps of LexBFS in Example 3.7. In each step the red column

represents the numbers and the black one the labels of vertices.

Partition refinement and linear-time implementation

Let G be a graph on n vertices and let v ∈ V (G) be the initial vertex of LexBFS. We

assume that the vertices in G are given in some order with v being the first one. A

partition P of a set V is a set of pairwise disjoint subsets of V whose union is exactly

V . Every element of a partition P is a class of P . Given partitions P and Q of a set

V , we say that P is a refinement of Q if every class of P is a subset of some class in Q.

In the following we describe the partition refinement algorithm for LexBFS, introduced

by Habib et al. in 2000 [23].

1. In the first step of execution of the algorithm create one partition class that

contains all the vertices of G and put vertex v on the first position.

2. Move the vertex v to its own class of partition, and split the rest of the class into

two classes: the set of neighbors of v, NG(v), and the set of non-neighbors of v,

NG(v), where the set NG(v) appears before. All neighbors of v get label n, while

its non-neighbors do not change the label.

3. At each iteration of the LexBFS algorithm, compute the refinement of partition

computed in previous step based on the vertex that is chosen to be visited next;

this vertex is called a pivot. Given a pivot u that is chosen to be visited next,

put u in its own class, and for each class S of the existing partition, compute the

sets NG(u) ∩ S and S \NG(u). Moreover, inside each class S the vertices in the

set NG(u) ∩ S precede the vertices in S \NG(u).

4. When the partition is refined, choose a new pivot from the class immediately

following the old pivot, and repeat the refinement procedure.

The result of the algorithm is the partition of vertices in G with every class being

a singleton. Furthermore, during the iteration, pivots were chosen with respect to

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 22

previously visited neighbors, so all vertices in the same class have exactly the same set

of already visited neighbors, and thus the same label. Moreover, if two vertices are in

distinct classes, then the one that appears earlier has the lexicographically larger label.

Altogeter, it follows that the resulting ordering represents a LexBFS ordering.

The refinement can be performed in time O(n) by using the doubly linked lists data

structure. We have vertices of a graph in some initial order, and since each partition

class contains some consecutive elements from that order, we can think about every

class being an interval containing vertices, and it is enough to store the first and the last

vertex in every class. For every vertex, we store the class it belongs to. The ordering of

the classes is stored using the doubly linked list, where for the each class we have a link

to the previous one and to the next one, if it exists. During the refinement at arbitrary

step of iteration we have some pivot u and we want to refine the existing partition

with respect to NG(u). It means that for each class C every element in C ∩ NG(u) is

removed from C and added to the end of a new class, C1, where C1 precedes C. Thus,

given a class C, we construct new (possibly empty) classes C1 and C2, so that we are

checking the elements of E and we add all of them that are adjacent to pivot to the

new class C1, that preceeds the class C2, while the existing ordering of classes is not

changed.

Consider the graph G from Example 3.7. The partition refinement of a graph G

that results in the ordering σ = (a, c, b, d, g, e, f) is given in Table 1. Every line of a

table represents one step of iteration, and vertical lines belonging to a single table line

represent the classes of partition. In the last line we have the partition where each

class is a singleton, and that partition represents exactly the LexBFS ordering σ of

G. Observe that the number of steps in partition refinement should be equal to the

number of vertices; in our example this is not the case since we removed the repeated

lines.

Table 1: Partition refinement of a search ordering from the Example 3.7.

a b c d e f g

a b c d e f g

a c b d e f g

a c b d e g f

a c b d g e f

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 23

Structure of LexBFS ordering and its applications

Since its introduction in 1970s by Rose et al., LexBFS found many applications. The

fundamental fact that allows the proofs of correctness of LexBFS-based graph algo-

rithms is a simple characterization of a vertex orderings produced as a result of LexBFS.

In the following theorem we present that characterization (see Fig. 10).

Theorem 3.8 (Brändstadt et. al. [7]). An ordering σ of V is a LexBFS ordering if

and only if the following holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there

exists a vertex d such that d <σ a, db ∈ E, and dc /∈ E.

Proof. Let σ be a LexBFS ordering of a graph G = (V,E). We want to prove that σ

satifies the desired property. Let a, b, c be arbitrary vertices satisfying a <σ b <σ c,

ac ∈ E, and ab /∈ E. We have that b <σ c, so by Algorithm 4 it follows that in the

moment when a was added to σ, the label of c was updated by adding the number of

a vertex a to its end, while the label of b stayed the same. It means that before a was

added to σ, a label of b was lexicographically larger than the label of c (otherwise we

would have c <σ b). Let us denote by `(b) = s1s2 . . . sk1 and `(c) = p1p2 . . . pk2 the

labels of b and c, respectively, just before vertex a was added to σ. Since `(b) > `(c),

we can take the minimal i: 1 ≤ i ≤ min{k1, k2} such that si 6= pi. Then si > pi and si

is a number belonging to some vertex d in G, that appears before a in σ. Number si

belongs to the label of b, so d ∈ N(b). On the other hand, since labels are decreasing

sequences of numbers, it follows that si is not contained in the label of c, and thus

d /∈ N(c). Finally, vertex d satisfies that d <σ a, db ∈ E, dc /∈ E, as we wanted to

show. Since vertices a, b, c were arbitrary, the statement follows.

Let us now prove the other direction. Let σ = (v1, . . . , vn) be an ordering of vertices

in G, satisfying that for any a <σ b <σ c such that ac ∈ E and ab /∈ E there exists a

vertex d such that d <σ a and db ∈ E, dc /∈ E (call this property property (P)). Assume

that σ is not a LexBFS ordering of G, and let (v1, v2, . . . , vk), k < n be a maximal

initial segment of σ that can be obtained by LexBFS. Then vertex vk+1 cannot be

chosen next, and by Algorithm 4 it follows that after vertex vk was chosen, there was

a vertex vi, i > k + 1 such that vi has a lexicographically larger label than vk+1. It

means that there is a vertex vj, j ≤ k, that is a neighbor of u and a non-neighbor of

vk+1. Let vj be the leftmost such vertex in σ.

Consider now the vertices vj, vk+1, vi. We know that vj <σ vk+1 <σ vi, and vjvi ∈ E,

while vjvk+1 /∈ E. We assumed at the beginning that σ satisfies the property (P), and

applied for the mentioned vertices, this implies that there exists a vertex d, d <σ vj,

such that dvk+1 ∈ E and dvi /∈ E. But vj was the leftmost vertex that is adjacent

to vi and non-adjacent to vk+1, so every vertex on the left of vj that is a neighbor of

vi is also a neighbor of vk+1. This means that after adding vertex d to σ, the label

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 24

of vk+1 enlarges, while the label of vi stays the same. Then the label of vi cannot be

lexicographically larger than the label of vk+1 and thus vk+1 has to be chosen before

vi in an LexBFS extension of vi, . . . , vk; a contradiction with maximality of k. The

statement follows.

a b cd

Figure 10: A vertex ordering corresponding to Theorem 3.8. Solid lines represent

edges, dashed lines represent non-edges.

The linear-time implementation of LexBFS yields efficient algorithms for a various

graph problems. In particular, the best known recognition algorithms for many graph

classes are based on LexBFS. Among the results concerning the recognition of graph

classes, we should mention the well known linear-time recognition of chordal graph, that

follows from the correspondence between LexBFS ordering and a perfect elimination

order of chordal graph [37].

Theorem 3.9 (Rose et al. [37]). If G is a chordal graph and σ is a LexBFS ordering

of G, then the reverse of σ is a perfect elimination ordering of G.

Given a graph G, one can find a LexBFS ordering σ of G in linear time. By The-

orem 3.9 it follows that checking whether the reverse of σ is a perfect elimination

ordering of G will decide whether G is a chordal graph. As showed in [42], this can

be done in linear time, so the recognition algorithm for chordal graphs runs in linear

time. Tarjan and Yannakakis extended this algorithm, so that it finds in linear time,

an induced cycle of length at least 4, when the reverse of σ is not a perfect elimination

ordering [42]. There is no known linear-time algorithm that recognizes the chordal

graphs, and is not based on LexBFS.

In literature we can find the so-called multi-sweep LexBFS algorithms, that are us-

ing multiple sweeps of LexBFS in a given graph. At each execution of LexBFS among

the vertices in the same slice, we decide which one to visit next, based on the search or-

der produced in the previous LexBFS sweep. Using the information from the previous

sweep(s) the ties which vertex to choose next are broken. There are many graph prob-

lems that can be solved using multi-sweep LexBFS algorithms [11]. The most notable

application of LexBFS is the recognition of various graph classes, and for many of them

the best recognition algorithm is based on LexBFS, usually in the form of a multi-sweep

algorithm. Among such algorithms there is an algorithm for the recognition of unit

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 25

interval graphs, that uses three LexBFS sweeps and checks whether particular con-

ditions are fulfilled in the resulting ordering [12]. There is also a linear-time LexBFS

based algorithm for recognition of bipartite permutation graphs, that uses two LexBFS

sweeps [16]. Both algorithms, for unit interval and for bipartite permutation graphs

run in linear time. One of the first algorithms that was using LexBFS at some point

of its execution was a linear-time algorithm given by Corneil et al. [17] that recognizes

the interval graphs. Besides mentioned algorithms, there are known LexBFS based

algorithms that recognize graphs having some particular structural restriction regard-

ing the existence of P4. In [9] one can find an algorithm for the recognition of P4-free

graphs (also known as cographs). Furthermore, there are algorithms that recognize

P4-reducible graphs and P4-sparse graphs, given in [8], as well as an algorithm for the

recognition of distance-hereditary1 graphs [8]. All these algorithms run in linear time.

Besides recognition algorithms for various graph classes, LexBFS is used in algo-

rithms for finding a dominating pair2 in a connected AT-free graph [16], for diameter

approximation for various families of graphs [11], and many others. A detailed survey

on LexBFS applications can be found in [11].

In some of the above mentioned algorithms at some step of execution there appears

a special instance of LexBFS, also known as LexBFS+, where the ties are broken

by referencing to a previous LexBFS ordering. It means that we compute a LexBFS

ordering σ by Algorithm 4 and then we are able to compute a LexBFS+ ordering σ+

by the same algorithm, with the additional restriction that at each step of iteration

among the vertices with lexicographically largest label we take the one that appears

the last in σ. LexBFS+ can be computed in linear time using the implementation of

LexBFS [11]. Given a graph G in Example 3.7, we saw that σ = (a, c, b, d, g, e, f) is the

LexBFS ordering of G. Let us now compute the LexBFS+ ordering σ+ of G, starting

in a. We have that σ+(a) = 1 and the labels are `(b) = `(c) = `(d) = {7}. Now

among the vertices with the same lexicographic maximal label we take the the one

that appears the last in σ, that is, we take vertex d. Now we have that σ+(d) = 2 and

new labels are `(b) = {7}, `(c) = {76}, `(f) = `(g) = {6}. Now we have to take vertex

c. σ+(c) = 3. In the next step we get that σ+(b) = 4, and labels are `(e) = {54},
`(f) = {65}, and `(g) = {654}. Finally, we take the vertex g, then e, and at the end

vertex f . The LexBFS+ ordering σ+ is equal to (a, d, c, b, g, e, f).

Another nice result considering LexBFS orderings is that given a graph G, one can

compute a LexBFS ordering of its complement in time O(n + m) [11]. This can be

1A graph G is distance-hereditary if the distance function in every connected induced subgraph of

G is the same as in G itself.
2A dominating pair in a graph G is a pair of vertices in G such that for every path P connecting

them in G it holds that every vertex in G is either in P or adjacent to a vertex in P .

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 26

done with minor modifications of the implementation of LexBFS, without computing

the complement of a graph G.

3.5 Lexicographic Depth First Search

In previous section we introduced the lexicographic instance of BFS, so a natural

question that arises is whether there exists a lexicographic restriction of DFS. A

Lexicographic Depth First Search (LexDFS) was introduced in 2008 by Corneil and

Krueger [15] and represents a special variant of Depth First Search. We could see that

at each step of iteration of LexBFS a label of every unvisited vertex is updated so

that the number of the chosen vertex is appended to the current label of the proposed

vertex. In that way we get the labels that contain the numbers in the decreasing order,

and at every step of iteration we take a vertex with lexicographically largest label. This

means that the next visited vertex is always a vertex that has a neighbor visited as

early as possible. In DFS, however, things are different, and we always choose a vertex

that is adjacent to as recently numbered vertex as possible. In the LexDFS algorithm,

the numbering of vertices starts with 1, and at each step of iteration we prepend the

current number to the label of all unvisited neighbors of a current vertex. Similarly as

in LexBFS, we take the vertex with lexicographically largest label to be visited next

(see Algorithm 5).

Algorithm 5: Lexicographic Depth First Search.

Input: Connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 foreach v ∈ V do `(v) = ∅;
3 `(s) = {0}; n = |V (G)|
4 for i← 1 to n do

5 v ← unnumbered vertex with lexicographically largest label `(v);

6 σ(v)← i;

7 foreach unnumbered neighbor w of v do

8 prepend i to `(w)

9 return σ

Example 3.10. Consider the graphG from Fig. 11. Let us compute a LexDFS ordering

σ of G starting in vertex a. Then σ(a) = 1 and labels are `(b) = `(c) = `(d) = {1}. We

can choose any among vertices b, c, d, so let σ(b) = 2. Then the labels are `(c) = {21},
`(d) = {1}, and `(e) = `(g) = 2, so we have that σ(c) = 3. New labels are `(d) = {31},
`(e) = `(g) = {32}, `(f) = {3}, and lexicographic the largest is {32}, so we can

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 27

chose among e and g. Let σ(g) = 4. In the next step we get labels `(d) = {431},
`(e) = {432}, `(f) = {43}, so σ(e) = 5. After e, we have two unvisited vertices, with

labels `(f) = {43}, `(d) = {431}, so we visit d, and finally f . The resulting ordering

is σ = (a, b, c, g, e, d, f). The iteration steps are presented in Fig. 12.

a

b d

c

e f

g

Figure 11: The ordering σ = (a, b, c, g, e, d, f) is a LexDFS ordering of a graph G.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

a

b
c

d
e
f
g

1 ∅
{1}
{1}
{1}
∅
∅
∅

1
2

∅
{1}
{21}
{1}
{2}
∅
{2}

1
2
3

∅
{1}
{21}
{31}
{32}
{3}
{32}

1
2
3

4

∅
{1}
{21}
{431}
{432}
{43}
{32}

1
2
3

5

4

∅
{1}
{21}
{431}
{432}
{43}
{32}

1
2
3
6
5
7
4

∅
{1}
{21}
{431}
{432}
{643}
{32}

Figure 12: The iteration steps of LexDFS in Example 3.10. In each step the red

column represents the numbers and the black one the labels.

Similarly as in case of LexBFS, the LexDFS orderings admit a characterization

that enables the proofs of correctness of algorithms that use LexDFS at some step of

execution. The characterization of LexDFS orderings is given in the following theo-

rem (see Fig. 13).

Theorem 3.11 (Corneil and Krueger [15]). An ordering σ of V is a LexDFS ordering

if and only if the following holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there

exists a vertex d such that a <σ d <σ b, db ∈ E, and dc /∈ E.

Proof. Let σ be a LexDFS ordering of a graph G = (V,E). We want to prove that σ

satifies the desired property. Let a, b, c be arbitrary vertices satisfying a <σ b <σ c,

ac ∈ E, and ab /∈ E. By Algorithm 5 it follows that in the moment when a was added

to σ, the label of c was updated by adding the number of vertex a to its beginning,

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 28

while the label of b stayed the same. But we have that b <σ c, so it has to be that

the label of b is lexicographically smaller than the label of c. Labels in LexDFS are

decreasing sequences of numbers, so there must be some number larger that σ(a) that

is added to the beginning of label of b, and not to the label of c. It means that there is

a vertex d with σ(d) > σ(a), such that db ∈ E and dc /∈ E. Clearly, it must hold that

σ(d) < σ(b), since otherwise d does not influence the choice of b. The vertices a, b, c

were arbitrary, so the statement follows.

For a proof of the other direction, let σ = (v1, . . . , vn) be an ordering of vertices in

G, satisfying that for any a <σ b <σ c such that ac ∈ E and ab /∈ E there exists a

vertex d such that a <σ d <σ b and db ∈ E and dc /∈ E (call this property property

(P)). Assume that σ is not a LexDFS ordering of G, and let (v1, v2, . . . , vk), k < n

be a maximal initial segment of σ that can be obtained by LexDFS. Then vertex vk+1

cannot be chosen next, and by Algorithm 5 it follows that after vertex vk was chosen,

there is a vertex vi, i > k+1 such that vi has a lexicographically larger label than vk+1.

This implies that there is a vertex vj, j ≤ k, that is a neighbor of vi and non-neighbor

of vk+1. Let vj be the rightmost such vertex in σ.

Consider now the vertices vj, vk+1, vi. We know that vj <σ vk+1 <σ vi, and vjvi ∈ E,

while vjvk+1 /∈ E. We assumed at the beginning that σ satisfies property (P), and

applied for the mentioned vertices, this implies that there exists a vertex d, vj <σ

d <σ vk+1 such that dvk+1 ∈ E and dvi /∈ E. But vj was the rightmost vertex that

is adjacent to vi and non-adjacent to vk+1, so every vertex on the right of vj (that is,

vertex between vj and vk+1) that is a neighbor of vi is also a neighbor of vk+1. This

means that after adding a vertex d to σ, the label of vk+1 enlarges, while the label of vi

stays the same. Then the label of vi cannot be lexicographically larger than the label

of vk+1 and thus vk+1 has to be chosen before vi in an LexDFS extension of vi, . . . , vk;

a contradiction with the maximality of k. The statement follows.

a b cd

Figure 13: A vertex ordering corresponding to Theorem 3.11. Solid lines represent

edges, dashed lines represent non-edges.

Implementation and applications

There is no known linear-time implementation of LexDFS algorithm. So far the best

known LexDFS implementation was given by Krueger, and it takes O(min{n2, n +

m log log n}) time [30]. In the literature we can find references to the unpublished

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 29

work of Spinrad with O(m log log n)-implementation of LexDFS [39]. A partition re-

finement approach in LexDFS would partition the vertices of a graph with respect to

the adjacency relations. Starting at some vertex v1, we would have classes of neigh-

bors of v1 and non-neighbors of v1, respectively. In the next step we proceed with

some new pivot, say v2, and we have the following partition classes, in that order:

NG(v1) ∩ NG(v2), NG(v2) ∩ NG(v1), NG(v1) ∩ NG(v2), NG(v1) ∩ NG(v2). It is clear

that we have to reorder partition classes at each step, and up to now the linear-time

implementation of that algorithm is not known [27].

In the paper that introduced LexDFS, there was no real algorithmic application of

LexDFS proposed. However, just a few years later, LexDFS found many applications

in graph algorithms for particular graph classes. The very first such application was

given by Corneil et al [13], where LexDFS was used to find a minimum cardinality

set of vertex disjoint paths in a graph G that cover the vertices of G (also known

as the minimum path cover problem) on cocomparability graphs. This problem is

a generalization of the Hamiltonian path problem. After that, LexDFS was used to

develop a various algorithms on cocomparability graphs, such as computing a maximum

cardinality independent set [14], a minimum clique cover [14], and a longest path [34].

An interesting fact is that all these algorithms rely on the same idea: in the first part

of algorithm we compute a cocomparability ordering of a graph and preprocess it with

LexDFS, while in the second part we extend or slightly modify the existing linear-time

algorithms that solve the particular problem on the class of interval graphs. The time

complexity of above mentioned algorithms was forced by the non-linearity of LexDFS,

until a linear-time implementation of LexDFS for cocomparability graphs was given by

Köhler and Mouatadid in [27]. LexDFS (similarly as LexBFS) computes the perfect

elimination orders on chordal graphs and thus has some applications also in that class of

graphs. In particular, it can be used to find a minimum colorings as well as all minimal

separators and all maximal cliques in chordal graphs [43]. A linear-time implementation

of LexDFS for chordal graphs was given recently by Beisegel et al. [5].

3.6 Maximum Cardinality Search

Maximum Cardinality Search (MCS) was introduced in 1984 by Tarjan and Yan-

nakakis [42] as a simple search paradigm that has some common features with LexBFS.

The main application of LexBFS was the recognition of chordal graphs, and they no-

ticed that in order to use it for the recognition of chordal graphs, it is not necessary to

store the order of already visited neighbors of a vertex. The authors managed to define

a conceptually and computationally simpler method where the label of a vertex is just

a number of already visited neighbors and at each step of iteration we choose a vertex

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 30

with maximum label (see Algorithm 6). This means that at each step of iteration we

choose a vertex with the largest number of already visited neighbors, that is, a vertex

that has the maximum number of already visited neighbors. For the implementation

of MCS we have to store just the number of visited neighbors for each vertex, so it is

clear that MCS can be implemented in linear time.

Algorithm 6: Maximum Cardinality Search.

Input: Connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 assign label 0 to all vertices;

3 `(s)← 0; n = |V (G)|;
4 for i← 1 to n do

5 pick an unnumbered vertex v with maximum label;

6 σ(v)← i;

7 foreach unnumbered vertex w ∈ N(v) do

8 `(w) = `(w) + 1;

9 return σ

Example 3.12. Let G be the graph from Fig. 14 and let us find a MCS ordering

of G. Starting in vertex a we have that σ(a) = 1 and the labels of neighbors of a

increase by 1, so the new labels are `(b) = `(c) = `(d) = 1. All these vertices have the

same label, so we can choose arbitrarily among them; assume we take vertex b. Then

σ(b) = 2 and labels are `(c) = `(d) = `(e) = 1. Let σ(c) = 3. New labels are `(e) = 2,

`(d) = `(f) = 1, and we have to choose vertex e. It follows that σ(e) = 4 and updated

labels are `(g) = `(f) = `(d) = 1. We can take any vertex among them, so assume we

take vertex d: σ(d) = 5. Then we have `(f) = 2 and `(g) = 1, so the next visited vertex

is f , and g is visited at the end. The resulting MCS order is σ = (a, b, c, e, d, f, g).

a

b d

c

e f

g

Figure 14: The ordering σ = (a, b, c, e, d, f, g) is an MCS ordering of G.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 31

There is a general rule that characterizes the orderings produces by MCS on a

graph, and we present it in the following theorem (see Fig. 15).

Theorem 3.13 (Brändstadt et al. [7]). An ordering σ of V is a MNS ordering if and

only if the following holds: if {a1, . . . , ak} <σ b <σ c, where al, . . . , ak are pairwise

distinct vertices, and aic ∈ E and aib /∈ E, for all i = 1, . . . , k, then there are pairwise

distinct vertices, dl, . . . , dk such that di <σ b, dib ∈ E, and dic /∈ E, for all i = 1, . . . , k.

Proof. Let σ be a MCS ordering, and let {a1, . . . , ak} <σ b <σ c, where al, . . . , ak are

pairwise distinct vertices and aic ∈ E and aib /∈ E, for all i = 1, . . . , k. We know that

b appears before c in σ, so by Algorithm 6 it follows that in the moment just before b

was added to σ the label of b was not smaller than the label of c. Since the label in

MCS represents the number of already visited neighbors, it follows that the number of

neighbors of b that appear before b in σ is at least as large as the number of neighbors

of c that appear before b (since otherwise the algorithm would take c instead of b).

Vertices a1, . . . , ak are neighbors of c that appear before b in σ, so also the number of

neighbors of b that appear before b in σ must be at least k. It follows that there are

paiwise distinct vertices d1, . . . , dk that appear before b in σ and are adjacent with b,

as we wanted to show.

For a proof of the other direction, let us define a property P to be the following

property: if {a1, . . . , ak} <σ b <σ c, where al, . . . , ak are pairwise distinct vertices, and

aic ∈ E and aib /∈ E, for all i = 1, . . . , k, then there are pairwise distinct vertices,

dl, . . . , dk such that di <σ b, dib ∈ E and dic /∈ E, for all i = 1, . . . , k.

Let σ be an ordering of vertices in G satisfying property P , and let (v1, . . . , vk),

k < n be a maximal initial segment of σ that can be constructed using the MCS

algorithm. Then vertex vk+1 cannot be chosen using the MCS procedure, and let vi,

i > k+ 1, be a vertex that can be chosen after (v1, . . . , vk) by Algorithm 6. Then after

the vertices v1, . . . , vk are chosen in σ, the label of vi is larger that the label of vk+1,

meaning that vertex vi has more neighbors in set {v1, . . . , vk} than vertex vk+1 does.

Let U and W be subsets of {v1, . . . , vk} defined as follows:

U = {vj | j ∈ {1, . . . , k}, vj ∈ NG(vk+1) \NG(vi)},

W = {vj | j ∈ {1, . . . , k}, vj ∈ NG(vi) \NG(vk+1)}.

From the above discussion it follows that |W | > |U |. Let vi1 , . . . , vip be pairwise distinct

vertices in W . All vertices in W appear before vk+1 in σ, and are nonadjacent with vk+1

in G. Moreover, all vertices in W are adjacent with vi. Applying property P on vertices

vi1 , . . . , vip , vk+1, vi, we get that there are pairwise distinct vertices, di1 , . . . , dip such

that dj <σ vk+1, djvk+1 ∈ E and djvi /∈ E, for all j ∈ {i1, . . . , ip}. Clearly, all vertices

di1 , . . . , dip are elements of U , implying that |U | ≥ |W |, contrary to our assumption.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 32

It follows that vi does not appear before vk+1 in an MCS extension of (v1, . . . , vk), and

thus σ is a MCS ordering, as we wanted to show.

a1 a2 b c

d1
d2

Figure 15: A vertex ordering corresponding to Theorem 3.13. Solid lines represent

edges, dashed lines represent non-edges.

A common feature of MCS and LexBFS is that the orderings produced by both of

them are the reverse of perfect elimination orderings of a chordal graph [30].

Theorem 3.14 (Tarjan and Yannakakis [42]). A graph G is chordal if and only if

every MCS ordering of the vertices in G is the reverse of a perfect elimination scheme

of G.

It is not, however, true that every PEO of a chordal graph can be obtained by MCS

or LexBFS, as can be seen in the following example.

Example 3.15. LetG be a graph with vertex set {a, b, c, d} and edge set {ab, bc, ca, cd}.
This graph is known as a 3-pan, or a paw, and it is clear that G is a chordal graph.

Let σ = (c, a, d, b). It holds that the reverse of σ is a perfect elimination ordering of

G, while σ is not a LexBFS nor MCS ordering of G. The reverse of σ is (b, d, a, c)

and we can see that b is simplicial vertex in the whole graph, d is simplicial in G− b,
a is simplicial in G − {b, d}, so by definition it is a perfect elimination ordering of G.

Further, observe that after visiting vertices c and a in σ, the labels of vertices b and d

are `(b) = 2 and `(d) = 1 (`(b) = {43} and `(d) = {4}) for MNS (LexBFS, resp.). In

both cases we have to select vertex b before vertex d, so σ is neither MCS nor LexBFS

ordering of G.

Also, there are MCS orderings that cannot be obtained by LexBFS, and, vice

versa, there are LexBFS orderings that cannot be obtained by MCS. The ordering

σ = (a, b, c, e, d, f, g) of the graph from Fig. 14 is an MCS ordering, and not a LexBFS

ordering – starting a LexBFS in a cannot happen that σ(e) < σ(d). Similarly, the

ordering σ = (a, c, b, d, e, f, g) is a LexBFS ordering of the same graph, while it is not

an MNS ordering – after visiting vertices a, b, and c, the label of vertex e is larger than

the label of vertex d, and it cannot happen in an MCS ordering that σ(d) < σ(e).

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 33

From Theorem 3.14 it is clear that MCS found its application in recognition of

chordal graphs. Besides that, the original paper by Tarjan and Yannakakis presents

its applications to testing acyclity of hypergraphs, and how to selectively reduce an

acyclic hypergraph to more efficiently compute database queries. MCS can also be

used to derive a bounds for a treewidth of a graph. The visited degree of an MCS

ordering of a graph is the maximum visited degree over all vertices in the graph. The

maximum visited degree over all MCS orderings of graph is called its maximum visited

degree. Lucena showed that the treewidth of a graph is at least its maximum visited

degree [32].

3.7 Maximal Neighborhood Search

Maximal Neighborhood Search (MNS) was introduced by Corneil and Krueger in 2008

as a common generalization of LexBFS, LexDFS, and MCS [15]. Unlike the search

methods presented in previous sections, which use strings or numbers as labels of

vertices, the MNS algorithm uses sets of integers as labels, and at every step of iteration

chooses a vertex with maximal label under set inclusion (see Algorithm 7). It follows

that in MNS the labels are not totally ordered, so it can happen that few different

labels are maximal in the same time. In the already presented search methods, where

labels were strings or numbers, this was not possible, since strings and numbers form

totally ordered sets.

Algorithm 7: Maximal Neighborhood Search.

Input: Connected graph G, and a vertex s ∈ V (G).

Output: A vertex ordering σ.

1 begin

2 assign label ∅ to all vertices;

3 n = |V (G)|;
4 `(s)← {1};
5 for i← 1 to n do

6 pick an unnumbered vertex v with maximal label under set inclusion;

7 σ(v)← i;

8 foreach unnumbered vertex w ∈ N(v) do

9 add i to `(w);

10 return σ

It is not difficult to see that we can obtain LexBFS, LexDFS, or MCS from MNS

by precising more specifically the rule on how to make a selection among the vertices

with incomparable neigborhoods. In case of LexBFS (resp. LexDFS), we choose the

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 34

vertex adjacent to as many earliest (resp. most recently) visited neighbors as possible,

while in case of MCS we choose a vertex with maximal label under set cardinality

(which is clearly maximal under set inclusion as well). MNS can be seen as some kind

of lexicographic instance of a generic search, and is sometimes in literature referred

to as the Lexicographic Generic Search [30]. The following theorem characterizes the

MNS orderings (see Fig. 16).

Theorem 3.16 (Corneil and Krueger [15]). An ordering σ of V is an MNS ordering

if and only if the following statement holds: If a <σ b <σ c and ac ∈ E and ab /∈ E,

then there exists a vertex d with d <σ b, db ∈ E, and dc /∈ E.

Proof. Let σ be an MNS ordering of vertices in a graph G, and let a <σ b <σ c be

vertices of G such that ac ∈ E and ab /∈ E. We know that b appears before c in σ, so

by Algorithm 7 it follows that in the moment just before b was added to σ the label of

b was not a proper subset of a label of c. Since the label in MCS represents the set of

numbers corresponding to already visited neighbors, it follows that there is a vertex d

whose number is an element of the label of b and not of the label of c. Equivalently,

there is a vertex d that appears before b in σ such that db ∈ E(G) and dc /∈ E(G), as

we wanted to show.

a b c

d

Figure 16: A vertex ordering corresponding to Theorem 3.16. Solid lines represent

edges, dashed lines represent non-edges.

Let us now prove the other direction. Let σ = (v1, . . . , vn) be an ordering of vertices

in G, satisfying that for any a <σ b <σ c such that ac ∈ E and ab /∈ E there exists

a vertex d such that d <σ b and db ∈ E, dc /∈ E (call this property property (P)).

Assume that σ is not an MNS ordering of G, and let (v1, v2, . . . , vk), k < n be a

maximal initial segment of σ that can be obtained by MNS. Then vertex vk+1 cannot

be chosen next, and by Algorithm 7 it follows that after vertex vk was chosen, there

was a vertex vi, i > k + 1, such that vi has a larger label than vk+1 with respect to

set inclusion. Equivalently, the label of vk+1 is a proper subset of the label of vi. This

means that all among the vertices in {v1, . . . , vk} all vertices adjacent with vk+1 are

also adjacent with vi. Moreover, there is a vertex vj, j ≤ k, that is a neighbor of vi

and a non-neighbor of vk+1. Observe that vj <σ vk+1 <σ vi. Property P applied on

vertices vj, vk+1 and vi implies that there is a vertex d that appears before vk+1 in σ and

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 35

safisfies dvk+1 ∈ E(G), dvi /∈ E(G). It must be that d is one among vertices v1, . . . , vk.

We have that dvk+1 ∈ E(G), and dvi ∈ E(G), a contradiction. It follows that σ is a

MNS ordering of G.

MNS as a search paradigm. The characterization of MNS ordering from Theo-

rem 3.16 was given in the work by Tarjan and Yannakakis in 1984 [42], where is was

referred to as property P . They observed that both LexBFS and MCS satisfy property

P and that any ordering with property P is the reverse of a perfect elimination order-

ing of a chordal graph. In the mentioned paper no search paradigm was defined using

that property. The converse is not true - there exist perfect elimination orderings of

chordal graphs that are neither LexBFS nor MNS orderings (see Example 3.15).

The first appearance of some instance of MNS as a search paradigm (without its

characterization) can be found in the work by Shier related to generating all the perfect

elimination orderings of a chordal graph [38]. There he defined the search paradigms

named Maximal Element in Component (MEC) and Maximal Cardinality Component

(MCC). These paradigms are of special interest on the class of chordal graphs, since

they are in one-to-one correspondence with PEOs of chordal graphs. We describe both

of them below for a chordal graph G.

Maximal Element in Component (MEC)

Input: A chordal graph G = (V,E) with n = |V | > 1.

Output: An ordering σ.

1. Let Sn = {u} consist of an arbitrary vertex u ∈ V ; set σ(u) = n and k = n.

2. Select an element x in some connected component C of V −Sk such that Nk(x) =

NG(x) ∩ Sk is maximal among all vertices in C.

3. Define σ(x) = k − 1. If k = 2, then STOP. Otherwise, define Sk−1 = Sk ∪ {x},
set k = k − 1 and go to Step 2.

Maximal Cardinality Component (MCC)

Input: A chordal graph G = (V,E) with n = |V | > 1.

Output: An ordering σ.

1. Let Sn = {u} consist of an arbitrary vertex u ∈ V ; set σ(n) = u and k = n.

2. Select an element x in some connected component C of V − Sk such that

|Nk(x)| = |NG(x) ∩ Sk| is maximum among all vertices in C.

3. Define σ(k − 1) = x. If k = 2, then STOP. Otherwise, define Sk−1 = Sk ∪ {x},
set k = k − 1 and go to Step 2.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 36

Shier observed that any LexBFS and MCS ordering of a chordal graph can be gener-

ated by MEC and MCC schemes, so these two represent more general search paradigms.

It turns out that using these paradigms one can generate all perfect elimination schemes

of a chordal graph, which is not true for MNS.

Theorem 3.17 (Shier [38]). Let σ be an ordering of a chordal graph G. Then the

following statements are equivalent:

1. σ is an MEC ordering.

2. σ is an MCC ordering.

3. σ is a PEO.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 37

4 Relations Among Search

Orderings

We already saw that certain search methods can be seen as a restrictions, or special

instances of some more general search methods (see Fig. 17). For example, LexBFS is

a special instance of BFS and MNS, while LexDFS is a special instance of MNS and

DFS. Similarly, it is known that MCS is a special instance of MNS. This means that,

for example, every LexBFS ordering is also BFS and MNS ordering at the same time.

The converse, however, is not true. There exist orderings that are BFS and MNS, but

not LexBFS, or that are DFS and MNS but not LexDFS, or that are MNS and not

MCS.

Example 4.1. Let G be a graph consisting of a path on vertices b, c, d, e, and a

universal vertex a. Vertex a is universal in G, so any ordering starting in a is a BFS

ordering. Let σ = (a, c, d, e, b). Observe that σ is a MNS ordering of G. We start in a

and after visiting a and c we can choose between b and d. When we proceed with d,

the label of e contains d, while that of b does not, so the label of e is not a subset of

a label of b, and we can visit e before b. It is not difficult to justify that σ cannot be

a LexBFS ordering, since once we visit vertices a and c, in the rest of the graph the

neighbors of c must be visited before non-neighbors of c. It follows that e should be

visited after b; contrary to the definition of σ.

The above example shows that there is a graph G and a BFS and MNS ordering of

G that is not a LexBFS ordering of G. Similarly we can show that there exists a DFS

and MNS ordering of some graph G that is not a LexDFS ordering of the same graph.

Example 4.2. Let G be a graph consisting of a 4-cycle a, b, c, d and a vertex e adjacent

to vertices b and c (in graph theory this graph is known under the name “house”). Let

σ = (a, b, c, d, e). Clearly, σ is a DFS ordering of G. It is true that σ is MNS ordering

of G, while it is is not a LexDFS ordering of G. After visiting vertices a, b and c, we

have to choose among vertex d with label 31 and vertex e with label 32. Clearly, e

has the lexicographically larger label, so it must be visited before d, contrary to the

definition of σ.

In the following sections we discuss the relations depicted by red lines in Fig. 17.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 38

We know that all the lines in Fig. 17 represent relations of inclusion, so one may wonder

under which conditions on a graph G the particular inclusion is not proper. In this

section we say that two search methods are equivalent on a graph G, if the sets of

vertex orderings produced by both of them are the same. Similarly, two graph search

methods are equivalent on a graph class G if they are equivalent on every G in G. We

give some necessary and/or sufficient conditions on a graph G in order to obtain the

equivalence relation on depicted red lines.

Generic Search

BFS DFS
MNS

MCSLexBFS LexDFS

Figure 17: Relations between various graph search methods.

4.1 Breadth First Search vs Lexicographic Breadth

First Search

Graph search methods in general do not have the hereditary property. Let G be a

graph with a search ordering σ of particular type, and let H be an induced subgraph

of G. It is not true that σ∗, the sequence obtained from σ by deleting vertices that

are not in H represents a search ordering of the same type of H, as can be seen in the

following example.

Example 4.3. Let G be a cycle on 5 vertices, and let us denote its vertices by

v1, v2, v3, v4, v5 in the cyclic order. It is not difficult to see that σ = (v1, v5, v2, v4, v3) is

a BFS ordering of G. Let H be the subgraph of G obtained by deletion of vertex v5,

and let σ∗ be the ordering of vertices in H obtained from σ after deletion of v5. Then

σ∗ = (v1, v2, v4, v3) is not a valid BFS ordering of H.

From the above it follows that it could happen that there is an ordering of a graph

H that is a BFS and not a LexBFS ordering, while in a graph G containing H as an

induced subgraph this is not necessarily true. This means that the equivalence between

BFS and LexBFS in G does not imply the same equivalence on every induced subgraph

of G. In the following example we can see that a valid LexBFS ordering of G yields an

ordering of its subgraph H that is BFS and not LexBFS.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 39

Example 4.4. Let G be the graph from Fig. 18. After removing the vertex u

from G we get a 6-pan G′. Observe that in G′ we can find a BFS ordering

σ∗ = (v1, v2, v6, v3, v5, v, v4) that is not a valid LexBFS ordering. If σ∗ is a part of a

valid BFS ordering σ of G, then we must visit u before visiting the non-neighbors of v1,

and after visiting vertices v2 and v6. Then it follows that σ = (v1, v2, v6, u, v3, v5, v, v4)

is a valid LexBFS ordering of G, so is not an example of ordering of G that is BFS and

not LexBFS.

v6 v5 v4

v1 u v v3

v2

G

v6 v5 v4

v1 v v3

v2

G′

Figure 18: The ordering σ = (1, 2, 6, u, 3, 5, v, 4) is a valid LexBFS ordering of G,

while the ordering σ∗ = (1, 2, 6, 3, 5, v, 4) is not a valid LexBFS ordering of G′.

Despite both demotivating examples above, we identify certain graphs such that

the equivalence between BFS and LexBFS does not hold in any graph containing them

as an induced subgraph.

Example 4.5. Let G be a graph that contains a paw or a diamond as an induced

subgraph. In this example we show that there is a BFS ordering of G that is not a

LexBFS ordering of G (that is, BFS and LexBFS are not equivalent in G). The claim

can be easily justified by giving a prefix of an order σ that is a BFS order and not a

LexBFS order of G. Let H be a paw graph contained in G as an induced subgraph.

Using the same notation as in Fig. 19 (left) we can define the BFS ordering σ of G

starting in c, with first four vertices in σ being c, a, d, b, in that order. Similarly, if H

is a diamond contained in G as induced subgraph, we can define a BFS ordering σ of

G starting in c and visiting consecutively vertices b, d, a (Fig. 19 right). In both cases

σ is a BFS ordering, since it starts with a vertex c and visits its neighbors. Also, σ

cannot be a LexBFS ordering, since in both cases vertex a has label {n, n− 1}, while

d has a label n, so a should appear before d, no matter how the rest of σ is defined.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 40

b

c
a

d

σ1 = (c, a, d, b)

σ2 = (b, c, d, a)

a

b d

c

σ1 = (a, b, d, c)

σ2 = (b, c, d, a)

Figure 19: A paw (left) and a diamond (right) with corresponding search orderings σ1

(σ2) that are BFS and not LexBFS orderings (DFS and not LexDFS orderings, resp.).

If every BFS in G is also a LexBFS, then G does not contain a paw, or a diamond as

an induced subgraph. If, additionally, G does not contain any pan graph as an induced

subgraph, then we can show that every BFS is also a LexBFS, using the following

lemmas. Observe that paw is 3-pan, so {paw, diamond, pan}-free graph is exactly the

{diamond, pan}-free graph.

Lemma 4.6. If a connected graph G does not contain a diamond or a pan as an induced

subgraph, then G is either acyclic, or a cycle, or a complete graph, or a complete

bipartite graph.

Proof. Let G be a graph that does not contain a diamond or a pan as induced subgraph.

From Theorem 2.2 (see Section 2.1) it follows that G is either a complete multipartite

graph or a triangle-free graph.

Let first G be a complete multipartite graph, with partition classes S1, . . . , Sk. If all

partition classes of G have one vertex, then G is a complete graph, so we may assume

without loss of generality that |S1| ≥ 2. Let x, y ∈ S1, x 6= y. If there are exactly two

partition classes of G, then G is a complete bipartite graph. Assume that there are at

least three partition classes in G, and let z ∈ S2, w ∈ S3. Then the vertices {x, y, z, w}
form a diamond in G; a contradiction.

Let now G be a triangle-free graph. If G does not contain any cycle, then we are

done. Assume first that G contains a cycle of length at least five and let C be such a

cycle in G. If G = C, we are done, so assume that there is a vertex v in V (G) \ V (C)

having a neighbor in C. If v has exactly one neighbor in C, then V (C)∪ {v} induce a

cycle with pendant vertex in G, so v has at least two neighbors in C. We know that G

is triangle-free, so no two consecutive vertices of C are adjacent to v. Let vi, vj ∈ C,

i < j be neighbors of v such that |j − i| = j − i is minimal. Then vvi−1 /∈ E(G) and

vertices v, vi−1, vi, vi+1, . . . , vj form a cycle with pendant vertex, unless it holds that

vi−1vj ∈ E(G), that is, unless the vertices vi−1 and vj are consecutive in C, meaning

that the distance between vi and vj in C is equal to two and that C is a cycle on four

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 41

vertices. Our assumption was that C is a cycle on at least 5 vertices, so we have a

contradiction. It follows that vertex v does not exist and G = C.

Assume now that any cycle in G contains exactly four vertices, and let C be such

a cycle, with vertices v1, v2, v3, v4 in consecutive order. We know that G has no odd

cycles, so G is bipartite graph. Also, we now show that C is a complete bipartite graph.

Let F be a subgraph of G that contains C such that F is maximal complete bipartite

subgraph of G, and let (A,B) be a bipartition of F . Without loss of generality we may

assume that v1, v3 ∈ A and v2, v4 ∈ B. If G = F , then G is a complete bipartite graph,

and we are done. Graph G is connected, so we may assume that there is a vertex

v ∈ V (G)\V (F) such that v has a neighbor in F . Let without loss of generality u ∈ A
be a neighbor of v. We know by definition of F that u is adjacent to all vertices in

B, so it cannot be that v has a neighbor in B, since otherwise that neighbor together

with vertices u and v would form a triangle in G. It follows that (A,B ∪ {v}) is a

bipartition of a bipartite graph, and from the maximality of F it follows that v has a

non-neighbor in A. Let x ∈ A be a non-neighbor of u. (Observe that it can happen

that {x, u} ∩ {v1, v3} 6= ∅.) Taking the vertices {x, u, v2, v4, v} we get the forbidden C4

with a pendant edge; a contradiction. It follows that G = F and thus G is a complete

bipartite graph, as we wanted to show.

Lemma 4.7. In the following graph classes every BFS ordering is a LexBFS ordering.

i) cycles

ii) forests

iii) complete graphs

iv) complete bipartite graphs

Proof. We prove the lemma for each case separately.

i) Assume for a contradiction this is not true, and let G be a cycle with ordering σ

that is a BFS ordering and not a LexBFS ordering. By Theorem 3.8 it follows

that there are vertices a <σ b <σ c such that ab /∈ E(G), ac ∈ E(G) and

for every d′ <σ a it holds that either d′b /∈ E(G), or d′c ∈ E(G). Similarly,

from Theorem 3.5 it follows that there is a vertex d <σ such that db ∈ E(G).

Then it must be that dc ∈ E(G), so b and c are both neighbors of d in G. We

know that G is a cycle, so every vertex in G is of degree 2, and thus b and c are

the only neighbors of d in G. Since σ is a BFS ordering, at every step it visits a

neighbor of some already visited vertex, so it must be that σ(d) = 1. Then the

neighbors of d are visited before non-neighbors of d, so vertices b and c must be

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 42

visited before a in the BFS ordering σ. This is a contradiction with the definition

of a, b, c, so such an ordering σ does not exist, and every BFS ordering of G is

also a LexBFS ordering of G.

ii) Let σ be a BFS ordering of a forest graph G, and let σ(v) = 1. If we do a LexBFS

on G starting in v, at every step of iteration all the unvisited vertices have a label

consisting just of one number - a number belonging to the parent of the unvisited

vertex. Thus, the label of every vertex consists just of a number belonging to the

first visited neighbor. It means that putting the vertices in a queue in BFS is

exactly the same as ordering vertices with respect to the lexicographic maximal

label, so σ is a LexBFS of G.

iii) If v is arbitrary vertex of a complete graph G, once the vertex v is visited, every

unvisited vertex in G gets a label from v. It means that at iteration step of

LexBFS all the unvisited vertices in G have the same label, so we can choose any

among them. Any ordering of vertices of a complete graph is both a BFS and a

LexBFS ordering.

iv) Let G be a complete bipartite graph with partition classes A and B, and let σ

be a BFS ordering of G. Assume without loss of generality that v ∈ A is a first

vertex in ordering σ. BFS is a layered search on G, so after visiting v we visit all

the neighbors of v in B. After that, we visit all the vertices that are on distance

2 from vertex v in G, and so on, until we visit all the vertices in G. This search

is also a LexBFS search, since at every step of LexBFS the vertices of G in the

same partition of V (G) all have the same labels, and we can choose any among

them. Also, all vertices that are on some distance i from v belong either to A or

B, so σ is a LexBFS ordering of G.

It turns out that BFS and LexBFS are equivalent in a {diamond, pan}-free graph.

Corollary 4.8. If G is a {diamond, pan}-free graph, then every BFS in G is also

LexBFS.

4.2 Depth First Search vs Lexicographic Depth First

Search

In previous section we gave a characterization of graphs that are {diamond, pan}-free

and using the structural result written there it is not difficult to show that every DFS

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 43

ordering is a LexDFS ordering in a {diamond, pan}-free graphs. In this section we

use another approach to prove the equivalence between the proposed search methods,

so we use the characterization of (Lex)DFS orderings (so-called “point conditions”).

First we give a DFS version of Example 4.5.

Lemma 4.9. If a graph G contains a paw or a diamond as an induced graph, then

there is a DFS ordering of G that is not a LexDFS ordering of G (that is, DFS and

LexDFS are not equivalent in G).

Proof. The claim can be easily justified by giving a prefix of an order σ that is a DFS

order and not a LexDFS order of a graph containing a paw or a diamond. Let G be a

graph and let H be a paw graph, contained in G as an induced subgraph. Using the

same notation as in Fig. 19 (left) we can define the DFS ordering σ of G starting in b,

with first four vertices in σ being b, c, d, a, in that order. Similarly, if H is a diamond

contained in G as induced subgraph, we can define the DFS ordering σ of G having the

same prefix: starting in b and visiting consecutively vertices c, d, a (Fig. 19 right). In

both cases σ is a DFS ordering, since it starts with a vertex b and traverses the graph

as deep as possible. At the same time, σ cannot be a LexDFS ordering of G, as vertices

c, d, a do not satisfy the condition from Theorem 3.11, and the claim follows.

As we already know, the paw is defined as a 3-pan. In the following lemma we

give a result showing that the eqivalence between DFS and LexDFS in G implies that

G does not contain any pan as induced subgraph. This result generalizes the part of

previous lemma that considered the existence of a paw graph in G.

Lemma 4.10. If a graph G contains a pan as an induced subgraph, then there is a

DFS ordering of G that is not a LexDFS ordering of G (that is, DFS and LexDFS are

not equivalent in G).

Proof. The claim can be easily justified by giving a prefix of an order σ that is a DFS

order and not a LexDFS order of a graph containing a pan. Let G be a graph and let

H be a pan contained in G as an induced subgraph. Let the vertices of H be denoted

by v1, . . . , vn, v, where vertices v1, v2, . . . , vn form a cycle in this order, and v is a vertex

of degree 1, adjacent to vn−1. We can define a DFS ordering σ of G starting in v1,

with first n vertices in σ being v1, v2, . . . , vn−2, vn−1, v, in that order. It is clear that σ

is a DFS order, since it has a prefix that is a path, and continues traversing the graph

G using DFS. At the same time we have that σ is not a LexDFS ordering of G. We

know that the vertex vn appears in σ after all other vertices from H. It follows that

v1 <σ v <σ vn with v1vn ∈ E(G) and v1v /∈ E(G). By Theorem 3.11 it follows that

there is a vertex vi: v1 <σ vi <σ v, viv ∈ E(G) and vivn /∈ E(G). But among the

vertices that are visited before v in σ there is just a vertex vn−1 that is adjacent to v.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 44

We have that vn−1vn ∈ E(G), so the condition of Theorem 3.11 is not fulfilled, and σ

is not a LexDFS ordering of G.

Therefore, equivalence between DFS and LexDFS in a graph G implies that G is a

{pan, diamond}-free graph. In the following lemma we show that this is also sufficient.

Lemma 4.11. If a graph G does not contain a diamond, or a pan as an induced

subgraph, then DFS and LexDFS are equivalent in G.

Proof. Let G be a class of {diamond, pan}-free graphs. We want to prove that DFS

and LexDFS are equivalent in G ∈ G. Assume for contradiction this is not the case,

and let G be a graph and σ an ordering of G that is DFS but not LexDFS ordering.

Since σ is a DFS ordering, it satisfies the characterization given in Theorem 3.6: if

a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a vertex d such that a <σ d <σ b

and db ∈ E. From Theorem 3.11 it follows that there exist vertices a, b, c in G such

that a <σ b <σ c, ab /∈ E(G), ac ∈ E(G) and for all vertices d satisfying a <σ d <σ b it

holds that either dc ∈ E(G), or db /∈ E(G).

Let a <σ b <σ c be leftmost vertices that do not satisfy the characterization of

LexDFS ordering σ given in Theorem 3.11. We know that σ is DFS ordering of G, so

there exists a vertex d1 such that a <σ d1 <σ b and d1b ∈ E(G). Then it follows that

d1c ∈ E(G). Also, we have that ad1 /∈ E(G) and bc /∈ E(G), since otherwise we get a

pan or a diamond.

Consider now the vertices a, d1, c. It holds that a <σ d1 <σ c, with ac ∈ E(G)

and ad1 /∈ E(G). Since d1 <σ b, these vertices satisfy the condition from the LexDFS

ordering characterization, so there exists a vertex d2 such that a <σ d2 <σ d1, and

d2d1 ∈ E(G), d2c /∈ E(G). If d2b ∈ E(G), then the vertices d2, d1, b, c form a 3-pan. If

ad2 ∈ E(G), then the vertices a, d2, d1, b, c form a 4-pan. Hence, it follows that ad2 /∈
E(G) and bd2 /∈ E(G). Now we can continue this process by considering the vertices

a, d2, c and apply the characterization of the LexDFS ordering. Let d1, d2, . . . , dk be a

sequence of vertices defined in the following way: given a triple a <σ di <σ c such that

adi /∈ E(G), ac ∈ E(G), di+1 is a vertex satisfying the conditions: a <σ di+1 <σ di,

di+1di ∈ E(G), and di+1c /∈ E(G). Let k be the maximum number of such vertices.

We know that the number of vertices between a and c is finite, so k is a finite number.

We show the following claims:

i) didi+1 ∈ E(G), for all i ∈ {2, . . . , k} – this is true by definition of vertices di,

ii) di+1c /∈ E(G), for all i ∈ {2, . . . , k} – this is true by definition of vertices di,

iii) dia /∈ E(G), for all i ∈ {1, 2, . . . , k − 1} – this is true by definition of vertices di,

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 45

iv) dka ∈ E(G) – if this were not true, then we could continue the process, and dk is

not the last vertex in this sequence

v) didj /∈ E(G), for all i, j ∈ {1, . . . , k}, such that |i − j| ≥ 2. Assume the op-

posite: let di and dj be adjacent vertices with |i − j| ≥ 2, such that |i − j| is

minimum and among all pairs i, j satisfying this minimality condition, let i, j be

the smallest possible (equivalently, the rightmost in the ordering σ). Without

loss of generality we may assume that j < i. From the minimality of |i − j| it

follows that the vertices dj, dj+1, . . . , di form an induced cycle in G. If j = 1,

then the vertices {dj, dj+1, . . . , di, c} form a pan in G. Similarly, if i = k, then

the vertices {dj, dj+1, . . . , di, a} form a pan in G. It follows that j > 1 and

i < k. Consider now the vertex dj−1. By the way we chose i and j it follows that

dj−1d` /∈ E(G) for all ` ∈ {dj+1, . . . , di−1}. If dj−1di /∈ E(G), then the vertices

{dj−1, dj, dj+1, . . . , di} form a pan in G. If dj−1di ∈ E(G), we consider two cases.

First, if i − j = 2, then the vertices {di, di−1, di−2 = dj, di−3 = dj−1} form a

diamond. Second, if i− j > 2, then the vertices {dj−1, dj, di, di−1} form a 3-pan.

In both cases we get a contradiction with the definition of G, meaning that such

an edge didj cannot exist in G.

vi) dib /∈ E(G), for all i ∈ {2, . . . , k}. Assume for contradiction that j is a minimal

value in {2, . . . , k} such that djb ∈ E(G). Then the vertices {d1, . . . , dj, b, c} form

a pan in G; a contradiction.

Consider now the vertices {d1, . . . , dk, a, c, b}. From the above claims it follows that

they form a pan, where b is a vertex of degree one. This is a contradiction with the

definition of G. It follows that the vertices d1, . . . , dk defined as above cannot exist, so

σ is a LexDFS ordering of G, as we wanted to show.

Corollary 4.12. Every DFS ordering of a graph G is a LexDFS ordering of G if and

only if G is a {diamond, pan }-free graph.

4.3 Maximal Neighborhood Search vs Maximum

Cardinality Search

In this section we give some examples of graphs for which there exists a MNS ordering

that is not a MCS ordering. On Fig. 20 there are graphs and corresponding MNS

orderings that are not MCS orderings. It is not, however, clear, whether these graphs

are forbidden as induced subgraph in a larger graph satisfying the requirement that

every MNS ordering is MCS ordering. This means that there could exist a graph G

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 46

and its induced subgraph H such that G satisfies the MNS and MCS equivalence, while

H does not. Let, for example, H be the top left graph in Fig. 20. It is not difficult to

see that the ordering σ = (b, c, d, a, e) is a valid MNS ordering, but not a valid MCS

ordering of H. This is true since after taking vertices b, c, d, in MCS we must take

vertex e, and not a. If G is a graph consisting of H and additional vertex f adjacent

with a, b, c, d, then NG(e) ⊂ NG(f) and f must be visited before e in MNS. It follows

that after taking vertices b, c, d, we must take f , and then we can take any vertex

among a and e. In both cases we get an ordering that is both MNS and MCS. It seems

that for any ordering σ of H that is an MNS and not an MCS ordering, we can find

some graph G such that H is an induced subgraph of G, and no ordering that is MNS

and not MCS ordering of G can have the same prefix as σ. Unfortunately, it is not

clear how this construction of a graph G influences the other vertex orderings of G,

that have different initial vertices.

b c

a e

d

σ = (b, c, d, a, e)

a

b

c d e

σ = (d, c, b, e, a)

a

b c

d

e

σ = (c, a, d, e, b)

a

b c

d

e

σ = (a, d, c, e, b)

a

b c

d

e

σ = (e, b, a, d, c)

a

b cd

e
σ = (d, b, e, a, c)

Figure 20: Graphs and corresponding orderings that are MNS and not MCS

orderings.

4.4 Maximal Neighborhood Search vs Lexicographic

BFS/DFS

In this section we characterize graphs for which it holds that every MNS ordering is

also a LexBFS ordering, and graphs for which it holds that every MNS ordering is also

a LexDFS ordering. It turns out that in both cases the same graphs are forbidden as

induced subgraphs, as the following lemmas show.

Lemma 4.13. If every MNS ordering of G is also a LexBFS ordering of G, then G is

a {P4, C4}-free graph.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 47

Proof. Let G be a graph in which every MNS ordering is a LexBFS ordering. Assume

for contradiction that G is not a {P4, C4}-free graph.

Assume first that G contains an induced P4, and let a, b, c, d be the vertices of such

a P4 (see Fig. 21 left). Let σ be a MNS ordering of vertices in G with σ(b) = 1. Then

any neighbor of b can be selected next, so let σ(c) = 2. Then the label of vertex d

contains vertex c, while a label of vertex a does not contain it, meaning that the label

of vertex d will never be a proper subset of a label of vertex a, and we can select

vertex d before vertex a in σ. At the same time once vertices b and c were selected,

from the definition of LexBFS it follows that all the neighbors of b must be selected

before its non-neighbors, so if σ is a LexBFS ordering of G, it must be that a <σ d;

a contradiction. If G contains an induced C4, we construct an ordering σ with initial

segment (b, c, d, a) (see Fig. 21 right) and using the similar arguments we get that σ is

MNS and not LexBFS ordering of G. It follows that G is a {P4, C4}-free graph.

Lemma 4.14. If every MNS ordering of G is also a LexDFS ordering of G, then G is

a {P4, C4}-free graph.

Proof. Let G be a graph in which every MNS ordering is a LexDFS ordering. Assume

for contradiction that G is not a {P4, C4}-free graph.

Assume first that G contains an induced P4, and let a, b, c, d be vertices of P4

(see Fig. 21 left). Let σ be a MNS ordering of vertices in G with σ(b) = 1. Then any

neighbor of b can be selected next, so let σ(c) = 2. Then a label of vertex a contains a

vertex b, while a label of vertex d does not contain it, meaning that a label of vertex a

will never be a proper subset of a label of vertex d, and we can select vertex a before

vertex d in σ. At the same time once the vertices b and c were selected, from the

definition of LexDFS it follows that (b, c, a, d) cannot be an initial segment of LexDFS

ordering of G, since vertices c, a, d do not satisfy the condition from Theorem 3.11.

If G contains an induced C4, the same reasoning holds: the ordering (b, c, a, d)

cannot be the initial segment of LexDFS ordering of G, while it can be the initial

segment of MNS ordering of G. It follows that G is a {P4, C4}-free graph.

b c

a d

σ1 = (b, c, d, a)

σ2 = (b, c, a, d)

a b c d

σ1 = (b, c, d, a)

σ2 = (b, c, a, d)

Figure 21: A path (left) and a cycle (right) on 4 vertices. σ1 is an MNS ordering that

is not a LexBFS ordering. σ2 is an MNS ordering that is not a LexDFS ordering.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 48

It follows that given a graph G satisfying the property that every MNS ordering is

a LexBFS (resp., LexDFS) ordering, it must be true that G is a {P4, C4}-free graph.

It turns out that this is also sufficient condition – in a {P4, C4}-free graphs every MNS

ordering is also a LexBFS ordering and a LexDFS ordering. We prove these claims

in the following two theorems. Observe that {P4, C4}-free graphs are also known as

trivially perfect graphs, and can be obtained from the 1-vertex graphs by iteratively

applying the operations of disjoint union and addition of universal vertices [22].

Theorem 4.15. Let G be a {P4, C4}-free graph. Then every MNS ordering of G is

also a LexBFS ordering of G.

Proof. Let G be a {P4, C4}-free graph, and assume for contradiction that there is an

ordering σ of vertices in G that is an MNS ordering of G and not a LexBFS ordering

of G. From Theorem 3.8 we know that there exist vertices a, b, c in G such that

a <σ b <σ c and ac ∈ E(G), ab /∈ E(G), and for every d <σ a it holds that either

db /∈ E(G) or dc ∈ E(G). Let a, b, c be a leftmost such triple (that is, for any other triple

a′ <σ b
′ <σ c

′ and a′c′ ∈ E(G), a′b′ /∈ E(G), with σ(a′)+σ(b′)+σ(c′) < σ(a)+σ(b)+σ(c)

the condition from Theorem 3.8 is satisfied).

We know that σ is an MNS ordering, so by Theorem 3.16 it follows that there exists

a vertex d <σ b in G such that db ∈ E(G) and dc /∈ E(G). It cannot be that d <σ a,

so it follows that have that a <σ d <σ b. If ad ∈ E(G), or bc ∈ E(G), then the vertices

{a, b, c, d} induce either a P4, or a C4 in G; a contradiction. It follows that ad /∈ E(G)

and bc /∈ E(G).

Now the vertices a <σ d <σ c form a triple with ac ∈ E(G) and ad /∈ E(G), so they

must satisfy the condition from Theorem 3.8 and there exists a vertex d1 <σ a such

that d1d ∈ E(G) and d1c /∈ E(G). Moreover, it follows that d1a /∈ E(G), for otherwise

the vertices {d1, a, d, c} form a P4 in G.

Consider now the vertices d1 <σ a <σ d. They form a triple satisfying d1d ∈ E(G)

and d1a /∈ E(G), so by Theorem 3.8 there exists a vertex d2 <σ d1 such that d2a ∈ E(G)

and d2d /∈ E(G). If d2d1 ∈ E(G), then the vertices {d2, d1, a, d} form an induced P4,

a contradiction. We can continue the same process and apply Theorem 3.8 on vertices

d2, d1, a in order to obtain a vertex d3, and then apply the same process on vertices

di, di−1, di−2 to obtain vertices di+1, for i ≥ 3, as in Theorem 3.8. Since a graph G is

finite, in this process we get the vertices d1, . . . , dk, for some finite number k. Let k be

the maximum length of such a sequence of vertices. It will be true that di <σ di−1 for

all i ≥ 2, and

di+2di ∈ E(G) and di+3di /∈ E(G), (4.1)

for all i ≥ 1.

We prove the following claim inductively.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 49

Claim : didi−1 /∈ E(G), for i ∈ {2, . . . , k}.
We know that d2d1 /∈ E(G), so the inductive basis holds. Assume now that for

all i ≤ j we have that didi−1 /∈ E(G). Let i = j + 1. If dj+1dj ∈ E(G), then the

vertices {dj+1, dj, dj−1, dj−2} induce a P4 in G. This is true since djdj−1 /∈ E(G),

dj−1 /∈ E(G) by inductive hypothesis, while other edges and non-edges follow from

(4.1). A contradiction with the definition of G, so the claim follows.

It follows that vertices dk <σ dk−1 <σ dk−2 satisfy that dkdk−2 ∈ E(G) and

dkdk−1 /∈ E(G), so by Theorem 3.8 there exists a vertex dk+1 and k is not maximal; a

contradiction.

Theorem 4.16. Let G be a {P4, C4}-free graph. Then every MNS ordering of G is

also a LexDFS ordering of G.

Proof. Let G be a {P4, C4}-free graph, and assume for contradiction that there is an

ordering σ of vertices in G that is an MNS ordering of G and not a LexDFS ordering

of G. From Theorem 3.11 we know that there exist vertices a, b, c in G such that

a <σ b <σ c and ac ∈ E(G), ab /∈ E(G), and for every a <σ d <σ b it holds that either

db /∈ E(G) or dc ∈ E(G). Let a, b, c be a leftmost such triple (that is, for any other triple

a′ <σ b
′ <σ c

′ and a′c′ ∈ E(G), a′b′ /∈ E(G), with σ(a′)+σ(b′)+σ(c′) < σ(a)+σ(b)+σ(c)

the condition from Theorem 3.11 is satisfied).

We know that σ is an MNS ordering, so by Theorem 3.16 it follows that there

exists a vertex d <σ b in G such that db ∈ E(G) and dc /∈ E(G). It cannot be that

a <σ d <σ b, so it follows that have that d <σ a. If ad ∈ E(G), or bc ∈ E(G), then

the vertices {a, b, c, d} induce either a P4, or a C4 in G; a contradiction. It follows that

ad /∈ E(G) and bc /∈ E(G).

Now the vertices d <σ a <σ b form a triple with db ∈ E(G) and da /∈ E(G), so they

must satisfy the condition from Theorem 3.11 and there exists a vertex d <σ d1 <σ a

such that d1a ∈ E(G) and d1b /∈ E(G). Moreover, it follows that dd1 /∈ E(G), for

otherwise the vertices {d, d1, a, b} form an induced P4 in G.

Consider now the vertices d <σ d1 <σ b. They form a triple satisfying db ∈ E(G)

and dd1 /∈ E(G), so by Theorem 3.11 there exists a vertex d <σ d2 <σ d1 such that

d2d1 ∈ E(G) and d2b /∈ E(G). If dd2 ∈ E(G), then the vertices {d, d2, d1, b} form a

P4, a contradiction. We can continue the same process and apply Theorem 3.11 on

vertices d, d2, b in order to obtain a vertex d3, and then apply the same process on

vertices d, di, b to obtain vertices di+1, for i ≥ 3, as in Theorem 3.11. Since a graph G

is finite, in this process we get the vertices d1, . . . , dk, for some finite number k.

Let k be the maximum length of such a sequence of vertices. It will be true that

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 50

d <σ di <σ di−1 for all i ≥ 2, and

di+1di ∈ E(G) and dib /∈ E(G), (4.2)

for all i ≥ 1.

We prove the following claim inductively.

Claim : ddi /∈ E(G), for i ∈ {1, 2, . . . , k}.
We know that dd1 /∈ E(G), so the inductive basis holds. Assume now that for all

i ≤ j we have that ddi /∈ E(G). Let i = j + 1. If ddj+1 ∈ E(G), then the vertices

{b, d, dj+1, dj} induce a P4 in G. This is true since ddj /∈ E(G) by inductive hypothesis,

while other edges and non-edges follow from (4.2). A contradiction with the definition

of G, so the claim follows.

It follows that vertices d <σ dk <σ b satisfy that db ∈ E(G) and ddk /∈ E(G), so

by Theorem 3.11 there exists a vertex dk+1 such that d <σ dk+1 <σ dk and k is not

maximal; a contradiction.

From the above theorems we get the following corollary.

Corollary 4.17. If G is {P4, C4}-free graph, then for every ordering σ of V (G) the

following statements are equivalent:

i) σ is a MNS ordering of G.

ii) σ is a LexDFS ordering of G.

iii) σ is a LexBFS ordering of G.

In other words, it follows that MNS and LexBFS are equivalent in G if and only if

G is a {P4, C4}-free graph, and similarly, MNS and LexDFS are equivalent in G if and

only if G is a {P4, C4}-free graph.

Corollary 4.18. MNS and LexBFS are equivalent in G if and only if G is a {P4, C4}-
free graph. MNS and LexDFS are equivalent in G if and only if G is a {P4, C4}-free

graph.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 51

5 Graph Search Trees

In Chapter 3 we introduced various graph search methods, and saw that one possible

outcome of a graph search is a search order. In this section we focus on the second

possible outcome of a graph search: a search tree. A search in a connected undirected

graph imposes a search direction on each edge of G given by the direction in which the

edge is traversed when the search is performed. If we take a subgraph of G defined

by the subset of these directed edges such that there is exactly one vertex v with no

incoming edges and every other vertex in G has exactly one incoming edge, we get a

directed spanning tree of G. The underlying graph T of this directed spanning tree is

called a search tree of a graph G, and vertex v is the root of T . More precisely, given a

graph G and a search order σ = (v1, . . . , vn) of vertices in G, a search tree T is defined

as a spanning tree of G with every vertex vi ∈ V (T) being adjacent in T to exactly

one vertex vj ∈ NG(vi), with j <σ i.

Given a search order σ of a graph G and some vertex vi ∈ V (G), i 6= 1, one may

observe that the neighbor vj of vi, j < i in T is not uniquely determined. If σ is a BFS

order of G, one usually connects every vertex of G to its neighbor that appeared first in

σ. Contrary, if σ is a DFS order of G, then every vertex v of G is connected to its most

recently visited neighbor (last neighbor of v visited before v). In literature we can find

particular definitions of F -trees (first-in trees) and L-trees (last-in trees), depending

whether we connect a vertex v to its earliest, or most recently visited neighbor [1].

Definition 5.1. Given a search order σ = (v1, . . . , vn) of a given search on a connected

graph G = (V,E), we define the first-in tree (or F -tree) to be the tree consisting of the

vertex set V , and an edge from each vertex to its leftmost neighbor in σ. The last-in

tree (or L-tree) is the tree consisting of the vertex set V , and an edge from each vertex

vi to its rightmost neighbor vj in σ with j < i.

The search tree recognition problem asks whether a given spanning tree of a given

graph is a search tree of a given search method. Using the definitions of first-in and

last-in trees we formally define the problem as follows.

F-Tree (L-Tree) Recognition Problem

Instance: A connected graph G = (V,E) and a spanning tree T .

Task: Decide whether there is a graph search of the given type such that

T is its F -tree (L-tree) of G.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 52

Observe that the F-Tree (L-Tree) Recognition Problem is defined with

no starting vertex of a graph search. If, additionally, the starting vertex of a graph

search is given, the problem is referred to as the rooted F-Tree (L-Tree) Recognition

Problem [1]. If the rooted version of a problem can be solved in polynomial time, then

solving the problem n times (once for each vertex) gives a result for the non-rooted

version. The other direction is not necessarily true, and theoretically it can happen

that the non-rooted version can be solved efficiently, while the rooted version is hard [1].

Example 5.2. Consider the graph G given in Fig. 22 a). One possible outcome of a

DFS on G is a vertex order σ = (a, b, e, c, f, d, g). A search tree T corresponding to σ

is constructed so that we start in a and traverse σ so that for each vertex we connect

it with its most recently visited neighbor. For example, vertex c is connected to e and

not to a, since a <σ e. We thus have that the tree T depicted on Fig. 22 b) with thick

edges is a DFS L-tree on G.

a

b d

c

e f

g

a)

a

b d

c

e f

g

b)

a

b d

c

e f

g

c)

Figure 22: A graph G (a)) and its spanning trees (b) and c)). The spanning tree on

b) is a DFS L-tree of G, while the spanning tree on c) is not a DFS L-tree of G.

Consider now the spanning tree T of a graph G depicted with thick edges on the

same figure c). Let us determine whether T is a DFS L-tree of G. If T would be

a DFS L-tree of G, then there would exist a DFS ordering σ of G corresponding to

T . We consider few cases depending on the first vertex of σ. Since σ is supposed

to be a DFS ordering of a biconnected graph G, from definition of DFS it follows

that σ−1(1) ∈ {e, c, g}. If σ(e) = 1, then from the construction of T it follows that

σ = (e, b, a, d, f, g, c), so the edge cf should belong to E(T), which is not the case;

a contradiction. If σ(c) = 1, we can see that the thick paths don’t go as deep in G

as possible, so T cannot be a DFS search tree. Finally, if σ(g) = 1, then from the

construction of T it follows that σ = (g, f, d, a, b, e, c), and the edge ec should belong

to E(T), which is not the case; a contradiction. It follows that there is no DFS ordering

σ of G such that T is a search tree corresponding to σ, and so T is not a DFS L-tree

of G.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 53

From the definition of search trees it follows that every search tree corresponds to

some search order. In Fig. 2 (Chapter 3) we saw the relations between graph orders,

and the same relations hold for a corresponding search trees, for both F - and L-trees,

respectively [2]. Although in general it can happen that distinct search orders produce

the same F - or L-tree, the relations represented in Fig. 2 represent proper inclusion

relations, so there are search trees that are BFS, and not LexBFS trees, or that are DFS,

and not LexDFS trees, etc. For examples of a corresponding search trees, see Fig. 23 [4].

a) b) c) d)

Figure 23: Four examples of graphs with their search trees denoted by the thick

edges. The graph in a) depicts an F -tree of BFS that is not an F -tree for LexBFS or

MNS. The graph in b) depicts an F -tree of MNS and BFS that is not an F -tree for

LexBFS. The graph in c) shows a search tree that is an F -tree of MNS, BFS and

LexBFS and not an F -tree of MCS. Finally, the graph in d) gives an example of a

search tree that is an L-tree for DFS, but not for LexDFS.

In the following sections we consider the search tree recognition problems for L-

and F -trees, respectively. Historically, the very first results regarding the recognition

of search trees considered DFS, and since all DFS-like searches produce L-trees, we

start with L-trees. In the second section we proceed to F -trees.

5.1 Last-in Trees

A search tree of some graph is called a last-in tree if there is a corresponding ordering of

vertices σ such that every vertex in a search tree is adjacent to its most recently visited

neighbor. The main representative of L-trees is a DFS L-tree, and in literature it is

often simply referred to as a DFS tree. The first known paper that considers the pro-

posed search trees was written in 1972 by Tarjan [40], where the author characterized

the DFS trees, without mentioning the recognition problem and algorithm that solves

it. The DFS-tree recognition problem was formulated for the first time by Hagerup

and Nowak in 1985 [24], where the authors gave a linear-time recognition algorithm.

The same result was given independently by Korach and Ostfeld in [28]. After that,

L-trees were not studied for a while. Recently, Beisegel et. al. [4] gave new results in

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 54

this direction. Using similar ideas as given by Korach and Ostfeld for DFS trees, they

showed that the recognition problem of LexDFS L-trees is solvable in polynomial time.

Regarding the other search methods, Beisegel gave efficient algorithms that solve the

problem for particular search methods on chordal graphs, with the complexity of the

problem remaining open in general case [2]. An overview of known results regarding

L-trees is given in Table 2. In the rest of this section we present proposed results in

more detail.

Table 2: Complexity of the L-tree recognition problem. Letter P denotes the

existence of a polynomial-time algorithm, while L denotes that the problem is

solvable in linear time.

Tree results LexBFS DFS LexDFS MCS MNS

All Graphs ? L [24,28] P [4] ? ?

Chordal Graphs L [2] L [2] L [2] L [2] L [2]

5.1.1 DFS trees

Trees obtained as a result of DFS on a graph were studied by Tarjan in 1972 [40]. He

gave a complete characterization of DFS trees using the so-called palm trees. A palm

tree is a directed graph D = (V,A), consisting of two disjoint sets of arcs (directed

edges) X and Y , such that the subgraph containing the arcs in X is a directed spanning

tree of the underlying graph P of D and for every directed edge v → w ∈ Y there

exists a directed path wv completely contained in X. The arcs in X are called tree

arcs, and the arcs in Y are called the fronds. Intuitively, it means that the arcs in

X define a directed spanning tree T of P , with root v, and all the arcs in T are

oriented away from the root, while all other arcs in P are oriented towards the root.

Tarjan proved that a directed graph D generated by a DFS of a connected graph G

is a palm tree, and conversely, any palm tree D can be generated by some depth-

first search of the undirected version of D [40]. Additionally, he used DFS for the

construction of two efficient graph algorithms: an algorithm for finding the biconnected

components of an undirected graph and an improved version of an algorithm for finding

the strongly connected components of a directed graph. Both algorithms run in linear

time, and represent important applications of DFS method. Using the concept of palm

trees, Hopcroft and Tarjan developed a linear-time algorithm for testing planarity of a

graph [25]. The following lemma appeared in a bit different form in the first DFS-based

paper by Tarjan and it turned out to be useful for development of the algorithm for

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 55

the DFS tree recognition [40].

Lemma 5.3 (Tarjan [40]). Let G = (V,E) be a graph and let T be a rooted DFS L-tree

of G. For each edge uv ∈ E it holds that either uv ∈ E(T), or u is an ancestor of v in

T , or v is an ancestor of u in T .

A simple linear-time algorithm that recognizes whether a given spanning tree T of a

given graph G can be obtained as a result of DFS on G was developed using the above

characterization of DFS trees. Hagerup and Nowak observed it in 1985 and therefore

developed a linear-time algorithm that answers whether a spanning tree T of a graph

G is a DFS tree [24]. Their algorithm checks for every edge of a graph G whether it

satisfies the conditions of the above lemma, and if this is not the case for at least one of

them, the algorithm returns the negative answer, while otherwise it returns a positive

answer. If the answer is positive, then the algorithm outputs also the vertex r of G

for which it is true that T is a DFS tree of G rooted at r (see Algorithm 8). For a

linear-time implementation of the algorithm, the authors used the recursive relations

developed on relations father–son in a rooted tree T , so they showed that the set of all

non-tree edges uv for which it is not true that u is either ancestor or a descendant of

v, for each root r ∈ V (G) can be computed in linear time [24]. This means that in the

algorithm we do not have to check each non-tree edge in every vertex iteration, and

that is why the algorithm works in linear time.

Algorithm 8: Algorithm which decides whether T is a DFS tree of G.

Input: Graph G = (V,E), spanning tree T of G.

Output: T is a DFS tree of G or not.

1 begin

2 isTree← true;

3 foreach r ∈ V (G) do

4 foreach uv ∈ E(G) \ E(T) do

5 if u not ancestor of v and v not ancestor of u then

6 isTree ← false

7 if isTree then

8 return T is a DFS tree of G rooted at r

9 isTree← true;

10 return T is not a DFS tree of G

A few years later, Korach in Ostfeld [28] independently developed a new linear-time

algorithm that recognizes the DFS trees, and in case of negative answer returns the

proof for that fact. Their algorithm consists of four phases, and is based on a hereditary

property of the DFS search trees, as the following lemma states.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 56

Lemma 5.4 (Korach and Ostfeld, [28]). Let G = (V,E) be a graph with spanning tree

T . Let Gi be a subgraph of G with a spanning tree Ti which is the restriction of T to

Gi. If T is an DFS tree on G, then Ti is a DFS tree on Gi.

Korach and Ostfeld observed that the recognition of DFS trees in 2-connected

graphs can be solved efficiently. More precisely, they showed that given a 2-connected

graph G = (V,E) and its spanning tree T , one of the following holds:

i) T is a path and there are two DFS orientations of T (where the roots of the

oriented trees are the two ends of the path).

ii) T is not a path and there is at most one DFS orientation of T . Equivalently,

there is at most one leaf s in T where T rooted in s satisfies the property that

for every non-tree edge uv of G it holds that u is an ancestor or descendant of v

in T .

The algorithm developed by Korach and Ostfeld answers whether T is a DFS tree

of a graph G and here we briefly explain the steps of the algorithm.

1. Decompose the graphG into its 2-connected components. Denote the 2-connected

components of G by C1, C2, . . . , Ck, and the separating vertices of G by s1, . . . , sp.

Compute a graph G′ with V (G′) = {C1, C2, . . . , Ck} ∪ {s1, . . . , sp} and E(G′) =

{Cisj | sj is a vertex of Ci in G} (see [19]).

2. For each 2-connected component Gi = (Vi, Ti) of G check whether Ti (the induced

subtree of T in Gi) is a DFS tree in Gi.

3. Compute the orientation G′A = (V (G′), F) of a graph G′ in the following way:

add the directed edge Ci → aj to F whenever aj ∈ V (Ci). If Ti rooted at am is

a DFS tree in Gi, add Ci → am to F .

4. Find all the roots of the graph G′A. If Ci is a root of G′A, then all the (one or

two) roots of a DFS run that gives Ti in Gi are output (i.e., they are the roots of

a DFS run in G that gives T).

For all the details of the linear-time implementation of the above algorithm, see [28].

5.1.2 LexDFS trees

As we have already seen, the LexDFS represents a special instance of a DFS, so it is

natural to expect that LexDFS trees have some in a sense common properties with

DFS trees. The following lemma represents a LexDFS analogue of Lemma 5.4, and is a

main ingredient of a polynomial-time algorithm for the recognition of LexDFS trees [4].

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 57

Lemma 5.5 (Beisegel et al. [4]). Let G = (V,E) be a graph with spanning tree T . Let

Gi be an induced subgraph of G with a spanning tree Ti which is the restriction of T to

Gi. If T is an LexDFS L-tree on G, then Ti is an LexDFS L-tree.

The algorithm that solves the rooted LexDFS L-tree recognition problem is pre-

sented in Algorithm 9. Observe that the input of the algorithm consists of a graph G,

a spanning tree T , and a vertex r ∈ V , and it determines whether T is an LexDFS

L-tree of G, with the corresponding LexDFS search starting in the vertex r. For a

non-rooted version of a problem, we run the algorithm at most n times, that is once

for each vertex of a graph.

Algorithm 9: Algorithm which decides whether T is an L-tree of LexDFS on

G rooted in r.
Input: Graph G = (V,E), spanning tree T of G, and a vertex r ∈ V .

Output: T is an L-tree of LexDFS on G or not.

1 begin

2 S ← {r};
3 foreach vertex v ∈ V − r do label(v)← ∅;
4 foreach vertex v ∈ N(r) do

5 prepend 0 to label(v);

6 pred(v)← r;

7 while S 6= V do

8 choose a node v ∈ V − S with lexicographically largest label, such that

{pred(v), v} ∈ E(T);

9 if no such v exists then

10 return T is not an L-tree of LexDFS on G

11 S ← S ∪ {v};
12 for w ∈ N(v) \ S do

13 prepend i to label(w);

14 pred(w)← v;

15 return T is an L-tree of LexDFS on G.

Let us see how the above algorithm works on an example.

Example 5.6. Let G be the graph from Fig. 24 and let a spanning tree T of G be

depicted with thick edges. Let us first check whether T is a LexDFS L-tree of G

rooted at c. We see that c is a universal vertex in G, so after setting σ(c) = 1, all

other vertices have the same label, and by algorithm we can choose the vertex b after

c since bc ∈ E(T). Then the labels are `(a) = `(e) = `(g) = 21, `(d) = `(f) = 1, so

among vertices a, e, g we choose a since it is adjacent in T with vertex b (step 8 in the

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 58

algorithm). After taking a, the labels are `(d) = 31, `(e) = `(g) = 21, `(f) = 1, so we

have to choose vertex d, but the edge ad is not an edge of a tree T , so the algorithm

returns “T is not an L-tree of LexDFS on G”.

Let us now check whether T is a LexDFS L-tree of G rooted at a. If we start

in a, in the next step we have to choose among vertices b, c, d and we choose b since

ab ∈ E(T). Then the labels are `(c) = 21, `(e) = `(g) = 2, `(d) = 1, and in the next

step we choose vertex c. After choosing c, every unvisited vertex gets number 3 at

the beginning of its label, and by algorithm we choose the vertex g. Now the labels

are `(e) = 432, `(d) = 431, `(f) = 43, and we take vertex e. Then step 11 of the

algorithm says that we have to do something for each unvisited neighbor of e. This is

trivial, since all neighbors of e are already visited, so lines 12, 13, 14 of the algorithm

are not executed, and we still have to choose v with lexicographic largest label such

that gv ∈ E(T) (since pred(v) = g). Among vertices d and e we choose vertex d, and

finally e at the end. The resulting ordering is σ = (a, b, c, g, e, d, f) and it corresponds

to tree T , rooted at a. The algorithm returns “T is an L-tree of LexDFS on G”.

a

b d

c

e f

g

Figure 24: A graph G with a spanning tree T . Tree T is an L-tree of LexDFS on G

rooted at a. T is not an L-tree of LexDFS on G rooted at c.

Using Algorithm 9, we conclude that the recognition of LexDFS trees can be done

in polynomial time, for both rooted and unrooted versions of a problem. An interesting

fact is that, given a graph G and a vertex v ∈ V (G), it is NP-hard to decide whether

there exists a LexDFS ordering σ of vertices in G such that v is the last vertex in σ [3].

This problem is known in the literature as the End-vertex problem (see e.g. [2]).

Theorem 5.7 (Beisegel et al. [4]). The (rooted) L-tree recognition problem for LexDFS

can be solved in polynomial time.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 59

5.2 First-in Trees

A search tree of some graph is called a first-in tree if there is a corresponding ordering

σ of vertices such that every vertex in a search tree is adjacent to its first visited

neighbor. The main representative of F -trees is a BFS F -tree, and it is often referred

to as a BFS tree. Very first results concerning F -trees were published in 1990, and were

dealing with the structure and the recognition of BFS trees [33]. In that work Manber

characterized the edges of a graph that do not appear in a BFS tree, and developed an

algorithm that recognizes the BFS trees in polynomial time. Later, Beisegel et al. [4]

were studying the complexity of F -tree recognition for various graph search methods,

and obtained proofs of NP-completeness for lexicographic instances of BFS and DFS,

and for MNS and MCS in the class of weakly chordal graphs. In contrast with the

proofs of NP-completeness, in [2] one can find polynomial-time algorithms that solve

the tree recognition problem for the mentioned search methods on chordal graphs. An

overview of known results is presented in Table 3. In the first subsection we present

the results concerning BFS trees, while in the second subsection we focus on hardness

results for NP-hard instances of a problem.

Table 3: Complexity of the F -tree recognition problem. NPC denotes the

NP-complete instances of a problem. The letter P denotes the polynomial-time

algorithm, while L denotes the linear-time algorithm.

Tree results BFS LexBFS LexDFS MCS MNS

All Graphs L [24,33] NPC NPC NPC NPC

Weakly Chordal L NPC [4] NPC [4] NPC [4] NPC [4]

Chordal L [2] P [2] P [2] P [2] P [2]

5.2.1 BFS trees

Trees that can be obtained as a result of BFS on a graph were studied by Manber and

independently by Hagerup and Nowak. However, the only published work concerning

the BFS trees was done by Manber, while the work by Hagerup and Nowak remained

unpublished (see [24], [33]). In his work Manber gave a characterization of BFS trees of

a graph using the structure of the edges of a graph that do not appear in the proposed

spanning tree. The proposed characterization leads to a polynomial-time algorithm

that recognizes the BFS search trees of a graph G, and gives a corresponding BFS

ordering of G. We should mention that the algorithm solves the rooted instance of

the problem, so for the unrooted case it should be executed n times, with a root

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 60

being any vertex in a graph. For better understanding of the algorithm, we introduce

some terminology. Let G be a graph and T a rooted spanning tree of G, with root

r. Then for any vertex v ∈ V (G) the level of v with respect to r in T is denoted by

v.level and represents the distance dT (v, r). An edge uv ∈ E(G) is k-level edge if

|v.level − u.level| = k. For each level i, i ∈ {1, . . . , εG(r)} we define a level digraph Gi

to be a directed graph consisting of vertices at distance i from r in T , and having an

empty set of arcs. It is clear that any edge from T connects two vertices of consecutive

levels, so any edge in T is a 1-level edge. Also, if T is a BFS tree of G, it is not

possible that some edge in G is of level k with respect to T , for k ≥ 2. For, if uv is

an edge of G of level k, k ≥ 2, then there is some i ≥ 0, such that dT (u, r) = i and

dT (v, r) = i + k ≥ i + 2, so the distance between u and v in T is at least two. This is

not possible, since BFS visits all neighbors of already visited vertex consecutively, and

cannot skip some vertices. This condition is a part of the following characterization

theorem of BFS trees.

Theorem 5.8 (Manber [33]). Let G = (V,E) be a connected graph, let T be a spanning

tree of G, and let r ∈ V be a root of T . Then, T is a BFS tree of G rooted at r if and

only if the following conditions hold:

1. All edges in G are either 0-level edges or 1-level edges with respect to T , and

2. It is possible to order the vertices in each level such that

a) if x and y are vertices of the same level and x appears before y in the order

of that level, then all of x’s children appear before all of y’s children in the

order of the next level, and

b) if (v, w) is a nontree edge with v.level = i and w.level = i + 1 and if u is

the parent of w in T , then v appears after u in the order of level i.

Using the above theorem, Manber developed the algorithms for the recognition of

rooted and unrooted BFS trees. The algorithm that determines whether a given rooted

spanning tree T of a graph G, with root r, is a BFS tree of G works in two phases, where

in the first phases it determines whether T is a BFS tree of G, and in the second phases

it gives a corresponding BFS order, if the result of the first phases was positive. In the

first phase, the algorithm checks whether both conditions of Theorem 5.8 are fulfilled.

The first condition can be checked easily, so that we consider each edge in the graph

and compute whether it is 0- or 1-level edge. In the second condition, the existence

of a corresponding nontree edge uv gives particular ordering conditions at each level

where u and v both have ancestors. This may require more than a constant number

of steps per one non-tree edge, so here we describe the idea to avoid it, presented by

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 61

Manber [33]. Given a nontree edge uv with u.level = i and v.level = i + 1, let w be

the lowest common ancestor of u and v in T , and let wu (resp., wv) be the child of

w, belonging to the same subtree of w as u (resp., v) in T . If v is a child of w, then

wv = w. By condition 2b) of Theorem 5.8 we have that wu appears after wv in the

order of that level. Additionally, from condition 2a) it follows that every descendant of

wv appears before descendants of wu, if both of them are in the same level of T . This

means that we consider each nontree edge uv with u.level = i and v.level = i+ 1, and

for the corresponding vertices wu and wv we add a directed edge wv → wu to the level

digraph Gi. If some level digraph Gi has a directed cycle, then T is not a BFS tree of

G. Otherwise, we find a topological order of vertices in each level digraph Gi and we

do a BFS on G, starting in r, and respecting the topological order in each level, with

the restriction that the condition 2a) of Theorem 5.8 must be satisfied. The algorithm

is presented in Algorithm 10.

The above algorithm has a linear-time implementation [33], using the recursive

∗-tree data structure of Berkman and Vishkin (see [6]).

Example 5.9. Let G be the graph depicted in Fig. 25, and let T be a spanning tree

of G represented by thick edges. We will use Algorithm 10 to determine whether T is

a BFS tree of G.

a b c d

e f g h

i

Figure 25: A graph G and its spanning tree T . Tree T is a BFS tree of G rooted in i,

and it is not a BFS tree of G rooted in e.

Let us for instance first check whether T is a BFS tree of G rooted in e. If T has a

root e, then the tree T and the corresponding vertex labels look as in Fig. 26 a). We

know that bc ∈ E(G) \ E(T) and since b.level = 2 and c.level = 4, it follows that the

edge bc is of level 2, so T is not a BFS tree of G rooted at e. On the other side, if T

is a BFS tree of G rooted at e, then T contains all the shortest paths from e to any

other vertex in G. This, however, is not true, since dG(e, c) = 3 and dT (e, c) = 4.

Let us now check whether T can be a BFS tree of G with root i. If T is rooted

in i, then T and the corresponding vertex levels look as in Fig. 26 b). A set of edges

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 62

Algorithm 10: Algorithm for deciding whether T is a BFS tree of G rooted

in r.
Input: Connected graph G, spanning tree T of G and a vertex r ∈ V (G).

Output: T is an F -tree of BFS on G rooted at r or not. If answer is positive,

the corresponding ordering σ is returned

1 begin

2 foreach v ∈ V \ {r} do

3 v.level← dT (r, v)

4 foreach uv ∈ E(G) do

5 if |u.level − v.level| > 1 then

6 return T is not a BFS tree of G

7 foreach uv ∈ E(G) \ E(T) do

8 if u.level − v.level = 1 then

9 swap u and v

10 if v.level − u.level = 1 then

11 w ← the lowest common ancestor of u and v;

12 wv ← child of w in the same subtree of w as v;

13 wu ← child of w in the same subtree of w as u;

14 i← w.level + 1;

15 E(Gi) = E(Gi) ∪ {wv → wu}

16 for i← 1 to εG(r) do

17 foreach component H of Gi do

18 if H has a directed cycle then

19 return T is not a BFS tree of G

20 find a topological order σiH of H;

21 do a BFS of G starting in r and adding vertices from each level i to a

queue with respect to topological order of component σiH of a level graph

Gi and return BFS ordering σ

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 63

that are in G but not in T consists of the edges {bf, bg, gc, bc} and it is not difficult

to see that all of them have levels 0 or 1. Let us now check the execution of lines

6-16 of Algorithm 10. First we have u = b, v = f and u.level = 3, v.level = 2. It

follows that u.level − v.level = 1, so we swap u and v, and get v = b, u = f . In

lines 9-14 we get w = e, wu = f , wv = a, and i = 3, so E(G3) = {a → f}. Edge

bg in the same steps gives the following: v = b, u = g, w = i, wv = e, wu = h, and

E(G2) = {e→ h}. Similarly, edge gc gives the following: v = c, u = g, w = h, wv = d,

wu = g, and E(G3) = {d→ g}. Edge bc is of level 0, so in the loop it does not satisfy

the if condition, and nothing executes.

We know that εG(i) = 3 so we have 3 level digraphs, and for each of them we

find a corresponding topological ordering. For each j = 1, 2, 3, both digraph and its

topological order are displayed on Fig. 26 c). As we can see, all digraphs are acyclic, so

it remains to execute line 22 of the algorithm. We start BFS in i, and visit vertices of

G1 with respect to topological order, meaning that e is visited before h. Then in G2 we

visit the component corresponding to subtree of e before the component corresponding

the subtree of h, and inside one component we visit vertices in the topological order

obtained before. This means that we visit the vertices of level 2 in the order: a, f, g, d.

Finally, the resulting BFS order is σ = (i, e, h, a, f, d, g, b, c), and we can easily check

that T is a BFS tree corresponding to σ.

It is clear that the unrooted version of a problem can be solved using Algorithm 10,

by considering every vertex of a graph G as a potential root. This results in the larger

complexity of the algorithm, since we have to make at most |V (G)| iterations, and the

resulting algorithm will not work in linear time. There exists, however, a linear-time

algorithm that solves the unrooted version of a problem, also developed by Manber [33].

In order to present it here, we need some definitions.

Given a connected graph G with a spanning tree T , let xy ∈ E(G) \ E(T). Let

u0, . . . , uk be the vertices of the unique x, y-path in T . A middle vertex associated

with xy edge is the vertex u(k+1)/2 if k is odd, while in case when k is even there are

two such vertices and are defined as: uk/2 and u(k+2)/2. Cut-edges associated with xy

edge are defined as the directed edges u(k+1)/2 → u(k−1)/2 and u(k+1)/2 → u(k+3)/2 for

k odd, and uk/2 → uk/2−1 and uk/2+1 → uk/2+2 for k even. From the first condition

of Theorem 5.8 it follows that the only vertices of G that have to be considered as

a potential root of BFS are all the vertices in the subtree of T containing the middle

vertices obtained after removing the cut-edges from T . For, otherwise, if r is a root of a

BFS tree T not satisfying that condition, than |dT (r, x)−dT (r, y)| ≥ 2, a contradiction.

The proposed algorithm has two phases. In the first one we take an arbitrary root r

and compute the corresponding levels for all the vertices v ∈ V (G): v.level = dT (r, v).

After that, for each non-tree edge xy we find a middle vertex and cut edges, and once

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 64

a

b

c

d

e

f

g

h

i

a b c d e f g h i

1 2 4 3 0 1 3 2 1

a)

a

b c

d

e

f g

h

i

a b c d e f g h i

2 3 3 2 1 2 2 1 0

b)

G1

G2

G3

e h

a f g d

b c

H1

H1 H2

H1 H2

σ1
H1

= (e, h)

σ2
H1

= (a, f), σ2
H2

= (d, g)

σ3
H1

= (b), σ3
H2

= (c)

c)

Figure 26: A graph G and its spanning tree T from Example 5.9. Part a) shows the

tree T rooted at e (thick edges), and the levels of vertices in T with respect to vertex

e. Part b) shows the tree T rooted at i (thick edges), and the levels of vertices in T

with respect to vertex i. The edges depicted with blue (red, green) are the non-tree

edges of G that imply the arcs of the same color in the level graph of tree T rooted at

i. In c) the level digraphs of the tree T rooted at i, and the corresponding topological

orders of connected components of level digraphs are depicted.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 65

the set of all the cut edges is formed, we eliminate vertices that are not potential BFS

roots, as described above. We get a set R ⊆ V (G) of all the potential BFS roots of

T . The interesting result from [33] is that all the vertices in R induce a subtree of T .

A tree TC induced by the set R is a subtree of T and is called a core subtree. Given

an arbitrary vertex x ∈ R, let c1, . . . , ck be neighbors of x that are not contained in

TC . Then the rooted subtree Tx of T containing vertex x as a root, c1, . . . , ck, and all

their descendants away from x is called the side subtree of x. Using all these concepts,

Manber showed the following theorem that characterizes the valid BFS trees.

Theorem 5.10 (Manber [33]). Given a graph G and a spanning tree T in G, it holds

that T is a valid BFS tree of G if and only if every side subtree Tv is a valid BFS tree

of G[V (Tv)].

Algorithm 11: Algorithm which decides whether T is a BFS tree of G.

Input: Connected graph G and spanning tree T of G.

Output: T is an F -tree of BFS on G or not.

1 begin

2 choose any root r ∈ V (G);

3 EC = ∅;
4 R = V (T);

5 foreach v ∈ V \ {r} do

6 v.level← dT (r, v)

7 foreach uv ∈ E(G) \ E(T) do

8 a← the lowest common ancestor of u and v;

9 find middle vertices and cut-edges corresponding to edge uv;

10 add cut edges to the set EC

11 foreach (u→ v) ∈ EC do

12 X = {vertices that are not potential BFS roots with respect to

(u→ v)};
13 R = R \X

14 TC ← T [R];

15 foreach v ∈ R do

16 Tv ← side subtree of v;

17 use Algorithm 10 for graph G[V (Tv)], tree Tv and root v;

18 if Tv is not a BFS tree of G[V (Tv)] rooted at v then

19 return T is not a BFS tree of G

20 return T is a BFS tree of G rooted at any vertex v ∈ R

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 66

Once the core subtree and the corresponding side subtrees are generated, Algo-

rithm 10 is used to check for each side subtree whether it is a valid BFS tree. If it

turns out that T is a valid BFS tree of G for some vertex in R, then this is true for

any vertex in R. This means that the algorithm can have two possible outputs: either

T is not a valid BFS tree, or it is a valid BFS tree with a root being any vertex in R.

Proofs omitted here can be found in original paper by Manber. All the steps of the

algorithm are described in Algorithm 11. The algorithm can be implemented in linear

time, using the *-tree data structure [33].

5.2.2 NP-hardness

In this section we present the known polynomial-time reductions that show NP-hardness

of the search tree recognition problem for LexBFS, LexDFS, MCS and MNS. All the

reductions were developed by Beisegel et al. [4], where all the details can be found.

LexBFS

In order to prove that the F -tree recognition problem is NP-hard, we use the 3-sat

problem. Let I be an instance of a 3-sat problem with variables x1, . . . , xn and

clauses C1, . . . , Cm. In the following describe the construction of a graph G and a

spanning tree T in G.

• The vertex set of G is equal to V (G) = X ∪C1 ∪C2 ∪ · · · ∪Cm ∪{p, q, r, u}. X is

a set of literal vertices {x1, . . . , xn, x1, . . . , xn} representing literals of I and G[X]

induces the complement of a matching where each literal xi is matched to its

negation xi, for i ∈ {1, . . . , n}. For all i ∈ {1, . . . ,m}, set Ci consists of vertices

{ai, ci, ti} that form a triangle, and every vertex ci is adjacent to literal vertices

representing literals belonging to the clause Ci. Additionally, u and r are non-

adjacent vertices, adjacent to every other vertex apart from the ti, i ∈ {1, . . . ,m}.
Vertex p is adjacent to all vertices in X, while q is adjacent to all vertices in X

and also to each vertex ai, i ∈ {1, . . . ,m}. For an example of such a graph,

see Fig. 27.

• T is a spanning tree of G, so V (T) = V (G). The set of edges of T consists of all

edges incident with vertex r, of all edges of form citi, i ∈ {1, . . . ,m}, and of edge

up. These edges are depicted as thick lines in Fig. 27.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 67

r

t1

a1
c1

x1 ∨ x2 ∨ x3

t2

a2
c2

x1 ∨ x2 ∨ x4

t3

a3
c3

x2 ∨ x3 ∨ x4

x1

x1

x2

x2

x3

x3

x4

x4

q

p

u

Figure 27: The NP-completeness construction for the tree recognition problem of

LexBFS.

In [4] the authors showed that that the 3-sat instance I has a satisfying assignment

A if and only if T is an F -tree of LexBFS on G. Clearly, the graph G and the tree

T can be constructed in polynomial time, so it implies that the recognition of F -tree

of LexBFS is NP-hard. It can be shown that the graph obtained by the construction

described above is weakly chordal, so the hardness result holds for the class of weakly

chordal graphs.

Theorem 5.11 (Beisegel et al. [4]). The F-tree-recognition problem of LexBFS is NP-

complete on weakly chordal graphs.

LexDFS, MCS, and MNS

As already seen in previous chapters, every MCS ordering of some graph is also a MNS

ordering of that graph. Similarly, given a graph G, every F -tree of MCS on G is also

an F -tree of MNS on G. Beisegel et al. [4] gave a construction that reduces 3-SAT

to the F -tree recognition problem in polynomial time. Surprisingly, the construction

shows the hardness result for MNS, MCS, and LexDFS. More precisely, they showed

that given an arbitrary instance I of 3-sat one can construct in polynomial time a

graph G and a spanning tree T of G, such that the following conditions are equivalent:

i) I has a satisfying assignment.

ii) T is an F -tree of MNS on G.

iii) T is an F -tree of MCS on G.

iii) T is an F -tree of LexDFS on G.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 68

This equivalence does not mean that the MNS, MCS, and LexDFS trees are equiv-

alent on the resulting graph G, but that the particular tree T corresponding to the

satisfying assignment of I is either obtained as a result of all MCS, MNS, LexDFS,

or none of them. Let us now describe the proposed polynomial reduction given by

Beisegel et al [4]. Let I be an instance of a 3-sat problem with variables x1, . . . , xn

and clauses C1, . . . , Cm.

• The vertex set of G is equal to V (G) = X ∪ C ∪ {a, b, p, q, r, t}. X is a set of

literal vertices {x1, . . . , xn, x1, . . . , xn} representing literals of I and G[X] induces

the complement of a matching where each literal xi is matched to its negation

xi, for i ∈ {1, . . . , n}. C is a set of clause vertices {c1, . . . , cm}. Vertices in C

are pairwise non-adjacent, and every vertex ci ∈ C is adjacent to all vertices in

X, except those representing literals included in clause Ci. Vertices a, p, r, q are

adjacent to all vertices in X and C, and vertex b is adjacent to all vertices in X.

Finally, we add the edges ab, ap, aq, pr, rq, bq, bt, qt.

• T is a spanning tree of G, so V (T) = V (G). The set of edges of T consists of

all edges incident with vertex r, and of the edges ap and bt. These edges are

depicted as thick lines in Fig. 28.

x1

x1

x2

x2

x3

x3

x4

x4

x1 ∨ x2 ∨ x3 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

t

b

a

p

r

q

Figure 28: The NP-completeness construction for the tree-recognition problem of

MNS and MCS.

Any MNS or LexDFS resulting in the search tree T must start in r, since every

other vertex is incident to an edge in G which is not an element of T . Analysing the

order of visited vertices in G shows that T is a MNS tree of G if and only if it is a MCS

tree of G, and also that T is a MNS tree of G if and only if it is a LexDFS tree of G.

Every LexDFS, MNS, or MCS ordering of vertices in G that results in a tree T is in the

one-to-one correspondence with a satisfying assignment of I. Moreover, it holds that

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 69

the graph G is weakly chordal, so the polynomial reduction proves the NP-hardnes of

the problem in the class of weakly chordal graphs.

Theorem 5.12 (Beisegel et al. [4]). The F-tree-recognition problem of LexDFS, MNS

and MCS is NP-complete on weakly chordal graphs.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 70

6 Implementation

In this chapter we focus on polynomial-time algorithms presented in previous chapters,

and present their implementation in the mathematics software SageMath. SageMath

(see www.sagemath.org) is a free open-source mathematics software system with fea-

tures covering many aspects of mathematics, including algebra, combinatorics, graph

theory, numerical analysis, number theory, calculus and statistics. It builds on top

of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima,

GAP, FLINT, R and many more, through a common, Python-based language or di-

rectly via interfaces or wrappers. SageMath was released in 2005 by William Stein.

Functions implemented in SageMath cover various fields of mathematics, including

graph theory, so there we can create graphs, and make various operations on them. The

nature of these operations ranges from finding a neighborhood of some vertex, finding

some particular structure in a graph, to solving more difficult problems on graphs like

finding a maximum independent set in a graph, the dominanting number of a graph,

etc. Many existing graph algorithms were implemented in Sage, and can be easily used.

Among them there are the algorithms for graph traversing presented in this thesis, as

for example the Lexicographic Breadth First Search of a graph G can be performed

using the command lex BFS(G).

We present a SageMath implementation of the following polynomial-time algorithms

presented in Chapter 5:

1. The algorithm that recognizes whether a tree T is a DFS search tree of a graph

G rooted at vertex r ∈ V (G) (Algorithm 8),

2. The algorithm that recognizes whether a tree T is a LexDFS search tree of a

graph G rooted at vertex r ∈ V (G) (Algorithm 9),

3. The algorithm that recognizes whether a tree T is a BFS search tree of a graph

G rooted at vertex r ∈ V (G) (Algorithm 11).

DFS-tree-recognition

Here we present the function DFS tree recognition that takes as input a graph G, a

tree T and a vertex r ∈ V (G), and checks whether T is a DFS tree of G, rooted at r,

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 71

using Algorithm 8. If the answer is positive, the function returns also the corresponding

DFS ordering of G.

1 def DFS_tree_recognition(G,T,r):

2 from sage.graphs.views import EdgesView

3 rootedT=DiGraph(list(T.breadth_first_search(r, edges=True)))

4 EG = set(EdgesView(G, labels=False , sort=True))

5 ET = set(EdgesView(T, labels=False , sort=True))

6 for e in EG.difference(ET):

7 path1=rootedT.all_simple_paths(starting_vertices =[e[0]],

8 ending_vertices =[e[1]], use_multiedges=False)

9 path2=rootedT.all_simple_paths(starting_vertices =[e[1]],

10 ending_vertices =[e[0]], use_multiedges=False)

11 if (path1 ==[] and path2 ==[]):

12 return ["T is not a DFS tree of G.", []]

13 ordering = list(G.depth_first_search(r))

14 return ["T is a DFS tree of G", ordering]

LexDFS-tree-recognition

The implementation of Algorithm 9 is stored in function LexDFS tree recognition,

that takes as input a graph G, a tree T and a vertex r ∈ V (G), and checks whether

T is a spanning tree of G rooted at r. If the answer is positive, the function returns a

corresponding LexDFS ordering of G.

1 def LexDFS_tree_recognition(G, T, r):

2 import collections

3 from collections import deque

4 from sage.ext.memory_allocator import MemoryAllocator

5 from sage.graphs.views import EdgesView

6 S=set([r])

7 V=set(range(G.order ()))

8 ET = EdgesView(T, labels=False , sort=True)

9 nV = G.order ()

10 pred = [-1]* nV

11 def l_func(x):

12 return code[x]

13 code = [collections.deque ([]) for i in range(nV)]

14 for v in G.neighbors(r):

15 code[v]. appendleft (1)

16 pred[v]=r

17 ordering= [r]

18 label =2

19 while not S==V:

20 maxL =[]

21 maxLabelVertex=max(V.difference(S), key=l_func)

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 72

22 for u in V.difference(S):

23 if (code[u]== code[maxLabelVertex] and [pred[u],u] in ET):

24 maxL.append(u)

25 if(maxL ==[]):

26 return ["T is not a LexDFS tree of G", []]

27 v=maxL [0]

28 S.add(v)

29 ordering.append(v)

30 for w in set(G.neighbors(v)).difference(S):

31 code[w]. appendleft(label)

32 pred[w]= v

33 label = label + 1

34 return ["T is a LexDFS tree of G", ordering]

BFS-tree-recognition

In order to be able to implement Algorithm 10, we first implemented method

lowest common ancestor(G,r,u,v) that takes as input a tree G and its vertices r, u,

and v. The function finds a directed tree of G (denoted by rootedG), with r being

a vertex of incoming degree 0, and returns a list containing 3 elements: a vertex w

that is the lowest common ancestor of u and v in G, a child of w in the subtree of w

containing u, and a child of w in the subtree of w containing v. If u is an ancestor, or

descendant of v, the method outputs the empty list.

1 def lowest_common_ancestor(G,r,u,v):

2 a=list(G.breadth_first_search(r, edges=True))

3 rootedG=DiGraph(a)

4 pathUtoV=rootedG.all_simple_paths(starting_vertices =[u],

5 ending_vertices =[v], use_multiedges=False)

6 pathVtoU=rootedG.all_simple_paths(starting_vertices =[u],

7 ending_vertices =[v], use_multiedges=False)

8 if (pathUtoV != [] or pathVtoU != []):

9 return []

10 pathV=rootedG.all_simple_paths(starting_vertices =[r],

11 ending_vertices =[v], use_multiedges=False)

12 pathU=rootedG.all_simple_paths(starting_vertices =[r],

13 ending_vertices =[u], use_multiedges=False)

14 c=min(len(pathV [0]), len(pathU [0]))

15 for i in range(0,c):

16 if pathV [0][i] != pathU [0][i]:

17 return pathV [0][i-1], pathU [0][i], pathV [0][i]

Once the function lowest common ancestor(G,r,u,v) is defined, we can define

the function BFS tree recognition that takes as input a graph G, a tree T and a

vertex r ∈ V (G) and decides whether T is a BFS tree of G rooted at r. In case the

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 73

answer is positive, the function produces the topological sorting of level graphs, as

in Algorithm 10 and then starts the modified BFS search of G in r, so that the new

vertices are added to a queue Q with respect to topological ordering of components of

level graphs (where the work component refers to the subgraph of a level graph induced

by a set of vertices having the same father). The function returns a corresponding BFS

ordering of G, in case of a positive instance of the problem.

1 def BFS_tree_recognition(G,T,r):

2 from sage.graphs.views import EdgesView

3 from sage.graphs.distances_all_pairs import eccentricity

4 from sage.graphs.connectivity import

connected_components_subgraphs

5 a=list(T.breadth_first_search(r, edges=True))

6 rootedT=DiGraph(a)

7 TopSort =[[] for _ in range(T.eccentricity(r)+1)]

8 E=[[] for _ in range(T.eccentricity(r)+1)]

9 V=[[] for _ in range(T.eccentricity(r)+1)]

10 EG = EdgesView(G, labels=False , sort=True)

11 ET = EdgesView(T, labels=False , sort=True)

12 for e in EG:

13 if abs(T.distance(r,e[0])-T.distance(r,e[1])) >1:

14 return "T is not a BFS tree of G."

15 for v in G.vertices ():

16 V[T.distance(r,v)]. append(v)

17 for e in EG:

18 if not e in ET:

19 u=e[0]

20 v=e[1]

21 if T.distance(r,e[0])-T.distance(r,e[1]) ==1:

22 u=e[1]

23 v=e[0]

24 if T.distance(r,v)-T.distance(r,u)==1:

25 a=lowest_common_ancestor(T,r,u,v)

26 if a==[]:

27 return "Error"

28 i=T.distance(r,a[0])+1

29 E[i]. append ((a[2], a[1]))

30 for i in range(T.eccentricity(r)+1):

31 G = DiGraph ()

32 G.add_vertices(V[i])

33 G.add_edges(E[i])

34 if(not G.is_directed_acyclic ()):

35 return ["T is not a BFS tree of G.", []]

36 for H in connected_components_subgraphs(G):

37 TopSort[i]. append(H.topological_sort ())

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 74

38 Q=[r]

39 ordering = []

40 for v in Q:

41 i=T.distance(r,v)+1

42 ordering.append(v)

43 for u in set(T.neighbors(v)).difference(set(Q)):

44 for j in range(len(TopSort[i])):

45 if (u in set(TopSort[i][j]).difference(set(Q))):

46 for k in range(len(TopSort[i][j])):

47 Q.append(TopSort[i][j][k])

48 return ["T is a BFS tree of G.", ordering]

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 75

7 Conclusion

The main topic of the thesis are graph search methods, the methods of systematic

visiting the vertices of a graph so that at every step we visit a neighbor of some al-

ready visited vertex. In the thesis we described the following search methods: Breadth

First Search (BFS), Depth First Search (DFS), Lexicographic Breadth First Search

(LexBFS), Lexicographic Depth First Search (LexDFS), Maximum Cardinality Search

(MCS), and Maximal Neighborhood Search (MNS). In the first part of the thesis we

gave an overview of known results of the proposed search methods, details of efficient

implementations, and structural results characterizing when a given ordering of ver-

tices in G is a search ordering of given type in G. In the second part of the thesis we

were studying the inclusion relations among various search methods, and characterized

graphs in which every search ordering of a type A is also a search ordering of type B.

The last part of the thesis was devoted to search trees. We were studying the prob-

lem of the search tree recognition and gave hardness results for some variants of the

problem. Further, we presented polynomial-time algorithms that solve some variants

of a problem (polynomial-time algorithms for solving the search tree recognition prob-

lem for BFS [33], DFS [24] and LexDFS [4]). Finally, we implemented the proposed

polynomial-time algorithms in the programming language SageMath.

Results presented in Chapter 4 are developed during the writing of this thesis,

and are supposed to be submitted for publication. Results presented in Chapter 5

concerning the hardness results and the polynomial-time algorithm for LexDFS are

published (see [4]) and the author of the thesis is among the authors of the mentioned

paper.

The first possible direction for further research could be the characterization of

graphs where some of the following equivalences is true: MNS vs MCS, Generic search

vs MNS (DFS, BFS, resp.). Another set of open problems consists of cases where the

recognition of particular search trees is still open. In particular, the recognition of

L-trees for LexBFS, MCS, and MNS.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 76

8 Povzetek naloge v slovenskem

jeziku

Algoritmi iskanja na grafih predstavljajo enega najbolj splošnih konceptov za sis-

tematičen pregled vozlǐsč grafa. Veliko računalnǐskih algoritmov temelji na pregledu

točk grafa in tako v določenih korakih svojega izvajanja uporabljajo iskanja na grafih

in strukture, ki jih ta iskanja porodijo. V splošnem, iskanje na grafih predstavlja

sistematičen obisk vozlǐsč grafa, tako da začnemo v enem vozlǐsču grafa in se spre-

hajamo po grafu, pri čemer v naslednjem koraku iteracije obǐsčemo vozlǐsče, ki ima

že obiskanega soseda v tem grafu. Če ni dodatnih omejitev o izboru naslednjega

obiskanega vozlǐsča, potem imamo t.i. generično iskanje na grafih, ki je obenem najbolj

splošna metoda iskanja na grafih. Najbolj znani metodi iskanja na grafih sta iskanje

v globino (ang. Depth First Search – DFS) in iskanje v širino (ang. Breadth First

Search – BFS). Metodi sta uporabljeni pri algoritmih za iskanje poti in ciklov v grafih,

za iskanje povezanih komponent itn.

Poleg omenjenih metod iskanja v globino in širino obstajajo tudi nekoliko bolj

specifične, leksikografske različice metod iskanja na grafih, npr. leksikografsko iskanje

v globino (LexDFS) in leksikografsko iskanje v širino (LexBFS). V splošnem je določena

metoda iskanja na grafih definirana s pravilom, ki v množici potencialnih vozlǐsč izbere

tisto, ki ga bomo obiskali v naslednjem koraku. Tako lahko izberemo vozlǐsče, katerega

obiskana soseščina je maksimalna glede na relacijo vsebovanosti, ali glede na leksiko-

grafsko urejenost, ali glede na kardinalnost, itn. Ta pravila definirajo različne metode

iskanja, kot so iskanje po maksimalni soseščini ali po maksimalni kardinalnosti, ter

leksikografske oblike iskanja v globino ali širino. Zaradi svoje specifične strukture,

omenjeni algoritmi iskanja na grafih omogočajo reševanje določenih problemov v lin-

earnem času (npr. prepoznavanje tetivnosti v grafih).

Kot rezultat iskanja na grafih dobimo lahko dva koncepta: iskalni seznam vozlǐsč

in iskalno drevo. Iskalni seznam vozlǐsč predstavlja razvrstitev vozlǐsč grafa v vrst-

nem redu, kot so obiskana. Iskalni seznami imajo lepe strukturne lastnosti, in so

uporabljeni v različnih algoritmih. Vdak LexBFS seznam vozlǐsč tetivnega grafa pred-

stavlja popolno eliminacijsko shemo tega grafa, zadnje vozlǐsče v LexDFS seznamu

vozlǐsč pri določenih grafih je prvo vozlǐsče hamiltonske poti v grafu itn.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 77

Iskalno drevo je vpeto drevo grafa, ki ga dobimo tako, da vsako točko grafa

povežemo z enim od že obiskanih sosedov. Očitno je, da je takih vozlǐsč lahko več

in da ni enolično določeno, s katerim predhodno obiskanim vozlǐsčem bomo povezali

trenutno vozlǐsče. V literaturi tako najdemo definiciji F -dreves in L-dreves, pri čemer

je F -drevo definirano tako, da vsako vozlǐsče grafa G povežemo z njegovim prvim že

obiskanim sosedom v G, in L-drevo tako, da vsako vozlǐsče grafa povežemo z zadnjim

že obiskanim sosedom.

V magistrski nalogi smo naredili sistematično študijo algoritmov iskanja na grafih.

Obravnavali smo generično iskanje, (leksikografsko) iskanje v širino in globino, iskanje

po maksimalni soseščini (MNS) in iskanje po maksimalni kardinalnosti (MCS), ter

karakterizirali sezname vozlǐsč v grafu, ki so lahko rezultat določenega iskanja na grafu.

Podali smo prednosti in slabosti uporabe določenih metod grafovskega iskanja, ter

posebnosti časovno učinkovite implementacije teh metod.

Osredotočili smo se na zveze med določenimi algoritmi iskanja na grafih in pred-

stavili znane relacije vsebovanosti iskalnih seznamov vozlǐsč. Tako smo opazili, da je

vsak LexBFS seznam vozlǐsč hkrati tudi BFS in MNS seznam vozlǐsč, in podobno je

vsak LexDFS seznam vozlǐsč tudi DFS in MNS seznam vozlǐsč, ter tudi vsak MCS sez-

nam vozlǐsč hkrati MNS seznam vozlǐsč. Študirali smo omenjene relacije vsebovanosti

in karakterizirali grafe pri katerih je ta relacija vsebovanosti dejansko stroga vsebo-

vanost. Z drugimi besedami, podali smo popolno ali delno karakterizacijo grafov, v

katerih je izpolnjena ena izmed naslednjih lastnosti: vsak BFS seznam vozlǐsč je tudi

LexBFS seznam vozlǐsč, ali vsak DFS seznam vozlǐsč je tudi LexDFS seznam vozlǐsč,

ali vsak MNS seznam vozlǐsč je tudi LexBFS (LexDFS) seznam vozlǐsč. Podali smo

primere grafov na majhnem številu točk, za katere drži, da obstja MNS seznam vozlǐsč,

ki ni MCS seznam vozlǐsč.

V drugi polovici magistrske naloge smo se osredotočili na karakterizacijo sorodnega

rezultata iskanja na grafih – iskalno drevo grava. Predstavili smo in opisali problem

prepoznavanja iskalnih dreves grafa. Problem prepoznavanja iskalnih dreves grafa kot

vhodni podatek vsebuje graf G, vpeto drevo T grafa G, in izbrano obliko iskanja na

grafu, in sprašuje, ali je drevo T lahko dobljeno kot rezultat izbrane oblike iskanja

na grafu G. V magistrskem delu smo naredili sistematičen pregled znanih rezultatov.

Tako smo predstavili NP-težke različice problema, kot so prepoznavanje F -dreves za

metode LexBFS, LexDFS, MNS in MCS za splošne grafe. Posebno pozornost smo

namenili določenim različicam problema, za katere rešitev lahko dobimo v polinomskem

času. Tako smo predstavili algoritme, ki rešijo problem prepoznavanja iskalnih dreves

za BFS [33], DFS [24], in LexDFS [4]. Omenjene algoritme smo implementirali v

programskem okolju SageMath, pri čemer implementirani del nameravamo prispevati v

javni SageMath repozitorij, da bo s tem na voljo vsem uporabnikom SageMath sistema.

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 78

9 References

[1] Jesse Beisegel. Characterising AT-free graphs with BFS. In Andreas Brandstädt,

Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in Com-

puter Science, pages 15–26, 2018. (Cited on pages 2, 51, and 52.)

[2] Jesse Beisegel. Convexity in graphs: vertex order characterisations and graph

searching. PhD thesis. Brandenburgischen Technischen Universität., 2020. (Cited

on pages 53, 54, 58, and 59.)

[3] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,

Robert Scheffler, and Martin Strehler. On the end-vertex problem of graph

searches. Discrete Mathematics & Theoretical Computer Science, 21, 2019. (Cited

on page 58.)

[4] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,

Robert Scheffler, and Martin Strehler. Recognizing graph search trees. Electronic

notes in theoretical computer science, 346:99–110, 2019. (Cited on pages 2, 53, 54,

56, 57, 58, 59, 66, 67, 68, 69, 75, and 77.)

[5] Jesse Beisegel, Ekkehard Köhler, Robert Scheffler, and Martin Strehler. Linear

time lexDFS on chordal graphs. arXiv preprint arXiv:2005.03523, 2020. (Cited

on page 29.)

[6] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM

Journal on Computing, 22(2):221–242, 1993. (Cited on page 61.)

[7] Andreas Brandstädt, Feodor F. Dragan, and Falk Nicolai. LexBFS-orderings and

powers of chordal graphs. Discrete Math., 171(1-3):27–42, 1997. (Cited on pages 23

and 31.)

[8] Anna Bretscher. LexBFS based recognition algorithms for cographs and related

families. PhD Thesis, University of Toronto, 2005. (Cited on page 25.)

[9] Anna Bretscher, Derek Corneil, Michel Habib, and Christophe Paul. A simple

linear time lexBFS cograph recognition algorithm. In International Workshop on

Graph-Theoretic Concepts in Computer Science, pages 119–130. Springer, 2003.

(Cited on page 25.)

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 79

[10] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

(Cited on page 9.)

[11] Derek G. Corneil. Lexicographic breadth first search – a survey. In Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science, pages 1–19.

Springer, 2004. (Cited on pages 24 and 25.)

[12] Derek G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of unit

interval graphs. Discrete Applied Mathematics, 138(3):371–379, 2004. (Cited on

page 25.)

[13] Derek G. Corneil, Barnaby Dalton, and Michel Habib. LDFS based certifying

algorithm for the Minimum Path Cover problem on cocomparability graphs. SIAM

Journal on Computing, 42(3):792–807, 2013. (Cited on page 29.)

[14] Derek G. Corneil, Jérémie Dusart, Michel Habib, and Ekkehard Kohler. On the

power of graph searching for cocomparability graphs. SIAM Journal on Discrete

Mathematics, 30(1):569–591, 2016. (Cited on page 29.)

[15] Derek G. Corneil and Richard M. Krueger. A unified view of graph search-

ing. SIAM Journal on Discrete Mathematics, 22(4):1259–1276, 2008. (Cited on

pages 11, 13, 15, 17, 18, 26, 27, 33, and 34.)

[16] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. Linear time algorithms for

dominating pairs in asteroidal triple-free graphs. SIAM Journal on Computing,

28(4):1284–1297, 1999. (Cited on page 25.)

[17] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure

and recognition of interval graphs. SIAM Journal on Discrete Mathematics,

23(4):1905–1953, 2009. (Cited on page 25.)

[18] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic

efficiency for network flow problems. Journal of the ACM (JACM), 19(2):248–264,

1972. (Cited on page 14.)

[19] Shimon Even. Graph algorithms. Cambridge University Press, 2011. (Cited on

pages 1, 14, 15, and 56.)

[20] Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pa-

cific Journal of Mathematics, 15(3):835–855, 1965. (Cited on page 6.)

[21] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H.

Freeman, 29th edition, 2002. (Cited on pages 9 and 10.)

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 80

[22] Martin Charles Golumbic. Trivially perfect graphs. Discrete Mathematics,

24(1):105–107, 1978. (Cited on page 48.)

[23] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-

BFS and partition refinement, with applications to transitive orientation, interval

graph recognition, and consecutive ones testing. Theoretical Computer Science,

234:59–84, 2000. (Cited on page 21.)

[24] Torben Hagerup and Manfred Nowak. Recognition of spanning trees defined by

graph searches. Technical Report A 85/08, Universität des Saarlandes, 1985.

(Cited on pages 2, 53, 54, 55, 59, 75, and 77.)

[25] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the Asso-

ciation for Computing Machinery, 21:549–568, 1974. (Cited on pages 17 and 54.)

[26] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972. (Cited on page 10.)

[27] Ekkehard Köhler and Lalla Mouatadid. Linear time lexDFS on cocomparability

graphs. In Scandinavian Workshop on Algorithm Theory, pages 319–330. Springer,

2014. (Cited on page 29.)

[28] Ephraim Korach and Zvi Ostfeld. DFS tree construction: Algorithms and charac-

terizations. In Jan van Leeuwen, editor, Graph-Theoretic Concepts in Computer

Science, pages 87–106, Berlin, Heidelberg, 1989. (Cited on pages 53, 54, 55,

and 56.)

[29] Dieter Kratsch and Lorna Stewart. Domination on cocomparability graphs. SIAM

Journal on Discrete Mathematics, 6(3):400–417, 1993. (Cited on page 7.)

[30] Richard Melvin Krueger. Graph searching. PhD thesis. University of Toronto,

2005. (Cited on pages 15, 28, 32, and 34.)

[31] Édouard Lucas. Récréations mathématiques: Les traversees. Les ponts. Les

labyrinthes. Les reines. Le solitaire. La numération. Le baguenaudier. Le taquin,

volume 1. Gauthier-Villars et fils, 1882. (Cited on page 17.)

[32] Brian Lucena. A new lower bound for tree-width using maximum cardinality

search. SIAM Journal on Discrete Mathematics, 16(3):345–353, 2003. (Cited on

page 33.)

[33] Udi Manber. Recognizing breadth-first search trees in linear time. Information

Processing Letters, 34(4):167–171, 1990. (Cited on pages 2, 59, 60, 61, 63, 65, 66,

75, and 77.)

Pivač N. Graph search algorithms and structure of graph search trees.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 81

[34] George B. Mertzios and Derek G. Corneil. A simple polynomial algorithm for

the longest path problem on cocomparability graphs. SIAM Journal on Discrete

Mathematics, 26(3):940–963, 2012. (Cited on page 29.)

[35] Edward F. Moore. The shortest path through a maze. In Proc. Int. Symp. Switch-

ing Theory, 1959, pages 285–292, 1959. (Cited on page 14.)

[36] Stephan Olariu. Paw-free graphs. Information Processing Letters, 28(1):53–54,

1988. (Cited on page 7.)

[37] Donald J. Rose, George S. Lueker, and Robert E. Tarjan. Algorithmic aspects of

vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

(Cited on pages 19 and 24.)

[38] Douglas R. Shier. Some aspects of perfect elimination orderings in chordal graphs.

Discrete Applied Mathematics, 7(3):325–331, 1984. (Cited on pages 35 and 36.)

[39] Jeremy Spinrad. Efficient implementation of lexicographic depth first search. Sub-

mitted for publication, 2012. (Cited on page 29.)

[40] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM journal

on computing, 1(2):146–160, 1972. (Cited on pages 17, 53, 54, and 55.)

[41] Robert E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta In-

formatica, 6(2):171–185, Jun 1976. (Cited on page 17.)

[42] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to

test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs. SIAM Journal on computing, 13(3):566–579, 1984. (Cited on

pages 24, 29, 32, and 35.)

[43] Shou-Jun Xu, Xianyue Li, and Ronghua Liang. Moplex orderings generated by

the lexDFS algorithm. Discrete Applied Mathematics, 161(13-14):2189–2195, 2013.

(Cited on page 29.)

	Introduction
	Theoretical background
	Graphs and digraphs
	Complexity theory

	Graph Search Algorithms
	Generic Search
	Breadth First Search
	Depth First Search
	Lexicographic Breadth First Search
	Lexicographic Depth First Search
	Maximum Cardinality Search
	Maximal Neighborhood Search

	Relations Among Search Orderings
	Breadth First Search vs Lexicographic Breadth First Search
	Depth First Search vs Lexicographic Depth First Search
	Maximal Neighborhood Search vs Maximum Cardinality Search
	Maximal Neighborhood Search vs Lexicographic BFS/DFS

	Graph Search Trees
	Last-in Trees
	DFS trees
	LexDFS trees

	First-in Trees
	BFS trees
	NP-hardness

	Implementation
	Conclusion
	Povzetek naloge v slovenskem jeziku
	References

