
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE
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Izvleček:

Proti-epileptična zdravila so neučinkovita za kar tretjino epileptičnih bolnikov. Gradnja

aparatov, ki samodejno pravočasno zaznajo epileptični napad na podlagi EEG signalov,

predstavlja alternativo za izbolǰsanje kvalitete vsakdanjega življenja takih pacijentov.

Sledeča teza je poskus metode automatične detekcije, ki sloni na topogrfskih mapah,

izvlečenih iz signalov različnih frekvenčnih pasov, in globokega učenja. Model je bil ses-

tavljen iz petih nevronskih mrež, ena za vsaki frekvenčni pas. Končno oznako za vsak

vzorec model izbere glede na večino oznak iz posameznih mrež. Na tak način je model

dosegel klasifikacijsko točnost 99.20%, občutljivost 96.48% in specifičnost 99.27% pri

klasifikaciji 21 napadov enega pacijenta. Poleg tega, smo naučili nevronske mreže na

vzorcih, ki so bili izbrani naključno iz intervalov, kjer se ni pojavljal epileptični napad.

V 18 primerih je prǐslo do napačne zaznave epileptičnega napada, kjer le-tega ni bilo,

a so se te napačne zaznave vedno pojavljale v neposredni bližini samega epileptičnega

napada. Take napačne klasifikacije se niso pojavile, ko so bili vzorci vzeti v času zadnjih

pet minut pred napadom.
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Abstract: One third of all epileptic patients is resistant to medical treatment. The

construction of machines, that would detect an imminent epileptic attack based on EEG

signals, represents an efficient alternative, that would help to increase their quality of

life. In this, thesis we tried to implement an automatic detection method, based on

the signal of different frequency sub-bands, using topographic maps and deep learning

techniques. We constructed an ensemble of five convolutional neural networks, to

classify samples of each sub-band and choose the final decision by a majority voting.

The ensemble obtained 99.20% accuracy, 96.48% sensitivity and 99.27% specificity

when detecting seizures of one patient. Moreover, in this thesis we identified on 18

of 21 seizures some false positive classifications really close to the seizure onset, when

the networks were trained with samples taken randomly from the inter-ictal intervals.

Such misclassifications did not occur when training was performed with samples taken

within five minutes of the seizure onset.
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1 Introduction

Epilepsy is a neurological disorder characterized by sudden seizure attacks, that may

cause in patients loss of consciousness and motor control. It is esteemed that epilepsy

affects about 50 million people world-wide and represents up to 1% of the global burden

of disease[42]. Although in the last decades many anti-epileptic drugs (AEDs) have

been introduced [27], to more than 30% of the patients these treatments are ineffective.

Therefore, their daily life activities are very restricted because of the unpredictability

of the attacks. The development of different approaches, that could timely inform

drug-resistant epilepsy (DRE) patients of an imminent epileptic attack, could be an

efficient way to increase their quality of life.

The most used tool to monitor brain’s electrical activity is the electroencephalogram

(EEG). However, due to the complexity of the EEG signals, visual detection of epileptic

seizures from the signal often results misinterpreted or mistaken. Therefore, in the last

decades much research has been oriented towards finding automated detection proce-

dures, that would efficiently analyze large chunks of signals, timely give out warnings

and help the medical staff to deliver treatment on time[47].

Patients undergo long-term monitoring, to identify the zone of the ictal (seizure) onset

and to establish its dynamics. This information may be used to determine if a surgery

is needed or for the development of portable devices, that monitor the brain activity

and warn patients of imminent epileptic attacks. Generally, there are two kinds of

transitions from non-ictal to ictal state[36]. The first consists of gradual changes in

brain’s activity (or a cascade of changes) and are normally found in focal epilepsy. In

this kind of epilepsy, seizures might be predicted by identifying a specific past time

interval, which is usually referred as the pre-ictal time. However, such time interval

is not well defined and it varies from patient to patient, raising objections about its

existence. The other type of transition is more sudden and generally undetectable and

unpredictable.

Since the first studies of epilepsy seizures with EEG, it is known that an epileptic attack

has a detectable electrical discharge in the brain (EEG onset), prior to the manifesta-

tion of convulsions, lost of consciousness and others symptoms (clinical onset)[44]. The

time window between these events usually ranges between 0 to 30 seconds, sometimes

reaching over 1 minute. Therefore, being able to detect early enough the EEG onset
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of the seizure could give enough time to the patient to get the treatment or at least to

reach a safe environment.

Based on these motivations, this thesis will represent a model of epilepsy seizure detec-

tion based on topographic maps generated from EEG signals and deep machine learning

classifying techniques. It will be structured as follows: section two will present some

background information needed for a better understanding of the topic, section three

will introduce the most common state-of-the-art techniques, section four will describe

the data, parameters and the methodologies used in the experiment, section five will

present the results, which will be followed by a discussion. A the end a conclusion will

be taken and some suggestions for future work will be given.
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2 Background information

This chapter will present some background knowledge, needed for a better understand-

ing of the topic. The first section will bring up information about brain structure and it

will define epilepsy. It will be followed by the section presenting the electroencephalo-

graph and explain the meaning of its recordings.

2.1 The Brain

The brain is one of the most complex biological systems to be known. In animals, it

is the main part of the central nervous system, that elaborates and interprets all the

information sensed from the environment. The brain can be divided in different brain

regions, each of them responsible for some tasks.

These regions are nonetheless networks of interconnected cells - neurons - that commu-

nicate between them using electrical signals. Each neuron may receive a signal from

more than a hundred other neurons and propagate it to other hundreds. Thus, they

form a vast network, that allows animals to perform cognitive and memory functions,

as well as controlling movements[59]. Nowadays is quite well understood how single

neurons work, however, the complex ways they communicate and interact, allowing

animals to perform different tasks, is not so well comprehended.

Clearly, we can observe the brain function at different spatial scales: micro-scopic,

meso-scopic and macro-scopic. Micro-scopic refers to individual neurons. Here the

focus is on the proteins that compose their membrane, e.i. ion channels, ion pumps,

receptors, on the neurotransmitters and neuromodulators, on the different pathways

that are generated inside the cell, etc. Meso-scopic refers to elementary structures of

few neurons, that joint together can perform more complex tasks. Such example are

the cortical columns in the cortex or projections of neurons, that connect different re-

gions. Macro-scopic refers to brain structures and even to whole brain regions, which

can perform even the hardest functions. Here can be mentioned the hippocampus,

thalamus, or the occipital lobe, known to be the region where visual input is initially

processed. It is important to know, that for EEG monitoring, only the macro-scopic

aspect is taken in account, since the recording of every electrode is influenced by all



Kojanec P. Epileptic Seizure Detection Using Topographic Maps and Deep Machine Learning.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2019 4

the charges present in that region.

Figure 1: Picture representing the brain at all levels: micro, meso and macro-scopic.

Source: [38]

2.2 Epilepsy

As previously mentioned, epilepsy is defined as a disorder of the brain characterized by

enduring predisposition to generate epileptic seizures[15]. Seizures are nonetheless an

abnormal activity of neuronal networks, that uncontrollably discharge and propagate

the signal towards other regions of the brain. Neurons become hyper-active and syn-

chronous and fire action potentials at a very high rate. The result of this event may

be loss of consciousness and/or loss of motor control in the patient. This abnormal ac-

tivity can continue for different minutes, until the oxygen supply ends or the chemical

imbalances in the brain force its termination [59].

The dynamics of seizures can be very different between them, therefore the Interna-

tional League Against Epilepsy (ILAE) proposed a general classification method[32].

The classification of different kinds of epilepsy is operational (practical), thus is based

on the manifestation of different symptoms during the attack, rather than on a scientific

method. There are four main categories, regarding the onset of the seizure:

• focal epilepsy, whose seizures start from a certain brain region and are restricted

to one hemisphere;

• general epilepsy, whose seizure’s onset is identified in both hemispheres of the

brain;

• combined focal and general epilepsy, that manifest both focal and general seizures;



Kojanec P. Epileptic Seizure Detection Using Topographic Maps and Deep Machine Learning.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2019 5

Figure 2: Image showing the differences in the signal between a focal and a general

seizure. Source [21]

• unknown epilepsy, that is characterized by seizures, which don’t have a defined

locus of onset and can be later placed in one of the previous two categories.

Individual seizures can be furthermore organized regarding manifestations of motor

and consciousness disabilities. Focal seizures, for instance, are divided in focal onset

aware and focal onset impaired awareness seizures, based on the fact that the patient

is aware of the surrounding environment or not. Moreover, a focal seizure can be

characterized by motor-impairment manifestations, such as body stiffness and jerking

movements, that will define the seizure as focal motor onset seizures. However, these

two criteria of classification may not be always possible, since not all focal seizures

manifest those events. Motor-nonmotor classification is also used for general and un-

known onset seizures.

2.3 Electroencephalography

The most used technique to monitor brain electrical activity is called electroencephalog-

raphy. It consists of recording electrical impulses from different brain structures using

metal electrodes and conductive media. The recording is called electroencephalogram

(EEG). Generally, there are two main types of EEG techniques: scalp EEG and in-
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tracranial EEG[55]. Intracranial EEG consist of probes, that are implanted into the

brain, therefore surgery is needed. It is a very invasive technique, but it gives high

quality signals. However, in research it is not well accepted, because it lacks of ”con-

trol” conditions in experiments. For example, intracranial EEG data is retrieved only

from epileptic patients and not from healthy patients, because no healthy person will

undergo the surgery needed to implant the device. Therefore, there will not be a set

of data from a healthy population to compare the results with[59].

Scalp EEG, on the other hand, is a non-invasive technique, that can be performed

repeatedly, with no side effects in children, adults and elderly people. Scalp EEG, as

the word itself suggests, are recordings taken from the scalp, hence its recordings take

in consideration mostly the activity of the cortex. Usually some gel is applied to the

scalp’s surface in order to receive a better signal. The signal recorded is an artefact

of the whole brain activity near the electrode and is a product of both the charges,

positive and negative. Therefore, the interpretation of the data can be ambiguous or

unclear. E.g., there can be high activity in the recorded region, but since both charges

neutralize each other, the recording shows otherwise. Thus, a greater amplitude of

the signal is associated with high synchrony of the region. To record activity, other

techniques are preferred, such as fMRI and PET[55][59].

10-20 Positioning System

In order to obtain useful and systematic information from the EEG recording, an appro-

priate positioning of the electrodes should be considered. Since the beginning of EEG

research it was important to determine an international electrode positioning model,

that would allow researchers to compare their studies. Such model should consider

the following criteria: (1) locations of electrodes should be based on standard skull

landmarks, (2) should provide a coverage of the whole head, (3) the nomenclature of

the electrode should derive from brain regions other than only numbers, in order to

avoid confusions and facilitate communication between interested people, (4) anatom-

ical studies should be carried out to confirm the electrode positioning[33].

At the first International EEG Congress, held in London in 1947, Dr. Jasper was ap-

pointed to study this problem and to make recommendations on a general model for

electrode positioning. In 1958, he proposed the 10-20 model[28], that still nowadays is

recognized as general model for EEG probe positioning. The electrodes are named by

the region where they are located:

• ”Fp” - Frontal pole position of electrodes

• ”F” - Frontal line of electrodes
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Figure 3: Illustration of the 10-20 model. Source: [56], page 18

Figure 4: Spacing of the electrodes in the 10-20 model. Source: [56], page 16

.

• ”C” - Central line of electrodes

• ”P” - Parietal line of electrodes

• ”O” - Occipital line of electrodes

• ”T” - Temporal line of electrodes

• ”Ph” - Pharyngeal position of electrodes

• ”A” - Auricular position of electrodes

• ”Cb” - Cerebellar position of electrodes

Odd numbers are located on the left hemisphere, while even numbers are located on

the right. The electrodes placed among the nasion-inion axis are labeled with a ”z”,

that denotes the number zero.
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Figure 5: Schematic representation of the 10-20 model. FSource: [56], page 19

In the model’s name, ”10” denotes the distance in percentages, regarding the axis

length in consideration, from standard landmarks, e.i. nasion, inion, left and right

preauricular points, while ”20” denote the distance in percentages, between electrodes,

regarding the axis length in consideration. For example, as showed in figure 4, on the

anterio-posterior (A-P) axis, the first electrode ”Fp” is located at a distance of 10%

of the total A-P length. The following electrode ”F” is then located at 20% from the

electrode ”Fp”. Following the same criteria for the other electrodes ”C”, ”P” and ”O”,

the ”O” electrode will be located at 10% from the inion.

Anatomical studies were performed to validate this model. Homan et al. in 1987

[24] performed a non-invasive method, using computerized tomography (CT) and alu-

minum electrode markers to determine correlations between anatomical structures and

electrode positioning. For the majority of subjects, even in the presence of skull asym-

metry, as long as cerebral structures were not distorted, the 10-20 system provides

scalp locations which correlate well with the expected cerebral structures. Other stud-

ies were performed using functional magnetic resonance imaging [fMRI] to define the

best-fitting electrode position regarding the cortical anatomy[58], confirming that the

electrodes in the 10-20 system cover the area of the cortical structures of major interest.
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3 State of the art

With the raising of computational power and the advance of technology many studies

were oriented towards finding new strategies for seizure automated detection using

EEG data [47]. Generally, the methodology relies on machine learning algorithms,

that learn to classify samples on behalf of some features extracted from the signal. A

standard procedure for automated seizure detection follows a general framework with

the following steps [7]:

• signal acquisition,

• signal processing,

• feature extraction,

• feature selection,

• classification,

• regularization,

• performance evaluation.

This chapter will present different techniques to approach the problem, that were al-

ready performed. The chapter will also be divided in sections, according the previously

mentioned general pipeline, with the intention to present the topic in a more compre-

hensible way.

3.1 Signal acquisition

Early studies were mostly performed on data acquired from local health centers. Lo-

cal databases contained a small number of patients and most of them with a small

number of seizures. With such a limited amount of data, the specificity of prediction

and detection algorithms could not be determined and such algorithms were prone to

overfitting. The results of the studies often resulted biased.

To avoid this shortcomings nowadays studies rely on big amounts of data. The three
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most used are the databases from epilepsy centers of Bonn and Freiburg, Germany,

from the Children’s Hospital in Boston, USA, and the EPILEPSIAE database, that is

available since 2012 [50]. EPILEPSIAE was founded by the European Union and was

started with six partners, from hospitals, universities and industry in France, Germany,

Italy and Portugal. Compared to the previous three databases, which range from 5 to

23 total number of patients, 40 minutes to 142 hours of recording duration and from

59 to 189 total number of seizures, EPILEPSIAE contains recordings of 275 patients,

averaging 165 hours of recording per patient and 9.68 seizures per patient. Besides

EEG recordings, it also contains ECG recordings and extensive metadata on technical

and clinical details of the recordings[32].

3.2 Signal Pre-Processing

Raw EEG data is a very noisy and non-stationary, thus has to undergo some pre-

processing procedures, before being further analyzed. This section will present some

techniques and approaches, that other researchers have already performed.

The analysis of a signal usually requires its decomposition in some chosen domain.

The three main domains are: time, frequency and time-frequency. The decision about

which will prevail in the study, should be taken carefully the beginning, allowing so the

development of an efficient framework, avoiding losses of information and resolution.

3.2.1 Sliding Time Windows

The first step in pre-processing is defining the length of the sliding time window. A

whole EEG recording is divided into small consecutive intervals, generally of equal

length, for two main reasons: the first is that EEG is a non-stationary signal. Many

mathematical tools for analysis assume the stationarity of the signal. One way to en-

force an “artificial” stationarity is by segmenting the signal and making the analysis of

the segments globally valid [59]. The other reason is more pragmatic; the ultimate goal

of seizure detection and prediction is to timely give out warnings about an imminent

seizure attack. This would be hard or impossible to perform by analyzing a whole

recording, because algorithms would learn to identify an attack regarding the changes

in a whole recording, rather than detecting significant consecutive changes of the signal

that lead to a seizure. Therefore, this step is of fundamental importance and its setting

can strongly influence future steps.

Sliding windows in different studies were set differently, regarding their length or their
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overlapping characteristic. Overlapping, as the word suggests, means that the next

window contains a segment from the previous window, therefore overlaps it. This is an

effective technique, that can increase the number of windows, without reducing their

length. On the other hand, selecting the length of a sliding window is a delicate step of

pre-processing and an optimal window size has not been defined yet. Direito et al. in

2012 [12], while performing a study on seizure prediction, opted for five second sliding

windows with no overlap. They stated, that it represents a good compromise between

long windows, that lose temporary resolution and the assumption of stationarity, and

short windows, that lose frequency resolution. Alotaiby et al. in 2014 [2], wrote a

survey on seizure detection and prediction algorithms, where they reviewed 44 studies.

Seizure detection studies (25) opted for sliding windows of a length ranging from 70

milliseconds to whole recordings, with most of them fitting in the range of 1 to 60

seconds. Similarly, prediction studies’ (19) sliding windows sized between 2 seconds

and whole recordings, with the majority in the range from 2 seconds to 10 minutes.

Detection and prediction scores seemed to not be affected by the different sliding win-

dows’ length, however it has to be taken in consideration that authors have also used

different classification methods and algorithms. Some different sliding window length

opiton are shown in table 1, taken from the survey by Alotaiby et al., 2014. EMD stays

for empirical mode decomposition, which transforms the signal to a group of intrinsic

mode functions. SVD, which derives from singular-value decomposition, is an other

kind of signal decomposition. The table also shows from which databases the data was

taken.

In this thesis, since it aims to early detect seizures, sliding windows should be of such

length that could raise an alarm in a range of 3 to 6 seconds, so that the patient could

receive the warning before the clinical onset of the seizure. Therefore, an appropriate

length could be anywhere between 1 and 5 seconds. However, too small frames will

cut off smaller frequencies. Hence, using five seconds sliding window may result as an

optimal option, since it will maintain a good resolution, even for frequencies under 1

Hz.

Overlapping could also be beneficial, since the sliding windows are relatively big when

compared to the difference between clinical and EEG onset. Thus, using an overlap

will increase the probability of early-detecting a seizure and it would augment the data,

which could be beneficial for deep learning algorithms [10]. However, the final decisions

should be based on the chosen methods and the overall framework.
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3.2.2 Filtering, Normalizing and Noise Reduction

This step consists in removing artefacts that my alter further analysis results and nor-

malizing recordings to make them comparable with others. EEG recordings can get

altered by any electric field. Therefore, artefacts in EEG records can be produced by

various sources, such as muscular contractions, eye blinks, or by the electrical field of

the power line [59]. Next, there are presented some methods that might be used to

further pre-process EEG signals.

Filtering frequency bands is a highly used step in EEG signal pre-processing. A 50Hz

notch filter is commonly used to remove distortions caused by the power line. In ad-

dition, a band-pass filter is also very common, to filter frequencies outside of the 0.1 -

120 Hz range. The upper bound 120Hz is set regarding the Nyquist criterion, which

states, that sampling rate of Fs Hz can only correctly represent signals that contain

frequencies up to Fs/2. Since most machines have a sampling rate of 256Hz or higher,

120Hz presents a good upper bound candidate.

Normalizing data of a seizure is necessary to be able to compare it among data of other

patients or among other seizures. Typical procedures are detrending the signal, which

is obtained by removing its mean, and scaling to unit variance, which is obtained by

dividing a detrended signal by its standard deviation [59].

The last step in signal pre-processing is dealing with noisy artefacts. Artefacts can

be managed in four different ways: they can be ignored, if it is assumed that only

minimally affect further feature extraction. Highly contaminated windows can be also

rejected and not taken in account in further analysis. However, with this method

a significant amount of data may be lost and this may affect future results. To re-

duce the data loss, artefacts can be removed by the EEG with separation methods,

i.e. independent component analysis (ICA) or wavelet filtering. The last, more elegant

solution, is to train classifying systems to properly deal with artefacts in the signal [59].

3.3 Feature extraction and selection

Raw EEG data itself contains a variety of information. Usually, recordings off EEG

data are from the computational point of view unsuitable to use in machine learning

algorithms. Therefore, raw EEG data normally undergoes processes of dimensionality

reduction, called feature extraction and feature selection. First of all, a set of features

of interest is extracted from pre-processed data, often with a transformation of the

original data. Although some level of dimensionality reduction may already happen at

this point, the features may still contain redundant or irrelevant information. A good
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feature selection removes such features and, hence, can reduce learning time, improve

learning accuracy and simplify learning results [9].

EEG extracted features can be univariate and multivariate, regarding the number

of channels taken in consideration, and linear or non-linear. Linear features derive

from frequency and amplitude information, while non-linear features use non-linear

measures to describe the current state of the system or its dynamics [4]. The com-

putational complexity of features increases as we advance from univariate linear to

univariate non-linear and from multivariate linear to multivariate non-linear. No spe-

cific type of features has been proposed as the best, therefore the selection of features

floats between the criteria of using the lower level of computational complexity and the

major quantity of information, so it will achieve good classification results [7].

From previous studies it is known, that a combination of univariate and multivariate

Figure 6: Representation of feature’s complexity

features results in better predictive systems [40]. McSharry et al. 2003, revealed that

non-linear measures did not perform better than the linear ones, even though EEG

signals are of non-linear nature. In other studies with real-time algorithms [43] the

computational complexity of non linear features was not suitable for such a dynamic

model. Consequently it was advised that the use of non-linear features should be taken

in consideration only when they outperform the linear ones.

In this thesis, since the study is oriented towards early detection, the computational
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time is very limited. Perhaps, a selection of linear features and a restricted use of

non-linear features could be more appropriate. However, the loss of information in

such case could affect classification results. Thus, we will rely on the power of deep

learning algorithms, that may eventually capture the same information that is held in

the more sophisticated features.

3.3.1 Feature Selection Methods

The variety of feature selection methods and their combinations offer researchers and

engineers many handholds to increase performances of their work, by reducing the com-

putational overhead and performing classifying tasks better. They can be categorized

according to different principles [9]:

• Concerning the labelling of the training data, selection methods can be super-

vised, unsupervised or partially supervised.

• Concerning the interaction with the model, selection methods can be divided into

filter, wrapper or embedded methods.

• Concerning the search strategies, feature selection methods can be grouped into

forward increase, backward deletion, and hybrid methods.

• Concerning the output, feature selection methods can be divided into subset

selection and feature rank methods.

In the following sections it will present some feature selection methods, which will be

divided into supervised and unsupervised. In these categories will be presented both

filter and wrapper techniques of feature selection, with some state-of-art examples. A

third section, named “Embedded Methods”, will focus exclusively on embedded meth-

ods, since they represent a more recent approach.

Supervised Methods

Under supervised methods we identify all the methods for feature selection, that in-

clude labelled data for the training session. This methods select the most relevant

features that will help classify future instances into two or more classes. Therefore,

the correlation or relevance between the feature and the class label is the fundamental

principle in this approach. Supervised filter models can be grouped in (1) relevance

and redundancy based analysis, which could be also translated into two optimization
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problems: max(Relevance) and min(Redundancy), or in (2) relevance and diversity

analysis, which could be similarly translated into max(Relevance) and max(Diversity)

optimization problems [9].

A different approach can be provided by supervised wrapper models, that often pro-

duce feature selection results simultaneously with the learning process, since the learn-

ing method is included in feature selection. Although wrapper models result in smaller

feature subset size and better classification accuracy compared to filter models, they

run with high time complexity and often display low learning scores. Common wrap-

per methods include genetic algorithm (GA)1 and particle swarm optimization (PSO)2

search strategies. Often wrapping methods are combined with filter methods, thus

giving birth to hybrid methods. They consist in applying filters to remove noisy and

irrelevant features and using wrapper model to find the optimal feature subset[9].

Unsupervised Methods

Unsupervised models can be as well divided into filter and wrapper methods, regarding

the fact if they are based on cluster algorithms. Filter methods use an algorithm - se-

lector - prior the learning algorithm, that will down-sample the feature set. It takes in

account the statistical performance of the data as evaluation metric and decide which

features better represent the dataset. Such approach is suitable for large data-sets,

especially because of its low computational complexity, however, there is no feedback

received from the training section. Hence, the selected features, which are believed

to perform well individually, they may not be so efficient when used together in the

training algorithm [52].

In the unsupervised wrapper models, features subsets are selected regarding to best

clustering score. Hence, each feature subset has to undergo the process of evaluation

through a pre-selected classifier, which requires time and high computational com-

plexity, especially for large scale data. However, comparing to filter methods, there

1GA is a population based stochastic optimization algorithm, inspired by the process of natural

selection, is an optimization algorithm, that relies on three genetic operators: mutations, crossover

and selection. The first has the role to maintain a diversity in the new generation of possible solutions,

the second to combine characteristics of the previous generation to create a new offspring and the

third to select the most-fitting samples. Every new generation has a handful of new possible solutions,

that may eventually find the optimal solution to the problem [39]
2PSO is also a population based stochastic optimization algorithm. Compared to the GA is more

simple, in the way that not include genetic operators in every new generation. A population (i.e.

swarm) of possible solutions, named particles, follows the current optimal solution in the ”search-

space”. Each time a better position is discovered, it starts to guide the swarm. The process is

repeated many times, hoping that an optimal solution will be found [31]
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are higher chances to identify a well performing feature subset, since the selection

and evaluation algorithms exchanges feedback. If the unsupervised feature selection

is conducted in a single cluster, it is called a local wrapper method, otherwise, if it is

conducted in all clusters, it is called global wrapper method [9].

Figure 7: Schematic representation of feature selection models.

Embedded methods

Embedded methods differ from other feature selection methods in the way the interact

with the learning algorithm [34]. The leading idea behind them is to merge the good

characteristics of both filter and wrapper models: they aim to interact with the classi-

fier, as wrapper methods, and to maintain a low time complexity, as filter methods.

While wrapper methods use learning algorithms to measure the quality of a feature

subset, embedded methods select features during the learning phase and automatically

output the most suitable ones after the learning procedure has ended. In other words,

they do not separate feature selection from learning, but they incorporate (embed)

it into the learning process. A known embedded method is based on least absolute

shrinkage and selection operator (LASSO).

Compared to wrapper methods they may result more efficient in some aspects: there is

no need to split the training data into training and validation sets and there is no need

to restart training for each feature subset [18]. Embedded methods can be expected to

be faster than wrapper methods, if the function that measures the quality of a scaling

factor is evaluated faster than a cross-validation error estimation procedure. However,

they are prone to over-fitting problems with limited training data available. In this
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conditions filter methods would most likely perform better [9].

3.4 Topographic maps

An increased attention to spatial representations of brain electrical signals was first

noticeable in the 60s-70s of the previous century. In 1969, Estrin and Uzgalis and

Harris et al. already described some complex topographic systems, that were based on

computational methods, while by 1987 at least nine systems were commercially avail-

able in the US [30]. Such a spread of the use of topographic maps was mostly due to

the fact, that they simply represent various measures of brain electrical activity and so

allow even personnel with limited amount of training to operate with such systems.

Figure 8: Example of a topographic map used in this thesis.

In its native formulation, a topographic map of a brain represents the values of the elec-

tric fields of the scalp, encoded in a colour scale. Commonly, red and yellow indicate

higher synchronous activity or values, while blue indicates lower. A 2-D topographic

map is constructed in two steps: first, the values retrieved from each electrode are
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spatially distributed on a two dimensional grid, according to the original distribution

on the scalp. Second, an interpolation function is performed, which assigns values to

all the cells in between them. Typical interpolation functions are linear, cubic and

spline functions. An example of 2-D topographic map is shown in figure 8.

Recently, with the arise of more powerful classifiers, the use of 3-D topographic maps,

in the fields related to Brain Computer Interface(BCI) systems, gained much inter-

est. A 3-D topographic map does not necessary denote the 3-D spatial distribution

of the electrodes. Compared to conventional 2-D topographic maps, they have one

more dimension, which can represent information from other domains, such as time or

frequency domains, rather than spatial. Zhang et al. in 2019 [62], in an experiment on

cross-task mental workload assessment, where they tried to learn new spatial-spectral-

temporal EEG features with a recurrent 3-D convolutional neural network, they used

3-D topographic maps constructed as a stack of 40 2-D topographic maps. The to-

pographic maps at each layer contained information at a different frequency of the

original signal, raging from 1-40Hz. A representation of their method, taken from the

original paper, is shown in figure 9.

Figure 9: Example of 3-D topographic maps. Source: [62].

Since topographic maps are a graphic visualisation of the data, useful information can

be retrieved from them using deep learning algorithms. In this thesis topographic maps

will be fed to a convolutional neural network, that will be trained to distinguish seizure

topographic maps from non-seizure topographic maps.

3.5 Classification

In machine learning classification models refer to models that allocate a sample to a

class of similar samples. On the other hand regression models try to assign a value to

the sample. In automated seizure detection, a classifier’s role is to decide whether a
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sample is representing a seizure or not, therefore binary classification models are used

for this task. Classifiers consist mainly of machine learning algorithms, thus, their ap-

plication is divided in two parts: learning phase and operational phase. The learning

phase consists of presenting to the model some training samples, from which the model

will adjust or train itself to recognize them and classify them with the best accuracy.

Regarding the fact if the training sample is labelled or not, the learning phase can

be supervised or unsupervised. Different classifiers obtain better results for each kind

training [37].

In the following sections will be presented some of the most used classifiers in EEG

based seizure detection. Since seizure detection is a binary classification problem, re-

gression models will not be taken in consideration. Classifiers will be divided into linear

and non-linear methods. A particular attention will be given to neural networks, that

will be presented separately, although they could also be divided in linear and non-

linear. The last section will focus especially on deep learning algorithms, since they

present a powerful classification tool and they will be the main classification method

used further on in the thesis.

3.5.1 Linear Classifiers

Linear classifiers use linear decision functions to distinguish samples between classes.

They are widely used, especially in real-time and online seizure detection or predic-

tion, because of their low computational requirements. They are generally simple and

easy to implement, however their drawback is that they assume that data is linearly

separable. This issue can be often bypassed by cnsidering non-linear decision functions

in the algorithm. For this reason, linear machine learning algorithms, such as support

vector machines (SVM), are one of the most common classifiers in seizure detection

and prediction.

Support Vector Machine

A SVM in its native formulation is a linear classifier, that uses discriminant hyper-

planes to classify samples in a feature space. Simple, yet efficient algorithm, selects

the hyperplanes by optimizing the decision boundary such way, that maximises the

separation margin. The margin is the minimum distance between the discriminant

hyperplane and the samples closest to it. The intent of this approach is to maximise

the chances of a correct classification for future samples [22]. Furthermore, SVM uses

a regularization parameter, that allows a certain amount of errors during training.
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SVM assumes that the samples are linearly separable. Taking in consideration the

Figure 10: Finding the optimal hyperplane in the SVM. Source:[37]

figure 12, we can easily notice that a linear decision boundary can not efficiently dis-

criminate the two labels on the plot B, as it does in the plot A. In such situations, a

linear SVM would not be very accurate. However, a good characteristic about SVM

is that it can easily learn to classify non-linear samples, by ”pluging in” a non-linear

kernel [29], [37]. In a recent paper on seizure detection, Harikumar et al., 2016 [20],

compared a linear SVM, SVMs with different kernels and particle swarm optimization

(PSO) algorithm. The results showed that RBF3 SVM with gamma value of 10 out-

performed all the rest of SVMs and PSO algorithms, by holding the highest accuracy

of 99.20%. Results of this paper are presented in table 2.

Table 2: Comparison of seizure detection classification results with different SVMs and

PSO algorithms. Source: [20]

Parameters Linear SVM PolynomialSVMorder − 2 RBFSVMwithGamma− 5 RBFSVMwithGamma− 10 PSO

Accuracy(%) 96.03 98.025 96.385 99.20 97.73

Sensitivity(%) 100 100 100 100 97.68

Specificity(%) 92.06 96.05 92.77 98.40 97.78

Radial Basis Function Kernel The Radial Basis function is often used in SVMs

as a generalization kernel. A RBF is such function φ, so φ(x, c) = φ(|x − c|) holds,

3Radial Basis Function (RBF) is explained in the following paragraph.
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Figure 11: RBF-SVM solves non-linearity, by a mapping samples (Φ) in a higher linear

feature space. Source:[49]

where c is the center. An example commonly used is the spherical Gaussian RBF:

φ(x, c) = exp
|x−c|2

2σ

RBF is often used as activation function in a neural network, where the network dis-

criminates samples using spheres or hyperspheres [6]. Usually it is constructed by first

defining the number of radial functions and locating their centres, randomly or with

with an algorithm, e.g k-means clustering. Then with training, the variance of the

clusters is calculated and the weights and bias tuned [14].

Applying the RBF kernel to a SVM, does not alter the original algorithm. The idea is

to use the kernel to map the non-linear samples into a higher feature-space, where the

algorithm can classify data using linear decision functions. Moreover, the problems of

selecting the number of functions and locating their centres is automatically solved by

identifying the optimal hyperplanes and the support vectors in the higher linear feature

space. Adding a kernel to the SVM does not change its characteristics. The model

remains robust and still less prone to overfitting, even with high dimensional data, and

not so computationally expensive. The simplicity, robustness and plasticity to generate

other machine learning structures, made the SVMs a very popular classification tool,

also in the fields of seizure detection and prediction.

3.5.2 Nonlinear Classifiers

As seen previously, sometimes linear classifiers are not efficient for a particular dataset,

simply because the data cannot be divided with a linear function. Therefore other ap-

proaches are required to obtain better classification results. The next sections will
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Figure 12: Graphic representation, showing that non-linearity is sometimes needed for

better discrimination. Source: [46]

present some of the most common non-linear classifier used in seizure detection.

k-Nearest Neighbour

k-nearest neighbour is a non-parametric classifier, that works on both classification and

regression. During training the algorithm locates the feature vectors in a multidimen-

sional space and labels them with the appropriate class label. The next step consists

in selecting a metric, normally Euclidean distance, and the ’k’ parameter, which refers

to the number of closest neighbours taken in consideration for a sample classification.

Next, when an unknown sample is located in the feature space, its class is decided upon

its k-nearest neighbours. Particular attention should be given to the tuning of the ’k’

parameter, since could noticeable impact the results. High ’k’ values tend to minimize

the disturbances of noise, but also tend to make the boundaries between classes less

distinct [8]. A good ’k’ value selection can be based on heuristic hyperparameter opti-

mization techniques or by identifying the empirical optimal value with the bootstrap

method [19].

Bayesian Classifiers

Bayesian classifiers are probabilistic classifiers, that classify feature vectors regard-

ing the probability of belonging to the class. Different Bayesian classifiers have been

adopted in seizure detection and prediction studies, especially the Näıve Bayes classi-

fier and the Hidden Markov Model.

Näıve Bayes classifier assumes strong independence among features of the feature vec-
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Figure 13: k-NN Classification.

Different settings of the ”k” parameters may classify samples differently. Source: [49]

tor, which in real situations is difficult to encounter. Thus, the name naive. However,

even when these conditions are not met, this method provides good results[14]. An

instance is placed in the correct class when the probability of belonging to that class

will be higher compared to the probability of other classes. Furthermore, the Bayesian

inference can be replaced with maximum likelihood techniques, that make it compu-

tationally more feasible[14].

Hidden Markov Models (HMM) represent a popular branch of dynamic classifiers in

speech recognition and particularly suitable for time series classification [45]. According

to Wong et al.[61], HMM is especially well-suited for epilepsy studies since it is assumed

that acquired EEG signals arise from underlying dynamical brain states. It consists of

a probabilistic automaton, where the states are characterized with a probability dis-

tribution and transitions between states are determined by a set of probabilities. In

each state an outcome is generated, regarding the probability distribution. During the

process, the states are not visible from the outside, hence the name “hidden”. Figure

14 shows an example of HMM. The image was taken from an experiment on seizure

prediction. Therefore, four hidden states are taken in consideration: inter-ictal, pre-

ictal, ictal and post-ictal. The visible part of the classifier are the clusters of point of

interest, that were obtained with the segmentation of topographic maps.

In an experiment on epileptic seizure prediction, Direito et al. [12] used a hidden

Markov model that would classify topographic maps, regarding their points of interest.

On a study of 10 refractory epilepsy patients they averaged 89.31% accuracy, 94.59%

sensitivity and 92.33% specificity.

Sharmila et al. [3] used patter recognition strategies to detect EEG signal abnormali-

ties. They performed a discrete wavelet transform (DWT) to obtain features and used
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Figure 14: Example of a Hidden Markov Machine. Source:[12]

the näıve Bayes (NB) and the k-NN algorithms to classify them. With the NB they

obtained 100% accuracy with 10 input features and 99.87% for k-NN, with only two

features on a limited dataset.

3.5.3 Artificial Neural Networks

Among with linear classifiers, neural networks are the most used classifiers in the fields

of seizure detection and prediction. The aim of these structures is to reproduce the

real neural networks in the brain and their learning capability by a set of different

interconnected layers of independent processing nodes, called neurons. In the typical

neural networks, i.e. Artificial neural networks, the connections between neurons are

weighted. The node sums the input signal and converts it to a value between 0 and 1.

If the value reaches a certain threshold, an output signal is emitted from the neuron. In

order for the network to give the correct result, the weights and other parameters have
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to be tuned properly. Therefore, the network undergoes the ”training” phase, where

it learns to identify instances of a class, by an iterative adjustment of the parameters,

until the point when the classification error drops under a certain level. Then, the

network is supposed to be trained and able to classify correctly new instances[48].

Different artificial neural networks have been invented. One of the most representative

ANNs is the Multi-layer Perceptron network (MLP). Similar to the previously seen

radial basis function kernel Radial Basis Function network (RBFN).

Multi-Layer Perceptron and Radial Basis Function Network

The name perceptron is given by the homonym binary linear classifier - Perceptron,

that classifies the feature vectors regarding hyperplanes in the feature space. A multi-

layer perceptron is a class of feedforward artificial neural networks, composed by a

stack of perceptrons. It comprehends an input and output layer, and several hidden

layers in between them.

The layers are fully-connected, which means that every neuron is connected to every

neuron from the previous layer. In the first layer a signal is inputted, then it passes

through the nodes of the network, where is processed. Every node in the network,

apart from the nodes of the first layer, have an activation function, usually nonlinear,

such as

y(x) = tanh(x)

or

y(x) = (1− e−x)−1,

that will allow only signals above a certain threshold to pass through the neuron. The

neurons of the last (output) layer determine the class to which the instance appertains

[37].

MLPs are usually used trained with backpropagation, in a supervised learning ap-

proach. Instances are paired with the correct class label and once they pass through

the whole network, a classification error is estimated. At that point, a correction pro-

cedure starts from the last layer towards the first, where weights and bias values are

modified, in order to obtain a higher classification score.

MLP are also know as universal approximators, meaning that with enough neurons and

layers they can approximate any continuous function [37]. However, this characteristic

makes them very sensitive to overtraining , especially with noisy and non-stationary

data, such as EEG.

RBF network is another kind of neural network, that uses a radial basis function as acti-

vation function. Compared to MLPs, RBF networks can model any nonlinear function

using a single hidden layer and require less training, since standard linear modelling
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techniques can be employed. Moreover, they are not heuristic, hence do not suffer from

problems such as local minima, which occurs in MLPs. However, RBF networks are

known to give poor results, if the new data is located at the margins of the training sets,

since the kernels do not represent efficiently the data far away from their centers[14].

In 2004, Srinivasan et al. [60] compared the classification performance of 4 different

neural networks: MLP, Elman4, probabilistic neural network and learning vector quan-

tization. They discovered, that the Elman network outperformed the other three and

yielded an accuracy, a specificity and a sensitivity of 98%. One year later, Subasi et

al. [1] used a MLP-AAN to compare the classification scores of autoregression coef-

ficients and features obtained with a fast Fourier transform of the signal of epileptic

patients. The accuracy, specificity and sensitivity were 92.3%, 96.2% and 90.3% for

the AR coefficients, while 91.6%, 93.6% and 89.8% for the FFT signals.

3.5.4 Deep Learning

More implicit knowledge is required to perform better decisions. Hence, more depth

is required to represent more information from the dataset. Based on this premise,

deep learning (DL) algorithms were designed [13]. Deep machine learning represents

a branch of machine learning methods, that is based on representation learning. The

network learns and extracts features from each of the numerous hidden layers of the

structure [35]. The name ”deep” is referred to those numerous hidden layers in the

Artificial Neural Network-like structure. In the following sections are listed some of

the most common DL networks.

Convolutional Neural Network (CNN)

One of the issues of the ANN is the susceptibility to translation and shift deviation,

meaning that they fail to recognize an object if it is shifted or tilted, compared to the

training samples. To overcome these limitations convolutional neural networks were

designed. A CNN is a feedforward network, composed by an input and an output layer

and multiple convolutional, pooling and fully-connected layers. Each layer can include

different functions, e.g. activation functions, regularization functions and, for the out-

put layer, a classifying function. Functions are usually also implemented as layers of

the network.

CNN input layers can accept different kind of array data, as series, 2-D series, im-

4Elman network is a recurrent network with three layers. It is characterized by “context” units

in the second layer, that mantain a sort of state in the network. This allows it to perform sequence-

prediction tasks [11].
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ages and 3-D images. In the convolutional layers, samples are organized in a feature

map, regarding on a kernel - a set of weights, called filter bank. This allows to recog-

nize different local patterns present among the samples. In image arrays such layers

efficiently detect particular objects and shapes, independently from the position in

pictures. Hence, the translation and shift problem, present in conventional neural net-

works, is overcome [35].

The next set of layers are pooling layers, that have the main task of down-sampling the

outputs of the convolutional layers, by merging similar features into a single one. The

down-sampling functions are average, max or sum [13]. In pictures, pooling upholds

representing features from not varying too much, even though elements from which

these are derived may be spatially distant or altered in appearance.

An other kind of layers are the fully-connected layers, where a neuron in the current

layer is connected to all neurons from the previous one with weighted connections. The

last fully-connected layer determines the number of output classes. During training

with back-propagation, the algorithm corrects all the weights in the network, starting

all the way from the last fully-connected layer to the first convolutional layer.

The last layer is the output layer, that is preceded by a classification function. The

most common function is the ”Softmax” function, that assigns to each possible class

a number ranging from 0 to 1, obtained by a conversion the output of the last fully

connected layer. The sum of these numbers is 1, hence, the function is similar to a

distribution of the classification probability [16].

The role of the regularization functions is to reduce the training time and increase the

learning accuracy. The activation functions are necessary to ensure the non-linearity,

since the activation of a single neuron will lead to the activation of others. The most

common activation functions in CNNs are presented in figure 15. An other regular-

ization function is the ”Dropout” function, that randomly removes a percentage of

neurons from a layer in order to prevent the occurrence of phenomena such as overfit-

ting. Beside these functions, a ”Batch Normalization” function is often used with the

intent to accelerate training, by normalizing the values in the hidden layers.

Long-Short Term Memory (LSTM) Network

An opposing idea to feed-forward networks are recurrent neural networks, characterised

by their recursive approach. A product of the network is processed on behalf of pre-

viously learned information, that is stored in each node in form of inbuilt memory.

Although RNNs are very powerful and dynamic systems, their training is very com-

plicated since the back-propagated gradients tend to explode or vanish over many

repetitions [5], [23]. RNNs resulted to perform really well, when operating with speech

and text, or other sequential inputs [35].
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Figure 15: Common activation functions for CNNs.Source: [41]

A well established RNN is the Long Short-Termed Memory (LSTM) network, which

main characteristic is the ability to learn long-term dependencies [23]. It uses a mem-

ory block within each neuron, that can modulated the cell state through three gates:

(1) input gate, that decides if an information has to be updated and stores; (2) out-

put gate, that decides if the information is used on the cell state; (3) forget gate, that

deletes redundant or irrelevant information from the cell state. LSTM networks showed

great results, especially when they include several depth layers per time step, enabling

detection of either acoustics and character sequences [17].

An extension of common LSTM networks are bidirectional LSTM networks. A bidirec-

tional approach presents both forward and backward sequences to two separated nets,

that are connected to the same output layer. Their invention was mainly motivated by

the fact, that the sequential readings tend to generate outputs that rely on previous

context. Therefore, since bidirectional analysis would process every sequence in both

ways, it would provide additional information, that may be profitable in terms of time

efficiency and recognition performance. Basically, for every point in a given sequence,

the such network has complete, sequential information about all points before and after

it [17]. Furthermore, the issue of selecting an appropriate task-specific time window is

avoided. It was found, that bi-LSTM is faster to train than other RNN and slightly

more accurate, while solving speech recognition tasks.

Deep learning techniques are very recent. In 2016, Thodoroff et al. [57], used a re-

current convolutional neural network with LSTM memory nodes to build a mode for

seizure detection. They have reached a 95% accuracy and an 85% sensitivity. More-

over, the model resulted very robust to missing channels, as the performance didn’t

decrease significantly, even with 16 channels missing. Hussain et al. [26] in 2018, cre-

ated a seizure detection model, that is based on an ensemble of 1-D CNNs. 1-D CNNs

take as input time series, which in this case was the EEG signal. In almost all the cases

concerning epilepsy detection, the proposed system gives an accuracy of 99.1 ± 0.9%.

An other recent experiment by Hussain et al. [25], that also used CNNs, obtained
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remarkable results. They input raw signal to the network, which had 4 convolutional

layers. The results obtained were an average 90% sensitivity, 91% specificity and a

98.05% accuracy.

Deep learning represents a good candidate in physiological signal analysis, especially

for its ability of dealing with multidimensional data and for its great representation

learning performances. There is no need to perform an extensive feature extraction and

selection for their training, which, in case of very complex biological signals as EEG

signals, could potentially save much time and find the best feature subset by itself.

However, the down part of DL is its training. This networks, because of its depth need

many training samples, many training epochs and a good parameter tuning.

Convolutional networks are very effective for image classification, while LSTMs perform

well on sequential data. Furthermore, bi-LSTM’s abilities to learn important patterns

in both directions could be applied to the seizure detection problem. Therefore, in this

thesis we will use deep learning networks that will learn to detect an occurring seizure

attack, on behalf of topographic maps that were generated from the power signal of

five frequency sub-bands.

3.6 Regularization

False positive classifications could be really annoying to patients who rely on the sys-

tem to early detect their seizures. One way to remove them, or at least reduce them,

is to perform a post-processing task.

Generally speaking, this step is more common in seizure prediction systems, where

they aim to detect the upcoming seizure minutes before the actual onset. The idea

behind this process is to make the system ignore the single false positive classifications

that occur sparsely and trigger an alarm when their concentration reaches a certain

threshold. The two most common post-processing algorithms for seizure prediction

are the firing power, that triggers an alarm when a certain threshold of false positive

predictions is reached, and the Kalman Filter, generally applied to SVMs, that reduces

the false positives using the classification variable [54].

In seizure detection the regularization methods are simpler. Classifiers do not classify

all the samples correctly. Therefore, since in a real-time test there are much more non-

seizure samples than seizure one, some false predictions might occur. To solve this issue

generally an average moving filter (MAF) is applied. The filter, of a chosen size “k”,

attributes to the sample in the center of the filter the average value of all the samples

in the filter. Thus, with a correct tuning of the parameter k, sparse misclasifications

are removed.
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3.7 Evaluation of the Performance

Evaluation of the results with some metrics, that is generally used in the field, allows

to some extent the comparison of results. In seizure detection the most used eval-

uation metrics are sensitivity (SS), specificity (SP) and accuracy (AC). Often, some

researchers also use the precision (PR). Formulas for their calculation are shown in

table 4 and are calculated with the confusion matrix results the testing set. A general

confusion matrix is shown in the table 3.

All these measures hold different information regarding the model’s classification abil-

Table 3: Confusion Matrix Example. S = Seizure and N = Non-Seizure.

Prediction Outcome

S N

Actual Value
S True Positive (TP) False Negative (FN)

N False Positive (FP) True Negative (TN)

ity: accuracy shows the percentage of correctly classified samples in the test. However,

there is no information given about individual labels. On the other hand, sensitivity

indicates the proportion, that the model will correctly classify a positive sample. The

same measure for the opposite label is called specificity. The precision of a model,

or sometimes mentioned as positive predictive value, is that measure representing the

percentage that an instance, classified as positive in the test, is actually really posi-

tive. Similarly, although is less used, the same measure for the negative label is called

negative predictive value.

While testing a seizure detection model, there is a much bigger proportions of non-

Table 4: Table showing different evaluation metrics and their formulas.

Accuracy (AC): AC = TP+TN
TP+TN+FP+FN

Sensitivity (SS): SS = TP
TP+FN

Specificity (SP): SP = TN
TN+FP

Precision (PR): PR = TP
TP+FP

ictal samples. The chances of having an elevated number of FP predictions are very

high, even with a very accurate model. Therefore, a better understanding of the per-

formance of the model is given by its specificity and precision.
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4 Experimental Data and Setting

The study was conducted in MATLAB R© environment. It follows a general pipeline,

that comprises the following steps:

• patient selection,

• pre-processing,

• topographic map generation,

• classification,

• regularization,

• performance evaluation.

A graphic representation of the pipeline is also shown in figure 16.

This pipeline is similar to the one previously mentioned in chapter 3, although differ-

ring in some points. In this thesis, since we will use convolutional neural networks, we

will not perform an extensive feature extraction and selection. The network is capable

of recognizing important features of the image by itself and perform an efficient classi-

fication. The signal transformations, will be presented in the section ”Pre-Processing”.

The aim of this chapter is to present detailed information about each step of the

pipeline. The first section contains a description of the data analyzed in the thesis. It

will be followed by a section explaining the pre-processing procedures and another one

explaining how the topographic maps were generated. The next section describes the

Figure 16: Graphic representation of the pipeline of the thesis.
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construction and training of the CNN, and, finally, the regularization and evaluation

methods will be presented.

The study can be divided into two parts. In the first one, the model was constructed

with a limited amount of samples. However, given the interesting results from the first

part, a second attempt, with a higher number of samples took place. The first part

will be further on referred as “First Testing”, while the second as “Second Testing”.

4.1 Patient Selection from the EEG Database

Data was retrieved from the EPILEPSIAE database. The patients, that were selected

from the database needed to meet some specifications. First, we focused only on scalp

EEG, not taking in account intracranial EEG recordings. Then, we selected only pa-

tients with focal epilepsy, with a well defined focal region in the temporal lobe. Next,

the patients were filtered by taking into account the recording sampling rate, which

was set at 256Hz.

In total, five patients were identified for this study, two males and three females, from

22 to 54 years of age, averaging 39.8 years of age. Recordings duration range from 94.4

to 164.3 hours of length, averaging 125.46 hours and patients on average were struck

by 2.65 seizures per day. Finally, we at first we carefully analyzed the patient 58602,

who held the highest number of seizures.

Recordings were accounted for 24 channels, however 3 channels - ”RS”,”SP1”,”SP2” -

were discarded before generating topographic maps. Table 5 shows which are the five

patients with most seizures per day.

Table 5: Table showing the patients used in the study and their characteristics.

patient age gender num. seiz. sampling rate duration(h) num.seiz./day focus localisation

58602 32 m 22 256 161.1 3.28 t

81102 41 m 13 256 96.9 3.22 t

85202 54 f 10 256 94.4 2.54 t

80702 22 f 10 256 110.6 2.17 t

95202 50 f 14 256 164.3 2.05 t

Average 39.8 13.8 125.46 2.65 t = temporal
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4.2 Pre-Processing and Feature Extraction

Raw data comes in the form of binary files. Therefore, it needs to undergo few pre-

processing steps, before it can be used to generate topographic maps. First of all, data

has to be translated to .mat files, so it can be easily managed in further steps. Here,

functions from the EPILAB R© [53] package were used to perform the task. Next,

a high-pass filter is used to remove the frequencies, between 0.1Hz and the Nyquist

frequency, which in this case consists of 12 Hz, and then a 50 Hz notch filter is applied

to remove possible power line artifacts.

Due to non-stationarity of the signal, data has to be analysed in short sliding time win-

Figure 17: Example of the alpha frequency sub-band power signal, close to the seizure

onset.

dows. Initially, the chosen length was of 5 seconds, with an overlap of 80%. This allows

to assume stationarity in these five second windows and preserve frequency resolution.

Furthermore, by overlapping by 80% we obtain four time more samples than we would

have obtain without it and we might detect additional information that could not be

captured between the end of a window and the beginning of another. Five seconds

window’s length represent a good compromise to keep sufficient time and frequency

resolutions and is often used in EEG analysis.

While pre-processing the data in time windows, 5 basic frequency features were ex-
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tracted. Features corresponded to the relative powers of different frequency sub-bands

obtained with the Discrete Fourier Transform. The bands included the following fre-

quencies: δ(0.5− 3.5Hz), θ(4− 7.5Hz), α(8− 12Hz), β(13− 35Hz), γ(35− 60Hz). All

vectors were normalized, by dividing their values by the total power of the signal’s

spectrum. In figure 17 there is an example of the alpha sub-band power calculated at

the electrodes T3, T4, T5 and T6 at the time of seizure onset. The patient has focal

epilepsy, with seizures starting from the left temporal lobe (channels T3 and T5).

After pre-processing, patient 58602 resulted having 974 seizure samples for each fea-

ture. However, one seizure was removed (originally seizure 13), since in the annotation

file was described as not reliable. Therefore, the total number of seizure samples re-

duced to 929. We proceeded to generate topographic maps and later on to train the

networks. However, the data, especially the seizure samples, was not sufficient for the

testing phase. Thus, for the second round of training, we re-extracted data, with a

higher overlapping percentage. The sliding windows now overlapped by 98%, meaning

that the new window starts 0.1 s after the previous one. By doing this we augmented

the data 10 times. We obtained 9290 seizure samples for each feature of the patient,

which provided enough data for a qualitative training and testing.

4.3 Topographic Map Generation

The simplest way to implement a topographic map is to use a grid or matrix, where

the values for each recording are spatially distributed on the grid according to their

distribution on the scalp and then with an interpolation function fill the blank cells

between them. In this thesis we used a pre-made function, eegplot().m by Ikaro Silva

[51], freely available on MATLAB R©file exchange. The interpolation function used was

the cubic interpolation function. Maps were saved as coloured pictures in .jpg format,

with a width of 884 pixels and a height of 766 pixels and a 24 bit depth.

For the first study, topographic maps were generated from the pre-processed data,

using all of the seizure timepoints and the same number of non-seizure timpoints.

Non-seizure samples were randomly selected from the non-seizure intervals. For the

patient 58602 were generated 929 ictal topographic maps and 929 non-ictal (set A).

Further in the thesis, for a better representation of the performance, we generated

topographic maps for the last five minutes before the seizure. We wanted to inspect

and interpret the misclassification of some samples, especially of those very close to the

seizure onset. Therefore, we had 6775 non-seizure samples, 300 (equal to 5 minutes)

before each seizure of the patient and some samples after the seizure, corresponding

to the half of the seizure timepoints (set B). The seizure samples where the same as



Kojanec P. Epileptic Seizure Detection Using Topographic Maps and Deep Machine Learning.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2019 36

Figure 18: A topographic map of the seizure onset from the plot from figure 17, where

the same electrodes are highlighted.

previously used for training (set A).

Once again we generated new topographic maps for the second study. In this case, the

samples used for training were generated from each second in the range of 5 minutes to

one minute prior the seizure. We intentionally left the last minute prior the seizure out

of the training process, to see how will the model behave without that interval. Our

intention was to obtain again some sequences of false alarms close to the seizure onset,

as in some seizures of the first results (see figure ??). Also samples taken randomly

from the inter-ictal intervals were used balance the datasets. Finally, the dataset for

each class had 8342 samples (set C).

For the second testing, we used intervals of 1 hour prior the seizure onset, where samples

were taken every 2 seconds. Therefore, 37800 non-seizure and 950 seizure samples were

generated (set D). A better representation of the sets of topographic maps used in this

thesis is offered in table 6.
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Table 6: Sets of topographic maps generated in the thesis.

Data Set Objective Description:

A (1st Study) Training

+

Testing

- 929 ictal samples

- 929 non-ictal samples taken randomly

Separation of data: 80% train., 10% valid., 10% test

B (1st Study) Testing - 929 ictal samples (same as data set A)

- 6775 non-ictal samples (5 min before the seizure + half

the number of seizure samples, after the seizure)

C (2nd Study) Training - 8342 ictal samples

- 5280 non-ictal samples (5-1 min before the seizure)

- 3062 non-ictal samples (taken randomly)

20% of the samples were used for validation

D (2nd Study) Testing - 950 ictal samples

- 37800 non-ictal samples (1 hour before the seizure,

samples taken every two seconds)

4.4 Classification with CNN

In this thesis we used a Convolutional Neural Network, which is particularly suitable

for image classification. The network was constructed with the MATLAB R© Deep

Learning Toolbox. In this section we will describe the chosen structure and the train-

ing procedures.

4.5 Network Structure

In this thesis, each feature has its own network, because each one needs different pa-

rameters to perform a better classification. However, all the networks have the same

layer structure with the same 19 layers. They are described in table 7. The parameter

selection for each network was performed with a grid search approach, presented in the

next section.

The input layer takes images of size 766x884x3. Then the images enter the first con-

volutional layer, where 16 kernels of either size 3x3 or 5x5 pass through the image

and generate a first feature map. Next, this feature maps are normalized in a batch

normalization function, with the intent to speed up the learning process. A ReLU

function is used as activation function, to rectify the values, before they undergo the

pooling operation. This process is repeated three times, with three different convolu-

tional layers. Next the feature maps pass through two fully connected layers, with the
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Table 7: Example of a convolutional neural network used in the thesis.

L. Name Type Description Output Learnables

1 InputLayer Input SIZE: 766x884x3 766x884x3 0

2 Conv1 Convolutional Layer KERNEL:3x3x3

STRIDE:2x2 BIAS:1x1x3

NUM.KERNELS:16

383x442x16 448

3 BatchNorm1 Batch Normalization Function CHANNELS: 16 383x442x16 32

4 ReLu1 ReLu Activation Function 383x442x16 0

5 MaxPool1 Max Pooling Layer SIZE: 4x4 STRIDE 1x1 383x442x8 0

6 Conv2 Convolutional Layer KERNEL:2x2x16

STRIDE:1x1 BIAS:1x1x3

NUM.KERNELS:8

383x442x8 520

7 BatchNorm2 Batch Normalization Function CHANNELS: 8 192x221x4 8

8 ReLu2 ReLu Activation Function 383x442x8 0

10 MaxPool2 MaxPool Activation Function SIZE: 3x3 STRIDE 1x1 192x221x8 0

11 Conv3 Convolutional Layer KERNEL:2x2x8

STRIDE:1x1 BIAS:1x1x3

NUM.KERNELS:4

192x221x4 132

12 BatchNorm3 Batch Normalization Function CHANNELS: 4 192x221x4 8

13 ReLu3 ReLu Activation Function 192x221x4 0

15 FullCon1 Fully Connected Layer NODES:32 1x1x32 5431328

16 ReLu4 ReLu Activation Function 1x1x32 0

17 FullCon2 Fully Connected Layer NODES:2 1x1x2 66

18 SoftMax SoftMax Function 1x1x2 0

19 ClassOutput Classification Layer 0

outputs 32 and 2 relatively and the Softmax function calculates the output.

4.6 First Study

Deep learning requires a big amount of samples for its training. The patient had 929

seizure samples, which are not enough for an efficient learning. Therefore, we decided

to train CNNs separately for a subset of the previously extracted features and assemble

them into one singular classifier. The final classifier would make its decision based on

a majority voting. Hence, an odd number of features is suggested. We decided to use

the relative powers of the frequency sub-bands δ,θ,α,β and γ.

4.6.1 Parameters Tuning: Grid Search Approach

During the first training of the CNN some parameters were fixed, while others were

left to be tuned with a grid search. The variable parameters were the size of filters of

the convolutional layers and the dropout percentage for both dropout layers. There
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were two possible combination for the sizes for the filters at each layer and two possible

dropout percentages for each dropout layer. Totally, each grid search had 32 possible

combinations.

Grid search was performed for all five frequency sub-bands, delta, theta, alpha, beta,

and gamma. Of all the images, 80% were used for training, 10% for validation during

training and 10% for testing after training. For all the features, each of these subsets

included the images with the same indexes. Totally, for each feature there were 1486

training samples, 186 validation samples and 186 testing samples.

Since the images were of big sizes, training required the use of mini-batches. We set

the mini-batch size of 16 samples. Samples are randomly shuffled at the beginning of

every training epoch. We opted for 32 training epochs, because represents a good com-

promise between training time duration and classification results. More epochs would

require more training time for each network, which in a grid search approach is very

restrictive. The chosen optimizer for training was the ”Root Mean Square Propaga-

tion” (RMSprop) optimizer, since it is particularly suitable when using mini-batches.

The training was validated every 30 iterations.

After training, every candidate network was tested with the test set. The final network

for each feature was selected with two criteria: first, the true positive and true negative

scores shall not differ for more than 10% between each other, second, the network with

the highest accuracy is selected. The first criteria is needed to filter all the results, that

obtained very high scores for only one class, but poorly classified the other. In table 8

are presented the confusion matrices of the best performing networks for each feature.

Next, the nets were assembled and tested together.

4.6.2 Testing with a Pre-ictal Interval of 5 Minutes (B)

Next, we tried to test the performance of the ensemble on a interval from five minutes

prior the seizure onset until the seizure end. Such performance is in fact more similar

to the real life situation: the ultimate goal of the classifier is to warn the patient about

an imminent attack. Hence, we are more interested on the performance of the model

in this five minute window interval than from the classification of randomly sparse

samples. With this premise, we generated new topographic maps, for every second

of the five minute interval, preceding each seizure. The results are presented in the

appendix A.
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4.7 Second Study

Due to the few seizure samples, a new extraction of features, with a higher overlap

(98%) was performed. Consequently, we opted to also re-train the networks, since

more data would probably give better classification results. However, in this second

round of training we did not perform a grid search of the parameters. Instead, we

used the parameters that resulted as best in the previous grid search. Furthermore,

compared to the first training, the samples used for the second training were taken

from specific pre-ictal intervals, rather then from random locations in the recording, as

explained in section 4.3.

For this training we had 8342 seizure samples for each feature, making 16684 total

training samples. 20% of these were used for validation. Differently from the first

training, networks were trained for 16 epochs, with a validation frequency of 500 iter-

ations. This changes were made because of the highly increased number of samples.

4.7.1 Testing with a Pre-ictal Interval of 1 Hour (D)

Similarly as performed in the first study, we tested the performance of the ensemble

on an interval prior to the seizure onset. However, this time the interval was much

larger, covering one hour before the seizure onset. To reduce the time of the generation

of topographic maps, we selected samples every two seconds (0.5 Hz) instead of one

per second (1 Hz), as in the first testing. Figures for each seizure are presented in the

appendix B.

4.8 Regularization

When testing on a five minute interval, we noticed that the number of false-positive

predictions increased significantly. Therefore, since the data was in the form of a

timeseries, we post-processed the results, with moving average filter (MAF) of size 5.

The same procedure was also performed in the second testing, while testing on one

hour pre-ictal intervals. An example of the effect of the MAF5 filter is shown in figure

19.
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4.9 Evaluation

Almost all the ensembles were evaluated with unseen testing sets, with the exception of

the B testing set, that included ictal data already used for training. We used accuracy,

sensitivity and specificity to measure the performance of the model. The results are

shown in the next section.
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Figure 19: Figure showing the differences before and after applying the MAF5 filter.
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5 Results

5.1 First Study Results

Grid Search Results: After only 32 epochs of training, good classification scores

were obtained for the individual networks, even with the limited amount of samples.

The most accurate network was the network of the theta sub-band relative power, with

an accuracy of 95.16% and the least accurate was the network for the delta sub-band

power, with an accuracy of 86.02%. More detailed results are shown in the table 8.

Although some networks could be further trained, we decided to test the ensemble

with the current networks. We used the same testing set as for testing the individual

networks. The ensemble improved the accuracy and the specificity, however lost some

sensitivity compared to the network of the Theta sub-band.

Table 8: Classification results of the A test set.

Sub-Band TP TN FP FN AC SS SP

Alpha 85 77 16 8 87.1% 91.4% 82.8%

Beta 86 79 14 7 88.71% 92.47% 84.95%

Gamma 80 86 7 13 89.25% 86.02% 92.47%

Delta 80 80 13 13 86.02% 86.02% 86.02%

Theta 89 88 5 4 95.16% 95.7% 94.62%

Ensemble 1 88 91 2 5 96.23% 94.62% 97.85%

Five Minute Pre-Ictal Interval Testing: Testing the model on the five minute

pre-ictal interval is believed to give more insights on the model’s behavior close to the

seizure onset. The model yield a high positive prediction value, misclassifying only 3

seizure samples out of 929, as can be seen in figure 20. However, careful interpretation

of this results should be considered, due to the biased nature of the ictal testing data

(see Discussion section).

This test also shows a noticeable increase of false positive classifications, that we man-

aged to overcome with a moving average filter of size five. Considering the limited

training data and the fact, that the networks were trained on randomly picked sam-

ples, the ensemble, after applying the MAF5 filter, still obtained 96.98% accuracy,
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92.56% sensitivity and 97.23% specificity. Seizure-specific information of the test is

presented in table 9.

Table 9: Seizure-wise results of the second ensemble testing the set B.

Normal MAF5

Seizure AC SS SP AC SS SP

1 81.79% 100.00% 79.26% 98.37% 95.56% 98.76%

2 89.40% 100.00% 87.93% 93.75% 95.56% 93.50%

3 91.58% 100.00% 90.40% 94.02% 95.56% 93.81%

4 92.39% 100.00% 91.33% 96.47% 91.11% 97.21%

5 76.90% 100.00% 73.68% 96.47% 95.56% 96.59%

6 94.29% 97.78% 93.81% 97.83% 86.67% 99.38%

7 95.38% 100.00% 94.74% 98.91% 95.56% 99.38%

8 98.91% 100.00% 98.76% 98.91% 91.11% 100.00%

9 93.75% 100.00% 92.88% 95.92% 91.11% 96.59%

10 91.30% 100.00% 90.09% 98.10% 95.56% 98.45%

11 89.13% 100.00% 87.62% 93.75% 91.11% 94.12%

12 93.21% 100.00% 92.26% 98.10% 91.11% 99.07%

13 92.66% 97.78% 91.95% 96.20% 86.67% 97.52%

14 91.03% 100.00% 89.78% 98.37% 91.11% 99.38%

15 91.03% 100.00% 89.78% 95.38% 91.11% 95.98%

16 93.48% 100.00% 92.57% 98.91% 91.11% 100.00%

17 91.03% 100.00% 89.78% 93.48% 95.56% 93.19%

18 88.95% 100.00% 87.94% 95.06% 93.10% 95.24%

19 95.38% 97.78% 95.05% 97.01% 88.89% 98.14%

20 92.12% 100.00% 91.02% 94.84% 91.11% 95.36%

21 92.66% 100.00% 91.64% 97.83% 95.56% 98.14%

Average: 90.99% 99.65% 89.88% 96.68% 92.56% 97.23%

5.2 Second Traning Results

One Hour Pre-Ictal Interval Testing Similarly as in the first part, we tested

the ensemble on a time series of samples. The pre-ictal interval had the length of

one hour and the non-ictal samples were selected every two seconds (set D). After

applying the MAF5 filter, the ensemble obtained 99.20% accuracy, 96.48% senesitivity
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and 99.27% specificity. Seizure-specific results and results without using the MAF5

filter are presented in the table 10, while the confusion matrices of the D dataset

classification are shown in figure 21.

Table 10: Seizure-wise results of the second ensemble testing the set D.

Normal MAF5

Seizure AC SS SP AC SS SP

1 81.69% 100.00% 81.22% 98.81% 100.00% 98.78%

2 73.35% 100.00% 72.67% 97.78% 97.83% 97.78%

3 79.09% 97.83% 78.61% 98.43% 89.13% 98.67%

4 89.27% 100.00% 89.00% 99.89% 97.83% 99.94%

5 88.08% 95.65% 87.89% 99.13% 91.30% 99.33%

6 74.70% 100.00% 74.06% 98.27% 97.83% 98.28%

7 90.25% 100.00% 90.00% 99.67% 97.83% 99.72%

8 87.27% 100.00% 86.94% 99.40% 97.83% 99.44%

9 91.98% 100.00% 91.78% 99.51% 100.00% 99.50%

10 77.19% 100.00% 76.61% 98.16% 97.83% 98.17%

11 82.99% 100.00% 82.56% 99.78% 100.00% 99.78%

12 91.01% 100.00% 90.78% 99.67% 100.00% 99.67%

13 83.42% 100.00% 83.00% 99.08% 97.83% 99.11%

14 83.91% 100.00% 83.50% 99.30% 100.00% 99.28%

15 85.92% 95.65% 85.67% 99.35% 91.30% 99.56%

16 89.17% 100.00% 88.89% 99.46% 97.83% 99.50%

17 86.94% 100.00% 86.61% 99.51% 95.65% 99.61%

18 89.45% 100.00% 89.28% 99.95% 100.00% 99.94%

19 93.82% 97.83% 93.72% 99.78% 93.48% 99.94%

20 85.86% 95.65% 85.61% 99.13% 91.30% 99.33%

21 86.67% 95.65% 86.44% 99.19% 91.30% 99.39%

Average: 85.34% 98.96% 84.99% 99.20% 96.48% 99.27%
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Figure 20: Confusion Matrices for the classification of the first ensemble (set B).
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Figure 21: Confusion Matrices for the classification of the second ensemble (set D).
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6 Discussion

As seen in table 8 the ensemble classified the testing samples with an accuracy of

0.974 and specificity of 0.969 and sensitivity of 0.979. However, it has to be taken

in consideration the limited data, used for both training and testing and how it was

extracted. Moreover, the non-ictal samples were taken randomly from the inter-ictal

intervals, instead from an interval close to the seizure onset, which is believed to have

more similarities with the ictal data. This might have made the two sets of samples

more distinguishable and easier to train. Therefore, we proceeded with the testing of

the dataset B.

We tried to see how this ensemble performs the classification samples close to the

seizure onset. We extracted new samples for five minutes before the seizure onset. As

we can easily notice from the first matrix in figure 20, there is a high number of false

positives, while the seizures remain classified with a high score. We believe that this

high classification score of the seizure set is due the fact that 80% of the seizure samples

used for this testing, were also the same used for training the network. Therefore it is

believed, that the network“remembered” those samples and classified them correctly.

The high increase of false positive classifications with the new test set are believed to

be due the fact that the samples used for training, which are taken randomly from all

the non-ictal intervals, were distinct from the ones really close the seizure onset. This

leads to believe, that there is a noticeable change in the signal while approaching the

transition from the non-ictal to the ictal phase. However, by applying the MAF5 filter,

the score increased. The MAF5 filter could potentially suit the real-time detection,

since it only requires a delay of few samples. In the case of 5 second sliding windows,

with 80% overlap, this delay would be of 2 seconds with the filter size 5, which fits

early detection necessities.

After applying a moving average filter, with a stride of five, to reduce the number

of false positive classifications, we noticed that for 18 out of all 22 seizures, within a

rage of 1 minute, some false positive classifications persisted. An example is shown in

figure 22. This is curious, since this false predictions could be very useful in a real time

model, because they can be used as alarms, warning the patient of an imminent attack.

Thus, we retrained the networks with augmented data, to see if this false predictions

persist.
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Figure 22: Figure showing the false predictions close to the seizure onset.

After testing the second ensemble on the dataset D, we could not identify the false

alarms close to the seizure onset as in the previous testing. Moreover, only four seizures

had a false alarm within five minutes before the seizure. We believe that this is a con-

sequence of the training set C. Although samples from one minute before the onset

were left out of training, with the intention of producing some false alarms, they were

classified correctly in the test. An other evidence supporting our claim are the false

predictions far from the seizure, that appear in most of the seizures. Hence, to get rid

of them and produce the false predictions close to the seizure onset, the training set

should include more samples that are far away from the seizure. However, this results

confirm our initial statement, that is easier to discriminate non-ictal samples far from

the seizure and seizure samples, than seizure samples and non-ictal samples close to

them.
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7 Future Perspective

The main drawback of this thesis is that it is performed with only one patient, therefore

there are no other comparable results. As mentioned earlier, to reproduce the method

on more patients could give more detailed explanation of the results.

An interesting aspect are the 3-D topographic maps. Nowadays deep learning methods

are very powerful and efficiently deal with very complex data. By feeding the classi-

fier with simple 2-D images of different sub-band, it will extract features, that only

hold information about the current state of the brain. However, no information about

the dynamics of the brain will be used in the decision process. Since the transition

from non-ictal to ictal is generally gradual, the information about the dynamics may

be useful for a more efficient classification. Therefore, using 3-D topographic maps,

constructed as a time sequence of topographic maps, may give even more information

than conventional 2-D maps and thus produce a higher classification score.

An alternative use of 3-D topographic maps could be on the frequency domain. Sim-

ilarly as performed by Zgang et al. [62], topographic maps of different frequency

sub-bands could be stacked in an array, before being fed to the CNN. At this point,

the ensemble will not be further needed. Such approach would significantly reduce the

training time, since there would only be one network used instead of five. However, the

classification score might decrease, because the classification will depend only on the

score of a single network rather than the majority of five different networks. Perhaps

it could be interesting to compare of the two models.

An other interesting improvement could be limiting the number of electrodes. In this

study 21 electrodes were used. Ideally, if the model would be so effective to be used

at the clinical stage, patients would wear EEG caps to monitor their brain activity

throughout the day. Therefore, limiting the number of electrodes will increase pa-

tient’s comfort. Moreover, having less electrodes also means less data that need to be

processed. Hence, it would be worth trying.
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8 Conclusion

In this thesis we present a model for seizure detection, using topographic maps of the

relative powers of different frequency sub-bands. To classify them we used an ensemble

of five convolutional neural networks, one for each sub-band. The model, trained with

samples randomly picked from the non-seizure interval, obtained good results on the

initial testing set, however it produced a high number of false positive classifications

when tested on an interval close to the seizure onset. We managed to drop such errors

by applying a moving average filter, obtaining 96.68% accuracy, 92.56% sensitivity and

97.23% specificity. Furthermore, after applying the filter, we noticed that the false

positive classifications were located close to the seizure onset.

We tried to obtain again similar results, by training the networks with considerably

more samples taken between five and one minute before the seizure. Although the

classification scores increased, we lost the false positive predictions close to the seizure

onset. Perhaps, to keep them, the ensemble should have been trained with samples,

that precede the seizure for more than five minutes. However, here limitations might

occur due to the computational overhead that so many samples can produce.

Overall, the model obtained scores that are close to the state of the art results. Al-

though this model does not have an early prediction performance, it still yields good

detection scores. Furthermore, this thesis gives some insights on the early detection,

that might be possible to perform, due to the diversity of the non-ictal samples, located

far and close to the seizure.
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9 Povzetek naloge v slovenskem

jeziku

Proti-epileptična zdravila so neučinkovita na kar tretjini epileptičnih bolnikov. Grad-

nja aparatov, ki samodejno detektirajo nemuden epileptičen napad na podlagi EEG

signalov, predstavlja alternativo za izbolǰsanje kvalitete vsakodnevnega življenja takih

pacijentov. Sledeča teza je poskus metode automatične detekcije, ki sloni na topogrf-

skih mapah, izvlečenih iz signalov različnih frekvenčnih pasov, in globokega učenja.

Postopek detekcije epileptičnih napadov lahko strnemo na sedem glavnih korakov:

pridobitev podatkov, obdelava podatkov, pridobivanje atributov, selekcija atributov,

klasifikacija, urejanje in ocenitev. Vsekakor so v tem poteku možne spremembe, saj

različne klasifikacijske metode potrebujejo različno obdelavo podatkov in različen izbor

atributov. V zaključni nalogi smo uporabili klasifikacijske metode globokega učenja,

ki so znane za to, da dobro delujejo s surovimi podatki in z osnovnimi atributi. Torej

smo te korake izpustili in se osredotočili na sestavo topografskih preslikav.

Podatke smo pridobili iz base podatkov EPILEPSIAE. Signale smo morali obdelati,

saj so EEG podatki nestacionarne narave. En postopek, da se jim umetno vsili sta-

cionarnost, je da se jih spremeni v kratke zaporedne časovne intervale, imenovane drseča

okna. V nalogi smo v dveh različnih poskusih uporabili okna dolžine petih sekund,

enkrat z 80% prikrivanjem, drugič z 98%. Signale smo nato s diskretno Fourierjevo

transformacijo spremenili iz čaovne domene v frekvenčno. Odstranjene so bile frekvence

pod 0.1 Hz in nad 128 Hz (Nyquistjeva frekvenca) ter frekvenca 50 Hz, ker je občutljiva

na motnje električne napeljave. Nato smo celoten signal razdelili na frekvenčne pasove

δ(0.5− 3.5Hz), θ(4− 7.5Hz), α(8− 12Hz), β(13− 35Hz), γ(35− 60Hz), ter izračunali

njihovo relativno moč. Iz teh smo nato sestavili topografske preslikave oz. mape.

Klasifikcijski model je bil sestavljen iz petih globokih konvolucijskih nevronskih mrež,

ena za vsak frekvenčni pas. Končno oznako za vsak vzorec model izbere glede na večino

oznak iz posameznih mrež. Zaključno nalogo smo razdelili na dva dela: prvo in drugo

testiranje.

Najprej smo iz surovih podatkov izvlekli vzorce v obliki drsečih oken dolžine petih

sekund in z 80% prikrivanjem. Na tak način smo pridobili 929 vzorcev za vsako oz-

nako. Vzorci, ki niso pripadali napadom, so bili izbrani naključno. Te smo razdeli v
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podmnožice, in sicer 80% smo uporabili za uÄenje, 10% za preverjenje med uÄenjem

(validacijo) ter 10% za testiranje. Prvo uÄenje je potekalo sočasno z iskanjem na-

jbolǰsih parametrov za posamezne mreže. Rezultati testiranja so prikazani v tabeli 8.

Isti skupek mrež smo nato poskusili testirati na intervalu zadnjih pet minut pred vsakim

napadom. Zaradi povečanja števila lažno pozitivnih napovedi smo vrsto vzorcev uredili

s filtrom drsečne sredine. Primejrava obeh rezultatov je prikazana v sliki 20 ter v tabeli

9. Upoštevati je treba dejstvo, da je večji del uÄnih vzorcev za napade enak tistim, ki

smo jih uporabili za testiranje, saj to močno vpliva na njihovo pravilno klasifikacijo.

Poleg tega smo opazili, da se na 18 izmed 21 napadov, tik pred začetkom napada

pojavi zaporedje napačnih klasifikacij. Take klasifikacije bi bile zelo uporabne, saj bi

pomenilo, da je model zmožen kraǰsih napovedi epileptičnih napadov in ne le njihovih

detekcij.

Zaradi pomankanja vzorcev smo ponovno izvlekli nove podatke, toda tokrat so se drseča

okna prekrivala za 98%, tako da smo dobili 10-krat več podatkov. Mreže smo tokrat

uÄili z vzorci, ki so se nahajali med petimi in eno minuto pred napadom ter z nekim

deležem nakjučno izbranim, da bi uravnotežili moč množic obeh oznak. Skupek mrež

smo nato testirali na intervalu ene ure pred napadom. Rezultati so prikazani v sliki 21

in tabeli 10. Toda, napačnih klafikacij tik pred začetkom napada nismo zaznali. Ve-

jretno so si bili vzorci zadnje minute in vzorci, uporabljeni za uÄenje, preveč podobni.

Grafi posameznih napadov za oba testa so prikazani v prilogah A in B.

Če povzamemo, model je dosegel 99.20% klasifikacijsko točnost, 96.48% občutljivost in

99.27% specifičnost pri klasifikaciji 21 napadov enega pacijenta, kar se približuje rezul-

tatom ostalih raziskav v stroki. Poleg tega, ko smo trenirali mreže z vzorci, ki so bili

izbrani naključno iz intervalov, ki niso bili pod epileptičnim napadom, smo se pri 18

napadih spopadli z napačno pozitivnimi oznaki v neposredni bližini epileptičnega na-

pada. Take napačne klasifikacije predstavljajo morebitno napovedovalno moč modela,

ki pa se niso pojavile, ko so bili vzorci vzeti v času zadnjih pet minut pred napadom.

Nadaljni cilj bi bil skušati obdržati take opomine za vsak napad, kar pa zajema veliko

časovne in računske zahtevnosti.
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Appendices



A Plots of the Seizures: dataset B

Here are presented the classifications for all the seizures in the B dataset.















B Plots of the Seizures: dataset D

Here we present the results of the D testing dataset for every seizure.














