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Abstract

Distance-regular graphs are highly regular combinatorial objects which must satisfy a number
of strong conditions. A wish (which is currently beyond our reach) is a classification of those
with sufficiently large diameter. The Terwilliger algebra was introduced to help in this project.
There has been some success in relating local conditions plus an additional global regularity
to the structure of the Terwilliger algebra. Much, but certainly not all, work in this program
has focused on the @-polynomial case. The present PhD Thesis fits in this program, tackling
a situation related to the Q)-polynomial case. On the other hand this PhD Thesis is also part
of a program to relate algebraic and combinatorial properties of (bipartite) distance-regular
graphs.

Our central results are the following. Let I' = (X, R) denote a bipartite distance-regular
graph with diameter D > 4 and valency k£ > 3.

e For a bipartite Q)-polynomial distance-regular graph I' with c; < 2: We show that I' is
either the D-dimensional hypercube, or the antipodal quotient of the 2D-dimensional
hypercube, or D = 5.

Let (a.1) denote the following property of I': for 2 < i < D — 1, there exist complex
scalars oy, 5; such that for all z,y,z € X with d(x,y) =2, d(z,2) =1, I(y, z) = i, we have
a; + GilT1(x) NTy(y) NTi_1(2)| = |Tica(z) NTi—1(y) N Ty(2)|. Note that if ' is @Q-polynomial
then (a.1) holds (and the converse is not true).

For graphs I" which have property (a.1):

e We find an equitable partition for I' when ¢y = 1.
e We find an equitable partition for I' when ¢y = 2.
e We show that for any irreducible T-module W with endpoint 2 we have

_ + o= = -
W = span{vy, vy, ..., v}, V5 , Vg, ..., Up 5},

where v € E3W (v #0), v = EfA; 2Fjv, and v; = Ef A2 Fjv.

Let’s define parameters A; (1 < i < D — 1) in terms of the intersection numbers by
A; = (b1 — 1)(ciz1 — 1) — (c2 — 1)pl;. Let (a.2) denote the following: Ay =0, A; # 0 for at
least one i (3 <i < D —2), and (a.1) holds.

For graphs I" which have property (a.2) and ¢y = 1:

e We find the structure of irreducible T-modules of endpoint 2.

e We show that up to isomorphism there exists exactly one irreducible T-module with
endpoint 2, and this module is not thin.

e We give a basis for this irreducible T-module, and give the action of A on this basis.
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For graphs I" which have property (a.2) and ¢y = 2:
e We find the structure of irreducible T-modules of endpoint 2.

e We show that up to isomorphism there exists exactly one irreducible T-module with
endpoint 2, and this module is not thin.

e We give a basis for this irreducible T-module, and give the action of A on this basis.

For graphs I" which have property (a.2) and D < 5:
e We find the structure of irreducible T-modules of endpoint 2 for graphs I'.

e We show that up to isomorphism there exists exactly one irreducible T-module with
endpoint 2 and it is not thin.

e We give a basis for this irreducible T-module, and give the action of A on this basis.

Math. Subj. Class (2010): 05C50, 05E30

Key words: bipartite distance-regular graph, Terwilliger algebra, Subconstituent algebra,
@-polynomial property, equitable partition



Izvlecek

Razdaljno-regularni grafi so kombinatori¢ni objekti z visoko stopnjo regularnosti, ki morajo
izpolnjevati vec strogih pogojev. Zelja (ki pa je, kot kaze, trenutno nedosegljiva) je klasifikacija
razdaljno-regularnih grafov z dovolj velikim premerom. Terwilligerjeva algebra je bil definirana
in vpeljana v raziskovanje razdaljno-regularnih grafov kot pomo¢ pri tem projektu. V procesu
klasifikacije je bil dosezen dolocen uspeh. Veliko dela (vsekakor pa ne vse) v tem programu se
je osredotocilo na ()-polinomske razdaljno-regularne grafe. Ta doktorska disertacija sodi v ta
program, saj proucuje primere, ki so tesno povezani s ()-polinomskimi razdaljno-regularnimi
grafi. Po drugi strani pa je ta doktorska disertacija tudi del programa, ki ima za svoj cilj
povezati algebrai¢ne in kombinatoricne lastnosti (dvodelnih) razdaljno-regularnih grafov, ter
te povezave tudi pojasniti in interpretirati.

Naj bo I' = (X, R) dvodelen razdaljno-regularen graf s premerom D > 4 in stopnjo k > 3.
Zmanstveni prispevki te disertacije so sledeci:

e Za dvodelne Q)-polinomske razdaljno-regularne grafe I' s ¢, < 2 smo pokazali, da je
I' bodisi D-dimenzionalna hiperkocka, bodisi antipodni kvocient 2D-dimenzionalne
hiperkocke, bodisi je D = 5.

Naj bo (a.1) naslednja lastnost grafa I': za vsak 2 <1i < D — 1 obstajajo taka kompleksna
stevila «y, f;, da za vse z,y,z € X z lastnostjo d(x,y) = 2, d(x,z) =i, O(y,z) = i velja,
da je a; + Bi|T'1(x) NTy(y) NTi—1(2)] = [Tici(z) NTi—1(y) NT'y(z)]. Opazimo da, ¢e je T’
@-polinomski, potem ima vedno lastnost (a.1) (obratno pa ni vedno res).

Za grafe I', ki imajo lastnost (a.1):

e Smo podali opis ekvitabilne particije grafa I', v primeru, ko je ¢o = 1.
e Smo podali opis ekvitabilne particije grafa I'; v primeru, ko je ¢y = 2.
e Smo pokazali, da za vsak nerazcepen T-modul s krajiscem 2 velja

_ + .+ o= - -
W = span{vy, vy, ..., v}, V5 , Vg, ..., Up 5},

kjer je v € E3W (v #0), v = EfA; 2F3v in v, = Ef A 2Ejv.

Definirajmo parametre A; (1 < i < D—1) s prepisom A; = (b;_1 —1)(c;t1—1) — (co —1)pb,,
in naj bo (a.2) naslednja lastnost: Ay =0, A; # 0 zanek i (3 <i < D —2), in I' ima lastnost
(a.1).

Za grafe I', ki imajo lastnost (a.2) in ¢y = 1:

e Opisali smo strukturo nerazcepnih T-modulov s krajiscem 2.

e Pokazali smo, da do izomorfizma natancéno obstaja en sam nerazcepen T-modul s
krajiscem 2, ter da ta modul ni tanek.

vii
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e Podali smo bazo nerazcepnega T-modula s krajis¢em 2. Opisali smo delovanje matrike
sosednosti A na tej bazi.

Za grafe I, ki imajo lastnost (a.2) in ¢y = 2:

e Opisali smo strukturo nerazcepnih T-modulov s krajis¢em 2.

e Pokazali smo, da do izomorfizma natanc¢no obstaja en sam nerazcepen T-modul s
krajiscem 2, ter da ta modul ni tanek.

e Podali smo bazo nerazcepnega T-modula s krajiséem 2. Opisali smo delovanje matrike
sosednosti A na tej bazi.

Za grafe I', ki imajo lastnost (a.2) in D < b:

e Opisali smo strukturo nerazcepnih T-modulov s krajis¢em 2.

e Pokazali smo, da do izomorfizma natanc¢no obstaja en sam nerazcepen T-modul s
krajiscem 2, ter da ta modul ni tanek.

e Podali smo bazo nerazcepnega T-modula s krajiséem 2. Opisali smo delovanje matrike
sosednosti A na tej bazi.

Math. Subj. Class (2010): 05C50, 05E30

Kljuéne besede: dvodelni razdaljno-regularni grafi, Terwilligerjeva algebra, Subcon-

stituent algebra, ()-polinomski razdaljno-regularni grafi, ekvitabilna particija
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Chapter 1

Introduction

Throughout this introduction let I' denote a bipartite distance-regular graph with diameter
D > 4 and valency k > 3. Let X denote the vertex set of I'. For x € X and 0 <i < D, let
[;(x) denote the set of vertices in X that are distance i from vertex z, and let T' = T'(x)
denote the Terwilliger algebra of I" with respect to x. To each irreducible T-module we
associate two parameters - the endpoint and the diameter. It turns out that the dimension of
such a module is at least one more than its diameter. Whenever this bound is met, we say
that the module is thin.

It is known that there exists a unique irreducible T-module with endpoint 0, it is thin, and
it has diameter D [9, Section 5]. It is also known that up to isomorphism I' has exactly one
irreducible T-module with endpoint 1, it is thin, and it has diameter D — 2 [9, Theorem 7.6,
Corollary 7.7]. Moreover, Curtin showed that in general, there may be many nonisomorphic
irreducible T-modules of endpoint 2, they need not be thin, and their diameter is one of D — 2,
D —3 and D — 4 [10, Theorem 10.1], [11].

To explain our motivation, let’s define parameters A; (1 <i < D — 1) in terms of the
intersection numbers by A; = (b;_; — 1)(cit1 — 1) — (co — 1)ph;, and just for a moment consider
a graph ' with one of the following properties:

(a.1) T has, up to isomorphism, a unique irreducible T-module of endpoint 2 and this module
is thin.

(a.2) T has, up to isomorphism, exactly two irreducible T-modules of endpoint 2, and these
modules are thin.

(a.3) T has, up to isomorphism, a unique irreducible T-module W of endpoint 2, this module is
not thin, dim(E;W) < 2 for every i (2 < i < D), dim(E;W) = 1 and dim(E}, ;W) < 1.

(a.d) A; =0 foreveryi (1 <i<D-—1).
(a.5) A;=0foreveryi (1 <i<D—2).

(a.6) Foralli (1 <i< D—2)and forall x,y,z € X with 0(z,y) =2, d(x, 2) =1, Iy, z) =1,
the number |['y(z) N Ty (y) NT;_1(2)| is independent of x,y, z.

(a.7) T has the property that for 2 <i < D — 1, there exist complex scalars «;, ; such that
for all z,y,z € X with d(z,y) = 2, 0(z,2) =1, Oy, 2) = i, we have a; + ;|1 (x) N
Li(y) NTica(2)| = [Tica(z) N Tica(y) N (2)]-

(a.8) T has the property that for 2 <i < D — 2, there exist complex scalars «;, ; such that
for all z,y,z € X with d(z,y) = 2, 0(z,2) =1, Oy, 2) = i, we have a; + ;|1 (x) N
Fl(y) N FZ_1(2)| = ‘Fl_l(iﬁ) N Fz—l(y) N Fl(Z)‘

(a.9) Ag > 0 and (a.8) holds.



2 CHAPTER 1. INTRODUCTION
(a.10) Ay =0, A; # 0 for at least one i (3 <i < D — 1), and (a.7) holds.

In [8, 12] Curtin showed that properties (a.1), (a.5) and (a.6) are equivalent. Moreover,
(a.4) holds if and only if (a.1) and (a.5) hold and the unique irreducible 7-module of endpoint
2 has diameter D — 4. In [27, Theorem 9.6] MacLean and Miklavi¢ showed that properties
(a.2) and (a.9) are equivalent.

Several chapters of the present PhD thesis is a part of an effort to show that the properties
(a.3) and (a.10) are equivalent. We are interested in bipartite distance-regular graphs with
property (a.7) because they arise as a natural family in the study of the Terwilliger algebra of
a bipartite distance-regular graph, as we will see by the following very important example.

Suppose that I' is Q-polynomial. Then I' has, up to isomorphism, at most one irreducible
T-module of endpoint 2 and diameter D — 2, at most one irreducible T-module of endpoint 2
and diameter D — 4 (they are both thin), and no other irreducible T-modules of endpoint 2
[5]. Furthermore, Terwilliger’s balanced set condition ([18, Theorem 3.3]) implies the property
(a.7) ([31, Theorem 9.1]).

In the first part of the thesis we assume I' is a bipartite (Q-polynomial distance-regular
graph with diameter D > 4, valency £ > 3 and intersection numbers b;, ¢;. Caughman
proved in [0] that if D > 12 then I is either the D-dimensional hypercube, or the antipodal
quotient of the 2D-dimensional hypercube, or the intersection numbers of I' satisfy ¢; =
(¢ —1)/(g—1) (0 < i < D) for some integer g at least 2. Note that if co < 2, then the last of
the above possibilities cannot occur. The aim of the first part of this PhD thesis is to further
investigate these graphs. We will show that if co < 2 then I' is either the D-dimensional
hypercube, or the antipodal quotient of the 2D-dimensional hypercube, or D = 5.

In the second part of the thesis we will not assume the Q-polynomial property for I', but
rather the property (a.7) above. It is our goal to describe the irreducible T-modules with
endpoint 2 for this case. Once we assume (a.7), to get further results, it is much easier to
split (a.7) in two cases, with respect to parameter Ay: the case when Ay > 0 and the case
when Ay =0 (by [8, Theorem 12], A, is non-negative). Since Ay > 0 yields (a.2) [27], here
we assume that Ay = 0. By [28, Theorem 4.4], this implies D < 5 or ¢» € {1,2}. In light of
this result, it is natural to treat cases co = 1, ¢ = 2 and D < 5 separately. If (a.10) holds
and ¢y = 1, then it was proven in [28] that (a.3) holds (in that case the unique irreducible
T-module of endpoint 2 is not thin and the diameter of this module is D — 4 or D — 2). In
this paper we assume ¢ = 2. We assume that A; # 0 for at least one ¢ (3 < i < D — 2), since
graphs with property (a.4) are already well-understood ([12]). We describe the irreducible
T-modules with endpoint 2 for this case.

Chapters 2 and 3 contain some definitions and basic concepts from Bose-Mesner algebra
and distance-regular graph theory.

Our main result of Chapter 4 is the following theorem.

Theorem 1.1 Let I' denote a bipartite QQ-polynomial distance-reqular graph with diameter
D > 4, valency k > 3, and intersection number co < 2. Then one of the following holds:

i) I' is the D-dimensional hypercube;

(i) y

(ii) I is the antipodal quotient of the 2D-dimensional hypercube;
(iii) I" is a graph with D =5 not listed above.

To prove the above theorem we use the results of Caughman [5] and, in case when c; = 2, a
certain equitable partition of the vertex set of I' which involves 4(D — 1) + 2/ cells for some
integer ¢ with 0 </ < D — 2.

Chapter 5 contain some definitions and basic concepts from theory of Terwilliger algebra.
Chapter 6 is about scalars A; which we will use till the end of the thesis.



Let
f=min{i e N|3<i<D-2and A, # 0},

¢ =max{i e N|3<i<D—1andA; #0}.

Results of Chapter 7 are as follows. We first show that Ay = 0 implies D < 5 or ¢3 € {1, 2}.
In light of this result, it is natural to treat cases co = 1 and ¢y = 2 separately. In this chapter
we assume c; = 1. Furthermore, we assume I' is not almost 2-homogeneous in the sense
of Curtin [12], since these graphs are already well-understood. We describe the irreducible
T-modules with endpoint 2 for this case. We show that up to isomorphism there exists exactly
one irreducible T-module W with endpoint 2. The dimension of W depends on the number
of scalars A; that are nonzero. Under our assumptions above, we give an orthogonal basis for
W as follows. Pick nonzero v € E3W and let A; (0 <14 < D) be the distance matrices of I'.
If either / < D — 2, or both / = D — 1 and bp_; = 1, then the following is a basis for W:

If ¢ =D —1and bp_1 # 1, then the following is a basis for W

Furthermore, we give the action of the adjacency matrix on this basis in each case. We
note that the Foster graph [3, Theorem 7.5.1] is an example of a bipartite distance-regular
graph that is not @)-polynomial, but which meets our assumptions above. We know of no
other examples. However, we remark that our basis for W is similar to Hobart and Ito’s
“ladder basis” for nonthin irreducible T-modules of endpoint 1 for distance-regular graphs with
classical parameters [24].

Results of Chapter 8 are as follows. We show that up to isomorphism there exists exactly
one irreducible T-module W with endpoint 2. The diameter of W is D — 4 or D — 3 (depends
on the number of scalars A; that are nonzero). Under our assumptions above, we give a basis
for W as follows. Pick nonzero v € E5W and let A; (0 < ¢ < D) be the distance matrices of
I'. Then the following is a basis for W

Furthermore, we give the action of the adjacency matrix on this basis. We note that the
Double coset graph of the binary Golay code [3, Section 11.3E] is an example of a bipartite
distance-regular graph that is not Q)-polynomial, but which meets our assumptions above.
We know of no other examples. Our irreducible T-module W with endpoint 2 is not thin
and appears with multiplicity ko — k£ in the standard module. Note that this module is only
a little larger than thin modules in the sense that its intersection with ith subconstituent
has dimension 2 for f <4 < /¢ and dimension 1 for 1 <:< f—-land/+1<:<D —1,if
(=D—land/+1<:<D-2/if ¢ <D-2.

Main results of Chapter 9 are Theorems 9.10 and 9.24. Let W denote irreducible T-module
with endpoint 2 and pick v € ESW. In Theorem 9.10 we prove that a spanning set for W is

W = span{v, B Av, ..., EL, Ap_ov, E5 Agv, B Asv, ..., ET,_sApv}

under assumption that (a.3) holds. In Theorem 9.24 we prove that (a.3) is equivalent with
(a.10).



Chapter 2

Background: Adjacency and
Bose-Mesner algebras

Let I' = (X, R) denote a simple connected graph with d 4+ 1 distinct eigenvalues, diameter D,
adjacency matrix A, distance-i matrices {4;}2, and let J denote all-1 matrix. The vector
space A = A(T") = {p(A) |p € Rz]} is of dimension d + 1 which is also an algebra for the
ordinary product of matrices. The linear span of the set {Ag, A1, ..., Ap} forms an algebra
D = D(I') with the elementwise Hadamard (Schur, componentwise, coefficientwise, entrywise)
product of matrices known as the distance-o algebra. In general case algebras A and D are
different from the Bose-Mesner algebra M = M(I"), which is defined as algebra generated by
{Ao, Ay, ..., Ap} with respect to the ordinary matrix operation. In this chapter we overview
some basic definition and results. For example, we overview how to compute orthogonal basis
of primitive idempotents {Fy, F1, ..., 4} of A (orthogonal with respect to Hermitian form

(R,S) = |X|'trace(RS ).

2.1 Basic definitions

In this section we review some definitions and basic results concerning linear algebra and
algebraic graph theory.

Let IF denote the complex number or real number field and let X denote a nonempty finite
set. Let Maty(F) denote the F-algebra consisting of all matrices whose rows and columns
are indexed by X and whose entries are in F. Let ¥V = F¥ denote the vector space over F
consisting of column vectors whose coordinates are indexed by X and whose entries are in F.
We observe Maty (F) acts on V by left multiplication. We call V the standard module . We
endow V with the Hermitian inner product (, ) that satisfies (u,v) = u'v for u,v € V, where
t denotes transpose and ~ denotes complex conjugation. Recall that

(u, Bv) = <§Tu, v)

for u,v € V and B € Matx(F). For y € X let § denote the element of V with a 1 in the y
coordinate and 0 in all other coordinates. We observe {7 | y € X} is an orthonormal basis for
V.

A graph T is a pair (X, R), where X = {u,v,w, ...} is a nonempty set and R = {uv,wz, ...}
is a collection of two element subsets of X. The elements of X are called the vertices of T',
and the elements of R are called the edges of I'. When zy € R, we say that vertices x and y
are adjacent , or that x and y are neighbors . Adjacency between vertices x and y will be
denoted by x ~ y. A subset C' C X is called a clique if every distinct z,y € C are neighbors.
A graph is finite if both its vertex set and edge set are finite. An edge with identical ends is
called a loop , and a graph is simple if it has no loops and no two of its edges join the same
pair of vertices.



2.1. BASIC DEFINITIONS )

Let I' = (X, R) be a graph. For any two vertices =,y € X, a walk of length h from x to
y is a sequence [xg, 1, Tg...,z3) (z; € X, 0 < i < h) such that ¢ = z, 2, = y, and x; is
adjacent to x;1 for all i (0 < i < h—1). We say that I" is connected if for any z,y € X,
there is a walk from z to y. From now on, assume that I" is finite, simple and connected.

For any x,y € X, the distance between x and y, denoted J(x,y), is the length of the
shortest walk from z to y. The diameter D = D(I") is defined to be

D = max{0(u,v) |u,v € X}. (2.1)

A walk in I' is said to be closed if it starts and ends at the same vertex.

Let I' = (X, R) be a graph with diameter D. For a vertex x € X and any non-negative
integer h not exceeding D, let I',(x) denote the subset of vertices in X that are at distance h
from z. Put I'_1(z) = 'pyy(z) := 0. For any two vertices x and y in X at distance h, let

Cn(,y) = Tha(x) NT1(y),
Ap(z,y) :=Tp(z) NT(y) and
Bh(z,y) :=Thpi(x) N Ty(y).

We say I is regular with valency k if each vertex in I' has exactly k neighbours. A graph I'
is called distance-regular if there are integers b;, ¢; (0 < i < D) which satisfy ¢; = |C;(x, y)|
and b; = | B;(x,y)| for any two vertices x and y in X at distance i. Clearly such a graph is
regular of valency k := by. From this definition it is routine to show that I' is distance-regular
if and only if for all triples h,i,7 (0 < h,j,i < D), and for all x,y € X with d(z,y) = h, the
number |I';(z) N T';(y)| is independent of choice of = and y.

For 0 <1i < D let A; denote the matrix in Maty (F) with (x, y)-entry

1 if O(z,y) =1,

W ={ ¢ o) S0 @yex) 22

For notational convenience, we define A; to be the zero matrix for all integers i < 0 or
1 > D. We call A; the distance-i matrix of I'. We abbreviate A := A; and call this the
adjacency matriz of I'. We observe Ay = I; Zio Ay = J; A = A; (0 <i < D) and
Al = A; (0 <i < D), where I (resp. J) denotes the identity matrix (resp. all 1’s matrix) in
MatX(IF).

In order to present and relate all the results, we recall some basic results from algebraic
graph theory (for more details, see e.g. [19]):

(a.1) If T is a simple regular graph then k is an eigenvalue of I' and for any eigenvalue \ of T,
|A| < k. Moreover, if I" is connected then the multiplicity of k is 1.

(a.2) The number of walks of length £ > 0 between vertices u and v is (u, v)-entry of A°.

(a.3) {I,A, A%, ..., AP} is linearly independent set.

We recall some basic definitions from linear algebra. Subspaces X, Y of a space W are
said to be complementary whenever W = X +) and X NY = {0}, in which case W is said to
be the direct sum of X and ), and this is denoted by writing W = X + ) (direct sum) or by
W =X @ Y. This is equivalent to saying that for each v € W there are unique vectors z € X
and y € ) such that v = x +y. Vector x is called the projection of v onto X along ). Vector
y is called the projection of v onto ) along X. Operator P defined by Pv = x is unique linear
operator with property Pv =z (v=x+y, x € X and y € ) and is called the projector
onto X along ). Vector m is called the orthogonal projection of v onto M if and only if
v = m +n where M C W is subspace of W, m € M and n € M*. The projector Py onto
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M along M is called the orthogonal projector onto M. Let Z denote a vector space and
let L(Z,V) denote the space of all linear maps from the vector space Z to the vector space
W. The adjoint of T € L(Z,W) is the function T* : W — Z such that (Tv,w) = (v, T*w)
for every v € Z and every w € W. An operator T € L(Z2) is called self-adjoint if T = T*.
An operator on an inner product space is called normal if it commutes with its adjoint.

A triple (V, +,-) is an algebra if and only if V is a vector space over F, (V,+,-) is a ring
and a(uwv) = (au)v = u(aw) for every u,v € V and o € F.

We recall three very important and well known claims (for more details, see e.g. [1]):

(b.1) f F=C and T € L(V) then the following (i)—(iii) are equivalent: (i) 7" is normal; (ii) V
has an orthonormal basis consisting of eigenvectors of T'; (iii) 7" has a diagonal matrix
with respect to some orthonormal basis of V.

(b.2) If F =R and T € L(V) then the following (i)—(iii) are equivalent: (i) T is self-adjoint;
(ii) ¥V has an orthonormal basis consisting of eigenvectors of T’ (iii) 7" has a diagonal
matrix with respect to some orthonormal basis of V.

As immediate consequence of (b.1) and (b.2) we have:
(c.1) F¥ has an orthonormal basis consisting of eigenvectors of A.

We recall the commutative association schemes. Let X be a finite set and Matx (F) the
set of matrices over F with rows and columns indexed by X. Let R = {Ry, Ry, ..., R,} be a
set of nonempty subsets of X x X. For each i, let A; € Maty(F) be the adjacency matrix of
the graph (X, R;) (directed, in general). The pair (X, R) is an association scheme ' with n
classes if

(AS1) Ay = I, the identity matrix;

(AS2) > o Ai = J;

(AS3) A € {Ap, Ay, ..., Ay} for 0 < i < n;

(AS4) A;A; is a linear combination of Ay, Ay, ..., 4, for 0 <4i,j <n.

We say that (X,R) is commutative if algebra generated by the set {Ao, A1,...,A,} is
commutative, and that (X, R) is symmetric if A; are symmetric matrices. A symmetric
association scheme is commutative. We recommend the survey articles [32, 15, 5] for more
information.

We recall a coherent algebra on X. Let X be a finite set. A subalgebra F of Matx(C) is
self-adjoint if F' € F implies F* € F (F* is the adjoint of F'). Coherent algebra on X is a
self-adjoint subalgebra of (Matx (C), +, -) which is also a subalgebra of (Matx(C),+,0). Thus
a subalgebra of Matx (C) is coherent if and only if it is closed under the adjoint map and
elementwise Hadamard multiplication and contains the all 1 matrix J. For more beckground
results see, for example, [23].

2.2 Primitive idempotents

In this section we study primitive idempotent of arbitrary simple connected graph I'; which
doesn’t need to be regular.

IThe notion coincides with that of homogeneous coherent configuration
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Let I' = (X, R) denote a simple graph with adjacency matrix A and with d 4 1 distinct
eigenvalues \g > A\; > ... > \;. Since A is symmetric |X| x | X| matrix, A has |X| distinct
eigenvectors U = {uy, us, ..., u x|} which form orthonormal basis for FX (see (c.1)). Let V;
denote the eigenspace V; = ker(A — \; 1) and let dim(V;) = m;, for 0 <i < d. For every vector
u; € U there exists exactly one eigenspace V; such that u; € V;, and since V; N'V; = {0} for
1 # j, we can divide set U to sets Uy, Uy, ..., U, such that

U; is a basis for Vj, U=UUU, U..UlUy and UNi; = 0.

Note that
FX=VioeWhe..0V,

and
mo +my + ... + mg = | X|. (2.3)

Definition 2.1 (primitive idempotents) With the notation from above, for each eigen-
value \; (0 <7 < d) let U; be the matrix whose columns form an orthonormal basis of its
eigenspace V;. The primitive idempotents of A are matrices

E=UU' (0<i<d).

Lemma 2.2 With reference to Definition 2.1,

for every polynomial p € F[t].

ProoF. Pick i (0 < i < d) and note that AU; = \,AU;. So, if P = [Uy|Us|...|U4) denote

matrix which columns form orthonormal basis of eigenvectors of A we have

I 0 ... 0

B - 0 Ml 0

A= PGP, where G=| . ) )
0 0 ... X

and A\;I € Mat,,, sm, (F) (0 <i < d). Now it is not hard to see that

p(Xo)] 0 0 Uy
0 pA)I .. 0 U’

p(A) = Pp(G)P~" = [Ug|th ..U | | : - =
0 0 .. pOI| |UT

= p(Ao)UoUy + p(M)ULUY + ... + p(A)UaU;
= p(Ao)Eo + p(A) Er + ... + p(Aa) Ea.

Proposition 2.3 With reference to Definition 2.1,

trace(E;) =m; (0 <i<d). (2.4)
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PROOF. It is not hard to see that trace(BC) = trace(C'B) (for every matrices B and C' of

appropriate form), and thus
trace(E;) = trace(U;U,") = trace(U,' U;) = trace([),
where I € Mat,,, xm, (F) is identity matrix. The result follows.
Proposition 2.4 With reference to Definition 2.1,
El =B  (0<i<d),

I' regular and connected = Ey=|X|"'J (J = all 1’s matriz),
E.E; = 6,E, (0<i,j<D),
AE; = \E; (0 <i<d),
Eo+ B+ ..+ Ey =1,

d
D> NE; = A,
1=0

(2.11)

PROOF. (2.5) folows from defintion of E;. Multiplicity of Ag is 1 and if ' is regular
j =(1,1,...,1)" is eigenvector corresponding to Ay (see (a.1)). From this it follows that

1 11 1
. T
J J 1 1 |11 1
Ey=UU =22 _ = _ : 1] = — '
RN ) : ) | X :
11 1
vy
Uy I ifi=j
—£ _ : Trr. Js
Product |——| [U1|Us]...|Uq) = I yield U; U; —{ 0 otherwise. Thus,
Ul
UUl ifi=j
B =TT T — ] Y
E:E; = UUU;U, { 0 gy = Oub

and (2.7) follows. To prove (2.8) note that
AE; = AUU = \UU = \E;.
(2.9) and (2.10) follow from Lemma 2.2. (2.11) follows from (2.7) and (2.10).

Proposition 2.5 With reference to Definition 2.1,

d
1
Ei=—[TA— D), 0<i<d
SlU-an, 0<i<
J#i

where m; = []¢ Gy (i = Aj).

j=0
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PROOF. Pick i (0 <i < d), and consider polynomial g; € Fy[t] defined as follows

a®) = [t = ).

[=}

Immediate from definition of g; we have

On the other hand, since

1, ift=M\
9:(t) = { 0, ift€ {Aoy At A}/ (N}
Lemma 2.2 yield
Gi(A) = gi(Xo)Eo + gi(M)Er + ... + 9i(Aa) Eq = E;.
The result follows. 1

Corollary 2.6 (Hoffman polynomial) ([25, Theorem 1]) Let I' = (X, R) denote a simple
graph. There exists a polynomial h € Fy[t] such that J = h(A) if and only if T is reqular and
connected.

PROOF. One direction follows immediate from (2.6) and Proposition 2.5. The other direction
is trivial. 1

Theorem 2.7 Primitive idempotents of I' represents the orthogonal projectors onto V; =
ker(A — N\ 1) (along im(A — N\;1)).
PROOF. Recall that for any B € Mat,,,(F) we have
dimim(B) + dim ker(B) = n,
im(B)* = ker(B), ker(B)* =im(B ).
For any subspace X of a inner-product space V, we have that ¥V = X @ X*. This yield
F* = im(E;) @ ker(E;).

It is only left to show that im(E;) = ker(A— ;1) and that ker(£;) = im(A—\;I). To establish
that im(F;) = ker(A — \1), use im(AB) C im(A) and U;'U; = I to find

im(E;) = im(U;U;") Cim(U;) = im(U;U;" U;) = im(E;U;) € im(E).

Thus
im(E;) = im(U;) = ker(A — \;1).

To show ker(E;) = im(A — A1), use A = Z?Zl A\;E; with the already established properties
of the E;’s to conclude
d d

j=1 j=1
But we already know that ker(A—\;I) = im(E;), so dim im(A—X\;I) = n—dim ker(A—\;,1) =
n — dim im(E;) = dim ker(F;), and therefore,

im(A — \I) = ker(E;).

Therefore, E; is orthogonal projector onto V; (along im(A — \;1)). 1
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Cn

/4 Ei’l)

2

Figure 2.1. E; projects on the \;-eigenspace V;.

Corollary 2.8 With reference to Definition 2.1, let V = FX be the set of all | X|-dimensional
column vectors (coordinates are indexed by X ). Then

and

V=EV&EV®.6EV

(orthogonal direct sum of mazimal A-eigenspaces).

PROOF. Routine. ]

2.3 Adjacency and Bose-Mesner algebras

In this section we continue to work with an arbitrary simple connected graph I" (of diameter
D), which don’t need to be regular. By our definition Bose-Mesner and adjacency algebras
are in general are two different spaces. Also, Bose-Mesner algebra defined on our way does
not have any connection with association schemes, so we don’t need to assume that there
exists an association scheme.

Definition 2.9 Let A denote adjacency matrix of a simple connected graph I' = (X, R). The
adjacency algebra of a graph I' is subalgebra A = A(I") = ((A),+,-) = {p(A4) : p € R[z]} of
(Matx (F), +, -) generated by A under the usual matrix operations. Subalgebra M = M(I') =
(I, A,...; Ap),+,) 2 {po(I) + p1(A) + ... + pp(Ap) | po, 1, .-, pp € F[t]} of (Matx(F),+,-)
generated by the set of distance-i matrices { Ay, Ay, ..., Ap} under the usual matrix operations,
we call the Bose-Mesner algebra of I'. Note that A C M.

By our definition, Bose-Mesner algebra is the name of adjacency algebra form theory of
coherent configuration. A configuration (X, {f;}:cs) on X over a set I consists of a nonempty
set X together with a family {f;};c; of nonempty binary relations on X. A configuration in
this sense can be identified with its family {T';};c; of graphs I'; = (X, f;), or with the family
{A;}icr of matrices of the f;, which are the adjacency matrices of the configuration (for more
background information see [23, 22]).

Proposition 2.10 With reference to Definition 2.1, each power of A can be expressed as a
linear combination of the idempotents E; (0 <i < d), i.e.

d
A" =3"NE  (heN).
=0
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d

PROOF. By Lemma 2.2, p(A) = > p(\;)E; for every polynomial p € F[t]. If for polynomial p
i=0

we pick p € {1,¢,t2,...,t", ...}, the result follows. 1

Corollary 2.11 If a simple graph I' has d + 1 distinct eigenvalues, then {Ey, E1, ..., Eq4} is
an orthogonal basis of the adjacency algebra A = ((A), +,-).

PROOF. Since (2.4) hold, E; are different from zero matrices. By Proposition 2.10 we have
that A = span{ Ey, E1, ..., Eg}. (2.7) yield that the set {Ey, E1, ..., E4} is linearly independent.
The result follows. 1

Proposition 2.12 If a simple graph T has d + 1 distinct eigenvalues, then {I, A, A2, ..., A4}
is a basis of the adjacency algebra A = ((A),+,-).

PROOF. We want to show that the set {I, A, ..., A%} is linearly independent. We show that
the system
aol + A+ ... +agAt=0

has only one solution oy = a; = ... = ay = 0. By Proposition 2.10 we have

I = Ey+E+..+Ey,
A = )\0E0 + )\1E1 + ...+ )\dEda

At = ME,+ ME, + ...+ \E,,

that is

Oé()] = ao(EO+E1+...+Ed),
OélA = 061(>\0E0 + )\1E1 + ...+ )\dEd),

adAd = ad()\gEo + )\(liEl + ...+ )\gEd),

which yield
GoEo+ biE1+ ...+ BaEg =0

where
Bi = g+ ar Ai + ... + aghd, 0<i<d.

Since the set {Ey, E1, ..., E4} is linearly independent we can conclude that Sy = 8, = ... =
B4 = 0. If we consider connection between numbers «; and 3; we have

(1 X A2 . M [ao]  [Bo] O
1 )\1 )\% )\ii (03] 61 0
1 )\2 )\% )\g Qo | = /82 - 10

1 )\d )‘?l )\g (8%} 6d 0

—B
Since B is actually a Vandermonde matrix (see, for example, [33, page 185]), above system
has unique solution, and g = o = ... = g = 0. Thus {I, A, ..., A%} is linearly independent

set.
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In the end, for example, note that

I 1 1 .. 1] [E
A )\0 )\1 )\d El
A2l (X2 a2 22| |

Ad AL M By

The result follows. ]

Corollary 2.13 In a simple connected graph I' with d + 1 distinct eigenvalues and diameter
D, the diameter is always less than the number of distinct eigenvalues: D < d.

PROOF. By (a.3), {I, A, A%, ..., AP} is a linearly independent set. Proposition 2.12 yield that
{I,A, A% ..., A%} is maximal linearly independent set. The result follows. 1

Corollary 2.14 Let I' = (X, R) denote a simple graph with d + 1 distinct eigenvalues. The
number of closed walks from x to x of length £ > 0 is the same for any v € X if and only if
the diagonal entries in E; are all equal, for any i (1 <i <d).

PRrROOF. Recall that the number of walks of length £ > 0 in T', joining u to v is the (u, v)-entry
of the matrix A (see (a.2)). The result now follows immediate from Corollary 2.11 and
Proposition 2.12. 1

If P5 is the path graph on three vertices, then diagonal entries of E; for P3 x P3; have at
most three different values, for any i (1 <1i <4) (see [12, Example 11.3]).

Corollary 2.15 ([!8, Characterizations D and E]) Let I' = (X, R) denote a simple graph
with d + 1 distinct eigenvalues. For each non-negative integer £, the number of walks of length
¢ between two vertices u,v € X only depends on h = d(u,v) if and only if for every 0 < i <d
and for every pair of vertices (u,v) of I', the (u,v)-entry of E; depends only on the distance
between u and v.

PROOF. Similar to the proof of Corollary 2.14. 1

Remark 2.16 Graphs I which satisfy conditions from Corollary 2.14 are known as walk-
regular graphs. Graphs I' which satisfy conditions from Corollary 2.15 are known as distance-
regular graphs.

Lemma 2.17 With reference to Definition 2.9, let I denote a simple graph with d+ 1 distinct
eigenvalues. Then the following (i)—(iv) hold.

(i) If dim(M) =D +1 thend =D and M = A.
(ii) If dim(M) =d+ 1 then M = A.
(iii) If A; € A for alli (0 <i< D) then M = A.
(iv) If T is a reqular connected graph of diameter 2 then M = A.
PROOF. Routine. 1

Lemma 2.18 With reference to Definition 2.9, if A; € A for some i (0 <i < D) then |[;(x)]
does not depend on x € X.

PROOF. If A; = p(A) for some p € R[t] then A;5 = p(A\o)j. The result follows. 1

Research problem 2.19 Picki (0 < i < D). Find under which combinatorial conditions
of I' we have that A; € A= ((A),+,).
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2.4 Inner products on Matx(F) and F,[z]

For nonempty finite set X let Matx (IF) denote the F-algebra consisting of the matrices  whose
rows and columns are indexed by X and whose entries are in F. For C' € Matx (F) let C, C'T,

—T . .
C' and trace(C') denote the complex conjugate, the transpose, the conjugate transpose and
the trace of C respectively.

Lemma 2.20 Let X be a finite nonempty set. For B,C € Matx (F) put

1
(B,C) = ‘X—ltrace(BC’ ) (2.12)

and

IC]* = {C.,C).
Then for all B, B',C € Matx (F) and a € F the following (i)—(v) hold.

(i) (aB,C) = a(B,C) (homogeniry in first slot).

(i) (B,C) =(C,B) (conjugate symmetry).
(iii) (B+ B',C) = (B,C) + (B',C) (additivity in first slot).
(iv) ||B||* is nonegative real number (positivity).

(v) ||B||* = 0 if and only if B =0 (definiteness).
In other words (*x,) is an inner product on Mat x (IF).

PROOF. Routine. 1

Inner product on Maty (F) from Lemma 2.20 can be also defined as follows. For any

R,S S Matx(F)
) wo (S o (RoS). .
= 73] 2 05 o = 737 22 b = 157 3 2.13)

Lemma 2.21 With reference to Lemma 2.20,
(AB,C) = (B,A' C) = (A,CB").
PROOF. Routine using trace(AB) = trace(BA) for any A, B € Matx (). 1

Consider the vector space Fy[t] = {ao+ait + ... +agt? | ag, ay, ..., aq € F} of all polynomials
of degree at most d. The following questions immediately pop up:

(1.) How to define multiplication on F,[t] so that (F4[t], +,-) is a ring?

(2.) For a such operation of multiplication from (1.) is it possible to find a map 7" so that T
be an isomorphism between rings (Fg4[t], +,) and (A, +,+)? Is such an isomorphism T
important at all?

(3.) How to define inner product on Fy[t] so that there exists some map 7' : F,[t] — A
which is an isometry of a vector spaces, i.e. so that ||Tp|| = ||p|| for any p € Fy[t]?
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Answer to the first question from above is very well known. Let z(t) := [[y(t — A;). In a
vector space [Fy[t] we can define polynomial multiplication modulo z(t) and get that (Fy[t], +, )
is an algebra (this algebra is isomorphic with (F[t]/(2), +, -) where (2) = F[t]-z = {pz | p € F[t]}
is an ideal in F[t] (note that (z) is a set of all polynomials of degree > d + 1)). Answer to the
first part of second question we don’t know, and in our case we don’t need it. What is very
important for our case is answer to third question. We give this answer in Proposition 2.23.

Example 2.22 For a given graph I', with d + 1 different eigenvalues A\g > A\; > ... > A4, and
the notation from above, let h = h(t) = %' Hfil(t — \;) denote Hoffman polynomial where
7o = [T, (Ao — A\i). We want to calculate th(t) in space F4(t). Since h(t — \g) = %z we
have that h(t — X\g) = 0 in F,[t], and with that ht = Agh.

Proposition 2.23 ([1, Section 2|, [19, Section 3]) Let I' = (X,R) denote a simple graph
with adjacency matrix A and with d + 1 distinct eigenvalues \g > A\ > ... > X\g. Let
z=2z(t) = Hfzo(t — X)) and let Fglt] = {ag + a1t + ... + agta; € F, 0 < i < d} be a set of all
polynomials of degree at most d with coefficients from F. For every p,q € Fy[t] we define

1 -7
(p,q) = mtrace(p(A)Q(A) ),
and
Ipll* = (p,p).

Then the following (i), (ii) hold.
(i) (-,-) is a inner product in F[z].
(ii) The map T : F4[t] — A defined with
T(ag+ art + ... + agz?) = agl + a1 A + ... + agA?
is an isomorphism of vector spaces Fy[t] and A. Moreover, T is an isometry i.e.

ITpll = llpll - Vp e Fqlt].

PROOF. (i) Since p(A), q(A) € Matx(FF) the result follows immediate from Lemma 2.20.
(ii) It is easy to see that T is isomorphism of vector spaces. On the other hand, we have

T

HMW=@M@=@MMM»:%wWMMWE)=MP

The result follows. 1

Proposition 2.24 With reference to Proposition 2.23, let spec(I') = {/\SZ(AO), /\T(’\l)7 o X;O‘d)}.
Then for any p,q € F[t]

1
(p.q) = x| ;mip()\i)Q<)\i> (2.14)
where m; = m(\;) (0 <14 <d).

PROOF. With the notation from the proof of Lemma 2.2, for any p € Fy[t] we have A = PGP
and p(A) = Pp(G)P*. Thus

(.0) = gtrace(PRG)(GIPT) = rgtrace(p(C)a(G)) = 77 - m(AIpN)ah)
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Lemma 2.25 With reference to Proposition 2.23, let {qo, q1, ..., qa} denote the set of orthog-
onal polynomials from Fy[t] such that dgr(¢;) =1 (0 < i < d). Then the following (i)—(iv)
hold.

(i) Every of qn (0 < h < d) is orthogonal on arbitrary polynomial of lower degree.
(i) (tgi ¢5) = (@i ;)
(iii) If |i — j| > 1 then (tg;, q;) = (qi,tqj) = 0.

(iv) There exists numbers al? b\ ) cF (0 <i <d) such that

KA V) Y 7/
tqo = CL(() )CIO + ng)Qh

= bz 19i—1 + CL( )Qz + Cgi)lqwrl (1 <i<d-— 1);

tqq = b(Q)ﬂd 1+ GEJQ)Qd

PROOF. (i) By definition {qo, g1, ..., g4} is orthogonal set such that dgr(¢;) =7 (0 < i < d).
So for any polynomial p of degree i (0 < i < d) we have p € span{qq, q1, -.., i }, and with that
if h > i then (p,qn) = 0.

(ii) Immediate from (2.14).

(iii) Immediate from (i) and (ii).

(iv) Pick h (1 < h < d—1). By (iii), we have

d d
tqn, 4i) {qn: tai) —_ {an, tan—1) (qn, tan) (qn: tqn1)
qi = qi = h—1+ =5 Gh T 5 Ght 1,
ZO llaill” Z lail? lgn-1] lgnl? [l gn+1]
— N—— ———
b;lqz 1 aELq) C;ﬂ 1
and second equality follows. Similarly for the first and the third one. 1

Lemma 2.26 ([!, Proposition 2.6], [19, Section 2|, [20]) With reference to Proposition 2.23,
let {po, p1,-.-,pa} be a set of orthogonal polynomials in Fy[t] such that dgr(p;) =i, 0 <i < d.
Then the following (1)—(iii) are all equivalent.

1) [Ipill* = pi(ho) (0 <@ < d).

.. X
(i) po+p1+ ... +pa= |7T—| H(t — \i), where Ty = Hz:ﬂ)\o — ).
=1

=1, a0+by =X, a; +b;+ci=X (1 <i<d—1) and ag+ cqg = N, where a;,b;, ¢;
(0 <1 < d) are numbers such that

tpo = aopo + €11,

tpi = bisipi1 + aipi + cipapi (1< <d—1),

tpa = ba-1pa—1 + aqpa-

We note that %' H?:o(t — \i) is the Hoffman polynomail h = h(t) from Corollary 2.6, which
in regular case h(A) = J hold.

Proor. Let h = h(t) = %'H?:l(t — \;) denote Hoffman polynomial, and note that
h()\o) = ‘Xl, h(t) =0forte {)\1, )\2, ceey )\d}
We will show that (i) = (ii) = (iii) = (i).
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(i)=-(ii). Fourier expansion of h is

h7p0> <h7p1> <h7pd>

{
h = Do + pL+ ...+ Pd
[p1[[? [pall?

ol

(2.15)

On the other hand
1 & ) .
(h,p;) = X > mib(A)pi(A) = pi(Xo) = [Ipsll (O<j<a). (2.16)
=0

By (2.15) and (2.16), the result follows.

(ii)=>(iii). Using the fact that ||po||* = po(Xo) and dgr(py) = 0, it is not hard to see that
po = 1. By Lemma 2.25(iv) there exist numbers a;, b;, ¢; (0 < ¢ < d) such that Lemma
2.25(iv) hold, and with that

d d—1
th = Z tpi = (ao + bo)po + Z(ai +b; + ¢)pi + (ca + aq)pa-
i=0 i=0

On the other hand zh = \gh = Z?:o Aop;. The result follows.
(iti)=(i). Since 32 ap; = 320 o(ai + b; + ¢)pi = 320, Aops we have

d

(= X0) > pi=0=(z—X)h

i=0
in Fy[z]. This yield Z?:o pi = h. Now, for any j (0 < j < d) we have

Ipill* = <pj,§0 +p1 4 ... +pa) = p;i(Ao)-

~
=h

The result follows. 1
Note that, if I is regular then Lemma 2.26(iii) yield a; + b; + ¢; = k.

Definition 2.27 (predistance polynomials) Orthogonal set of polynomials {po, p1, ..., Pa}
(dgr(p;) =i, 0 < i < d) in Fy[t] which satisfies conditions (i)—(iii) of Lemma 2.26 we call
predistance polynomials.

: h
2.5 Krein parameters g;;
In this section we study adjacency algebra A = A(I') under additional assumption that
the vector space span{ Ey, F, ..., E4} is closed under elementwise Hadamard multiplication
(B,C) — B o C of matrices.
Definition 2.28 Let I' = (X,R) denote a simple connected graph for which the vector space

span{ Ey, E1, ..., B4} is closed under elementwise Hadamard multiplication (B,C) = B o C of
matrices. Then there exist real numbers qu with

d
1 h .
EioE; = m hX;qz'th (0<id,j <d). (2.17)

The numbers qlhj are called the Krein parameters for I' with respect to the ordering Ey, Fy, ...,
E; of the primitive idempotents.
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By definition it is obvious that

d=d  0<ijh<d), 2.18)
Following J. J. SEIDEL [11], let us define Y 3(B) := >_, x(B)ay, the sum of all entries of a
matrix B € Matx (F). Then
> (Mo N) = trace(MN") (2.19)
and
JBJ =Y (B)J. (2.20)

Theorem 2.29 ([39, proof of Theorem 1.1]) With respect to Definition 2.28, let Y (B) denote
the sum of all entries of the matriz B. Then for alli,j,h € {0,1,...,d}

RS
g = m—hZ(EZ-oEj o Ey). (2.21)
Moreover
;>0 (2.22)
with equality if and only if
> (E)u(Ej)va(En)uwa = 0 for all u,v,w € X. (2.23)

zeX

PROOF. Since the E; are symmetric idempotent matrices

(Eey = Y (Eiux(Ei)uy-

ueX

Hence, if we denote the left hand side of (2.23) by gy we have

D (EioEj0Ey) =Y (E)ay(E))ay(En)uy

-y ((DEME»W) (Z<Ej>m<Ej>vy) (2<Eh>m<Eh>wy))
S (<Z<Ei>m(Ej>m<Eh)M>.(Z@i)uy@)vy@h)wy))_ S

Since we also have

d
| X Z(El o E; o Ey) = | X|trace((E; o E;)E},) = trace (Z quEgEh) = mhqu
=0

inequality (2.22) holds, and equality in (2.22) holds if and only if }7 .y ¢z, =0, which is
equivalent to (2.23). 1

The inequalities (2.22) are referred to as the Krein conditions. When qu = 0 for some
h,,j then equality (2.23) have also combinatorial meaning for structure of given graph (see
[7, Theorem 3] in case when I is a distance-regular graph).
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Remark 2.30 Assume that it is given some graph I' in which subalgebra span{ Ey, E1, ...,
Eq} of (Matx (F),+,0) is of dimension d + 1. Then from adjacency matrix we can compute
eigenvalues and we can use Proposition 2.5 to compute primitive idempotents E; (0 < i < d).
Multiplicities of eigenvalues we can get using Proposition 2.4. Now from (2.21) we can compute
Krein parameters qZ

Lemma 2.31 With reference to Definition 2.28, let m; denote the multiplicity of \; i.e.
m; :=m(N;) = dim(V;). If T is reqular then

a;=0n  (0<4,h<d), (2.24)
dy=0m  (0<ih<d), (2.25)
a5 = 0iym; (0<i,5 <d) (2.26)
ahmn = qm; = ¢.,m;, (2.27)
d d
dodjam =Y aidn  (0<ijmh<d) (2.28)
/=0 =0
d d
h=0 h=0

Proor. Pick j (0 < j < d). We have Ejo E; = \YHZZ:O qngh, and because of (2.6),

Eyo E; = ITIIEJ" This yield (2.24), and the proof for (2.25) is similar. Note that

> (E) = d0il X| (2.30)

since Y (E;)J = JEJ = |X|EgE;J = 00| X|J (see (2.20)). Now (2.26) follows from ¢j; =
> (E; o Ej) = trace(E; E;) = §;jm; (see (2.19)). Since

£=0 m=0
and
1 | A e
_ 14 _ m
Ei (@) Ej o Eh = m Z q]h(El o Eg) = p(—|2 Z Z qiquhEm

=0 (=0 m=0
we have (2.28). The proof for (2.29) is similar, but instead of E; o E; o E}, we consider
E, o (Ejo Ey) = Ejo (Ey, o Ey). (2.27) follows from (2.28) by taking m = 0. 1
2.5.1 The operator p(z)
By our knowledge notation of operator p(z) is duo to P. TERWILLIGER [19]. We use this

operator to prove that Z?:o gy = m; (0 < j < d) holds for walk-regular graphs.

Definition 2.32 Let I' = (X,R) denote a simple graph. For any =z € X and any B €
Maty (F) let B*@® denote the diagonal matrix in Matx (F) with (y, y)-entry

(B, == B,, VYycX.
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With another words

(; a 0 .. 0

z|a

B = - : %p(x) 0 b 0 = B/,
0 0 ... ¢

Lemma 2.33 With the reference to Definition 2.32, pick x € X. Then the following (i)—(iii)
hold.

(i) (Bo )@ = pr@Cr@  ¥B C € Maty(F).
(ii) Jr@) =1T.
(iii) If T is walk-regular then for all B,C € A= ((A),+,-) we have
(B*® )y = |X|1(B,C).

PRrROOF. (i), (ii) Routine.
(iii) Pick B,C € A. We have

(B Cr@)y = |X|_1trace(Bp($)(Cp(x))T) = | X | Hrace( B CP@) =
— T T - Val - Yol
= X[ (BA)y (CP)yy = [X|71 Y BuyCly = |X|TH(BC )

yeX yeX

and since number of closed walks of length ¢ > 0 does not depend on choice of vertex the
diagonal entries in BT are all equal and with that

(B,C) = | X[ trace(BC' ) = [X[1 Y (BC'),, = (BC ).

yeX
The result follows. 1
Corollary 2.34 IfT' is walk-reqular then
(Biaw = 151 AP B} = X2 (0 h <)
and
(o B, BY) = my|X| 7117, 1) (0<j.h < d).
PRrROOF. Note that (I0F;)?®) = m;|X|~11#®). The result follows immediate from Propositions
2.3, 2.4, 2.5, Definition 2.32 and Lemma 2.33. 1
Theorem 2.35 With reference to 2.28, if I' is walk-regqular then
d
doas=m;  (0<j<d). (2.31)
i=0
ProOF. By Corollary 2.34 we have
d d d
Z Gi; = | X|my, " (En, En) Z aiy = | X |m, " Y (al B, En) = [ Xmy " > (> dfj B, Bn) =
i=0 i=0 i=0 (=0
= |X|®m 121@0 = |X|*m; ZEO = |X*m; NI 0 B}, Ey) =

X (0 B, B = X P, X070, B =

= | X [*my, tmy| X |~ th—mj-



Chapter 3

Distance-regular graphs

In this chapter, we recall some definitions and basic concepts. See the book of Brouwer, Cohen
and Neumaier [3] or a recent survey by E.R. Van Dam, J. H. Koolen and H. Tanaka [11] for
more background information.

3.1 Distance-regular graph

Definition 3.1 Let I' = (X, R) be a graph with diameter D. For a vertex z € X and any
non-negative integer h not exceeding D, let I'y(z) denote the subset of vertices in X that
are at distance h from z. Put I'_1(z) = T'py1(x) := (). For any two vertices x and y in X at
distance h, let

C(x,y) = Cn(z,y) = Tha(x) NTa(y),

A(:L‘,y) = Ah($7 y) = Fh(x) N Fl(y)a

B(x,y) = Bu(z,y) := Tpaa(z) NT1(y)
and

Lij(x,y) = Tf(x,y) == Li(z) N T;(y).
A graph I is called distance-regular if there are integers b;, ¢; (0 < ¢ < D) which satisfy

¢; = |Ci(z,y)| and b; = |B;(x,y)| for any two vertices x and y in X at distance i. For
notational convenience, set

ki = ki(z) == |Ti(2)],

ai:bo—ci—b (O<Z<D),

ply = pli(z.y) = Tz, y)| = {z € X|0(z, 2) =i, Oy, 2) = j}|
and define ¢ =0, bp =0, k = ky.

Lemma 3.2 With reference to Definition 3.1, if ' is a distance-reqular graph then the
following (1)—(iv) hold.

L) T Thx) [ L) L) L x)

e

Figure 3.1. Intersection diagram (of rank 0) with respect to = and illustration for coefficients
cn, ap and by,.

20
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(i) ¢4 =1, T is reqular with valency k = ki = by and

boby...b;—
(il) Vo e X, k; = p), = [Th(2)] = ————= (1<i < D)
C1C2...C;
(iii) pY; = pY(z, x) = 0yk; Vo € X.
kici— ki_1bi— kia; bik; )
(IV) p'}—l,i: Ck 1 = 1]{ 1’p’}i: ka andpz.l7i+1:— (1§Z§D—1)

ProOF. (i) Immediate from Definition 3.1 (by = |Bo(x, z)| and for z € X, y € ['1(z) we have
cr = |To(x) NTi(y)| = 1).

(ii) For every x € X and every i (1 < i < D) note that |I';(x)|b; = |I'it1(z)|ciz1. The
result follows.

(iii) pf; = |Ti(z) NT;(x)| = d;5|Ti(z)]. The result follows.

(iv) Pick z € X and count the number of pairs (y, z) in two different ways, where y € I';(z),
ze ' (z) and O(y, 2) =i — 1.

There are |[';(x)| choices for y, and so the total number of ordered pairs (y, z) is |I';(z)|c;i—1.
On the other hand there are |I';(x)| choices for z, and so the total number of ordered pairs is
IT1(2)|pi_1 (2, ). The first part of the first equation follows. The proofs of the second part
of the first equation, and for the second and the third equation are similar. ]

Lemma 3.3 With reference to Definition 3.1, let I' denote a distance-reqular graph and pick
i,j (0<d,j<D). Ifi+1<jorj+1<ithen

pzlj([p’y):[) VI’GX, yEFz(x)
Moreover, for all h,i,j (0 <i,j,h < D), the following (i), (ii) hold.
(i) If one of h,i,j is larger than the sum of the other two then p?j = 0.

(ii) If one of h,i,j equals the sum of the other two then pzhj # 0.
PRroOOF. Routine. 1

Theorem 3.4 With reference to Definition 3.1, a connected graph T' = (X, R) of diameter D
is a distance-reqular if and only if for all integers h, i, j (0 < h,i,j < D) and for all z € X,
y € I'y(z), the number

Pl = IUh(.y)| = |{z € X [0(z,2) = i, 8(y.2) = i}

is independent of x and y. The constants p?j are known as the intersection numbers of I'.

Moreover ]
Pt = b <bjflp2j_1 + (a; — ap)ply + cjapl 1 — chp?j’l) (3.2)

PROOF. If the numbers pl; = [I'};(x,y)| (0 < i,j,h < D) are independent of € X and
y € I'p(x) then it is not hard to see that I' is a distance-regular graph with ¢; = p}, ,
(1<i<D),a;=p} (0<i<D)and b; =pi,;,, (0<i<D—1).

Now, assume that I' is distance-regular graph. We will prove that the number p; =

IT% (2, y)| is independent of z € X and y € I';,(x). We use mathematical induction on m.

The basis of induction holds by Lemma 3.2, since the numbers p?j and p} (0 <4,j < D) are

independent of x and y. For induction step, assume that the numbers pf; (0<i,j7 < D) are
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independent of x € X and y € I', for every 1 < ¢ < h, and let us prove that the numbers
p?fl (0 <i,j < D) are independent of z € X and y € I';,1(z). For that purpose pick z € X,
y € 'y (z) and lets count the number of pairs (w, z) in two different ways, where w € I';(x),

z € I'1(y) and O(w, z) = j. If we first pick w then the number of ordered pairs (w, z) is

D J+1

h, r __ h,r _ . h h h
E DirPj1 = E DirPj1 = pi,j—lbj—l + Pij@j + P j1Ci+1
r=0 r=j—1

(because of Lemma 3.3). On the other hand if we first pick z then the number of ordered
pairs (w, z) is

D htl
> el =Y phol; =l + anpl + bl
=0 (=h—1
(because of Lemma 3.3). With that we have (3.2). The result follows. 1

Lemma 3.5 With reference to Theorem 3.4, for every i,j,h (0 <1i,j,h < D) we have
khp?j = kiply, = kipl,.
PROOF. Pick x € X and count the numbers of ordered pairs (y, z) in two different ways,

where y € I';(x), z € I';(x) and d(y, z) = h. 1

Corollary 3.6 With reference to Theorem 3.4, let A = ay. For every i (1 <i< D —1) we

have
bgbg...bi o k‘zclbz

C1C2...C;1 k?bl ’

kiCi
C1Co...C; (& ta 1 ) k’bl

2 .2 _
Piv1i-1 = Pic1i41 =

s 9 bobs..by
Piit1 = Piv1; —

(a; + a1 — A),

1 1
ng = 0—(6251 + a% + 03b2 — k- )\0,2) = C—(Cg(bl — 1) + b2(63 — 1) + (Ig(CLQ — = 1)),
2 2
2 _ bzbg...bi_l

i

(Cibifl + G? + Ci+1bi —k— )\ai),
C1C2...C;

]
Py = C_(Cibi—l +ai(a; — A) + biciyr — k).
2

In addition, for every j (0<j <D, i+j<D,i—j>0) we have

itj Cit1---Citj i—j bi—l---bi—j
pzj - T g P
C1...C4 C1...C4
piJrj 7pi+jai—|—..—|—ai+j—al—...—aj pli] 7pi,jai+..+ai_j—a1—...—aj
i,+1 = Fij ) 1,5+1 = Fij :
J J Cjt1 ! ’ Gj+1
PRrROOF. Use (3.2) and induction on h (and if necessary Lemmas 3.2 and 3.5). 1

Note that by Definition 3.1, k; = |[';(x)| for z € X and 0 <1i < D. By Lemma 3.2(ii),
~ boby -+ biy

C1C2 -+ G

i (0<i<D). (3.3)

By Lemma 3.5, we have kop? = k;pb, (1 <i < D —1). Recall T is bipartite whenever a; = 0
for 0 <i < D. Settinga; =0in¢;+a; +b; =k (0 <i < D) we find
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Corollary 3.7 Let I' denote a bipartite distance-reqular graph with diameter D > 2 and
valency k > 3. Then the following (1)—(v) hold.

.. kici—ici .
(i) P o; =Pjio= k(k——ll) (2<i< D).

Ci—1C;

(ifl) ph; o = (2<i<D).
b C2
; bib; .

(iv) Phiyp=—1 (0<i<D-2)
b C2

ci(bi-1 —1) + bi(ciyr — 1)

(v) ph; = (1<i<D-1) and
Ca
k(bp_1 —1
p2DD = —< = )
C2
ProOF. Immediate from Corollary 3.6. 1

3.2 Standard module

Definition 3.8 Let I' = (X, R) denote a distance-regular graph with intersection numbers
ply (0 <i,5,h < D). Let Matx(C) denote the C algebra of matrices with complex entries
whose rows and columns are indexed by X. By the standard module for X, we mean the
vector space V = CHI of column vectors whose coordinates are indexed by X. Observe that
Maty (C) acts on V' by left multiplication. We endow V' with the Hermitian inner product
defined by
(u,v) =u'v (u,v € V). (3.5)
Recall that
(u, Bv) = (Etu,w (3.6)
for u,v € V and B € Matx(C). For each y € X, let y denote the element of V with a 1 in
the y coordinate and zeros everywhere else.

Lemma 3.9 With reference to Definition 3.8, we have
{y|y € X} is an orthonormal basis for V. (3.7)
PROOF. Routine. 1

Lemma 3.10 With reference to Definition 3.8, let A denote the adjacency algebra of T' (the
subalgebra of Matx(C) generated by A) and let A; (0 < i < D) be the distance-i matriz for T.
We have

A= ) @ (yeX, 0<i<D), (3.8)

wel;(y)

D
> A =1, (3.9)
h=0

D
AA; =) phAn (0<4,j < D), (3.10)
h=0
Adj(= A A) = bjaAja T A o (0<)< D), (3.11)

{Ao, Ay, ..., Ap} is a basis for A. (3.12)
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PROOF. (3.8) and (3.9) are trivial. For (3.10) note that (A4;A4;),, = |I'i(x) NT';(y)|, and the
result follows. (3.11) follows from (3.10) by setting ¢ = 1.

It is only left to show that (3.12) holds. For that purpose consider the vector space
D = span{ Ay, Ay, ..., Ap}, and note that D forms an algebra with respect to the elementwise
Hadamard product of matrices. By (3.10), D also forms an algebra with respect to the ordinary
product of matrices. Next, we will show that A* € D (i = 1,2, ...) using mathematical induction
on i. The basis of induction holds, since A° = Ay and A' = A;. Now assume that A" € D for
1 < h < m and lets prove that A™*! € D. This follows immediate from (3.11), since

A™E = AA™ = A(agAg + oAy + ...apAp) (for some a;’s).
With that we have proved that A C D. Since dim(A) > D + 1 the result follows. 1

Corollary 3.11 If T is a distance regular-graph with d + 1 distinct eigenvalues and diameter
D, then
d=D.

PRrROOF. Immediate from (3.12) and Corollary 2.11. 1

3.3 Dual eigenvalue sequence

Let ' denote a distance-regular graph. Since {E;}2, form a basis for Bose-Mesner algebra
M (see Corollary 2.11 and (3.12)), there exist real scalars {6;}2, such that A = Y"2 6,E;.
By Proposition 2.10, 6; is the eigenvalue of I' associated with FE;. By Corollary 2.8, for
0 <1 < D the space E;V is the eigenspace of A associated with 6;. Let m; denote the rank of
E; (0 <i < D). Observe that m; is the dimension of the eigenspace E;V (0 <i < D). We
call m; the multiplicity of 0;. Observe that {0;}2, are mutually distinct since A generates
M. By (2.6) we have 6y = k.

Definition 3.12 Let 6 denote an eigenvalue of distance-regular graph I', and let £ denote
the associated primitive idempotent. For 0 < < D define a real number 0 by

D
E=|X["") 0rA;
i=0
We call the sequence 6,05, ..., 07 the dual eigenvalue sequence associated with 0, E. We say
the sequence is trivial whenever E = Fj (in which case 0f =07 =--- =0}, =1).
In the following lemma, we cite a well known result about primitive idempotents.

Lemma 3.13 ([!8, Lemma 1.1)) Let I denote a distance-reqular graph with diameter D > 3,
let E denote a primitive idempotent of I', and let 05,07, . ..,0}, denote the corresponding dual
eigenvalue sequence. Then for 0 < i < D and for all x,y € X with 0(z,y) = ¢ we have
(Ez, Ey) = | X|7'0r.

3.4 The ()-polynomial property

We continue to discuss the distance-regular graph I' = (X, R). In this section we define the
(Q)-polynomial property of I'. We first recall the Krein parameters of I' (from Section 2.5). Let
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o denote the entrywise product in Matx(C). Observe A; 0 A; = §;;A; for 0 < i,5 < D, so M
is closed under o. Thus there exist qu € R (0 < h,i,j7 < D) such that

D
EioE;=|X|"") qiEn (0 <i,j < D).

The parameters qg‘j are called the Krein parameters of I'. By (2.22) the Krein parameters of I'
are nonnegative.

Lemma 3.14 ([16, Lemma 1.4.1]) Let { E;}2., denote an ordering of the primitive idempotents
of a distance-reqular graph I' and let q?j denote the Krein parameters. Then the following (i),
(i) are equivalent.

(i) For0<1i,j <D '
q; =0, g>i+1;
G; 20,  j=i+1l
(ii)) For0<i,j,h <D
qzhj =0 if one of h,1, 7 is greater than the sum of the other two

qlhj # 0 if one of h,1,j is equal to the sum of the other two.

Definition 3.15 With the notation of Lemma 3.14, if (i), (ii) hold then {E;}2, is said to
be a Q-polynomial ordering for I'. Let E denote a nontrivial primitive idempotent of I' and
let 6 denote the corresponding eigenvalue. We say I' is Q-polynomial with respect to E (or
Q-polynomial with respect to ) whenever there exists a Q-polynomial ordering {E;}2 , of
the primitive idempotents such that £y = E. In this case, we abbreviate a; = ¢j;, b] = QI,z 1

¢ =qi, 1, ki = ¢ and k* =k} = bp.
We have the following useful lemmas about the -polynomial property.

Lemma 3.16 ([3, Thm. 8.1.1]) Let I denote a distance-regular graph with diameter D > 3.
Let E denote a nontrivial primitive idempotent of T' and let {07 }2., denote the corresponding
dual eigenvalue sequence. Suppose I' is Q-polynomial with respect to E. Then 6,07, ... ,07
are mutually distinct.

Theorem 3.17 ([18, Thm. 3.3]) Let I' denote a distance-reqular graph with diameter D > 3.
Let E denote a nontrivial primitive idempotent of T' and let {07 }2., denote the corresponding
dual eigenvalue sequence. Then the following (i), (ii) are equivalent.

(i) T is Q-polynomial with respect to E.

(i) 05 # 0F for 1 < i < D; for all integers h,i,j (1 < h < D), (0 <4,j < D) and for all
vertices x,y € X with O(z,y) = h the following hold:

Y Ei- Y  Ezespan{Ei-Ej}.

zeX zeX
0(z,2)=i 0(z,2)=j
o(y,z)=j (y,z)=1i

Suppose (1), (ii) hold. Then for all integers h,i,j (1 < h < D), (0 <1i,j < D) and for all
z,y € X such that O(x,y) = h,

9*
Y Ei- Y Ei= pm 9* o L(E& — EY). (3.13)
O(i,ez))(:z B(i:gz))(:]

9(y,2)=j 0(y,2)=1
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We have the following two important results about bipartite ()-polynomial distance-regular
graphs.

Lemma 3.18 ([0, Lemmas 3.2, 3.3]) Let I' denote a bipartite distance-regular graph with
diameter D > 4, valency k > 3, and intersection numbers b;, c;. Let { E;}2 be a Q-polynomial
ordering of primitive idempotents of ', and let {0;}2, denote the dual eigenvalue sequence
associated with . For 0 <1 < D let 0; denote the eigenvalue associated with E;. Assume I’
s not the D-cube or the antipodal quotient of the 2D-cube. Then there exist scalars q,s* € R
such that (1)—(iii) hold below.

(i) gl >1, s'¢ #1  (2<i<2D+1);
(ii) 0; = h(gP" —q"), 07 =05+ h*(1 — ¢*)(1 — s*¢"™ g™ for 0 <i < D, where

. 1—s'q’ e @7+ ¢ +9)
(¢ —1)(1 —s*¢P*2)’ q(q* = 1)(1 — s*¢?P)’
g = M =11 - 5"
‘ q(¢Pt+1) 7

(iii) k=cp=h(gP — 1), and for 1 <i < D —1
Mg = DA —s¢")  hlg? —q)(1 = s"¢"")
1 — s*g2i+l ’ T 1 — srqoitt .

C; =

Theorem 3.19 (]34, Theorem 9.1]) Assume that T' is Q-polynomial with respect to a primitive
idempotent E and fix vertices x,y € X such that O(x,y) = 2. Let 05, 05, ... 0}, denote the
corresponding dual eigenvalue sequence. Then for 2 < i < D — 1 the following holds

ITica(z) NTia(y)T1(2)] = i + BilT1(z) NTi(y) NTioa(2)]

where . . ) ) ) ) )
= CA(QO —07)(63 — 07,) — (07 — 67,)(65 — 07)
(65 = 07) (07, — 07,4)
and —
B; = %
ez’fl - 6i+1

3.5 Examples

In this section we give some examples of Q)-polynomial distance-regular graphs that we
will need later. For each graph we give the intersection array {by,...,bp_1;¢1,...,cp}, the
eigenvalues 6y,...,0p and the Q-polynomial structures. Our examples are from [2, 3, 16, 47].

In each case the graph is known to be @)-polynomial distance-regular with diameter d. We
denote the natural ordering of the primitive idempotents by Ey, Ei, ..., Ep. First we recall
the notion of a dual bipartite QQ-polynomial structure for a distance-regular graph.

Lemma 3.20 ([10, Lemma 2.1.1]) Let I denote a distance-reqular graph with diameter D > 3.
Supose Ey, ..., Ep is a Q-polynomial structure for I', with Krein parameters qZ Then the
following (1), (ii) are equivalent.

(i) ¢; =0(1<i<D).

(ii) For0<4,5,h <D
qZ-zO, if h+1i+ 7 1s odd.

If (i), (ii) hold, the Q-polynomial structure is said to be dual bipartite; if I' admits at least
one dual bipartite QQ-polynomial structure, then I' is said to be dual bipartite.
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3.5.1 Johnson graphs

The Johnson graph J(d,n) = (X, R), is the graph whose vertices are the n-element subsets of
a d-element set S. Two vertices are adjacent if the size of their intersection is exactly d — 1.
To put it on another way, vertices are adjacent if they differ in only one element. With that

we have
X = all subsets of {1,2,...,n} of order d,

R={ayeXxX :|znyl=d—-1}.
We observe that

The natural ordering Ejy, F1, ..., B4 of the primitive idempotents is the unique Q-polynomial
structure on J(d,n). This structure is dual bipartite if n = 2.

3.5.2 Hamming Graphs and Cubes

The Hamming graph H(d,n) = (X, R) is the graph whose vertices are words (sequences or
d-tuples) of length d (d > 0) from an alphabet of size n > 2. Two vertices are considered
adjacent if the words (or d-tuples) differ in exactly one coordinate. In another words

X = all d-tuples from the set {1,2,...,n},

R ={zy € X x X |z,y differ in exactly 1 coordinate},
We observe that

| X| = n,

b =(d—1i)(n—1), 0<:i<d-1,

a; =1i(n—2), 0<i<d,

¢ =1, 1<1<d,

0; =n(d—1) —d, 0<:i<d,

m; = (7)(d— 1), 0<71<d.
The natural ordering Ey, E1, ..., B4 of the primitive idempotents is a ()-polynomial structure
on H(d,n). This structure is dual bipartite if n = 2.

The d-dimensional hypercube (or shortly d-cube) is the Hamming graph H(d,2). The cube
H(d,?2) has a second Q-polynomial structure if d is even:

Eo, Edfl, EQ, ey Edfz, Ela Ed which is dual blpartlte
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3.5.3 Half Cubes

As a graph, the n-dimensional hypercube is bipartite and connected. This induces a partition
of its vertex set X = {0, 1}" into two parts, X = X.UX,, where X, (respectively, X,) consists
of those vertices whose coordinates contain an even (respectively, odd) number of occurrences
of 1. The half cube $H(n,2) = (X, R) is defined on the following way:

X = X, = all n-tuples from the set {0, 1} of even weight,
R = {zy € X x X |,y differ in exactly 2 coordinate}.

Lets mention that, for a bipartite graph [ = (ZUY, ﬁ) with the bipartition Z UY’, the

bipartite half of T onZis a graph with vertex set Z such that two vertices are adjacent
whenever they are at distance 2 in I'. For $H(2d,2) = (X, R) we observe that

| X| =221,

bi=(d—i)(2d—2i—1), 0<i<d-—1,
i =i(2i—1), 1<i<d,
0;=2(d—i)?—d, 0<i<d,

2y 0<i<d.

7 Y

The natural ordering of the primitive idempotents is the unique @)-polynomial structure on
TH(2d,2):
Ey, ..., Ey which is dual bipartite.

The half-cube $H(2d + 1,2) has

bi=(d—i)(2d—2i+1), 0<i<d-1,
c=i(2i—1), 1<i<d,
0; =2(d—i)>+d—2i, 0<i<d.

There are two (Q-polynomial structures on %H (2d + 1,2):
E(),...,Ed and Eo,EQ,E4,...,E5,E3,E1.

3.5.4 Antipodal quotients of cubes

Let I' = (X, R) denote a finite, connected, undirected graph, without loops or multiple edges
and with vertex set X. We say I' is antipodal if the relation Ry p := {xy|d(z,y) =0 or D} is
an equivalence relation on X. When I'" is antipodal we define the antipodal quotient of ' to
be the graph whose vertices are the equivalence classes of Ry p, and where two classes are
adjacent whenever they contain adjacent vertices of I'.

The cube H(n,?2) is antipodal. For n = 2d and n = 2d + 1, the antipodal quotient of the

cube H(n,?2) has diameter d and

=i, 1<i<d,
0, =n—4i, 0<i<d.

The natural ordering of the primitive idempotents is the unique @)-polynomial structure on

H(2d,2):
Ey, ..., Ey.

There are two ()-polynomial structures on H (2d + 1,2):
Eo, ..., By and Eo, Eq, By, Eq_1, B, Eg_o, ... .



Chapter 4

On bipartite ()-polynomial DRG with
co < 2

Let I' denote a bipartite ()-polynomial distance-regular graph with diameter D > 4, valency
k > 3 and intersection number ¢ < 2. Our main result of this Chapter is the following
theorem.

Theorem 4.1 Let I' denote a bipartite QQ-polynomial distance-reqular graph with diameter
D >4, valency k > 3, and intersection number co < 2. Then one of the following holds:

(i) T is the D-dimensional hypercube;
(ii) T is the antipodal quotient of the 2D-dimensional hypercube;
(iii) I" is a graph with D =5 not listed above.

To prove the above theorem we use the results of Caughman [6] and, in case when ¢; =2, a
certain equitable partition of the vertex set of I' which involves 4(D — 1) + 2¢ cells for some
integer ¢ with 0 < ¢ < D — 2. This chapter presents joint work with S. Miklavi¢, and the
results are published in the “Electronic Journal of Combinatorics 217 (see [38]).

An equitable partition of a graph is a partition m = {C}, Cs, ..., Cs} of its vertex set into
nonempty cells such that for all integers 4, j (1 <4, j < s) the number ¢;; of neighbours, which
a vertex in the cell C; has in the cell C}, is independent of the choice of the vertex in C;. We
call the ¢;; the corresponding parameters.

4.1 The case D >6

Let I' denote a (Q-polynomial bipartite distance-regular graph with diameter D > 6, valency
k > 3, and intersection numbers b;, ¢;. In this section we show that if co < 2, then I' is either
the D-dimensional hypercube, or the antipodal quotient of the 2D-dimensional hypercube.

Theorem 4.2 Let I' denote a Q-polynomial bipartite distance-regular graph with diameter
D > 6 and valency k > 3. If co < 2, then I' is either the D-dimensional hypercube, or the
antipodal quotient of the 2D-dimensional hypercube.

PRrROOF. Assume that I" is not the D-dimensional hypercube or the antipodal quotient of the
2D-dimensional hypercube. Let scalars s*, ¢ be as in Lemma 3.18.
By [0, Lemma 4.1 and Lemma 5.1], scalars s* and ¢ satisfy

g>1, and —g¢ P l1<s<qg?PL (4.1)

29
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Assume first ¢, = 1. Abbreviate a« = 1+ q — ¢ — ¢~ + ¢P 4 ¢P*! and observe a > 2. By
Lemma 3.18(iii) we find
a+ /a2 — 4qD+1

24D+3

*

S =

Note that o? — 4¢P*! > 0, and so we have

. a— /a2 — 4qD+l

§ Z 2qD+3

We claim

_ /a2 — 4gb+1
o o 4q > q—2D—1‘
2qD+3
First observe that (ag?™2 —2)? — ¢?P~*(a? — 4¢P™) = 4(¢” + 1)(¢"7' = 1)(¢P2 = 1) > 0.
Therefore,
D—2

(g = 2)% > P74 (a® — 4¢P ).

Furthermore, ag”~2 — 2 > 0 implies

quD’Z —2> 611372\/042 — 4¢P+,

and the claim follows. Therefore,

* a — 4/ a? — 4qP+1 —2D—1
§ 2 24D+ =4 )

contradicting (4.1).
Next assume c; = 2. Abbreviate 8 = 1+ 2q — 2¢”~! — ¢P and observe 3 < 0. By Lemma

3.18(iii) we find
o B+ /% + 4¢P

2qD+3

Assume first s* = (8—+/8% + 4¢P)/(2¢P*3). If 8+2¢* < 0, then clearly S+2¢> < /3% + 4¢P.
On the other hand, if 5+2¢> > 0, then (6+2q )2 < B%+44¢P again implies B+2¢% < /B2 + 4¢P.
Therefore, in both cases we find 3 + 2¢* < /2 + 4¢P. But now

1 B—(8+2¢°) L B=VB 4"

_qD+1 - 2¢P+3 2¢D+3 — 2

contradicting (4.1).

Finally, assume s* = (8 + /82 +4¢P)/(2¢"*?). We observe that ¢*”~* 4 8¢"* — 1 =
(¢P~' = 1)%(¢P2 - 1) > 0. Therefore q3D 4 >1—p¢"?, implying

52 2D— 4+4q3D 4 >4 — 4BQD 2+62 2D—4 ( _BQD_Q)Q-

Taking the square root of the above inequality and dividing by ¢”~2 we obtain

N

But now we have

o B+ /B2 + 4¢P 1

2qD+3 q2D+1 ?

contradicting (4.1). This finishes the proof. 1
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4.2 The partition - part I

We continue to discuss the distance-regular graph I' = (X, R) from Chapter 3. Up to Section
4.4 we will assume that I' is bipartite with diameter D > 4, valency k& > 3 and intersection
number ¢, = 2. In this section we describe certain partition of the vertex set X.

Definition 4.3 Let I' denote a bipartite distance-reqular graph with diameter D > 4, valency
k > 3 and intersection number c; = 2. Fiz vertices x,y € X such that O(x,y) = 2. For all
integers i, j we define D% = Di(x,y) by

D; =Txy) ={we X | 0(x,w) =1 and I(y,w) = j}.
We observe D =) unless 0 <14,j < D. Moreover |Dj| = pi; for 0 <i,j < D.

Lemma 4.4 ([35, Lemma 3.2]) With reference to Definition 4.3, the following (i), (ii) hold
for0<i,7<D.

(i) If |i — j| > 2 then D} = 0.
(i) Ifi+ j is odd then Dj = (.
Lemma 4.5 ([35, Lemma 3.3]) With reference to Definition 4.3, the following (i), (ii) hold.
(i) [Pl = D3] =1 and |Di53| = [Dify| = (babs -+~ bi)/(crcz -+ cima) (2<i<D—1);
(i) DIt 0, DIt £0 (1<i<D—1)

Lemma 4.6 ([35, Lemma 3.4]) With reference to Definition 4.3, there are no edges inside
thesetDéforOSi,jSD. 1

Lemma 4.7 With reference to Definition 4.3, let z,v denote the common neighbours of x and
y. For 1 <1< D and for w € D! we have O(w,z2) € {i —1,i+1} and d(w,v) € {i —1,i+ 1}.

PROOF. Let u € {z,v}. From the triangle inequality we find i — 1 < d(w,u) < i+ 1. Now if
O(w,u) = i, then we have a cycle of an odd length in I', a contradiction. 1

Definition 4.8 Let I' denote a bipartite distance-reqular graph with diameter D > 4, valency
k > 3 and intersection number co = 2. Fiz vertices v,y € X such that 0(z,y) = 2 and let
z,v denote the common neighbours of x,y. For 0 < i,7 < D let the sets D; be as defined
in Definition 4.3. For 1 < i < D we define DI0) = Di(0)(z,y), Di(2) = Di2)(z,vy),
Di(1) = Di(1)(x,y), D)’ = Di(1)(x,y) by

Di0) ={w € D! | d(w,z) =i+ 1 and O(w,v) =1+ 1},
Di2) ={w D! | d(w,z)=i—1 and I(w,v) =1i— 1},
Di1) ={w e D! | d(w,z) =i—1 and O(w,v) =i+ 1},

) )
Di(1)" ={w D! | d(w,z)=i+1 and O(w,v) =1 — 1},
We observe D is a disjoint union of D:(0), Di(1)', Di(1)", Di(2).

Remark 4.9 With reference to Definition 4.8, note that 9(z,v) = 2 and that x,y are the
common neighbours of z,v. Consequently, if we have a result that holds for x,y (and z,v
as their common neighbours), then an analogous result for z,v (and x,y as their common
neighbours) also holds. We will be using this fact extensively throughout the paper.
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We have a comment.
Lemma 4.10 With reference to Definition 4.8, the following (i)—(iii) hold.
(1) Di(0) =0, Dy(2) =0, Di(1)" = {=}, Di(1)" = {v}.
(i) D3(2) = 0.
(iii) DE(2) = DB and DE(0) = D5(1) = D5(1)" = 0.

PROOF. (i) and (iii) follows immediately from Definition 4.8. (ii) follows from the fact that
Cco = 2. 1

Lemma 4.11 With reference to Definition 4.8, the following (i)—(vi) hold.

(i) Diii(z,y) = Di1)(2,0) = {w € Ty(z,v) | d(w,x) =i—1 and d(w,y) = i+ 1} for

1<:<D—-1.

(ii) D (x,y) = Di(1)"(z,v) = {w € Ty(z,v) | O(w,x) =i+ 1 and d(w,y) =i — 1} for
1<:<D-1.

(iii) Di(0)(z,y) = Dif1(2)(z,v) = {w € Tit1,41(2,0) | O(w,x) =i and I(w,y) = i} for
1<:<D-1.

(iv) Di(2)(z,y) = D= 1(0)(2,v) == {w € Ts_1,.1(z,v) | O(w,x) = i and d(w,y) = i} for
2<i<D.

(v) Di(1)(w,9) = Digi(z,0) for L<i< D —1.

(vi) Di(1)"(z,y) = DiF{(z,v) for 1 <i< D —1.
PrOOF. (i) Pick w € D/ {(z,y) and note that d(w,z) = i — 1, O(w,y) = i+ 1 and
O(w,z) = O(w,v) = i. Therefore w € Di(1)(z,v), implying D {(z,y) C Di(1)(z,v).
Similarly, if w € Di(1)'(z,v), then d(w, z) = d(w,v) =14, I w,z) =i — 1 and I(w,y) =i + 1.

Therefore w € D} {(z,y), implying Di(1)'(z,v) € Di;1(z,y). The result follows.
(ii)-(vi) Similarly as the proof of (i) above. 1

To compute the cardinalities of the sets D!(0), Di(1), Di(1)"” and D(2) we make the following
definition. For 2 < 4§ < D — 1 define

M; = p} — p?—l,i—l +P?—2,i—2 e

and
_ .2 2 2 2
N; = Di—1i+1 — Pi—2i T Pi—zi—1 — " + pis-

Lemma 4.12 With reference to Definition 4.8, the following (1)—(iv) hold.

) D}V =pi 1 A<i<D-1);
(i) Di(1)"] =pfyipa (1<i<D—1);
(iii) [Di(0)| = M; —2N; (2<i<D—1),
(iv) [Di(2)] = M;_, —2N;_; (3 <1i < D);
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Figure 4.1. The partition of graph I with respect to x € X, y € I'y(x) and z,v € T'y1(x, y).

PROOF. (i), (ii) This follows from Lemma 4.11(v),(vi) and Lemma 4.5.

(iii) As |D3(1) U D3(1)" U D3(0)| = p3y, the result is true for i = 2. Now assume
that the result is true for some i (2 < i < D — 2). We will show that it is true also for
i + 1. Note that D!f} is a disjoint union of DL} (0), Di(1), Difi(1)” and DIi{(2). It
follows from (i), (ii) above, Lemma 4.11(iv) and the induction hypothesis that |D;f](0)| =
Piirist — 20749 — Mi + 2N;. The result follows.

(iv) The result follows from (iii) above and Lemma 4.11(iv). 1

Corollary 4.13 With reference to Definition 4.8, the following (i), (ii) hold.
(i) Di(1) #0 (1<i<D-1)
(i) (1)’ £0 (1<i<D—1);
PROOF. Immediate from Lemma 4.12(i),(ii). 1

Lemma 4.14 With reference to Definition 4.8, the following (i)—(iv) hold.

(i) For1<i< D —1, there is no edge between any of the sets Di(0), Di(1), Di(1)", Di(2).
(ii) For2 <i < D — 1, there is no edge between Di(0) and D=1 (1) UD:=1(1)" U D1 (2).
(iii) For2 <i < D — 1, there is no edge between Di(1)" and D:"}(1)" UDI1(2).

(iv) For2 <i < D — 1, there is no edge between Di(1)" and D:=1(1)' UD!"}(2).

PROOF. (i) Immediate from Lemma 4.6.
(ii), (iii), (iv) By the definition of the sets D:(0), D:(1)", Di(1)", Di(2). 1

With reference to Definition 4.8, we visualize D}, Di*{, Di(0), Di(1), Di(1)", Di(2) and
edges between these sets in Figure 1.
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Lemma 4.15 With reference to Definition 4.8, the following holds. For each integer i (1 <
i < D—1), each w € DX} (resp. D7) is adjacent to
(a) precisely c;_1 vertices in D!_, (resp. Di?),
(b) precisely by vertices in Di*? (resp. Di,,),
(c) precisely c; — c;1 — |T'(w) N'Di(2)| vertices in Di(1),
(d) precisely ¢; — c;_1 — |T'(w) N'Di(2)| vertices in Di(1)",
(e) precisely b; — biy1 — ¢; + ¢i—1 + |D(w) N Di(2)| vertices in Di(0),
(f) precisely |T'(w) NDL(2)| vertices in Di(2),
and no other vertices in X.

PrRoOOF. The proof of (a), (b) and (f) is a routine. We now prove (c). We prove (c)
for the case w € D/j. The case w € D.| is treated similarly. First note that w is
at distance ¢ from z, and so w must have ¢; neighbours in I';_;(z). Observe also that
[, 1(2) =D ,UD:?UD1) UD{2) UD5(0) UD:3(1)". As w only can have neighbours
in D! , UDi(1) UD(2), the result follows from (a) above. The proof of (d) is similar, and
the proof of (e) is clear as w must have k neighbours. 1

Lemma 4.16 With reference to Definition 4.8, the following (i), (ii) hold.

(i) Vertez v (resp. z) is adjacent to precisely one neighbour in DY, precisely one neighbour
in D, precisely by = k — 2 neighbours in D3(1)" (resp. D3(1)'), and no other vertices
mn X.

(ii) For each integeri (2 <i < D —1), each w € Di(1)" (resp. Di(1)’) is adjacent to
(a) precisely c;_1 vertices in Di—1(1)" (resp. Di=1(1)"),

b) precisely b;1 vertices in Diti(1)" (resp. Diti(1)),

c) precisely ¢; — ¢;—1 — |T(w) N DIZ1(0)| vertices in DI, 1,

d) precisely ¢; — ¢,y — |T'(w) N Di=1(0)] vertices in D11,

e) precisely b; — b1 — ¢; + ¢i—1 + |T'(w) N D21 (0)| vertices in Diii(2),

f) precisely |T'(w) N D:~1(0)| vertices in Di~1(0),

and no other vertices in X.

(
(
(
(
(

Proor. (i) This is clear.
(ii) This follows from Lemma 4.11 and Lemma 4.15. 1

Lemma 4.17 With reference to Definition 4.8, the following holds. For each integer i (2 <
i < D —1), each w € Di(0) is adjacent to

(a) precisely |T'(w) N D=1 (0)| vertices in Di"1(0),
) precisely c; — |T(w) N DIZ1(0)| vertices in D1,
) precisely ¢; — |T'(w) N DIZ1(0)| vertices in DL,
) precisely |T'(w) N D11 (0)| vertices in Di;(0),
) precisely biy1 — |T(w) N DIL(0)| vertices in DIt (1)",
) precisely by — |T(w) N D1 (0)] vertices in Dl (1),
) precisely k — 2¢; — 2biq + |T'(w) N D1 (0)] + |T'(w) N DXL (0)] vertices in DI (2),
and no other vertices in X.

(b
(c
(d
(e
(f
(g

PROOF. The proof of (a) and (d) is a routine. The proof of (b) (resp. (c)) follows from the
fact that O(w,x) = d(w,y) = 4, and so w must have ¢; neighbours in I';_;(z) (resp. I';—1(y)).
We now prove (e). First note that w is at distance i + 1 from v, and so w must have b;;,
neighbours in T'j2(v). As Tyia(v) NT(w) € DIE(0) U DL (1), the result follows from (d)
above. The proof of (f) is similar, and the proof of (g) is clear as w must have k neighbours. s
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Lemma 4.18 With reference to Definition 4.8, the following holds. For each integer i (3 <
i < D), each w € D(2) is adjacent to
(a) precisely |T'(w) N D1 (2)| vertices in Di"1(2),
(b) precisely c¢;_1 — |T'(w) N DI1(2)| vertices in Di-1(1)",
(c) precisely ¢;_1 — |T'(w) N D=1 (2)| vertices in Di=1(1),
(d) precisely |T'(w) N DL (2)| vertices in Dif1(2),
(e) precisely b; — |T'(w) N D11 (2)| vertices in DT},
(f) precisely b; — |T'(w) N DE1(2)| vertices in DiL1,
() precisely k — 2b; — 2¢;—q + |D(w) N DI (2)| + |D(w) NDIZ1(2)] vertices in Di—1(0),
and no other vertices in X.

PRroor. This follows from Lemma 4.11 and Lemma 4.17. 1

4.3 The partition - part II

We continue to discuss the distance-regular graph I' = (X, R) from Section 4.2. In this section
we further assume I' is QQ-polynomial. We show the partition from Section 4.2 is equitable,
and that the corresponding parameters are independent of x, y.

Lemma 4.19 With reference to Definition 4.8, let & denote a nontrivial primitive idempotent
of T and let {0:}2, denote the corresponding dual eigenvalue sequence. Assume T is Q-
polynomial with respect to E. Then for 1 <i < D —1 and for w € Di*{ U Dfﬁ,

(65 — 07)(05 — 67,1) — (07 — 671)(05 — 07) 07 — 65

['(w) ND;(2)] = ¢ 7T . S ety o
| ( ) <)| (eo_ei)(ei—l_ei-H) 91 1 91+1

PROOF. Assume w € Dif]. If w € D}, then the proof is similar. We abbreviate
7 = |T(w) N D:(2)|. By Theorem 3.17 we find

0r , — 07
Eu — Ei = ¢;—=—1(Ev — Ew). (4.2)
05 — 0
ueX ueX
O(u,v)=i—1 (u,v)=1
O(u,w)=1 O(u,w)=i—1

Observe that beside y, all vertices of the set {u € X | d(u,v) = 1, d(u,w) = i — 1} are
contained in D3(1)”. On the other hand, vertices of the set {u € X | O(u,v) =i—1, O(u,w) =
1} are contained in D!_, (there is ¢;_; of these vertices and all are at distance i — 1 from z), in
Di(2) (there is T of these vertices and all are at distance i — 1 from z), and in Di(1)” (there is
¢; — ¢;—1 — 7 of these vertices and all are at distance i+ 1 from z). Taking the inner product of
(4.2) with E'Z, using Lemma 3.13 and the above comments, we get (after multiplying by |VT)

oF . —0*F
Ci_lef_l —f- 7'0;_1 —I— (Ci — Ci—1 — T)Q;_l — QT — (Ci — 1)0; = Czﬁ(eg — 9:)
0o — Y
Evaluating the above line using ¢;_; # 07, we obtain
G000 — (610G 0) b
' (93 - 9:)(9;11 - Qfﬂ) 91* 1 9;’;1
The assertion now follows. 1

Lemma 4.20 With reference to Definition 4.8, let E denote a nontrivial primitive idempotent
of T and let {0:}2, denote the corresponding dual eigenvalue sequence. Assume T is Q-
polynomial with respect to E. Then for 2 <i < D — 1 and for w € Di(1) UDi(1)",

(65 — 07)(05 — 07,1) — (07 — 67,)(05 — 67) o7 — 05

I(w) NDIZ10)| = ¢ 12 T B
Hn Do) (65— 0)(0;1 — 0711) T
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Proor. This follows from Lemma 4.11 and Lemma 4.19. ]

Lemma 4.21 With reference to Definition 4.8, let E denote a nontrivial primitive idempotent
of T' and let {0;}2, denote the corresponding dual eigenvalue sequence. Assume T is Q-
polynomial with respect to E. Then for 2 <i < D —1 and for w € D(0) the following (i), (ii)
hold.

(i)
(65 — 67)(05 — 07,1) — (01 — 0;_1) (65 — 67)

['(w) N DI (0)] = ¢ R P "
IT'(w) N D= (0)] (05— 0:)(0r_, — 0:,1)

(ii)
(05 — 0:,1)(05 — 07) — (6 = 0,5)(65 — 0,1)
(98 - 0?+1)(9;k+2 - 9:)

PROOF. (i) We abbreviate 7 = |I'(w) N D:"1(0)]. By Theorem 3.17 we find

|F( )ﬂD;ﬁ( )| = bi+1

0*
E Eu — E Eu = cl o Y(Ei — Ew). (4.3)
6*
ueX ueX
I(u,x)=i—1 I(u,z)=1
O(u,w)=1 O(u,w)=1—1

Observe that all vertices of the set {u € X | d(u,z) =1, d(u,w) =i — 1} are contained in D..
On the other hand, vertices of the set {u € X | d(u,z) =i —1, d(u,w) = 1} are contained in
D.~1(0) (there is 7 of these vertices and all are at distance ¢ — 1 from y), and in D} (there is
¢; — 7 of these vertices and all are at distance i + 1 from y). Taking the inner product of (4.3)
with E7, using Lemma 3.13 and the above comments, we get (after multiplying by [V T)

T0; + (e — 70, — aby = 105 — 67).

Evaluating the above line using ¢;_; # 07, we obtain

(8= 005 — 071) — (65— 0:,)(65 — 67)
(05— 6:)(0, — 05,,)

The assertion now follows.
(ii) We abbreviate 7 = |I'(w) N D1 (0)|. By Theorem 3.17 we find

0, — 07
~ i+2 ~ A
Y Ei- Y EBia=by 2t P L(E) — Ew). (4.4)
ueX ueX i+1
O(u,v)=14+2 O(u,v)=1
I(u,w)=1 O(u,w)=1i+2

Observe that all vertices of the set {u € X | (u,v) =1, O(u,w) =i + 2} are contained in
D2(1)”. On the other hand, vertices of the set {u € X | d(u,v) =i + 2, d(u,w) = 1} are
contained in D1{(0) (there is 7 of these vertices and all are at distance ¢ + 2 from z), and
in DI (1) (there is b;y1 — 7 of these vertices and all are at distance ¢ from z). Taking the
inner product of (4.4) with EZ, using Lemma 3.13 and the above comments, we get (after
multiplying by |VT|)
* * * 9:;2 8* * *
TQZ'-I-? —|— (bi—l—l — T)HZ — bi+103 bz+1w(92 — 01‘—1—1)'

i+1

Evaluating the above line using 07 # 67, we obtain

(65 — 074,1)(63 — 07) — (07 — 07,5)(05 — 07,1)
(65 = 0711) (0740 = 07)

The assertion now follows. ]

T = bi—i—l
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Lemma 4.22 With reference to Definition 4.8, let & denote a nontrivial primitive idempotent
of T and let {0:}2, denote the corresponding dual eigenvalue sequence. Assume T is Q-
polynomial with respect to E. Then for 3 < i < D and for w € Di(2) the following (i), (ii)
hold.
(i)
(66 — 071)(05 — 07) — (61 — 67_5)(65 — 6_)
(65 = 0:-1) (675 — 67)

D(w) N D=1 (2)] = cim

(i)
(65 — 07)(05 — 671) — (07 — 07,.1)(05 — 67)

(65 = 07)(071 — 6;-1) ’

IT(w) N D (2)] = b;
where DpT1(2) = 0.
PRrRooOF. This follows from Lemma 4.11 and Lemma 4.21. ]

Theorem 4.23 Let I' denote a Q-polynomial bipartite distance-regular graph with diameter
D > 3, valency k > 3 and intersection number co = 2. Then with reference to Definition 4.8,
the partition of VT into nonempty sets Diy1,Dit1 (1 <i<D—1), D{0) (2<i<D-1),
Di(1),Di(1)" (1 <i < D-1) and Di(2) (3 < i < D) is equitable. Moreover the corresponding
parameters are independent of x,y.

Proor. Immediate from Lemma 4.15, Lemma 4.16, Lemma 4.17, Lemma 4.18, Lemma 4.19,
Lemma 4.20, Lemma 4.21, and Lemma 4.22. 1

4.4 The case D =14

In this section we consider ()-polynomial bipartite distance-regular graph I' with intersection
number c;, < 2, valency k£ > 3 and diameter D = 4. We show that I is either the 4-dimensional
hypercube, or the antipodal quotient of the 8-dimensional hypercube. For the case ¢ = 1 we
have the following result.

Theorem 4.24 ([35, Theorem 6.1]) There does not ezist a Q-polynomial bipartite distance-
reqular graph with diameter D = 4, valency k > 3 and intersection number co = 1.

From now on we assume cy = 2.

Lemma 4.25 Let I' denote a Q-polynomial bipartite distance-reqular graph with diameter
D =4, valency k > 3 and intersection number co = 2. With reference to Definition 4.8 the
following (1), (ii) hold.

(i) D3(0)] = (k —2)(cs — 3)/2;
(i) c3 > 4 if and only if D3(0) # 0.

ProOOF. (i) Immediately from Lemma 4.12(iii) and Lemma 3.7(v).
(ii) Immediately from (i) above. 1

Lemma 4.26 Let I' denote a Q-polynomaial bipartite distance-reqular graph with diameter
D = 4 and intersection numbers co = 2, k > c3 > 4. Assume I is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. With reference to Definition
4.8, pick w € D3(0) and let \ denote the number of neighbours of w in D3(0). Then the
following (i), (ii) hold.



38 CHAPTER 4. BIPARTITE Q-POLYNOMIAL DRG WITH cy < 2

(k—2)bs(bs — 1)

A= (k—2)(k — 3) — 2by’

(ii) (k—2)(k —3) — 2bs divides (k — 2)bs(bs — 1).
PROOF. (i) Let scalars s*, ¢ be as in Lemma 3.18. First note that by Lemma 3.18(iii) we have

(¢ —1)(q"(s")? + s*(¢" +2¢° — 2¢" — ¢*) — 1)
(1 —5¢°)(1 — s*¢) ’

62—2:—

which implies
h(g,s*) = ¢"°(s*)* + s*(¢" + 2¢° — 2¢* — ¢*) — 1 = 0. (4.5)

By Lemma 4.21 we have

(65 — 03)(05 — 03) — (07 — 07)(05 — 05)

)\ = b 9
’ (05 — 03)(0; — 03)

and by Lemma 3.18(ii), (iii) we find

(4.6)

Consider now the number

2 4 2
AR —5k+4) AR -5k+6) 47
bs — 1 bs

Note that bs # 1. Indeed, if b3 = 1, then by Lemma 3.18(i),(iii) we have s*¢°> = —1, and so
co = (¢* +1)%/(2¢%). But now ¢y = 2 implies ¢ = &1, a contradiction. Using Lemma 3.18 we
find that (4.7) is equal to

a- (¢ 4+ 5" (q" +2¢° — 2¢" — ¢*) — 1) = - h(q,5"),

where

() (g2 = 2¢" —¢") + s (P + P+ " -2+ P+ ¢* + ) — ¢ —2¢+ 1
(1 —=s¢*)(1+57¢°)(1 — s*¢%) (1 — s*¢7) '

o =

By (4.5) we therefore have
(k —2)b3(bs — 1)
(k—2)(k—3)—2b3

(ii) This follows immediately from (i) above. 1

A:

Lemma 4.27 Let I' denote a Q-polynomial bipartite distance-reqular graph with diameter
D = 4 and intersection numbers co = 2, k > ¢35 > 4. Assume I is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. With reference to Definition
4.8, let X be as in Lemma 4.26. Then the following (i), (ii) hold.

(i) Each verter in D3(1)" has exactly

(c3 —3)(bs — A)
b3

neighbours in D3(0).
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(i) (k—2)(k —3) — 2bs divides (k — 4)bs(bs — 1).
Proor. (i) By Lemma 4.12(ii),(iii) and Lemma 3.7 we find

(k —2)(cs —3)
5 :

Dy = 22

[D3(0)] =

By Lemma 4.17(e), every vertex from D2(0) has b3 — A neighbours in D3(1)”. The result
follows from the above comments and by counting the edges between D3(0) and D3(1)” in
two different ways.

(ii) Consider the number (c3 — 3)(bs — A)/bs. Observe that, by Lemma 4.26(i), we have

(63 - 3)(53 — )\) . bg(bg — 1)(1{‘ — 4)
b _k_2b3_2+(l<:—2)(k—3)—2b3'

As (c3 — 3)(bs — A)/bs is integer by (i) above, the result follows. 1

Lemma 4.28 Let I' denote a Q-polynomaial bipartite distance-reqular graph with diameter
D = 4 and intersection numbers co = 2, k > c3 > 4. Assume I is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. Let X be as in Lemma
4.26. Then the following (i)-(iii) hold.

(i) (k —2)(k — 3) — 2by divides 2b3(by — 1);
(i) (k—2)(k — 3) = 2b%;
(ifi) A= (k —2)/2.

PRrROOF. (i) Immediately from Lemma 4.26(ii) and Lemma 4.27(ii).

(ii) It follows from (i) above that 2b3(bs — 1) = ¢((k —2)(k — 3) — 2b3) for some nonnegative
integer £. We will show that ¢ = 1. If £ = 0, then b3 = 1. By Lemma 3.18(i),(iii) we have
s*¢°> = —1, and so ¢ = (¢> + 1)?/(2¢%). But now ¢, = 2 implies ¢ = +1, a contradiction.
Therefore, £ > 1. Assume ¢ > 2. Then 2b5(bs — 1) > 2((k — 2)(k — 3) — 2b3), which implies
(k—2)(k —3) < bs(bs +1). Recall that c5 > 4, and so b3 < k — 4. But then (k —2)(k —3) <
bs(bs + 1) < (k —4)(k — 3), a contradiction. Therefore 2b3(bs — 1) = (k — 2)(k — 3) — 2b5 and
the result follows.

(iii) Immediately from Lemma 4.26(i) and (ii) above. 1

Lemma 4.29 Let I' denote a Q-polynomial bipartite distance-reqular graph with diameter
D = 4, and intersection numbers co = 2, k > c3 > 4. Assume I' is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. Then the following (i), (ii)
hold.

(1) ¢=—-(V5+3)/2.
(i) s* = 72v/5 — 161.
PROOF. (i) Let A be as in Lemma 4.26. By (4.6) and by Lemma 4.28(iii) we find

k=2 ¢(1-5'¢")(1-5'¢)

=0.
2 (1 —s*q")?

Observe that by Lemma 3.18(iii) we have

k=2 ¢-s¢)1-5¢) (¢—1(g+1)f(gs)

2 (=) 21— 5 ") (1~ ¢
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where
f(g,8%) =q""(s") + ¢"°(s")(q" + 2¢° + 4¢° + 29+ 2) — ¢*s*(2¢" + 2¢° + 4¢* + 2¢ + 1) — 1.

By Lemma 3.18 and comments above, we have f(q, s*) = 0. Recall polynomial h(q, s*) from
(4.5). Recall also that h(g, s*) = 0. Note that

fa,5%) = h(q,s")(q"s" +4¢* + 4q+3) — 2(¢°s"(2¢° + 6¢° + 64" — 4¢> —4qg — 1) —2¢° —2¢ - 1).

As f(q,s*) = h(q,s*) = 0, we also have ¢3s*(2¢% +6¢° + 6¢* — 4¢*> —4q—1) —2¢>* —2¢—1 =0,
and so

. 2¢° +2q +1
s* = . (4.8)
¢*(2¢° + 6¢° + 6¢* — 4> — 4g — 1)

Using (4.8) together with h(q, s*) = 0 we get

200 -1 (q+ 1)@ +q+1)%(¢* +3¢+1)

- —0.
(2¢° + 6¢° + 6¢* — 4¢* — 4g — 1)

As by Lemma 3.18 ¢ is real and |¢| > 1, we get ¢ = —(v/5 + 3)/2.

(ii) Immediately from (4.8) and (i) above. 1

Theorem 4.30 Let I' denote a Q-polynomial bipartite distance-reqular graph with diameter
D =4, valency k > 3 and intersection number co = 2. Then I' is either the 4-dimensional
hypercube, or the antipodal quotient of the 8-dimensional hypercube.

PROOF. Assume first that c; > 4. Then by Lemma 4.29 we have ¢ = —(v/5 + 3)/2 and
s* = 724/5—161. Lemma 3.18(iii) now implies k = —6, a contradiction. Therefore c5 = 3. But
now [12, Theorem 4.6] implies that I' is either the 4-dimensional hypercube, or the antipodal
quotient of the 8-dimensional hypercube. 1

We finish the paper with the proof of our main theorem.
PrOOF OF THEOREM 4.1: Immediately from Theorem 4.2, Theorem 4.24 and Theorem 4.30.
1



Chapter 5

Terwilliger algebra

In this chapter, we recall some definitions and basic concepts. See the recent survey by E.R.
Van Dam, J. H. Koolen and H. Tanaka [!1] for more information.

5.1 Dual Bose-Mesner algebra

Definition 5.1 Let I' = (X, R) denote a distance-regular graph with diameter D, and fix
any x € X. For each integer i (0 < i < D), let Ef = Ef(z) denote the diagonal matrix in
Matx (C) with (y,y) entry

(B = {

We refer to E} as the ¢th dual idempotent of I' with respect to . For notational convenience,
set £f =0 for i < 0 and ¢ > D. Subalgebra M* = M*(x) of Matx(C) generated by E,
E}.....E}, is called dual Bose-Mesner algebra with respect to x .

1 if O(x,y) =1,

0 otherwise (y € X).

Lemma 5.2 With reference to Definition 5.1, let V = CX| denote the standard module for
X. We have

By = { 0 otherwise (ye X, 0<i<D) (5.1)

D
> Er=1 (5.2)
=0

EE=6,E;  (0<i,j<D), (5.3)

E:V =span{y|y € X, 0(x,y) =i} (0 <i< D), (5.4)
V=EV+EV+..+E)V (orthogonal direct sum), (5.5)

{E;, EY,...,E}} is a basis for M™. (5.6)

PRrROOF. Routine. 1

5.2 Terwilliger algebra

In this section we recall the Terwilliger algebra of T'.

Definition 5.3 Let I' = (X, R) denote a distance-regular graph with diameter D and fix
z € X. Let T'=T(z) denote the subalgebra of Matx (C) generated by Bose-Mesner algebra
M and dual Bose-Mesner algebra M*. We call T the Terwilliger algebra of 1" with respect
to z. By a T-module we mean a subspace W of V = CX! such that BW C W for all B € T.
Let W denote a T-module. Then W is said to be wrreducible whenever W is nonzero and W
contains no T-modules other than 0 and W.

41
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Recall M is generated by A, so T' is generated by A and the dual idempotents. We observe
T has finite dimension.

Lemma 5.4 With reference to Definition 2.9, the following (i)—(iii) hold.
i) BeT = B eT.
(ii) Let U denote a T-module. For any T-module W C U,
Wh={weV|{wu) =0, Ywe W}
is a T-module.

(iii) Any T-module is an orthogonal direct sum of irreducible T-modules. In particular, V is
an orthogonal direct sum of irreducible T-modules.

PrROOF. (i) Note that T is generated by symmetric real matrices A, Ef, Ef, ..., E},.
(i) Pick u € W+ and B € T. We show that Bu € W+. Note that Vw € W, (w, Bu) =

(ETw, u) = 0 since B' €T and B w € W. The result follows.
(iii) This is proved by the inductin on the dimension of T-modules. If W is an irreducible
T-module of V then V =W + W+ (orthogonal direct sum).
1
One of main research problems is the following: What does the structure of the T-module
tell us about I'?

Definition 5.5 With reference to Definition 5.3, let W, W’ denote T-modules. By an
isomorphism of T-modules from W to W’ we mean an isomorphism of vector spaces o :
W — W’ such that (6B — Bo)W = 0 for all B € T. The T-modules W, W' are said to
be isomorphic whenever there exists an isomorphism of T-modules from W to W’. By the
endpoint of W we mean min{i | 0 < i < D, EW # 0}. By the diameter of W we mean
H{i|0<i< D, EfW #0}|—1. Wesay W is thin (with respect to x) whenever the dimension
of EfW is at most 1 for 0 <¢ < D.

Lemma 5.6 ([19]) With reference to Definition 5.5, let W denote an irreducible T-module.
The following (i), (ii) hold.

(i) W is an orthogonal direct sum of the nonvanishing spaces among E§W, EXW, ... ExW.

(ii) If W has endpoint r and diameter d then

E:W #{0}  iff r<i<r+d (0<i<D).

ProoF. (i) First note that £V are mutually orthogonal. This imply that EfW are also
mutually orthogonal since EfW C EXV. Now lets check does W = ZZD:O EW hold. Each
Ef € T, and since W is a T-module, we have TW C W. This yield S>° ExW C W (W is
by definition vector subspace, so it is closed with respect to addition). On the other hand, if
we pick w € W, w = Tw= Y2 Efw € 3.2 EfW, which yield W C S>2  EfW. The result
follows.

(ii) By construction EfW = {0} for 0 < i < r and EXW # {0}. To obtain a contradiction,
assume that there exists i (r < i < r 4+ d) such that EfW = {0}. Define subspace W’ on the
following way

W' =EW+E, W+ ..+ E_ W
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Note that by construction W’ # 0 and M*W' C W', Tt is not hard to show that for any j
(0 < j < D) and any irreducible T-module U

AEU C B \U+E;U + E;,,U

also hold, which yield that AW’ C W’ so W’ is T-module. Now we can conclude that
W’ = W by the irreducibility of W. This contradicts the diameter of W. So EfW = 0 for
r<i<r+d Now EfW = {0} for r + d < i < d by definition of d. The result follows. &

Proposition 5.7 ([19]) With reference to Definition 5.5, any two nonisomorphic irreducible
T-modules are orthogonal.

Proor. Let W and U denote nonorthogonal irreducible T-modules. We want to show that
W and U are isomorphic as T-modules.
From linear algebra we know that for given nonzero subspace U we can find U~ such that

V=U+U" (orthogonal direct sum).

For any w € W let o(w) denote the orthogonal projection of w onto U. So o(w) is the unique
vector in V' such that

o(w)eU and w—o(w) € UL,

We show that o : W — U, w — o(w) is a T-module isomorphism.

Claim 1. (Bo —oB)W =0 for every B € T.
Proof of Claim 1. For every w € W
Bo(w) e U
because U is T-module and
Bw = Bo(w) + (Bw — Bo(w))

—— ~~ -~
2 evt

because U+ is T-module (see Lemma 5.4(ii)). Since o(Bw) denote the orthogonal projection
of Bw onto U, from above we have

o(Bw) = Bo(w)

and Claim 1 is proved.

Claim 2. ¢ : W — U is injective.

Proof of Claim 2. Let ker(o) = {w € W |o(w) = 0} denote the kernel of o on W. Note
that ker(o) is subspace of W and for any B € T we have Bker(c) C ker(o) (by Claim 1,
o(Bw) = Bo(w), so if w € ker(o) then o(Bw) = 0, which yield Bw € ker(¢)). So ker(o) is a
T-submodule of W, and by irreducible of W ker(c) = {0} or K = W. Since (W, U) # 0 we
have ker(c) # W. Thus ker(c) = {0} and the result follows.

Claim 3. o : W — U is surjective.

Proof of Claim 3. Let im(o) = {o(w) |w € W} denote the image of o on U. Note that im(o)
is subspace of U, and using Claim 1 it is not hard to see that im(o) is a T-submodule of U
(Vw e W,VB €T, Bo(w) = o(Bw) € im(0)). By irreducible of U, we have im(c) = {0} or
im(o) = U. Since (W,U) # 0 we have im(c) # {0} and the result follows. 1
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Corollary 5.8 ([19, 9]) With reference to Definition 5.5, let ¥ = ¥(z) = {G, | ¢ € O}
denote the set of isomorphism classes of irreducible T-modules, indexed by some set ® = ®(x)
(this means that for each irreducible T-module W, there is a unique A € ® such that W € G;
we refer to X as the type of W). The elements of © are called types. For G, € VU define

Vg = subspace of V' spanned by the irreducible T'-modules of type ¢
= span{W | W € G,}
(call Vi the ¢-homogeneous component of V). The following (i)—(vi) hold.

(i) Let W and W' denote irreducible T-modules. Then W and W' are T-isomorphis if and
only if W and W' have the same type.

(ii) Vj is a T-module.
(iii) V = Z Vi (orthogonal direct sum of T-modules).
$cd

(iv) For a given G4 € ¥ and an irreducible T-module W C V,, the dimension, diameter,
endpoint etc. of W depends only on ¢. So insted of dim(W), d(W), r(W) etc. we can

write dim(¢), d(¢), r(¢) etc.

(v) Forallp € ®, V, can be decomposed as an orthogonal direct sum of irreducible T-modules
of type ¢ (this decomposition is not unique).

(vi) Referring to (v), the number of irreducible T'-modules in the decomposition is independent
of the decomposition. We shall denote this number by mult(p) and refer to it as the
multiplicity (in V') of the irreducible T'-modules of type ¢. Moreover if

Vo=W1+Wo+ ..+ W, (orthogonal direct sum)

dim(V})
th = .
enm dim(¢)
PROOF. Routine. ]

Definition 5.9 With reference to Definition 5.5, let V= {G,|¢ € ®} and Vy (¢ € D) be as
in Corollary 5.8. For each integer i (0 < i < D) define ®; = ®;(x) to be the set of p € O such
that the irreducible T-modules of type ¢ have endpoint i and define

Vi = subspace of V' spanned by T-modules V,,, where ¢ € ®;
= subspace of V' spanned by irreducible T-modules with endpoint 1.

Lemma 5.10 ([9, Section 3]) With reference to Definition 5.9, we have
V= Z Vi (orthogonal direct sum of T-modules).

Let the map ¢; : V — V; denote an orthogonal projection for 0 < ¢ < D. Then the following
hold

I'=po+p1+..+¢p,
pip; = 0505 (0 <1d,5 < D),
0:B=Byp, (BeT, 0<i<D),
Efo,=0 (0<i<r<D).
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Remark 5.11 Note that Corollary 5.8 and Lemma 5.10 give us some informations about
(possible) structure and behaviour of T-modules. Just for a moment fix some i (0 <1i < D).
Note that maybe we can have something like

Vi=U,+U,+..+U, (orthogonal direct sum of T-modules)

where every of Uy, U,,... U, is spanned by irreducible T-modules of different type, and every
of them is of endpoint i. So, for example, maybe it can happen that U, is thin module of
endpoint 7 and diameter s;, while U, is not thin module of endpoint 7 and has diameter s,
where s; # so. Also, maybe it can happen something like, U, is unique irreducible T-module
of endpoint ¢ and diameter s; (just one), while U, is up to isomorphism unique irreducible
T-module of endpoint ¢ and diameter sy (so maybe there are more of them but they are all
isomorphic between each other).

Research problem 5.12 For a given distance-reqular graph, compute orthogonal projections
;i (0<i< D) from Lemma 5.10.

5.3 Irreducible T-module with endpoint 0

In this section we show that I' has a unique irreducible T-module with endpoint 0. From
Definition 5.9, we denote this T-module by V. We call V; the primary module. It appears in
V' with multiplicity 1 and it has basis {w; | 0 < i < D}, where

w; = Z g. (5.7)

y€ly(z)
Lemma 5.13 Let w denote the all ones vector in V.. We have
w; = Efw (0<i< D),
Ei*wjzdijwi (Oﬁ’i,j <D)7
<Wiawj> = 5ijk3i (0 <1,)< D)-
PrRoOOF. Routine. ]
Proposition 5.14 Let W denote a T-module. The following claims (i)—(iv) are equivalent.

(1) W is irreducible T-module with endpoint 0.

i)
(il) W = MZ (M is Bose-Mesner algebra).
(iii) W is thin T-module with endpoint 0.

(iv) W is unique T-module with endpoint 0.

ProOOF. We show chain of implications.

(i)=(ii) If W is T-module with endpoint 0, then E;W # {0}, and with that EfW =
span{Z}. Now let W’ := MZ, and note that

W/ = M/ZE\ = (Span{AO, Al, ceey AD})/.I'\ =

= span{ AgZ, A1Z, ..., ApT} = span{wy, w1, ...,wp }.
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By definition Mw’ C W’ and it is not hard to see
MW = M*span{wy,w, ...,wp} C W’
because of Lemma 5.13. Thus W’ is T-module. In the end
W'= Mz = ME;W CW = W' CW.

Since W is irreducible the result follows.

(ii)=(iii) Note that MW C W, and MZ = span{wo,ws,...,wp}, which imply that
MW C W and with that W is T'— module with endpoint 0. It is left to show that W is
thin. We have

E:W = EX M*span{wy, wy, ...,wp} = span{w; }

This yield dim(E;W) = 1, and the result follows.

(iii)=(iv) Assume that W is thin T-module of endpoint 0. We have TW C W and
EsW # {0} i.e. E;jW = span{z}. Note that

TE;W = Tspan{z} = MZ

and Mz = TE;W C W. Since both of T-modules W and MZ are thin we have E M7 =
EfW (0 <i< D), and with that W = MZ.

If we pick any other thin T-module U of endpoint 0, on the same way as above we can
prove that U = MZ, and with that W is unique T-module of endpoint 0. The result follows.

(iv)=(i) To get a contradiction, assume that I' is reducable. Then W we can write as
orthogonal direct sum of irreducible T-modules. Since € W these modules cannot all be
orthogonal to Z. So one of them has endpoint 0 and hence contains Z, for example T € U. By
assumption W is unique T-module with endpoint 0 which yield W = U, a contradiction. The
result follows. 1

5.4 Irreducible T-modules with endpoint 1

We cite main results for irreducible T-modules with endpoint 1 for bipartite distance-regular
graphs.

Theorem 5.15 ([9, Theorem 7.6]) Assume that I" is a bipartite distance-regular graph. Let
W denote an irreducible T-module of endpoint 1, and pick any nonzero v € EXW. Then W
has orthogonal basis {EfA;_1v|1 <i < D —1}. In particular W is thin and has diameter
D —2.

Corollary 5.16 ([9, Corollary 7.7]) Assume that T is a bipartite distance-reqular graph. Up
to wsomorphism, there is a unique irreducible T'-module of endpoint 1.

Lemma 5.17 (|9, Lemma 7.8]) Assume that I" is a bipartite distance-reqular graph and let
Vi denote subspace of V' spanned by all irreducible T-modules of endpoint 1. Then

dm(EfVi) =k—1 (1<i<D-1),

EjVi = {0} and EL V= {0}.
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5.5 Note about the case when [' is thin

Suppose I' = (X, R) is a distance-regular graph with diameter D > 3. Pick x € X and write
T =T(x) and Ef = E(z). An irreducible T-module W is said to be thin if

dmEW <1 (0<i<d).

For all x € X, we say I is thin with respect to  whenever every irreducible T'(x)-module is
thin. We say I' is thin if [" is thin with respect to every vertex z € X.

A thin distance-regular graphs are studied by P. TERWILLIGER in [17]. For reasoning
that will be clear in next two chapters, here we recall some of beautiful claims from the same

paper.

Theorem 5.18 ([17]) Suppose I' = (X, R) is a distance-reqular graph with diameter D > 3.
Pick x € X and write T =T (x) and Ef = E(z). The following (i)—(v) hold.

(i) If W s irreducible T-module then EXW is irreducible E;T-module (or in another words
W is irreducible EXT E}-module).

(ii) If T is thin with respect to x then EXTEY is commutative for all integers i (0 <i < D).
(iii) If EYTE; is commutative for all integers i (0 <1i < D) then I' is thin with respect to x.

(iv) If EfTE? is symmetric for all integers i (0 <i < D) then EfTE} is commutative for
all integers i (0 <1i < D).

(v) If for all y,z € X with O(x,y) = O(x, z) there exists g € Aut(T") s.t. gr =z, gy = 2
and gz =y then EXTE? is symmetric for all integers ¢ (0 <1i < D).

PROOF. (i) By definition of EfW and E*T note that EfW is E*T-module. It is left only to
show that EfW is irreducible. To get a contradiction, assume that £W is not irreducible.
Then there exist subspace U

{0} CU C E;W, U # {0}, U#E'W
such that U is ET-module. Since W is irreducible we have
TU =W.

Now we have

EXW = E;TU CU

and with that EW C U, a contradiction (by assumption U # E;W). The result follows.
(i) Lets write standard module V' as orthogonal direct sum of irreducible T-modules

V:ZWS

sed

indexed with some set ® = ®(x). Then for any 4, (0 < i < D), E;V = 3 4 EfW,. For
irreducible T-module W and for any P € E;T we have

PW CW (because W is irreducible T-module),

PW C EXW (because P = EfB for some B € T).
With that EfW is EfT module (or W is EfT E-module).
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Since I is thin we have that dim(E;W,) <1 (Vs € ®) and with that if EW, is nonzero
there exists basis {us} of subspace EfW;. For the end pick P,Q € ETE? and lets prove that
PQ = QP. Note that Vv € V, Efv = > __, a;us (for some o;’s), and since Pu, = Au, and
Qus = pug (for some A and p) we have (PQ — QP)us, = 0. This yield (PQ — QP)v = 0 and
the result follows.

(iii) Let W denote some irreducible T-module, pick some i (0 < ¢ < D) and abbreviate
S := EfTE?. We want to show that EfW is an irreducible S-module (see Claim 1) and that
each irreducible S-module U has dimension 1 (see Claim 2).

CrAmM 1. Lets prove that EfWW is an irreducible E}T E?-module. Suppose 0 C U C EfW
where U is a BT E;-module. By irreducibility TU = W, and with that U O ETEU =
EXTU = EfW ie. U D EFW. This is an contradiction.

CLAIM 2. Lets prove that each irreducible S = ET'E}-module U has dimension 1. Pick
0 # B € EYTE? and note that BU C U. Since C is algebraically closed, B has an eigenvector
w € U with eigenvalue 6. Because of irreducibility Sw = U. Then (B—61)U = (B—0I)Sw =
S(B —60I)w = 0. Hence B|y = 0I|y for all B € S. Thus each 1 dimensional subspace of U is
an S-module. We have dim(U) = 1.

By Claim 1 and Claim 2, we have that I' is thin with respect to x.
(iv) Fix ¢ and pick B,C € EfTE?. Since B, C' and BC are symmetric

BC =(BC)" =C"B" =CB.

Hence E}TE} is commutative.
(v) See [17, Theorem 5.1(ii)]. 1

5.6 The raising and lowering matrices
In this section we define raising and lowering matrices.

Definition 5.19 Define matrices L = L(z) and R = R(z) in T as follows:

D D
L= E; AE;, R=>E;, AE;. (5.8)
h=0 h=0

Note that the (y, z)-entry of L is 1 if y, z are adjacent with d(z,z) = 9(x,y) + 1 and 0
otherwise (y, z € X). The (y, z)-entry of R is 1 if y, z are adjacent with d(z,y) = 0(z,2) + 1
and 0 otherwise (y,z € X). It is well-known that if T" is bipartite, then R+ L = A. We refer
to R and L as the raising and lowering matrix with respect to x, respectively.

We now recall some products in 7.

Lemma 5.20 ([36, Lemma 6.1]) For arbitrary u,v € X and 0 <i,j < D the following holds:

1 if O(x,u) =1, O(u,v) = j, d(z,v) = h,

0 otherwise.

<@&@mz{

Lemma 5.21 ([36, Lemma 6.5]) For arbitrary u,v € X and 0 < h,i,j,7,s < D the following
holds:

IT;(x) N Tp(uw) NTs(v)| if O(z,u) = h, O(x,v) = 7,

0 otherwise.

(@&ﬂ&@%z{



Chapter 6

The scalars A,

Let I' denote a distance-regular with diameter D > 4 and valency k > 3. In this chapter we
introduce certain scalars A; and ~; (2 < ¢ < D — 1) which we will use in Chapters 7, 8 and 9.

Definition 6.1 Let I' denote a distance-regular with diameter D > 4 and valency k > 3.
Then for 2 < ¢ < D — 1 we define

Ay = (b = 1)(cipr — 1) = (c2 — 1)ph,

and ) .
y = Gl =D (6.1)
Dy;
(observe that pb;, > 0 by [3, Lemma 11]).

Lemma 6.2 [8, Theorem 12| With reference to Definition 6.1 we have A; > 0 for 2 <i <
D —1.

Lemma 6.3 [3, Theorem 13] With reference to Definition 6.1, the following (i), (ii) are
equivalent for 2 <i< D — 1.

(i) A; =0.
(ii) For all u,v,z € X with O(u,v) =2, d(u,z) =9J(v, z) =1,
IT(u)NT(v) NTi—1(2)] = 7. (6.2)

Theorem 6.4 With reference to Definition 6.1, if Ay =0 then D <5 or cy € {1,2}.

PROOF. Recall that Ay = (k —2)(c3 — 1) — (co — 1)p3,. Note that if Ay = 0, then using
Corollary 3.7(v) and (6.2) we have

cs = 02(62 — 1)(k’ — 2)

1 )
k—3cy+ 3 +h (6:3)
(CQ — 1)(62 — 2)
— 1 A
Y2 k’ — 2 + 3 (6 )
and ) Lo
—_— (6.5)

Yo - k—3cy+c3
Observe that the above denominators are nonzero as k — 3co + ¢3 = (co — 1)(co — 2) + k — 2.
Suppose now that ¢, > 3. We will show that D < 5 in this case. Note that it follows from
(6.4) that 75 > 2, and so
(CQ — ].)(CQ — 2)

k—2=
Yo — 1

(6.6)
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Using (6.3) and (6.5) we easily find

1=l (6.7)

2

Suppose D > 6. By [3, Proposition 4.1.6], we have ¢3 < b3, and so k > 2¢3. Using this and
(6.6), (6.7) we find 0 > (72 — 2)(ca + 2) + 4, a contradiction. 1

By Theorem 6.4, it is natural to study cases co = 1 and ¢y = 2 separately. In this paper
we will consider the case co = 1. We will study the case c; = 2 in a subsequent paper. If
A;=0for 2 <i< D —2, then I' is almost 2-homogeneous in the sense of Curtin, and these
graphs are well-understood [12]. Therefore, we will also assume that A; # 0 for at least one
i (3 <i< D —2). Note that this implies D > 5.

Definition 6.5 With reference to Definition 6.1, assume that As = 0 and that A; =
(bi—1 — 1)(cit1 — 1) # 0 for at least one ¢ (3 <i < D —2). Let

f=min{t e N|3<i<D—2andA; # 0},
¢ =max{i e N|3<i<D-—1andA; #0}.

Lemma 6.6 With reference to Definition 6.5, assume that co = 1. Then the following (i)-(iv)
hold.

(i) ;=1for2<i<f.

)
(il) If¢ <D —2thenb;=1 for{ <i<D-—1.
(i) f < ¢.

(iv) A; #0 for f <i < V.

PrROOF.  Recall that by [3, Proposition 4.1.6(i)] we have k = by > by > by > ... >
bp-1 > land 1 = ¢ < ¢ < ... < ¢p = k. Note also that Ay = (byj_y — 1)(cpy1 — 1),
Ag = (bg_l — 1)(Cg+1 — 1)

(i) Pick arbitrary i (2 <i < f —1). Since 0 = A; = (bi—1 — 1)(¢it1 — 1), we have b;_; = 1 or
¢iy1 = 1. If b_y =1 then b; = b;41 = --- = by_1 = 1 which imply Ay = 0, a contradiction. So
¢iv1 = 1 and the result follows.

(ii) Similar to (i) above.

(iii) If £ = D — 1 than we have f < ¢ by the assumptions from Definition 6.5. Assume that
f=¢<D—1. Then ¢; = b, =1 by (i), (ii) above. This implies k = 2, a contradiction.

(iv) Since Ay # 0, we have cy4; > 2. This implies ¢; > 2 for i > f + 1. On the other hand,
since Ay # 0, we have by,_; > 2. This implies b; > 2 for i < ¢ — 1. The result follows. |

Lemma 6.7 With reference to Definition 6.1, if co > 2 then the following (1)—(iii) hold.
(i) & >cii+1 for1<i<D.

(ii) D < k. In particular, k > 4.

(i) i<e; <k—D+i (1<i<D) and D—i<b;<k—i (0<i<D-—1).

ProOOF. Claims (i) and (ii) follow immediately from [3, Theorem 5.2.1, Corollary 5.2.2].
Claim (iii) follows immediately from (i) and b; = k — ¢;. 1



o1

Lemma 6.8 With reference to Definition 6.1, pick arbitrary i (2 < i < D —1). Then the
following (i), (ii) hold.

(o — 1 b;(1 —
(i) Ifca > 2 and A; = 0, then v; = il =1 _ bl —c) s
Cit1 — 1 bi,l —1

(ii) Assume that co = 2. Then A; =0 if and only if ¢; —c;.1 — 1 =0 and ¢;41 —¢; — 1 =0.

PROOF. (i) Recall that A; = (b;—y — 1)(¢is1 — 1) — (c2 — 1)ph,. Note that if A; = 0, then
using Lemma 3.7(ii) we have

ci(ca —1)(bi—q — 1)

1
bi + (Ci — Ci—1 — 1)C2 *

Ci+1 =

(observe that the above denominator is nonzero since ¢, > 2 implies ¢; — ¢;_1 — 1 > 0 by
Lemma 6.7). Note that ¢;;1 # 1 and b;_; # 1 by Lemma 6.7. Using (6.1) and the fact that
(o — 1)ph: = (b1 — 1)(cip1 — 1) we have

= cilca—1)  ci(ca—1) (1 —ca) .
T a1 el  p . 2
T e G

(i) Note that 2A; = (bi—1 — 1)(cip1 — ¢ — 1) + (¢i1 — 1)(¢; — ¢;—1 — 1). The result follows
since ¢;11 # 1 and b;_; # 1 by Lemma 6.7. 1

Corollary 6.9 With reference to Definition 6.1, assume that co = 2. Then the following (i),
(ii) hold.

(i) If A;=0theny,=1(2<i<D-1).
(i) If Ay =0 then c3 = 3 and p3, = 2(k — 2).
ProOOF. Immediate from Lemma 6.8. 1

Lemma 6.10 With reference to Definition 6.5, assume that co = 2. Then the following
(1)—(iii) hold.

(1) (k—2)(blfl—1>—clflbz >Of07’2§2§D—2
(11) ]fﬁ =D —1 then (k’ — 2)(bD_2 — ]_) — CD_QbD_l > 0.
(111) (k — 2)(Ci+1 — 1) — cibi+1 >0 fO’l” 2<:<D-—2.

Proor. (i), (ii) From Lemma 6.7 we have k—2 > ¢;_; fori =2,3, ..., D—2and b;_1—1 > b;
for i = 2, 3, ..., D. This shows (i). Note that (k — 2)(bp_2 — 1) — cp_2bp_1 = 0 if and
only if cp_o =k —2 (¢cp_g =k — 2 yields bp_o = 2 and bp_; = 1). Since £ = D — 1 yields
cp_o # k — 2, the result follows.

(111) Note that k — 2 > bi+1 and Civ1 — 1>¢ for2<i<D-2. |



Chapter 7

On the Terwilliger algebra of bipartite
DRG with ¢ =1

Let I' denote a bipartite distance-regular graph with diameter D > 4 and valency k£ > 3. Let
X denote the vertex set of I', and let A denote the adjacency matrix of I'. For 2 € X and for
0 <i< D, let I';(z) denote the set of vertices in X that are distance ¢ from vertex z. Define
a parameter A, in terms of the intersection numbers by Ay = (k —2)(c3 — 1) — (co — 1)p3,.
In this chapter we first show that Ay = 0 implies that D <5 or ¢; € {1, 2}.

For z € X let T' = T'(x) denote the subalgebra of Mat x (C) generated by A, E, Ef, ..., E}),
where for 0 < ¢ < D, E} represents the projection onto the ith subconstituent of I" with
respect to x. In this chapter we assume I' has the property that for 2 < i < D — 1, there exist
complex scalars «;, §; such that for all z,y,z € X with d(z,y) =2, 9(x, 2) =1, Iy, z) = 1,
we have a; + 5;|I'1(x) NTy(y) NTi—1(2)] = [Tica(x) N1 (y) NTi(2)]. We additionally assume
that Ay = 0 with ¢ = 1.

Under the above assumptions we study the algebra T. We show that if ' is not almost
2-homogeneous, then up to isomorphism there exists exactly one irreducible T-module with
endpoint 2. We give an orthogonal basis for this T-module, and we give the action of A on
this basis. This chapter presents joint work with M. S. MacLean and S. Miklavi¢, and the
results are published in the journal “Linear algebra and it’s applications 496" (see [23]).

For the rest of this chapter we refer to the following definition.

Definition 7.1 Let I' = (X, R) denote a bipartite distance-regular graph with diameter
D > 4, valency k > 3, intersection numbers b;, ¢;, and distance matrices A; (0 <i < D). We
fix v € X and let £ = E(z) (0 <i < D) and T = T(x) denote the dual idempotents and
the Terwilliger algebra of I with respect to x, respectively. Let R = R(z) and L = L(x)
be the raising and lowering matrices from Subsection 5.6. For 2 < ¢ < D — 1 we define
A; = (bi_1—1)(ciy1—1)—(ca—1)p;, and numbers f = min{i € N |3 <4 < D—2 and A; # 0},
and { =max{i e N|3<i< D —1andA; # 0} as in Section 6.

7.1 Maps G;, H; and I;
With reference to Definition 7.1, in this section we introduce certain maps G;, H;, I; (2 <i <
D —1). We will later assume that these maps are linearly dependent.

Definition 7.2 With reference to Definition 7.1, for y € I's(z) and for all integers i, j we
define D; = Dj(x,y) by '

D} :=Ty(x,y) = Ti(z) N T5(y).
We observe Dj = () unless 0 < i, < D and either i = j or |i — j| = 2. Moreover, |D}| = pj;.
We define maps G, H;, I; : D} -+ NU{0} (2 <i< D —1) as follows. For z € D! we let

Gi(z) = Tima(2) N Dy, H;(z) = |U(z) N D), Li(z) = 1.

52



7.1. MAPS G;, H; AND I, 23

With reference to Definition 7.2, our goal in this paper is to describe the irreducible
T-modules of endpoint 2 in the case when for every y € I'y(x) and for every i (2 <i< D —1)
there exist complex scalars «;, 5; such that H; = o, I; + 3;G

Assume the above dependency holds for every i (2 < i < D —1). If Ay > 0, then
the irreducible T-modules with endpoint 2 were studied by MacLean and Miklavi¢ (see [27,
Theorem 9.6]). If A; = 0 for 2 < ¢ < D — 2, then I' is almost 2-homogeneous, and its
irreducible T-modules with endpoint 2 are described in [12, Theorem 3.11]. In this paper we
therefore assume that Ay = 0, and that there exists some i (3 <i < D — 2), such that A; # 0.
We first show that the above scalars «;, 8; are uniquely determined if A; # 0. To do this we
introduce a vector analogue of maps I;, G; and H;.

Definition 7.3 With reference to Definition 7.2, pick y € I'y(x). For all integers i, j define a
vector w;; = w;;(z,y) by
=> z
2€D;

Observe that w;; = 0 if and only if D} = (), and that [jw;;||* = p};.
For 2 < i < D — 1 define vectors w;; = wi (z,y) and w;, = w;; (z,y) by

= [Nisi(2)nDil 2, =Y IN(z)nD;

ZGDZ ZGDZ

+ . —
We observe wg, = wsy,.

Note that the equality H; = «o;1; + 5;G; can be reformulated as w;; = oyw;; + Biw .

(23

Lemma 7.4 [31, Lemma 7.1 [27, Lemma 10.5] With reference to Definition 7.3 the following
(i)-(iv) hold for2 <i< D —1.

(i) {wii,wie) = Kici(bir — 1)/ k.

(i) [lwiil]* = kici(ca(bior — 1) = (c2 — 1)bi) /o

(ill) (w;,wi) = ciki(cibi—1 + ci1b; — k) /(k(k — 1)).

(iv) (w;,wik) = kici(bi(bi — bi—1) + ¢i(bi—1 — 1)) /ka.

Theorem 7.5 With reference to Definitions 6.1 and 7.3, pick i (3 <i < D — 1) such that
A; # 0. Assume that there exist complex scalars oy, B; such that

wy; = Qwi; + Biwif. (7.1)
Then
i Ci(CZ’ — 1)(61_1 — CQ) — Cici—l(bi — 1)(02 — 1)
o; =
CQAZ‘
and
B = Cz’(cz’+1 - Ci)<bi71 - 1) - bi(cz'+1 - 1)((3@' - 01'71)

YA

PROOF. Take the inner product of (7.1) with w;; and w;}, and then solve the obtained

system of linear equations for oy, 3; using (wy;, wy) = ||wil|* = p% = kiph;/k2 and Lemmas
3.7(v) and 7.4. 1

If Ay =0 and ¢, = 1, then we can simplify the above formulae for a; and ;.
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Corollary 7.6 With reference to Definitions 6.5 and 7.3, pick i (f <i < /(). Assume that
there exist complex scalars o, B; such that w;;, = awy; + Biw;,. Then

Ci(ci - 1) B = Ci(CiJrl - Ci) _ bi<ci - Cifl)

Ciy1 — 1 ’ Ciy1 — 1 b1 —1

o; =

ProOOF. Note that ¢;;1 > 2 and b;_; > 2 since A; # 0. The result now follows from Theorem
7.5. 1

7.2 The sets D!(0), Di(1) and the partition

With reference to Definitions 6.5 and 7.2, pick y € I's(z) and let w denote the unique common
neighbour of x,y. In this section we introduce a certain partition of the vertex set X of I'.
Observe that by the triangle inequality and since I' is bipartite, for every 2 < ¢ < D and every
z € D! we have d(z,w) € {i — 1,1+ 1}.

Definition 7.7 With reference to Definition 6.5 and Definition 7.2, pick y € I'y(z) and let
w denote the unique neighbour of x,y. Then for 1 < i < D we define D;(0) = D! (0)(z,y),
Di(1) = Di(1)(x, y) by

Di(0) ={z € D! | d(w,z) =i+1}, Di(1)={z€D!|d(w,z) =i—1}.

We observe D} is a disjoint union of D}(0) and D}(1), and note D}(0) = Dp(0) = 0. Note
also that there are no edges between D."{(1) and D:(0).

In what follows we refer to the following definition.

Definition 7.8 Let ' = (X,R) denote a bipartite distance-regular graph with diameter
D > 4, valency k > 3, intersection numbers b;, ¢;, and distance matrices A; (0 < < D). We
fix x € X and let Ef = Ef(z) (0 <i¢ < D) and T = T(z) denote the dual idempotents and
the Terwilliger algebra of I with respect to z, respectively. Let R = R(z) and L = L(x) be
as defined in (5.8). Assume that Ay =0, ¢co = 1 and that A; = (b;—1 — 1)(¢;41 — 1) # 0 for at
least one i (3 <i< D —2). Let

f=min{i e N|3<i<D-2andA, #0},

¢ =max{i e N|3<i<D-—1andA; #0}.

For any y € I'y(x), define D}, D;(0) and Dj(1) (0 < 4,j < D) as in Definitions 7.2 and 7.7.
Assume that for f < i < /¢ there exist complex scalars o, 3;, such that for all y € T'y(z),
H;, = o;1; + 5;G;, where G;, H;, I; are as in Definition 7.2.

Remark 7.9 With reference to Definition 7.8, we note that for each integer i for which
A; = 0, we have that G; is a constant function by Lemma 6.5. Under our assumptions, 2; = 0
for2<i<f—1andforl+1<1<D—1. Later in the paper, in Theorem 7.1}, we show
that H; is also a constant function for these same i values. Hence it follows that for every i
(2 <i<D—1), there exist complex scalars «;, 5; such that H; = oy I; + B;G;.

Lemma 7.10 [35, Corollary 3.9] With reference to Definition 7.8, let y € I's(x). Then the
following (i), (ii) hold.

(Ci+1 — 1)b2b3bl

C1C...C;

(i) D(0)] = (2<i<D-1).
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(bi—l — 1)b2b3...bi_1

i) |Di(1)| = 2 < i< D).
(i) [D(1)] = == =22 (2 << D)

Corollary 7.11 With reference to Definition 7.8, let y € I's(x). Then the following (i), (ii)
hold.

(i) Df(O):@fOTQSigf—l.
(i) If¢ < D—2thenDi(1) =0 for {+1<i<D.
ProOOF. Immediate from Lemma 6.6 and Lemma 7.10. ]

Lemma 7.12 With reference to Definition 7.8, let y € I's(x). Then the following (i)-(ii) hold
for f <@ <.

Ci(Ci — 1)
Ciy1 — 1
bi(b; — 1)
bi—l —1

(i) IT(z)NDI=(0)| = for every z € DI(0).

(i) |T'(z) NDE (1) = for every z € Di(1).
PROOF. (i) Pick arbitrary z € D/(0). Then from the definition of D/(0) we have that
Gi(2) = 0. By assumption H;(z) = a;I;(2) + B;G;(2), so we have |['(z) N Di~}| = Hi(2) = a.
Observe that z has no neighbours in D:"1(1). Since D! | is a disjoint union of D:"1(0) and
D1 (1), the result now follows from Corollary 7.6.
(i) Pick z € D/(1). Note that I';_;(z) N D} = {w}; that is, G;(z) = 1. It follows that
IT(2) ND!Z1| = Hi(z) = o, + B;. Next, note that z has ¢; neighbours in D/ UD;~| C T';_y(x),
which implies

D(z) N D | = ci — i = Bi.
Since z has neighbours only in D/ UD/ " UD (1) UD™ and the number of neighbours in

D/} is the same as in D/, we have

ID(2) "D ()] =k + i + Bi — 2¢;.

The result now follows from Corollary 7.6 and (3.4). 1
Theorem 7.13 With reference to Definition 7.8, let y € [y(xz). Then for each integer
i (1<i<D-1), each z € DY} (resp. D7) is adjacent to

(a) precisely c;—y vertices in D, (resp. Di7?),

(b) precisely by vertices in D*? (resp. Di,,),

(c) precisely ciy1 — ¢; vertices in DI(0),

(d) precisely c; — c¢;_y vertices in Di(1),
and no other vertices in X.

PrROOF. Immediate from [35, Lemma 3.11]. 1

Theorem 7.14 With reference to Definition 7.8, let y € I'y(x). Then the following (i)-(iv)
hold.

(i) For each integeri (2 <i < f—1), each z € D! = D}(1) is adjacent to

(a) precisely 1 vertez in Df:ll(l),.
(b) precisely k — 1 wvertices in D5 (1),

and no other vertices in X.
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(ii) Assume ¢ < D —2. Then for each integeri ({+1 <i < D —2), each z € D} = D}(0) is
adjacent to

(a) precisely k — 1 vertices in D/71(0),
(b) precisely 1 vertex in D (0),

and no other vertices in X.
(iii) Assume ¢ < D —2. Then each z € DJ~! = DJ~}(0) is adjacent to

: - 1yD—2
(a) precisely 1 vertex in Dy =,
(b) precisely 1 vertex in DY,
(c) precisely k — 2 vertices in Db~ (0),

and no other vertices in X.
(iv) If DB #£ 0, then each z € DY is adjacent to

(a) precisely cp_y vertices in D5~} (1),
(b) precisely bp_1 vertices in DY (0),

and no other vertices in X.

PRrROOF. (i) Recall that ¢;_; = ¢; = 1 by Lemma 6.6(i). Let w denote the common neighbour
of x and y. Observe that T';_s(w) NT(2) € DI 1, and so (a) above follows. As ¢; = 1, 2 has
no neighbours in D/} UD;; |, and (b) follows.

(i) Similar to the proof of (i) above.

(iii) First note that since £ < D — 2 we have bp_; = 1, and so D5 = () by Corollary 3.7(v).
AsT(2)NTp(y) € DH2, (a) follows. Similarly, as ['(2) NTp(x) € DE_,, (b) follows. Claim
(¢) is now clear.

(iv) Note that I'p_o(w) NT(z) € DS-(1), and so (a) follows. As I'(z) € DH_1, (b) is now
clear. .

Theorem 7.15 With reference to Definition 7.8, let y € I'y(x). Then the following (i), (ii)
hold.
(i) For each integer i (f < i <{), each z € Di(0) is adjacent to

(a) precisely b;1 vertices in D (0),

(b) precisely CilCim = ) vertices in D7,

Ciy1 —
(c) precisely Gl = i) vertices in D/},
Cit1 —
R R 1 ,
(d) precisely (ei — ein)(e 1CZ+1 +1) vertices in Q’jll(l),
Cit1 —
(e —1 .
(e) precisely % vertices in D'~} (0),
(2

and no other vertices in X.

(ii) For each integer i (f <i <), each z € Di(1) is adjacent to

(a) precisely c;_1 vertices in D~} (1),
bi(ci — ci—1)
bi—l -1

(b) precisely vertices in D},
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X @— - eee

Figure 7.1. The partition with reference to Definition 7.8, when ¢ < D — 2. Observe that
[i(x) = Diyy UD}(0) UD(1) UDL, and Ty(y) = D2 UD}(0) UD{(1) UD2 (2 < i < D).

bi(Ci - Ci—l)
bz’—l —1

(d) precisely ¢

(c) precisely vertices in D,

vertices in D'~} (0),

bi(b; — 1 o
(e) precisely bibi = 1) vertices in D/} (1),

bi—l _ 1 i+1
and no other vertices in X.

PrOOF. Immediate from Lemma 7.12 and [35, Lemma 3.11]. 1

Corollary 7.16 With reference to Definition 7.8, the following (i), (ii) hold for f <i < (.
(i) ¢iy1 — 1 divides ¢;(¢; — 1).
(11) bi—l — 1 divides bl(bl — 1)

PRrROOF. Immediate from Lemma 7.12. 1

7.3 Some products in T

With reference to Definition 7.8, in this section we evaluate several products in the Terwilliger
algebra which we shall need later.

Lemma 7.17 With reference to Definition 7.8, for arbitrary u,y € X and 2 <1 < D the
following holds:

e a1 i 0y) =2 andu e D),
(Ei (A1 E1A - AZ_2>E2>uy - { 0 otherwise.
ProOOF. Note that

(Bi(ABiA = A 2)E;) =

uy

_ (E;Ai_lE;AE;) - (E;*Ai_zEé‘)

uy uy

By Lemma 5.20, (EfA;_2E3),, = 1if 0(x,u) =i, d(u,y) = ¢ — 2 and J(z,y) = 2, and 0
otherwise. By Lemma 5.21, (EfA;,_1EJAES),, = [I'(x) NT'(y) NTi—1(u)| if O(z,w) =i and
O(z,y) = 2, and 0 otherwise. Therefore, the lemma holds if d(z,u) # ¢ or d(x,y) # 2.
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Assume now 9(x,u) =i and d(x,y) = 2, and let w denote the common neighbour of x and y.
Note that, since O(z,u) = ¢, we have d(u,y) € {i — 2,4,1 +2}. If O(u,y) € {i — 2,7+ 2} then
it follows from the above comments that (E(A;_1EfA — A;_2)E3)y, = 0. Therefore, assume
in addition that d(u,y) = ¢, and so (EfA;_2E%),, = 0. Observe that (EfA; 1 EfAES),, =1

if and only if u € Di(1), and the result follows.

Lemma 7.18 With reference to Definition 7.8, for arbitrary u,y € X and 2 <1 < D the

following holds:

<E:(Az — A, ETA+ AiZ)E;)uy = {

0 otherwise.

Proor. Immediate from Lemma 5.20 and Lemma 7.17.

Lemma 7.19 With reference to Definition 7.8, the following (i)-(v) hold.

(i) LE; = E: AE;.
(i) For3<i< f

LEAi 2B} = (k — 1)E* | A,y B}
(iii) For f+1<i<(+1

Cifl(ci - Cifl)

LEA; By = RS "S-V pe (A — A oET A+ Ay_)Ei+

Ci—l

bi— i—1 — Ci— * * *
* 1(bC 1 10 2)Ei—l(AiﬂElA — Ai3) B+
—2

—|—b7;_1E;~k_1A7;_3E;.
(iv) If ¢ < D —2, then for{+2<i< D -1
LE:Al,QES == E:_lAifSE;

and
LE)ApoE; = E} ((Ap—1 — Ap2EfA+ Ap_3)E;
+E},_Ap_3E;.
(v) For0<i<D -2
LE Ao = b EX Aupr B2

Proor. We will prove claim (iii). The proofs of the other claims are similar.

(iii) Choose u,y € X and integer i (f +1 <1i < ¢+ 1). Note that by (5.8), LEfA; 2E;
Er (AEA; oE3. It follows from Lemmas 5.20, 5.21, 7.17 and 7.18, that the (u, y)-entries of

both sides of the equation are 0 if d(z,y) # 2 or O(x,u) # i — 1.

Assume now 0(z,y) = 2 and d(x,u) =7 — 1. Observe that by Lemma 5.21, the number
(LEfA;_9E3 )y, is equal to the number of neighbours that w has in D ,. Now Theorems 7.13,

7.14 and 7.15 yield that

e ity e D
bi* Ci—1—Cij— . 7:7
(LE;A; 2E3)yy = % if u e ,Dil—ll(
Z b ifuweD,
0 if ue 2);;11_

The result now follows from Lemma 5.20, Lemma 7.17 and Lemma 7.18.

0)
1)

1 if O(z,y) =2 and u € DY(0),

)
)
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Lemma 7.20 With reference to Definition 7.8, the following (i)-(iv) hold.
(i) For2<i<D
RE;A; B3 = c; \Er\ A1 B
(i) For 1 <i< f—2
RE; Ai s B} = i1 Yy Arys B}
(iii) For f—1<i<(—1
RE; Aiyo By = cip1 B Aivs By

bi+1(ci+1 - Ci)

1 Lin(AEA - Ai)Ey

C; C; — G % * *
+1( +2 +1)E¢+1(Ai+1 i AzElA + Ai—l)EQ-
Ciya — 1

(iv) If ¢ < D —2 then for{ <i <D —3
RE;AinEy = (k= 1)E7 Ay By

+

and

RE}SQADE; = E*Dfl(ADfl - AD,QETA —+ Ang)ES.

PROOF. Similar to the proof of Lemma 7.19. 1

7.4 More products in T

Lemma 7.21 With reference to Definition 7.8, for y,z € I'y(x) and 2 < i < D the number
ITi(x) NTi_o(y) NTia(2)] is equal to kicici 1k~ (k — 1) ify = 2, kiciei1(cio1 — Dk (k —
DYk —2)"  if Oy, 2) = 2, and kicic? 1 (c; — 1)k (k —1)73 if O(y, 2) = 4.

PrOOF. If y = z, then |['i(z) NTi_a(y) N Tia(2)] is equal to p?;_,, and the result now
follows from Corollary 3.7. Assume 0(y, z) = 2. Abbreviate D} = D}(z,y) (0 < h,j < D)
and note that z € D3. Tt follows from Theorems 7.13, 7.14, and 7.15 that the number of
paths of length i — 2 between z and D!_, is independent of z. Moreover, between any two
vertices of I' which are at distance ¢ — 2, there exist exactly c¢ico - - - ¢;_o paths of length ¢ — 2.
Therefore, the scalar |Di_, N T;_5(z)| is independent of z; denote this scalar by ;. Note that,
by the definition of D3(1) = D2, the lone vertex w in D} is adjacent to all vertices in D3. For
v € D!_, we have d(v,w) =i — 1. Thus for any v € D!_,, there are precisely ¢; 1 — 1 vertices
in D32 that are adjacent to w and distance i — 2 from v. Using these comments we count in
two ways the number of pairs (z,v) such that z € D3, v € Di_,, and d(z,v) =i — 2. This
yields ¢;| D3| = |D;_y|(ci-1 — 1). Thus ¢; = p;; 5(cic1 — 1)(p3,)~". Using Corollary 3.7 and
the fact that Cy — C3 = 1, we find I/Jz = kicici—l(ci—l — 1)]{?_1(]{3 — ].)_1(]€ — 2)_1.

Now assume O(y, z) = 4, and use a similar argument. Again let ¢; = |D!_, N T;_»(2)].
Note that for any v € D!_,, there are precisely ¢; 1 — 1 vertices in D3 that are distance i — 2
from v, as we counted above. Hence there are precisely Plé,i—z —1—(c;i_y — 1) vertices in D?
that are distance i — 2 from v. Here we count in two ways the number of pairs (z,v) such that
z € D}, v € Dj_,, and d(z,v) =i — 2. This yields 44| Dj| = |D}_,|(ph;, » — 1 — (cicy — 1)).

)

Using Corollary 3.7 and the fact that c; = c3 = 1, we obtain the desired result. 1

Corollary 7.22 With reference to Definition 7.8, for 2 < i < D we have

kicici—a kicicizi(cizg — 1)
EXA, S EfA, B = ————F%
2Aizabi Aialy = g P T T e — 2

B3 ALE]
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kicic?_l (Ci — 1)

k(k — 1)3

EiAE;.

PROOF. For y,z € X, one verifies the (y, z)-entry of both sides are equal. If y & I'y(x) or
z & I's(x), then the (y, z)-entry of each side is 0. If y, z € I'y(x) then the (y, z)-entry of both
sides are equal by Lemmas 5.20, 5.21, and 7.21. 1

Lemma 7.23 With reference to Definition 7.8, for y,z € T'y(x) and 2 < i < D — 2 the
number |T;(z) NTiia(y) NTio(2)] is equal to kibibiiicici 1k~ (k—1)72 if O(y,2) = 4, and 0
otherwise.

PROOF. The result is clear if 9(y, z) € {0,2}. Assume d(y, z) = 4. Abbreviate D! = D}(z,y)
(0 < h,j < D) and note that z € D3. Tt follows from Theorems 7.13, 7.14, and 7.15 that the
number of paths of length i — 2 between z and DL, is independent of z. Moreover, between
any two vertices of I' which are at distance ¢ — 2, there exist exactly cics - - - ¢;_o paths of
length ¢ — 2. Therefore, the scalar [D! , NT';_5(z)| is independent of z; denote this scalar
by ;. Here we count in two ways the number of pairs (z,v) such that z € D, v € Di_,,
and 0(z,v) = i — 2. This yields 1| D3| = |D} 4|ph; ». Thus ¥; = p;, oph; o(p3,)~". Using
Corollary 3.7 and the fact that co = ¢3 = 1, we obtain the desired result. 1

Corollary 7.24 With reference to Definition 7.8, for 2 < i < D — 2 we have

kibibiyicicioy "
EiA; o Ef A o5 = ﬁ@m@.

PROOF. Similar to the proof of Corollary 7.22. 1

Lemma 7.25 With reference to Definition 7.8, for y,z € I's(x) and 2 < i < D — 2 the
number |Ti(x) N Tia(y) NTi(2)] is equal to 0 if y = 2z, kibibiy1(civ — DE™ (k= 1)k —2)7!
Zf 8(y, Z) = 2, and k’ibib“_l(Cz‘bi_l + Ci+1(b,‘ - ].) - bl>/€_1(l€ — 1)_3 Zf 8(y, Z) =4.

PROOF. The result is clear if y = z. Now assume 0(y, z) = 2. Abbreviate D;-‘ = D;?(x, )
(0 < h,j < D) and note that z € D2. It follows from Theorems 7.13, 7.14, and 7.15 that
the number of paths of length i between z and D:,, is independent of z. Moreover, between
any two vertices of I' which are at distance ¢, there exist exactly cicy - - - ¢; paths of length 7.
Therefore, the scalar |D,, NT;(z)| is independent of z; denote this scalar by ;. Note the
lone vertex w in Dj is adjacent to all vertices in D3. For v € D.,, we have d(v,w) =i+ 1.
Thus for any v € DL, there are precisely b1 — 1 vertices in Dj that are adjacent to w and
distance i + 2 from v. Hence there are p3, — (biy1 — 1) vertices in D3 that are distance i
from v. Using these comments we count in two ways the number of pairs (z,v) such that
z € D3, v e D, and d(z,v) = i. This yields ;|D3| = |D.,,|(p3, — (bix1 — 1)). Thus
Vi = Piiya(P3a — (big1 — 1))(p3y) " Using Corollary 3.7, and the fact that c; = 3 = 1, we
find 1; = kibibita(civ1 — 1)k_1(k - 1)_1(k - 2)_1~

Now assume 9(y, z) = 4. Abbreviate D} = D}(x,y) (0 < h,j < D) and note that z € Dj.
It follows from Theorems 7.13, 7.14, and 7.15 that the number of walks of length ¢ between z
and D!, , is independent of z. Moreover, between any two vertices of I' which are at distance
i — 2 (respectively, 7), there exist exactly cica -+ - ¢;_2(bocy + by + - - - + bi_ac;—1) (respectively,
c1¢o - - - ¢;) walks of length 7. By this and Lemma 7.23, the scalar [D!,, NT;(z)] is independent
of z; again, denote this scalar by ;. Now let v € D! 4o- As above, there are precisely
P2y — (b1 — 1) vertices in D? that are distance i from v. Observe |[;(v) N Ty(z)| = pb,,
so thus |T;(v) N DF| = py — (p3y — (bix1 — 1)). Using these comments we count in two
ways the number of pairs (z,v) such that z € D, v € D.,,, and 9(z,v) = . This yields
il DE| = Dol (P — (3o — (bis1 — 1))). Thus ¢ = p?, 5 (ph; — p3o + bir1 — 1)(p34) " Using
Corollary 3.7, and the fact that co = ¢c3 = 1, we obtain the desired result. 1
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Corollary 7.26 With reference to Definition 7.8, for 2 <i < D — 2 we have
kibibii1(cipn — 1)

ESA; o ETAES = E; A FS
24%i+244 2 k(k-l)(k’-Q) 2412449
+kibibi+l(0ibi—1 + Cipa(bi — 1) — bl)E*A JoR
k(k —1)3 2T
PrROOF. Similar to the proof of Corollary 7.22. 1

7.5 Some scalar products
In the remainder of the paper, we will use the following notation.

Definition 7.27 With reference to Definition 7.8, let W denote an irreducible T-module
with endpoint 2, and let v denote a nonzero vector in E5W. For 0 <7 < D, define

U;— = E;AZ‘_Q’U, Ui_ = E;AZ‘J’_Q/U. (72)

Observe that vy = v, vy = 0ifi <2, and v; =0if i <2 or i > D — 2. Moreover, by [10,
Corollary 9.3(i)], we have

EfA;Eyv=—(vi +v)) (0<i<D). (7.3)

Lemma 7.28 With reference to Definition 7.8, let W denote an irreducible T'-module with
endpoint 2. Then JW = 0.

PROOF. By [17, Propositions 8.3(ii), 8.4], the primary module is the unique irreducible
T-module upon which J does not vanish. Since W is not the primary module, we have
JW = 0. 1

Lemma 7.29 With reference to Definition 7.8, let W denote an irreducible T'-module with
endpoint 2, and let v € E5W. Then E5A;Ejv = —v.

PROOF. Observe that since £ Ay Ej is symmetric, it has an eigenbasis for E5W. Furthermore,
since Ay = 0, we know Ej As E5 has exactly one distinct eigenvalue n on E5W by [11, Corollary
4.13, Lemma 5.3]. Thus, every nonzero vector in E5W is an eigenvector for E} A, E5 with
eigenvalue 7. By [ 1, Lemmas 5.4, 5.5] and the fact that ¢co = 1, we find n = —1. The result
follows. 1

Lemma 7.30 With reference to Definition 7.8, let W denote an irreducible T-module with
endpoint 2, and let v e E5W. Then E5A E5v = 0.

PROOF. By Lemma 7.28, Lemma 5.20 and the fact that J = >_ A;, we find

D
0=E;Jv = E5()_ A)Esv
=0
= E;U + E;AQE;U + E;A4E;’U
The result now follows by Lemma 7.29. 1

Lemma 7.31 With reference to Definition 7.8, let W denote an irreducible T-module with
endpoint 2. With the notation of Definition 7.27, the following (1)—(iii) hold for any nonzero
ve W,
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kicici—1(bi—1 — 1)
k(k—1)(k —2)
oy e Ribibigi(cip — 1)
(11) ||U,L H - ]{J(l{?— 1)(k_2)

(iii) (v, 07)=0 (2<i<D-2).

(2

@) [lif|I* = loll*  (2<i< D).

lo]* (2<i<D-2)

PROOF. (i) Evaluating ||v]"||* = (EfA; v, Ef A;_»v) using v = Ejv, (3.6), and Corollary
7.22, we find
kicicifl<cifl - 1)

kicici—
Ti_ 2 — 1Citi—1 2 EI*A EI*
||U1H k(l{—l)HUH + k(k—l)(k—Q) < 2412 2U7U>
kicici_i(ci—=1), .« ..

The result now follows from Lemmas 7.29 and 7.30.
(ii) Using (7.3), we observe ||v;||? = (EfAiov, Ef Ajov) = (—EfA; ov — EfAju, Ef A ov).
The rest of the proof is now similar to the proof of (i) above.

(iii) Similar to the proof of (i) above. 1

7.6 The irreducible T-modules with endpoint 2

With reference to Definition 7.8, in this section we describe the irreducible T-modules with
endpoint 2. We note that the case when ¢ = D — 1 is a special case. When ¢ = D — 1, we
have no information about bp_;. The case when ¢ = D — 1 and bp_; = 1 behaves much like
the case when ¢ < D — 2. Thus, we will group these cases together. We will treat separately
the case where { = D — 1 and bp_; # 1.

Lemma 7.32 With reference to Definition 7.8, assume either ¢ < D — 2, or both { = D — 1
and bp_1 = 1. Let W denote an irreducible T-module with endpoint 2. Then the following (i),
(ii) hold for any nonzero v € E5W.

(i) For2<i< D, v #0 if and only if 2 <i < (.
(i) For2<i<D—-2,v; #0ifand only if f <i < D — 2.
Proor. Immediate from Lemmas 6.6 and 7.31. 1

Lemma 7.33 With reference to Definition 7.8, assume { = D — 1 and bp_y # 1. Let W
denote an irreducible T-module with endpoint 2. Then the following (i), (ii) hold for any
nonzero v € E3W.

(i) For2<i< D, v} #0.
(ii) For2<i<D—2, v #0ifand only if f <i < D —2.
Proor. Immediate from Lemmas 6.6 and 7.31. 1

Theorem 7.34 With reference to Definition 7.8, let W denote an irreducible T-module with
endpoint 2 and fix a nonzero v € E5W . Then the following (i), (i) hold below.

(i) Assume either £ < D — 2, or both { = D — 1 and bp_y = 1. Then the following is a
basis for W :
of  (2<i <), v; (f<i<D-=-2). (7.4)

]
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(ii) Assume { =D —1 and bp_1 # 1. Then the following is a basis for W :

v (2<i<D), v (f<i<D-2) (7.5)
PrROOF. (i) We first show that W is spanned by the vectors (7.4). Let W’ denote the
subspace of V' spanned by the vectors (7.4) and note that W’ C W. We claim that W' is a
T-module. By construction W’ is M*-invariant. First we observe EfAFESv = 0 since W has
endpoint 2. It now follows from (7.3) and Lemmas 7.19, 7.20, 7.29 that W’ is invariant under
L and R. Recall that A = L+ R and A generates M so W’ is M-invariant. The claim follows.
Note that W’ #£ 0 since v € W’ so W/ = W by the irreducibility of W.

Moreover, the vectors (7.4) are nonzero by Lemma 7.32, and linearly independent since
they are mutually orthogonal by (5.5) and Lemma 7.31(iii). The result follows.

(ii) Similar. 1

7.7 The irreducible T-modules with endpoint 2: the
A-action

With reference to Definition 7.8, let W denote an irreducible T-module with endpoint 2. In
this section, we display the action of A on the basis for W given in Theorem 7.34. Since
A = L+ R, it suffices to give the actions of L, R on this basis.

Lemma 7.35 With reference to Definition 7.8, let W denote an irreducible T'-module with
endpoint 2. Assume either £ < D — 2, or both ¢ = D — 1 and bp_1 = 1. Then the following
(1)—(v) hold for all nonzero v € E3W.

(i) Lvy =0.
(i) Lo} =(k—1)v, B3<i<f).

bi—1(bi — 1) | cioi(ci1 —¢) _

i) Lot = . ,
(111) U’L bi—2 -1 Uz—l ¢ — 1 Uz—l

(f+1<i<d).

(iv) Lvy =0.
(v) Lv; =bv,_, (f+1<i<D-2).

ProOOF. First observe that Ef AE;v = 0, since W has endpoint 2. Applying the equations
in Lemma 7.19 to v, and using (7.3), we obtain the desired result. 1

Lemma 7.36 With reference to Definition 7.8, let W denote an irreducible T'-module with
endpoint 2. Assume either { < D — 2, or both { = D — 1 and bp_1 = 1. Then the following
(i)—(iv) hold for all nonzero v € E3W.

(i) Rvf =c¢ivf, (2<i<i-1).
(ii) Rv/ = 0.

Ci+1(ci+1 - 1) _

(i) Ry = DG =) v, (fF<i<i—1).

i bl—l Uitrl+

Ciyz — 1
(iv) If ¢ < D —2, then Rv; = (k—1)v;,; (({ <i< D —3), and Rv,_, = 0.

ProOOF. First observe that Ef AE;v = 0, since W has endpoint 2. Applying the equations
in Lemma 7.20 to v, and using (7.3), we obtain the desired result. 1
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Lemma 7.37 With reference to Definition 7.8, let W denote an irreducible T-module with
endpoint 2. Assume { = D — 1 and bp_1 # 1. Then the following (1)—(v) hold for all nonzero
ve BESW.

(i) Lvy =0.
(ii) Lo} =(k—1vt, 3 <i<f).

+ bifl(bifl - 1) + Cifl(cifl - Ci) _

(iii) Lo, = T vy p— v, (f+1<i<D).

(iv) Lvy =0.

(v) Lv; =bipv,_, (f+1<i<D-2).
PROOF. Similar to the proof of Lemma 7.35. 1

Lemma 7.38 With reference to Definition 7.8, let W denote an irreducible T-module with
endpoint 2. Assume { = D — 1 and bp_1 # 1. Then the following (1)—(iii) hold for all nonzero
ve BESW.

(i) Rvj =c¢vf, (2<i<D-1).

(ii) Rof =0.

biv1(ci — ¢ Ciy1(Civ1 — 1) _ .
(iii) Rv; = %vgl + %vm (f<i<D-2),

where v, _; = 0.

PROOF. Similar to the proof of Lemma 7.36. 1

7.8 The isomorphism class of an irreducible T-module
with endpoint 2

With reference to Definition 7.8, in this section we prove that up to isomorphism there exists
exactly one irreducible T-module with endpoint 2.

Theorem 7.39 With reference to Definition 7.8, any two irreducible T-modules with endpoint
2 are isomorphic.

PROOF. First assume ¢ < D —2. Let W and W’ denote irreducible T-modules with endpoint
2. Fix nonzero v € ESW, v € E3W'. By Theorem 7.34, W has basis {EfA; ov|2 < i <
Y U{EFAj v | f <i < D —2}, and W’ has basis {EfA; 20" |2 < i < FU{EfA v | f <
i <D —2}. Let 0 : W — W’ denote the vector space isomorphism defined by o(E;A; ov) =
ErA; v (2 <i</{)and o(EfA;2v) = Ef Ao (f <i < D —2). We show that o is a
T-module isomorphism. Since A generates M and Ef, EY, ..., E}, is a basis for M*, it suffices
to show o commutes with each of A, £, EY, ..., E}.

Using (eiv) and the definition of o we immediately find that ¢ commutes with each of
Ej E5, ..., E}. It follows from Lemmas 7.35, 7.36 that o commutes with each of L, R. Recall
A =L+ R so o commutes with A. The result follows.

The case when ¢ = D — 1 is similar. 1



Chapter 8

On the Terwilliger algebra of bipartite
DRG with ¢ =2

Let I" denote a bipartite distance-regular graph with diameter D > 4 and valency k& > 3. Let
X denote the vertex set of I', and let A denote the adjacency matrix of I'. For x € X and for
0 <i<D,let I';(z) denote the set of vertices in X that are distance i from vertex z. Define
a parameter A, in terms of the intersection numbers by Ay = (k —2)(c3 — 1) — (co — 1)p3,.
From Theorem 6.4 it is known that Ay = 0 implies that D < 5 or ¢y € {1,2}.

For x € X let T' = T'(z) denote the subalgebra of Matx (C) generated by A, E§, EY, ..., E},
where for 0 < ¢ < D, E} represents the projection onto the ith subconstituent of I" with
respect to x.

In this chapter we find the structure of irreducible T-modules of endpoint 2 for graphs I'
which have the property that for 2 <¢ < D — 1, there exist complex scalars «;, ; such that for
allz,y,z € X with d(x,y) = 2,0(z, z) = 4,0(y, z) = 1, we have a;+5;|I'1 (2)Ny (y) i1 (2)] =
ITi—1(x) NTi—1(y) NTy(2)], in case when Ay = 0 and ¢ = 2. The case when Ay = 0 and
co = 1 is already studied Chapter 7.

We show that if T" is not almost 2-homogeneous, then up to isomorphism there exists
exactly one irreducible T-module with endpoint 2 and it is not thin. We give a basis for this
T-module, and we give the action of A on this basis. The results of this chapter are published
in the journal “Discrete mathematics 340” (see [13]).

8.1 The sets D;, D;(0), D;(1) and D;(2)
In this section we introduce a certain partition of the vertex set X of I'.

Definition 8.1 Let I' = (X, R) denote a bipartite distance-regular graph with diameter
D > 4, valency k > 3 and intersection numbers b;, ¢;. Pick arbitrary vertex x € X. For any
y € I'y(z) and for all integers 4, j we define D} = Dj(x,y) by

D} = Ty(z,y) = T'(x) N T, (y).

We observe Dj = () unless 0 <4, j < D and either i = j or |i — j| = 2. Moreover, |Dj| = p},.

Lemma 8.2 With reference to Definition 8.1, let y € T's(x). Assume that co = 2 and let T,
y denote the common neighbours of x and y. If w € D then 0{Z,w} € {i — 1,i+ 1} and
Ny, w} € {i—1,i+1}. Ifw e D UDN] then 0{T,w} =i and O{y, w} = .

PROOF. Routine. 1

65
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Definition 8.3 With reference to Definition 8.1, let y € I'y(x). Assume that ¢; = 2 and let 7,
y denote the common neighbours of x and y. For all integers i define sets D{(0) = D/(0)(x, y),
Di(1) =D/ (1) (x,y), DI(1)" = D}(1)"(2,y), D/(1) = D(1)(=,y) and D;(2) = D} (2)(x,y) by
Di(0)={we D | 07 w)=i+1,0Fw)=i+1},
DI(1) ={weD | 0F,w)=1i—1,d(y,w)=i+1},
DI(1)' ={weD | 0F,w)=i+1,0H,w)=i—1},
D/(1) =D} (1) UD/(1)"

and . A
D(2)={weD | dz,w)=i—-1,0Fw)=i—1}.

We observe that D! is disjoint union of D{(0), D(1) and D}(2). Also |D}(0)UD!(1)UD!(2)| = p4
for 0 <i < D, and there are no edges inside the set | J;_, D (h).
Remark 8.4 With reference to Definition 8.3, note that

Di(h) ={z € D!'||Ti_1(2) N D}| = h} for 0 < h <2.
Lemma 8.5 With reference to Definition 8.5, let y € Ty(x). Then we have DY = {z},
Dy ={y}. Di(1) = {z}, DI(1)" = {7}, D{(0) =0, D/ (2) = 0 and D (2) = 0.
PROOF. It follows from Corollary 6.9(i) that Df(2) = (). The rest follow immediate from the
definition of sets D} and D} (h) (0 < h < 2). i

Lemma 8.6 With reference to Definition 8.3, let y € Ty(z). Then DE=1(0) = Tp(Z) NTp(¥)
and DE(2) =Tp(z) NTp(y) = Df.

Proor. Immediate from Lemma 8.2 and Definition 8.3. 1

Remark 8.7 With reference to Definition 8.3, note that 0(Z,7y) = 2 and that z, y are the
common neighbours of Z, 7. Consequently, if we have a result that holds for z, y (and T,
as their common neighbours), then an analogous result for Z, ¥ (and x, y as their common
neighbours) also holds (see Lemma 8.8 for more details). We will use this fact in the proof of

Lemma 8.9(iii) and Lemma 8.21 claims (ii), (iv) and (vi).

Lemma 8.8 (Chapter 4, Lemma 4.11 With reference to Definition 8.3, the following (i)—(iv)
hold.

Dil(z,y) = DI(1)(Z,7) and DH_l(l‘ y) =Di(1)"(x,y) for 1 <i< D—1.

) Dk
(i) DI(0)(z,y) = DF})@.) for L<i<D-1.
(it}) Dj(2)(x.y) = DI} (0)(F.F) for2 < i < D.
(iv) Di(1)'(2,y) = Di1(#,7) and D}(1)'(2,y) = DI} (#.5) for L <i< D 1.

Lemma 8.9 With reference to Definition 8.3, let y € I's(x). For 2 <1 < D —1 the following
(i)—(iii) hold.
5 babs...b;

(i) |DZ+11 ‘ijﬂ = p@{l,z’ﬂ =Pit14-1 = 1Ca ot
e Ci
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Figure 8.1. The partition of graph I', with reference to Definition 8.3. Observe that
Ii(z) = DL, UD/(0) UDi(1) U 'Df(l)” UD;(2) UD!, (disjoint union) and I';(y) = D2 U
DI(0) UDi(1) UDi(1)" UDi(2) UD ™ (disjoint union).

.. ; , babs...b;
(ii) |D¢z<1)l| = |Diz<1>”| = p?—l,i-&-l = p?—i—l,i—l =
C1C2...C;—1

; ; babs...b;
(i) [D/(0)] = DL (2)] = =

C1Co...C; (Cisr = = 1).
ProOOF. Claims (i) and (ii) follow immediately from Lemma 3.7(i). We will prove (iii) by
mathematical induction.

Note that |Df| = p3, and that D7 is disjoint union of DF(0), D#(1)" and DF(1)”. Using (ii)
and Lemma 3.7(ii) we have |D7(0)| = p3, —2(k —2) = 2(c3 — ¢, — 1). Now, just for a moment,
let’s interchange the role of z, y with the role of Z, 7. Then we have |D§(2)| = %(03 —co—1).
Assume that |D(0)| = |DIH(2)| = 2E=bi(e; ) —¢; — 1) for 2 < i < j (where j is some

41 c1C2...C;

integer, j € {3, ..., D —2}). We will show that claim (iii) holds for j + 1. Since D]jj:ll is disjoint

union of Djill(O), Dfill(l)’, Dfill(l)” and 1?;111(2) we have

DL (0) = IDJS| = IDLH (1)) = DS (D)'] = DL (2)

bybs...b;

22 e —c. —1).
C1C3...Cj <CJ+1 < )

2 2
= D141 — 2Pjjy2 —
Now using Lemma 3.7 the results follow. 1

Corollary 8.10 With reference to Definitions 6.1 and 8.3, let y € T'y(x). For2 <i< D —1
the following (1)—(iii) hold.

(1) Dy #0. DI # 0, DI(1) # 0 and Di(1)" # 0.
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(i) ¢it1 = ¢+ 1 if and only if D} (0) = O if and only if D (2) = 0.
(iii) A; =0 if and only if DY(0) = 0 and D!(2) = 0.

ProoF. Immediate from Lemma 6.8(ii) and Lemma 8.9. 1

Lemma 8.11 With reference to Definition 8.3, let y € I'y(z). For2 <1i < D—1 the following
(i)—(iii) hold.

(i) There is no edge between D;(0) and D/—'(1) UD (1) UD}(2).
(ii) There is no edge between Dy (1) and D~} (1)" U D~ (2).
(iii) There is no edge between D;(1)" and D/—(1) UD(2).

PROOF. Immediate from definition of sets D} and D} (h) (0 < h < 2) (see Figure 1). 1

Lemma 8.12 With reference to Definition 8.3, let y € T'y(x). If there exists h (3 < h <
— 1) for which D}~(0) # 0 and DP(0) = 0 then DI(0) = 0 and DI} (2) = O for every i
(h <i<D-1).

PrOOF.  Pick h for which D"7!(0) # @ and D(0) = (). Since D~'(0) # § we have
D} (2) # 0, and D}(0) = 0 implies D}'f}(2) = 0. Pick arbitrary z € D}(2), and note that
[i(2)NThia(y) C foﬂl, so z has by, neighbours in D,?Hl On the other hand D +1 is a subset
of I'y_1(x), which implies that ¢, > b,. Moreover, since z must have at least one neighbour in
D,?_’ll we have ¢;, > by,.

Now, assume that there is some s > h such that D/(0) = @ (for h < i < s) and D:(0) # 0.
Pick arbitrary w € D?(0). Note that T';(w) NTs_1(y) € D!, so w has ¢, neighbours in D!
On the other hand we have that DSH is a subset of I 8+1( ) which implies that b, > ¢,. As
h < s we have b, < ¢, < ¢y < bs. Thus h < s and b, < b, a contradiction. 1

Lemma 8.13 With reference to Definitions 6.5 and 8.3, let y € I'y(xz). Then the following
(i)—(vi) hold.

(i
(i) Ift<D—2thenciyy=k—(D—i—1) ford <i<D—1.

=1 for2 <1< f.

) ¢
)
(ili) f <l and 0> [2].
(iv) A; #0 if and only if f <1 <.
) D,

(v) Di(0) # 0 and DI} (2) # 0 for f < i < €~ 1; Di(0) = 0 and D} (2) = 0 for

2§i§f—L
(vi) If £ < D —2 then D}(0) =0 and D] (2) =0 for ¢ <i< D —1.

Proor.  Claims (i) and (ii) follow immediately from Lemma 6.8(ii). Since Ay = 0
and Ay # 0 we have ¢y — ¢y — 1 # 0, which means that Ay, # 0. Therefore f < ¢. If
¢ < [ 2], then we can show that ¢, > b, (similarly as in the proof of Lemma 8.12). This is in
contradiction with [3, Proposition 4.1.6]. Claims (iv), (v) and (vi) follow immediately from
Lemma 8.12 and Corollary 8.10. 1

With reference to Definitions 6.5 and 8.3, let y € I'y(z). Note that if £ = f + 1 then the
only nonempty cells among D} (0), D (2) (2 <i < D — 3) are Djf (0) and D]fj:ll( ). We will
need Theorem 8.14 in Section 8.2.
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Theorem 8.14 With reference to Definitions 0.5 and 8.3, let y € [o(z) and assume that £ =
f+1. Then the partition of X into nonempty sets D7, DA, Di(1), Di(1)” (1 <i < D—1),
Djf (0) and Djfill(Z) is equitable. Moreover the corresponding parameters are independent of x,
Y.

PrROOF. Routine. (For example, each z € Dfr11(2) is adjacent to precisely c; vertices in

Djf(l)”, cy vertices in D]f(l)’, br41 vertices in D}UFQ, bpy1 vertices in Dﬁrz, Cry1 —2¢; — by
vertices in Df (0) and no other vertices in X.) 1

8.2 Maps G;, H; and I,

In this section we introduce certain maps G;, H;, I; (2 <7< D —1). We will later assume
that these maps are linearly dependent.

Definition 8.15 With reference to Definition 8.1, let y € I'y(z). We define maps G;, H;, I; :
DI - NU{0} (2<i< D —1) as follows. For z € D} we let

Gi(z) =Tiaa(2) D[, Hi(z) = T1(2) NDZ|,  Li(2) =L

With reference to Definition 8.15, our goal in this paper is to describe the irreducible
T-modules of endpoint 2 in the case when for every x € X, y € I's(x) and for every
i (2 <i< D —1) there exist complex scalars «;, §; such that H; = «;1; + ;G;.

Assume the above dependency holds for every ¢ (2 < i < D —1). If Ay > 0, then
the irreducible T-modules with endpoint 2 were studied by MacLean and Miklavi¢ (see [27,
Theorem 9.6]). If A; = 0 for 2 < i < D — 2, then T is almost 2-homogeneous, and its
irreducible T-modules with endpoint 2 are described in [12, Theorem 3.11]. In this paper we
therefore assume that Ay = 0, and that there exists some i (3 < i < D —2), such that A; # 0.
Recall that, by Theorem 7.5, the above scalars «a;, §; are uniquely determined if A; # 0.

Theorem 8.16 With reference to Definitions 6.1, 8.3 and 8.15, pick arbitrary i (3 < i <
D —1). Then the following (i), (ii) hold.

(i) If A; =0 then Hi(z) = ¢;_1 and Gi(z) =1 for all z € D}

(ii) Assume that there exist complex scalars oy, B; such that H;(z) = a;1;(2) + 5;Gi(2), for
all z € D! If A; # 0 then

cilk —2)(¢; — i1 — 1)

&= 2, ’
B8 = Cimabi(civr — i — 1) — b (i — o1 — 1)
b 20, '

PROOF. Since A; = 0 if and only if D/(0) = ) and D}(2) = 0, for arbitrary z € D} we have
H;(z) = ¢;—1 and G;(z) =1 (see Figure 1). Thus (i) follows. Claim (ii) follows immediately
from Theorem 7.5 and the fact that ¢y = 2. ]

Theorem 8.17 With reference to Definitions 6.1, 8.3 and 8.15, assume that there exists some
i (2<i<D—3) such that only A; and A1 are nonzero. Then for every j (3 <j < D —1)
there exist complex scalars oy, B such that Hj(z) = a;1;(2) + 8;G;(2) for all z € Dy.

PROOF. From the equitable partition of Theorem 8.14 it is not hard to compute that
Hj = ¢;1Gj for every j (2 < j <), Hiyp = (K + 2¢i41 — 2¢i12) L1 + (Civa — k)Giyy and
Hj = ijlGj for everyj (7, + 2 S j S D — 1)

|
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8.3 Equitable partition

In this section we will introduce an equitable partition of the vertex set X of I', that we will
need in Section 8.5. For the rest of this paper we refer to the following definition.

Definition 8.18 Let I' = (X, R) denote a bipartite distance-regular graph with diameter
D > 4, valency k > 3 and intersection numbers ¢;, b;, with ¢o = 2. With reference to Definition
6.1, assume that Ay = 0 and that A; # 0 for at least one ¢ (3 <i < D — 2). Let

f=min{i e N|3<i<D-—2andA; # 0},

¢ =max{i e N|3<i<D-—1andA; #0}.

We fix vertex = € X, and for any y € I'y(z) let T, § denote the common neighbours of x and
y. For all integers i, j define sets Dj = Dj(x,y), D(0) = D}(0)(x,y), Di(1) = Di(1)(z,y),
Di(1) = Di(1)(x,y), DI(1)" = Di(1)"(z,y), Di(2) = D!(2)(z,y) as in Definition 8.3. Assume
that for f < i < ¢ there exist complex scalars o, 3; such that for all x € X and y € I'y(z),
H; = oyI; + 3;G;, where G, H;, I; are as in Definition 8.15.

Remark 8.19 With reference to Definition 8.18, we note that for each integer i for which
A; = 0, we have that G; is a constant function by Lemma 6.3. Under our assumptions, A; = 0
for2<i< f—1landfor ¢+1<i<D—1. From Theorem 8.16(i), we see that H; is also a
constant function for these same i values. Hence it follows that for every i (2 <i < D — 1),
there exist complex scalars «;, §; such that H; = o, I; + 5;G;. Also, note that by Theorem
816(1), o; + 61 = Ci—1 if Az =0.

Example 8.20 Let’s denote by I" the Double coset graph of the binary Golay code [3, Section
11.3E]. The intersection array of this graph is {23, 22, 21,20, 3,2,1;1,2,3,20,21,22,23}. Easy
computations give us Ay =0, A3 # 0, Ay #0, A; =0 and Ag = 0. Now, from Theorem 8.17,
we see that I satisfies all conditions of Definition 8.18. Also, note that Ay = 0 and Az # 0
yield that T" is not Q-polynomial (for example, use (a.1)<(a.5) or (a.2)<(a.9), and the fact

that a @)-polynomial graph I' has at most two irreducible T-modules with endpoint 2, and
they are both thin [5]).

Lemma 8.21 With reference to Definition 8.18, let y € I's(x). Then the following (i)—(vi)
hold.

(i) For everyi (3 <4< D —1) and for every z € D'(1)' UD!(1)",
T1(2) NDI(0)] = 0+ B — i,
(i) For everyi (3 <i < D —1) and for every z € D/} UD],
Ti(2) N D} (2)] = i + Bi — cia.
(iii) For everyi (f +1<i<{—1) and for every z € D}(0),
T4 (2) N D (0)] = .
(iv) For everyi (f +1<i</{—1) and for every z € D (2),

T4(=) ND}(2)] = .
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(v) For everyi (f +1<i</{—1) and for every z € D(2),

Ty (2) N D (2)] = bi — (¢ — o — 23).

(vi) For everyi (f+1<1i</(—1) and for every z € D7} (0),

|F1(2) N QZ(OM = bz — (Ci — O — 2/@)

Proor. We will prove claims (i) and (ii). The proofs of the other claims are similar.

(i) Pick arbitrary z € D(1)", and consider sets of vertices I';_»(7) and T';_1(7). Note that
D) C Ty a(¥), Di(1)" C Ti1(¥), and that z has exactly ¢;_; neighbours in I'; (7). But
all neighbours of z in T;_5(y) are in D/~ (1)" so z has exactly ¢;_; neighbours in D/~ (1)".

By construction G;(z) = 1, so z has exactly a; + f; neighbours in D}. Since I'1(2) N D} C
D1(0) U D7} (1)” the result follow. If z € Dj(1)’ then the proof is similar.

(ii) Pick arbitrary z € D/} and consider sets I';_;(Z) and I';(Z). Just for a moment, let’s
interchange the role between x, y and 7, 5. Now the result follows immediately from claim (i)
and Lemma 8.8. 1

Theorem 8.22 With reference to Definition 8.18, let y € T's(x). Then the partition of X
into nonempty sets D', DI, Di(1) (1<i<D—1) and Di(0), D (2) (fF<i<l—1) s
equitable. Moreover the corresponding parameters are independent of x, .

PROOF.  First consider partition of X into nonempty sets D/, D, Di(1), Di(1)”
(1<i<D-1)and D0), D:!(2) (f <i<{¢—1). That this partition is equitable follows
immediately from Corollary 8.10, Lemma 8.21 and Lemmas 4.15, 4.16, 4.17, 4.18. Since D} (1)’
and D}(1)” have the same corresponding parameters and since Df(1) = Di(1) U D} (1), the
result follows. 1

8.4 Some products in T

In this section we evaluate several products in the Terwilliger algebra which we shall need
later.

Definition 8.23 Let I' = (X, R) denote a bipartite distance-regular graph with diameter
D > 4, valency k > 4, intersection numbers b;, ¢;, distance matrices 4; (0 < i < D) and
Bose-Mesner algebra M. V will denote the standard module for X. We fix x € X and then
suppress it in notation, writing Ef = Ef(z) (0 << D), M* = M*(x) and T' = T'(z) for the
dual idempotents with respect to z, the dual Bose-Mesner algebra with respect to x and the
Terwilliger algebra with respect to x, respectively.

Definition 8.24 With reference to Definitions 8.18 and 8.23, for arbitrary y, 2 € X and for
all integers 1 < i < D, 0 < h < 2 define matrices B} by

1 if 9(z,y) =2 and z € Di(h),
0 otherwise.

(BL)sy = {

Lemma 8.25 With reference to Definition 8.24, for arbitrary z,y € X and for2 <i< D —1
the following (1)—(vii) hold.

1 if O(z,y) =2 and z € D/},
0 otherwise.

(1) (B AinE3).y = {
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1 if O(x,y) =2 and z € D!,

(ii) (Ei+1Ai*1E2>Zy :{ 0 otherwise.

2 if d(z,y) =2 and z € D, UD(2),

(iii) (EfA; 1 FTAES)., =< 1 if d(z,y) =2 and z € D}(1),
0 otherwise.
2 if d(z,y) =2 and z € D},, UD}(0),

(iv) (EfAi ETAES)., =

—_

if O(x,y) =2 and z € D}(1),

0 otherwise.

1 ifd(x,y) =2 and z € D},
0 otherwise.

WHﬂ&@M:{

(Vi) 32 Bl = B A;E5 and By + 2B} = Ef A, EfAF; — 2E A, »F;.
(vii) 2B} 4+ Bi = B Aj\BfAE; — 2EF A; 1 Ej.

PROOF. Immediate from definition of sets D}, D}(h) (0 < h < 2), Lemma 5.20 and Lemma
5.21. 1

With reference to Definition 8.23, in Section 5.6 we had defined matrices L = L(x) and
R = R(x) in T as follows. The (y, z)-entry of L is 1 if y, z are adjacent with d(z,z) =
J(x,y) + 1 and 0 otherwise (y,z € X). The (y, 2)-entry of R is 1 if y, z are adjacent with
d(x,y) = d(z,2) + 1 and 0 otherwise (y,z € X). Then L, R € T since

D D
L=> E; \AE;, R=)_ E; AE; (8.1)

h=0 h=0
(for notational convenience, we let E*, = E},,; = 0). It is not hard to see that if I" is bipartite,
then R+ L = A. We refer to R and L as the raising and lowering matrix with respect to z,
respectively.

Lemma 8.26 With reference to Definition 8.24, let y € I's(x). Then the following (i), (ii)
hold.

(i) For2<i< D, if A;_1 #0 then
LE;A; 9By = (cioy — 1) B Ai 1 By + (2801 + bia ) B Ai 3B
—Bi1 B (A 2 ETAES.
(i) For3<i<D—3,if Ap1 #0 then
REF Aiyo By = (cip1 — i1 — 2Bi11) Ef Ai B + (Cin — 28i41) B Ais B3
+Bi1 B Ai o ETAES.

PrROOF. By Remark 8.19 for every i (2 < ¢ < D — 1) there exist complex scalars «;, §; such
that H; = o;1; + $;G;. We will prove claim (i). The proof of (ii) is similar.

(i) Choose z,y € X and integer i (2 < i < D). Note that by (8.1), LEfA; 2F; =
Er JAEA; oE5. Tt follows from Lemmas 5.20, 5.21 that the (z,y)-entries of both sides of
the equation are 0 if O(x,y) # 2 or J(z,2) #i — 1.

Assume now 0(x,y) = 2 and J(z,2) =i — 1. Observe that by Lemma 5.21, the number
(LEfA;_5E3)., is equal to the number of neighbours that 2 has in D} ,. Assume that A;_; # 0.
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Since for every 0 < h < 2 each z € D7/ (h) is adjacent to precisely ¢; 1 — (a;_1 + hfB;_1)
vertices in D! , and each z € D/ is adjacent to precisely b;_; vertices in D} ,, we have

2

LE;A;i B3 = (cion — iy — hfBi1) By + bisa B Ai3E3.
h=0
The result follows from Lemma 8.25(vi). 1

Lemma 8.27 With reference to Definition 8.24, let y € I'y(x). Then the following (i)—(iv)
hold.

(i) For0<i< D —2, LE*Ai 2B} = b1 B, Aiyi B
(il) For3<i< f, LEFA; 2B} = B} (A, E; +b_1Er | A;_3E5.
(iii) For2<i< D, REfA; »E} = ¢; 1B\ A1 E}.
(iv) For {<i< D —3, RE;AisF} = By A1 B + o B2y Ai s B

PROOF. Similar to the proof of Lemma 8.26. 1

8.5 More products in T

In this section, using our equitable partition from Section 8.3, we evaluate more products in
the Terwilliger algebra which we shall need later.

Lemma 8.28 With reference to Definition 8.18, for y,z € I's(x) and 2 < i < D the number
T 2(2)NDE,| is equal to kicici 1k~ (k—1)"Yify = 2, kicici 1 (cio1 — D)k~ k—1)"(k—2)~!
if Oy, z) =2, and kicici1(ci1(c; —4) +2)k™Hk — 1)k —2)" (k= 3)7' if O(y, 2) = 4.

PROOF. If y = 2, then |I;_5(2) N D ,| is equal to p;; ,, and the result now follows from
Lemma 3.7(i). Assume 9(y,z) = 2 and note that z € D}. Tt follows from Theorem 8.22
that the number of paths of length ¢ — 2 between z and D} , is independent of z. Moreover,
between any two vertices of I' which are at distance ¢ — 2, there exist exactly c¢icy - - - ¢;_o paths
of length i — 2. Therefore, the scalar |T';_5(z) ND;_,| is independent of z; denote this scalar by
Y. Pick w € D} = {7, y} and note that D3(1) = D3, and for v € D!_, we have d(v,w) =i—1.
Thus for any v € D!_,, there are precisely ¢;_; — 1 vertices in D3 that are adjacent to w and
distance i — 2 from v. Using these comments we count in two ways the number of pairs (z,v)
such that z € D3, v € D!_,, and (z,v) =i — 2. This yields ¢;|D3| = |D!_5|2(¢;—; — 1). Thus
Vi = Piio (C¢—1 1)(p3,)~*. Using Lemma 3.7 and the fact that c; = 2, ¢3 = 3, we find
V¥ = kiciciq(cioy — D~k —1)7 Yk —2)7L.

Now assume O(y, z) = 4, and use a similar argument. Again let ¢; = |T;_2(2) N D:_,|.
Note that for any v € Di_,, there are precisely 2(c;_; — 1) vertices in D3 that are distance i — 2
from v, as we counted above. Hence there are precisely ph; 5 — 1 — 2(¢;_1 — 1) vertices in Dj
that are distance ¢ — 2 from v. Here we count in two ways the number of pairs (z,v) such that
z € Dj, v € Dj_,, and d(z,v) =i — 2. This yields 1| Di| = |D}_,|(ph; o — 1 — 2(ci=1 — 1)).
Using Lemma 3.7 and the fact that co = 2, c3 = 3, we obtain the desired result. 1

Corollary 8.29 With reference to Definition 8.18, write Ef = Ef(x) (0 <i < D). Then for
2 <3< D we have

kicici—q kicz’cz’fl(cz’fl - 1)
EXA S EFA, 2By = ——F% EXASES
el dieby = g e T Ty =) 2
kicici—l(ci— (Ci — 4) + 2) % %

k(k —1)(k — 2)(k — 3)
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PROOF. For y,z € X, one verifies the (y, z)-entry of both sides are equal. If y & I'y(x) or
z & I's(x), then the (y, z)-entry of each side is 0. If y, z € I'y(x) then the (y, z)-entry of both
sides are equal by Lemmas 5.20, 5.21 and 8.28. 1

Lemma 8.30 With reference to Definition 8.18, for y,z € T's(x) and 2 < i < D — 2 the
number |U;_o(2) ND},| is equal to kibibipicici k™ (k—1)" (k—2)"Y (k= 3)"" if Oy, z) = 4,
and 0 otherwise.

ProOF. Similar to the proof of Lemma 7.23 using the facts that c; =2, ¢3 = 3. 1

Corollary 8.31 With reference to Definition 8.18, write Ef = Ef(x) (0 <i < D). Then for
2<¢< D —2 we have

kibz‘bi+16z‘0i—1
k(k—1)(k —2)(k —3)

B Ai o Bl Ay 2B = B ALE;.

ProOF. Similar to the proof of Corollary 8.29. 1
Lemma 8.32 With reference to Definition 8.18, for y,z € I's(x) and 2 < i < D — 2 the
number |T;(z) DY, is equal to 0 if y = z, kibibiy1 (i — 1)k H(k—1)" (k—2)"" if O(y, 2) = 2,
and kibibi+1<ci(bi_1 - 1) + (bl - 4)(02'4_1 - 1>>l{3_1(l{? — 1)_1(1{7 - 2)_1(/{3 - 3)_1 Zf (9(3/, z) =4.

PrRoOOF. Similar to the proof of Lemma 7.25 using the facts that co = 2, ¢c3 = 3. ]

Corollary 8.33 With reference to Definition 8.18, write Ef = Ef(x) (0 <i < D). Then for
2<3< D —2 we have

kibibi-i-l(ci—i-l - 1)
k(k—1)(k —2)

kibibiy1(ci(bi1 — 1) + (by — 4)(cip1 — 1))
Kk — 1Dk —2)(k—3)

EiAi o EfAE; = EALE}

2 Wo

ProoOF. Similar to the proof of Corollary 8.29. 1

8.6 Some scalar products
In the remainder of the paper, we will use the following definition.

Definition 8.34 With reference to Definitions 8.18 and 8.23, let W denote an irreducible
T-module with endpoint 2, and let v denote a nonzero vector in E5W. For 0 < < D, define

vl = EfA; yv, v; = E]A;1v. (8.2)

Observe that v = v, v =0ifi <2, and v; =0if i <2 ori > D — 2. Moreover, by [10,
Corollary 9.3(i)], we have

EfA;Eyv=—(v} +v;) (0<i< D). (8.3)
Lemma 8.35 (]9, Corollary 5.9]) With reference to Definition 8.34, JW = 0.

Lemma 8.36 With reference to Definition 8.34, E5AsE5v = —2v.
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PROOF.  Let I'2 = I'2(z) denote the graph with vertex set X = T'y(z) and edge set
R={yz|y,z € X,0(y,z) = 2}. The graph I'2 has exactly k; vertices and it is regular with
valency p2, ([11, Lemma 3.2]). Let A denote the adjacency matrix of I'2. The matrix A is
symmetric with real entries. Therefore Ais diagonalizable with all eigenvalues real. Note that
eigenvalues for £ Ay F5 and A are the same.

Since Ay = 0, we know EjAyE3; has exactly one distinct eigenvalue n on E3W by [11,
Theorem 4.11, Corollary 4.13, Lemma 5.3]. Thus, every nonzero vector in E;W is an
eigenvector for Ej Ay B with eigenvalue n. By [11, Lemmas 5.4, 5.5] and the fact that ¢y = 2,
we find n = —2. The result follows. 1

Lemma 8.37 With reference to Definition 8.34, E5A,E5v = v.

Proor. By Lemma 8.35, Lemma 5.20 and the fact that J = zz‘io A;, we find
0=EjJv=Ejv+ E;AE5v+ E;A ESv.

The result now follows from Lemma 8.36. 1

Lemma 8.38 With reference to Definition 8.34, the following (i)—(iii) hold.
k‘icici_l((k: — 2)(()1_1 — 1) — Ci—lbi)

0 P = B BB 0 =D 2 <i<),
T e SRR R}
() (o, 07) = g P (2<i<D-2)

”i>:k%—&Xk—@%—3)

PROOF. (i) Evaluating ||v]"||> = (E;A;_ov, Ef A;_ov) using v = Ejv, (3.6), and Corollary
8.29, we find

2 = kicici—1 Kicicioy o kicici1(ciop — 1)
k(k—1) k(k—1)(k - 2)
kiCiCi—l(ci—l(Ci — 4) + 2)
k(k—1)(k—2)(k—3)

The result now follows from Lemmas 8.36 and 8.37.
(i1) Using (8.3), we observe ||v;||> = (Ef Aiov, Ef Ajov) = (—EFf A ov— Ef Aju, Ef A;yov).

The rest of the proof is now similar to the proof of (i) above.

(iii) Similar to the proof of (i) above. 1

(B3 AsESv,v)

lv

<E;A4E;U, ’U> .

Lemma 8.39 With reference to Definition 8.34, the following (i)—(ii) hold.

(i) For everyi (f <i <), {v;,v;} is linearly independent set.

(i) For everyi 2<i< f—1) (and if ¢t <D —2 forl+1<i<D-2) {vf

linearly dependent set.

v; }is a

1) ’L

Proor. Note that

K2k — 1)2(k — 2)2(k — 3)? | (v, o) (v, 07)]
k3bibiicicial|v||* (i, v) ()|
. (lf — 2)(61_1 — 1) — Ci—lbi bin_l

CiCi—1 (]ﬂ — 2)(Ci+1 — 1) — Cibi+1 N
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= (]{7 — 1)(k' — 2)(Ci+1(ci — Cj—1 — 1) + bi71<ci+l — C; — 1) +c_1 — Cit1 -+ 2)

Now, the result follows immediately from Lemma 6.8(ii) and Lemma 8.13 (for example,
for every i (f <i < (), the above expression is nonzero). 1

Corollary 8.40 With reference to Definition 8.34, for every i (2 < i < f—1) (and if
(<D-2 forl+1<i<D-2) vf =v;.

< +

PROOF. Note that, since {v;",v; } is a linearly dependent set, we have v; = T‘TUH?U:F
(Lemma 6.10(i) and Lemma 8.38(i) yield ||v;"|| # 0). By Lemma 8.13(i), (ii) and Lemma 8.38,
©lo) 9 The result follows. 1

+
l[o" 11>

8.7 The irreducible T-modules with endpoint 2

With reference to Definition 8.34, in this section we describe the irreducible T-modules with
endpoint 2.

Lemma 8.41 With reference to Definition 8.34, assume £ < D — 2. Then the following (i),
(i) hold.

(i) For2<i<D, v #0 if and only if 2 <i< D — 2.
(i) For2<i:<D—2,v; #0.

PROOF. Note that £ < D — 2 yields ¢p_s = k — 2 by Lemma 8.13(ii). Since cp_o =k — 2 if
and only if (k — 2)(bp_o — 1) — cp_2bp_1 = 0, Lemma 8.38 yields ||v};_,|| = 0, which implies
vh = 0. Next, cp_y = k — 2 yields bp_ = 2, bp_; = 1 and with that |[v}]| = 0. Thus
J’_
vy = 0.
The rest of the proof follows immediately from Lemmas 6.10 and 8.38. 1

Lemma 8.42 With reference to Definition 8.3/, assume { = D — 1. Then the following (i),
(ii) hold.

(i) For2<i<D, v #0 if and only if 2 <i< D —1.

(i) For2<i:<D -2, v; #0.
PrRoOOF. Immediate from Lemmas 6.7, 6.10, 8.13 and 8.38. 1
Theorem 8.43 With reference to Definition 8.34, the following is a basis for W :

of  (2<i <), v; (f<i<D-2). (8.4)
PRrOOF. We first show that W is spanned by the vectors (8.4). Let W’ denote the subspace
of V' spanned by the vectors (8.4) and note that W’ C W. We claim that W’ is a T-module.
By construction W’ is M*-invariant. First we observe EfAFEjv = 0 since W has endpoint 2.
It now follows from (8.3), Lemmas 8.26, 8.27, 8.36 and Corollary 8.40 that W’ is invariant
under L and R. Recall that A = L + R and A generates M so W' is M-invariant. The claim
follows. Note that W’ #£ 0 since v € W’ so W' = W by the irreducibility of W.

Moreover, the vectors (8.4) are nonzero by Lemma 8.41, and linearly independent by (5.5)
and Lemma 8.39. The result follows. 1
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8.8 The irreducible T-modules with endpoint 2: the A-
action

With reference to Definition 8.34, in this section, we display the action of A on the basis for
W given in Theorem 8.43. Since A = L + R, it suffices to give the actions of L, R on this
basis.

Lemma 8.44 With reference to Definition 8.34, for all nonzero v € E;W the following
(i)—(iv) hold.

(i) Lvy =0.
(ii) Lvf = (b1 —2)v7; (3<i<f).

bi_l(l{? — 2) (Ci — Cj—1 — ].)
2Ai—1

— Ny —cio—1
+c,-_1<(k Jeiy = cis >—1)v;1 (f+1<i<0).
204

(iv) Lv; =biyv,_, (f<i<D-2).

(if) Lo = ot

ProOOF. First observe that Ef AE;v = 0, since W has endpoint 2. Applying the equations
in Lemmas 8.26(i), 8.27 to v, and using (8.3), Theorem 8.16 and Corollary 8.40, we obtain
the desired result (note that by Corollary 8.40, vy = v}tl). 1

Lemma 8.45 With reference to Definition 8.34, assume £ < D — 2. Then for all nonzero
v e ESW the following (i)—(iv) hold.

(i) R =i, (2<i<0).

(il) For f<i</l-—1

R,Ui— = Cin1 ((k )(CZ+1 &) ) o 1) U;:l_'_

2044
bi+1(k5 - 2)(Ci+2 — Ciy1 — 1)) -
+ C; — bZ + Ui .
( A 2041 i

(iv) Rvp,_, =0.

PrOOF. First observe that Ef AEv = 0, since W has endpoint 2. Applying the equations
in Lemma 8.26(ii), 8.27 to v, and using (8.3), Theorem 8.16 and Corollary 8.40, we obtain
the desired result. 1

Lemma 8.46 With reference to Definition 8.34, assume { = D — 1. Then for all nonzero
v € ESW the following (1)—-(iii) hold.

(i) Rvf =c¢vf, (2<i<D-2).
(ii) Rvf , =0.
(iii) For f<i<D—2

_ (k'—2)(CZ l_Ci_l)
R'Ui = Ci+1 ( 2£i+1 -1 U,;:l"—
biv1(k—2)(cige —cip1 — 1)\ _
Vit1
2041

PROOF. Similar to the proof of Lemma 8.45. 1

+ (Ci—i-l —bip1 +
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8.9 The isomorphism class

In this section we prove that up to isomorphism there exists exactly one irreducible T-module
with endpoint 2.

Theorem 8.47 With reference to Definition 8.18, let T = T (x) denote Terwilliger algebra
with respect to x. Then the following (i), (ii) hold.

(i) Up to isomorphism, there is a unique irreducible T'-module of endpoint 2.

(ii) Let W denote an irreducible T-module with endpoint 2. Then W appears in V with
multiplicity ko — k.

PROOF. Since z € X is fixed, we will suppress it in notation, writing £ = Ef(z) (0 <i < D)
and M* = M*(x) for the dual idempotents with respect to x and the dual Bose-Mesner
algebra with respect to x, respectively.

(i) First assume ¢ < D — 2. Let W and W' denote irreducible T-modules with endpoint
2. Fix nonzero v € E;W, v € E5W’. By Theorem 8.43, W has basis {EfA; sv|2 < i <
(Y U{EFA; v | f <i < D—2}, and W’ has basis {EfA; 20" |2 < i < FU{EFA v | f <
i <D —2}. Let 0 : W — W' denote the vector space isomorphism defined by o(EfA; ov) =
ErA;, ov' (2 <i</{)and o(EfA;ov) = Ef A 00 (f <i < D —2). We show that o is a
T-module isomorphism. Since A generates M and Ef, EY, ..., E}, is a basis for M*, it suffices
to show o commutes with each of A, Ejj, EY, ..., E},.

Using (eiv) and the definition of ¢ we immediately find that o commutes with each of
Ej B, ..., B} It follows from Lemmas 8.44, 8.45 that o commutes with each of L, R. Recall
A =L+ R so o0 commutes with A. The result follows.

The case when ¢ = D — 1 is similar.

(ii) Routine. 1



Chapter 9

On the Terwilliger algebra of bipartite
DRG with D <5

Let I' = (X, R) denote a bipartite distance-regular graph with diameter D > 4 and valency
k> 3. Assume I is not almost 2-homogeneous. We fix x € X and let Ef = Ef(z) (0 <i < D)
and 7' = T'(z) denote the dual idempotents and the Terwilliger algebra of I' with respect to
x, respectively. Let W denote an irreducible T-module with endpoint 2 and let v denote a
nonzero vector in E3W. For 0 < i < D, define v;” = EfA; oFjv, v; = EfA; 2Fjv.

Main results of this section are Theorems 9.10 and 9.24.

In Theorem 9.10 we find a spanning set for W

_ + o+ + o= o —
W = span{vy ,v3 , ..., 0}, V5 , Vs , ..., Up_o}

under assumption that there exist complex scalars «;, 5; (2 < i < D — 1) such that |I;_1(x) N
Lioi(y)NT1(2)| = a; + Bi|T1(2) NT1(y) NTi1(2)| holds for all y € T'y(x) and z € T's(z) NTy(y).
In Theorem 9.24 we prove that the following (i), (ii) are equivalent.

(i) T has, up to isomorphism, exactly one irreducible T-module W with endpoint 2, and W
is non-thin with dim(E;W) = 1, dim(£},_;W) < 1 and dim(E;W) <2 for 3 <i < D.

(ii) Ay =0, and there exist complex scalars «;, 3; (2 <i < D — 1) such that
[Tici(2) NLima(y) NT1(2)| = o + Bi|Ti(z) NTi(y) N i (2)]
for all y € I'y(z) and z € I';(x) N Tyi(y).

This chapter presents joint work with S. Miklavi¢, and the results are accepted for
publication (see [37]).

9.1 Background

Lets introduce notation that we will use in the rest of this section.

Definition 9.1 ([12, Definition 3.2]) Let I" denote a distance-regular with diameter D > 4
and valency k£ > 3. Fix z € X. For 1 <i < D we define matrices A; = A;(z) in Matx(C) by

Ty (x) NT1(y) NTi21(2)], if O(x,y) = 2,0(z,2) = Iy, 2) = 1,

(Ai)zy = { 0, otherwise (z,y € X).

Notation 9.2 LetI' = (X, R) denote a bipartite distance-reqular graph with diameter D > 4,
valency k > 3 and intersection numbers b;,c;, which is not almost 2-homogeneous. Let
A; (0 <@ < D) be the distance matrices of ', and let V' denote the standard module for T'. We
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fixx € X and let Ef = Ef(x) (0<i < D) and T = T(x) denote the dual idempotents and the
Terwilliger algebra of I' with respect to x, respectively. We assume that for2 <i < D—1, there
exist complex scalars o, f; such that for all y,z € X with O(x,y) = 2, d(x, z) =1, Ay, z) =i,
we have

&+ BIT1(2) N T4 (y) N Tia(2)] = Tea(@) N Tea(y) AT (2)]

Let matrices L = L(x), R = R(z) and \; = Ay(z) (1 < i < D) be as in Definitions 5.19 and
9.1. Let scalars A;,7; (2 <i < D —1) be as in Definition 0.1.

With reference to Notation 9.2, pick 2 < ¢ < D — 1 and assume that A; # 0. By Theorem
7.5 scalars «; and ; are uniquely determined and given by

ci(c;i —1)(bi—y — ) — ¢ici—1(by — 1)(ca — 1)

o; = A
@25 (9.1)
B = Cz‘(Cz‘+1 - Ci)(bi—l - 1) - bi(ci—l-l - 1)(Ci - Ci—l)
' YAy '

If A; =0, then scalars o; and §; are not uniquely determined. For example, if Ay = 0,
then one of the possible values for ais and 5 is gy = 0, S5 = 1. Note however that by Lemma
6.3 this is not the only possible solution.

9.2 Some products in T

With reference to Notation 9.2, in this section we compute some products of matrices of T
We start by recalling the following results.

Lemma 9.3 ([30, Lemma 6.1]) With reference to Notation 9.2, for 0 < h,i,5 < D and
y,z € X the (y,z)-entry of EjA;E} is 1 if O(x,y) = h, d(y,2) = i, O(x,z) = j, and 0
otherwise.

Lemma 9.4 ([306, Lemma 6.5]) With reference to Notation 9.2, for 0 < h,i,j,7,s < D and
y,z € X the (y, z)-entry of Ej A, Ef AEY is [Ui(x) N Ty (y) NTu(2)| if O(w,y) = h, O(w,2) = j,
and 0 otherwise.

Lemma 9.5 ([12, Lemma 3.3]) With reference to Notation 9.2, we have
A, = ETAES, N, =E'A, \ETAE; — BT A, o F; (2<i<D).
In particular, A; € T (1 <i < D).
Theorem 9.6 With reference to Notation 9.2 the following holds for 3 <i < D:
LETA; oFE; =b; 1 E |A; 3E5 + (i1 — o) Ef (A 1By — Bii N1 (9.2)

PROOF. Pick z,y € X and an integer 3 < ¢ < D. We show that (z,y)-entries of both sides
of (9.2) agree. Note that by (5.3) and Lemma 9.4,

ITi(x) N Tio(y) NTy(2)] if O(x,y) =2,0(z,2) =i — 1,

(LE;Ai2E3).y = { 0 otherwise. (9:3)

It follows from (9.3), Lemma 9.3 and Definition 9.1 that the (z, y)-entries of both sides of (9.2)
are 0 if O(x,y) # 2 or O(x, z) # i — 1. Assume now J(z,y) = 2 and d(z, z) =i — 1. Observe
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that by the triangle inequality we have that 0(z,y) € {i — 3,7 — 1,7+ 1}. We consider each of
these three cases separately.

Case 1: O(z,y) =2, d(z,2z) =i — 1 and d(z,y) = i — 3. Note that in this case we have
(LEfA;, 2E3) ., = bi_1 by (9.3). By Lemma 9.3 and Definition 9.1 the (z,y)-entries of both
sides of (9.2) agree.

Case 2: O(x,y) =2, 0(x,z) =i — 1 and d(z,y) =i — 1. Observe that by (9.3) we have

(LEFAioE3 ).y = cio1 — |Ti(2) N iz (z) N Tima(y)]
= ¢i-1 — (i1 + Bima|Tica(2) N Ta(x) NT(y)]).

By Lemma 9.3 and Definition 9.1 the (z,y)-entries of both sides of (9.2) agree.
Case 3: d(z,y) =2, 0(z,2) =i1—1and d(z,y) = i+1. By (9.3), Lemma 9.3 and Definition
9.1 the (z,y)-entries of both sides of (9.2) are 0. 1

9.3 Irreducible T-modules with endpoint 2

With reference to Notation 9.2, let W denote an irreducible T-module with endpoint 2. In
this section we find a spanning set for W.

Definition 9.7 With reference to Notation 9.2, let W denote an irreducible T-module with
endpoint 2 and let v denote a nonzero vector in E;W. For 0 <7 < D, define

UZ-+ = E,Z(Ai_QE;'U, Ui_ = Ez*AH-QE;U
Note that vy = v, v;7 =0ifi <2, and v; =0ifi <2o0ri> D — 2.

Lemma 9.8 ([10, Corollary 9.3(i), Theorem 9.4]) With reference to Definition 9.7, the
following (i)—(iv) hold.

(i) EfA;E5v = —(vi +v;) (2<i< D).
(ii) Rv;” =cioivfy (2 <i< D —1) and Rv}, =0.
(iil) Lv7 = bvi, (2<i<D—2).
(iv) Lvf, — Rv_; = bv — o7 (1<i<D-—1).
Lemma 9.9 With reference to Definition 9.7, the following (i)—(iii) hold.

(i) Ajv=—cvf (2<i< D).

(ii) Lvy =0 and

Lvf = (bioy — i1 4+ i1 + eafim1)visy — (cim1 — au1)vp 4
for3 <i<D.
(ii)
Ru; = (c2fi11 — Cig1 + qig1)V; 1 + Q104

for2 <1< D—2.

Proor. (i) Immediate from Lemma 9.5 and Definition 9.7.

(ii) Note that Lvy = 0 as the endpoint of W is 2. To obtain the result for Lv;" (3 <i < D)
apply (9.2) to v and use Definition 9.7, Lemma 9.8(i) and (i) above.

(iii) Immediately by (ii) above and Lemma 9.8(iv). 1
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Theorem 9.10 With reference to Definition 9.7,

_ + o= - -
W = span{vy , v3 , ..., 0}, V5 , Vg , ..., U o}

PROOF. Denote W’ = span{vy, vy, ...,v}5, 05,05, ...,v,_,} and note that W’ C W. We
now show that W = W'. Note that Ejv}r = 5Z-jv;f for 2 < j < D and Ejv; = d;v; for
2 < j < D —2. Therefore, W’ is invariant under the action of £ for 0 < ¢ < D. Observe also
that W' is invariant under the action of L by Lemma 9.8(iii) and Lemma 9.9(ii), and also
invariant under the action of R by Lemma 9.8(ii) and Le