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Abstract

STRUCTURAL RESULTS ON VERTEX- AND EDGE-TRANSITIVE GRAPHS

The main theme of this PhD thesis are finite graphs admitting a considerable
degree of symmetry. More precisely, we focus on graphs admitting a vertex- and
edge-transitive group of automorphisms.

For a graph Γ and a subgroup G ≤ Aut(Γ) the graph Γ is said to be G-vertex-
transitive, G-edge-transitive and G-arc-transitive whenever the subgroup G acts
transitively on the vertex set V (Γ), the edge set E(Γ) and the arc set A(Γ) of
Γ, respectively. We say that Γ is G-half-arc-transitive if it is G-vertex- and G-edge-
transitive but not G-arc-transitive. In the case of G = Aut(Γ) we omit the prefix
G and simply write vertex-transitive, edge-transitive, arc-transitive and half-arc-
transitive.

Let Γ be a G-vertex- and G-edge-transitive graph for some G ≤ Aut(Γ). Then
two essentially different possibilities can occur:

(i) Γ is G-arc-transitive.

(ii) Γ is G-half-arc-transitive.

In the first main topic of this PhD thesis we focus on the situations from the above
possibility (i). In particular, we apply the known results on arc-transitive graphs as
a tool in the investigation of symmetries of certain maps.

Regarding possibility (ii), it is known that graphs admitting a half-arc-transitive
group of automorphisms must have even valency. Since graphs of valency two are
cycles, the smallest valency where the study of such graphs may not be trivial is four.
In the second main topic of this PhD thesis we focus on tetravalent graphs admitting
a half-arc-transitive action. In particular, we introduce a new parameter for such
graphs, giving a better understanding of their structure. We study the properties of
the graphs with respect to this parameter and use it to relate two important existing
approaches for a systematic study of such graphs.

Finally, we focus on half-arc-transitive graphs with even valency greater than
two. We generalize the well-known Bouwer graphs to obtain a much larger family
of vertex- and edge-transitive graphs. We give a complete classification of its half-
arc-transitive members. It turns out that this family contains almost all so-called
tightly attached tetravalent half-arc-transitive graphs.
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Izvleček

STRUKTURNI REZULTATI O VOZLIŠČNO IN POVEZAVNO TRANZITIVNIH
GRAFIH

Glavna tema doktorske disertacije so končni grafi z visoko stopnjo simetrije.
Natančneje, osredotočili se bomo na grafe, ki premorejo točkovno in povezavno tranz-
itivno grupo avtomorfizmov.

Za dano podgrupo Γ in podgrupa G ≤ Aut(Γ) pravimo, da je graf Γ G-točkovno
tranzitiven, G-povezavno tranzitiven, oziroma G-ločno tranzitiven, če podgrupa G
deluje tranzitivno na množico točk V (Γ), na množico povezav E(Γ), oziroma na
množico lokov A(Γ) grafa Γ. Rečemo, da je graf Γ G-pol-ločno tranzitiven, če je
G-točkovno in G-povezavno tranzitiven, ni pa G-ločno tranzitiven. V primeru, ko je
G = Aut(Γ) opustimo predpono G in pišemo kar točkovno tranzitiven, povezavna
tranzitivnost, ločno tranzitiven, oz. pol-ločno tranzitivnost.

Naj bo graf Γ G-točkovno in G-povezavno tranzitiven za neko podgrupo G ≤
Aut(Γ). Potem drži ena od dveh različnih možnosti:

(i) graf Γ je G-ločno tranzitiven.

(ii) graf Γ je G-pol-ločno tranzitiven.

V prvem delu disertacije se osredotočimo na obravnavo možnosti (i). Že znane
rezultate s področja ločno tranzitivnih grafov uporabimo kot orodje za proučevanje
simetrij določenih zemljevidov.

Glede možnosti (ii) je znano, da morajo biti grafi, ki premorejo pol-ločno tranzi-
tivno grupo avtomorfizmov, sode valence. Ker so grafi valence 2 cikli, je najmanjša
valenca grafov, ki jih je smiselno proučevati, 4. V drugem delu disertacije se posve-
timo tetravalentnim grafom, ki premorejo pol-ločno tranzitivno delovanje. Uvedemo
nov parameter za takšne grafe, preko katerega lahko bolje razumemo njihovo struk-
turo. Proučujemo lastnosti grafov glede na novo uvedeni parameter in na ta način
povežemo dva pomembna že obstoječa pristopa za sistematično obravnavo takšnih
grafov.

Končno se posvetimo še pol-ločno tranzitivnim grafom sode valence večje od
2. Posplošimo dobro znano konstrukcijo Bouwerjevih grafov v precej večjo družino
točkovno in povezavno tranzitivnih grafov. Podamo popolno klasifikacijo njenih pol-
ločno tranzitivnih članov. Izkaže se, da ta družina vsebuje skoraj vse tako imenovane



x

tesno spete tetravalentne pol-ločno tranzitivne grafe.

Math. Subj. Class (2010): 20B25, 05C25, 05C60, 51E30.

Ključne besede: pol-ločna tranzitivnost, Bouwerjevi grafi, tesna spetost, tetrava-
lentnost, alternirajoči cikel, alternirajoči skok.
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Chapter 1

Introduction

Graph Theory is one of the mathematical areas with a strong influence on the modern
life functioning, having applications in computer science, biology, economic models,
chemistry or social science as some examples. From the second half of the last
century there has been an intensive development of graph theory with approaches
from numerous areas of mathematics such as topology, algebra, combinatorics and
geometry. One of the most useful tools to understand the structure of a graph has
been the study of its symmetries.

It is the aim of this PhD thesis to study the structure of graphs admitting a
considerable degree of symmetry. Specifically, we focus on graphs admitting a vertex-
and edge-transitive group of automorphisms. This is a class of graphs that has been
extensively studied for the past 70 years with hundreds of research papers being
published (see for instance [21, 29, 38, 47] and the references cited therein).

We are interested in the study of the transitive action on the set of vertices
and the set of edges of a graph not only for its entire automorphisms group, but
also for the subgroups of its automorphisms group having this property. It is clear
that such groups have a natural action on other sets related to the structure of the
graph namely, on the sets of cycles or paths of certain length. However, the number
of orbits of this action on these sets depends on the structure of the studied graph.
Nevertheless, for the set of arcs of a graph (that is, ordered pairs of adjacent vertices)
this is not the case. The number of orbits of this action on the arc set of the studied
graph is always at most two. In other words, whenever a graph Γ is G-vertex- and
G-edge-transitive for some G ≤ Aut(Γ), then two essentially different possibilities
can occur:

(i) Γ is G-arc-transitive.

(ii) Γ is G-half-arc-transitive.

For instance, it is known that for a cycle Cn, with n ≥ 3, its automorphism group is
of order 2n and is generated by a one-step “rotation” (of order n) and a “reflection” (of
order 2). It follows that the graph Cn is Aut(Cn)-arc-transitive. However, it is also
〈ρ〉-half-arc-transitive, where ρ is a one-step rotation of Cn. Therefore, even if the
first of the two possibilities occurs, one can ask whether there is some other subgroup
H ≤ Aut(Γ) acting half-arc-transitively on Γ. Similarly, in the second of the two
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possibilities one can ask whether some other H ≤ Aut(Γ) acts arc-transitively on Γ.
It was the aim of our research to obtain structural results for graphs (and subgroups
of their automorphism group) from each of these two possibilities and to address the
above mentioned additional questions.

In the first main topic of this PhD thesis we focus on the situations from the
above possibility (i). In particular, we are interested in the application of the known
results on arc-transitive graphs as a tool in the investigation of symmetries of maps.
In the late nineteen-nineties, Graver and Watkins [22] initiated the study of all edge-
transitive maps and divided them into 14 different types or classes. Recently, Gareth
Jones [26] revisited the study of such maps while working on the question of which
groups can act as the automorphism group of an edge-transitive map and answering
it for some specific classes of groups. This question naturally extends to the question
of which graphs can be the underlying graph of an edge-transitive map. Moreover,
in both cases, one can ask which are the classes of edge-transitive maps that can
occur, how many maps of a given class are there and whether one can describe all
of them. When studying edge-transitive maps it is natural to restrict to a subset of
them: those whose automorphism group acts transitively on the set of arcs.

When studying arc-transitive maps one of the most useful of their properties
is that their automorphism group has at most two orbits on the set of its flags
(incident vertex-edge-face triples). Moreover, it is known that there are 5 classes of
arc-transitive maps based on the local configuration of the flags and the orbits they
belong to [23]. One of these classes consists of maps for which its automorphism
group acts transitive on the set of its flags, reflexible maps, and the elements of the
other four classes are the 2-orbit maps of classes known as 2, 20, 21 and 2{0,1}. The
most studied arc-transitive maps so far are the reflexible ones and the maps contained
the class 2. Furthermore, the maps in class 20 are closely related to the maps in class
2 via the Petrie dual operator (and their graphs and groups are the same). This
leaves us with the maps of classes 21 and 2{0,1}, which are also related via the Petrie
operator. In this thesis we thus restrict ourselves to one of this two classes and study
maps of class 2{0,1}. It turns out that the smallest admissible valency for such maps
is four. In Chapter 3 we investigate the connection of this class of arc-transitive maps
to the structure of their underlying (arc-transitive) graph, with special emphasis on
maps of valence four. Together with the results from [28], our analysis gives the main
result of Chapter 3, namely a complete classification of arc-transitive maps whose
underlying graphs are the well-known arc-transitive Rose window graphs.

In the second and third part of this doctoral thesis we focus on the situations from
the above possibility (ii). That is, we study graphs admitting a half-arc-transitive
group G of automorphism (G-HAT graphs for short).

The first result concerning graphs admitting a half-arc-transitive action was given
by Tutte, who proved that the valency of such graphs must be even [55]. Since any
2-valent graph is a disjoint union of cycles (and possibly infinite paths), the smallest
valency where the study of G-HAT graphs is not trivial is four. It is thus not
surprising that the majority of papers on G-HAT graphs deal with the tetravalent
ones. Despite the fact that numerous papers on the topic have been published in
the last half a century the complete classification of tetravalent half-arc-transitive
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graphs appears to be a very difficult, if not impossible, problem. Nevertheless, this
problem has been approached in many different ways and several important results
have been obtained.

One of the most fruitful approaches to the study of structural properties of
tetravalent graphs admitting a half-arc-transitive action was started 20 years ago by
Marušič [32]. It is based on the investigation of certain cycles of such graphs called
alternating cycles (or more generaly G-alternating cycles for a G-HAT graph). In
a G-HAT graph Γ it is easy to see that all the G-alternating cycles have the same
length and two non-disjoint G-alternating cycles always intersect in the same number
of vertices. We call the half of the length of the G-alternating cycles theG-radius of
Γ, radG(Γ), and the size of their nonempty intersection the G-attachment number
of Γ, attG(Γ). It is worth mentioning that tetravalent tightly G-attached graphs
(that is, graphs such that attG(Γ) = radG(Γ)) are already completely classified
[32, 37, 53, 58]. The importance of these results stems from [37] where it was shown
that each tetravalent G-HAT graph Γ is either tightly G-attached or arises as a cer-
tain cover from a loosely- or an antipodally-attached graph (that is, a graph with
attG(Γ) = 1 or attG(Γ) = 2, respectively).

In [3], a new framework for a systematic study of tetravalent graphs admitting
a half-arc-transitive group of automorphisms was proposed. It is based on the so-
called normal quotients method, where smaller graphs with “the same” properties as
the original graph are obtained by identifying the orbits of a non-transitive normal
subgroup of the automorphism group of the studied graph (omitting parallel edges or
loops). One thus aims to classify all “basic” graphs with respect to this quotienting
procedure and then tries to determine how all larger graphs can be reconstructed
from the minimal ones. Recently, some results regarding this approach have been
obtained ([1, 2]).

In our research we consider tetravalent G-HAT graphs from both of the above
points of view. Moreover, we improve some of the existing results and, in fact, bring
together this two important approaches. To reach this objective, in Chapter 4 we
introduce a new parameter for a tetravalent G-HAT graph Γ, the alternating jump of
Γ with respect to the group G and give some of its basic properties. This parameter
describes how two non-disjoint alternating cycles are attached to one another and
gives a more detailed insight into the local structure of such graphs when compared
to the one given by simply considering their radius and attachment number.

The alternating jump of Γ with respect to the group G turns out to be a very
useful tool in the study of tetravalent G-HAT graphs. For instance, in all know
examples of tetravalent HAT graphs (that is a G-HAT where G is its whole auto-
morphism group) the attachment number att(Γ) divides the radius rad(Γ) of the
graph. It is thus natural to ask whether att(Γ) divides rad(Γ) for all HAT graphs
(see [49]). In [39, Theorem 1.2] an affirmative answer to this question ca be found
for the antipodally-attached HAT graphs and, most recently, in [49, Theorem 2] for
graphs with rad(Γ) an odd number. In order to approach this problem in general, we
study the graph of G-alternating cycles of G-HAT graphs. In Chapter 4 we present
several results on this graph, obtained by using the properties of the jump parame-
ter, which enable us to make a considerable step towards the complete answer to the
question mentioned above on whether for a tetravalent HAT graph att(Γ) divides
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rad(Γ) or not.
Finally, in the last part of this PhD thesis we focus on HAT graphs with valencies

greater than four. In contrast to a large number of papers dealing with tetravalent
HAT graphs, the papers investigating HAT graphs of all possible valencies are very
rare (see for instance [5, 8] for some of the not so recent ones). This is most probably
due to the fact that already with tetravalent HAT graphs there are many very difficult
questions which at the moment we cannot answer. However, there has recently
also been some progress on HAT graphs of all even valencies (see for instance [11,
25, 30]) where the generalizations of the concepts of alternating cycles, attachment
number and radius from [32], proposed in [58], are investigated. The generalization of
alternating cycles in such graphs are called alternets (which are not cycles). Similarly
as for tetravalent HAT graphs, half of the size of an alternet its called the radius
of the graph and two non-disjoint alternets always intersect in the same number of
vertices, this number is called the attachment number of the graph.

In 1970, Bouwer [8] constructed an infinite family of vertex- and edge-transitive
graphs that are now known as the Bouwer graphs B(k,m, n). The graph B(k,m, n)
is a 2k-valent graph of order mnk−1. Bouwer showed that for any integer k ≥ 2 the
graph B(k, 6, 9) is HAT, thereby providing one example of a HAT graph for each even
valence greater than 2. However, he did not consider the question of which of the
other B(k,m, n) graphs are HAT nor whether for each k there exist infinitely many
HAT graphs of valence 2k. A recent complete classification of all HAT Bouwer graphs
by Conder and Žitnik [11] provides answers to both of these questions. Nevertheless,
it should be mentioned that the fact that for each k ≥ 2 there exist infinitely many
HAT graphs of valence 2k, was already implicitly indicated by Alspach and Xu [5].
They classified all HAT graphs of order 3p, where p is a prime. The infinitude of
HAT graphs of valencies greater that 4 was later confirmed also by Li and Sim [31],
who provided infinitely many HAT graphs (of various even valences) of prime power
order.

It turns out that all of the Bouwer graphs, as well as the graphs from [5] and [31],
are tightly attached (that is, the radius is equal to the attachment number). However,
even by combining all the tetravalent members of these three families of graphs we get
only a small part of the family of all tetravalent tightly attached HAT graphs (which
have been completely classified by Marušič and Šparl [32, 53]). In Chapter 5 we
generalize the family of Bouwer graphs to obtain a much larger family of vertex- and
edge-transitive graphs of all possible even valences greater than 2. The generalization
is very natural and contains almost all tetravalent tightly attached HAT graphs. We
investigate the obtained family of generalized Bouwer graphs in great detail and give
a complete classification of the HAT members and determine their automorphism
groups.

The results presented in this PhD Thesis are contained in the following articles:

• A. Ramos-Rivera and P. Šparl. The classification of half-arc-transitive gener-
alizations of Bouwer graphs. European J. Combin., 64:88–112, 2017.

• I. Hubard, A. Ramos-Rivera and P. Šparl. Arc-transitive maps with underlying
Rose Window graphs. Submitted.
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• A. Ramos-Rivera and P. Šparl. New structural results on tetravalent half-arc-
transitive graphs. J. Comb. Theory, Ser. B, 135:256-278, 2018.
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Chapter 2

Definitions, notation and

preliminary results

In this chapter we introduce the basic notation, concepts and terminology used in
the thesis.

2.1 Groups

Let X be a nonempty set. We denote by Sym(X) the group of all permutations of X.
In this thesis we let permutations act on the right, i. e., if τ and ρ are permutations
of X, then by their product τρ we denote the permutation of X where we first apply
τ and then ρ.

An action of a group G on the set X is a function X × G → X which satisfies
the following axioms:

• x1G = x for every x ∈ X, and

• (xg)h = x(gh) for every x ∈ X and for all g, h ∈ G,

where, for x ∈ X and g ∈ G, the symbol xg denotes the image of (x, g) ∈ X ×G in
X under this function.

Let G be a group acting on a set X. For every g ∈ G the mapping πg : X → X
defined by x 7→ xg is a permutation of X. The mapping ϕ : g 7→ πg defines a
homomorphism from G to Sym(X). This homomorphism is called the permutation
representation of G induced by the action. The kernel Ker(ϕ) = {g ∈ G |xg =
x, ∀x ∈ X} is called the kernel of the action, and if this is trivial then the action is
said to be faithful .

Let x ∈ X. The set of all the elements of G mapping x to itself is denoted by
Gx an is called the stabilizer of x in the group G. The set xG = {xg | g ∈ G} is
called the G-orbit of x. If |Gx| = 1 for all x ∈ X we say that the action of G is
semiregular. We shall say that the action of the group G is transitive if for each pair
x, y ∈ X there exists g ∈ G such that xg = y. In other words, the action of G on
X is transitive if xG = X for any x ∈ X. If the action of G on X is both transitive
and semiregular, then the action is called regular .

7



8 2.2 Graphs

Let ∆ ⊆ X and for each g ∈ G define ∆g = {xg |x ∈ ∆}. Suppose that G is
transitive on X. A nonempty subset ∆ of X is called a block if for each g ∈ G, either
∆g = ∆ or ∆g ∩ ∆ = ∅. It follows from the definition that the whole set X and
the singletons {x}, x ∈ X, are blocks. These are called trivial blocks and any other
block is called nontrivial. We say that G is primitive if it has no nontrivial blocks;
otherwise it is imprimitive. If ∆ is a block for G, then the set β = {∆g | g ∈ G} is
a partition of the set X. This partition is called the imprimitivity block system of G
induced by ∆.

Let G be a group acting on a set X and let ∆ be a subset of X. Then the
pointwise stabilizer of ∆ in G is:

G∆ = {g ∈ G |xg = x, ,∀x ∈ ∆} =
⋂

x∈∆

Gx,

and the setwise stabilizer of ∆ in G is:

G{∆} = {g ∈ G |∆g = ∆}.

The following theorem from [13, Theorem 1.6A] gives a natural source of imprim-
itivity block systems.

Theorem 2.1. Let G be a group acting transitively on a set X, and let N be a
nontransitive and nontrivial normal subgroup of G. Then the N -orbits form an
imprimitivity block system for the action of G on X.

We present the notation and definitions of special classes of groups and ring that
will appear throughout the thesis.

• Z, the aditive group of integers.

• Zn, the ring of integers modulo n, where n is an integer.

• Z∗
n, the multiplicative group of units of the ring Zn.

• Z2 × Z2, the Klein 4-group

• Dn, the dihedral group of order 2n.

For group theoretic concepts not defined here we refer to [17].

2.2 Graphs

Throughout this thesis all graph are assumed to be simple, finite, connected and
undirected (but with an implicit orientation of the edges when appropriate). Let Γ
be a graph and let V (Γ) and E(Γ) be the sets of its vertices and edges, respectively.
Let u, v ∈ V (Γ). If u and v are adjacent in Γ then we write u ∼ v. The corresponding
edge {u, v} will usually be denoted by uv with the understanding that uv = vu. An
arc of Γ is an ordered pair of vertices (u, v) such that uv ∈ E(Γ) (each edge uv thus
gives rise to two arcs (u, v) and (v, u)), and the set of all arc of Γ is denoted by A(Γ).
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In the case that we are working with a fixed orientation of the edges of Γ we
indicate that the edge uv is oriented from u to v by u → v and say that u is the
tail and v is the head of the (oriented) edge uv. We let N(v) denote the set of all
vertices adjacent to v, and the size of N(v) is called the valency of the vertex v. If
all the vertices of Γ have the same valency, we say that Γ is a regular graph. In this
thesis we also use the term tetravalent for a regular graph of valency 4.

An automorphism γ of a graph Γ is a permutation of the set V (Γ) such that
u ∼ v if and only if uγ ∼ vγ. The set of all the automorphism of a graph form
a group and this group is denoted by Aut(Γ). For a subgroup G ≤ Aut(Γ) the
graph Γ is said to be G-vertex-transitive, G-edge-transitive or G-arc-transitive if
G acts transitively on V (Γ), E(Γ) or A(Γ), respectively. In particular, if G acts
vertex- and edge-transitively but not arc-transitively, then Γ is said to be G-half-
arc-transitive. In this case we also say that Γ admits a half-arc-transitive group
of automorphisms. In the case of G = Aut(Γ), we omit the prefix G and simply
write vertex-transitive, edge-transitive, arc-transitive and half-arc-transitive. As we
pointed out in the introduction, if Γ is a G-vertex- and G-edge-transitive graph for
some G ≤ Aut(Γ), then two essentially different possibilities can occur:

(i) Γ is G-arc-transitive.

(ii) Γ is G-half-arc-transitive.

Let Γ1 and Γ2 be graphs. The lexicographic product of Γ1 and Γ2, denoted by Γ1[Γ2]
is the graph with vertex set V (Γ1)× V (Γ2) in which two distinct vertices (u, v) and
(u′, v′) are adjacent if and only if u ∼ u′ in Γ1, or u = u′ and v ∼ v′ in Γ2 (see
Figure 2.1 for an example).

(u1, x) (u2, x)

(u3, x)

(u4, x)(u5, x)

(u0, x)

(u1, y) (u2, y)

(u3, y)

(u4, y)(u5, y)

(u0, y)

b b

b

bb

b

b b

b

bb

b

Figure 2.1: The lexicographic product of a cycle of length six, (u0, u1, . . . , u5), and
two disjoint vertices, x and y, C6[2K1].

For the sake of completeness we also include the definition of a Cayley graph. Let
G be a group and S ⊆ G \ {1G} such that S = S−1. The Cayley graph Cay(G,S)
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is the graph whose vertex set is G and edge set is {{x, sx} | x ∈ G, s ∈ S}. By
definition, Cay(G,S) has valency |S| and it is connected if and only if 〈S〉 = G, i.
e., S generates G.



Chapter 3

Arc-transitive maps with

underlying Rose window graphs

In this chapter we study arc-transitive graphs and use some known results about
their properties to investigate symmetries of maps.

A map M is an embedding of a connected graph Γ on a compact surface S
without boundary, in such a way that S \ Γ is a disjoint union of simply connected
regions. For example, the Platonic Solids can be regarded as maps on the sphere.
The vertices and edges of the map are the same as those of its underlying graph,
and the faces of the map are the simply connected regions obtained by removing
the graph from the surface. An automorphism of a map is an automorphism of its
underlying graph that also preserves its faces, and so the automorphism group of a
map is a subgroup of the automorphism group of its underlying graph.

As mention in the introduction, in this thesis we focus on maps with the prop-
erty that its automorphism group acts arc-transitively on its underlying graph. These
maps are called arc-transitive maps. It is known that such maps can be divided into
five classes, two of which have been extensively studied in the literature, namely the
reflexible and chiral maps. Moreover, via a map operator, called the Petrial dual, the
maps in one of the remaining these classes are put into a bijective correspondence
with the chiral ones. We thus decide to investigate the two remaining classes that,
until now, have not been studied a lot. It turns out that the smallest admissible
valency of the underlying graph of such maps is 4. It thus seems natural to first
study such maps. Since this two classes are also related via the Petrie dual oper-
ator, we focus in the study of one of them. One of the aims in this chapter is to
present necessary and sufficient conditions for a tetravalent arc-transitive graph be
the underlying graph of such maps.

Moreover, to continue our investigation of arc-transitive maps and apply the ob-
tained results in the following sections, we describe the well-know family of tetrava-
lent graphs called Rose Window graphs, whose arc-transitive members have already
been classified into four subfamilies [27]. The reflexible and chiral maps with under-
lying Rose Window graphs were classified in [28]. The main goal of this chapter is to
complete the classification of all arc-transitive maps with underlying Rose Window
graphs.

11
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3.1 Consistent cycles in arc-transitive graphs

When studying arc-transitive graphs investigation of certain cycles, called consistent
cycles, may give an insight into the structure of the graph in question. The notion of
consistent cycles in arc-transitive graphs was introduced by Conway in 1971 and has
recently been studied in various families of graphs and other combinatorial structures
(see for instance [6, 41, 42] and the references therein). In this section we give the
definition of these cycles and use their properties for the study of G-arc-transitive
graphs Γ where the group G ≤ Aut(Γ) acts regularly on the set of arcs of Γ. The
obtained results turn out to be a very useful tool for the study of a particular class
of maps.

Let Γ be a graph admitting an arc-transitive group of automorphisms G ≤
Aut(Γ). A directed (but not rooted) cycle ~C = (v0, v1, . . . , vr−1) of Γ is said to
be G-consistent if there exists g ∈ G mapping each vi to vi+1 (where the indices
are computed modulo r). For us a directed cycle is thus nothing but a connected
subgraph of valence 2 together with one of its two possible orientations. In this case
g is said to be a shunt of ~C. Of course, the inverse ~C−1 = (v0, vr−1, vr−2, . . . , v1) is
G-consistent if and only if ~C is G-consistent. Thus an (undirected) cycle is said to
be G-consistent if both of its two corresponding directed cycles are G-consistent.

Suppose ~C is a G-consistent directed cycle. It may happen that there is an
automorphism in G, mapping ~C to ~C−1. In such a case we say that the underlying
undirected cycle C of ~C is a G-symmetric consistent. Otherwise it is a G-chiral
consistent cycle. It is well known and easy to see that G induces a natural action on
the set of all G-consistent (directed) cycles. The above remarks thus imply that each
G-orbit of G-symmetric consistent cycles corresponds to one G-orbit of G-consistent
directed cycles, while each G-orbit of G-chiral consistent cycles corresponds to two
such orbits. Moreover, the following has been proved in [42, Corollary 5.2].

Proposition 3.1. ([42]) Let Γ be a graph of valency k admitting an arc-transitive
group of automorphisms G and let s and c denote the numbers of G-orbits of G-
symmetric and G-chiral consistent cycles, respectively. Then s + 2c = k − 1. In
particular, if k is even then Γ contains at least one G-orbit of G-symmetric consistent
cycles.

The following example illustrates the above definitions and Proposition 3.1. See [42]
for a more detailed explanation.

Example 3.2. Let Γ be the well-known Petersen graph with the labels of its vertices
as in Figure 3.1. Then, following the notation from Proposition 3.1, k = 3. Let
G = Aut(G). First, note that the permutation ρ = (1 2 3 4 5)(6 7 8 9 10) ∈ Aut(Γ)
and that it is a shunt, in particular, for the cycle ~C1 = (1, 2, 3, 4, 5). Moreover, the
involution τ = (2 5)(3 4)(7 10)(8 9) ∈ Aut(Γ) and it maps ~C1 to ~C−1

1 . Then ~C1 is an
Aut(Γ)-symmetric consistent cycle. It is not hard to see that the permutation γ =
(3 4 9 7 10 8)(2 5 6) ∈ Aut(Γ), and so it is a shut for the cycle ~C2 = (3, 4, 9, 7, 10, 8).
Since ~C2τ = ~C−1

2 and ~C1 and ~C2 have different lengths, it follows by Proposition 3.1
that s = 2 and c = 0.

As mentioned in the beginning of this chapter, we will study a certain family
of arc-transitive maps. It turns out that the automorphism group of such maps is
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Figure 3.1: Petersen graph.

1-regular on its underlying graph, that is, it acts regularly on the set of its arcs. In
the rest of this section we present some results that are useful for such situations.
The following result was proved in [41].

Lemma 3.3. Let Γ be a G-arc-transitive graph for some G ≤ Aut(Γ) and let (u, v) ∈
A(Γ). For a G-orbit A of G-consistent directed cycles, let BA denote the set of all
automorphisms γ ∈ G, such that uγ = v, and the orbit of u under γ is in A. Let
G(u,v) denote the G-stabilizer of the arc (u, v). Then the number of elements in BA

is independent of A, and is equal to the order of G(u,v).

The next lemma is an immediate corollary of Lemma 3.3.

Lemma 3.4. Let Γ be a graph admitting a 1-regular group of automorphisms G and
let e be an edge of Γ. Then each G-orbit of G-consistent directed cycles of Γ contains
exactly one G-consistent directed cycle containing e.

In the case that the graph under consideration is tetravalent we can say more.

Lemma 3.5. Let Γ be a tetravalent graph admitting a 1-regular group of automor-
phisms G. Then Γ has three G-orbits of G-consistent cycles, all of which are G-
symmetric, if and only if the vertex stabilizers in G are isomorphic to the Klein
4-group.

Proof. Let v ∈ V (Γ) be a vertex of Γ. Since Γ is tetravalent and G is 1-regular the
vertex stabilizer Gv is isomorphic either to Z4 or Z2 × Z2.

Suppose first that Gv = 〈β〉 ∼= Z4, let u be a neighbor of v and let ui = uβi

for i ∈ Z4. Since G is 1-regular there exists an automorphism γ ∈ G mapping the
arc (u0, v) to the arc (v, u1). Then γ is a shunt of the directed G-consistent cycle
~C = (u0, u0γ, u0γ

2, .., u0γ
r−1) containing (u0, v, u1), where r is the order of γ in G. If

the underlying cycle C was G-symmetric, there would exist an automorphism δ ∈ Gv

interchanging u0 and u1, which is impossible as Gv = 〈β〉. Thus C is G-chiral, and
so Proposition 3.1 implies that Γ has one G-orbit of G-symmetric and one G-orbit
of G-chiral consistent cycles.
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Suppose now that Gv
∼= Z2 × Z2 and note that 1-regularity of G implies that

the action of Gv on the four neighbors of v is transitive. Let ~C = (v0, v1, . . . , vn−1)
be a directed G-consistent cycle with v = v0 and shunt γ. By assumption there
exists β ∈ Gv mapping v1 to vn−1. Since β is of order 2, it thus also maps vn−1

to v1. Let ~C ′ = ~Cβ and observe that both ~C−1 and ~C ′ contain the directed 2-
path (v1, v0, vn−1). Since G is 1-regular there exists a unique automorphism γ ∈ G
mapping the arc (v1, v0) to the arc (v0, vn−1), and so ~C ′ and ~C−1 have the same shunt
in G (namely γ), implying that they coincide. Thus the underlying cycle of ~C is a
G-symmetric consistent cycle, and so all G-consistent cycles of Γ are G-symmetric.
�

3.2 Maps

In this section we describe in detail the structure of a map and give the basic ter-
minology and notation that we will be using through this chapter. For simplicity,
we often refer to the vertices, edges and faces of a map as their 0-, 1-, and 2-faces,
respectively.

Let M be a map. By selecting one point in the interior of each 1- and each
2-face of M we can identify an incident vertex-edge-face triple {v, e, f} with the
triangle(s) with vertices v and the chosen interior points of the edge e and the face
f . By doing this everywhere on M we obtain a triangulation of the map, called the
barycentric subdivision BS(M) of M (see Figure 3.2 for an example). If the triangles
of BS(M), called flags, are then in one-to-one correspondence to the incident triples
{v, e, f}, we say that the map M is polytopal. In such a case M can be regarded
as an abstract polytope of rank 3 (in the sense of [40]). In this thesis we will only
be dealing with polytopal maps. We therefore use the term flag both for the flags
themselves and the corresponding incident triples {v, e, f} of M. We refer the reader
to [20] for a detailed study of the polytopality of maps and their generalisations to
higher dimensions as maniplexes.

It is convenient to colour the vertices of BS(M) with the colours 0, 1 and 2,
whenever they represent a vertex, edge or face of M, respectively.

b

b b
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b

b

b

b

b

b

b
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b

b

b

b

bb

Figure 3.2: The barycentric subdivision of the cube.

For a given flag Φ ∈ BS(M) corresponding to the incident triple {v, e, f} we say
that v is the vertex, e is the edge and f is the face of Φ, respectively, and that v, e
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and f belong to Φ. Observe that given a flag Φ ∈ BS(M), it shares its three sides
with three other flags of BS(M). We shall denote then by Φ0, Φ1 and Φ2, where
Φ and Φi share the vertices of colours different from i (see Figure 3.3). The flags Φ
and Φi are said to be i-adjacent flags.

Φ Φ0

Φ2

Φ1

b bb

b b

b b

b

bb

b

b

b

Figure 3.3: A base flag Φ of a map and its adjacent flags.

Given a sequence i0, i1, . . . , ik, with ij ∈ {0, 1, 2}, we define inductively the flag
Φi0,i1,...,ik as the ik-adjacent flag to the flag Φi0,i1,...,ik−1 . Note that as each edge
of M belongs to exactly four flags, we have that Φ0,2 = Φ2,0 holds for every flag
Φ ∈ F(M), where F(M) denotes the set of all flags of M. Note also that since
the underlying graph Γ of M is connected, given any two flags Φ,Ψ ∈ F(M) there
exists a sequence i0, i1, . . . , ik, with ij ∈ {0, 1, 2} such that Ψ = Φi0,i1,...,ik .

The group of all automorphisms of M, denoted by Aut(M), has a natural action
on the set of flags of M. When studying this action the following straightforward
observation can be very useful.

Lemma 3.6. For each automorphism α ∈ Aut(M), each flag Φ ∈ F(M) and each
i ∈ {0, 1, 2} the i-adjacent flag of Φα is the α-image of the i-adjacent flag of Φ, that
is (Φα)i = Φiα.

Hence, the connectivity of M implies that the action of Aut(M) is free on F(M)
(that is, no nonidentity automorphism of M fixes any flag). Therefore, the action
of an automorphismof M is completely determined by its action on any given flag.
Lemma 3.6 also implies the following.

Lemma 3.7. Let M be a map and let O1 and O2 be (possibly the same) orbits of
the action of Aut(M) on F(M). Suppose that Φi ∈ O2 holds for some Φ ∈ O1 and
some i ∈ {0, 1, 2}. Then Ψi ∈ O2 for every Ψ ∈ O1.

We shall say that an automorphism α of M is a reflection whenever there exists
Φ ∈ F(M) and i ∈ {0, 1, 2} such that Φα = Φi. Note that by Lemma 3.6 each
reflection is an involution. We say that α is a one step rotation at the face (resp.
at the vertex) of Φ if Φα = Φ0,1 or Φα = Φ1,0 (resp. Φα = Φ2,1 or Φα = Φ1,2).
Note that since the action of Aut(M) on F(M) is free there can be at most one
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pair of mutually inverse one step rotations at any given vertex or face. The following
observation is straightforward.

Lemma 3.8. Let M be a map such that the underlying graph has no multiple edges
or loops and has minimal degree at least 3. If for some face f of M there exists a
one step rotation at f in Aut(M) then the traversal of f along its boundary visits
each of its vertices and edges exactly once.

Lemma 3.8 thus implies that maps with underlying simple graphs of minimal
degree at least 3 that admit a one step rotation at every face are polytopal.

If the action of Aut(M) has k orbits on the flags of M we say that M is a
k-orbit map. The 1-orbit maps are usually called reflexible maps in the literature.
A map is reflexible if and only if given a base flag Φ there exist automorphisms αi,
i ∈ {0, 1, 2}, sending Φ to Φi. In such a case, the automorphism group of M is
generated by α0, α1 and α2.

The 2-orbit maps have been also studied, for example, in [16], [23] and [45]. There
exist 7 classes of 2-orbit maps. Given I ( {0, 1, 2} we say that a 2-orbit map is in
class 2I if for any given flag Φ we have that Φi is in the same Aut(M)-orbit as Φ if
and only if i ∈ I. By Lemma 3.7 and the fact that we are dealing with 2-orbit maps,
this definition does not depend on the choice of the flag Φ, and thus the 7 classes
are disjoint. We abbreviate 2∅ by 2 and 2{i} by 2i for each of i ∈ {0, 1, 2}.

Maps in class 2 correspond to chiral maps, that is, maps that have two orbits
on flags under its automorphism group in such a way that adjacent flags belong
to different orbits. A map that is either reflexible or chiral is called a rotary map.
Rotary maps are precisely the maps that admit one step rotations around each of its
faces and each of its vertices.

A map is said to be j-face transitive if its automorphism group acts transitively on
the j-faces and it is called fully transitive if it is j-face transitive for all j ∈ {0, 1, 2}.
Rotary maps are examples of fully transitive maps. However, this is no longer true
for all 2-orbit maps. In fact, a 2-orbit map is j-face transitive, for some j ∈ {0, 1, 2},
if and only if I 6= {0, 1, 2} \ {j} (see [23, Theorem 5]). In particular this means that
for each j ∈ {0, 1, 2} there is exactly one class of 2-orbit maps that are not j-face
transitive and hence there are just three classes of 2-orbit maps that are not fully
transitive.

A Petrie polygon of a map M is a path P along the edges of the underlying
graph Γ such that every two consecutive edges of P are consecutive edges on the
same face of M, but no three consecutive edges of P are consecutive edges on the
same face of M. For example, a Petrie polygon of a tetrahedron contains each of
the four vertices of the tetrahedron exactly once. It is not difficult to see that every
edge of M belongs to at most two Petrie polygons (see Figure 3.4). The map having
Γ as the underlying graph and all the Petrie polygons of M as faces is called the
Petrial or Petrie dual of M, and shall be denoted by Mπ. It is well known (see, for
example, [24]) that (Mπ)π ∼= M and that Aut(M) ∼= Aut(Mπ). Hence, the Petrial
of a k-orbit map is again a k-orbit map. Moreover, if M is a 2-orbit map in class
2I , for some I ( {0, 1, 2}, then Mπ is in class 2I′ , where I ′ = I \ {0}, if 0 ∈ I and
2 /∈ I, I ′ = I ∪ {0} if 0, 2 /∈ I and I ′ = I if 2 ∈ I (see [24]).
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Figure 3.4: A Petrie polygon of a tetrahedron.

3.3 Arc-transitive maps

In [22] Graver and Watkins proposed the study of maps whose automorphism group
acts transitively on the set of edges of the map. Rotary maps are examples of such
maps, but not all edge-transitive maps are rotary. In fact, Graver and Watkins
divided the study of edge-transitive maps into 14 different types or classes of such
maps based on the local configuration of the flags and the orbits they belong to
(see also [57]). Two of these 14 classes correspond to rotary maps. Even though
most of the research on edge-transitive maps in the existing literature is focused on
these two classes of rotary maps, some articles also investigated other classes (see
for instance [44, 52]). In these articles questions like which edge-transitive maps of
small genera exist, and which of the 14 types of edge-transitive maps can be realized
by maps with an automorphism group abstractly isomorphic to a symmetric group,
have been considered.

Recently, Jones (see [26]) extended the work of [52] while working on the question
of which groups can act as the automorphism group of an edge-transitive map and
answering it for some specific classes of groups. This question naturally extends to
the question of which graphs can be the underlying graph of an edge-transitive map.
When studying edge-transitive maps it is natural to restrict to a subset of them: the
arc-transitive maps. Rotary maps are an example of such maps, but, again, there
are others. For example, the cuboctahedron (or medial of the cube) seen as a map
on the sphere is arc-transitive, but it is not a rotary map.

Let M be an arc-transitive map and let Φ = (v, e, f) ∈ F(M). If u is the
other vertex of the edge e, then there exists α ∈ Aut(M), fixing the edge e while
interchanging u and v. This means that α sends Φ to either Φ0 or Φ0,2. Consequently,
α sends Φ2 to either Φ0,2 or Φ0. Since e can be mapped by an automorphism of
Aut(M) to any other edge of M, the connectivity of M and Lemma 3.7 imply that
there are at most two orbits of flags under the action of Aut(M).

Of course, if the action of Aut(M) on F(M) has exactly one orbit, then M is
reflexible. However, if there are two orbits, then the above remarks imply that M
has to be in class 2I for some I ⊂ {0, 1, 2} with 2 /∈ I, that is, M belongs to one of
the following four classes of maps: 2, 20, 21 or 2{0,1}.

As we mentioned before, the reflexible and chiral maps (rotary maps) have been
extensively studied in the literature. Moreover, the maps in class 20 are strongly
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related to the chiral ones via the Petrie dual operator, since if M is a map in the
class 2, then Mπ is a map in the class 20 and vice versa (and their graphs and
automorphisms groups are the same). This leaves us with the maps of classes 21 and
2{0,1} which are also related via the Petrie operator. In the rest of this section we
thus restrict ourselves to maps of class 2{0,1}.

Maps in class 2{0,1} are hereditary in the sense that all the combinatorial sym-
metries of their faces can be extended to the entire map (see [43] for a study of
hereditary polytopes). We remark that these maps are of type 2∗ in the sense of [22].

If M is a map in class 2{0,1}, then for each flag Φ there exist (unique) auto-
morphisms α0(Φ) and α1(Φ) sending Φ to the flags Φ0 and Φ1, respectively. By
Lemma 3.6 the automorphism α = α1(Φ

2) maps Φα = (Φ2α)2 = (Φ2,1)2 = Φ2,1,2,
and so there also exists an (unique) automorphism α212(Φ) of M sending a given
flag Φ to Φ2,1,2. Whenever the flag Φ will be clear from the context we will write
α0, α1 and α212 instead of α0(Φ), α1(Φ) and α212(Φ), respectively. In [23], it was
shown that if M is a map in class 2{0,1} and Φ is any flag of M, then Aut(M) =
〈α0(Φ), α1(Φ), α212(Φ)〉.

Recall that maps in class 2{0,1} are not 2-face transitive. On the other hand,
in view of the existence of automorphisms α0 and α1, all of the flags corresponding
to a given face of such a map M are in the same Aut(M)-orbit (and thus M is
hereditary). Since there are only two orbits of flags this implies that there are two
orbits of faces. In other words, there is no automorphism of M mapping a flag Φ
to either Φ2 or to Φ2,0. Since the action of Aut(M) on F(M) is free, the group
Aut(M) acts as a 1-regular group on the underlying graph of M.

As we mention before, an example of a map of class 2{0,1} is the cuboctahedron
seen as a map on the sphere. In this case, it is clear that it is not face transitive
since it has faces of two different lengths (see figure 3.5), in fact faces of the same
are in the same Aut(M)-orbit.
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Figure 3.5: Cuboctahedron.

Let Φ be a flag of a map M of class 2{0,1}, v be the vertex belong to Φ and O1

and O2 be the two Aut(M)-orbits of flags such that Φ ∈ O1. Then the flag Φ1 ∈ O1

while Φ1,2,Φ1,2,1 ∈ O2. If we continue taking the 1- and 2-adjacent flags we can
see that faces of the two Aut(M)-orbits alternated around the vertex v. It follows
that the valency of the underlying graph of a map in class 2{0,1} must be even (see
figure 3.6). By the Petrie dual operator, this also holds for maps in the class 21.
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Φ1,2,1,2

Φ1,2,1,2,1
b

bb b

b

b

b

b

Figure 3.6: Local configuration around a vertex of a map of class 2{0,1}.

Let M be a map in class 2{0,1}, let n and m be the lengths of its faces from the
two Aut(M)-orbits and let 2q be the valency of each vertex. Then we say that the

type of M is
{

n
m

, 2q

}

(the cuboctahedron is of type
{

3
4
, 4

}

). In this case the

face stabilizers 〈α0, α1〉 and 〈α0, α212〉 are isomorphic to Dn and Dm, respectively
(assuming the base flag Φ is in a face of length n), while the vertex stabilizer 〈α1, α212〉
is isomorphic to Dq. Furthermore 〈α1, α212〉 acts transitively (in fact regularly) on
the neighbours of the base vertex belonging to Φ. In Figure 3.7 the local configuration
around the base flag Φ in a map of class 2{0,1} is shown.

Φ Φ0
Φ0,1

Φ0,1,0

Φ2

Φ1

Φ1,0

Φ2,0

Φ2,1

Φ2,1,0

Φ2,0,1

Φ2,0,1,0

b b

b b

b b

Figure 3.7: Local configuration in a map of class 2{0,1}.

In the rest of this section we give some results about maps in class 2{0,1} related
to their underlying graphs and their automorphisms group. Following [12], the next
lemma is straightforward.

Lemma 3.9. If M is a map such that there exists a flag Φ and automorphisms α0,
α1 and α212 sending Φ to Φ0, Φ1 and Φ2,1,2, respectively, then M is either a 2-orbit
map in class 2{0,1} or it is a reflexible map.
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Let M be a map in class 2{0,1} and let α0, α1 and α212 be the distinguished
generators of Aut(M) with respect to some base flag Φ. Then the automorphism
α0α1 acts as a 1-step rotation of the face belonging to Φ and α0α212 acts as a 1-
step rotation of the face belonging to Φ2. Moreover, if in addition we apply α0 to
any of these rotations we get a 1-step rotation in the "opposite direction" of the
corresponding face.

We have therefore established the following lemma.

Lemma 3.10. Let M be a map in class 2{0,1} with the underlying graph Γ. Then
the boundaries of faces of M are Aut(M)-symmetric consistent cycles of Γ.

Corollary 3.11. Let M be a map in class 2{0,1}. Then no two faces of M share
two consecutive edges.

Proof. Since Aut(M) is 1-regular on the underlying graph, each face has an unique
pair of mutually inverse one step rotations in Aut(M). Hence, if two faces share two
common consecutive edges, the one step rotations for both faces coincide, implying
that they share all its vertices and edges. But in this case the map is a reflexible
map on the sphere with two faces, a contradiction. �

Note that the smallest admissible valency of the underlying graph of maps in class
2{0,1} is 4. We finish this section with a result that is of great help when dealing
with such maps.

Theorem 3.12. Let Γ be a tetravalent graph admitting a 1-regular group of auto-
morphisms G. Then:

a) If Γ is the underlying graph of a map M in class 2{0,1} with Aut(M) = G then
all orbits of G-consistent cycles of Γ are G-symmetric.

b) If G = Aut(Γ) and all orbits of G-consistent cycles of Γ are G-symmetric, then
for any two orbits of G-consistent cycles of Γ there exists a map M in class
2{0,1} with Aut(M) = G and underlying graph Γ such that the boundaries of
its faces are the members of these two orbits.

Proof. By Proposition 3.1 the graph Γ has three orbits of G-consistent directed
cycles and at least one of the orbits of G-consistent cycles is G-symmetric.

Let us start by assuming that Γ is the underlying graph of a map M in class
2{0,1} with Aut(M) = G. By Lemma 3.10 the faces of M are G-symmetric consistent
cycles, and since G has two orbits on the set of faces of M this shows that Γ has at
least two orbits of G-symmetric consistent cycles, implying that Γ in fact has three
orbits of G-consistent cycles, all of which are G-symmetric.

For the second part of the theorem suppose G = Aut(Γ) and that all orbits of
G-consistent cycles are G-symmetric. By Proposition 3.1 there are three of them;
let O1 and O2 be any two. We now show that there is a map in class 2{0,1} having
the elements of O1 and O2 as faces. In fact, by Lemma 3.4, taking all the elements
of both O1 and O2 as faces, we do get a map M with underlying graph Γ. We just
need to show that this map M is in class 2{0,1}. Since we have chosen two complete
orbits of G-consistent cycles as the faces of M, every automorphism of Γ sends faces
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to faces, implying that it is an automorphism of M, and so Aut(Γ) = G = Aut(M).
Moreover, since G is 1-regular, the map M is not reflexible. By Lemma 3.9 we thus
only need to show that we can send a given flag Φ to the flags Φ0, Φ1 and Φ2,1,2.

Let Φ = (v, e, f1) be a flag of M and let u be the other vertex of Γ, incident to e.
Without loss of generality assume that f1 belongs to O1. Denote by f2 the unique
(confront Lemma 3.4) face from O2 containing e. First, since f1 is a G-symmetric
consistent cycle there exists α0 ∈ G fixing f1 and e and interchanging u and v. We
can therefore map Φ to its 0-adjacent flag Φ0. Let β, β′ ∈ G be the shunts of f1
and f2, respectively, that send v to u. Then α1 := βα0 maps Φ to Φ1. Finally,
α212 := β′α0 maps Φ to Φ2,1,2, proving that M is indeed in class 2{0,1}. �

Combining together Lemma 3.5 and Theorem 3.12 we have the following useful
corollary for searching for possible examples of maps in class 2{0,1}.

Corollary 3.13. Let Γ be a tetravalent graph with a 1-regular group of automor-
phisms. Then Γ is the underlying graph of a map of class 2{0,1} if and only if the
vertex stabilizers in Aut(Γ) are isomorphic to the Klein 4-group. Moreover, in this
case there are three pairwise nonisomorphic such maps.

3.4 Rose Window graphs

Another way to approach the investigation of maps in class 2{0,1} is by asking the
question of which graphs can be the underlying graphs of such maps. Of course, in
this case we are looking for graphs having at least the necessary properties, that is
being arc-transitive and having even valency. We then have to study their struc-
ture. In this section we describe a family of tetravalent graphs whose arc-transitive
members have been classified.

In 2008 Wilson [59] introduced a family of tetravalent graphs now known as
the Rose Window graphs. This class of graphs has been studied quite a lot and is
now well understood (see for instance [15, 27, 28]). In [59] Wilson identified four
specific subfamilies of Rose Window graphs (defined below) and proved that their
members are arc-transitive. His conjecture that each edge-transitive Rose Window
graph (which in the case of Rose Window graphs is equivalent to being arc-transitive)
belongs to one of these four subfamilies was confirmed in 2010 by Kovács, Kutnar
and Marušič [27].

Let n ≥ 3 be an integer and let 1 ≤ r ≤ n− 1, with r 6= n/2, and 1 ≤ a ≤ n− 1
be integers. The Rose Window graph Rn(a, r) is then the graph with vertex-set
{xi | i ∈ Zn} ∪ {yi | i ∈ Zn} whose edge-set consists of four kinds of edges:

• the set of all rim edges xixi+1, i ∈ Zn;

• the set of all hub edges yiyi+r, i ∈ Zn;

• the set of all in-spokes xiyi, i ∈ Zn;

• the set of all out-spokes xiyi−a, i ∈ Zn,

where all the indices are computed modulo n. It is clear that we can assume a ≤ n/2
and r < n/2 (see Figure 3.8 for an example).
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Figure 3.8: R8(2, 3).

Observe that the graph Rn(a, r) admits the automorphisms

ρ = (x0, x1, . . . , xn−1)(y0, y1, . . . , yn−1) and µ, (3.1)

where µ interchanges each xi with xn−i and each yi with yn−i−a. Note that the
group 〈ρ, µ〉 ∼= Dn (the dihedral group of order 2n) has two orbits on the vertex-set
of Rn(a, r).

We can now state the result [27, Corollary 1.3] giving a complete classification of
arc-transitive Rose Window graphs.
Proposition 3.14. ([27]) Let n ≥ 3 be an integer and let 1 ≤ r < n/2 and
1 ≤ a ≤ n/2 be integers. Then the Rose Window graph Rn(a, r) is arc-transitive if
and only if it belongs to one of the following four families:

(i) Rn(2, 1);

(ii) R2m(m− 2,m− 1);

(iii) R2m(2b, r), where b2 ≡ ±1 (mod m) and either r = 1 or r = m− 1, in which
case m must be even;

(iv) R12m(3m+ 2, 3m− 1) or R12m(3m− 2, 3m + 1).

We remark that in [27] and [28] the order of the families (iii) and (iv) (called (d)
and (c) there) was reversed but we choose to stick with the order and names given
in [59] where the families were first introduced.

3.5 The classification

As announced in the beginning of this chapter we now classify all maps of class 2{0,1}
whose underlying graph is a Rose Window graph. Since the chiral maps underlying
Rose Window graphs have already been classified in [28] the remarks from Section 3.3
imply that this completes the classification of all arc-transitive maps corresponding to



Arc-transitive maps with underlying Rose window graphs 23

Rose Window graphs. We analyze each of the four subfamilies from Proposition 3.14
in a separate subsection.

3.5.1 Family (i)

We start by considering the family of graphs Rn(2, 1), n ≥ 3. The graph Rn(2, 1)
is isomorphic to the lexicographic product Cn[2K1] of a cycle of length n with two
independent vertices and is known also as the wreath graph. These graphs appear
in various investigations of symmetries of graphs and have thus been studied in
great detail before (see for instance [51] where certain generalizations, now know
as the Praeger-Xu graphs, have been introduced and their automorphism groups
determined).

Throughout this subsection let Γ = Rn(2, 1). For convenience we relabel the
vertices of Γ in the following way. For each i ∈ Zn we let ui = xi and vi = yi−1. With
this notation each pair of vertices ui and vi have the same neighborhood {ui±1, vi±1}
(see Figure 3.9 for an example). The permutations ρ and µ from (3.1) thus map in
such a way that uiρ = ui+1, viρ = vi+1, uiµ = u−i and viµ = v−i for all i ∈ Zn.
For each i ∈ Zn let σi be the involution interchanging ui and vi and fixing all other
vertices. Clearly σi = ρ−iσ0ρ

i and σiσj = σjσi hold for all i, j ∈ Zn. Moreover, it
is well known that, unless n = 4 in which case Γ ∼= K4,4, the 2-element sets {ui, vi}
are blocks of imprimitivity for Aut(Γ) = 〈ρ, µ, σ0〉 which is thus of order n2n+1 with
N = 〈σ0, σ1, . . . , σn−1〉 ⊳ Aut(Γ).
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x4x5

x3x6

x2x7

y1

y2

y3

y4y5

y6

y7

y0

b b

b
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Figure 3.9: R8(2, 1) with the relabeling of its vertices.

Since R4(2, 1) ∼= K4,4 is a bit special, we deal with it separately. Using a suitable
computer package it is easy to see that there is exactly one map of class 2{0,1}
with K4,4 as its underlying graph; the faces are of lengths 4 and 8. For the rest of
this subsection we thus assume n 6= 4. Our approach in determining all maps of
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class 2{0,1} on Γ is similar to the one taken in [28]. We first determine the structure
of potential 1-regular subgroups of Aut(Γ) which could be the automorphism groups
of such maps.

Suppose then that M is a class 2{0,1} map with the underlying graph Γ and let

T = N ∩Aut(M). Clearly, each σ ∈ N can uniquely be expressed as σ = Πn−1
j=0σ

ij
j ,

where ij ∈ {0, 1}, and so we can denote each such σ with the corresponding n-tuple
(i0, i1, . . . , in−1).

Lemma 3.15. We either have

T = {(0, 0, . . . , 0), (0, 1, 1, 0, 1, 1, . . . , 0, 1, 1),
(1, 0, 1, 1, 0, 1, . . . , 1, 0, 1), (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0)},

(3.2)

in which case 3 | n, or

T = {(0, 0, . . . , 0), (0, 1, 0, 1, . . . , 0, 1),
(1, 0, 1, 0, . . . , 1, 0), (1, 1, . . . , 1)},

(3.3)

in which case 2 | n. In particular, gcd(n, 6) 6= 1.

Proof. Since Aut(M) is 1-regular it easily follows that T ∼= Z2 × Z2. Let T =
{1, t1, t2, t3}. The subgroup N is normal in Aut(Γ), implying that T is normal in
Aut(M). Since Aut(M) is arc-transitive on Γ and the sets {ui, vi} are blocks of
imprimitivity for Aut(M), the group Aut(M) contains elements of the form ρσ and
µσ′, where σ, σ′ ∈ N . Since T is normal in Aut(M) and N is abelian we thus get
T = T σρ−1

= T ρ−1

and T = T σ′µ−1

= T µ−1

, implying that T ρ = T = T µ.
Now, 1-regularity of Aut(M) implies that for any 1 6= t = (i0, i1, . . . , in−1) ∈ T

we cannot have ij = ij+1 = 0 for any j ∈ Zn. We can thus assume that t1 =
(0, 1, i2, i3, . . . , in−3, in−2, 1). Then tρ1 = ρ−1t1ρ = (1, 0, 1, i2 , i3, . . . , in−3, in−2) 6= t1.
We can assume tρ1 = t2. Now, tρ2 = (in−2, 1, 0, 1, i2 , i3, . . . , in−3) 6= t2, and so we
either have tρ2 = t3 (in which case tρ3 = t1) or tρ2 = t1 (in which case tρ3 = t3). It
is now clear that in the first case n is divisible by 3 and T is as in (3.2) and in the
second case n is even and T is as in (3.3). �

We can now analyze the different possibilities for the faces of our map M. By
Proposition 3.1 the graph Γ has three orbits of Aut(Γ)-consistent cycles. The repre-
sentatives of the orbits are (u0, u1, . . . , un−1, v0, v1, . . . , vn−1), (u0, u1, . . . , un−1) and
(u0, u1, v0, v1), with shunts, ρσ0, ρ and σ1µρ, respectively. Thus, all the Aut(Γ)-
consistent cycles are clearly Aut(Γ)-symmetric. By Lemma 3.10 the possible face
lengths for M are 4, n and 2n. Moreover, the following holds.

Lemma 3.16. The map M has faces of two different lengths.

Proof. Recall that M, being a map of class 2{0,1}, admits a one-step rotation
around each of its faces. Thus, by Lemma 3.8, each edge is on the boundary of two
different faces of M. Since (ui, ui+1, vi, vi+1) is clearly the only Aut(Γ)-consistent
4-cycle containing any of the corresponding four edges (recall that n 6= 4), it is clear
that each edge of Γ lies on at least one face of length greater than 4.
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Suppose f is a face of M of length n. Since |T | = 4 and f clearly has exactly one
vertex of each block of imprimitivity Bi = {ui, vi} the set O1 = fT = {ft | t ∈ T}
is the orbit of f under the action of Aut(M). By way of contradiction suppose
that the other Aut(M)-orbit of faces of M also consists of faces of length n and
let f ′ be any face from the second orbit O2 = f ′T . Since f ′ corresponds to an
Aut(Γ)-consistent cycle it also contains exactly one vertex from each of the blocks
Bi, and so there exists σ ∈ N such that f ′ = fσ. But as N is abelian we get
O2 = f ′T = fσT = fTσ = O1σ, and so σ interchanges the two orbits of faces of
M, implying that it is in fact an automorphism of M. But then σ ∈ T , and so
O2 = O1σ = O1, a contradiction.

A similar argument shows that M also cannot have all faces of length 2n. �

The analysis of possible maps M of class 2{0,1} whose underlying graph is Γ is
now straightforward. By Lemma 3.16 we either have an orbit of faces of length n (and
either an orbit of faces of length 4 or faces of length 2n) or one orbit of faces of length
2n and one orbit of faces of length 4. Moreover, Corollary 3.11 implies that the map
is completely determined once we have chosen one orbit of faces of length n or 2n and
decided on the length of the faces from the other orbit. Next, in view of the action of
Aut(Γ) and the remarks from the paragraph preceding Lemma 3.16 we can assume
that, in the case that M has faces of length n, one of them is f = (u0, u1, . . . , un−1)
while in the case it does not have faces of length n one of the faces of length 2n
is f = (u0, u1, . . . , un−1, v0, v1, . . . , vn−1). The corresponding Aut(M) orbit of f is
then completely determined by the action of T , which by Lemma 3.15 is also known
(up to the two possibilities). Once the faces have been determined one only needs to
check that we indeed have the required automorphisms of the map for Lemma 3.9
to apply. Note that, since the faces are of two different lengths, the obtained map
cannot be reflexible, and is thus automatically of class 2{0,1}.

Theorem 3.17. Let Γ = Rn(2, 1) be a Rose Window graph with n ≥ 3. Then Γ is the
underlying graph of a map M of class 2{0,1} if and only if gcd(n, 6) 6= 1. Moreover,
letting n0 ∈ {0, 2, 3, 4, 6, 8, 9, 10} be the residue of n modulo 12 the following holds:

(i) if n = 4, then Γ is the underlying graph of exactly one map of class 2{0,1} with
face lengths 4 and 8;

(ii) if n0 ∈ {3, 9}, then Γ is the underlying graph of a unique map in class 2{0,1};
the faces are of lengths 4 and n;

(iii) if n0 ∈ {4, 8}, then Γ is the underlying graph of two nonisomorphic maps of
class 2{0,1}; one has faces of lengths 4 and n and the other has faces of lengths
4 and 2n;

(iv) if n0 ∈ {2, 10}, then Γ is the underlying graph of three nonisomorphic maps of
class 2{0,1}; one has faces of lengths 4 and n, one has faces of lengths 4 and
2n, and one has faces of lengths n and 2n;

(v) if n0 = 0, then Γ is the underlying graph of three nonisomorphic maps of
class 2{0,1}; two have faces of lengths 4 and n, and one has faces of lengths 4
and 2n;
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(vi) if n0 = 6, then Γ is the underlying graph of four nonisomorphic maps of
class 2{0,1}; two have faces of lengths 4 and n, one has faces of lengths 4 and
2n, and one has faces of lengths n and 2n.

Proof. The case n = 4 has been dealt with at the beginning of this section. For the
rest of the proof we thus assume n 6= 4. By Lemma 3.15 at least one of 2 and 3 must
divide n. We now consider the possibilities for the combinations of the lengths of
faces of M. We first analyze the possibility that M has faces of length n. Recall that
we can assume that one of the n-faces is f = (u0, u1, . . . , un−1). We now separate
the argument for the two possibilities regarding the subgroup T .

Suppose first that T is as in (3.2) and recall that in this case 3 divides n. The
four faces of length n are then (see Figure 3.10):

f = (u0, u1, . . . , un−1),
f t1 = (u0, v1, v2, u3, v4, v5, . . . , un−3, vn−2, vn−1),
f t2 = (v0, u1, v2, v3, u4, v5, . . . , vn−3, un−2, vn−1) and
ft3 = (v0, v1, u2, v3, v4, u5, . . . , vn−3, vn−2, un−1).

u0 u1 u2 u3un−3un−4 un−1un−2

v0 v1 v2 v3vn−1vn−2vn−3vn−4

b b b b b b b b

b b b b b b b b

Figure 3.10: The n-faces of M in the case when T is as in (3.2).

Let f ′ be the face containing the edge u0u1, different from f . If it is not a 4-cycle
then the fact that 3 | n and Corollary 3.11 imply that it is

(u0, u1, v2, u3, u4, v5, . . . , un−3, un−2, vn−1),

contradicting Lemma 3.16. Thus the non n-faces of M are the 4-cycles (ui, ui+1, vi, vi+1),
i ∈ Zn. It remains to be shown that the resulting map M is indeed a map of class
2{0,1}. It is clear that ρ, µ ∈ Aut(M). Let Φ be the flag corresponding to the vertex
u0, edge u0u1 and the 4-face (u0, u1, v0, v1). Then µρ = α0, t1 = α1 and µ = α212,
and so Lemma 3.9 implies that M is a map of class 2{0,1}.

Suppose now that T is as in (3.3) and recall that in this case n is even. The four
faces of length n are then (see Figure 3.11):

f = (u0, u1, . . . , un−1),
f t1 = (u0, v1, u2, v3, . . . , un−2, vn−1),
f t2 = (v0, u1, v2, u3, . . . , vn−2, un−1) and
ft3 = (v0, v1, . . . , vn−1).

Let f ′ be the face containing the edge u0u1, different from f . If it is not a 4-face
then its boundary contains the path (u0, u1, v2, v3, u4, u5, . . . , un−3, vn−2, vn−1), and
so Lemma 3.16 implies that n ≡ 2 (mod 4). The two 2n-faces are thus

f ′ = (u0, u1, v2, v3, . . . , un−2, un−1, v0, v1, . . . , un−4, un−3, vn−2, vn−1) and
f ′t1 = (u0, v1, v2, u3, u4, . . . , vn−1, v0, u1, u2, . . . , vn−3, vn−2, un−1).
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u0 u1 u2 u3un−3un−4 un−1un−2

v0 v1 v2 v3vn−1vn−2vn−3vn−4
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Figure 3.11: The faces of length n in the case that T is as in (3.3).

u0 u1 u2 u3un−3un−4 un−1un−2

v0 v1 v2 v3vn−1vn−2vn−3vn−4
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Figure 3.12: The 2n-faces of the map that has 2n-faces and n-faces.

Again (see Figure 3.12), ρ, µ ∈ Aut(M). Letting Φ be the flag corresponding
to the vertex u0, edge u0u1 and the corresponding n-face, it is clear that µρ = α0,
µ = α1 and µt1 = α212, and so Lemma 3.9 implies that M is a map of class 2{0,1}.
If however f ′ is a 4-face, then we get a map M with ρ, µ ∈ Aut(M) and µρ = α0,
t1 = α1 and µ = α212, where Φ is the flag corresponding to the vertex u0, edge u0u1
and the 4-face (u0, u1, v0, v1). Thus M is again a map of class 2{0,1}.

The case when M has faces of lengths 4 and 2n can be dealt with in a similar
way. Letting f = (u0, u1, . . . , un−1, v0, v1, . . . , vn−1) be one of the faces of length
2n it is easy to see that Lemma 3.4 forces T to be as in (3.3), and so n is even.
This time ρσ0, µt3σ0 ∈ Aut(M), and consequently µt3σ0ρσ0 = α0, t1 = α1 and
µt3σ0 = α212, where Φ is the flag corresponding to the vertex u0, edge u0u1 and the
4-face (u0, u1, v0, v1). We therefore get a map of class 2{0,1}. Details are left to the
reader.

To prove that all the obtained maps are pairwise nonisomorphic observe that this
is clearly true if the two maps under consideration have faces of different lengths.
As for the maps from items (v) and (vi) of the Theorem note that the maps with
faces of lengths 4 and n corresponding to the case when T is as in (3.2) are such
that a face of length n meets all other three faces of length n while in the case when
T is as in (3.3) this does not hold, proving that the corresponding maps cannot be
isomorphic. �

3.5.2 Family (ii)

We now consider the second family of arc-transitive Rose Window graphs, namely,
the graphs of the form R2n(n+2, n+1). Using a suitable computer package one can
verify that the graph R6(5, 4) is the underlying graph of three maps of class 2{0,1}.
Their face lengths are 3 and 4, 3 and 6 and 4 and 6, respectively. Similarly, the
graph R8(6, 5) is the underlying graph of exactly one map of class 2{0,1}. Its face
lengths are 4 and 8. For the rest of this section we can thus assume n ≥ 5.

The graph Γ = R2n(n+2, n+1) is isomorphic to the Praeger-Xu graph C(2, n, 2)
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([51]; see also [59, Section 5]). For convenience we relabel the vertices of Γ by setting:

ui =

{

xi ; 0 ≤ i ≤ n− 2
yn−2 ; i = n− 1

, vi =







yi−1 ; 1 ≤ i ≤ n− 2
y2n−1 ; i = 0
xn−1 ; i = n− 1

,

wi =

{

yn+i−1 ; 0 ≤ i ≤ n− 2
x2n−1 ; i = n− 1

and zi =

{

xn+i ; 0 ≤ i ≤ n− 2
y2n−2 ; i = n− 1.

Note that now the indices for ui, vi, wi and zi can be taken in Zn, and we do so.
A presentation of Γ with respect to this relabeling, which we will be relying on

in the reminder of this section, is given in Figure 3.13. The rim edges are colored
red, the hub edges yellow, the in-spokes green and the out-spokes blue.
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Figure 3.13: Relabeling of the vertices of the graph R2n(n+ 2, n + 1).

Let us define σi = (ui, vi)(wi, zi)(ui+1, wi+1)(vi+1, zi+1) for each i ∈ {0, 1, . . . ,
n− 1}, where the indices are taken in Zn. It is clear that the σi are automorphisms
of Γ. (The σi correspond to the permutations ǫi of [28] and σi of [59]). Note that, for
each i, σiσi+1 = σi+1σi, and so σiσj = σjσi holds for every i, j ∈ {0, 1, . . . , n − 1}.
We denote the (elementary abelian) group generated by σ0, . . . , σn−1 by N .

Now, set α = ρσn−1 and observe that

α = (u0, u1, . . . , un−1)(v0, v1, . . . , vn−1)(w0, w1, . . . , wn−1)(z0, z1, . . . , zn−1), (3.4)

and thus, σi = σα
i

0 . This shows that the n-cycles (u0, u1, . . . , un−1) and (z0, z1, . . . , zn−1)
are Aut(Γ)-consistent cycles of Γ. Next, let

β =





⌊n−1

2
⌋

∏

i=1

(ui, un−i)(zi, zn−i)



 (v0, w0)

(

n−1
∏

i=1

(vi, wn−i)

)

. (3.5)

We can think of β being the “twisted” reflection with respect to the “line through
u0 and z0” in Figure 3.13, which interchanges the roles of the vi and wj vertices. It
is easy to verify that η = σ1σ2 · · · σn−2β, and so β ∈ Aut(Γ). Moreover, Aut(Γ) =
〈ρ, µ, σ0〉 = 〈α, β, σ0〉 (see also [59]).

The graph Γ has several blocks of imprimitivity for the action of its automorphism
group. For instance, one can verify that the sets Bi = {ui, vi, wi, zi} are blocks for
each i (recall that n > 4). Consequently, the subsets {ui, zi} and {vi, wi} are also
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blocks for Aut(Γ) (since these are the only 2-subsets of vertices of Bi which do not
lie on a common 4-cycle).

For the rest of this section we assume that Γ is the underlying graph of a map
M of type 2{0,1} and we let T = N ∩Aut(M). Since Aut(M) is 1-regular it follows
that |T | = 8. Moreover, as in the case of Family (i) T is normal in Aut(M) and
1-regularity of Aut(M) implies that no nontrivial element of T fixes an arc of Γ.
Observe that since each element of N fixes each Bi setwise any 2-element subset of
Bi is a block of imprimitivity for the restriction of the action of N (and thus T ) on
Bi. This proves that any t ∈ T fixing a vertex of Bi must fix Bi pointwise. Thus, an
element t ∈ T has one of the following actions on the block Bi:

1, (ui, vi)(wi, zi), (ui, wi)(vi, zi), or (ui, zi)(vi, wi). (3.6)

For t ∈ T we shall write t = (j0, j1, . . . , jn−1), where ji is equal to 0, 1, 2 or 3, de-
pending on whether the action of t on Bi is trivial, or is (ui, vi)(wi, zi), (ui, wi)(vi, zi)
or (ui, zi)(vi, wi), respectively. We can now determine all the possibilities for the sub-
group T .

Lemma 3.18. We either have

T = {(0, 0, . . . , 0), (0, 1, 2, 0, 1, 2, . . . , 0, 1, 2),
(2, 0, 1, 2, 0, 1, . . . , 2, 0, 1), (1, 2, 0, 1, 2, 0, . . . , 1, 2, 0),
(2, 1, 3, 2, 1, 3, . . . , 2, 1, 3), (3, 2, 1, 3, 2, 1, . . . , 3, 2, 1),

(1, 3, 2, 1, 3, 2, . . . , 1, 3, 2), (3, 3, . . . , 3)},

(3.7)

in which case 3 | n, or

T = {(0, 0, . . . , 0), (0, 1, 3, 2, 0, 1, 3, 2, . . . , 0, 1, 3, 2),
(2, 0, 1, 3, 2, 0, 1, 3, . . . , 2, 0, 1, 3), (3, 2, 0, 1, 3, 2, 0, 1, . . . , 3, 2, 0, 1),

(1, 3, 2, 0, 1, 3, 2, 0, . . . , 1, 3, 2, 0), (2, 1, 2, 1, . . . , 2, 1),
(1, 2, 1, 2, . . . , 1, 2), (3, 3, . . . , 3)},

(3.8)

in which case 4 | n. In particular, gcd(n, 12) 6= 1.

Proof. As in the proof of Lemma 3.15 we can show that the fact that T is a normal
subgroup of Aut(M) and Aut(M) is 1-regular implies that Tα = T and T β = T .
That is, given t ∈ T , both tα and tβ are in T . Note that if t = (j0, j1, . . . , jn−1), then
tα = (jn−1, j0, . . . , jn−1), and tβ = (k0, k1, k2, . . . , kn−1), where ki = jn−i whenever
jn−i ∈ {0, 3}, ki = 2 if jn−i = 1 and ki = 1 if jn−i = 2.

Consider the block Bi and let t ∈ T . Observe that if ji = 0, since the common
neighbours of ui and wi are ui+1 and vi+1, then ji+1 ∈ {0, 1}. Analogously if ji = 2,
then ji+1 ∈ {0, 1}, and if ji ∈ {1, 3}, then ji+1 ∈ {2, 3}. We also note that 1-
regularity of Aut(M) implies that the identity is the only element of T such that
ji = ji+1 = 0 holds for some i. In particular, for a non-identity t ∈ T every 0 must
be followed by a 1 and be preceded by a 2. Similarly, for any t = (j0, j1, . . . , jn−1)
and t′ = (k0, k1, . . . , kn−1) in T if for some i, ji = ki and ji+1 = ki+1, then t = t′.

Let T = {1, t1, t2, t3, t4, t5, t6, t7}. Without loss of generality let

t1 = (0, 1, i2, i3, . . . , in−2, 2)
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and t2 = tα1 . Recall that i2 ∈ {2, 3}. We consider each of the two cases separately.

Case 1: i2 = 2.
Then t1 = (0, 1, 2, i3, . . . , in−2, 2) and tβ1 = (0, 1, k2, k3, . . . , kn−3, 1, 2), and so the
above remarks imply that tβ1 = t1 = (0, 1, 2, i3 , . . . , in−3, 1, 2). Then tα

3

1 = (in−3, 1, 2, 0, 1, 2, i3 , . . . , in−4),
and so tα

3

1 = t1, implying that n is divisible by 3 and t1 = (0, 1, 2, 0, 1, 2, . . . , 0, 1, 2).
The subgroup T is now completely determined:

t1 = (0, 1, 2, 0, 1, 2, . . . , 0, 1, 2),
tα1 = t2 = (2, 0, 1, 2, 0, 1, . . . , 2, 0, 1),
tα2 = t3 = (1, 2, 0, 1, 2, 0, . . . , 1, 2, 0),
t1t2 = t4 = (2, 1, 3, 2, 1, 3, . . . , 2, 1, 3),
tα4 = t5 = (3, 2, 1, 3, 2, 1, . . . , 3, 2, 1),
tα5 = t6 = (1, 3, 2, 1, 3, 2, . . . , 1, 3, 2),
t3t4 = t7 = (3, 3, 3, 3, 3, 3, . . . , 3, 3, 3).

Case 2: i2 = 3.
In this case we have t1 = (0, 1, 3, i3 , i4, . . . , in−2, 2). As before tβ1 = t1, and so
t1 = (0, 1, 3, i3 , . . . , in−3, 3, 2). Set t2 = tα1 = (2, 0, 1, 3, i3 , . . . , in−3, 3) and t3 =
tα

2

1 = (3, 2, 0, 1, 3, i3 , . . . , in−3). Then t = t1t2t3 = (1, 3, 2, j3, j4, . . . , jn−1). Since
t4 = tα

3

1 = (in−3, 3, 2, 0, 1, 3, i3 , . . . , in−4) it follows that in−3 = 1, and so tα
4

1 = t1,
implying that n is divisible by 4 and t1 = (0, 1, 3, 2, 0, 1, 3, 2, . . . , 0, 1, 3, 2). The
subgroup T is now completely determined:

t1 = (0, 1, 3, 2, 0, 1, 3, 2, . . . , 0, 1, 3, 2),
tα1 = t2 = (2, 0, 1, 3, 2, 0, 1, 3, . . . , 2, 0, 1, 3),
tα2 = t3 = (3, 2, 0, 1, 3, 2, 0, 1, . . . , 3, 2, 0, 1),
tα3 = t4 = (1, 3, 2, 0, 1, 3, 2, 0, . . . , 1, 3, 2, 0),
t1t2 = t5 = (2, 1, 2, 1, 2, 1, 2, 1, . . . , 2, 1, 2, 1),
tα5 = t6 = (1, 2, 1, 2, 1, 2, 1, 2, . . . , 1, 2, 1, 2),
t1t3 = t7 = (3, 3, 3, 3, 3, 3, 3, 3, . . . , 3, 3, 3, 3).

�

Recall that, by Lemma 3.10, the boundaries of faces of a map M of class 2{0,1}
are Aut(M)-consistent cycles. By Proposition 3.1 the graph Γ has three orbits of
Aut(Γ)-consistent cycles. Since σ1βα, α, ρ ∈ Aut(Γ) are shunts for the cycles

(u0, u1, w0, v1), (u0, u1, u2, . . . , un−1) and

(u0, u1, . . . , un−3, un−2, vn−1, z0, z1, . . . , zn−3, zn−2, wn−1),

respectively, these three cycles are representatives of the three orbits of Aut(Γ)-
consistent cycles. Therefore, the Aut(Γ)-consistent cycles are of lengths 4, n and 2n,
implying that these are the only possible lengths of faces of M. We remark that
n 6= 4 implies that each edge of Γ is in exactly one 4-cycle. The proof of the following
lemma is similar to that of Lemma 3.16 and is left to the reader (it again relies on
the fact that any two Aut(Γ)-consistent cycles of length n or 2n are permutable by
an element of the subgroup N).
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Lemma 3.19. The map M has faces of two different lengths.

We can now describe all maps M of type 2{0,1} whose underlying graph is Γ.

Theorem 3.20. Let Γ = R2n(n+2, n+1) be a Rose Window graph with n ≥ 3. Then
Γ is the underlying graph of a map M of class 2{0,1} if and only if gcd(n, 12) > 2.
Moreover, letting n0 ∈ {0, 3, 4, 6, 8, 9} be the residue of n modulo 12, the following
holds:

(i) if n = 4, then Γ is the underlying graph of a unique map of class 2{0,1} with
face lengths 4 and 8;

(ii) if n0 ∈ {3, 9}, then Γ is the underlying graph of three nonisomorphic maps of
class 2{0,1}; one has faces of lengths 4 and n, one has faces of lengths 4 and
2n, and one has faces of lengths n and 2n;

(iii) if n0 ∈ {4, 6, 8}, then Γ is the underlying graph of two nonisomorphic maps
of class 2{0,1}; one has faces of lengths 4 and n, while the other has faces of
lengths 4 and 2n;

(iv) if n0 = 0, then Γ is the underlying graph of four nonisomorphic maps of
class 2{0,1}; two have faces of lengths 4 and n, and two has faces of lengths
4 and 2n.

Proof. The cases n = 3 and n = 4 have been dealt with at the beginning of this
section. For the rest of the proof we can thus assume n > 4. We distinguish the
cases depending on whether M has n-faces or not.

Case 1: M has an orbit of n-faces.
Without loss of generality we can assume that one of the n-faces of M is f =
(u0, u1, . . . , un−1). As in the proof of Theorem 3.17, we deal with the two possibilities
for T separately.

Subcase 1.1: T is as in (3.7), in which case 3 divides n.
By Lemma 3.18 the eight n-faces of M are as represented in Figure 3.14, that is:

f0 = f = (u0, u1, . . . , un−1),
f1 = ft1 = (u0, v1, w2, u3, v4, w5, . . . , un−3, vn−2, wn−1),
f2 = ft2 = (w0, u1, v2, w3, u4, v5, . . . , wn−3, un−2, vn−1),
f3 = ft3 = (v0, w1, u2, v3, w4, u5, . . . , vn−3, wn−2, un−1),
f4 = ft4 = (w0, v1, z2, w3, v4, z5, . . . , wn−3, vn−2, zn−1),
f5 = ft5 = (z0, w1, v2, z3, w4, v5, . . . , zn−3, wn−2, vn−1),
f6 = ft6 = (v0, z1, w2, v3, z4, w5, . . . , vn−3, zn−2, wn−1),
f7 = ft7 = (z0, z1, . . . , zn−3, zn−1).

(3.9)

The automorphism β ∈ Aut(Γ) from (3.5) preserves the set of n-cycles (3.9) since
it fixes each of the faces f0, f1, f5 and f7, and interchanges f2 with f3 and f4 with
f6. Since the other Aut(M)-orbit of faces of M either consists of 4-faces or 2n-faces
and each edge of Γ lies on a unique 4-cycle (recall that n > 4), while Lemma 3.10
and Corollary 3.11 imply that the 2n-faces are uniquely determined by the n-faces,
the corresponding maps are completely determined (once we have decided for the
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Figure 3.14: The n-faces of M in the case when T is as in (3.7).

length of the faces of the other Aut(M)-orbit). Moreover, since the automorphism
β preserves the set of the eight n-faces, it in fact follows that β ∈ Aut(M). We thus
only need to check if the resulting maps are indeed of class 2{0,1}.

Suppose first that M has 4-faces (and the n-faces from (3.9)). We show that M
is in class 2{0,1} by exhibiting the automorphisms α0, α1 and α212, with respect to
some base flag, so that we can apply Lemma 3.9. Let Φ be the flag of M containing
the vertex u0, the edge u0u1 and the n-face f0. Then Φβα = Φ0, Φβ = Φ1 and
Φt1 = Φ2,1,2, and so M is of class 2{0,1} by Lemma 3.9.

Suppose now that M has 2n-faces (and the n-faces from (3.9)). By the above
remarks the 2n-faces are completely determined. In fact, n has to be odd for this to
be possible (that is n ≡ 3 (mod 6)) and in this case the four 2n-faces are:

(u0, u1, v2, z3, z4, w5, . . . , un−3, un−2, vn−1, z0, z1, w2, . . . , un−6, un−5, vn−4, zn−3, zn−2, wn−1),
(u0, v1, z2, z3, w4, u5, . . . , un−3, vn−2, zn−1, z0, w1, u2, . . . , un−6, vn−5, zn−4, zn−3, wn−2, un−1),
(v0, z1, z2, w3, u4, u5, . . . , vn−3, zn−2, zn−1, w0, u1, u2, . . . , vn−6, zn−5, zn−4, wn−3, un−2, un−1),
(v0, w1, v2, w3, . . . , vn−1, w0, v1, w2, . . . , vn−2, wn−1).

Again let Φ be the flag corresponding to the vertex u0, edge u0u1 and the face
f0. As before we get Φβα = Φ0, Φβ = Φ1, while this time Φt1β = Φ2,1,2, and so we
can again apply Lemma 3.9 to show that M is of class 2{0,1}.

Subcase 1.2: T is as in (3.8), in which case 4 divides n.
By Lemma 3.18 the eight n-faces of M are as represented in Figure 3.15, that is:

f0 = f = (u0, u1, . . . , un−1),
f1 = ft1 = (u0, v1, z2, w3, u4, v5, z6, w7, . . . , un−4, vn−3, zn−2, wn−1),
f2 = ft2 = (w0, u1, v2, z3, w4, u5, v6, z7, . . . , wn−4, un−3, vn−2, zn−1),
f3 = ft3 = (z0, w1, u2, v3, z4, w5, u6, v7, . . . , zn−4, wn−3, un−2, vn−1),
f4 = ft4 = (v0, z1, w2, u3, v4, z5, w6, u7, . . . , vn−4, zn−3, wn−2, un−1),
f5 = ft5 = (w0, v1, w2, v3, . . . , wn−2, vn−1),
f6 = ft6 = (v0, w1, v2, w3, . . . , vn−2, wn−1),
f7 = ft7 = (z0, z1, . . . , zn−1).

(3.10)
Again, β from (3.5) preserves the set of eight n-cycles (3.10), implying that

β ∈ Aut(M). We show that the other faces of M must be of length 4. Namely,
if this was not the case then, by Corollary 3.11, the other face containing the edge
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Figure 3.15: The n-faces of M in the case when T is as in (3.8).

u0u1 would have to be

(u0, u1, v2, w3, u4, u5, v6, w7, . . . , un−4, un−3, vn−2, wn−1),

which is of length n, contradicting Lemma 3.19. Thus M contains 4-faces (and the
n-faces from (3.10)). Let Φ be the flag of M containing the vertex u0, the edge u0u1
and the n-face f0, and observe that Φβ = Φ1, Φβα = Φ0 and Φt1 = Φ2,1,2. Thus
Lemma 3.9 implies that M is in class 2{0,1}.

Case 2: M has faces of lengths 4 and 2n.
Recall that any automorphism of Γ preserves the set of 4-cycles of Γ, and so an
automorphism of Γ is an automorphism of M if and only if it preserves the set of
2n-faces. Without loss of generality we can assume that

f = (u0, u1, . . . , un−2, vn−1, z0, z1, . . . , zn−2, wn−1)

is one of the faces of M. Note that fµ = f and fρ = f (in fact, ρ is a shunt for
f). Since µ and ρ both normalize the subgroup T from Lemma 3.18, it follows that
µ, ρ ∈ Aut(M). We again distinguish the two possibilities for the subgroup T .
Subcase 2.1: T is as in (3.7), in which case 3 divides n.
The 2n-faces are then (see Figure 3.16):

f = (u0, u1, u2, . . . , un−2, vn−1, z0, z1, . . . , zn−2, wn−1),
ft1 = (u0, v1, w2, u3, v4, w5, . . . , vn−2, zn−1, z0, w1, v2, z3, . . . , wn−2, un−1),
ft2 = (w0, u1, v2, w3, u4, v5, . . . un−2, un−1, v0, z1, w2, v3, z4 . . . , zn−2, zn−1),
ft3 = (v0, w1, u2, v3, w4, u5, . . . , wn−2, vn−1, w0, v1, z2, w3, v4, . . . , vn−2, wn−1).

Let Φ be the flag of M containing the vertex u0, the edge u0wn−1 and the 2n-face
f . Then Φρµ = Φ0, Φµ = Φ1 and Φt1 = Φ2,1,2, and so Lemma 3.9 implies that M
is of class 2{0,1}.
Subcase 2.2: T is as in (3.8), in which case 4 divides n.
The 2n-faces are then (see Figure 3.17):

f = (u0, u1, u2, . . . , un−2, vn−1, z0, z1, . . . , zn−2, wn−1),
ft1 = (u0, v1, z2, w3, u4, v5, . . . , zn−2, zn−1, z0, w1, u2, v3, . . . , un−2, un−1),
ft2 = (w0, u1, v2, z3, w4, u5, . . . vn−2, wn−1, v0, z1, w2, u3, v4 . . . , wn−2, vn−1),
ft3 = (v0, w1, v2, w3, v4, w5, . . . , vn−2, zn−1, w0, v1, w2, v3, w4, . . . , wn−2, un−1).
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Figure 3.16: The 2n-faces of M in the case when T is as in (3.7).
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Figure 3.17: The 2n-faces of M in the case when T is as in (3.8).

Letting Φ be as above we again find that Φρµ = Φ0, Φµ = Φ1 and Φt1 = Φ2,1,2

(note however, that the t1 now differs from the one in the previous paragraph). Thus
Lemma 3.9 implies that M is a map of class 2{0,1}.

The proof that all of the obtained maps are pairwise nonisomorphic is similar to
the one in the proof of Theorem 3.17. �

3.5.3 Family (iii)

Combining together the results of [28] and [59] with Corollary 3.13 the classification
of maps of class 2{0,1} whose underlying graphs belong to family (iii) from Proposi-
tion 3.14 is straightforward.

Theorem 3.21. Let Γ = R2m(2b, r), where b2 ≡ ±1 (mod m) and either r = 1, or
r = m−1 with m even, be such that Γ does not belong to any of the families (i) and (ii)
from Proposition 3.14. Then Γ is the underlying graph of a map of class 2{0,1} if and
only if b2 ≡ 1 (mod m) in which case there are exactly three pairwise nonisomorphic
such maps.

Proof. By [28, Proposition 3.8] the automorphism group of Γ is 1-regular and is
generated by ρ, µ and σ, where ρ and µ are as in (3.1) and σ is as in [59, page 16].
It was pointed out in [59] that in the case of b2 ≡ −1 (mod m) the vertex stabilizers
are cyclic (and thus isomorphic to Z4) while in the case of b2 ≡ 1 (mod m) they are
isomorphic to the Klein 4-group. We can thus apply Corollary 3.13. �
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3.5.4 Family (iv)

The fourth family of edge-transitive Rose Window graphs consists of the graphs
R12m(3m + 2, 3m − 1) and R12m(3m − 2, 3m + 1), where m ≥ 1. As in [59], using
the fact that Rn(a, r) ∼= Rn(−a, r) ∼= Rn(a,−r), we can denote these graphs as
R12m(3d + 2, 9d + 1), where d = m or d = −m (modulo 12m). In [59] the following
automorphism σ of Γ = R12m(3d + 2, 9d + 1) has been identified (recall that a =
3d+ 2):

xσi =







xi ; i ≡ 0 (mod 3)
yi−1 ; i ≡ 1 (mod 3)
yi+1−a ; i ≡ 2 (mod 3)

and yσi =







xi+1 ; i ≡ 0 (mod 3)
xi−1+a ; i ≡ 1 (mod 3)
yi+6d ; i ≡ 2 (mod 3).

Moreover, it was shown that whenever m ≡ 2 (mod 4), setting b = d + 1, an
additional automorphism τ of Γ exists:

xτi =







xbi ; i ≡ 0 (mod 3)
ybi−b ; i ≡ 1 (mod 3)
xbi+b−1 ; i ≡ 2 (mod 3)

and yτi =







xbi+1 ; i ≡ 0 (mod 3)
y4+bi−4b ; i ≡ 1 (mod 3)
ybi+b−1 ; i ≡ 2 (mod 3).

Observe that a = 3b− 1, r = 4− 3b and 3b2 ≡ 3 (mod 12m), and so a ≡ 2 (mod 3)
and r ≡ 1 (mod 3). It was shown in [28] that Aut(Γ) = 〈ρ, µ, σ, τ〉, whenever m ≡ 2
(mod 4), and Aut(Γ) = 〈ρ, µ, σ〉 otherwise, where ρ and µ are as in (3.1). This
enables us to classify the maps of class 2{0,1} with underlying graphs from family
(iv).

Theorem 3.22. Let Γ = R12m(3d+2, 9d+1) be a Rose Window graph, where d = m
or d = 11m. Then

(i) if m 6≡ 2 (mod 4), Γ is the underlying graph of exactly three nonisomorphic
maps of class 2{0,1},

(ii) if m ≡ 2 (mod 4), Γ is the underlying graph of exactly two nonisomorphic
maps of class 2{0,1}.

Proof. We first deal with the case when m 6≡ 2 (mod 4). By [28, Proposition 3.5]
the automorphism group Aut(Γ) is 1-regular in this case and is isomorphic to 〈ρ, µ, σ〉.
Note that Aut(Γ)x0

= 〈σ, µ〉 ∼= Z2 × Z2, and so the vertex stabilizers in Aut(Γ) are
isomorphic to the Klein 4-group. We can thus apply Corollary 3.13 to prove that Γ
is the underlying graph of three pairwise nonisomorphic maps of class 2{0,1}.

For the rest of the proof we can thus assume that m ≡ 2 (mod 4). Recall that
in this case Aut(Γ) = 〈ρ, µ, σ, τ〉 is arc-transitive with vertex-stabilizers of order 8.
In particular, Aut(Γ)x0

= 〈µ, σ, τ〉 ∼= D4, the dihedral group of order 8. It is easy to
see that σ commutes with both µ and τ , while τµτ = µσ and τρτ = ρσ.

Suppose M is a map in class 2{0,1} with underlying graph Γ and recall that the
automorphism group Aut(M) is then 1-regular on Γ. By Theorem 3.12 the bound-
aries of the faces of M are Aut(M)-symmetric consistent cycles, and so Lemma 3.5
implies that the vertex stabilizers in Aut(M) are isomorphic to the Klein 4-group
(which of course must be transitive on the neighbourhood of the fixed vertex). It is
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easy to see that the only subgroup of Aut(Γ)x0
= 〈µ, σ, τ〉, transitive on the set of

four neighbours of x0 and isomorphic to the Klein 4-group is 〈µ, σ〉. Thus, Aut(M)
is a transitive index 2 subgroup of Aut(Γ) containing the subgroup 〈µ, σ〉.

We claim that H1 = 〈µ, σ, ρ〉 andH2 = 〈µ, σ, τρ〉 are the only two such subgroups.
Since Aut(M) must be vertex-transitive, it has to contain an element γ ∈ Aut(Γ)
mapping x0 to x1. But Aut(Γ) is vertex-transitive with Aut(Γ)x0

= 〈µ, σ, τ〉, and
so the fact that τ normalizes 〈µ, σ〉 implies that γ ∈ 〈µ, σ〉ρ ∪ 〈µ, σ〉τρ. It follows
that Aut(M) could only be one of H1 and H2. We next prove that H1 and H2

are indeed of index 2 in Aut(Γ) (since they contain 〈µ, σ〉 and an element mapping
x0 to x1, they are both arc-transitive on Γ). Note that the fact that each Hi acts
arc-transitively implies that Hi is of index 2 in Aut(Γ) or Hi

∼= Aut(Γ). It thus
suffices to find an element of Aut(Γ) which is not contained in Hi.

We first deal with H1. To this end we identify four cycles of Γ, each of length
12m. Observe that a + 1 = 3d + 3, implying that gcd(12m,a + 1) = 3 (recall that
d = m or d = −m and m is even). Therefore, the cycle

C1 = (x0, x1, y1, xa+1, xa+2, ya+2, x2(a+1), . . . , y−a)

is indeed of length 12m. Observe that C1 is an H1-consistent cycle with a shunt
σρ. Let C2 = C1ρ and C3 = C1ρ

2 be the images of C1 under ρ and ρ2, respectively,
and note that C2 and C3 are thus also H1-consistent cycles of Γ. Finally, observe
that gcd(12m, r) = 1 and let C4 = (y0, yr, y2r, . . . , y−r). Of course, C4 also is an
H1-consistent cycle with a shunt ρr. It is easy to see that each of the generators ρ,
σ and µ of H1 preserves the set {C1, C2, C3, C4} setwise (ρ fixes C4 and permutes
C1, C2 and C3, σ interchanges C1 with C3 and C2 with C4, while µ interchanges C1

with C3 and fixes both C2 and C4). Since τ clearly does not map C1 to any of the
cycles Ci, this implies that τ /∈ H1, and so H1 is indeed of index 2 in Aut(Γ).

The proof that H2 is also of index 2 in Aut(Γ) is similar. First we observe that
gcd(12m, 2 + 2r + a) = gcd(12m, 9d + 6) = 6, and so the cycle

C1 = (x0, x1, x2, y2, y2+r, y2+2r, x2+2r+a, x3+2r+a, x4+2r+a, . . . , y−a)

is of length 12m and is an H2-consistent cycle with a shunt στρ. Setting C2 = C1µ,
C3 = C1τρ and C4 = C1τρσ we get three other H2-consistent cycles. We can then
verify that each of the generators τρ, σ and µ of H2 preserve the set {C1, C2, C3, C4}
setwise Since ρ clearly does not map C1 to any of the cycles Ci, this implies that
ρ /∈ H2, and so H2 is indeed of index 2 in Aut(Γ).

We now classify the maps M of class 2{0,1} with underlying graph Γ and auto-
morphism group isomorphic to H1 or H2 separately. We first deal with the maps
M with Aut(M) = H1. By Lemma 3.10 the boundaries of the faces of M are
H1-symmetric consistent cycles. Since H1 is 1-regular, there are exactly three or-
bits, say O1,O2 and O3, of H1-consistent directed cycles of Γ and by Lemma 3.4
there is exactly one H1-consistent directed cycle containing the arc (x−1, x0) from
each of these three orbits. Let ~C1, ~C2 and ~C3 be the corresponding H1-consistent
directed cycles with ~Ci ∈ Oi. With no loss of generality we can assume ~C1 contains
the 2-arc (x−1, x0, x1), ~C2 contains the 2-arc (x−1, x0, y0), and ~C3 contains the 2-arc
(x−1, x0, y9d−2). Observe that ρ maps the arc (x−1, x0) to the arc (x0, x1), and so
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the fact that H1 is 1-regular implies that ρ is a shunt of ~C1 in H1. Similarly, ρσ is
a shunt of ~C2 in H1 and ρσµ is a shunt of ~C3 in H1. Note that by Lemma 3.4 any
pair of orbits Oi, i ∈ {1, 2, 3}, determines a map M with underlying graph Γ, such
that H1 ≤ Aut(M). We thus only have to check which pairs of orbits are such that
Aut(M) = H1 and not Aut(M) = Aut(Γ) (which occurs if and only if τ ∈ Aut(M)).
Since τρτ = ρσ and τρµστ = ρµσ it follows that τ interchanges the H1-orbits O1

and O2 and fixes the orbit O3 (in fact, it fixes the cycle ~C3). Thus τ ∈ Aut(M) if
and only if the boundaries of faces of M are all the members of the orbits O1 and
O2. Consequently, M is of class 2{0,1} if and only if the boundaries of its faces are all
the members of O3 and one of O1,O2. Since τ fixes O3 and interchanges O1 and O2,
this proves that H1 gives rise to exactly one map of class 2{0,1}, up to isomorphism.

In a similar way one can prove that there is exactly one map of class 2{0,1} with
underlying graph Γ and automorphism group H2.

It is clear that the two maps of class 2{0,1}, corresponding to H1 and H2, respec-
tively, are not isomorphic since a corresponding isomorphism would have to be an
automorphism of Γ, and so Γ is the underlying graph of exactly two maps of class
2{0,1}. �
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Chapter 4

Tetravalent G-half-arc-transitive

graphs

In the last two chapters graphs admitting a half-arc-transitive group of automor-
phisms, that is a subgroup of their automorphism group acting transitively on its
vertices and its edges but not on its arcs, are investigated. In this chapter we focus
on the tetravalent ones.

The first result concerning graphs admitting a half-arc-transitive action was given
by Tutte [55], who proved that the valency of such graphs must be even. Since any
connected 2-valent graph is a cycle, the smallest interesting valency for the study
of graphs admitting a half-arc-transitive group of automorphisms is four. It is thus
not surprising that the majority of papers on such graphs deal with the tetravalent
ones. Despite the fact that numerous papers on the topic have been published in the
last half a century the complete classification of tetravalent half-arc-transitive graphs
appears to be a very difficult, if not impossible, problem. As a result various restricted
subproblems have been considered and different general approaches to the study of
tetravalent graphs admitting a half-arc-transitive group of automorphisms have been
proposed. For instance, the graphs of orders of specific types such as p3, p4, p5, pq,
3p, 4p, 2pq, etc., where p and q are prime numbers, have been classified, some even
for all valencies (see for instance [5, 9, 14, 18, 19, 30, 56, 60]). The vertex-stabilizers
in tetravalent graphs admitting a half-arc-transitive group of automorphisms and
the connection of such graphs to maps have also been studied (see for instance
[10, 33, 34, 35, 46]). Recently, Potočnik, Spiga and Verret constructed a census [48]
of all tetravalent graphs admitting a half-arc-transitive group action up to order
1000. Since we will be referring to some of the graphs from the census we mention
that they have names of the form HAT[n, i] or GHAT[n, i], where n is the order of
the graph and the prefix G indicates that the full automorphism group of the graph
acts arc-transitively.

In this chapter we review two frameworks for a systematic study of all tetravalent
graphs admitting a half-arc-transitive group of automorphisms. In the first of these
frameworks certain cycles, together with a given orientation of the edges of such
graphs are investigated, and in the second one smaller graphs with “the same” prop-
erties as the original graph are obtained by identifying the orbits of a non-transitive
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normal subgroup of the automorphism group of the studied graph. One of the aims
of this chapter is to show that, in fact, these two approaches are strongly related.
To this purpose, we first define a new parameter for such graphs, which we call the
jump parameter. This parameter gives a further insight into the structure of the
studied graphs. We study some of the properties of the jump parameter. The ob-
tained results enable us to establish the mentioned link between the two frameworks,
and let us improve some of the existing results for tetravalent graphs admitting a
half-arc-transitive group of automorphisms.

4.1 Alternating cycles

In this section we present the framework for the study of structural properties of
tetravalent graphs admitting a half-arc-transitive action started 20 years ago by
Marušič [32]. As mentioned in the introduction, this approach is one of the most
general and fruitful for the study of such graphs. It is based on the investigation of
certain cycles called alternating cycles. This concept was later generalized by Wilson
in [58] to graphs admitting a half-arc-transitive group of automorphisms of larger
valences (see also [25]). Since we also deal with such graphs later in this thesis. we
decide to follow [58] to introduce the main concepts of this framework, and only then
focus on the tetravalent ones.

Let Γ be a G-half-arc-transitive graph for some G ≤ Aut(Γ). It is easy to see
that the action of G on A(Γ) has two paired orbits. Let OG be one of them. Then
for each edge of Γ the orbit OG contains exactly one of the two arcs corresponding
to this edge, and so OG gives rise to an orientation of the edges of Γ, preserved
by the action of G. We say that the orientation OG is G-induced and denote the
corresponding oriented graph by

−→
Γ G. We indicate that the edge uv is oriented from

u to v by u → v and say that u is the tail and v is the head of the (oriented) edge
uv (and of the arc (u, v)). We say that two edges uv and u′v′ of Γ are related if the
corresponding oriented edges in

−→
Γ G share a common head or a common tail. Thus,

if u → v and u′ → v′ in
−→
Γ G then uv and u′v′ are related if and only if u = u′ or

v = v′ (but are not related if u′ = v or v′ = u). The transitive hull of this relation,
called the reachability relation on Γ, is of course an equivalence relation on E(Γ). We
call the subgraphs of Γ (as well as of

−→
Γ G), corresponding to the equivalence classes

of this relation, the G-alternets of Γ (and of
−→
Γ G). For an G-alternet A its head-set

consists of all the heads of the edges from A while its tail-set consists of all the tails
of the edges from A. The size of (any) head-set is called the G-radius of Γ and is
denoted by radG(Γ). It turns out that all G-alternets of Γ have the same number of
vertices. The non empty intersections of the head-set of a G-alternet with the tail-set
of a G-alternet (possible the same) are called the G-attachment sets of Γ, and the
size of any G-attachment set is called the G-attachment number of Γ and is denoted
by attG(Γ). If Γ has at least two G-alternets and if for two G-alternets, sharing a
common vertex, the head-set of one coincides with the tail-set of the other, we say
that Γ is tightly G-attached.

Following the notation of Section 3.5.1, let Γ = R8(2, 1). It is easy to see that the
group G = 〈ρ, σ0〉 is a half-arc-transitive group of automorphisms of Γ (where ρ is the
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on step rotation mapping each xi to xi+1 and yi to yi+1, and σ0 = (x0 y0)). Fixing
one of the two G-induced orientation we obtain that radG(Γ) = 2, attG(Γ) = 2 and
Γ is tightly G-attached (see Figure 4.1).
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Figure 4.1: One of the two oriented graph of R8(2, 1) corresponding to the action of
G = 〈ρ, σ0〉.

As in the example above, in the case of Γ being a tetravalent graph the G-alternets
turn out to be cycles and we call them G-alternating cycles (as were defined in [32]).
Note that in a G-alternating cycle each pair of its consecutive edges have opposite
orientations in OG, that is, traversing the cycle we alternate between traveling with
and against the orientation of the edges from OG. In this case, the G-radius is half
of the length of any G-alternating cycle.

Let us point out a useful fact that we use recurrently in this chapter. Since
the orientation of the edges of Γ is given by the action of G, the elements of G
permute the G-alternating cycles, and so G induces a natural action on the set of all
G-alternating cycles as well as on the set of the G-attachment sets.

A half-arc-transitive group G ≤ Aut(Γ) of a tetravalent graph Γ may have large
vertex-stabilizers (see for instance [33, 35]). However, by the following result of [37]
which we will be using in this chapter, this cannot occur if the G-attachment number
attG(Γ) is at least 3.

Proposition 4.1. [37, Lemma 3.5.] Let Γ be a tetravalent graph admitting a half-
arc-transitive group of automorphisms G ≤ Aut(Γ). If attG(Γ) ≥ 3 then Gv

∼= Z2

for all v ∈ V (Γ).

Before the last comment of this section we give the definition of a well-known
family of graphs which we may refer to in the rest of this chapter.

Let n be an integer and let S ⊂ Zn be an inverse closed subset of the additive
group Zn of residue classes modulo n, where 0 /∈ S. The circulant graph Circn(S) is
the graph with vertex set Zn in which two vertices i, j ∈ Zn are adjacent if and only
if j − i ∈ S. In other words it is the Cayley graph Cay(Zn, S).
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It was proved in [32] that if Γ is a tetravalent graph admitting a half-arc-transitive
group of automorphisms G ≤ Aut(Γ), then attG(Γ) ≤ radG(Γ) or attG(G) =
2radG(Γ) must hold. Graphs for which the latter equality holds were characterised
explicitly also in [32] and turn out to be some particular arc-transitive circulants.
More precisely, Γ ∼= Circ2r({±1,±s}), where r = radG(Γ) is an integer and s ∈
Z∗
2r \ {±1} such that s2 − 1 ≡ 0 modulo 2r, Γ has exactly two G-alternating cycles

and each of it contains every vertex of Γ.
As an example let Γ = Circ8(±1,±3). Let ρ = (0 2 4 6)(1 3 5 7), τ =

(1 7)(2 6)(3 5), γ = (0 5 4 1)(2 3 6 7) and G = 〈ρ, τ, σ〉. It is easy to see that
Γ is G-half-arc-transitive, but it is arc-transitive. Fixing one of the two G-induced
orientations of Γ one can observe that in fact Γ has exactly two G-alternating cycles
and that radG(Γ) = 4 and attG(Γ) = 8 (see Figure 4.2).
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Figure 4.2: One of the two corresponding oriented graph of Circ8(±1,±3) by G.

4.2 The Quotient and Normal Quotient graphs

We now focus on two specific kinds of quotients of tetravalent graphs admitting a
half-arc-transitive group of automorphisms. First we define the quotient graph ΓB

from [37] (the graph ΓB was denoted by ΓΣ in [37]).

Construction 4.2 ([37]). Let Γ be a tetravalent graph admitting a half-arc-transitive
group of automorphisms G ≤ Aut(Γ) and let r = radG(Γ), a = attG(Γ) and ℓ = 2r/a.
Define

s =

{

ℓ/2 : if ℓ is even;
ℓ : if ℓ is odd.

Let C = (u0, u1, . . . , u2r−1) be a G-alternating cycle. For each ui ∈ V (C) set
Bs(C;ui) = {ui+2sj : 0 ≤ j < a} (where the indices are computed modulo 2r). Let
u = ui ∈ V (C) for some i ∈ {0, 1, . . . , 2r − 1} and note that if ℓ is even the set
Bs(C;u) is precisely the G-attachment set containing u, while if ℓ is odd the G-
attachment set containing u is Bs(C;u)∪Bs(C, ui+ℓ). Moreover, if ℓ is odd and u is
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the tail of the two arcs of C incident to it, then all of the vertices in Bs(C;u) also
have this property, while all of the vertices in Bs(C;ui+ℓ) are heads of the two arcs
of C incident to them. The set Bs(C;u) thus forms a block of imprimitivity for G,
and so B = {Bs(C;u)γ : γ ∈ G} is an imprimitivity block system for G (note that it
does not depend on the choice of the G-alternating cycle C nor the vertex u of C).
The graph ΓB is then defined as the quotient graph of Γ with respect to B, whose
vertex set coincides with B with two different blocks B and B′ from B being adjacent
whenever there is a pair of adjacent vertices u ∈ B and v ∈ B′.

The study of alternating cycles and their intersections has been the topic of
several papers with most of the attention given to the loosely, antipodally and tightly
G-attached graphs in which attG(Γ) attains one of the extremal values 1, 2 or radG(Γ),
respectively (see for instance [32, 39, 49]). The importance of these three special cases
is based on the results of [37], where it was proved that each tetravalent G-half-arc-
transitive graph Γ, where G ≤ Aut(Γ), is either tightly G-attached or admits an
imprimitivity block system for G such that the corresponding quotient graph ΓB is
loosely or antipodally attached. The tightly G-attached graphs have been classified
([32, 37, 53, 58]), while in the remaining cases there is still a lot of work to be done.
We would like to point out however, that in [37] it was not known whether the
mentioned imprimitivity block system for G, giving rise to ΓB, can be obtained as
the set of orbits of a normal subgroup of G or not.

This question is of great importance. Namely, in [3] a new framework for a
systematic study of tetravalent graphs admitting a half-arc-transitive group of au-
tomorphisms was proposed. It is based on the well-known method of taking normal
quotients, which has already led to important results in the study of graphs pos-
sessing a considerable degree of symmetry. For instance, its use in the context of
s-arc-transitive graphs was initiated by Praeger in 1993 [50]. The main idea in our
setting is that whenever a half-arc-transitive subgroup G ≤ Aut(Γ) for a tetravalent
graph Γ has a normal subgroup N with at least three orbits, the quotient graph
with respect to the orbits of N is again a tetravalent graph (provided that it is not a
cycle with ‘doubled edges’) admitting a half-arc-transitive group of automorphisms
(a quotient group of G). One thus aims to classify all ‘basic’ examples (not admit-
ting such normal subgroups) and to understand how the remaining graphs can be
reconstructed from the basic ones (see [3] for details). Recently, some results of this
kind have been obtained in [1, 2].

4.3 The alternating jump parameter

In this section we introduce a new parameter for tetravalent graphs admitting a half-
arc-transitive action called the alternating jump and give some of its basic properties.
This parameter describes how two non-disjoint alternating cycles are attached to
one another and gives a more detailed insight into the structure of such graphs
when compared to the one given by simply considering their radius and attachment
number. The obtained results enable us to link the above mentioned approaches
from [32, 37] and [3], in particular to prove that the imprimitivity block system
giving rise to the above mentioned quotient graph ΓB from [37] is in fact obtained by
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orbits of a normal cyclic subgroup (see Theorem 4.16), which thus links the quotients
of [37] to those of [3].

Before defining the alternating jump parameter, we first describe two families
of tetravalent graphs which contain all the tetravalent tightly attached half-arc-
transitive graphs. We will be referring to them quite often in this section, and
as well in the rest of this chapter. As explained before such graphs are of great im-
portance in the study of tetravalent graphs admitting a half-arc-transitive group of
automorphism and have been classified in [32, 37, 53, 58]. The definition is given in
two parts depending on the parity of the radius of the graphs, where we follow [53].

Construction 4.3 ([53]). For each m ≥ 3, r ≥ 3 odd, q ∈ Z∗
r, where qm = ±1, let

Xo(m, r; q) be the graph with vertex set V = {uji : i ∈ Zm, j ∈ Zr} and edges defined
by the following adjacencies:

uji ∼ uj±qi

i+1 ; i ∈ Zm, j ∈ Zr.

Construction 4.4 ([53]). Let m ≥ 4 and r ≥ 4 be even, and for each q ∈ Z∗
r, t ∈ Zn

satisfying
qm = 1, t(q − 1) = 0 and 1 + q + · · ·+ qm−1 + 2t = 0,

let Xe(m, r; q, t) be the graph with vertex set V = {uji : i ∈ Zm, j ∈ Zr} and edges
defined by the following adjacencies:

uji ∼

{

uji+1, u
j+qi

i+1 ; i ∈ Zm\{m− 1}, j ∈ Zr

uj+t
0 , uj+qm−1+t

0 ; i = m− 1, j ∈ Zr.

For instance, it turns out that the smallest half-arc-transitive graph, the well-
known Doyle-Holt graph, then Γ is tightly attached with radius 9 (see Figure 4.3)
and is isomorphic to Xo(3, 9; 2) (see [4]).

In order to start the description of the mentioned alternating jump parameter
we first make a careful study of the structure of the attachment sets in a tetravalent
graph admitting a half-arc-transitive group of automorphisms.

Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤ Aut(Γ). Fix one
of the two paired orientations of the edges of Γ, induced by the action of G, and
let r = radG(Γ), a = attG(Γ). For a vertex v ∈ V (Γ) let C = (u0, u1, . . . , u2r−1)
and C ′ = (v0, v1, . . . , v2r−1) be the two G-alternating cycles containing v, where
u0 = v0 = v and v is the tail of the two arcs of C, incident to it. By [32, Lemma 2.6],
the G-attachment set V (C) ∩ V (C ′) containing v, which we abbreviate by C ∩ C ′

throughout this chapter, is

C ∩ C ′ = {uiℓ : 0 ≤ i < a} = {viℓ : 0 ≤ i < a}, (4.1)

where ℓ = 2r/a. Define

qt(v) = min{q : vqℓ ∈ {uℓ, u−ℓ}} and qh(v) = min{q : uqℓ ∈ {vℓ, v−ℓ}},

where in the case of a = 1 this is understood as qt(v) = qh(v) = 0. Observe that, by
definition, qt(v), qh(v) ≤ a/2. Moreover, since G acts vertex- and edge-transitively
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Figure 4.3: The alternating cycles in one of the two corresponding oriented graph of
the Doyle-Holt graph.

on Γ, the parameters qt(v) and qh(v) do not depend on the choice of the vertex v.
Note also that taking the other of the two G-induced orientations of the edges of Γ
reverses the roles of qt(v) and qh(v). For each tetravalent G-half-arc-transitive graph
Γ we can thus define QG(Γ) = {qt, qh}, where qt = qt(v) and qh = qh(v) for some
v ∈ V (Γ) with respect to one of the two G-induced orientations of the edges of Γ.
For instance, in the case of loosely G-attached graphs, that is when attG(Γ) = 1, we
have QG(Γ) = {0}, and in the case of antipodally G-attached graphs, that is when
attG(Γ) = 2, we have QG(Γ) = {1}.

The following results show that the parameters qt and qh give us a lot of infor-
mation about how two G-alternating cycles of Γ with a non empty intersection are
attached to one another and that the two parameters are nicely related.

Lemma 4.5. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤ Aut(Γ)
and let r = radG(Γ), a = attG(Γ) and ℓ = 2r/a. Fix one of the two G-induced
orientations of the edges of Γ and let v ∈ V (Γ). Let C = (u0, u1, . . . , u2r−1) and
C ′ = (v0, v1, . . . , v2r−1) be the two G-alternating cycles containing v, where u0 =
v0 = v, v is the tail of the two arcs of C incident to it, and uℓ = vqtℓ. Then
uiℓ = viqtℓ holds for each 0 ≤ i < a. Similarly, depending on whether vℓ = uqhℓ or
vℓ = u−qhℓ holds, we have that viℓ = uiqhℓ holds for each 0 ≤ i < a or viℓ = u−iqhℓ

holds for each 0 ≤ i < a.

Proof. Observe that if a ≤ 2, there is nothing to prove. We can thus assume that
a ≥ 3, and so Proposition 4.1 applies. Let γ be the unique nontrivial element of Guℓ

and observe that, since G is edge-transitive on Γ, it does not fix any of the neighbors
of uℓ. Then γ fixes both C and C ′ setwise, and so the restriction of its action to
C (respectively C ′) is the reflection with respect to uℓ (respectively vqtℓ). Thus
u2ℓ = u0γ = v0γ = v2qtℓ. We can now continue inductively to see that uiℓ = viqtℓ
holds for each 0 ≤ i < a. The second part of the lemma can be proved analogously.
�
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Lemma 4.6. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤ Aut(Γ),
let a = attG(Γ) and let QG(Γ) = {qt, qh}. Then gcd(a, qt) = gcd(a, qh) = 1 and
qtqh ≡ ±1 (mod a).

Proof. We can again assume that a ≥ 3. Adopt the notation of Lemma 4.5. By
Lemma 4.5 we have that uiℓ = viqtℓ holds for each 0 ≤ i < a. Thus (7.1) implies
that {viqtℓ : 0 ≤ i < a} = {viℓ : 0 ≤ i < a}, and so gcd(a, qt) = 1. A similar
argument shows that gcd(a, qh) = 1 as well. To see that qtqh ≡ ±1 (mod a) observe
that Lemma 4.5 implies that uqhℓ = vqhqtℓ holds (recall that qh < a). By definition of
qh we thus get v±ℓ = vqhqtℓ, that is qhqtℓ ≡ ±ℓ (mod 2r). Since 2r = aℓ, we obtain
qhqt ≡ ±1 (mod a). �

We remark that both qhqt ≡ 1 (mod a) and qhqt ≡ −1 (mod a) can occur. For
instance one can verify that in the Doyle-Holt graph, Xo(3, 9; 2), we have a = 9 and
Q = {2, 4}, and so qtqh ≡ −1 (mod a), while for both of the graphs Xe(4, 20; 3, 0)
and Xe(4, 20; 3, 10) we have a = 20 and Q = {3, 7}, and so qhqt ≡ 1 (mod a). Other
examples of both possibilities (qtqh ≡ 1 (mod a) or qtqh ≡ −1 (mod a)), including
non-tightly attached ones, can be found by going through the census [48].

Observe that Lemma 4.6 implies that in fact qh, qt < a/2 holds unless a = 2 in
which case of course qh = qt = 1 = a/2. Moreover, Lemma 4.6 implies that qt is
uniquely expressible as the smaller of the elements ±q−1

h in Za and that, conversely,
qh is the smaller of the elements ±q−1

t in Za. We can thus define the parameter
jmpG(Γ) = min(QG(Γ)) of a tetravalent G-half-arc-transitive graph Γ where G ≤
Aut(Γ). We call jmpG(Γ) the G-alternating jump of Γ. In the case that G = Aut(Γ)
we abbreviate jmpAut(Γ)(Γ) to jmp(Γ) and speak of the alternating jump of Γ. Since
QG(Γ) does not depend of the choice of the G-induced orientation of Γ, this also
holds for the G-alternating jump of Γ.

Note that Lemma 4.6 implies that the circulants Circa({±1,±qt}) and Circa({±1,±qh})
are isomorphic, so we say that Circa({±1,±jmpG(Γ)}) is the associated circulant of
the pair (Γ, G) (see Figure 4.4 for an example), where in the case of a = 1 we disre-
gard the loop and consider the associated circulant simply as a one-vertex graph. In
the case of a ≤ 2 the circulant is somewhat degenerate but in general it is tetravalent
if and only if jmpG(Γ) 6= 1. This brings us to the following natural question.

Question 4.7. Let a ≥ 3 be an integer and 1 ≤ q < a/2 be coprime to a. Does there
exist a tetravalent graph Γ admitting a half-arc-transitive group G ≤ Aut(Γ) such
that the associated circulant of the pair (Γ, G) is isomorphic to Circa({±1,±q})?

We remark that the associated circulant of a pair (Γ, G), where Γ is a tetrava-
lent G-half-arc-transitive graph may or may not be arc-transitive. For instance, for
the half-arc-transitive graph Xo(3, 13; 3) the attachment number and the alternating
jump are 13 and 3, respectively (see Proposition 4.10), and one can easily check that
the circulant Circ13({±1,±3}) is not arc-transitive. On the other hand, one can
verify that the half-arc-transitive graph HAT[500, 6] from the census [48] has attach-
ment number 5 and the alternating jump parameter 2, and so the associated circulant
Circ5({±1,±2}), which is the complete graph on 5 vertices, is arc-transitive. Never-
theless, we think it is worth studying whether the fact that the associated circulant
of a pair (Γ, G) is or is not arc-transitive has any implications on the graph Γ. Note
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Figure 4.4: Two G-alternating cycles of the Doyle-Holt graph. It’s clear that its
associated circulant is isomorphic to the graph Circ9({±1,±2}).

that in the case of attG(Γ) = 2radG(Γ), the associated circulant is in fact isomorphic
to Γ.

It is well known that a tetravalent half-arc-transitive graph of given order is
not uniquely determined by its radius and attachment number. For instance, [32,
Theorem 3.4] implies that the graphs Xo(6, 13; 2) and Xo(6, 13; 3) are both half-arc-
transitive with radius 13 and attachment number 13. It is not difficult to prove that
they are not isomorphic. One of the ways to see this is by inspecting their alternating
jump parameter (denoted by q in the remainder of this paragraph). Namely, it can di-
rectly be verified (but see also Proposition 4.10) that the graph Xo(6, 13; 2) has q = 2,
while the graph Xo(6, 13; 3) has q = 3. This shows that the parameter q does give
a further refinement in the classification of all tetravalent half-arc-transitive graphs.
Unfortunately, even the triple (r, a, q) does not uniquely determine a tetravalent half-
arc-transitive graph of a given order. For instance, [53, Theorem 1.3, Proposition 9.1]
imply that the graphs Xe(4, 20; 3, 0) and Xe(4, 20; 3, 10) are both half-arc-transitive
with radius 20 and attachment number 20, but are not isomorphic. However, both
also have q = 3, which thus shows that nonisomorphic tetravalent half-arc-transitive
graphs with the same order, radius, attachment number and alternating jump pa-
rameter exist. Nevertheless, we show in the remainder of this chapter that the
alternating jump parameter does give a very useful insight into the structure of
tetravalent graphs admitting a half-arc-transitive group of automorphisms.

4.4 The alternating jump of tightly attached graphs

The majority of the examples from the the previous section are all tightly attached
half-arc-transitive graphs. The fact that their alternating jump parameter is actually
one of their defining parameters is not a coincidence. In this section we show that
the alternating jump parameter of tetravalent graphs admitting a half-arc-transitive
group action relative to which they are tightly attached is determined by their defin-
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ing parameters from the classifications given in [32, 53]. Depending on whether the
corresponding radius is odd or even, respectively, the classification of such graphs is
given in the following two propositions, which can be extracted from [32, Proposi-
tions 3.2, 3.3] and [53, Theorem 1.2], respectively (see also [37, Theorem 4.5] and [58,
Theorem 8.1]).

Proposition 4.8. [32] A tetravalent graph Γ admits a half-arc-transitive group of
automorphisms relative to which it is tightly attached of odd radius r if and only if
Γ ∼= Xo(m, r; q) for some integer m ≥ 3 and some q ∈ Z∗

r with qm ≡ ±1 (mod r).

Proposition 4.9. [53] A tetravalent graph Γ admits a half-arc-transitive group of
automorphisms relative to which it is tightly attached of even radius r if and only if
either r = 2 and Γ is isomorphic to a lexicographic product of a cycle with 2K1, or
r ≥ 4 and Γ ∼= Xe(m, r; q, t), where m ≥ 4 is even and q ∈ Z∗

r, t ∈ Zr are such that
qm = 1, t(q − 1) = 0 and 1 + q + · · ·+ qm−1 + 2t = 0.

Before we determine the alternating jump parameter of the graphs Γ from the
above two propositions we fix some notation. We first point out that the action of
the corresponding half-arc-transitive group G of automorphisms, both in the graphs
Xo(m, r; q) and the graphs Xe(m, r; q, t), is such that the corresponding G-attachment
sets are Γi = {uji ∈ V (Γ): j ∈ Zr}, where i ∈ Zm (see [32, 53] for details). In
particular, in one of the two G-induced orientations of the edges of Γ all edges are
oriented from Γi to Γi+1 for all i ∈ Zm. In the proof of the following result we
always choose this orientation. The notation minr{±q,±q

−1} in the statement of
the following proposition stands for the minimal integer from the set {0, 1, . . . , r−1},
which is congruent to one of q,−q, q−1,−q−1 modulo r, where q−1 is the inverse of
q modulo r.

Proposition 4.10. Let Γ be a tetravalent graph admitting a half-arc-transitive group
G of automorphisms relative to which it is tightly attached with radius r ≥ 3. Then
jmpG(Γ) = minr{±q,±q

−1}, where Γ ∼= Xo(m, r; q) or Γ ∼= Xe(m, r; q, t), depending
on whether r is odd or even, respectively.

Proof. Recall that, since the G-attachment sets are blocks of imprimitivity for the
action of G on Γ, the radius r divides |V (Γ)|. Let m be such that |V (Γ)| = mr and
note that, by [32, Proposition 2.4], we have m ≥ 3. We separate the proof depending
on the parity of r.

Suppose first that r is odd. In this case Proposition 4.8 implies that Γ ∼=
Xo(m, r; q) for some q ∈ Z∗

r such that qm = ±1. Choose the orientation of Γ de-
scribed in the paragraph preceding Proposition 4.10 and let v = u01. In order to
determine jmpG(Γ) we find the values qt(v) and qh(v) (recall that the parameters
qt and qh do not depend on the choice of the vertex v). By definition of the graph
Xo(m, r; q) the two G-alternating cycles containing v are

C = (u01, u
q
2, u

2q
1 , u

3q
2 , . . . , u

r−2q
1 , ur−q

2 ) and C ′ = (u01, u
1
0, u

2
1, u

3
0, . . . , u

r−2
1 , ur−1

0 ).

Since r is odd and q is coprime to r, the corresponding G-attachment set C ∩ C ′ is
then

C ∩ C ′ = {u2jq1 : j ∈ Zr} ∩ {u2j1 : j ∈ Zr} = {uj1 : j ∈ Zr}.
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It follows that qt(v) = min{s : u2s1 ∈ {u2q1 , u
−2q
1 }}, which implies qt(v) = min{q,−q}.

Therefore, Lemma 4.6 implies qh(v) ∈ {q−1,−q−1}. By definition of qh(v) it follows
that qh(v) = min{q−1,−q−1}, and so jmpG(Γ) = minr{±q,±q

−1}, as claimed.
Suppose now that r is even. Since r ≥ 3 Proposition 4.9 implies that Γ ∼=

Xe(m, r; q, t) for some q ∈ Z∗
r and t ∈ Zr such that qm = 1, t(q − 1) = 0 and

1 + q + · · · + qm−1 + 2t = 0. Then, choosing the orientation of Γ described in the
paragraph preceding Proposition 4.10, the two G-alternating cycles containing the
vertex v = u01 are

C = (u01, u
q
2, u

q
1, u

2q
2 , u

2q
1 . . . , ur−q

1 , u02) and C ′ = (u01, u
0
0, u

1
1, u

1
0, . . . , u

r−1
1 , ur−1

0 ).

A similar argument as in the case of r being odd proves that jmpG(Γ) = minr{±q,±q
−1}.

�

By [32, Proposition 4.1] for any m ≥ 3, any odd r ≥ 3 and any q ∈ Zr such that
qm = ±1 the graph Xo(m, r; q) is isomorphic to each of the graphs Xo(m, r;−q),
Xo(m, r; q

−1) and Xo(m, r;−q
−1). Similarly, [53, Proposition 3.9] shows that for any

pair of even integers m, r ≥ 4 and any q, t ∈ Zr with qm = 1, t(q − 1) = 0 and
1+q+ · · ·+qm−1+2t = 0 the graph Xe(m, r; q, t) is isomorphic to each of the graphs
Xe(m, r; q

−1, t), Xe(m, r;−q, t+ q+ q3 + · · ·+ qm−1) and Xe(m, r;−q
−1, t+ q+ q3 +

· · ·+ qm−1). We thus have the following corollary.

Corollary 4.11. Let Γ be a tetravalent graph admitting a half-arc-transitive group
G of automorphisms relative to which it is tightly attached with radius r ≥ 3. Let m
be such an integer that the order of Γ is mr and let q = jmpG(Γ). Then, one of (i)
and (ii) below holds, depending on whether r is odd or even, respectively:

(i) Γ ∼= Xo(m, r; q).

(ii) Γ ∼= Xe(m, r; q, t), where t ∈ Zr is one of the two solutions of the equation
1 + q + · · · + qm−1 + 2t = 0.

The above corollary shows that, at least for tetravalent graphs admitting a half-
arc-transitive group of automorphisms relative to which they are tightly attached,
the order, together with the corresponding radius and alternating jump parameter
(almost) completely determine the graph. More precisely, they determine it com-
pletely in the case of odd radius while in the case of even radius at most two such
graphs can exist.

We want to point out however, that a given tetravalent graph Γ may admit more
than one half-arc-transitive group of automorphisms (even such that it is tightly
attached with respect to more than one of them). Moreover, the corresponding
radius (and/or alternating jump parameter) does not need to be the same for all such
subgroups of Aut(Γ). For instance in [37, Example 2.1] (see also [36]) it was shown
that the well-known lexicographic products C2r[2K1], where r ≥ 3 (graphs R2r(2, 1)
from section 3.5.1), admit two different half-arc-transitive groups of automorphisms
relative to which they are tightly attached. For one of them the corresponding radius
is 2 while for the other one it is r. There are other such examples that can be found
in [37] but one can also find others by going through the census from [48]. For
instance, the graph GHAT[294; 1] from the census admits three different half-arc-
transitive groups of automorphisms. It is loosely attached with radii 3 and 7 for
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two of them and is antipodally attached with radius 3 for the third one. Of course,
if we restrict to half-arc-transitive graphs (where the full automorphism group is
half-arc-transitive), these phenomena cannot occur.

4.5 The graph of alternating cycles and the quotient graph

ΓB

There is another possibility for the study of tetravalent graphs Γ admitting a half-
arc-transitive group of automorphisms G ≤ Aut(Γ), also based on the G-alternating
cycles. Instead of considering the quotient graph ΓB one can study the graph AltG(Γ)
of G-alternating cycles introduced in [49]. Employing the properties of the alternat-
ing jump parameter we determine the kernel of the natural action of G on AltG(Γ)
(see Theorem 4.13) and show that this kernel coincides with the kernel of the natural
action of G on ΓB as well as to the kernel of its action on the set of all G-attachment
sets of Γ (see Theorem 4.15). The group G induces a natural vertex- and edge-
transitive action on both ΓB and AltG(Γ). We consider the question of when the
graphs ΓB and AltG(Γ) are half-arc-transitive and when they are arc-transitive, and
we indicate some connections between these two graphs.

We first recall the definition of the graph of alternating cycles AltG(Γ) from [49].
Let Γ be a tetravalent graph admitting a half-arc-transitive group of automorphisms
G. The vertex set of AltG(Γ) is then the set of all G-alternating cycles of Γ with
two such cycles being adjacent whenever they have a non-empty intersection. Of
course, G has a natural action on the graph AltG(Γ). In fact, it was proved in [49,
Proposition 4] that the induced action is vertex- and edge-transitive and is half-
arc-transitive if and only if attG(Γ) divides radG(Γ). As we mentioned before, one
of the aims of this section is to determine the kernel KG(AltG(Γ)) of this action.
Observe that KG(AltG(Γ)) is the normal subgroup of G consisting of all elements
fixing each G-alternating cycle (throughout the rest of this chapter we say that an
automorphism of Γ fixes a given cycle if it maps this cycle as a subgraph to itself).
The following lemma gives a sufficient condition for an element of G to be contained
in KG(AltG(Γ)).

Lemma 4.12. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) such that 3 ≤ a < r, where r = radG(Γ) and a = attG(Γ). Suppose γ ∈ G
fixes some G-alternating cycle C, as well as all the G-attachment sets containing ver-
tices of C. Then γ ∈ KG(AltG(Γ)). Moreover, there exists an integer k, 0 ≤ k ≤ a/2,
such that the action of γ on C is a kℓ-step rotation, where ℓ = 2r/a.

Proof. Denote C = (u0, u1, . . . , u2r−1), fix one of the two G-induced orientations
of the edges of Γ and let QG(Γ) = {qt, qh}. Since γ fixes C, as well as all the G-
attachment sets containing vertices of C, there exists a unique 0 ≤ k < a such that
u0γ = ukℓ, where ℓ = 2r/a (recall that the G-attachment sets are of the form given
in (7.1)). In fact, by exchanging the roles of uj and u−j for each j if necessary, we
can assume k ≤ a/2. By [32, Proposition 2.4] the G-alternating cycles of Γ are all
induced. Since u1 is a vertex of the induced cycle C and it is adjacent to u0, the
image u1γ is one of the vertices ukℓ+1 and ukℓ−1. Moreover, since a < r, we have



Tetravalent G-half-arc-transitive graphs 51

ℓ ≥ 3, and so the G-attachment set containing u1, namely {u1+iℓ : 0 ≤ i < a}, does
not contain ukℓ−1. It follows that u1γ = ukℓ+1, and so the restriction of the action
of γ to C is the kℓ-step rotation such that ujγ = uj+kℓ for all 0 ≤ j ≤ 2r − 1.

Let C ′ = (v0, v1, . . . , v2r−1) be one of the G-alternating cycles having a non-
empty intersection with C. Without loss of generality assume v0 = u0 and uℓ = vqℓ,
where q is one of qt and qh, depending on whether u0 is the tail of the two arcs of C
incident to it or not, respectively. By Lemma 4.5 we have uiℓ = viqℓ for all 0 ≤ i < a,
and so v0γ = u0γ = ukℓ = vkqℓ. Recall that vℓ = uq−1ℓ, where q−1 is the inverse of q
modulo a. Thus

vℓγ = uq−1ℓγ = uq−1ℓ+kℓ = u(q−1+k)ℓ = v(q−1+k)qℓ = vℓ+kqℓ.

Since ℓ < r and γ fixes C ′ (since it fixes C and the attachment set C ∩ C ′), it
is now clear that the restriction of the action of γ to C ′ is the kqℓ-step rotation
such that vjγ = vj+kqℓ for all 0 ≤ j ≤ 2r − 1. It follows that γ fixes all of the
G-attachment sets containing vertices of C ′, and so the assumptions of the lemma
hold for C ′ and γ as well. By connectedness γ fixes each G-alternating cycle of Γ,
and so γ ∈ KG(AltG(Γ)). �

We can now (almost) completely determine the kernel KG(AltG(Γ)) for a tetrava-
lent graph Γ admitting a half-arc-transitive group of automorphisms G ≤ Aut(Γ).
We use Dr to denote the dihedral group of order 2r.

Theorem 4.13. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) and let r = radG(Γ) and a = attG(Γ). Let K = KG(AltG(Γ)) be the kernel
of the action of G on the graph AltG(Γ) of G-alternating cycles of Γ. Then one of
the following holds:

(i) a = 2r, in which case Γ ∼= Circ2r({±1,±q}) where q2 ≡ ±1(mod 2r), and
K ∼= Dr;

(ii) a = r = 2, in which case Γ is the lexicographic product Cn[2K1] for some
integer n, and K is isomorphic to a subgroup of the elementary abelian group
Zn
2 ;

(iii) a = r > 2 and K ∼= Da;

(iv) a < r with a | r and K ∼= Za, unless possibly K is trivial with a = 2;

(v) a < r with a ∤ r and K ∼= Za/2.

Moreover, if a = 2 and K is trivial, then G̃ = G × 〈τ〉 acts half-arc-transitively on
Γ with KG̃(AltG̃(Γ))

∼= Z2, where τ is the automorphism of Γ interchanging each
vertex with its antipodal counterpart on both of the G-alternating cycles containing
it.

Proof. By [32, Proposition 2.4] the graph AltG(Γ) has at least three vertices unless
a = 2r, in which case Γ ∼= Circ2r({±1,±q}) for some q with q2 ≡ ±1(mod 2r), there
are exactly two G-alternating cycles (each containing all of the vertices of Γ) and
K = Dr is the dihedral group of order 2r (while G itself is an extension of K by Z2).
Moreover, the case a = r, that is when Γ is a tightly G-attached graph, is settled by
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[32, Proposition 3.1] since in this case the kernel K clearly coincides with the kernel
of the action of G on the set of all G-attachment sets. For the rest of the proof we
can thus assume that Γ has at least three G-alternating cycles and that 1 ≤ a < r.
Observe that in this case the action of K on Γ is semiregular since a < r implies
that no two neighbors of a vertex of Γ can belong to the same pair of G-alternating
cycles.

Next, observe that if a = 1, that is if Γ is loosely G-attached, the kernel K is
trivial. We can thus further assume that a ≥ 2. For the rest of the proof we adopt the
notation from Lemma 4.5. We set ℓ = 2r/a, fix one of the two G-induced orientations
of the edges of Γ, set QG(Γ) = {qt, qh} and we let v ∈ V (Γ). Furthermore, we let
C = (u0, u1, . . . , u2r−1) and C ′ = (v0, v1, . . . , v2r−1) be the two G-alternating cycles
containing v = u0 = v0 where v is the tail of the two arcs of C incident to it and
uℓ = vqtℓ.

Suppose first that a = 2. If r is odd (in which case a ∤ r), then u0 is the tail, while
ur is the head of the two arcs of C incident to u0 and ur, respectively. It follows that
no element of K can map u0 to ur, and so K is trivial in this case. If however r is
even, then the fact that the intersection of any two adjacent G-alternating cycles is a
pair of antipodal vertices on both of them implies that the automorphism τ , mapping
each vertex to its antipodal counterpart on both G-alternating cycles containing it
(see [49, Proposition 7]), is the only possible nontrivial element of K. Depending
on whether τ is or is not contained in G, the kernel K is either the cyclic group of
order 2 or is trivial, respectively. Moreover, if τ /∈ G then the fact that τ centralizes
G implies that G̃ = 〈G, τ〉 = G × 〈τ〉. Since r is even, it is clear that G̃ acts
half-arc-transitively on Γ (giving rise to the same alternating cycles as G) and that
〈τ〉 = KG̃(AltG̃(Γ)).

We are left with the case 3 ≤ a < r. Recall that the vertex uℓ is the tail of the
two arcs of C incident to it if and only if ℓ is even, which occurs if and only if a
divides r. Since a ≥ 3, Proposition 4.1 implies that G acts regularly on the edge set
of Γ. If ℓ is even let ρ ∈ G be the unique element mapping the arc (u0, u1) to the arc
(uℓ, uℓ+1) and if ℓ is odd let ρ ∈ G be the unique element mapping the arc (u0, u1)
to (u2ℓ, u2ℓ+1). It is clear that the restriction of the action of ρ to C is an ℓ-step or
2ℓ-step rotation, depending on whether a divides r or not, respectively. In both cases
ρ fixes C as well as all of the ℓ attachment sets containing the vertices of C. Thus ρ
satisfies the conditions of Lemma 4.12, and so ρ ∈ K. Since C∩C ′ = {uiℓ : 0 ≤ i < a}
and the action of K on Γ is semiregular, it follows that K = 〈ρ〉, which completes
the proof. �

We point out that for a = 2 and r even both possibilities from item (iv) of the
above theorem can indeed occur. Going through the census of all tetravalent graphs
of order up to 1000, admitting a half-arc-transitive group of automorphisms [48], one
can verify that in most cases where a = 2 and r is even the kernel KG(AltG(Γ)) is
nontrivial (and is thus of order 2). However, there are examples where it is in fact
trivial. The smallest such example in the above mentioned census is the graph Γ =
GHAT[162, 1] of order 162 whose automorphism group Aut(Γ) is of order 1296. The
group Aut(Γ) acts arc-transitively on Γ but it has precisely two (normal) subgroups
G1 and G2 of orders 324 and 648, respectively, acting half-arc-transitively on Γ, for



Tetravalent G-half-arc-transitive graphs 53

both of which the corresponding radius is 6 and the attachment number is 2. How-
ever, for the group G1 the corresponding kernel KG(AltG(Γ)) is trivial, while for the
group G2, it is of order 2. Of course, since G1 and G2 are the only half-arc-transitive
subgroups of Aut(Γ), Theorem 4.13 implies that G2 = G1 × 〈τ〉. Nevertheless, the
following problem naturally arises.

Problem 4.14. Classify all tetravalent graphs Γ, admitting a half-arc-transitive
group G ≤ Aut(Γ) with attG(Γ) = 2 and radG(Γ) even, such that KG(AltG(Γ)) is
trivial. In particular, does a half-arc-transitive graph Γ admitting such a half-arc-
transitive group G ≤ Aut(Γ) exist?

Before stating and proving the next theorem in which we compare the kernel of
the action of G on AltG(Γ) and on ΓB we fix the following notation. Let A be the
set of all G-attachment sets of Γ (note that A = B if and only if a divides r). Then
G has a natural action on the graph ΓB as well as on the set A. Let KG(ΓB) and
KG(A) be the kernels of these actions. The following result shows that these two
kernels are closely related to the kernel KG(AltG(Γ)).

Theorem 4.15. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) and let r = radG(Γ) and a = attG(Γ). Let ΓB be as in Construction 4.2 and
let A be the partition of V (Γ) described in the preceding paragraph. If a < 2r, then

KG(ΓB) = KG(AltG(Γ)) = KG(A).

Proof. Let α ∈ KG(AltG(Γ)). Then α fixes each G-alternating cycle, and so it
also fixes all the G-attachment sets since they are the intersections of G-alternating
cycles. Thus KG(AltG(Γ)) ⊆ KG(A).

Suppose now there exists γ ∈ KG(A)\KG(AltG(Γ)). Let ℓ = 2r/a, let C =
(u0, u1, . . . , u2r−1) be aG-alternating cycle such that Cγ 6= C and let C ′ = (v0, v1, . . . , v2r−1)
be the other G-alternating cycle containing the vertex u0, where u0 = v0. Since
γ ∈ KG(A), it fixes the G-attachment set C ∩C ′ setwise, and so it interchanges the
cycles C and C ′. Note that a < 2r implies that the vertex u1 is not contained in C ′

but in some G-alternating cycle C ′′ with C ′′ 6= C and C ′′ 6= C ′. But since γ also
fixes setwise the G-attachment set C ∩ C ′′ we get C ∩ C ′′ = Cγ ∩ C ′′γ = C ′ ∩ C ′′γ,
which is impossible. Therefore, KG(AltG(Γ)) = KG(A), as claimed.

To complete the proof we need to verify that KG(ΓB) = KG(A). Of course, if a
divides r then ℓ is even in which case B coincides with A, and so there is nothing
to prove. We can thus assume that a ∤ r. In this case each G-attachment set is
the disjoint union of two elements of B, and so it is clear that KG(ΓB) ≤ KG(A).
By the first part of the proof it thus suffices to prove that KG(AltG(Γ)) ≤ KG(ΓB).
Let γ ∈ KG(AltG(Γ)) and let C = (u0, u1, . . . , u2r−1) be a G-alternating cycle. Let
u = ui for some i ∈ {0, 1, . . . , 2r − 1} and let C ′ be the other G-alternating cycle
containing u. Since in this case ℓ is odd, C ∩ C ′ = Bs(C;ui) ∪Bs(C, ui+ℓ). Since γ
fixes both C and C ′, each ui+jℓ is mapped by γ to a vertex ui+j′ℓ such that j′ has
the same parity as j (otherwise γ interchanges C and C ′). Therefore γ fixes each of
Bs(C;ui) and Bs(C, ui+ℓ) setwise, and so it fixes all the elements of B setwise. It
thus follows that KG(AltG(Γ)) ≤ KG(ΓB), which completes the proof. �
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As was pointed out in the Introduction, the quotient graph ΓB from Construc-
tion 4.2 is of great importance in the study of tetravalent graphs admitting a half-
arc-transitive group of automorphisms. Namely, by [37, Theorem 3.6] a tetravalent
graph Γ admitting a half-arc-transitive group of automorphisms G ≤ Aut(Γ) with
attG(Γ) 6= 2radG(Γ) is either tightly G-attached or the quotient graph ΓB is a tetrava-
lent graph admitting a half-arc-transitive action of a quotient group of G, relative
to which it is loosely or antipodally attached. Of course, this quotient group is pre-
cisely the group G/KG(ΓB). Combining together Theorems 4.13 and 4.15 we can
make an important improvement of [37, Theorem 3.6]. Namely, we now know that
the imprimitivity block system B actually coincides with the set of orbits of the
cyclic normal subgroup KG(ΓB) of G (recall that in the case that radG(Γ) is even,
attG(Γ) = 2 and KG(AltG(Γ)) is trivial, we first need to enlarge the group G to
G× 〈τ〉). We thus obtain the following result.

Theorem 4.16. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) such that a 6= 2r, where r = radG(Γ) and a = attG(Γ). In the case that r is
even, a = 2 and KG(ΓB) is trivial replace G by G̃ from Theorem 4.13. Let B and ΓB

be as in Construction 4.2. Then one the following holds:

(i) a = r, that is Γ is tightly G-attached;

(ii) a < r and the partition B coincides with the orbits of the cyclic normal sub-
group KG(ΓB) which is of order a or a/2, depending on whether a divides r
or not, respectively. Moreover, letting Ḡ = G/KG(ΓB), the quotient graph
ΓB is a tetravalent Ḡ-half-arc-transitive graph which is loosely Ḡ-attached or
antipodally Ḡ-attached, depending on whether a divides r or not, respectively.

Theorem 4.16 provides the link between the frameworks for a systematic study
of tetravalent graphs admitting a half-arc-transitive group of automorphism, started
in [3, 37]. Namely, for a tetravalent graph Γ admitting a half-arc-transitive group
of automorphism G such that Γ does not have one of the three special attachment
numbers (1,2 or radG(Γ)), Theorem 4.16 ensures the existence of a non-trivial cyclic
normal subgroup of G such that the quotient graph with respect to its orbits is
again a tetravalent graph admitting a half-arc-transitive group of automorphism
with attachment number 1 or 2. Therefore, in order to describe or classify all the
basic graphs in the sense of [3] the tetravalent graphs admitting a half-arc-transitive
group of automorphisms relative to which they are loosely or antipodally attached
will have to be thoroughly investigated.

In the remainder of this section we give two additional results on the graphs
AltG(Γ) and ΓB, corresponding to a tetravalent G-half-arc-transitive graph Γ where
G ≤ Aut(Γ). Moreover, by making a careful analysis of the graphs from the cen-
sus [48] using a suitable package such as Magma [7] several interesting questions
about these two graphs arise which provide a possible direction for future research.
We formulate some of these questions and give a few examples of graphs with inter-
esting properties.

Let Γ be a tetravalent G-half-arc-transitive graph where G ≤ Aut(Γ) and let
a = attG(Γ) and r = radG(Γ). As already pointed out the group G induces a natural
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action on both AltG(Γ) and ΓB. The quotient group G/KG(AltG(Γ)) acts vertex-
and edge-transitively on AltG(Γ) and this action is arc-transitive if and only if a does
not divide r and is half-arc-transitive otherwise (see [49, Proposition 4]). Of course,
even if a does divide r the graph AltG(Γ) may be arc-transitive. A similar situation
holds for ΓB, but in this case G/KG(ΓB) always acts half-arc-transitively. As we
now prove, a natural way for AltG(Γ) and ΓB to be arc-transitive is that there is an
automorphism of Γ, interchanging the two G-induced orientations of the edges of Γ.

Proposition 4.17. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ). If Γ is tightly G-attached or Aut(Γ) contains an element interchanging the
two G-orbits on A(Γ), then AltG(Γ) and ΓB are arc-transitive graphs.

Proof. Note that if Γ is tightly G-attached, then AltG(Γ) and ΓB, are both iso-
morphic to the cycle of length |V (Γ)|/radG(Γ). For the rest of the proof we can thus
assume that Γ is not tightly G-attached.

Let O1 and O2 be the two G-orbits on A(Γ). Suppose that Aut(Γ) contains
an element α interchanging O1 and O2 and let (u, v) ∈ O1. Since AltG(Γ) and ΓB

admit a vertex- and edege-transitive action, it suffices to find an element of their
automorphism groups which interchanges two adjacent vertices. Moreover, in terms
of vertices and edges the G-alternating cycles with respect to O1 coincide with the
G-alternating cycles with respect to O2, and so α induces an automorphism of both
AltG(Γ) and ΓB. Let C1 = (u0, u1, . . . , u2r−1) and C2 = (v0, v1, . . . , v2r−1) be the
two G-alternating cycles such that u0 = v0 = u and u1 = v. Note that there exists
β ∈ G such that (u0, u1)αβ = (u0, v1). Then αβ maps C1 to C2, and since it fixes
u0, it maps C2 to C1, proving that AltG(Γ) is arc-transitive. Similarly, there exists
γ ∈ G such that (u0, u1)αγ = (u1, u0). Then αγ clearly interchanges the adjacent
vertices of ΓB containing the vertices u0 and u1, respectively. Therefore the graph
ΓB is also arc-transitive. �

Let us mention, that the situation from Proposition 4.17 seems to be quite com-
mon. Namely, by going through the census of all arc-transitive tetravalent graphs
Γ admitting a half-arc-transitive group G of automorphisms up to order 1000, one
finds that most of them admit automorphisms interchanging the two G-orbits on
A(Γ). Nevertheless, there are examples where this does not hold. For instance, the
arc-transitive graph Γ = GHAT[21, 1] is tightly attached with respect to a suitable
half-arc-transitive group G ≤ Aut(Γ), but there is no element of Aut(Γ) interchang-
ing the corresponding orbits on A(Γ). The same occurs for the graph GHAT[252, 14],
which turns out to be the smallest example with this property that is not tightly
attached (it is loosely attached).

We remark that each of the graphs AltG(Γ) and ΓB can be arc-transitive even
if no automorphism of Γ interchanges the two G-orbits on A(Γ). This turns out to
be the case also for the above mentioned graphs GHAT[21, 1] and GHAT[252, 14].
In fact, by going through the census from [48] one finds that for all arc-transitive
tetravalent graphs admitting a half-arc-transitive group G ≤ Aut(Γ) up to order
1000, the graphs AltG(Γ) and ΓB are both arc-transitive. This suggests the following
natural question.
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Question 4.18. Is it true that if Γ is an arc-transitive tetravalent graph admitting
a half-arc-transitive group G ≤ Aut(Γ), the graphs AltG(Γ) and ΓB are both arc-
transitive?

It is also interesting to investigate what can be said about arc-transitivity or
half-arc-transitivity of the graphs AltG(Γ) and ΓB in the case that Γ is half-arc-
transitive. Going through the census of all tetravalent half-arc-transitive graphs of
order up to 1000 one finds that there are examples Γ for which Alt(Γ) and/or ΓB

are half-arc-transitive. For instance, for Γ = HAT[500; 6] (which has rad(Γ) = 25
and att(Γ) = 5) the graph ΓB is half-arc-transitive while Alt(Γ) is arc-transitive. For
Γ = HAT[600; 4] (which has rad(Γ) = 6 and att(Γ) = 2) the graphs ΓB and Alt(Γ)
are both half-arc-transitive. Finally, for Γ = HAT[84; 1] (which has rad(Γ) = 14 and
att(Γ) = 7) both ΓB and Alt(Γ) are arc-transitive. The census contains no example
Γ for which Alt(Γ) would be half-arc-transitive but the quotient graph ΓB would be
arc-transitive. We thus pose the following natural question.

Question 4.19. Does there exist a tetravalent half-arc-transitive graph Γ such that
Alt(Γ) is half-arc-transitive but ΓB is arc-transitive?

The following result, which shows that the graph of alternating cycles is inde-
pendent of taking quotients with respect to B, can be of help when dealing with the
above two questions.

Proposition 4.20. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) such that attG(Γ) < radG(Γ). Then AltG(Γ) ∼= AltG(ΓB), where G =
G/KG(ΓB).

Proof. Note that if Γ is loosely G-attached then Γ ∼= ΓB, so there is nothing to
prove. We can thus assume that a = attG(Γ) > 1. We now construct an isomorphism
ψ : AltG(Γ) → AltG(ΓB). For each v ∈ V (Γ) define Bv to be the element of B
containing v. Let C = (u0, u1, . . . , u2r−1) ∈ V (AltG(Γ)), where r = radG(Γ), be a
G-alternating cycle of Γ and let ℓ = 2r/a. Suppose first that a divides r. Then
for each 0 ≤ i ≤ ℓ − 1 we have Bui

= {ui+jℓ | 0 ≤ j ≤ a − 1}. In this case
(Bu0

, Bu1
, Bu2

, . . . , Buℓ−1
) is a G-alternating cycle of ΓB, which we set as the ψ-

image of C. Suppose now that a does not divide r and recall that in this case a is
even. Then for each 0 ≤ i ≤ 2ℓ−1 we have Bui

= {ui+2jℓ | 0 ≤ j ≤ a/2−1}. In this
case (Bu0

, Bu1
, Bu2

, . . . , Bu2ℓ−1
) is a G-alternating cycle of ΓB, which we set as the

ψ-image of C. It is easy to see that in both cases the mapping ψ is a bijection. Since
adjacency in the graph of alternating cycles is given by non-empty intersection, ψ is
clearly an isomorphism. �

Note that Proposition 4.20 implies that in the case that the answer to Ques-
tion 4.18 is in the affirmative, the answer to Question 4.19 is negative. Namely, sup-
pose that the answer to Question 4.18 is in the affirmative. If Γ is half-arc-transitive
but ΓB is arc-transitive, then either Γ is tightly attached (in which case Alt(Γ) is a
cycle and is thus arc-transitive), or Proposition 4.20 implies that Alt(Γ) ∼= AltG(ΓB),
which, by assumption is arc-transitive.



Tetravalent G-half-arc-transitive graphs 57

4.6 The graphs with attG(Γ) ∤ radG(Γ)

Let Γ be a tetravalent graph admitting a half-arc-transitive group G of automor-
phisms and let r = radG(Γ) and a = attG(Γ). It is well know that a divides 2r.
However, it may happen that a does not divide r (see for instance [49], where the ex-
amples with r = 3 and a = 2 were characterized). Nevertheless, for all of the known
examples where a does not divide r, the graph Γ is in fact arc-transitive. This has led
to the question, posed as Question 1 in [49], of whether in each tetravalent half-arc-
transitive graph the attachment number divides the radius. In this section we use
the alternating jump parameter and some of the results from the previous sections
to address this question.

We first prove that in the case that a does not divide r, the set QG(Γ) in fact
consists of a single number, that is, the parameters qt and qh from Section 4.3
coincide. Recall that the number ℓ was defined as ℓ = 2r/a, and so a does not divide
r if and only if ℓ is odd.

Lemma 4.21. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) and let r = radG(Γ), a = attG(Γ) and q = jmpG(Γ). If a does not divide r
and a 6= |V (Γ)| then q2 ≡ ±1 (mod a), and so QG(Γ) = {q}.

Proof. Fix one of the two G-induced orientations of the edges of Γ and let v ∈ V (Γ).
Let qt = qt(v) and qh = qh(v), so that QG(Γ) = {qt, qh} (see Section 4.3). Let
C = (u0, u1, . . . , u2r−1) and C ′ = (v0, v1, . . . , v2r−1) be the two G-alternating cycles
containing v, where u0 = v0 = v, v is the tail of the two arcs of C, incident to it, and
uℓ = vqtℓ, where ℓ = 2r/a. Observe that, since a ∤ r but a | 2r, the number ℓ is odd.
It follows that uiℓ is the tail of the two arcs of C, incident to it, if and only if i is
even. In particular, u0 is the tail and uℓ is the head of the two arcs of C, incident to
u0 and uℓ, respectively. By Lemma 4.5 we have that u2ℓ = v2qtℓ, and so qh(uℓ) = qt
(recall that uℓ = vqtℓ and qt ≤ a/2). Thus qh = qt = q, and so Lemma 4.6 implies
q2 ≡ ±1 (mod a), as claimed. �

The above lemma has the following useful corollary, describing the action of
certain elements of the kernel KG(AltG(Γ)).

Corollary 4.22. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) such that 3 ≤ a < r, where r = radG(Γ) and a = attG(Γ). Suppose a does
not divide r, let q = jmpG(Γ) and let γ ∈ KG(AltG(Γ)) be a nontrivial element of
the kernel of the action of G on the graph AltG(Γ). Then there exists an integer
k, 0 < k ≤ a/2, such that for any two non-disjoint G-alternating cycles of Γ the
restriction of the action of γ to them is a kℓ-step rotation on one of them and a
qkℓ-step rotation on the other, where ℓ = 2r/a.

Proof. Let C be a G-alternating cycle of Γ. Note that the assumption γ ∈
KG(AltG(Γ)) implies that γ fixes C, as well as all the G-attachment sets containing
the vertices of C. The existence of a suitable 0 < k ≤ a/2 such that γ acts as
kℓ-step rotation on C is thus ensured by Lemma 4.12. Moreover, the proof of that
lemma also shows that for each of the G-alternating cycles C ′, having a non-empty
intersection with C, the restriction of the action of γ to C ′ is a qkℓ-step rotation. We
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can now repeat the same argument for each C ′. Since γ acts as a qkℓ-step rotation
on C ′, it acts as a kℓ-step rotation on each of the G-alternating cycles, having a non-
empty intersection with C ′ (recall that q2 ≡ ±1 (mod a) holds by Lemma 4.21). By
connectedness it now follows that for each pair of non-disjoint G-alternating cycles
of Γ the restriction of the action of γ on them is a kℓ-step rotation on one of them
and a qkℓ-step rotation on the other one. �

We next show that in the case when a does not divide r, the graph AltG(Γ) is
necessarily bipartite, unless possibly if q = 1 or q = a/2− 1.

Lemma 4.23. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) such that a 6= |V (Γ)| and that a does not divide r, where r = radG(Γ)
and a = attG(Γ). If jmpG(Γ) /∈ {1, a/2 − 1}, then the graph AltG(Γ) is bipartite.

Proof. Denote q = jmpG(Γ) and recall that Lemma 4.21 implies that QG(Γ) =
{q}. Suppose q /∈ {1, a/2 − 1}. Then Lemma 4.6 implies that a ≥ 3. Let C =
(u0, u1, . . . , u2r−1) be a G-alternating cycle of Γ and let γ ∈ G be the unique (see
Proposition 4.1) element mapping u0 to u2ℓ and u1 to u2ℓ+1, where ℓ = 2r/a (observe
that such a γ does indeed exist since 2ℓ is even). Since a ≥ 3 we have 2ℓ < 2r, and
so γ is a nontrivial automorphism. It is clear that γ is a 2ℓ-step rotation of C, and
so it fixes C as well as all the G-attachment sets containing the vertices of C. By
Lemma 4.12 we have γ ∈ KG(AltG(Γ)), and so Corollary 4.22 implies that for any
pair of non-disjoint G-alternating cycles of Γ the restriction of the action of γ to one
of them is a 2ℓ-step rotation while the restriction of its action to the other is a 2qℓ-
step rotation. It now only remains to see that a 2ℓ-step rotation of a cycle of length
2r is not a 2qℓ-step rotation of this cycle (in any of the two possible directions). If
this was true, then one of 2ℓ ≡ 2qℓ (mod 2r) and 2ℓ ≡ −2qℓ (mod 2r) would have
to hold, implying that one of 2ℓ(q−1) and 2ℓ(q+1) is divisible by 2r = aℓ. However,
since by assumption 1 < q < a/2 − 1 holds, none of these is possible. This shows
that AltG(Γ) is bipartite with the two bipartition sets coinciding with the set of all
G-alternating cycles of Γ on which γ acts as a 2ℓ-step rotation or 2qℓ-step rotation,
respectively. �

We remark that tetravalent graphs Γ, admitting a half-arc-transitive group of au-
tomorphisms G ≤ Aut(Γ) such that attG(Γ) does not divide radG(Γ) and AltG(Γ) is
not bipartite do exist. For instance, the results of [49] show that any (non-bipartite)
2-arc-transitive cubic graph is the graph AltG(Γ) for some tetravalent graph Γ ad-
mitting a half-arc-transitive group of automorphisms G for which attG(Γ) = 2 and
radG(Γ) = 3, thus providing infinitely many examples Γ with the above mentioned
situation. Of course, since attG(Γ) = 2 we have jmpG(Γ) = 1 for all of these cases.
We know of no example however, where jmpG(Γ) = attG(Γ)/2 − 1 > 1 holds, which
thus leads us to the following question.

Question 4.24. Does there exist a tetravalent graph Γ, admitting a half-arc-transitive
group of automorphisms G ≤ Aut(Γ), such that a 6= |V (Γ)|, a ∤ r and q = a/2−1 > 1,
where a = attG(Γ), r = radG(Γ) and q = jmpG(Γ), but the graph AltG(Γ) is not
bipartite?

We now give a result which is a considerable improvement of the results of [49]
towards the answer to Question 1 of [49]. Moreover, if one is able to show that the
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answer to Question 4.24 is negative, the next theorem will in fact almost completely
solve Question 1 from [49], since the only remaining case will be the one when
attG(Γ) = 4.

Theorem 4.25. Let Γ be a tetravalent G-half-arc-transitive graph for some G ≤
Aut(Γ) and let r = radG(Γ), a = attG(Γ) and q = jmpG(Γ). Suppose a does not
divide r and 4 < a < r. If q = 1 or the graph AltG(Γ) is bipartite, then there
exists an automorphism ρ of Γ, fixing all of the G-alternating cycles of Γ and acting
as a 2r/a-step rotation on at least one of them. Consequently, the graph Γ is arc-
transitive. In particular, if 4 < a < r, a does not divide r and q 6= a/2 − 1, then Γ
is arc-transitive.

Proof. Fix one of the two G-induced orientations of the edges of Γ. Since a does
not divide r, the number ℓ = 2r/a is odd and Lemma 4.21 implies that QG(Γ) = {q}.
Moreover, for each G-alternating cycle C = (u0, u1, . . . , u2r−1), where u0 is the tail
of the two arcs of C, incident with it, the vertices of the form u2iℓ are the tails of
the two arcs of C, incident with them, while the vertices of the form u(2i+1)ℓ are the
heads of the two arcs of C, incident with them. Now, choose a G-alternating cycle C
and, as in the proof of Lemma 4.23, let γ ∈ KG(AltG(Γ)) be such that its restriction
to C is a 2ℓ-step rotation. By Corollary 4.22 the restriction of the action of γ to
any two non-disjoint G-alternating cycles is a 2ℓ-step rotation on one of them and
a 2qℓ-step rotation on the other. In what follows we show that we can construct an
automorphism ρ of Γ such that ρ2 = γ, having all the required properties.

To this end we first give two different labels to each vertex of Γ. Before doing
this we number the G-alternating cycles by denoting them with C1, C2, . . . , Cs and
we choose a certain subset I of the index set S = {1, 2, . . . , s} in the following way. If
q = 1 then set I = S. Suppose now that q > 1. By assumption AltG(Γ) is bipartite
in this case, and so the argument from the previous paragraph implies that the
restriction of the action of γ to the G-alternating cycles from one of the two sets of
bipartition of AltG(Γ) is a 2ℓ-step rotation while its restriction to the G-alternating
cycles from the other set of bipartition is a 2qℓ-step rotation. If q 6= a/2 − 1, then
a 2ℓ-step rotation is different from a 2qℓ-step rotation (in any of the two possible
directions). In this case let I be the set of all i ∈ S for which the restriction of the
action of γ on Ci is a 2ℓ-step rotation. If however q = a/2 − 1 then simply choose
one of the two sets of bipartition of AltG(Γ) and let I be the set of the indices of the
G-alternating cycles Ci belonging to it. Observe that, in any case, for each i ∈ I the
restriction of the action of γ to Ci is a 2ℓ-step rotation while for each i ∈ S \ I the
restriction of γ to Ci is a 2qℓ-step rotation.

We now label the vertices of each Ci by vij, j ∈ Z2r, in such a way that vij and
vij+1 are consecutive vertices of Ci for each j and that vijγ = vij+2ℓ for each j ∈ Z2r

whenever i ∈ I, while vijγ = vij+2qℓ for each j ∈ Z2r whenever i ∈ S\I. Observe that,
since q is coprime to a, each of 4ℓ ≡ 0 (mod 2r) and 4qℓ ≡ 0 (mod 2r) contradicts
a > 4, and so the above described labeling is unique up to cyclic rotations. Note
however, that in this way each vertex received two different labels, one for each
G-alternating cycle it belongs to.

We are now ready to define the mapping ρ, satisfying all of the properties from
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the statement of the theorem. We set

vijρ =

{

vij+ℓ ; i ∈ I

vij+qℓ ; i ∈ S \ I.

To prove that ρ is a well-defined mapping let v be a vertex of Γ. Without loss
of generality assume it belongs to the G-alternating cycles C1 and C2. We thus
have v = v1j1 = v2j2 for some j1, j2 ∈ Z2r. We can further assume that we have
v1jγ = v1j+2ℓ and v2j γ = v2j+2qℓ for each j ∈ Z2r (note that if q = 1 then 2qℓ = 2ℓ).
Now, since C1 and C2 are non-disjoint and QG(Γ) = {q}, it follows that v1j1+ℓ ∈

{v2j2+qℓ, v
2
j2−qℓ}. If v1j1+ℓ = v2j2−qℓ, then Lemma 4.5 implies that v1j1+2ℓ = v2j2−2qℓ.

However, as v1j1+2ℓ = v1j1γ = vγ = v2j2γ = v2j2+2qℓ, this yields v2j2−2qℓ = v2j2+2qℓ. But
then 4qℓ ≡ 0 (mod aℓ), contradicting a > 4 (recall that q is coprime to a). It thus
follows that v1j1+ℓ = v2j2+qℓ, and so ρ is well defined, as claimed. That ρ is indeed
an automorphism of Γ is now clear from the definition. Moreover, it preserves each
G-alternating cycle but does not respect the G-induced orientation of the edges of Γ.
It follows that Γ is arc-transitive. The last part of the theorem is now an immediate
consequence of Lemma 4.23. �

Let us wrap up the chapter with the following remark. If the remaining cases,
not covered by Theorem 4.25, can be taken care of to give an affirmative answer to
Question 1 of [49], Theorem 4.16 will have further implications for a systematic study
of all tetravalent half-arc-transitive graphs. Namely, since the tightly attached graphs
have already been classified, it will remain to classify the tetravalent graphs admitting
a loosely attached half-arc-transitive action and to determine how to construct all
other tetravalent half-arc-transitive graphs as cyclic covers of them. The difficult
problem of classifying all tetravalent graphs admitting a loosely attached half-arc-
transitive action, which was proposed already by Wilson [58], is thus one of the central
problems to be considered in future investigations on tetravalent half-arc-transitive
graphs.



Chapter 5

The classification of

half-arc-transitive generalizations

of Bouwer graphs

In this chapter we focus on half-arc-transitive graphs of all possible valences. As
mentioned before, half-arc-transitive graphs must have even valency, and the smallest
possible valency for a half-arc-transitive graph is four.

In 1970 I. Z. Bouwer [8] constructed the following infinite family of graphs and
proved that they are vertex- and edge-transitive.

Construction 5.1. Let m ≥ 3, n ≥ 2 , k ≥ 2 be integers such that 2m ≡ 1 modulo
n. The Bouwer graph B(k,m, n) is defined to have vertex set

V (B(k,m, n)) = {(a; b) | a ∈ Zm, b ∈ Zk−1
n }

with adjacency defined by the following rule:

(a; b) ∼

{

(a+ 1; b) ; 0 ≤ a < m− 1, b ∈ Zk−1
n

(a+ 1; b+ 2aei) ; 0 ≤ a < m− 1, 1 ≤ i ≤ k − 1, b ∈ Zk−1
n ,

where ei ∈ Zk−1
n is the i-th standard vector and λv denotes the usual scalar multi-

plication in the Zn-module Zk−1
n .

Note that the graphs B(k,m, n) (originally denoted by X(N,m,n)) have even
valency 2k. In [8] Bouwer also proved that the graph B(k, 6, 9) is not arc-transitive,
providing an example of a half-arc-transitive graph for each even valency greater
than 2.

We recall some of the concepts from the previous chapter that we shall use.
Let Γ be a half-arc-transitive graph (with any even valency) and fix one of the two
Aut(Γ)-induced orientations. Then the alternets of Γ are the subgraphs of Γ (as well
as of

−→
Γ ) corresponding to the equivalence classes of the reachability relation (the

transitive hull of the relation where two edges uv and u′v′ of Γ are related if the
corresponding oriented edges in

−→
Γ share a common head or a common tail). We

point out that in general the alternets are not necessarily cycles as when the studied
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graph is tetravalent. Recall that the radius of Γ is denoted by rad(Γ) (and is the size
of (any) head-set) and that if Γ has at least two alternets and if for any two alternets
with a non-empty intersection the head-set of one coincides with the tail-set of the
other, then Γ is tightly attached.

Of course half-arc-transitive graphs can be very far from being tightly attached.
In fact, even half-arc-transitive graphs for which the intersection of two non-disjoint
alternets contains only one vertex exist (see for instance [48] or [38] where an infinite
family of such graphs has been constructed). Nevertheless, it seems that the tightly
attached half-arc-transitive graphs have the least complicated structure, and so it is
reasonable to first try to understand these graphs. As we pointed out in the previous
chapter, for the tetravalent half-arc-transitive graphs only the tightly attached ones
have been completely classified so far (see [32, 53]).

It is the aim of this chapter to construct an infinite family of tightly attached
half-arc-transitive graphs of all even valences by generalizing the Bouwer graphs and
moreover, prove that this family of graphs contains almost all tetravalent tightly
attached half-arc-transitive graphs. Throughout of this chapter we write HAT for
short instead of “half-arc-transitive”.

5.1 The generalized Bouwer graphs

In this section we introduce the family of graphs that will play a central role in
the rest of this chapter and prove some facts about their symmetry. Throughout
the chapter we will constantly be dealing with elements of the ring Zn. All the
calculations with such elements will thus be made modulo n.

Construction 5.2. Let m ≥ 3, n ≥ 2 , k ≥ 2 be integers and let r ∈ Z∗
n, t ∈ Zn be

such that
rm = 1, tr = t and 1 + r + · · ·+ rm−1 + kt = 0. (5.1)

The generalized Bouwer graph GB(m,n, k; r, t) is defined to have vertex set

V (GB(m,n, k; r, t)) = {(a; b) | a ∈ Zm, b ∈ Zk−1
n }

with adjacency defined by the following rule:

(a; b) ∼















(a+ 1; b) ; 0 ≤ a < m− 1, b ∈ Zk−1
n

= (a+ 1; b + raei) ; 0 ≤ a < m− 1, 1 ≤ i ≤ k − 1, b ∈ Zk−1
n

(0; b + t1) ; a = m− 1, b ∈ Zk−1
n

(0; b + rm−1
ei + t1) ; a = m− 1, 1 ≤ i ≤ k − 1, b ∈ Zk−1

n .

As in Construction 5.1 ei ∈ Zk−1
n is the i-th standard vector, λv denotes the usual

scalar multiplication in the Zn-module Zk−1
n and 1 = e1 + e2 + · · · + ek−1 is the

all-ones vector.

Observe that the graph GB(m,n, k; r, t) is regular of valence 2k. This family
of graphs is a generalization of the Bouwer graphs B(k,m, n) [8] which coincide
with the graphs GB(m,n, k; 2, 0) where 2m = 1 in Zn (observe that the condition
1 + 2 + 22 + · · ·+2m−1 = 0 is implied by 2m = 1). Moreover, if r = 2, the condition
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t(r − 1) = 0 is in fact t = 0, and so the Bouwer graphs are precisely the generalized
Bouwer graphs GB(m,n, k; r, t) with r = 2. We would like to point out that the
classification of HAT Bouwer graphs was given by Conder and Žitnik in [11] by the
following thoerem.

Theorem 5.3. [11] Let m ≥ 3, n ≥ 3 and k ≥ 2 be integers such that 2m = 1 holds
in Zn. Then the Bouwer graph B(k,m, n) is half-arc-transitive unless n = 3 or one
of the following possibilities occurs:

• (k, n) = (2, 5),

• (k,m, n) ∈ {(2, 3, 7), (2, 6, 7), (2, 6, 21)}.

Remark 5.4. Note that 22 = 1 holds in Zn when n = 3 while in all the remaining arc-
transitive cases k = 2 has to hold, and so the corresponding graphs are tetravalent.
Since in all these cases n is odd (n ∈ {5, 7, 21}), one can thus also compare this
result with [32, Theorem 3.4]. Therefore, the only arc-transitive Bouwer graphs of
valence greater than 4 are the ones where the condition r2 6= 1 fails. As we prove
in Theorem 5.30 this is also the only possibility that a generalized Bouwer graph of
valence at least 6 is arc-transitive.

We now introduce some terminology and notation regarding the GB(m,n, k; r, t)
graphs that will be used throughout the rest of the chapter. Let Γ = GB(m,n, k; r, t).
For each e ∈ E(Γ) we define its label L(e) ∈ {0, 1, . . . , k−1} in the following way. For
the edges e = (a; b)(a+1; b), where 0 ≤ a ≤ m−2, and e = (m−1; b)(0; b+t1) we set
L(e) = 0, while for any 1 ≤ i ≤ k−1 we set the label of the edges e = (a; b)(a+1; b+
raei), where 0 ≤ a ≤ m−2, and of e = (m−1; b)(0; b+ rm−1

ei+ t1) to L(e) = i. In
this way each edge is given one of the labels from 0 to k− 1. For each 0 ≤ i ≤ k− 1
we let Ei = {e ∈ E(Γ) | L(e) = i} and we denote E = {Ei | i ∈ {0, 1, . . . , k − 1}}.
Clearly, E is a partition of E(Γ) into k subsets of size mnk−1. For each a ∈ Zm set
Γa = {(a; b) ∈ V (Γ) | b ∈ Zk−1

n } and denote by [Γa,Γa+1] the subgraph of Γ induced
on the union Γa ∪ Γa+1.

We investigate give a complete classification of the HAT members of the family
of the generalized Bouwer graphs. The following is our main result

Theorem 5.5. Let m ≥ 3, n ≥ 2, k ≥ 2 be integers and let r ∈ Z∗
n, t ∈ Zn

be such that rm = 1, tr = t and 1 + r + · · · + rm−1 + kt = 0. Then the graph
Γ = GB(m,n, k; r, t) is a Cayley graph of a metabelian group admitting a half-arc-
transitive subgroup of automorphisms with respect to which it is tightly attached.
Moreover, Γ is half-arc-transitive unless

• r2 = 1 or

• k = 2 and one of the following possibilities occurs:

◦ r2 = −1.
◦ (m,n; r, t) ∈ {(3, 7; 2, 0), (3, 7; 4, 0)}.
◦ (m,n) = (6, 7n0) for some n0 ≥ 1 with 7 ∤ n0, and there exists a unique

solution r′ ∈ {r,−r, r−1,−r−1} of the equation 2− r′− r′2 = 0 with r′ ≡ 5
(mod 7) and 2 + r′ + t′ = 0, where t′ = t in the case that r′ ∈ {r, r−1}
and t′ = t+ r + r3 + r5 in the case that r′ ∈ {−r,−r−1}.
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5.1.1 Vertex and edge-transitivity

We now prove that the graphs GB(m,n, k; r, t) are vertex- and edge-transitive. For
the rest of this subsection let Γ = GB(m,n, k; r, t), wherem ≥ 3, n ≥ 2, k ≥ 2, r ∈ Z∗

n

and t ∈ Zn are as in (5.1). We first define certain permutations of V (Γ) which ensure
vertex-transitivity of Γ. In fact, as we show in Lemma 5.6 they guarantee that Γ is
in fact a Cayley graph of a metabelian group.

Let σ : V (Γ) → V (Γ) be the permutation defined by the rule:

(a; b)σ =

{

(a+ 1; rb) ; 0 ≤ a ≤ m− 2, b ∈ Zk−1
n

(0; rb+ t1) ; a = m− 1, b ∈ Zk−1
n .

(5.2)

Moreover, for each 1 ≤ i ≤ k − 1 let ρi : V (Γ) → V (Γ) be the permutation defined
by the rule:

(a; b)ρi = (a; b+ ei). (5.3)

Lemma 5.6. The permutations σ and ρi, 1 ≤ i ≤ k−1, from (5.2) and (5.3) are au-
tomorphisms of Γ = GB(m,n, k; r, t). Moreover, the subgroup R = 〈ρ1, ρ2, . . . , ρk−1〉 ∼=
Zk−1
n of Aut(Γ) acts transitively on each of the sets Γa and the subgroup T = 〈σ,R〉

acts regularly on V (Γ). In addition, σ−1ρiσ = ρri holds for each i, and so Γ is a Cay-
ley graph of the metabelian group T . Moreover, each of the sets Ei is T -invariant,
that is, each of the automorphisms from T preserves the label of each of the edges of
Γ.

Proof. That each of the permutations ρi is an automorphism of Γ is clear from the
definition. It is also clear that R is isomorphic to the direct product of the subgroups
generated by the ρi. Moreover, R clearly acts transitively on each of the sets Γa and
preserves the label of each of the edges of Γ.

To prove that σ also preserves adjacency of Γ observe first that σ clearly maps
the edges of label 0 ≤ i ≤ k − 1 from [Γa,Γa+1], where 0 ≤ a ≤ m− 3, to the edges
of label i from [Γa+1,Γa+2]. Taking into account that tr = t and rm = 1 it is easy
to verify that σ also maps the edges from [Γm−2,Γm−1] and [Γm−1,Γ0] to edges of Γ
and preserves their labels. We leave the details to the reader.

Observe finally that σ cyclically permutes the sets Γa, that is Γaσ = Γa+1 for all
a ∈ Zm. It thus follows that T is vertex-transitive and that each label class Ei is
T -invariant. That σ−1ρiσ = ρri holds for all 1 ≤ i ≤ k − 1 can be verified directly
from (5.2) and (5.3). Moreover, σm = (ρ1ρ2 · · · ρk−1)

t holds, and so T/R ∼= Zm and
the group T is a regular metabelian group. �

We note that since σm = (ρ1ρ2 · · · ρk−1)
t, the order of σ is m n

gcd(n,t) . Moreover,
the orbits of R coincide with the sets Γa and the quotient multi graph Γ/R of Γ with
respect to the orbits of R is the m-cycle with k edges between every pair of adjacent
vertices.

To prove that Γ is also edge-transitive we introduce two additional permutations
of V (Γ). Let θ : V (Γ) → V (Γ) be the permutation defined by the rule:

(a; b)θ = (a; (b2, b3, . . . , bk−1, b1)) ; a ∈ Zm, b ∈ Zk−1
n , (5.4)
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that is, θ cyclically permutes the coordinates of the vector b. Moreover, let τ : V (Γ) →
V (Γ) be the permutation of V (Γ) defined by the rule:

(a; b)τ = (a; (1 + r + . . .+ ra−1 − S(b), b2, . . . , bk−1)) ; a ∈ Zm, b ∈ Zk−1
n , (5.5)

where S(b) = b1 + b2 + · · · + bk−1 is the sum of the components of b and it is
understood that (0; b)τ = (0; (−S(b), b2, . . . , bk−1)).

Lemma 5.7. The permutations θ and τ from (5.4) and (5.5) are automorphisms of
Γ = GB(m,n, k; r, t) and the group H = 〈θ, τ〉 acts as the full symmetric group Sk
on E. Furthermore, the group G = 〈T,H〉, where T is as in Lemma 5.6, acts half-
arc-transitively on Γ and the partitions E of E(Γ) and {Γ0,Γ1, . . . ,Γm−1} of V (Γ)
are both G-invariant. Moreover, Γ is tightly attached with respect to the action of G.

Proof. We first prove that τ ∈ Aut(Γ). It is clear that τ is a bijection, but the
proof that it preserves adjacencies requires some work. We take some e ∈ [Γa,Γa+1]
and prove that eτ ∈ E(Γ) where we separate the argument depending on whether
a /∈ {0,m−1}, a = 0 or a = m−1, and depending on whether L(e) is 0, 1 or at least
2. Let e = uv, where u = (a; b) and v ∈ Γa+1. Write b′1 = 1 + r + . . .+ ra−1 − S(b)
and b

′ = (b′1, b2, . . . , bk−1). We point out the arguments in the cases when a 6= 0 and
leave the case a = 0 to the reader.
Suppose first that 1 ≤ a ≤ m− 2. If L(e) = 0, that is v = (a+ 1; b), then

eτ = (a; b′)(a+ 1; (b′1 + ra, b2, . . . , bk−1)) ∈ E(Γ) and L(eτ) = 1.

If L(e) = 1, that is v = (a+1; b+ rae1), then ra − S(b+ rae1) = −S(b), and so we
get

eτ = (a; b′)(a+ 1; (b′1, b2, . . . , bk−1)) ∈ E(Γ) and L(eτ) = 0.

Finally, if L(e) ≥ 2, that is v = (a+ 1; b + raei), where i ≥ 2, then

eτ = (a; b′)(a+1; (b′1, b2 . . . , bi−1, bi+r
a, bi+1, . . . , bk−1)) ∈ E(Γ) and L(eτ) = i = L(e).

Suppose now that a = m− 1. Note that in this case b′1 = 1+ r+ · · ·+ rm−2 − S(b),
and so (5.1) implies b′1 = −S(b)−rm−1−kt. Now, if L(e) = 0, that is v = (0; b+t1),
then

eτ = (m− 1; b′)(0; (−S(b)− (k − 1)t, b2 + t, . . . , bk−1 + t)) ∈ E(Γ) and L(eτ) = 1.

If L(e) = 1, that is v = (0; b + rm−1
e1 + t1), then

eτ = (m−1; b′)(0; (−S(b)−rm−1−(k−1)t, b2+t, . . . , bk−1+t)) ∈ E(Γ) and L(eτ) = 0.

Finally, if L(e) ≥ 2, that is v = (0; b+ rm−1
ei + t1), where i ≥ 2, then

eτ = (m−1; b′)(0; (−S(b)−rm−1−(k−1)t, b2+t, . . . , bi−1+t, bi+r
m−1+t, bi+1+t, . . . , bk−1+t)) ∈ E(Γ)

and L(eτ) = i = L(e).

In a similar fashion one can see that also in the case a = 0 the automorphism τ
interchanges the labels 0 and 1 of the edges and leaves all other labels fixed. Thus
τ ∈ Aut(Γ) with E0τ = E1, E1τ = E0 and Eiτ = Ei for all i ≥ 2.
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Since θ cyclically permutes the coordinates of the vector b it is clear that θ ∈
Aut(Γ). It is also clear that E0θ = E0, Ek−1θ = E1 and Eiθ = Ei+1 for all 1 ≤ i ≤
k− 1. Since T clearly acts transitively (in fact regularly) on each of the sets Ei this
proves that the group G = 〈T,H〉 acts edge-transitively on Γ and that the partitions
E and {Γ0,Γ1, . . . ,Γm−1} are G-invariant. Moreover, the action of G on Γ is clearly
half-arc-transitive (with either all of the edges oriented from Γa to Γa+1 for all a
or vice versa). Since the actions of τ and θ on E are (E0E1) and (E1E2 . . . Ek−1),
respectively, it follows that G acts as the full symmetric group Sk on E , as claimed.
Since the head-sets (and the tail-sets) clearly coincide with the sets Γi, the graph Γ
is tightly attached with respect to the action of G. �

5.1.2 Arc-transitivity and isomorphisms

In the previous subsection we proved that all GB(m,n, k; r, t) graphs admit a HAT
subgroup of automorphisms. To obtain the complete classification of HAT GB(m,n, k; r, t)
graphs we thus have to determine which of them are indeed HAT graphs and which
are arc-transitive. We first present a rather obvious sufficient condition for GB(m,n, k; r, t)
to be arc-transitive. We will prove later that, unless k = 2, the condition is in fact
also necessary (see Theorem 5.30).

Proposition 5.8. Let m ≥ 3, n ≥ 2, k ≥ 2, r ∈ Z∗
n and t ∈ Zn be as in (5.1). If

r2 = 1, then the graph GB(m,n, k; r, t) is arc-transitive.

Proof. Denote Γ = GB(m,n, k; r, t) and suppose r2 = 1. Since rm = 1 this forces
m to be even unless r = 1. In any case rm−i = ri holds for all i ∈ Zm. By Lemma 5.7
we know that the group G acts half-arc-transitively on Γ, and so it suffices to find
an automorphism of Γ interchanging a pair of adjacent vertices. To this end let ϕ
be the permutation of V (Γ) defined by the rule:

(a; b)ϕ =

{

(m− a;−rb− t1) ; a 6= 0
(0;−rb) ; a = 0.

To prove that ϕ preserves adjacency let e = uv ∈ E(Γ) where u = (a; b) and
v ∈ Γa+1. Several different cases need to be considered, depending on whether
a ∈ {0,m− 1} or not and whether L(e) = 0 or not. In fact, as rt = t and r2 = 1, it
is straightforward to verify that ϕ is an involution, and so it suffices to only consider
the possibilities when 0 ≤ a ≤ m/2. We present the argument for the cases when
1 ≤ a ≤ m/2 and leave the case a = 0 to the reader.
Suppose first that L(e) = 0, that is v = (a+ 1; b). Then

eϕ = (m− a;−rb− t1)(m− a− 1;−rb− t1) ∈ E(Γ).

Suppose now that L(e) ≥ 1, that is v = (a + 1; b + raei) for some 1 ≤ i ≤ k − 1.
Then

eϕ = (m− a;−rb− t1)(m− a− 1;−rb− ra+1
ei − t1) ∈ E(Γ)

since rm−a−1 = ra+1.
Then ϕ ∈ Aut(Γ). However, since the automorphism ϕσ, where σ is as in (5.2), in-
terchanges the pair of adjacent vertices (0;0) and (1;0), the graph Γ is arc-transitive,
as claimed. �
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Remark 5.9. In order to ensure r2 6= 1 also 2(r − 1) 6= 0 must hold. Namely, if
2(r − 1) = 0 then either r = 1 or n is even and r − 1 = n/2. But in this case r is
odd (since r ∈ Z∗

n), and so r − 1 is even, implying that (r − 1)2 = 0. Consequently
r2 = 1.

In the remainder of the chapter we undertake a thorough analysis of the GB(m,n, k; r, t)
graphs. When doing so it will be beneficial to take into account some isomorphisms
between these graphs which we now record.

Proposition 5.10. Let m ≥ 3, n ≥ 2, k ≥ 2, r ∈ Z∗
n and t ∈ Zn be as in (5.1).

Then the graphs GB(m,n, k; r, t) and GB(m,n, k; r−1, t) are isomorphic.

Proof. Denote Γ = GB(m,n, k; r, t) and Γ′ = GB(m,n, k; r−1, t) and let Ψ: V (Γ) →
V (Γ′) be the mapping defined by the rule:

(a; b)Ψ =

{

(m− a;−rb− t1) ; a 6= 0
(0;−rb) ; a = 0.

It is clear that Ψ is a bijection, and so we only need to prove that it preserves the
adjacencies. To this end let e = uv where u = (a; b) and v ∈ Γa+1. As in the proof
of Proposition 5.8 we distinguish cases depending on whether a ∈ {0,m − 1} or not
and whether L(e) = 0 or not. This time we deal with the cases when L(e) ≥ 1 and
leave the case L(e) = 0 to the reader. Denote L(e) = i.
Suppose first that a = 0, that is v = (1; b+ ei). Then

eΨ = (0;−rb)(m− 1;−rb− rei − t1) ∈ E(Γ′)

since (r−1)m−1 = r.
Suppose now that 1 ≤ a ≤ m− 2, that is v = (a+ 1; b+ raei). Then

eΨ = (m− a;−rb− t1)(m− a− 1;−rb− ra+1
ei − t1) ∈ E(Γ′)

since (r−1)m−a−1 = ra+1.
Finally, suppose a = m − 1, that is v = (0; b + rm−1

ei + t1). Then, since rm = 1
and tr = t,

eΨ = (1;−rb− t1)(0;−rb− ei − t1) ∈ E(Γ′).

Therefore Ψ is an isomorphism, and so GB(m,n, k; r, t) ∼= GB(m,n, k; r−1, t). �

Remark 5.11. Note that Lemma 5.7 implies that the graph GB(m,n, k; r, t), where
m ≥ 3, n ≥ 2, k ≥ 2, r ∈ Z∗

n and t ∈ Zn are as in (5.1), is either HAT or arc-
transitive. Moreover, if it is HAT, it is necessarily tightly attached. We can thus use
the classification of tetravalent tightly attached HAT graphs [32, 53] to determine
which of the GB(m,n, 2; r, t) graphs are HAT (see the proof of Theorem 7 at the end
of Section 5.4). Taking into account also Theorem 5.3 and Proposition 5.10 we will
thus assume k ≥ 3 and r, r−1 6= 2 in the remainder of this chapter, unless otherwise
specified. Observe that this implies n ≥ 7.
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5.2 Cycles and 2-paths

In this section we introduce the terminology regarding the 2-paths of GB(m,n, k; r, t)
which plays a crucial role in the proof of Theorem 5.30 that almost all such graphs
are HAT. These notions were first introduced in [32] and were later successfully used
in certain classifications of tetravalent HAT graphs (see [53, 54]). In our setting the
idea of the proof of half-arc-transitivity of the GB(m,n, k; r, t) graphs (when k ≥ 3)
is based on the fact that these graphs contain the so-called generic 6-cycles (defined
later in this section) and then a careful analysis of all possible 6-cycles in the graph,
together with their interplay with the 2-paths of the graph, reveals that such graphs
cannot be arc-transitive (unless of course r2 = 1).

We begin with a simple observation concerning cycles in Γ = GB(m,n, k; r, t).
The existence of a particular cycle in Γ of course imposes certain conditions on the
parameters m, n, k, r and t. In fact, recall that each edge, say e = (a; b)(a+1; b′) has
a unique label L(e) which, if L(e) 6= 0, was defined in such a way that b′ = b+raeL(e)

(if a 6= m−1) or b′ = b+rm−1
eL(e)+ t1 (if a = m−1). Thus, by traversing an edge

e the vector b either does not change (if L(e) = 0) or changes only in the coordinate
corresponding to the nonzero label of e (except when we traverse the edges from
[Γm−1,Γ0] in which case in addition either all of the coordinates increase or they all
decrease by t). Therefore, the existence of a particular cycle in Γ in fact imposes
k − 1 conditions on m, n, k, r and t (one for each of the k − 1 coordinates), each of
the form

δi,0 + δi,1r + · · · + δi,m−1r
m−1 + δt = 0. (5.6)

Here, δi,j is the number of i-labeled edges (of the cycle) from [Γj ,Γj+1], that we
traverse in the direction from Γj to Γj+1, minus the number of i-labeled edges from
[Γj,Γj+1], that we traverse in the direction from Γj+1 to Γj. Similarly, δ is the
number of all edges (of the cycle) from [Γm−1,Γ0], that we traverse in the direction
from Γm−1 to Γ0, minus the number of all the edges from [Γm−1,Γ0], that we traverse
in the direction from Γ0 to Γm−1. Note that the coefficient δ does not depend on the
label i. An immediate consequence of this fact is the following useful observation.

Lemma 5.12. Let m ≥ 3, n ≥ 2, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1). If

r 6= 1 then no cycle of GB(m,n, k; r, t) can contain exactly one edge of some label
0 ≤ i ≤ k − 1.

Proof. Denote Γ = GB(m,n, k; r, t). Let C be a cycle of Γ and e be an edge of C
such that L(e) = i for some 0 ≤ i ≤ k− 1. By way of contradiction suppose that e is
the only edge of C with label i. By Lemma 5.7 we can assume that e = (0;0)(1;e1)
and C contains no other edges of label 1. The corresponding condition (5.6) for label
1 is thus 1 + δt = 0. As t(r − 1) = 0, multiplication by r − 1 yields r − 1 = 0,
contradicting the assumption r 6= 1. �

Following [32] we now introduce some terminology concerning 2-paths and cycles
of the graphs Γ = GB(m,n, k; r, t). Let P = (u, v, w) be a 2-path of Γ. If the
endvertices of P belong to the same set Γa we call it an anchor. More precisely, if
for some a we have that u,w ∈ Γa and v ∈ Γa+1, then P is a positive anchor, and it
is a negative anchor otherwise. If P in a non-anchor, then it is a glide if both of its
edges have the same label and is a zig-zag otherwise (see Figure 5.1).
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Figure 5.1: The two types of anchors, a glide and a zig-zag.

Let C be a cycle of Γ of length d. To each vertex v of C we assign one of the
symbols a or n, depending on whether the corresponding 2-path in C with v as its
internal vertex is an anchor or not, respectively. (Even though we are using n to
represent a non-anchor and at the same time as one of the parameters of the graphs
GB(m,n, k; r, t) this should cause no confusion.) In such a way the cycle C is assigned
a sequence of length d with elements from the set {a, n}. We let the equivalence class
of all sequences obtained from the above sequence by a reflection or a cyclic rotation
be the trace of C. We say that the cycle C is coiled if none of its 2-paths is an anchor
(and so its trace is nd), and is non-coiled otherwise.

We now show that the graphs GB(m,n, k; r, t) contain certain 6-cycles which de
not depend on the values of the parameters m, n, k, r and t. Let m ≥ 3, n ≥ 2,
k ≥ 3, r ∈ Z∗

n and t ∈ Zn be as in (5.1) and let Γ = GB(m,n, k; r, t). Let

C = ((0;0), (1;0), (0;−e1), (1;e2 − e1), (0;e2 − e1), (1;e2), (0;0)) .

Clearly, C consists of six pairwise distinct vertices, and so it is a 6-cycle of Γ. More-
over, the edges of C have three different labels and each antipodal pair of its edges
has the same label. Observe that we needed k ≥ 3 to be able to get the cycle C. We
call the elements of the G-orbit of C, where G is as in Lemma 5.7, the generic 6-cycles
of Γ. Note that the edge set of each generic 6-cycle is contained in some [Γa,Γa+1],
its edges have three different labels and each antipodal pair of its edges has the same
label. The nature of the action of G implies the following straightforward lemma.

Lemma 5.13. Let m ≥ 3, n ≥ 2, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1). For

each vertex v of the graph GB(m,n, k; r, t) and each 0 ≤ i1 < i2 < i3 ≤ k − 1 there
exist exactly six generic 6-cycles containing v and having edges of labels i1, i2, i3.
Moreover, letting 0 ≤ a ≤ m− 1 be such that v ∈ Γa, three of these generic 6-cycles
are contained in [Γa,Γa+1] and the remaining three are contained in [Γa−1,Γa].

Remark 5.14. Observe that on any cycle of GB(m,n, k; r, t) the positive and negative
anchors alternate. Therefore the number of anchors of a cycle is always even with
half of them being positive and the other half negative.

We now show that if r2 6= 1 the generic 6-cycles are almost always the girth cycles
of Γ.
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Lemma 5.15. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1). If

r2 6= 1, then the shortest non-coiled cycle of Γ = GB(m,n, k; r, t) is of length at least
5. Moreover, the girth of Γ is 6, unless possibly if m ≤ 5 and Γ contains coiled
m-cycles or m = 3 and Γ contains 5-cycles of trace n3a2.

Proof. Let C be a non-coiled cycle of Γ of smallest possible length d. Since C
is non-coiled the Remark 5.14 implies that it contains at least two anchors, and so
d ≥ 4. If d = 4, then C is of trace a4 or anan (note that the trace a2n2 is not
possible). By Lemma 5.12 the edges of C have exactly two labels. In view of the
action of the group G trace a4 would imply n = 2, while trace anan would imply
1 ± r = 0, contradicting r2 6= 1. Therefore d > 4. Moreover, if d = 5 then clearly
m = 3 must hold and C is of trace n3a2. Since Γ contains generic 6-cycles, this
completes the proof. �

5.3 The 6-cycles

In this section we undertake a complete analysis of the possible “types” of 6-cycles
of the GB(m,n, k; r, t) graphs. Throughout this section we let m ≥ 3, n ≥ 7, k ≥ 3,
t ∈ Zn and r ∈ Z∗

n be as in (5.1) and we let Γ = GB(m,n, k; r, t). In accordance with
Remark 5.11 we also assume r, r−1 6= 2 and r2 6= 1.

We first determine all possible traces that 6-cycles of Γ can have. We then analyze
6-cycles of each of the possible traces to determine the conditions on the parameters
m, n, k, r and t under which they exist.

Lemma 5.16. The only possible traces of 6-cycles of Γ are

• a6,

• an2an2,

• a3nan,

• a2n4,

• n6.

Moreover, the traces a2n4 and n6 are only possible if m = 4 and m ∈ {3, 6}, respec-
tively.

Proof. Since the number of anchors in a cycle of Γ is even, there are only 8 possible
traces of 6-cycles. Moreover, since m ≥ 3, the traces a4n2, a2na2n and an3an are
clearly not possible. The last claim of the lemma is now also clear. �

We call the 6-cycles of traces an2an2, a3nan and a2n4 the 6-cycles of types 1, 2
and 3, respectively. In Subsection 5.3.4 we in fact show that under our assumptions
(n ≥ 7 and r2 6= 1) the 6-cycles of type 3 do not exist.

We now analyze each of the 5 possible traces in separate subsections. We first
deal with the noncoiled 6-cycles (the first four traces). For the next four subsections
let

C = (x0, x1, x2, x3, x4, x5) (5.7)
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be a noncoiled 6-cycle of Γ. Since the negative and positive anchors alternate on
cycles of Γ the cycle C contains at least one negative anchor. By Lemma 5.7 we can
thus assume that (x5, x0, x1) is a negative anchor and in particular that x0 = (0;0),
x1 = (1;e1) and x5 = (1;0), so that L(x0x1) = 1 and L(x0x5) = 0. Observe that,
by Lemma 5.12, the 6-cycle C contains edges of at most three different labels, and
so (since it is not coiled) it either contains edges of two or of three different labels.

5.3.1 The 6-cycles with trace a6: generic

Assume that C has trace a6. Since (x1, x0, x5) is a negative anchor, it follows that
x2, x4 ∈ Γ0 and x3 ∈ Γ1. Moreover, since all of the 2-paths of C are anchors, no
two consecutive edges of C have the same label. Since n 6= 3 the cycle C cannot
have edges of just two labels, and so it has edges of exactly three labels, two of each
label. Without loss of generality we can assume that the third label is 2. Then
L(x4x5) = 2, since otherwise the condition (5.6) for label 1 would yield n = 2.
Similarly L(x2x3) /∈ {1, 2}, and so L(x2x3) = 0. Therefore L(x1x2) = 2, L(x3x4) =
1, and so C is a generic 6-cycle. We therefore have the following result.

Lemma 5.17. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1). Then

the only 6-cycles of GB(m,n, k; r, t) of trace a6 are the generic ones.

5.3.2 The 6-cycles with trace an2an2: type 1

Since the trace of C is an2an2, we have that x2, x4 ∈ Γ2 and x3 ∈ Γ3 (see Figure 5.2
and note that in the case of m = 3 this means x3 ∈ Γ0).

Suppose first that L(x1x2) = L(x4x5). Observe that, when traversing C in the
direction from x0 to x1, the traversal of x1x2 adds r while the traversal of x4x5
subtracts r in the same coordinate (since the edges have the same label). These two
edges thus have no influence on the corresponding conditions (5.6) for such 6-cycles
(for any of the labels). But then precisely one of the edges x2x3 and x3x4 has label
0 and the other has label 1. Since r2 6= 1 the only possibility is that L(x2x3) =
L(x0x1) = 1 and L(x3x4) = L(x0x5) = 0. We can thus only choose the label of x1x2
(and x4x5) which can be arbitrary (also 0 and 1). In any case the condition under
which such 6-cycles exist is r2 = −1. In the case that L(x1x2) ∈ {0, 1} we say that
C is of type 1.1 and we say that it is of type 1.2 otherwise (see Figure 5.2).

Suppose now that L(x1x2) 6= L(x4x5). Observe that r2 6= 1 implies r±1 6= 0 and
r± r2 6= 0, and so there are more than two edges of C with label L(x1x2) and more
than two edges of C with label L(x4x5). Thus the edges of C have just two labels
(namely 0 and 1), and so we have precisely four possibilities depending on which of
the edges x1x2 and x4x5 is of label 0 and which of the edges x2x3 and x3x4 is of
label 0. The four possibilities with the corresponding conditions are:

• L(x1x2) = L(x2x3) = 0 which occurs if and only if 1− r − r2 = 0.

• L(x1x2) = L(x3x4) = 0 which occurs if and only if 1− r + r2 = 0.

• L(x2x3) = L(x4x5) = 0 which occurs if and only if 1 + r − r2 = 0.

• L(x3x4) = L(x4x5) = 0 which occurs if and only if 1 + r + r2 = 0.
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We call the 6-cycles of type 1 corresponding to the above four conditions 6-cycles
of types 1.3, 1.4, 1.5 and 1.6, respectively (see also Figure 5.2). In Figure 5.2 and
throughout the rest of the chapter the edges with the same color (or type of the lines
- solid, doted or dashed) represent edges of the same label.
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Figure 5.2: The 6-cycles of type 1.

As mentioned above the vertex x3 might in general be equal to x0 if m = 3, in
which case C would not be a 6-cycle. However, it is easy to see that since r2 6= 1
this cannot happen, unless possibly if 1 + r + r2 + t = 0. Namely, since r3 = 1, the
condition r2 = −1 would for instance imply r = −1, while 1− r + r2 + t = 0 would
imply 2(r − 1) = 0 (multiply by r2 − 1 and recall that tr = t). By the Remark 5.9
this is impossible. The remaining two possibilities are left to the reader. Note also
that if m = 3 and 1 + r + r2 + t = 0, then Lemma 5.7 implies that t = 0 must also
hold. This proves the following.

Lemma 5.18. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1. Then the graph GB(m,n, k; r, t) contains 6-cycles of type 1 if and only if at
least one of the following conditions holds:

• 1 + r2 = 0, in which case the 6-cycles of types 1.1 and 1.2 exist.

• 1− r − r2 = 0, in which case the 6-cycles of type 1.3 exist.

• 1− r + r2 = 0, in which case the 6-cycles of type 1.4 exist.

• 1 + r − r2 = 0, in which case the 6-cycles of type 1.5 exist.

• 1 + r + r2 = 0 and if m = 3 then t 6= 0, in which case the 6-cycles of type 1.6
exist.

5.3.3 The 6-cycles with trace a3nan: type 2

Note that in this case we have two options depending on whether the anchor sur-
rounded by the two non-anchors is negative or positive. In the first case (we will
say that such 6-cycles are of type 2.1) we can assume that the middle vertex of this
anchor is x0, and so x3 ∈ Γ1 and x2, x4 ∈ Γ2. In the second case (we will say that
such 6-cycles are of type 2.2) we can assume that the middle vertex of this positive
anchor is x2, and so x4 ∈ Γ0, x3 ∈ Γ1 and x2 ∈ Γ2 (see Figure 5.3).
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We first prove that C contains only edges of the labels 0 and 1. By Lemma 5.12
the only other possibility is that C has edges of three different labels, two of each
label. Suppose this is possible and take one of the two edges of the anchor, surrounded
by two non-anchors, with nonzero label. Since there is only one more edge of C with
this label, the corresponding condition (5.6) for this label is 1± r = 0 or ±1+ r = 0,
all of which contradict r2 6= 1. Thus C only has edges of labels 0 and 1, and so the
labels 0 and 1 alternate on the four consecutive edges of C corresponding to the part
giving rise to a3 in its trace.

Suppose first that C is of type 2.1. There are just two possibilities for C, de-
pending on L(x1x2). If L(x1x2) = 0, then x2 = (2;e1), x3 = (1; (1 − r)e1) and
x4 = (2; (1 − r)e1), and so L(x4x5) = 1 implies that 1 − 2r = 0. However, in
this case r−1 = 2, which was assumed not to hold. Therefore L(x1x2) = 1, and so
x2 = (2; (1 + r)e1), x3 = (1; (1 + r)e1) and x4 = (2; (1 + 2r)e1). Since L(x4x5) = 0
this implies 1 + 2r = 0.

Suppose next that C is of type 2.2. Then x4 = (0;−e1) and x5 = (1;−e1).
Again there are just two possibilities for C, depending on L(x1x2). If L(x1x2) = 0,
then x2 = (2;e1), and so L(x2x3) = 1 implies that 1− r = −1, that is r = 2, which
was assumed not to hold. Thus L(x1x2) = 1, and so x2 = (2; (1 + r)e1). Then
L(x2x3) = 0 implies that 1 + r = −1, and so r = −2 (see Figure 5.3).
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Figure 5.3: The 6-cycles of type 2.

We finally observe that we cannot have 6-cycles of types 2.1 as well as 6-cycles
of type 2.2. Namely, if this was the case then both 2r = −1 and r = −2 hold, and
so n = 3, a contradiction. This proves the following.

Lemma 5.19. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1 and r, r−1 6= 2. Then GB(m,n, k; r, t) contains 6-cycles of type 2 if and only
if one of the following conditions holds:

• 1 + 2r = 0, in which case the 6-cycles of type 2.1 exist.

• 2 + r = 0, in which case the 6-cycles of type 2.2 exist.

Moreover, at most one of the two conditions can hold.

Remark 5.20. Note that if Γ contains 6-cycles of type 2.1, that is if 1+2r = 0 holds,
then r−1 +2 = 0 holds. Therefore the graph GB(m,n, k; r−1, t), which is isomorphic
to Γ by Proposition 5.10, contains 6-cycles of type 2.2. For the rest of the chapter we
thus make the following agreement. If Γ contains 6-cycles of type 2, then we assume
r = −2. Note that multiplying any of the conditions for 6-cycles of types 1.1–1.6
by r−2 we get one of the conditions for 6-cycles of types 1.1–1.6 (but perhaps for a
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different type) for the graph GB(m,n, k; r−1, t). Thus Γ contains 6-cycles of type 1
if and only if GB(m,n, k; r−1, t) does.

We now prove that, except in one very specific case, no two different conditions
for the existence of 6-cycles of types 1.1–2.2 can hold simultaneously (note that the
conditions for the 6-cycles of types 1.1 and 1.2 are the same).

Lemma 5.21. Let m ≥ 3, k ≥ 3, n ≥ 7, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1 and r, r−1 6= 2. Then at most one of the conditions for the existence of 6-
cycles of types 1.1–2.2 of Γ = GB(m,n, k; r, t) can hold unless Γ ∼= GB(6m0, 7, k; 5, 0)
where m = 6m0, in which case the only 6-cycles of types 1.1–2.2 that exist in Γ are
the ones of types 1.4 and 2.2.

Proof. Suppose first that Γ contains 6-cycles of type 2. According to the Re-
mark 5.20 we can thus assume r = −2. It is now easy to check that each of the
conditions for 6-cycles of types 1.1–1.6 contradicts n ≥ 7, except for 1− r + r2 = 0,
in which case n = 7, r = 5 and t = 0 (since t(r − 1) = 0). Since rm = 1 also has to
hold, m = 6m0 for some m0 ≥ 1, and so Γ = GB(6m0, 7, k; 5, 0).

Suppose now that Γ contains no 6-cycles of type 2. To complete the proof we only
have to verify that no two different conditions for 6-cycles of types 1.1–1.6 can hold
simultaneously. It is clear that 1+ r2 = 0 prevents any of the conditions for 6-cycles
of types 1.3–1.6 to also hold (since otherwise we either get r = 2, r = 0 or r = −2,
none of which is possible). On the other hand, any two of the conditions for 6-cycles
of types 1.3–1.6 imply 2ra = 0 for some a ∈ {0, 1, 2}, which again contradicts n ≥ 7.
�

5.3.4 The 6-cycles with trace a2n4: type 3

Note that, by Lemma 5.16, m = 4 holds in this case. By Lemma 5.7 we can assume
that x2 ∈ Γ2, x3 ∈ Γ3 and x4 ∈ Γ0 (see Figure 5.4).
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Figure 5.4: The 6-cycles of type 3.

We first show that all edges of C are of labels 0 and 1. Suppose to the contrary
that C contains edges of three labels, two of each one (confront Lemma 5.12). Ob-
serve that the condition 1 + r + t = 0 would contradict r2 6= 1 (multiply by r − 1),
and so none of the edges x1x2 and x3x4 can have the same label as x0x1 or x4x5. It
follows that L(x4x5) = 1 (since otherwise L(x1x2) = L(x3x4) = 0, contradicting the
fact that we only have two edges of label 0), and so 2 + t = 0 holds. But this is also
not possible, since otherwise multiplication by r − 1 yields 2(r − 1) = 0.
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Therefore C contains only edges of labels 0 and 1, and so the condition (5.6) for
label 2 (recall that k ≥ 3) gives t = 0. Note that this implies L(x4x5) = 1. Let
now η ∈ H, where H is as in Lemma 5.7, be the automorphism interchanging the
labels 0 and 2 and let C ′ = Cη. Then C ′ is a 6-cycle of type 3 and it cannot have
just two edges of label 2 since otherwise the corresponding condition (5.6) for label
2 would be −1 + ra = 0 for some a ∈ {1, 2, 3}, contradicting r2 6= 1. This finally
proves that C ′ contains three edges of label 1 and three of label 2 (otherwise the
condition (5.6) for label 1 is 2 + t = 0, which we already know is not possible). We
have three possibilities depending on which of the edges x1x2, x2x3 and x3x4 is the
remaining edge of label 1. It is easy to see that each one of them contradicts n ≥ 7.
For instance, if L(x3x4) = 1, then the conditions (5.6) for labels 1 and 2 are

2 + r3 = 0 and − 1 + r + r2 = 0,

respectively. Thus 2r = −1 (recall that r4 = 1), and so 0 = 2(−1+r+r2) = −2−1−r,
that is r = −3. But then n = 5 < 7, a contradiction. We leave the other two
possibilities to the reader. This proves the following lemma.

Lemma 5.22. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1. Then GB(m,n, k; r, t) contains no 6-cycle of type 3.

5.3.5 The 6-cycles with trace n6: coiled

In this subsection let C = (x0, x1, x2, x3, x4, x5) be a coiled 6-cycle of Γ. By Lemma 5.16
either m = 3 or m = 6 must hold. We investigate each of the possibilities separately.

We first deal with the possibility m = 3. By Lemma 5.12 the 6-cycle C contains
edges of at most three different labels. If C contains just two edges of some particular
nonzero label, then the corresponding condition (5.6) is either of the form 2ra+2t = 0
or ra + ra

′

+ 2t = 0 for some 0 ≤ a < a′ ≤ 2. Multiplying by an appropriate power
of r if necessary we thus get 2+2t = 0 or 1+ r+2t = 0. But then multiplication by
r − 1 yields 2(r − 1) = 0 or r2 − 1 = 0, both of which contradict r2 6= 1.

This proves (using τ if necessary) that either all of the edges of C have the same
label or C has edges of two labels, three of each one. As in Subsection 5.3.4 (since
k ≥ 3) this implies 2t = 0. Now, if C has edges of just one label, then (using τ if
necessary) we get the condition 2 + 2r + 2r2 = 0. However, for C to actually be a
6-cycle 1+ r+ r2+ t 6= 0 must hold and (again using τ if necessary) t 6= 0. It follows
that n is even and t = n/2 = 1 + r+ r2 + t, implying that 1 + r+ r2 = 0. But since
n is even, r ∈ Z∗

n must be odd, and so 1+ r+ r2 is odd, a contradiction. Thus there
are no coiled 6-cycles with edges of just one label.

The 6-cycle C therefore contains edges of two labels, three of each one. If all of
the edges of a given label are consecutive, we again get the condition 1 + r + r2 = 0
(recall that 2t = 0). But as before, for C to indeed be a 6-cycle, 1 + r + r2 + t 6= 0
must hold, and so again t = n/2 with n even, leading to a contradiction. It is easy to
see that the only other possibility is that the labels of edges on C alternate. Namely,
if two consecutive edges on C of one label were “surrounded” by edges of the other
label, we would get (multiplying by r if necessary) that both 2+r = 0 and 1+2r = 0
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must hold, which contradicts n ≥ 7. The only coiled 6-cycles that can exist in case
of m = 3 are thus the ones on which two labels alternate and they in fact do exist
if and only if 2t = 0 and 1 + r + r2 = 0. The reader will check that in this case x3
cannot be equal to x0 so that we indeed get 6-cycles. We say that the corresponding
6-cycles are of type c.1 (see Figure 5.5).
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Figure 5.5: The coiled 6-cycles when m = 3.

We now consider the possibility m = 6. Note that |V (C) ∩ Γa| = 1 for all
0 ≤ a ≤ 5. In fact, we can assume that xa ∈ Γa for all 0 ≤ a ≤ 5. As before, if C
does not contain edges of all the possible k labels, then t = 0 must hold.

We first give a necessary and sufficient condition that C contains precisely two
edges of a given nonzero label. Suppose that for some i ∈ {0, 1, . . . , k−1} the 6-cycle
C contains exactly two edges with label i. If they are not antipodal on C, then they
are either consecutive or at distance 2 on C. In the first case the corresponding
condition (5.6) is 1 + r + t = 0, and so multiplication by r − 1 yields r2 = 1, a
contradiction. In the second case we get 1 + r2 + t = 0, and so multiplication by
r2 − 1 yields r4 = 1, a contradiction (since r6 = 1). Therefore, if C contains exactly
two edges of some (nonzero) label, they are antipodal on C.

Recall that, by Lemma 5.12, C contains edges of at most three different labels. If
it contains edges of three labels, then by the above remarks each pair of edges with
the same label is antipodal on C, and so we get the condition 1+ r3+ t = 0. We say
that the corresponding 6-cycles are of type c.2.

If all of the edges of C are of the same label then t = 0 and 1+r+r2+r3+r4+r5 =
0. Note that, since 1 + r+ r2 + r3 + r4 + r5 + kt = 0, the latter condition is implied
by t = 0. We say that the corresponding 6-cycles are of type c.3.

Suppose finally that C contains edges of exactly two labels (recall that this implies
t = 0). By Lemma 5.7 we can assume the two labels are 1 and 2. If for one of them
there are just two edges of this label on C then they are antipodal and we get the
condition 1 + r3 = 0. We say that the corresponding 6-cycles are of type c.4. We
are left with the possibility that C contains three edges of label 1 and three edges of
label 2. If the edges of label 1 (and thus also of label 2) are consecutive, we get the
condition 1 + r + r2 = 0 (we say that the corresponding 6-cycles are of type c.5). If
the two labels alternate on C then we get the condition 1+ r2 + r4 = 0 (we say that
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the corresponding 6-cycles are of type c.6). The only other possibility would imply
that both 1+ r+ r3 = 0 (for one label) and 1+ r+ r4 = 0 (for the other label) must
hold. But then r = 1, a contradiction. This finally proves the following lemma (see
also Figure 5.6).
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Figure 5.6: The coiled 6-cycles when m = 6.

Lemma 5.23. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) where

r2 6= 1. Then the graph GB(m,n, k; r, t) contains coiled 6-cycles if and only if at least
one of the following conditions holds:

• m = 3, 2t = 0 and 1 + r + r2 = 0, in which case coiled 6-cycles of type c.1
exist.

• m = 6 and 1 + r3 + t = 0, in which case coiled 6-cycles of type c.2 exist.

• m = 6 and t = 0, in which case coiled 6-cycles of type c.3 exist.

• m = 6, t = 0 and 1 + r3 = 0, in which case coiled 6-cycles of type c.4 exist.

• m = 6, t = 0 and 1+ r+ r2 = 0, in which case coiled 6-cycles of type c.5 exist.

• m = 6, t = 0 and 1+r2+r4 = 0, in which case coiled 6-cycles of type c.6 exist.

We end this section with the result in which we state the number of 6-cycles of
a given type that each (negative) anchor, glide or zig-zag lies on (if such 6-cycles
exist). From the above investigation of all the possible types of 6-cycles the proof
is straightforward. We illustrate the argument for the 6-cycles of type 1.1 and leave
the other types to the reader. By Lemma 5.18 the 6-cycles of type 1.1 exist if and
only if 1 + r2 = 0. Moreover, from Figure 5.2 we can see that the edges of such a
6-cycle are of two different labels. It is thus clear that a given negative anchor (by
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which we have already chosen the two labels) is contained on two 6-cycles of type
1.1 (we only need to choose the label of the two edges of the 6-cycle in question,
not belonging to an anchor). Similarly, a given zig-zag (again, the labels have been
chosen by it) is contained on two 6-cycles of type 1.1 (we need to choose which of the
two edges of the zig-zag belongs to an anchor of the 6-cycle in question). Finally, a
glide is contained in 2(k − 1) different 6-cycles of type 1.1, since we need to choose
one of the k − 1 other labels, as well as which of the two edges of the glide belongs
to an anchor of the 6-cycle in question.

Proposition 5.24. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1 and r, r−1 6= 2. Then the only 6-cycles that the graph GB(m,n, k; r, t) can
possibly contain are the generic ones and the ones of types 1.1–1.6, 2.1–2.2 and c.1–
c.6. Moreover the corresponding conditions under which such 6-cycles exist, together
with the number of such 6-cycles containing any given (negative) anchor, glide or
zig-zag, are as given in Table 5.1.

trace type condition anchor glide zig-zag
a6 generic none k − 2 0 0

an2an2

1.1 1 + r2 = 0 2 2(k − 1) 2
1.2 1 + r2 = 0 k − 2 0 2(k − 2)
1.3 1− r − r2 = 0 1 k − 1 1
1.4 1− r + r2 = 0 1 0 2
1.5 1 + r − r2 = 0 1 k − 1 1
1.6 1 + r + r2 = 0, if m = 3 then t 6= 0 1 2(k − 1) 0

a3nan
2.1 1 + 2r = 0 2 k − 1 0
2.2 r = −2 2 k − 1 0

n6

c.1 m = 3, 2t = 0, 1 + r + r2 = 0 0 0 1
c.2 m = 6, 1 + r3 + t = 0 0 0 k − 2
c.3 m = 6, t = 0 0 1 0
c.4 m = 6, t = 0, 1 + r3 = 0 0 k − 1 2
c.5 m = 6, t = 0, 1 + r + r2 = 0 0 2(k − 1) 1
c.6 m = 6, t = 0, 1 + r2 + r4 = 0 0 0 1

Table 5.1: Counting the number of 6-cycles containing a specific anchor, glide or
zig-zag.

5.4 Half-arc-transitivity of GB(m, n, k; r, t)

In this section we finally prove Theorem 7. Throughout this section we let m ≥ 3,
n ≥ 7, k ≥ 3, r ∈ Z∗

n and t ∈ Zn be as in (5.1) with r2 6= 1 and r, r−1 6= 2. We
denote Γ = GB(m,n, k; r, t) and let G = 〈T,H〉 be as in Lemma 5.7.

The proof of half-arc-transitivity of Γ is divided into three cases where we first
deal with the case that Γ contains no coiled 6-cycles and then separately analyze the
possibilities m = 3 and m = 6. But first we need the following two results which
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prove that Γ could only be arc-transitive if the sets Γa, a ∈ Zm, were not blocks of
imprimitivity for the whole automorphism group Aut(Γ) in which case the anchors
and zig-zags would be in the same Aut(Γ)-orbit.

Proposition 5.25. Let Γ = GB(m,n, k; r, t) where m ≥ 3, k ≥ 3, n ≥ 7, r ∈ Z∗
n

and t ∈ Zn are as in (5.1) with r2 6= 1. Suppose that the sets Γa, a ∈ Zm, are blocks
of imprimitivity for Aut(Γ). Then Γ is half-arc-transitive.

Proof. Suppose to the contrary that Γ is arc-transitive. Let v = (0;0) and ψ ∈
Aut(Γ)v be such that (1;0)ψ = (m−1;−t1). Since the sets Γa are blocks for Aut(Γ),
Γ0ψ = Γ0 and Γ1ψ = Γm−1. Moreover, Lemma 5.17 implies that ψ maps generic
6-cycles to generic 6-cycles. Recall that, by Lemma 5.7, the subgroup H ≤ Aut(Γ)v
acts as the full symmetric group Sk on E , and so we can assume that for each
0 ≤ i ≤ k − 1 the automorphism ψ maps the unique edge of label i in [Γ0,Γ1],
incident to v, to the unique edge of label i in [Γm−1,Γ0], incident to v.

For each pair of vertices w, z ∈ Γ0∪Γ1 let d0,1(w, z) be the length of a shortest wz-
path in the (connected) subgraph [Γ0,Γ1] (of course d0,1(w,w) = 0). Further, for each
uw = e ∈ [Γ0,Γ1], where u ∈ Γ0 and w ∈ Γ1, let dv(e) = max{d0,1(v, u), d0,1(v,w)}.
Note that d0,1(v, u) is even and d0,1(v,w) is odd. We claim that ψ preserves the
labels of all the edges e = uw in [Γ0,Γ1]. We prove this by induction on dv(e).

First, if dv(e) = 1, then u = v, and so ψ preserves the label of e by hypothesis.
If dv(e) = 2, then d0,1(v,w) = 1 and d0,1(v, u) = 2. Let z ∈ N(v)∩Γ1 be the unique
vertex with L(vz) = L(uw). Note that z 6= w and that u is the only neighbor y 6= v
of w in Γ0 such that the path (z, v, w, y) is not contained on a generic 6-cycle of
Γ. Since L(vw) = L(v(wψ)) and L(vz) = L(v(zψ)), it follows that uψ is the only
neighbor y′ 6= v of wψ in Γ0 such that the path (zψ, v, wψ, y′) is not contained on
a generic 6-cycle of Γ. It follows that L((uψ)(wψ)) = L(v(zψ)) = L(uw), and so
L(eψ) = L(e). Suppose now that for some ℓ ≥ 2 the automorphism ψ preserves
the labels of all edges e′ ∈ [Γ0,Γ1] with dv(e

′) ≤ ℓ and let e ∈ [Γ0,Γ1] be such that
dv(e) = ℓ + 1. Let P = (v, v1, v2, . . . , vℓ, vℓ+1) be a vvℓ+1-path in [Γ0,Γ1] of length
ℓ + 1 such that e = vℓvℓ+1. Note that for each e′ ∈ [Γ0,Γ1], incident to vℓ−1, we
have dv(e′) ≤ ℓ, and so L(e′ψ) = L(e′) holds. Since dvℓ−1

(e) = 2, we can apply a
similar argument as in the case dv(e) = 2 to prove that ψ preserves the label of e.
Therefore, by induction, ψ preserves the labels of all the edges in [Γ0,Γ1], as claimed.
Observe that this completely determines the action of ψ on [Γ0,Γ1]. Namely, since
this subgraph is connected, we just take an arbitrary path in [Γ0,Γ1] from (0;0) to
the vertex, whose image we want to determine, and then follow the corresponding
path in [Γm−1,Γ0] from (0;0) with the same sequence of labels. This way we find
that (1;0)ψ = (m−1;−t1) and (1; re1)ψ = (m−1;−r ·rm−1

e1−t1) = (m−1;−e1−
t1). Since (2; re1) is a common neighbor of (1;0) and (1; re1), it thus follows that
(2; re1)ψ ∈ Γm−2 is a common neighbor of (m−1;−t1) and (m−1;−e1− t1). Since
the vectors −t1 and −e1− t1 differ only in the first component, it is clear that either
−rm−2 = −1 or rm−2 = −1 has to hold. Since the former case contradicts r2 6= 1,
we must have that r2 = −1. In particular, L((m−1;−t1)((2; re1)ψ)) = 0. However,
we can now repeat the same argument for the vertices (1;0) and (1; re2) and their
neighbor (2; re2) to get that also L((m− 1;−t1)((2; re2)ψ)) = 0 has to hold, which
is of course impossible since ψ is a bijection. �
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Lemma 5.26. Let m ≥ 3, k ≥ 3, n ≥ 7, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1. If the graph Γ = GB(m,n, k; r, t) is arc-transitive, then for each negative
anchor (u, v, w) there exists α ∈ Aut(Γ) fixing u and v and mapping this negative
anchor to a zig-zag such that L(vw) = L(v(wα)). Similarly, for each positive anchor
(u, v, w) there exists α′ ∈ Aut(Γ) fixing u and v and mapping this positive anchor to
a zig-zag such that L(vw) = L(v(wα′)).

Proof. First note that, by Lemma 5.7, it suffices to prove the result for the anchors
(u, v, w) with v = (0;0). Now, since r2 6= 1, Proposition 5.25 implies that at least one
of the sets Γa, a ∈ Zm, is not a block of imprimitivity for Aut(Γ), and so Lemma 5.6
implies that none of them is. There thus exists some β ∈ Aut(Γ) such that Γ1β 6= Γ1

and Γ1β ∩ Γ1 6= ∅.
Choose an arbitrary negative anchor (u, v, w) with v = (0;0). Since the subgraph

[Γ0,Γ1] is connected there exist x, y ∈ Γ1 such that xβ ∈ Γ1, yβ /∈ Γ1 and (x, z, y) is
a negative anchor for some z ∈ Γ0. Then either zβ ∈ Γ0 or zβ ∈ Γ2. In the later case
let β′ ∈ G be such that zββ′ = z and note that then yββ′ ∈ Γ1 and xββ′ ∈ Γm−1.
Letting β′′ ∈ G be an automorphism fixing z and interchanging x and y we can thus
replace β by β′′ββ′ to obtain an automorphism mapping x to Γ1, z to Γ0 and y to
Γm−1. Lemma 5.7 thus implies that we can find some β̃ ∈ Aut(Γ) fixing the vertices
u and v and mapping w to Γm−1.

We claim that we can in fact assume (u, v, wβ̃) is a zig-zag. Namely, if it is a
glide then take any w′ ∈ (N(v) ∩ Γ1)\{u,w} (note that since k ≥ 3 the vertex w′

does exist) and observe that w′β̃ ∈ Γm−1 ∪ Γ1. Now, if w′β̃ ∈ Γm−1, then β̃ maps
the negative anchor (u, v, w′) to the zig-zag (u, v, w′β̃) while if w′β̃ ∈ Γ1 the negative
anchor (w′, v, w) is mapped by β̃ to the zig-zag (w′β̃, v, wβ̃). Applying additional
automorphisms from G if necessary we can thus indeed find α ∈ Aut(Γ), mapping
the negative anchor (u, v, w) to a zig-zag with u and v being fixed (see Figure 5.7).
Moreover, by Lemma 5.7 we can even assume that L(vw) = L(v(wα)), as claimed.

Γm−1 Γ0 Γ1

v

w

u
wα

w′α

w′α

w′

b bb

b b

b

b

Figure 5.7: A negative anchor can be mapped to an appropriate zig-zag.

An analogous argument shows that the same can be done for any positive anchor.
�

We are now ready to prove that the graph Γ is HAT. As mentioned at the
beginning of this section we separate the proof in three parts. In all three cases the
proof is by contradiction and relies heavily on the information from Table 5.1. We
first deal with the case when no coiled 6-cycle exists.
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Lemma 5.27. Let m ≥ 3, n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1 and r, r−1 6= 2. If Γ = GB(m,n, k; r, t) contains no coiled 6-cycles then it is
half-arc-transitive. In particular, if m /∈ {3, 6}, then Γ is half-arc-transitive.

Proof. Suppose to the contrary that Γ is arc-transitive. By Lemma 5.26 there exists
α ∈ Aut(Γ) fixing v = (0;0) and x1 = (1;e1), while mapping the negative anchor
P = (x0, v, x1), where x0 = (1;0), to the zig-zag (x0α, v, x1) with L((x0α)v) = 0.

Since, by assumption, there are no coiled 6-cycles in Γ, Proposition 5.24 implies
that the only non-generic 6-cycles that can possibly exist in Γ are the ones of types
1.1–2.2. Since the zig-zag Pα is contained in as many 6-cycles as the negative
anchor P , it follows that Γ contains at least one non-generic 6-cycle. Moreover,
by Lemma 5.21 precisely one of the conditions for 6-cycles of types 1.1–2.2 holds.
Namely, otherwise 6-cycles of types 1.4 and 2.2 exist, and so Proposition 5.24 implies
that each zig-zag is contained on two 6-cycles (of type 1.4) while each negative anchor
is contained on k−2+1+2 ≥ 4 different 6-cycles, a contradiction. This further implies
that none of the two conditions for 6-cycles of type 2 can hold, since none of the
corresponding 6-cycles contains zig-zags. Therefore, precisely one of the conditions
for 6-cycles of type 1.1–1.6 holds.

Suppose first that 1 + r2 = 0 holds. It follows that each negative anchor, as well
as each zig-zag, is contained on precisely 2k − 2 different 6-cycles. Observe that x0
has exactly 2k − 2 different neighbors w 6= v such that the 3-path (x1, v, x0, w) is
contained in at least one 6-cycle of Γ (k−2 in Γ0 and k in Γ2). It follows that x0α also
has exactly 2k − 2 different neighbors w′ 6= v such that the 3-path (x1, v, x0α,w

′)
is contained in at least one 6-cycle of Γ. However, it is easy to check that x0α
has exactly k such neighbors (one in Γm−2 and k − 1 in Γ0), and so 2k − 2 = k,
contradicting k ≥ 3 (see Figure 5.8).
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x0α
x0

x1

}

k − 1

}

kk − 2
{

v

b

b
b

b
b

b
b
b
b
b
b

b

b

b

b

b
b

b
b
b

b

Figure 5.8: The neighbors of x0 and x0α giving rise to suitable 3-paths.

We are left with the possibility that r2 6= −1 and precisely one of the conditions
for 6-cycles of types 1.3–1.6 holds. Therefore, the number of 6-cycles containing P
is k − 1 ≥ 2, and so the condition for 6-cycles of type 1.4 must hold. It follows that
k = 3 and Γ has no 6-cycles containing glides. Let C1 = (x0, v, x1, x2, x3, x4) and
C2 = (x0, v, x1, x5, x6, x7) be the two 6-cycles containing P , where C1 is the generic
one (see Figure 5.9). Since Pα is a zig-zag, the 6-cycles C1α and C2α are both of
type 1.4. Therefore the pair {x4, x7} is mapped to the pair {x′, x′′} of the unique
two neighbors of x0α such that L(x′(x0α)) = L(x′′(x0α)) = 1. But then the zig-zag
(x4, x0, x7) is mapped to the glide (x′, x0α, x

′′), a contradiction since glides are in a
different Aut(Γ)-orbit than zig-zags. �
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Figure 5.9: The situation in the case that the 6-cycles of type 1.4 exist.

We next deal with the case m = 3.

Lemma 5.28. Let Γ = GB(3, n, k; r, t) where n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn are

as in (5.1) with r2 6= 1 and r, r−1 6= 2. Then Γ is half-arc-transitive.

Proof. In view of Lemma 5.27 we can assume that Γ contains coiled 6-cycles.
By Lemma 5.23 both 2t = 0 and 1 + r + r2 = 0 hold. Consequently, the proof
of Lemma 5.21 implies that the only 6-cycles of types 1.1–2.2 that Γ can possibly
contain are the ones of type 1.6 (which occurs if and only if t 6= 0).

Now, if t 6= 0, then Proposition 5.24 implies that each negative anchor of Γ lies on
k−1 ≥ 2 different 6-cycles, while each zig-zag lies on just one (coiled) 6-cycle, and so
Lemma 5.26 implies that Γ is HAT. We are thus left with the possibility that t = 0,
in which case Γ only has generic 6-cycles and those of type c.1. By Proposition 5.24
each negative anchor lies on k − 2 (generic) 6-cycles, each zig-zag lies on a single
(coiled) 6-cycle, and no 6-cycle of Γ contains glides. In view of Lemma 5.26 we can
thus assume k = 3. Note also that each automorphism of Γ maps glides to glides.

By way of contradiction suppose Γ is arc-transitive. By Lemma 5.26 there ex-
ists some α ∈ Aut(Γ), fixing v = (0;0) and x1 = (1;e1) while mapping the neg-
ative anchor P = (x1, v, x0), where x0 = (1;0), to the zig-zag (x0α, v, x1) with
L((x0α)v) = 0. Let C1 = (x0, v, x1, x2, x3, x4) be the generic 6-cycle containing P
and let C2 = (y0, v, y1, y2, y3, y4) be the coiled 6-cycle containing Pα, where yi = xiα
for all 0 ≤ i ≤ 4 (note that y1 = x1). Since (y0, v, x0) is a glide, the above remarks
imply that y0α = x0, and so α interchanges C1 and C2, and thus also xi and yi for
each 0 ≤ i ≤ 4.

Let (v, z1, z2, v) be the 3-cycle of label 2 such that z1 ∈ Γ1 and z2 ∈ Γ2 (see
Figure 5.10). Of course, α either fixes both z1 and z2, or interchanges them. With
no loss of generality we can assume it interchanges them (otherwise replace α by
(αβ)2, where β ∈ H from Lemma 5.7 interchanges the labels 0 and 2). The negative
anchor Q = (z1, v, x0) is then mapped to the positive anchor (z2, v, y0), and so
the generic 6-cycle containing Q is mapped to the generic 6-cycle containing Qα. In
particular, the vertex u ∈ Γ0∩N(x0) with L(x0u) = 1 is mapped to the unique vertex
in Γ0 ∩ N(y0) such that L(y0(uα)) = 1. But then the positive anchor (u, x0, x4) is
mapped to the glide (uα, y0, y4) (with label 1), a contradiction.

�
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Figure 5.10: The situation in the case that the 6-cycles of type c.1 exist.

We finally deal with the most difficult case, that is when m = 6. The proof is
rather long and technical since there are several possibilities that need to be analyzed.

Lemma 5.29. Let Γ = GB(6, n, k; r, t) where n ≥ 7, k ≥ 3, r ∈ Z∗
n and t ∈ Zn are

as in (5.1) with r2 6= 1 and r, r−1 6= 2. Then Γ is half-arc-transitive.

Proof. In view of Lemma 5.27 we can assume that Γ contains coiled 6-cycles. By
way of contradiction suppose Γ is arc-transitive. By Lemma 5.26 there exists some
α ∈ Aut(Γ), fixing v = (0;0) and x1 = (1;e1) and mapping the negative anchor
P = (x1, v, x0), where x0 = (1;0), to the zig-zag (x0α, v, x1), where L((x0α)v) = 0.

We first claim that the only 6-cycles of type 1 that Γ can possibly contain are the
ones of type 1.6. The condition r6 = 1 and n ≥ 7 clearly prevents 1+ r2 = 0 to hold.
Similarly, if 1− r − r2 = 0, then r4 = 2− 3r, and so 1 = r6 = 5− 8r, implying that
8r = 4. Then 8 − 8r = 8r2 = 4r, and so 12r = 8. It is now easy to see that either
n = 8 or n = 4, both of which contradict r2 6= 1. A similar argument shows that the
condition 1+r−r2 = 0 is also not possible. Suppose finally that 1−r+r2 = 0 holds.
Multiplication by 1 + r yields 1 + r3 = 0 while multiplication by t yields tr2 = 0,
and so t = 0. Since r3 = −1 we have that 1+ r2 + r4 = 1− r+ r2 = 0, and so coiled
6-cycles of types c.2, c.3, c.4 and c.6 all exist. However, then Proposition 5.24 implies
that a zig-zag lies on at least k + 3 different 6-cycles while a negative anchor lies on
at most k + 1 different 6-cycles of Γ, contradicting the assumption that α maps the
negative anchor P to a zig-zag. This proves our claim that the only possible 6-cycles
of type 1 are the ones of type 1.6. Note that in the case that these 6-cycles do exist
r6 = 1 implies 1− r3 = 0.

By Lemma 5.21, Proposition 5.24 and the above claim it is clear that the negative
anchor P lies in k − 2, k − 1 or k different 6-cycles of Γ. Let us denote this number
by ℓ. We analyze each of the three possibilities for ℓ separately. Before doing so we
fix some notation. Since k ≥ 3 there exists x2 = (1;e2). For each 0 ≤ i ≤ 2 let
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yi ∈ Γ5 ∩N(v) be the unique vertex such that L(vyi) = i. Thus, for each 0 ≤ i ≤ 2
the 2-path (yi, v, xi) is a glide with both edges of label i. Recall also that x0α = y0.

Case 1: ℓ = k.
By Proposition 5.24 and the Remark 5.20 we can assume that r = −2 and that
none of the conditions for 6-cycles of types 1.1–1.6 holds. Since the zig-zag Pα is
contained on k different 6-cycles and the condition for 6-cycles of type c.5 implies
the one for 6-cycles of type 1.6, coiled 6-cycles of types c.2 and c.4 must exist. But
then t = 0 and 1 + r3 = 0, and so r = −2 implies n = 7. However, in this case the
6-cycles of type 1.4 also exist, a contradiction.

Case 2: ℓ = k − 1.
By Proposition 5.24 and the above claim 6-cycles of type 1.6 exist, that is 1 +
r + r2 = 0, and consequently also r3 = 1. Now, 1 + r3 = 2 6= 0 and moreover
1 + r3 + t = 2 + t 6= 0, since otherwise multiplication by r − 1 yields 2(r − 1) = 0.
Thus the only types of coiled 6-cycles that can exist are c.3, c.5 and c.6. Since Pα
lies on k − 1 different 6-cycles, coiled 6-cycles of types c.5 and c.6 exist, and so also
those of type c.3 do. Thus k = 3 and t = 0.

Observe that the number of 6-cycles containing a glide is 9, implying that α maps
glides to glides. However, since (y0, v, x0) is a glide, this implies y0α = x0, and so the
6-cycle C of type c.5, containing the zig-zag (y0, v, x1), is mapped to the (unique)
generic 6-cycle containing the anchor P . But then the four glides of C are mapped
to anchors, a contradiction.

Case 3: ℓ = k − 2.
By Proposition 5.24 we only have generic and coiled 6-cycles in this case. Moreover,
since each zig-zag has to lie in exactly k−2 (coiled) 6-cycles we either have that only
coiled 6-cycles of type c.2 exist (note that the 6-cycles of type c.3 cannot exist in this
case since otherwise also those of type c.4 would) or only coiled 6-cycles of types c.3
and c.6 exist (note that the condition for type c.4 implies the one for type c.2 while
the condition for type c.5 implies the one for type 1.6) in which case k = 3 clearly
has to hold. In fact, k = 3 must hold also in the case that only coiled 6-cycles of
type c.2 exist, since otherwise one of the conditions (5.6) for a given coiled 6-cycle
is t = 0. We analyze both possibilities.

Subcase 3.1: The only coiled 6-cycles are the ones of type c.2.
In this situation each anchor and each zig-zag lie on a unique 6-cycle while no 6-cycle
contains glides. It follows that Aut(Γ) has two orbits on the set of all 2-paths of Γ,
one consisting of all glides and the other consisting of all anchors and all zig-zags.

Since glides are mapped to glides, y0α = x0 and α fixes both x1 and y1. Then
either α fixes both x2 and y2 or interchanges them. With no loss of generality we
can assume that the later holds since otherwise we can replace α with (αβ)2, where
β ∈ G is the automorphism fixing v, preserving label 1 and interchanging the labels
0 and 2 (recall that G is as in Lemma 5.7). Now, let u,w ∈ Γ0 be the neighbors of
x1 and y1, respectively, such that L(ux1) = L(wy1) = 2, let u1 ∈ Γ5 be the neighbor
of u such that L(uu1) = 1 and let w1 ∈ Γ1 be the neighbor of w with L(ww1) = 1.
Observe that u1 = (5; (1− r5)e1 − e2 − t1) and w1 = (1; (1 − r5)e1 + r5e2), and so
z = (0; (1− r5)e1 + (−1+ r5)e2) is a common neighbor of u1 and w1 with L(u1z) =
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L(zw1) = 2 (see Figure 5.11). Therefore, (y1, v, x1, u, u1, z, w1, w) is an 8-cycle of
Γ. Since (x0, v, x1, u) is contained in a generic 6-cycle and x0α = y0, it is clear that
uα ∈ Γ2 with L(x1(uα)) = 2. Similarly wα ∈ Γ4 with L(y1(wα)) = 2. Moreover,
the unique neighbor z′ ∈ Γ0 of x1 with L(z′x1) = 0 is interchanged with the unique
neighbor of x1 in Γ2 with L(x1(z

′α)) = 0, and so the 3-path (u1, u, x1, z
′α), which

lies on a 6-cycle of type c.2, is mapped to a 3-path on a 6-cycle of type c.2, implying
that u1α ∈ Γ3. An analogous argument shows that w1α ∈ Γ3. However, the glide
(u1, z, w1) would then have to be mapped to a 2-path with both endvertices in Γ3,
which clearly cannot be a glide, a contradiction.

Γ4 Γ5 Γ0 Γ1 Γ2 Γ3
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Figure 5.11: The situation in Subcase 3.1.

Subcase 3.2: The coiled 6-cycles of Γ are of types c.3 and c.6.
Recall that in this situation the number of 6-cycles containing a glide, a zig-zag and
an anchor is one. Then we have two possibilities. Either glides and anchors are in
the same Aut(Γ)-orbit or not.

Suppose first they are not. Then glides are mapped to glides, and so we can
again assume that α interchanges x0 with y0 and x2 with y2. Letting C be the
unique (generic) 6-cycle containing P , it is clear that Cα is of type c.6, and so the
labels of its edges alternate between 0 and 1. In particular, letting u ∈ Γ0 be as above
we have that uα ∈ Γ2 with L(x1(uα)) = 0. Let z1, z2 ∈ Γ0 ∩ N(x0) be such that
L(zix0) = i (see Figure 5.12). Then the 3-path (x2, v, x0, z1) is contained on a generic
6-cycle, and so since (x2, v, x0) is mapped to a positive anchor, z1α ∈ Γ0 ∩ N(y0)
with L(y0(z1α)) = 1. Likewise, the 3-path (x1, v, x0, z2) is contained on a generic
6-cycle, and so z2α ∈ Γ4 with L(y0(z2α)) = 1. But then the anchor (z1, x0, z2) is
mapped to a glide, a contradiction.

Suppose now that Aut(Γ) has just one orbit on the set of all 2-paths of Γ. Then
there exists some β ∈ Aut(Γ) fixing both v and x1 while mapping x0 to y1. Before
continuing let us denote by C = (v0, v1, v2, v3, v4, v5), where v0 = v, v1 = x1 and
v5 = x0, the generic 6-cycle containing the 2-path (x0, v, x1). Since β fixes v0 and
v1 and maps v5 to y1 it is clear that Cβ is of type c.3 with all of its edges being of
label 1. Note that this implies viβ ∈ Γi for all 0 ≤ i ≤ 5. For each 0 ≤ i ≤ 5 we also
let ui ∈ Γ0 ∪ Γ1 be the unique neighbor of vi, different from vi−1 and vi+1, where
indices are computed modulo 6 (see Figure 5.13). We distinguish two possibilities
depending on whether x2β ∈ Γ1 or not.

First assume that x2β ∈ {x0, x2}. We can then assume that x2β = x2 (otherwise
replace β by βγ where γ ∈ G fixes v and interchanges the labels 0 and 2). This
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Figure 5.12: The situation in Subcase 3.2 with glides not being in the same Aut(Γ)-
orbit as anchors.

completely determines the action of β on the vertices ui, 0 ≤ i ≤ 5. We already
know that u0β = u0 (since u0 = x2). Next, since (u0, v0, v1, u1) is on a generic
6-cycle and β fixes u0, v0 and v1, it also fixes u1. Then, since (u1, v1, v2, u2) is on
a generic 6-cycle and (u1, v1, v2)β = (u1, v1, v2β) is a zig-zag with L(v1(v2β)) = 1,
it follows that u2β ∈ Γ3 with L((v2β)(u2β)) = 0. In a similar way we then find
that u3β ∈ Γ2 with L((v3β)(u3β)) = 2, then u4β ∈ Γ5 with L((v4β)(u4β)) = 2,
and finally that u5β ∈ Γ4 with L((v5β)(u5β)) = 0. However, this implies that
the 3-path (u0, v0, v5, u5), which is on a generic 6-cycle, is mapped to the 3-path
(u0, v0, v5β, u5β) which is not contained on any 6-cycle (since it has edges of three
different labels), a contradiction.
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Figure 5.13: The situation in Subcase 3.2 with all 2-paths in the same Aut(Γ)-orbit.

We are left with the possibility that x2β ∈ {y0, y2}. Similarly as before we
can assume that x2β = y2. An analogous argument as above then shows that
u1β ∈ Γ2 with L(v1(u1β)) = 2, u2β ∈ Γ1 with L((v2β)(u2β)) = 0, u3β ∈ Γ4 with
L((v3β)(u3β)) = 0, u4β ∈ Γ3 with L((v4β)(u4β)) = 2, and finally that u5β ∈ Γ0

with L((v5β)(u5β)) = 2. However, the 3-path (u0, v0, v5, u5), which is on a generic
6-cycle, is then mapped to the 3-path (u0β, v0, v5β, u5β), which is not on any 6-cycle
(since it is in [Γ5,Γ0] but contains two edges of label 2). �

Combining together Theorem 5.3, Propositions 5.8 and 5.10, and Lemmas 5.27,
5.28 and 5.29 we have the classification of all HAT generalized Bouwer graphs of
valence at least 6.
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Theorem 5.30. Let m ≥ 3, n ≥ 2, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1).

Then the graph GB(m,n, k; r, t) is half-arc-transitive if and only if r2 6= 1 and is
arc-transitive otherwise.

Taking into account the results of [32, 53] we can now also prove Theorem 7.

Proof (of Theorem 7). That Γ = GB(m,n, k; r, t) is a Cayley graph of a metabelian
group has been established in Lemma 5.7. Moreover, it admits a half-arc-transitive
group with respect to which it is tightly attached. It thus remains to determine
whether Γ is HAT or not. The case k ≥ 3 has been covered by Theorem 5.30, so
that we can assume k = 2 for the rest of the proof. Moreover, in view of Lemma 5.7
we only need to determine whether Γ is arc-transitive or not.

Now, if n is even, then r ∈ Z∗
n implies that r is odd, and so 1+r+· · ·+rm−1+2t = 0

forcesm to be even. In this case [53, Theorem 1.3] is directly applicable. We thus only
need to consider the case when n is odd. We show that in this case Γ ∼= Xo(m,n; r)
(from construction 4.3). Take the mapping Θ: V (Γ) → V (Xo(m,n; r)) defined by
the rule (note that since k = 2 the vertices of Γ are of the form (a; j), where a ∈ Zm,
j ∈ Zn)

(a; j)Θ = v2j−1−r−···−ra−1

a ,

where it is understood that (0; j)Θ = v2j0 . Since n is odd, 2 ∈ Z∗
n, and so Θ is clearly

a bijection. It is easy to verify that Θ preserves adjacency on each [Γa,Γa+1], where
0 ≤ a ≤ m − 2. Let us check that it also preserves adjacency on [Γm−1,Γ0]. To
this end let j ∈ Zn be arbitrary and consider the two neighbors w0 = (0; j + t) and
w1 = (0; j + rm−1 + t) of w = (m − 1; j). Since 1 + r + · · · + rm−1 + 2t = 0, it
follows that wΘ = v2j+rm−1+2t

m−1 . Then both w0Θ = v2j+2t
0 and w1Θ = v2j+2rm−1+2t

0

are neighbors of wΘ in Xo(m,n; r), and so Θ is an isomorphism of graphs. We can
now apply [32, Theorem 3.4].

It is clear that we only need to make sure that item (iii) from [32, Theorem 3.4]
corresponds to the third item of the k = 2 part in Theorem 7. To this end assume
m = 6 and n = 7n0, where n0 is odd with 7 ∤ n0, and that r′ ∈ {r,−r, r−1,−r−1}
is such that 2 − r′ − r′2 = 0 and r′ ≡ 5 (mod 7). It is easy to see that then
1+r′+ · · ·+r′5 = 9r′−3 holds. Moreover, since n is odd it follows that 2+r′+ t′ = 0
if and only if 2(2 + r′ + t′) = 0. From the definition of t′ it is clear that 2t′ =
−(1+r′+· · ·+r′5) (in the case that r′ ∈ {−r,−r−1} we have 2t′ = 2t+2r+2r3+2r5 =
−1 + r − r2 + r3 − r4 + r5), and so 2(2 + r′ + t′) = 4 + 2r′ + 3 − 9r′ = 7(1 − r′).
It is thus clear that 7(r′ − 1) = 0 (as required by [32, Theorem 3.4]) if and only if
2 + r′ + t′ = 0, which completes the proof. �

It follows that the family of GB(m,n, k; r, t) graphs contains all tetravalent tightly
attached HAT graphs, except for the non-Cayley ones. In fact, the following holds.

Proposition 5.31. Let Γ be a connected tetravalent tightly attached half-arc-transitive
graph. Then Γ is isomorphic to some GB(m,n, 2; r, t) if and only if it is a Cayley
graph which occurs if and only if it is not isomorphic to some Xo(m,n; r) with m
even, n odd and r ∈ Z∗

n such that rm = −1 but r2 6= −1.

Proof. Suppose first that Γ is of even radius. By [53] it is isomorphic to some
GB(m,n, 2; r, t) with m and n both even, and so Theorem 7 guarantees that Γ is
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a Cayley graph (this also follows from [53, Theorem 2.1], which ensures that the
subgroup 〈ρ, σ〉 is regular).

Suppose now that Γ is of odd radius. By [32] it is isomorphic to some Γ =
Xo(m,n; r) where n is odd and r ∈ Zn satisfies rm = ±1. Let now ρ, σ and τ be
as in [32], that is vjaρ = vj+1

a , vjaσ = vrja+1 and vjaτ = v−j
a for all a ∈ Zm, j ∈ Zn.

The subgroup 〈ρ, σ〉 is clearly transitive and moreover, σm = 1 if and only if rm = 1
while σm = τ whenever rm = −1. Thus, if rm = 1, the graph Γ is a Cayley graph
of the regular group 〈ρ, σ〉. Moreover, since Xo(m,n; r) ∼= Xo(m,n;−r) (see [32,
Proposition 4.1]), the graph Γ is a Cayley graph also in the case that rm = −1 with
m odd.

We claim that if rm = −1 and m is even, the graph Γ is not a Cayley graph. To
see this note first that it was shown in [32] that Aut(Γ) = 〈ρ, σ, τ〉. Thus Γ is a Cayley
graph if and only if we can find an index 2 transitive subgroup of Aut(Γ) (which is
then regular). Since σ and τσ are the only two automorphisms of Γ mapping v00 to
v01, one of them must be included in such a subgroup. But σm = τ fixes a vertex,
and so σ is excluded. However, as σ and τ commute and m is even, (τσ)m = σm,
and so Aut(Γ) contains no regular subgroup. By Theorem 7 it follows that in this
case Γ is not isomorphic to a GB(m,n, 2; r, t) graph.

To complete the proof we now only have to verify that if rm = 1 the graph
Xo(m,n; r) is isomorphic to GB(m,n, 2; r, t) for some t. Recall that n is odd and set
t = n−1

2 (1 + r + · · ·+ rm−1). Clearly 1 + r + · · · + rm−1 + 2t = 0 and since rm = 1,
we also have t(r − 1) = 0. We can thus construct the graph GB(m,n, 2; r, t), which,
by the proof of Theorem 7, is isomorphic to Xo(m,n; r) and the proof is complete.
�

5.5 The automorphism group and isomorphisms

To conclude this chapter we determine the automorphism group of the HAT GB(m,n, k; r, t)
graphs and all possible isomorphisms among them. Since these questions have been
answered for the tetravalent graphs in [32, 53], we only deal with the case k ≥ 3
here. Throughout this section let Γ = GB(m,n, k; r, t) be HAT and let G ≤ Aut(Γ)
be as in Lemma 5.7. First we need a lemma.

Lemma 5.32. Let m ≥ 3, n ≥ 5, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1. Then the only automorphism of the graph GB(m,n, k; r, t) fixing the vertex
(0;0) and each of its neighbors in Γ1 is the identity.

Proof. Let Γ = GB(m,n, k; r, t) and let α ∈ Aut(Γ) be such that it fixes the
vertex (0;0) and all of its neighbors in Γ1. By Theorem 7 the graph Γ is HAT and
by Lemma 5.7 its alternets coincide with the induced subgraphs [Γa,Γa+1], a ∈ Zm.
The sets Γa are then of course blocks of imprimitivity for Aut(Γ). A similar argument
as in the proof of Proposition 5.25 shows that α preserves the labels of the edges in
[Γ0,Γ1], and so it fixes each vertex of Γ0, as well as of Γ1.

Observe that for each a ∈ Zm no two vertices of Γa have more than one common
neighbor in Γa−1 (otherwise n = 2 would have to hold), and so each vertex of Γa is
uniquely determined by its neighbors in Γa−1. Thus, α also fixes each vertex of Γ2.
Inductively we find that α is the identity. �



The classification of half-arc-transitive generalizations of Bouwer graphs 89

Since the group G acts half-arc-transitively on Γ with the vertex-stabilizer acting
as the full symmetric group Sk on its outneighbors, this yields the following result.

Theorem 5.33. Let m ≥ 3, n ≥ 5, k ≥ 3, r ∈ Z∗
n and t ∈ Zn be as in (5.1) with

r2 6= 1. Then Aut(GB(m,n, k; r, t)) = G, where G is as in Lemma 5.7. In particular,
|Aut(GB(m,n, k; r, t))| = mnk−1k!.

We now show that the only pairs of isomorphic HAT GB(m,n, k; r, t) graphs,
where k ≥ 3, are the ones given in Proposition 5.10.

Proposition 5.34. Let Γ = GB(m,n, k; r, t) and Γ′ = GB(m′, n′, k′; r′, t′) with
n, n′ ≥ 5, k, k′ ≥ 3, r ∈ Z∗

n, r
′ ∈ Z∗

n′, t ∈ Zn and t′ ∈ Zn′ be as in (5.1). Sup-
pose r2 6= 1 and r′2 6= 1. Then Γ ∼= Γ′ if and only if (m,n, k, t) = (m′, n′, k′, t′) and
either r = r′ or r = r′−1.

Proof. In view of Proposition 5.10 we only need to show that if Γ ∼= Γ′ then
the above condition holds. Suppose then that Γ and Γ′ are isomorphic and let
Γa = {(a; b) ∈ V (Γ)}, where 0 ≤ a ≤ m − 1, let Γ′

a = {(a; b)′ ∈ V (Γ′)}, where
0 ≤ a ≤ m′ − 1, and let α : V (Γ) → V (Γ′) be an isomorphism with (0;0)α = (0;0)′.
Since isomorphic graphs have the same valence and order, it follows that k = k′ and
mnk−1 = m′n′k

′−1. Next, observe that, by Theorem 7, both Γ and Γ′ are HAT graphs
with the alternets of Γ and Γ′ being the induced subgraphs [Γa,Γa+1] and [Γ′

a,Γ
′
a+1],

respectively. Therefore, m = m′ (the number of alternets) and consequently also
n = n′.

Recall that the sets Γa and Γ′
a are blocks of imprimitivity for the groups Aut(Γ)

and Aut(Γ′), respectively. As in the proof of Proposition 5.25 we can thus assume
that α preserves the labels of all the edges in [Γ0,Γ1] in the sense that for each
e ∈ [Γ0,Γ1] the label of eα in Γ′ equals that of e in Γ, that is L(eα) = L(e). Since
(0;0)α = (0;0)′ we have Γ0α = Γ′

0, and so either Γ1α = Γ′
1 or Γ1α = Γ′

m−1. As in
the proof of Proposition 5.25 we find that the action of α on [Γ0,Γ1] is completely
determined. In fact, we claim it is completely determined on the whole graph Γ.

Suppose first that Γ1α = Γ′
1 (and so Γaα = Γ′

a for all a ∈ Zm) and let v = (2; b) ∈
Γ2 be arbitrary. Of course, (a; b)α = (a; b)′ holds for all (a; b) ∈ [Γ0,Γ1]. Then, since
(1; b), (1; b − re1) and (1; b − re2) are all neighbors of v, the vertex vα ∈ Γ′

2 is a
common neighbor of the vertices (1; b)′, (1; b− re1)′ and (1; b− re2)

′. Since b differs
from each of b − re1 and b − re2 in exactly one component (to each in a different
one), it is clear that L((1; b)′(vα)) = 0, and so vα = (2; b)′. Note that this also
forces r′ = r. We can now proceed inductively to prove that in fact (a; b)α = (a; b)′

holds for all the vertices of Γ, and so t′ = t also has to hold.
Suppose now that Γ1α = Γ′

m−1 (and so Γaα = Γ′
m−a for all a ∈ Zm). Similarly as

above we first find that (0; b)α = (0;−r′m−1
b)′ and (1; b)α = (m−1;−r′m−1

b− t′1)′

holds for all the vertices of Γ0 and Γ1, respectively. As above we then prove that for
each (2; b) ∈ Γ2 we get (2; b)α = (m − 2;−r′m−1

b − t′1)′. It follows that r′ = r−1.
We can then again proceed inductively to verify that for each vertex (a; b) of Γ with
a ≥ 1 we get (a; b)α = (m − a;−rb − t′1)′. The neighbor (m − 1;−t1) of (0;0) is
then mapped to (1; rt1− t′1) = (1; (t− t′)1), and so t = t′ has to hold. �

Using Theorem 7 and Proposition 5.34 it is now easy to compile the list of all
HAT GB(m,n, k; r, t) graphs (up to isomorphism) up to some reasonable order. We
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collect the number of such graphs (column #GB) for all even valences between 6 and
16 up to order a million in Table 5.2 (of course, since 3 · 58 > 106, there are no such
HAT GB(m,n, k; r, t) graphs with k ≥ 9). To indicate that the family of generalized
Bouwer graphs is indeed much larger than the family of Bouwer graphs we also give
the number of HAT Bouwer graphs (column #B) up to this order. For each valence
we also indicate the order of the smallest HAT Bouwer graph (column min B) and
the order of the smallest HAT GB(m,n, k; r, t) graph that is not a Bouwer graph
(column min GB \ B).

valence #GB #B min B min GB \ B

6 119 347 23 541 100 294

8 7 499 3 458 500 2 058

10 813 576 2 500 14 406

12 119 101 12 500 100 842

14 19 18 62 500 705 894

16 3 3 312 500 4 941 258

total 127 800 27 697 - -

Table 5.2: The number of HAT GB(m,n, k; r, t) and B(k;m,n) graphs and smallest
examples.



Chapter 6

Conclusions

We conclude this PhD Thesis with a few observations and give some suggestions for
future research. We also pose some open problems that were not mentioned in the
previous chapters.

The tools used in this thesis extend from group theory, algebraic graph theory
and to purely combinatorial techniques. The implementation of computer algebraic
tools, such as Magma, were used for the analysis of particular cases and testing
results.

Arc-transitive maps with underlying Rose window graphs. In Chapter 3 we
studied the structure of tetravalent arc-transitive graphs and used their properties
to investigate symmetries of arc-transitive maps in class 2{0,1}. The results of this
chapter complete the classification of all arc-transitive maps with underlying Rose
Window graphs.

The results for the structure of the underlying graphs of maps in class 2{0,1} can be
used on graphs having the required properties to obtain a bigger family of examples of
these maps and get a better understanding of their properties. For instance, if Γ is a
tetravalent G-half-arc-transitive graph for G ≤ Aut(Γ), such that Γ is arc-transitive
with [Aut(Γ), G] = 2 and attG(Γ) > 2, then Aut(Γ) acts 1-regularly on Γ. Now,
observe that the vertex stabilizers of the action of Aut(Γ) are of order four. In the
case of the vertex stabilizers being isomorphic to the Klein 4-group, by Corollary 3.13
we obtain that Γ is an underlying graph of three pairwise nonisomorphic maps in
the class 2{0,1} and also, by the Petrie operator, three pairwise nonisomorphic maps
in class 21. By going through the census [48] one can find various examples of that
kind of graphs, with the smallest one being the graph GHAT[15, 1].

Tetravalent graphs admitting a half-arc-transitive group of automorphisms.
The results of Chapter 4 represent a significant contribution to a topic of research
that has been active in mathematical community in the last decades. Moreover,
they establish a link between two important frameworks for a systematic study of all
tetravalent graphs admitting a half-arc-transitive group of automorphisms. In addi-
tion, a considerable step towards the complete answer to the question of whether the
attachment number necessarily divides the radius in tetravalent half-arc-transitive
graphs is made. However, the following cases remain open for this problem.

Problem 6.1. Let Γ be a tetravalent half-arc-transitive graph such that att(Γ) is an
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even integer greater than two and jmp(Γ) = att(Γ)/2−1. Prove that att(Γ) | rad(Γ)
holds.

A number of questions are posed throughout Chapter 4, but there are several
other curiosities one can observe by studying the census of all tetravalent half-arc-
transitive graphs up to order 1000 from [48]. We mention just two of them. For all
graphs Γ from the census such that Alt(Γ) is also half-arc-transitive the graph Γ is
either loosely attached or jmp(Γ) = 1. Similarly, whenever ΓB is half-arc-transitive,
|Q(Γ)| = 1 holds.

We thus pose the following two questions.

Question 6.2. Does there exist a tetravalent half-arc-transitive graph Γ such that
Alt(Γ) is half-arc-transitive but att(Γ), jmp(Γ) > 1?

Question 6.3. Does there exist a tetravalent half-arc-transitive graph Γ such that ΓB

is half-arc-transitive and |Q(Γ)| 6= 1?

Generalized Bouwer graphs. In Chapter 5 we worked with half-arc-transitive
graphs of valencies greater than four, which have not been extensively studied in the
literature. We constructed an infinite family of half-arc-transitive graphs, containing
almost all tightly attached tetravalent half-arc-transitive graphs.

As we pointed out all of the half-arc-transitive generalized Bouwer graphs are
tightly attached but since also the graphs from [5], which are clearly not isomorphic
to any generalized Bouwer graphs (since they are of order 3p, where p is a prime), are
tightly attached, the class of all tightly attached half-arc-transitive graphs is even
larger. We thus propose the following problem.

Problem 6.4. Classify all tightly attached half-arc-transitive graphs.

By Theorem 5.33 a vertex stabilizer of the whole automorphism group of a half-
arc-transitive GB(m,n, k; r, t) graph acts as the full symmetric group on the outneigh-
bors of the vertex. It can be seen that this does not hold for the graphs from [5]
or [31]. It is thus natural to pose the following problem.

Problem 6.5. Determine whether there exists a tightly attached half-arc-transitive
graph Γ of valence at least 6 such that a vertex stabilizer in Aut(Γ) acts as the full
symmetric group on the outneighbors of the vertex but Γ is not a generalized Bouwer
graph. Can a Cayley graph Γ with this property also be found? If so, classify all
such graphs.

The reason why we are also asking for Cayley graphs with the above property
is that we think the answer to the general question is in the affirmative. Namely,
already with tetravalent examples we saw that the Xo(m,n; r) graphs with rm = −1
andm even were not generalized Bouwer graphs. However, they were also not Cayley.

Finally, most of the half-arc-transitive graphs of valences at least 6 that we know
of are either tightly attached or have only one alternet. It is thus natural to consider
the following problem.

Problem 6.6. For each valence 2k ≥ 6, each integer r ≥ 3 and each divisor a of r
construct a half-arc-transitive graph of valence 2k, radius r and attachment number
a, or prove that for some triples (k, r, a) such graphs do not exist.
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Chapter 7

Povzetek v slovenskem jeziku

7.1 Uvod

Glavna tema doktorske disertacije so grafi z visoko stopnjo simetrije. Osredotočili
smo se namreč na grafe, katerih grupe avtomorfizmov so vozliščno in povezavno
tranzitivne. Ta razred grafov so zadnjih 70 let obširno preučevali. Objavljenih je bilo
na stotine raziskovalnih člankov (glej na primer članke [21, 29, 38, 47] in reference,
ki jih le-ti navajajo).

Za dani graf Γ z V (Γ), E(Γ) in A(Γ) po vrsti označimo množico vozlišč, množico
povezav in množico lokov (tj. množico vseh urejenih parov sosednjih vozlišč). Polno
grupo avtomorfizmov grafa Γ (tj. grupo vseh tistih permutacij množice vozlišč, ki
ohranjajo sosednost med vozlišči) bomo označevali z Aut(Γ). Pripomnimo še, da so
v tej disertaciji vsi grafi končni, enostavni in neusmerjeni (tam kjer je to smiselno,
pa imajo implicitno podano orientacijo na povezavah). Naj bo Γ graf in naj bosta
u, v ∈ V (Γ). Če sta u in v sosednji vozlišči grafa Γ, pišemo u ∼ v. Pripadajočo
povezavo {u, v} bomo običajno označili z uv, pri čemer je samoumevno, da je uv =
vu.

Pravimo, da je graf Γ G-vozliščno tranzitiven, G-povezavno tranzitiven oziroma
G-ločno tranzitiven, če podgrupa G ≤ Aut(Γ) deluje tranzitivno na V (Γ), E(Γ)
oziroma A(Γ). Nadalje je Γ G-pol-ločno tranzitiven (v nadaljevanju bomo uporabljali
okrajšavo G-PLT) če je G-vozliščno in G-povezavno tranzitiven, toda ni G-ločno
tranzitiven. V primeru, ko bo G = Aut(Γ), bomo predpono G opustili in uporabljali
izraze vozliščno tranzitiven, povezavno tranzitiven, ločno tranzitiven in pol-ločno
tranzitiven.

Naj bo Γ G-vozliščno in G-povezavno tranzitiven graf za neko podgrupo G ≤
Aut(Γ). V tem primeru lahko nastopita dve bistveno različni možnosti:

(i) Γ je G-ločno tranzitiven;

(ii) Γ je G-pol-ločno tranzitiven.

Seveda si lahko tudi pri prvi izmed obeh možnosti zastavimo vprašanje, če obstaja
kakšna podgrupa H ≤ Aut(Γ), ki na grafu Γ deluje pol-ločno tranzitivno. Podobno si
lahko pri drugi možnosti zastavimo vprašanje, če katera druga podgrupa H ≤ Aut(Γ)
deluje ločno tranzitivno na grafu Γ. V doktorski disertaciji proučujemo strukturne
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lastnosti grafov (in podgrup njihovih grup avtomorfizmov) v obeh opisanih primerih
ter ob tem obravnavamo tudi zgoraj omenjeni vprašanjij.

Pri prvem osrednjem delu doktorske disertacije se osredotočimo na vprašanja, ki
izhajajo iz zgornje možnosti (i). Bolj konkretno, zanima nas, kako lahko lastnosti
ločno tranzitivnih grafov uporabimo kot orodje pri raziskovanju simetrijskih last-
nosti zemljevidov. Zemljevid M je takšna vložitev povezanega grafa Γ v kompaktno
ploskev S brez roba, da je S \ Γ disjunktna unija enostavno povezanih območij.
Platonska telesa, na primer, lahko obravnavamo kot zemljevide na sferi. Vozlišča
in povezave zemljevida so kar vozlišča in povezave pripadajočega temeljnega grafa,
lica zemljevida pa so enostavno povezana območja, ki jih dobimo z odstranitvijo
grafa s ploskve. Avtomorfizmi zemljevida M so tisti avtomorfizmi vloženega grafa
Γ, ki ohranjajo lica zemljevida M. Pravimo, da je zemljevid povezavno tranzitiven
oziroma ločno tranzitiven, če njegova grupa avtomorfizmov deluje povezavno tranz-
itivno oziroma ločno tranzitivno na njegovem temeljnem grafu. Konec devetdesetih
let dvajsetega stoletja sta Graver in Watkins [22] začela s sistematičnim proučevan-
jem vseh povezavno tranzitivnih zemljevidov. Nedavno je nekatere nove smernice pri
proučevanju takšnih zemljevidov postavil Gareth Jones [26], ko je predlagal klasi-
fikacijo teh zemljevidov bodisi glede na njihove grupe avtomorfizmov ali pa glede na
njihove grafe. Naravni korak v smeri klasifikacije povezavno tranzitivnih zemljevidov
je seveda študij ločno tranzitivnih primerkov.

Naj bo dan zemljevid M. Njegova grupa avtomorfizmov tedaj naravno deluje
na množici njegovih praporov, ki jo označimo s F(M). Prapor je trojica, ki jo
tvorijo vozlišče, povezava in lice, ki so med seboj incidenčni. Ni težko dokazati,
da ima grupa avtomorfizmov ločno tranzitivnega zemljevida M največ dve orbiti
na množici F(M). Naj bo M ločno tranzitiven zemljevid. V tem primeru je M
regularen zemljevid, če ima Aut(M) eno samo orbito na F(M); sicer je M zemljevid
z dvema orbitama. Znano je, da je mogoče ločno tranzitivne zemljevide razdeliti v 5
razredov glede na lokalno konfiguracijo praporov in orbit, ki jim ti prapori pripadajo
[23]. Eden izmed razredov vsebuje vse regularne zemljevide, torej so v ostalih štirih
razredih zemljevidi z dvema orbitama. Izmed vseh ločno tranzitivnih zemljevidov
so bili do sedaj največje pozornosti deležni regularni zemljevidi ter tako imenovani
kiralni zemljevidi, ki so vsebovani v enem izmed štirih razredov zemljevidov z dvema
orbitama. Po drugi strani pa zemljevidi v razredu 2{0,1} (zemljevid, pri katerem
je vsak prapor v isti Aut(M)-orbiti kot njegov 0- in 1-sosedni prapor, njegov 2-
sosedni prapor pa je v drugi Aut(M)-orbiti) zaenkrat v obstoječi literaturi še niso
bili obširno obravnavani. Izkaže se, da je najmanjša možna stopnja takšnih zemlje-
vidov štiri. V doktorski disertaciji raziskujemo povezavo med tem razredom ločno
tranzitivnih zemljevidov in strukturo njihovih temeljnih grafov. Večji poudarek je
na zemljevidih stopnje štiri. Skupaj z rezultati iz članka [28] smo uspeli narediti
popolno klasifikacijo ločno tranzitivnih zemljevidov, katerih temeljni grafi so ločno
tranzitivni rozetni grafi (opisani so v razdelku 7.2).

V drugem in tretjem delu doktorske disertacije se osredotočimo na vprašanja,
ki izhajajo iz zgornje možnosti (ii). Proučevali smo torej grafe, ki dopuščajo pol-
ločno tranzitivno grupo avtomorfizmov G (z okrajšavo G-PLT). Pri vsakem G-PLT
grafu Γ delovanje podgrupe G porodi dve orientaciji (ki sta nasprotni ena drugi)
na povezavah. Izberimo si eno od teh orientacij in označimo pripadajoči usmerjen



graf z
−→
Γ G. Oznaka u → v pomeni, da je povezava uv usmerjena od vozlišča u

proti v. Vozlišče u bomo v tem primeru imenovali rep (usmerjene) povezave uv,
vozlišče v pa glava povezave uv. Pri študiju takšnih grafov je v pomoč vpogled v
njihove strukturne lastnosti, ki jih porodi delovanje podgrupe G. V članku [32] so
bili vpeljani alternirajoči cikli, spojne množice, polmer in spojno število PLT grafov
stopnje 4. V nadaljevanju tega odstavka se bomo zgledovali po članku [?], kjer so
bili ti koncepti posplošeni na G-PLT grafe večjih stopenj (glej tudi [25]). Pravimo,
da sta povezavi uv in u′v′ grafa Γ združeni, če imata pripadajoči usmerjeni povezavi
v
−→
Γ G skupno glavo ali skupen rep. Naj v digrafu

−→
Γ G velja u→ v in u′ → v′. Potem

sta uv in u′v′ združeni natanko tedaj, ko je u = u′ ali v = v′ (nista pa združeni,
če je u′ = v ali v′ = u). Tranzitivna ogrinjača te relacije, ki ji bomo rekli relacija
dosegljivosti na Γ, je seveda ekvivalenčna relacija na E(Γ). Podgrafi grafa Γ (kot tudi
digrafa

−→
ΓG), ki ustrezajo ekvivalenčnim razredom relacije dosegljivosti, se imenujejo

G-alterneti grafa Γ (oziroma digrafa
−→
Γ G). Množica glav alterneta A sestoji iz glav

vseh povezav v A, množica repov pa iz repov vseh povezav v A. Velikost (katerekoli)
množice glav se imenuje G-polmer grafa Γ, označevali pa ga bomo z radG(Γ). Naj
ima graf Γ vsaj dva G-alterneta. Če za dva G-alterneta s skupnim vozliščem velja,
da je množica glav pri enem enaka množici repov pri drugem, pravimo, da je graf Γ
tesno G-spet.

Prve rezultate o grafih, ki dopuščajo pol-ločno tranzitivna delovanja, je objavil
Tutte. Dokazal je, da mora biti stopnja takšnih grafov sodo število. Ker je graf stop-
nje 2 pravzaprav disjunktna unija ciklov, postane obravnava G-PLT grafov netriv-
ialna šele, ko imamo opravka z grafi stopnje vsaj štiri. Zato ni presenetljivo, da
večina člankov o G-PLT grafih obravnava prav grafe stopnje 4. Drugi del doktorske
disertacije smo posvetili takšnim grafom. V preteklosti so se raziskovalci študija teh
grafov lotili na mnogo različnih načinov in prišli do nekaj pomembnih rezultatov.
Eno od najbolj prodornih študij je začel Marušič v članku [32]. Lotil se je študija
strukture alternetov štirivalentnih G-pol-ločno tranzitivnih grafov. V tem primeru
(ko je graf Γ stopnje 4) se izkaže, da so G-alterneti pravzaprav cikli, ki jim pravimo
G-alternirajoči cikli grafa Γ. Podobno kot velja v splošnem za G-alternete, je enos-
tavno videti, da se dva G-alternirajoča cikla grafa Γ, ki imata skupen presek, vedno
sekata v istem številu vozlišč. Temu številu pravimo G-spojno število grafa Γ in ga
označimo z attG(Γ). Velja omeniti, da so štirivalentni tesno G-speti grafi že popol-
noma klasificirani [32, 37, 53, ?]. Pomembnost omenjenih rezultatov izhaja iz članka
[37], kjer je bilo pokazano, da je vsak štirivalenten G-PLT graf bodisi testno G-spet
ali pa nastopi kot krovni graf nad nekim šibko spetim ali nekim antipodno-spetim
grafom (tj. nad grafom, ki ima spojno število 1 ali 2).

V članku [3] je predlagan nov okvir, ki odpira možnost klasifikacije grafov stop-
nje 4, ki dopuščajo pol-ločno tranzitivno delovanje. Temelji na tako imenovani
metodi normalnih kvocientov, kjer v preučevanem grafu identificiramo orbite ne-
tranzitivne podgrupe edinke grupe avtomorfizmov (pri tem izpustimo morebitne vz-
poredne povezave in zanke) in tako dobimo manjše grafe, ki imajo “iste” lastnosti kot
prvotni graf. Poanta je v tem, da bi najprej klasificirali vse “minimalne” grafe, ki jih
lahko dobimo pri opisanem kvocientnem postopku, nato pa bi poskušali ugotoviti,
kako lahko večje grafe rekonstruiramo iz minimalnih. Nedavno so bili objavljeni



nekateri rezultati v smeri predlaganega pristopa ([1], [2]). Pri naši raziskavi preuču-
jemo štirivalentne G-PLT grafe iz obeh prej omenjenih vidikov. Še več, izboljšamo
nekatere obstoječe rezultate in v bistvu združimo ta dva pomembna pristopa. Da
bi dosegli zastavljeni cilj, vpeljemo nov parameter štirivalentnega G-PLT grafa Γ
in sicer skok grafa Γ glede na grupo G (definicija je podana v razdelku 7.2). Ta
parameter omogoča boljše razumevanje strukture preučevanih grafov. Natančneje,
skok grafa Γ nam da več informacij o tem, kako se prepletata dva G-alternirajoča
cikla z nepraznim presekom. Izkaže se, da je skok grafa Γ glede na grupo G zelo
uporabno orodje pri študiju štirivalentnih G-PLT grafov.

Še en možen pristop k študiju strukture štirivalentnega G-PLT grafa Γ je kon-
strukcija njegovega grafa G-alternirajočih ciklov, ki ga označimo z AltG(Γ). To je
graf, čigar vozlišča so vsi G-alternirajoči cikli grafa Γ. Dve vozlišči sta sosednji, če in
samo če imata pripadajoča cikla neprazen presek. Znanih je tudi nekaj rezultatov o
povezavi med G-spojnim številom in G-polmerom štirivalentnega G-PLT grafa. Na
primer, v članku [32] je dokazano, da attG(Γ) deli 2radG(Γ). Poleg tega pri vseh
znanih primerih štirivalentnih PLT grafov velja, da spojno število deli tudi polmer
grafa. Samo po sebi se torej zastavlja vprašanje, če att(Γ) deli rad(Γ) pri vseh PLT
grafih (glej [49]). V [39, Theorem 1.2] je bilo potrjeno, da to velja za PLT grafe Γ, ki
imajo att(Γ) = 2. Nedavno je bilo to dejstvo potrjeno še za grafe Γ, kjer je rad(Γ)
liho število [49, Theorem 2]. V doktorski disertaciji smo dokazali več rezultatov o
grafu AltG(Γ), ki so nam omogočili velik korak proti popolnemu odgovoru na zgoraj
zastavljeno vprašanje, če v PLT grafih att(Γ) res deli rad(Γ).

V zadnjem delu doktorske disertacije smo se osredotočili na PLT grafe, ki imajo
stopnjo večjo od štiri. V nasprotju z velikim številom člankov, ki se ukvarjajo s štiri-
valentnimi PLT grafi, je bilo doslej o raziskavah PLT grafov večjih valenc obljavjenih
bistveno manj prispevkov (glej na primer [5, 8]). To je najverjetneje posledica de-
jstva, da je že pri štirivalentnih PLT grafih še vedno odprtih mnogo težkih vprašanj,
na katera še ne znamo odgovoriti. Kljub temu je bilo v zadnjem času opaziti nekaj
napredka pri PLT grafih višjih stopenj (glej na primer [11, 25, ?]).

Leta 1970 je Bouwer [8] konstruiral neskončno družino vozliščno in povezavno
tranzitivnih grafov, ki so danes znani kot Bouwerjevi grafi B(k,m, n). Graf B(k,m, n)
je stopnje 2k in reda mnk−1. Bouwer je pokazal, da je za vsak k ≥ 2 graf B(k, 6, 9)
pol-ločno tranzitiven, in tako zagotovil obstoj po enega primera PLT grafa za vsako
sodo valenco večjo od 2. Ni pa se lotil vprašanja, kateri od preostalih B(k,m, n)
grafov so PLT, niti se ni vprašal, če za vsak k obstaja neskončno mnogo PLT grafov
valence 2k. Nedavno sta Conder in Žitnik [11] izdelala popolno klasifikacijo vseh
PLT Bouwerjevih grafov in s tem odgovorila na obe vprašanji. Omeniti je treba, da
sta obstoj neskončno mnogo PLT grafov stopenj 2k za k > 2 implicitno nakazala
že Alspach in Xu [5]. Klasificirala sta vse PLT grafe reda 3p, kjer je p praštevilo.
Tudi Li in Sim [31] sta našla neskončno mnogo PLT grafov (različnih sodih valenc),
katerih red je potenca praštevila. Izkaže se, da so vsi Bouwerjevi grafi, kot tudi
grafi iz člankov [5] in [31], tesno speti. A tudi če združimo vse tri omenjene družine,
dobimo le majhen delež grafov iz družine vseh štirivalentnih tesno spetih PLT grafov
(ki sta jih popolnoma klasificirala Marušič in Šparl [32, 53]). V doktorski disertaciji
posplošimo družino Bouwerjevih grafov na mnogo večjo družino vozliščno in poveza-
vno tranzitivnih grafov vseh mogočih sodih valenc večjih od 2. Posplošitev je zelo



naravna, dobljena družina pa vsebuje skoraj vse štirivalentne tesno spete PLT grafe.
To družino posplošenih Bouwerjevih grafov smo podrobno raziskali in podali popolno
klasifikacijo članov družine, ki so PLT, ter izračunali njihove grupe avtomorfizmov.

7.2 Rezultati

7.2.1 Ločno tranzitivni zemljevidi, katerih temeljni grafi so rozetni
grafi

Leta 2008 je Wilson [59] vpeljal družino štirivalentnih grafov, ki so danes znani
kot rozetni grafi. Ta razred grafov je bil v zadnjih desetih letih precej proučevan
in ga zdaj dokaj dobro razumemo (glej na primer [15, 27, 28]). V članku [59] je
Wilson identificiral štiri posebne poddružine rozetnih grafov (definirane so spodaj) in
dokazal, da so vsi pripadniki teh družin ločno tranzitivni grafi. Njegovo domnevo, da
vsak povezavno tranzitiven rozetni graf (izkaže se, da je pri rozetnih grafih povezavna
tranzitivnost ekvivalentna ločni tranzitivnosti) pripada eni od teh družin, so leta 2010
potrdili Kovács, Kutnar in Marušič [27].

Naj bo n ≥ 3 celo število in naj celi števili r in a zadoščata pogojem 1 ≤ r ≤
n − 1, r 6= n/2 in 0 ≤ a ≤ n − 1. Rozetni graf Rn(a, r) je graf z množico vozlišč
{xi | i ∈ Zn} ∪ {yi | i ∈ Zn}, množico povezav pa tvorijo povezave naslednjih štirih
tipov:

• podmnožica vseh obodnih povezav xixi+1, i ∈ Zn;

• podmnožica vseh povezav pesta yiyi+r, i ∈ Zn;

• podmnožica vseh ravnih naper xiyi, i ∈ Zn;

• podmnožica vseh poševnih naper xiyi−a, i ∈ Zn,

kjer vse indekse računamo po modulu n.
Naj bo dan zemljevid M. Njegova grupa avtomorfizmov deluje na množici nje-

govih praporov (tj. trojic, ki jih tvorijo vozlišče, povezava in lice, ki so med seboj
incidenčni). Naj bosta Φ = (v, e, f) in Φ′ = (v′, e′, f ′) prapora zemljevida M, kjer
so {v, v′}, {e, e′} in {f, f ′} po vrsti podmnožice njegove množice vozlišč, povezav in
lic. Če je Φ ∩ Φ′ = {e, f}, Φ ∩ Φ′ = {v, f} oziroma Φ ∩ Φ′ = {v, e}, pravimo, da sta
prapora Φ′ in Φ 0-, 1- oziroma 2-sosedna. Obravnavamo samo takšne zemljevide,
kjer ima vsak prapor natanko en i-sosedni prapor za vsak i ∈ {0, 1, 2} (politopni
zemljevidi). Ni težko dokazati, da obstaja natanko 5 razredov ločno tranzitivnih
zemljevidov glede na lokalno konfiguracijo praporov in orbit, ki jim ti prapori pri-
padajo. Zemljevidi iz treh izmed teh razredov, kjer so temeljni grafi teh zemljevidov
rozetni grafi, so bili klasificirani v članku [28].

V disertaciji dokončamo klasifikacija ločno tranzitivnih zemljevidov, katerih temeljni
grafi so rozetni grafi. Določimo namreč vse zemljevide razreda 2{0,1}, katerih temeljni
grafi so rozetni grafi.

V disertaciji dokažemo naslednje štiri izreke:

Izrek 1. Naj bo Γ = Rn(2, 1) rozetni graf, kjer je n ≥ 3. Graf Γ je temeljni
graf zemljevida M iz razreda 2{0,1} natanko tedaj, ko je D(n, 6) 6= 1. Nadalje, naj



bo n0 ∈ {0, 2, 3, 4, 6, 8, 9, 10} ostanek števila n pri deljenju z 12. Veljajo naslednje
trditve:

(i) če je n = 4, potem je Γ temeljni graf natanko enega zemljevida iz razreda 2{0,1},
njegova lica pa so dolžin 4 in 8.

(ii) če je n0 ∈ {3, 9}, potem je Γ temeljni graf natanko enega zemljevida iz razreda 2{0,1},
njegova lica pa so dolžin 4 in n.

(iii) če je n0 ∈ {4, 8}, potem je Γ temeljni graf dveh neizomorfnih zemljevidov iz
razreda 2{0,1}; pri enem so lica dolžin 4 in n, pri drugem pa so lica dolžin 4 in
2n.

(iv) če je n0 ∈ {2, 10}, potem je Γ temeljni graf treh neizomorfnih zemljevidov iz
razreda 2{0,1}; prvi ima lica dožin 4 in n, drugi ima lica dolžin 4 in 2n, tretji
pa ima lica dolžin n in 2n.

(v) če je n0 = 0, potem je Γ temeljni graf treh neizomorfnih zemljevidov iz razre-
da 2{0,1}; dva imata lica dolžin 4 in n, eden pa ima lica dolžin 4 in 2n.

(vi) če je n0 = 6, potem je Γ temeljni graf štirih neizomorfnih zemljevidov iz razre-
da 2{0,1}; dva imata lica dolžin 4 in n, tretji ima lica dolžin 4 in 2n, četrti pa
ima lica dolžin n in 2n.

Izrek 2. Naj bo Γ = R2n(n+2, n+1) rozetni graf, kjer je n ≥ 3. Graf Γ je temeljni
graf zemljevida M iz razreda 2{0,1} natanko tedaj, ko je D(n, 12) > 2. Nadalje, naj
bo n0 ∈ {0, 3, 4, 6, 8, 9} ostanek števila n pri deljenju z 12. Veljajo naslednje trditve:

(i) če je n = 4, potem je Γ temeljni graf natanko enega zemljevida iz razreda 2{0,1},
njegova lica pa so dolžin 4 in 8.

(ii) če je n0 ∈ {3, 9}, potem je Γ temeljni graf treh neizomorfnih zemljevidov iz
razreda 2{0,1}; prvi ima lica dolžin 4 in n, drugi ima lica dolžin 4 in 2n, tretji
pa ima lica dolžin n in 2n.

(iii) če je n0 ∈ {4, 6, 8}, potem je Γ temeljni graf dveh neizomorfnih zemljevidov iz
razreda 2{0,1}; pri enem so lica dolžin 4 in n, pri drugem pa so lica dolžin 4 in
2n.

(iv) če je n0 = 0, potem je Γ temeljni graf štirih neizomorfnih zemljevidov iz raz-
reda 2{0,1}; dva imata lica dolžin 4 in n, druga dva pa imata lica dolžin 4 in
2n.

Izrek 3. Naj bo Γ = R2m(2b, r), kjer je b2 ≡ ±1 (mod m) in je bodisi r = 1 ali
r = m− 1, pri čemer je m sodo število. Poleg tega naj graf Γ ne pripada nobeni od
družin (i) in (ii) iz trditve 3.14. Graf Γ je temeljni graf zemljevida iz razreda 2{0,1}
natanko tedaj, ko je b2 ≡ 1 (mod m). V tem primeru obstajajo natanko trije takšni
paroma neizomorfni zemljevidi.

Izrek 4. Naj bo Γ = R12m(3d+2, 9d+1) rozetni graf, kjer je d = m ali pa d = 11m.
Veljajo naslednje trditve:

(i) če jem 6≡ 2 (mod 4), potem je Γ temeljni graf natanko treh paroma neizomorfnih
zemljevidov iz razreda 2{0,1}.



(ii) če je m ≡ 2 (mod 4), potem je Γ temeljni graf natanko dveh neizomorfnih
zemljevidov iz razreda 2{0,1}.

7.2.2 Štirivalentni G-PLT grafi

V 4. poglavju doktorske disertacije vpeljemo nov parameter štirivalentnih G-PLT
grafov, ki mu rečemo parameter alternirajočega skoka. Naj bo Γ štirivalenten G-
PLT graf za neko podgrupo G ≤ Aut(Γ). Izberimo si eno od dveh možnih orientacij
povezav, ki ju porodi delovanje grupe G. Naj bo r = radG(Γ) in a = attG(Γ).
Naj bo v ∈ V (Γ) in naj bosta C = (u0, u1, . . . , u2r−1) in C ′ = (v0, v1, . . . , v2r−1)
G-alternirajoča cikla, ki vsebujeta v, pri čemer je u0 = v0 = v, vozlišče v pa je rep
tistih dveh povezav na C, ki sta indicenčni temu vozlišču. Iz [32, Lemma 2.6] sledi,
da je G-spoj V (C) ∩ V (C ′), ki vsebuje v in ga na kratko označimo s C ∩ C ′, enaka

C ∩ C ′ = {uiℓ : 0 ≤ i < a} = {viℓ : 0 ≤ i < a}, (7.1)

kjer je ℓ = 2r/a. Definirajmo

qt(v) = min{q : vqℓ ∈ {uℓ, u−ℓ}} in qh(v) = min{q : uqℓ ∈ {vℓ, v−ℓ}},

kjer v primeru, ko je a = 1, to razumemo kot qt(v) = qh(v) = 0. Ker G na grafu
Γ deluje vozliščno in povezavno tranzitivno, parametra qt(v) in qh(v) nista odvisna
od izbire vozliča v. Zato lahko za vsak štirivalenten G-pol-ločno tranzitiven graf
Γ definiramo QG(Γ) = {qt, qh}, kjer je qt = qt(v) in qh = qh(v) za neko vozlišče
v ∈ V (Γ) pri eni od obeh možnih orientacij povezav grafa Γ, ki ju inducira grupa
G. Tako lahko za štirivalenten G-pol-ločno tranzitiven graf Γ definiramo parameter
jmpG(Γ) = min(QG(Γ)). Parametru jmpG(Γ) pravimo alternirajoči G-skok grafa Γ.
V primeru, ko je G = Aut(Γ), namesto jmpAut(Γ)(Γ) pišemo jmp(Γ) in mu pravimo
alternirajoči skok grafa Γ.

V doktorski disertaciji smo dokazali nekatere lastnosti tega novega parametra in
jih uporabili kot orodje za določanje jedra naravnega delovanja grupe G na pripada-
jočem grafu AltG(Γ). Konkretneje, dokazali smo naslednji rezultat.

Izrek 5. Naj bo Γ štirivalenten G-pol-ločno tranzitiven graf za neko grupo G ≤
Aut(Γ) in naj bo r = radG(Γ) ter a = attG(Γ). Naj bo K = KG(AltG(Γ)) jedro
delovanja grupe G na grafu AltG(Γ), tj. na grafu G-alternirajočih ciklov grafa Γ.
Potem velja ena od naslednjih trditev:

(i) a = 2r in K = Dr;

(ii) a = r = 2, pri čemer je Γ izomorfen leksikografskemu produktu Cn[K2] za neko
celo število n, jedro K pa je izomorfno podgrupi elementarno abelske 2-grupe
reda 2n;

(iii) a = r > 2, pri čemer je jedro K izomorfno diedrski grupi reda 2a;

(iv) a < r, kjer a | r, pri čemer je jedro K izomorfno ciklični grupi reda a, razen
če je a = 2 (v tem primeru je jedro K lahko trivialno);

(v) a < r, kjer a ∤ r, pri čemer je jedro K izomorfno ciklični grupi reda a/2.



Izboljšali smo odgovor na vprašanje iz [49], če spojno število deli polmer pri vseh
štirivalentnih PLT grafih. Dokazali smo sledeči izrek.

Izrek 6. Naj bo Γ štirivalenten G-pol-ločno tranzitiven graf za neko podgrupo G ≤
Aut(Γ) in naj bodo r = radG(Γ), a = attG(Γ) in q = jmpG(Γ). Denimo, da a ne deli
r in da velja 4 < a < r. Če velja q = 1 ali če je graf AltG(Γ) dvodelen, potem obstaja
avtomorfizem ρ grafa Γ, ki ohranja vse G-alternirajoče cikle grafa Γ in vsaj na enem
od njih deluje kot 2r/a-koračna rotacija. Posledično je graf Γ ločno tranzitiven. Če
torej velja 4 < a < r, a ne deli r in q 6= a/2− 1, potem je graf Γ ločno tranzitiven.

7.2.3 Klasifikacija pol-ločno tranzitivnih posplošenih Bouwerjevih
grafov

V 5.poglavju disertacije klasificiramo PLT posplošene Bouwerjeve grafe. V nadal-
jevanju Zn in Z∗

n označujeta kolobar ostankov celih števil po modulu n in njegovo
multiplikativno grupo obrnljivih elementov, kjer je n naravno število. V disertaciji
je predstavljena sledeča konstrukcija.

Konstrukcija 1. Naj bodo m ≥ 3, n ≥ 2 in k ≥ 2 naravna števila in naj bosta
r ∈ Z∗

n in t ∈ Zn takšna, da velja

rm = 1, tr = t in 1 + r + · · · + rm−1 + kt = 0. (7.2)

Množica vozlišč posplošenega Bouwerjevega grafa GB(m,n, k; r, t) je

V (GB(m,n, k; r, t)) = {(a; b) | a ∈ Zm, b ∈ Zk−1
n },

sosednost pa je določena s sledečim pravilom:

(a; b) ∼















(a+ 1; b) ; 0 ≤ a < m− 1, b ∈ Zk−1
n

(a+ 1; b + raei) ; 0 ≤ a < m− 1, 1 ≤ i ≤ k − 1, b ∈ Zk−1
n

(0; b+ t1) ; a = m− 1, b ∈ Zk−1
n

(0; b+ rm−1
ei + t1) ; a = m− 1, 1 ≤ i ≤ k − 1, b ∈ Zk−1

n .

Pri tem ei ∈ Zk−1
n predstavlja i-ti standardni vektor, 1 = e1 + e2 + · · · + ek−1 je

vektor samih enic, λv pa označuje običajni skalarni produkt v Zn-modulu Zk−1
n .

Graf GB(m,n, k; r, t) je regularen stopnje 2k. Ta družina grafov je posplošitev
Bouwerjevih grafov B(k,m, n) [8], ki sovpadajo z grafi GB(m,n, k; 2, 0), kjer je 2m =
1 v Zn (iz zahteve 1+2+22+ · · ·+2m−1 = 0 sledi 2m = 1). Poleg tega je v primeru
r = 2 pogoj t(r − 1) = 0 enak pogoju t = 0, zato so Bouwerjevi grafi natanko
posplošeni Bouwerjevi grafi GB(m,n, k; r, t) za r = 2. Klasifikacijo PLT Bouwerjevih
grafov sta pred nedavnim našla Conder in Žitnik ter jo opisala v članku [11].

V doktorski disertaciji podamo popolno klasifikacijo pol-ločno tranzitivnih članov
te nove družine grafov in dokažemo, da so vsi pol-ločno tranzitivni člani tesno speti
grafi. Med drugim dokažemo naslednji izrek.

Izrek 7. Naj bodo m ≥ 3, n ≥ 2 in k ≥ 2 naravna števila in naj bosta r ∈ Z∗
n in

t ∈ Zn takšna, da velja rm = 1, tr = t in 1 + r + · · · + rm−1 + kt = 0. Potem
je graf Γ = GB(m,n, k; r, t) Cayleyjev graf meta-abelske grupe, ki premore pol-ločno
tranzitivno podgrupo grupe avtomorfizmov, glede na katero je graf tesno spet. Poleg
tega je graf Γ pol-ločno tranzitiven, razen če velja:



• r2 = 1, ali

• k = 2 in velja ena od sledečih možnosti:

◦ r2 = −1;
◦ (m,n; r, t) ∈ {(3, 7; 2, 0), (3, 7; 4, 0)};
◦ (m,n) = (6, 7n0) za nek n0 ≥ 1, kjer 7 ∤ n0, in obstaja natanko ena

rešitev r′ ∈ {r,−r, r−1,−r−1} enačbe 2− r′ − r′2 = 0 z r′ ≡ 5 (mod 7) in
2+r′+t′ = 0, kjer velja t′ = t v primeru r′ ∈ {r, r−1} in t′ = t+r+r3+r5

v primeru r′ ∈ {−r,−r−1}.

Določili smo tudi polne grupe avtomorfizmov PLT GB(m,n, k; r, t) grafov in
poiskali vse možne izomorfizme med njimi. Dokazali smo, da so stabilizatorji vo-
zlišč v polni grupi avtomorfizmov izomorfni simetrični grupi Sk.
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