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Abstract

This PhD thesis consists of three interrelated parts: Cage problem, Degree/Diameter
problem for undirected and Degree/Diameter problem for directed graphs. The central
common theme among the three parts is the study of cages. We address the problem of
cages improving the lower bounds on the order of the cages of even girth, proving the non-
existence of almost all potential antipodal cages of even girth and small excess and proving
that the excess of almost all vertex-transitive cages is arbitrary large.

In the thesis we present a connection of a question of Bermond and Bollobás concerning
the degree/diameter problem for undirected graphs and the class of Ramanujan graphs
proving that the negative answer to the question of Bermond and Bollobás would imply
a positive answer to the open question whether infinitely many k-regular non-bipartite
Ramanujan graphs exist for any degree k.

Considering the degree/diameter problem for directed graphs we prove that the largest
possible order of the (d, k)-digraphs of given maximum out-degree d and diameter k nd,k is
a monotonically increasing function in d and in k. Finally, we prove the non-existence of
infinitely many families of (d, k, δ)-digraphs containing only selfrepeat vertices.

Math. Subj. Class (2010): 05C12, 05C20, 05C35, 05C38, 05C50

Keywords: adjacency matrix, antipodal graphs, cages, excess, defect, Ramanujan graphs,
selfrepeats, degree/diameter problem, spectrum, Moore graphs, asymptotic density, dis-
tance matrices, Bermond and Bollobás problem
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Povzetek

Doktorska disertacija je sestavljena iz treh povezanih delov. V prvem delu obrav-
navamo preblem kletk, v drugem problem stopnje in premera za neusmerjene grafe, ter v
tretjem problem stopnje in premera za usmerjene grafe. Glavna skupna tema teh treh prob-
lemov je proučevanje kletk. V disertacij izbolǰsamo spodnjo mejo za red kletk sode ožine
in dokažemo neobstoj skoraj vseh potencialnih antipodnih kletk sode ožine. Dokažemo, da
je presežek skoraj vseh vozlǐsčno-tranzitivnih kletk poljubno velik.

V disertacij predstavimo povezavo med vprašanjem Bermonda in Bollobása, glede prob-
lema stopnje in premera za neusmerjene grafe, in razredom Ramanujan-ovih grafov. S tem
dokažemo, da bi negativen odgovor na vprašanje Bermonda in Bollobása impliciral pozi-
tiven odgovor na odprto vprašanje, ali obstaja neskončno mnogo k-regularnih ne-dvodelnih
Ramanujan-ovih grafov za poljubno stopnjo k.

Glede problema stopnje in premera za usmerjene grafe pa dokažemo, da je največji
možen red (d, k)-digrafa dane maksimalne izhodne stopnje d in premera k (ki ga označimo z
nd,k) monotono naraščajoča funkcija spremenljivk d in k. Za konec pa dokažemo še neobstoj
neskončno mnogo družin (d, k, δ)-digrafov, ki bi vsebovali samoponavljajoča vozlǐsča.

Math. Subj. Class (2010): 05C12, 05C20, 05C35, 05C38, 05C50

Ključne besede: matrika sosednosti, antipodni grafi, kletke, presežek, defekt, Ramanujan-
ovih grafi, samoponavljanje, problem stopnje in premera, spekter, Moorovi grafi, asimp-
totična gostota, razdaljne matrike, problem Bermonda in Bollobása
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Chapter 1

Introduction

The topology of a network (such as a telecommunication, multiprocessor, or local area
network, to name just a few) is usually modelled by a graph in which vertices represent
‘the nodes’ (stations or processors) while undirected or directed edges stand for ‘links’ or
other types of connections, there are a number of features that must be taken into account.
The most common ones, seem to be limitations on the vertex degrees and on the diameter.
The network interpretation of these two parameters is obvious: The degree of a vertex is
the number of the connections attached to a node, while the diameter indicates the largest
number of links that must be traversed in order to transmit a message between any two
nodes. What is then the largest number of nodes in a network with a limited degree and
diameter? If links are modelled by undirected edges, this leads to the

• Degree/Diameter Problem: Given natural numbers k and d, find the largest possible
number of vertices n(k, d) in a graph of maximum degree k and diameter d.

The statement of the directed version of the problem differs only in the degree is replaced by
out-degree. We recall that the out-degree of a vertex in a digraph is the number of directed
edges leaving the vertex. We thus arrive at the

• (Directed) Degree/Diameter Problem: Given natural numbers d and k, find the largest
possible number of vertices nd,k in a digraph of maximum out-degree d and diameter
k.

The problem known as the Cage problem or the Degree/Girth problem, is closely related
to the Degree/Diameter problem.

• Cage Problem (Degree/Girth Problem): Given natural numbers k and g, find the
smallest possible number of vertices n(k, g) in a graph of degree k and girth g.

In the PhD thesis we focus on open questions and problems which concern the Cage problem
and the Degree/Diameter problem for undirected and directed graphs.

The well-known Moore bound M(k, g) serves as a universal lower bound for the order
of k-regular graphs of girth g. The excess e of a k-regular graph G of girth g and order n
is the difference between its order n and the corresponding Moore bound, e = n−M(k, g).

1



2 Chapter 1. Introduction

In Chapter 3 we present a number of formulas for counting cycles of lengths close to the
girth in k-regular graphs of girth g and excess not exceeding 3. Based on these formulas,
we attempt to exclude the existence of graphs with small excess for infinite families of
degree-girth pairs. Perhaps surprisingly, we observe that counting cycles does not exclude
too many families, an observation made previously in the setting of strongly regular graphs
by Vašek Chvátal, [22]. Based on the same methodology in Chapter 4 we find infinite
families of parameters (k, g), g > 6 and even, for which we show that the excess of any
k-regular graph of girth g is larger than 4, see Theorem 4.7. This yields new improved lower
bounds on the order of k-regular graphs of girth g of smallest possible order; the so-called
(k, g)-cages. We also show that the excess of k-regular graphs of girth g can be arbitrarily
large for a restricted family of (k, g)-graphs satisfying an additional structural property and
large enough k and g, see Theorem 4.10.

In Chapter 5 we consider the existence of (k, g)-bipartite graphs of excess 4 by studying
spectral properties of their adjacency matrices. We observe that the eigenvalues other than
±k of these graphs are roots of the polynomials Hd−1(x)+λ, where λ is an eigenvalue of E,
E = Ad+1 is the adjacency matrix of a union of vertex-disjoint cycles, and Hd−1(x) is the
Dickson polynomial of the second kind with parameter k−1 and degree d−1, see Theorem
5.3. Based on the irreducibility of Hd−1(x)±2, we give necessary conditions for the existence
of these graphs, see Theorem 5.6. If E is the adjacency matrix of a cycle of order n, we
call the corresponding graphs graphs with cyclic excess ; if E is the adjacency matrix of a
disjoint union of two cycles, we call the corresponding graphs graphs with bicyclic excess.
Related to this, we prove the non-existence of (k, g)-graphs with cyclic excess 4 if k ≥ 6 and
k ≡ 1(mod 3), g = 8, 12, 16 or k ≡ 2(mod 3), g = 8; and the non-existence of (k, g)-graphs
with bicyclic excess 4 if k ≥ 7 is an odd number and g = 2d such that d ≥ 4 is even, see
Theorems 5.9 and 5.11.

Biggs and Ito in [15] proved that any (k, g)-cage of even girth g = 2d ≥ 6 and excess
e ≤ k − 2 is a bipartite graph of diameter d + 1. It is known that some of these cages
are potential antipodal graphs. Based on specral analysis, in Chapter 6 we prove the non-
existence of antipodal (k, g)-cages of excess e, for k ≥ e + 2 ≥ 6 and g = 2d ≥ 8, see
Theorem 6.12.

Vertex-transitive graphs constitute a significant part of the known cages and the small-
est known (k, g)-graphs. The role of vertex-transitivity in the Cage Problem is still poorly
understood, and in some cases the order of the smallest vertex-transitive (k, g)-graph ex-
ceeds the order of the smallest (k, g)-graph by a significant amount (for example, while the
order of the smallest (3, 11)-graph is 112, the order of the smallest vertex-transitive (3, 11)-
graph is 192 [69]). In Chapter 7 we consider a restriction of the Cage Problem to the class
of vertex-transitive graphs. Counting cycles to obtain necessary arithmetic conditions on
the parameters (k, g), we extend previous results of Biggs, Theorem 7.1, and prove that, for
any given excess e and any given degree k ≥ 3, the asymptotic density of the set of girths
g for which there exists a vertex-transitive (k, g)-cage with excess not exceeding e is 0, see
Theorems 7.6 and 7.12.

In the second part of the PhD thesis we investigate in the degree/diameter problem
for undirected graphs. If we let n(k, d) denote the order of the largest undirected graphs
of maximum degree k and diameter d, and let M(k, d) denote the corresponding Moore
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bound, then n(k, d) ≤ M(k, d), for all k ≥ 3, d ≥ 2. While the inequality has been proved
strict for all but very few pairs k and d, the exact relation between the values n(k, d) and
M(k, d) is unknown, and the uncertainty of the situation is captured by an open question
of Bermond and Bollobás given in [11] who asked whether it is true that for any positive
integer c > 0 there exist a pair k and d, such that n(k, d) ≤ M(k, d) − c. In Chapter 8
we present a connection of this question to the value 2

√
k − 1, which is also essential in

the definition of the Ramanujan graphs defined as k-regular graphs whose second largest
eigenvalue (in modulus) does not exceed 2

√
k − 1. We further reinforce this surprising

connection by showing that if the answer to the question of Bermond and Bollobás were
negative and there existed a c > 0 such that n(k, d) ≥M(k, d)−c, for all k ≥ 3, d ≥ 2, then,
for any fixed k and all sufficiently large even d’s, the largest undirected graphs of degree k
and diameter d would have to be Ramanujan graphs, see Theorem 8.3. This would imply
a positive answer to the open question whether infinitely many k-regular non-bipartite
Ramanujan graphs exist for any degree k.

In the last part of the thesis we consider digraphs. Let nd,k be the largest order of a
directed graph (digraph) with given maximum out-degree d and diameter k. In Chapter 9
we give a positive answer to the open question concerning the degree/diameter problem for
digraphs asked in [60]: is nd,k monotonic in d and k?

In Chapter 10 we generalize the concept of a selfrepeat vertex in order to be used in the
study of the existence of (d, k, δ)-digraphs, with δ ≥ 2. We derive a formula for calculating
multiplicities of the eigenvalues of (d, k, δ)-digraphs containing only selfrepeat vertices and
we prove the non-existence of such digraphs for d ≥ δ ≥ k + 1 ≥ 4, showing that some
of their multiplicities are not integer numbers. Also, following the same methodology that
we use for studying digraphs containing only selfrepeats, we give another proof of the well-
known result concerning the non-existence of Moore digraphs; for k > 1 and d > 1, there
exist no (d, k)-directed Moore graph; this result was obtained by Plesńık and Znám in [68]
and later by Bridges and Toueg in [16].

The results of this PhD thesis are published in the following articles:

• T. B. Jajcayova, S. Filipovski and R. Jajcay. Counting cycles in graphs with small
excess. Lecture Notes of Seminario Interdisciplinare di Matematica Vol. 14 (2016)
17-36.

• T. B. Jajcayova, S. Filipovski and R. Jajcay. Improved lower bounds for the orders
of even girth cages. The Electronic Journal of Combinatorics 23(3) (2016) #P3.55.

• S. Filipovski. On bipartite cages of excess 4. The Electronic Journal of Combinatorics
24(1) (2017) #P1.40.

• S. Filipovski. On the non-existence of antipodal cages of even girth. Linear Algebra
and its Applications 546 (2018) 261-273.

• S. Filipovski and R. Jajcay. On the excess of vertex-transitive graphs of given degree
and girth. Discrete Mathematics 341 (2018) 772-780.

• S. Filipovski and R. Jajcay. A connection between a question of Bermond and Bol-
lobás and Ramanujan graphs. Combinatorica, submitted.
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• S. Filipovski. A note on degree/diameter monotonicity of digraphs. Australasian
Journal of Combinatorics Volume 70(1) (2018).

• S. Filipovski and R. Jajcay. On the non-existence of families of (d, k, δ)-digraphs
containing only selfrepeat vertices. Linear Algebra and its Applications 563 (2019)
302-312.



Chapter 2

Background

2.1 Graphs

A graph is an ordered pair G = (V,E), where V is a nonempty finite set, called the
set of vertices of G, and E is a set of unordered pairs (2-element subsets) of V , called the
edges of G. If {x, y} ∈ E, x and y are called adjacent and they are incident with the edge
{x, y}. The order of a graph G = (V,E) is |V |, the number of its vertices. The size of G
is |E|, the number of its edges. The degree (or valency) of a vertex x ∈ V , denoted by
d(x), is the number of edges incident with it. A walk in a graph is an alternating sequence
of vertices and edges x0e1x1e2x2 . . . xn−1enxn such that x0, x1, . . . , xn are vertices and ei is
an edge connecting xi−1 and xi for each i, 1 ≤ i ≤ n. A path is a walk with no repeated
vertices. A tree is an undirected graph in which any two vertices are connected by exactly
one path. The distance between two vertices u and v in a connected graph G is denoted
by dG(u, v) and defined as the minimum length (that is, number of edges) of a u, v-path
in G. The maximum distance in G is called the diameter of G. A cycle is a closed walk
with no repeated vertices other than the initial one and the final one, i.e., xi = xj for i < j
if and only if i = 0 and j = n. The girth of a graph is the length of a shortest cycle
contained in the graph. A regular graph is a graph where each vertex has the same number
of neighbours; i.e., every vertex has the same degree or valency. A bipartite graph is a graph
whose vertices can be divided into two disjoint and independent sets U and V such that
every edge connects a vertex in U to one in V . Vertex sets U and V are usually called the
partitions of the graph. A complete graph is a simple undirected graph in which every pair
of distinct vertices is connected by a unique edge. Two graphs X and Y are isomorphic if
there is a bijection φ from V (X) to V (Y ) such that x is adjacent to y if and only if φ(x) is
adjacent to φ(y) in Y . We say that φ is an isomorphism from X to Y . A subgraph of a graph
X is a graph Y such that V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X). If V (Y ) = V (X), we say that
Y is a spanning subgraph of X. An induced subgraph of a graph is another graph, formed
from a subset of the vertices of the graph and all of the edges connecting pairs of vertices in
the subset. An automorphism of a graph is a graph isomorphism with itself, i.e., a mapping
from the vertices of the given graph G back to vertices of G such that the resulting graph
is isomorphic to G. The set of automorphisms defines a permutation group known as the
graph’s automorphism group. A vertex-transitive graph is a graph whose automorphism

5



6 Chapter 2. Background

groups act transitively upon their vertices. A connected graph G with diameter d is called
distance-regular if there are constants ci, ai, bi called intersection numbers, such that for all
i = 0, 1, . . . , d, and all vertices x and y at distance i = dG(x, y), among the neighbours
of y, there are ci at distance i − 1 from x, ai at distance i, and bi at distance i + 1. A
(v, k, λ, µ)-strongly regular graph G is a k-regular graph of order v in which every pair of
adjacent vertices belongs to λ triangles and every pair of non-adjacent vertices is connected
via µ paths of length 2. A graph of diameter d is said to be antipodal if, for any vertices
u, v, w such that d(u, v) = d and d(u,w) = d, it follows that d(v, w) = d or v = w.

2.2 Digraphs

By a digraph we mean a structure G = (V,A), where V (G) is a finite set of vertices, and
A(G) is a set of ordered pairs (u, v) of distinct vertices u, v ∈ V (G) called arcs. The order
of the digraph G is the number of vertices in G. An in-neighbour of a vertex v in a digraph
G is a vertex u such that (u, v) ∈ A(G). Similarly, an out-neighbour of a vertex v is a vertex
w such that (v, w) ∈ A(G). The in-degree, respectively the out-degree, of a vertex v ∈ V (G)
is the number of its in-neighbours, respectively out-neighbours. If both the in-degree and
the out-degree equal d for every vertex, then the digraph G is called a diregular digraph
of degree d. A walk W of length k in G is an alternating sequence (v0a1v1a2 . . . akvk) of
vertices and arcs in G such that ai = (vi−1, vi) for each i. If the arcs a1, a2, . . . , ak of a walk
W are distinct, W is called a trail . If the vertices v0, v1, . . . , vk are also distinct, W is called
a path. A cycle Ck of length k is a closed trail of length k > 0 with all vertices distinct
(except the first and the last). The distance from vertex u to vertex v in G is the length
of the shortest directed path from u to v. The diameter k of a digraph G is the maximum
distance between any two vertices in G. A digraph G = (V,A) is said to be complete if
both uv and vu ∈ A for all u, v ∈ V. The line digraph of G, denoted by L(G), is the digraph
with vertex set V (L(G)) = {aij | aij = (vi, vj) ∈ A}, and a vertex aij is adjacent to a vertex
ast in L(G) if and only if vj = vs in G. For an integer n, the nth iterated line digraph of G
is recursively defined as Ln(G) = L(Ln−1(G)) with L0(G) = G.

2.3 Spectral Graph Theory

The adjacency matrix, sometimes also called the connection matrix, of a simple labeled
graph G is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in
position (u, v) according to whether u and v are adjacent or not. For a simple graph with
no self-loops, the adjacency matrix must have 0s on the diagonal. For an undirected graph,
the adjacency matrix is symmetric. If G is a graph of diameter d and order n, then for each
integer i in the range 0 ≤ i ≤ d, we define the n×n distance matrix Ai = Ai(G) as follows.
The rows and columns of Ai correspond to the vertices of G, and the entry in position (u, v)
is 1 if the distance d(u, v) between the vertices u and v is i, and zero otherwise. Clearly,
A0 = I and A1 = A is the usual adjacency matrix of G. An eigenvalue of a graph G is
an eigenvalue of its adjacency matrix A; i.e., a λ ∈ R for which there is an eigenvector
v ∈ R|V (G)|, v 6= 0, such that Av = λv. The multiplicity m(λ) of λ is the dimension of the
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subspace of R|V (G)| spanned by all eigenvectors for λ (its eigenspace). The spectrum of G
is the multiset of eigenvalues λ with their multiplicities m(λ), which we denote as follows

Spec(G) = Spec(A) = (λ)m(λ)(µ)m(µ) . . . (w)m(w).

The trace of an n×n square matrix A is defined to be the sum of the elements on the main
diagonal, i.e., trace(A) =

∑n
i=1 aii = a11 + a22 + . . . + ann, where aii denotes the entry on

the i-th row and i-th column of A.

2.4 Cage Problem

We use the term (k, g)-graph to denote a (finite, simple) k-regular graph of girth g. A
(k, g)-cage is a smallest k-regular graph of girth g; its order is denoted by n(k, g). The
existence of (k, g)-graphs for any degree/girth pair (k, g) with k ≥ 2 and g ≥ 3 has been
known since the 1960’s [30, 71], but the orders n(k, g) have been determined only for very
limited sets of parameters (k, g) [33].

The so-called Moore bound is a well-known lower bound on the order n(k, g) of k-valent
cages of girth g. The precise form of the bound depends on the parity of g:

n(k, g) ≥M(k, g) =

{
1 + k + k(k − 1) + ...+ k(k − 1)(g−3)/2, g odd
2(1 + (k − 1) + ...+ (k − 1)(g−2)/2), g even

(2.1)

Graphs whose orders equal the Moore bound are called Moore graphs and are very rare.
They are known to exist if

k = 2 and g ≥ 3: cycles;

g = 3 and k ≥ 2: complete graphs;

g = 4 and k ≥ 2: complete bipartite graphs;

g = 5 and k = 2, 3, 7: the 5-cycle, the Petersen graph, the Hoffman-Singleton graph;

g = 6, 8, or 12: symmetric generalized n-gons of order k − 1;

with the existence of the (57, 5)-graph or order matching the Moore bound still unresolved
[5, 25, 33].

Outside the above cases for which the classification of the parameter pairs of the Moore
graphs asserts the existence of a graph whose order matches the Moore bound, the obvious
lower bound for the order of a (k, g)-cage is the value of the Moore bound plus one, M(k, g)+
1, when k is even, and the value of the Moore bound plus two, M(k, g) + 2, when k is odd
(with the second statement following from the fact that odd degree regular graphs must be
of even order, and the fact that both Moore bounds are even for odd k).

The difference between the order of a (k, g)-graph and the Moore bound M(k, g) is
called the excess of the graph, and it is almost universally believed that the excess of
the majority of cages is significantly bigger than 2. No unified opinion appears to exist



8 Chapter 2. Background

on whether the excess of cages can be arbitrarily large. Inspecting the lists of the best
(smallest) known (k, g)-graphs in [33] quickly reveals a significant gap between the orders
of the best known graphs and the orders predicted by the Moore bound; with the excess
quickly becoming a multiple of the Moore bound. In [17], Brown showed that n(k, 5) is
never equal to M(k, 5) + 1. For girth 7, Eroh and Schwenk [31] showed the non-existence
of k-regular graphs of girth 7 and order M(k, 7) + 1. Note that in this case, the McGee
graph achieves the lower bound M(3, 7) + 2, hence is a cage. The case of k-regular cages of
odd girth and excess 1 has been completed by Bannai and Ito [6] who have shown (using
spectral methods) that no k-regular graphs of order M(k, g) + 1 exist for any odd g ≥ 5.
For excess 2, Kovács has shown that no graphs of excess 2, girth 5, and odd degree k which
is not of the form `2 + ` + 3 or `2 + ` − 1, where ` is a positive integer, exist [51]. Eroh
and Schwenk [31] showed that n(k, 5) is not equal to M(k, 5) + 2 for 5 ≤ k ≤ 11. Most
recent results concerning odd girth and excess 2 are due to Garbe [44]. He showed the non-
existence of graphs of excess 2 for parameters (k, 9) with k ≡ 1 (mod 2); (k, 13) with k ≡ 0
(mod 5), k ≡ 5 (mod 7), k ≡ 4 (mod 11) and k ≡ 2, 5, 10, 12 (mod 13); (k, 17) with k ≡ 3
(mod 5), k ≡ 0, 2 (mod 7), k ≡ 9 (mod 11) and k ≡ 6 (mod 13); (k, 21) with k ≡ 7, 10
(mod 11); (k, 25) with k ≡ 2, 3, 4 (mod 5), k ≡ 2, 6 (mod 7), k ≡ 2, 6, 8 (mod 11) and
k ≡ 4, 7 (mod 13); (k, 29) with k ≡ 2 (mod 5) and k ≡ 0, 8, 11 (mod 13). Furthermore, he
showed that there are no excess 2 graphs in the families of (3, 2s + 1)-graphs with s ≡ 0
(mod 4), (5, 2s+1)-graphs with s ≡ 2 (mod 4), (7, 2s+1)-graphs with s ≡ 0 (mod 2), and
(9, 2s+ 1)-graphs with s ≡ 0 (mod 4).

All that is known for even girth is summarized in the following two theorems of Biggs
and Ito.

Theorem 2.1 ([15]). Let G be a (k, g)-cage of girth g = 2m ≥ 6 and excess e. If e ≤ k−2,
then e is even and G is bipartite of diameter m+ 1.

Let D(k, 2) be the incidence graph of a symmetric (v, k, 2)-design.

Theorem 2.2 ([15]). Let G be a a (k, g)-cage of girth g = 2m ≥ 6 and excess 2. Then
g = 6, G is a double-cover of D(k, 2), and k is not congruent to 5 or 7(mod 8).

2.5 Degree/Diameter problem for undirected graphs

Let n(k, d) denote the largest order of any undirected graph of maximum degree k and
diameter d. It is easy to show that the order |V (Γ)| of any graph Γ of maximum degree k
and diameter d, and therefore also the parameter n(k, d), satisfy the following inequality:

|V (Γ)| ≤ n(k, d) ≤M(k, d) = 1 + k + k(k − 1) + k(k − 1)2 + ...+ k(k − 1)d−1.

The above value M(k, d) is called the Moore bound. A graph whose order is equal to the
Moore bound is called a Moore graph; such a graph is necessarily regular of degree k. Moore
graphs are proved to be very rare. They are the complete graphs on k + 1 vertices; the
cycles on 2d + 1 vertices; and for diameter 2, the Petersen graph, the Hoffman-Singleton
graph, and possibly a graph of degree k = 57. The difference between the Moore bound



2.5. Degree/Diameter problem for undirected graphs 9

M(k, d) and the order of a specific graph Γ of maximum degree k and diameter d is called
the defect of Γ, and is denoted by δ(Γ). Thus, if Γ is a largest graph of maximum degree
k and diameter d, then n(k, d) = M(k, d) − δ(Γ). It needs to be noted that very little is
known about the exact relation between the Moore bounds M(k, d) and the corresponding
extremal orders n(k, d). There is a considerable gap between the orders of the largest
known/constructed graphs of maximum degree k and diameter d and the corresponding
Moore bounds. In particular, it is not even known whether the two parameters are of the
same order of magnitude (with computational evidence strongly suggesting that they are
not). Thus, the below stated long open question of Bermond and Bollobás [11] can be
viewed as the natural first attempt at shedding light on the nature of the relation between
M(k, d) and n(k, d):

Is it true that for each positive integer c there exist k and d such that the order of the
largest graph of maximum degree k and diameter d is at most M(k, d)− c?

Moore graphs of degree k and diameter d are well-known to be the only (k, d)-graphs
of girth 2d + 1; the girth of any other (i.e., non-Moore) graph of maximum degree k and
diameter d is strictly smaller than 2d+ 1. It will also prove useful to note that even though
it is not known whether the extremal graphs of diameter d, maximal degree k, and of the
maximal order n(k, d), are necessarily k-regular, graphs Γ containing vertices of degree
smaller than k can be easily shown to satisfy the following stricter upper bound:

|V (Γ)| ≤M(k, d)− 1− (k − 1)− . . .− (k − 1)d−1 = M(k, d)− (k − 1)d − 1

k − 2
. (2.2)

The bipartite Moore bound is the maximum number B(k, d) of vertices in a bipartite graph
of maximum degree k and diameter at most d. This bound is due to Biggs [14]:

B(2, d) = 2d, and B(k, d) =
2(k − 1)d − 2

k − 2
, if k > 2, (2.3)

and is smaller than the Moore bound by (k − 1)d (i.e, M(k, d) − B(k, d) = (k − 1)d, for
k ≥ 3). Bipartite (k, d)-graphs of order B(k, d) are called bipartite Moore graphs. The
bipartite Moore bound represents not only an upper bound on the number of vertices of a
bipartite graph of maximum degree k and diameter d, but it is also a lower bound on the
number of vertices of a regular graph Γ of degree k and girth g = 2d.

For degrees 1 or 2, bipartite Moore graphs are K2 and the 2d-cycles, respectively. When
k ≥ 3 the possibility of the existence of bipartite Moore graphs was settled by Feit and
Higman [35] in 1964 and, independently, by Singleton [72] in 1966. They proved that such
graphs exist only if the diameter is 2, 3, 4 or 6. For d = 2 and each k > 3 the bipartite
Moore graphs of degree k are the complete bipartite graphs of degree k. For d = 3, 4 or 6
bipartite Moore graphs of degree k have been constructed only when k−1 is a prime power
[10]. Furthermore, Singleton [72] proved that the existence of a bipartite Moore graph of
diameter 3 is equivalent to the existence of a projective plane of order k − 1. On the other
hand, for d = 3, there are values of k with no bipartite Moore graphs. The question of
whether or not bipartite Moore graphs of diameter 3, 4 or 6 exist for other values of k
remains open, and represents one of the most famous problems in combinatorics.
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2.6 Degree/Diameter problem for directed graphs

Let (d, k)-digraph denote a directed graph of maximum out-degree d and diameter k, and
let nd,k be the largest order of a (d, k)-digraph. Let ni, for 0 ≤ i ≤ k, be the number of
vertices at distance i from a distinguished vertex. Then, ni ≤ di, for 0 ≤ i ≤ k. Hence,

nd,k =
k∑
i=0

ni ≤ 1 + d+ ...+ dk−1 + dk =

{
dk+1−1
d−1

, if d > 1,

k + 1, if d=1.
(2.4)

The number on the right-hand side of (2.4), denoted by Md,k, is called the Moore bound
for (d, k)-digraphs. A digraph whose order is equal to this Moore bound is called a Moore
digraph. It is a well known that nd,k = Md,k only in the trivial cases, when d = 1 (directed
cycles of length k+1) or k = 1 (complete digraphs of order d+1), see [16] and [68]. A defect
δ of a given (d, k)-digraph G is the difference between the corresponding Moore bound Md,k

and the order of G. Since there are no Moore (d, k)-digraphs for d 6= 1 and k 6= 1, the
problem of the existence of diregular digraphs of degree d ≥ 2, diameter k ≥ 2 and the
number of vertices Md,k − δ, δ 6= 0, becomes an interesting problem. Such digraphs are
called (d, k, δ)-digraphs, where δ is the defect from the Moore bound and d ≥ δ ≥ 1.

Concerning the existence of (d, k, 1)-digraphs, Fiol, Alegre and Yebra in [42] showed that
(d, 2, 1)-digraphs do exist for any degree d ≥ 2; such family of digraphs are Kautz digraphs
K(d, 2) (the line digraphs of complete digraphs Kd+1) [50]. Conde, Gimbert, González,
Miret and Moreno used concepts and techniques from algebraic number theory combined
with spectral techniques to prove that (d, k, 1)-digraphs do not exist for any degree when
the diameter is 3 [21]. Later, using a similar method they proved that (d, k, 1)-digraphs
of diameter 4 also do not exist [20]. In [58], Miller and Fris proved that there are no
(2, k, 1)-digraphs for k ≥ 3. Moreover, Baskoro, Miller, Širáň and Sutton in [9] showed that
(3, k, 1)-digraphs do not exist for k ≥ 3.

Every (d, k, 1)-digraph G has the property that for every vertex u ∈ G there is a unique
vertex v ∈ G such that there are exactly two walks of length ≤ k from u to v in G, (e.g.
[7]). Such a vertex v is called the repeat of u, denoted by r(u). If r(u) = v, then r−1(v) = u.
In the case when r(u) = u, u is called a selfrepeat of G. Motivated by the technique of
Bridges and Toueg in [16], Baskoro, Miller, Plesńık and Znám used matrix theory (the
eigenvalues of the adjacency matrix) to prove that there is no diregular (d, k, 1)-digraph of
degree d ≥ 2, diameter k ≥ 3 and with every vertex a selfrepeat, that is, every vertex on a
directed cycle Ck. For k = 2 and degree 2 ≤ d ≤ 12 they showed that if there is a C2 then
every vertex lies on a C2 (that is, all vertices are selfrepeats or none is). These results can
be found in [8].

Theorem 2.3 ([8]). For d ≥ 2 and k ≥ 3 there is no (d, k, 1)-digraph with every vertex in
Ck.

For general (d, k)-digraphs of defect 2, the only known result is that (2, k, 2)-digraphs do
not exist for k ≥ 3. This result was obtained by Miller and Širáň in [59]. For the remaining
values of k ≥ 2 and d ≥ 3, the question of whether digraphs of defect 2 exist or not remains
open.



Chapter 3

On (k, g)-graphs of excess at most 3

The results of this chapter are published in [47]. As we mentioned in Section 2.4 no
examples of even girth cages of order M(k, g) + 1 have been found. In fact, Theorem 2.1
excludes the possibility of odd excess for the vast majority of even girth cages. Combining
Theorem 2.1 with counting cycles, we show that no even girth (k, g)-graphs with k ≥ 3, g ≥
6, and order M(k, g) + 1 exist (Corollary 3.10). Together with the result of Bannai and
Ito [5], this means that the only (k, g)-graphs of order M(k, g) + 1 can possibly be graphs
of girths 3 and 4. Based on these observations, we obtain a complete classification of the
parameters (k, g) for which there exists a (k, g)-graph of order M(k, g) + 1 (Theorem 3.11).
Excess larger than 1 is even harder to deal with. We limit ourselves to excesses 2 and
3, and present formulas for counting cycles of lengths close to the girth for the majority
of parameter pairs (k, g). We then attempt to use these exact counts to argue the non-
existence of (k, g)-graphs of excess e ≤ 3 for infinite families of parameters (k, g). Even
though the original motivation for our approach is based on a method employed in [46] for
the case of small vertex-transitive graphs of given degree and girth, it turns out that an
almost identical approach appears already in the 1971 paper of Friedman [43] who employed
counting cycles to show that Moore graphs for certain parameter pairs (k, g) cannot exist
(the paper appeared prior to the completion of the classification of Moore graphs). When
compared to [43], we deal with a wider range of cycle lengths, includes graphs of even girth,
which were not considered by Friedman, and considers excesses greater than 0.

Overall, our approach in this chapter is meant to be a comprehensive treatise of the
strengths and weaknesses of using counting cycles for determining parameter pairs (k, g)
for which (k, g)-graphs of excess in the range 0, 1, 2, 3 do not exist. For that reason, and for
the sake of completeness, we occasionally include results that have been previously proved
by other techniques. Another reason for that is that we aim to develop our technique from
the very beginning and to demonstrate its versatility.

In addition to determining the order of the smallest (k, g)-graph, one may be interested
in determining the entire spectrum of orders of (k, g)-graphs for a given parameter pair
(k, g). The original article on the existence of (k, g)-graphs [30] already contains the ob-
servation that given any pair of parameters (k, g), k, g ≥ 3, a k-regular graph of girth g
and order 2m exists for every m ≥ 2

∑g−2
t=1 (k − 1)t. As odd-degree regular graphs cannot

have an odd number of vertices, this result shows that, in the case of odd k, the spectrum

11
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of orders of (k, g)-graphs contains all sufficiently large possible orders. As for the remain-
ing even orders in case of even k, a paper of Sachs [71] establishes the existence of such
graphs for certain multiples of g, and could be most likely extended to prove the existence
of (k, g)-graphs with even k for all (i.e., odd and even) sufficiently large orders. The results
presented in this chapter can be viewed as an attempt to determine the other side of the
spectrum – the possible orders of (k, g)-graphs that do not differ from the Moore bound by
more than 3.

The main conclusion of our investigation is the (surprising?) observation that counting
cycles does not exclude the existence of many parameter families even when graphs of only
a small excess are considered. The situation is somewhat similar to that of the existence of
strongly regular graphs. It is easy to see that a Moore graph of diameter 2 must necessarily
be a strongly regular graph. Thus, the existence of the ‘unresolved’ (57, 5)-Moore graph
is also a question of the existence of the corresponding strongly regular graph. In [22],
Chvátal observed (and provided a precise argument for his observation) that counting cycles
cannot exclude the existence of strongly regular graphs whose non-existence could not be
established using arguments based on spectral properties of their adjacency matrices. Even
though the results obtained in this article strongly suggest the existence of similar results
with regard to (k, g)-graphs of orders close to the Moore bound, making such statements
more precise would require developing spectral methods for these families of graphs. To
the best of our knowledge, nobody has made much progress with respect to spectral theory
of graphs of excess larger than 2.

In addition to obtaining a number of results concerning the numbers of cycles of lengths
close to the girth for graphs with excess 0 ≤ e ≤ 3, we map the situation for each of these
excesses and apply the obtained results to exclude as many families of pairs as possible.

3.1 Counting cycles in Moore graphs

The number of cycles of length c passing through a given vertex in a vertex-transitive
graph is easily seen to be independent of the choice of the vertex. A similar observation
can be made for cycles of length c close to the girth in Moore graphs (we will make this
observation more precise), but no such result holds for cages in general. The key observation
of the forthcoming section is that even though the numbers of cycles of the same length
passing through vertices of a (general) cage may differ from vertex to vertex, these numbers
must be the same for all vertices of the Moore graphs. This is, in a way, a curious observation
– the vast majority of the known Moore graphs are vertex-transitive – and so the causality
is not all that clear in this case. Are the vertex-transitive Moore graphs highly symmetric
because the numbers of cycles through each vertex is the same or are these numbers the same
because these Moore graphs have to be vertex-transitive? The vertex-transitivity of Moore
graphs does not appear to follow from their combinatorial properties and proving that the
numbers of small cycles are the same everywhere does not require vertex-transitivity. These
connections are particularly interesting with regard to the existence of the (57, 5)-Moore
graph which has been proved (if it exists) to not be vertex-transitive and to have a small
automorphism group [3, 55, 56]. As we will show in this section, if it exists, it has to have
the property that the numbers of cycles of length close to 5 must be the same for each of
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its vertices. Thus, if such a graph exists, it must have an unusual structure: it has to be
regular with respect to the number of cycles through each of its vertices, but it cannot be
vertex-transitive. For any given vertex v ∈ V (G) and integer c ≥ 3, let cG(v, c) denote the
number of cycles of length c in G passing through v. The following lemma is obvious:

Lemma 3.1. Let G be a graph and c ≥ 3. The sum∑
v∈V (G)

cG(v, c)

is divisible by c.

The next lemma illustrates the key calculations used in this chapter. As we already
mentioned, the first two results of this lemma have already been proved by Friedman [43].
The third result concerning cycles of length g+2 has been stated by Friedman for 3-regular
graphs only and was stated in the form cG(v, g+2) = 0, with the proof omitted. The fourth
result is new.

Lemma 3.2. Let G be (k, g)-Moore graph of odd girth. Then the following hold for all
v ∈ V (G):

1. cG(v, g) = k
2
(k − 1)(g−1)/2,

2. cG(v, g + 1) = k(k−2)
2

(k − 1)(g−1)/2,

3. cG(v, g + 2) = k(k−2)(k−3)
2

(k − 1)(g−1)/2,

4. cG(v, g + 3) = k(k−2)(k2−4k+5)
2

(k − 1)(g−1)/2.

Proof. Let v be an arbitrary vertex of G, and let Ni(v) = {u ∈ V (G) | dG(v, u) = i}. The
following properties follow easily from the properties of the Moore graphs:

1. Ni(v) ∩Nj(v) = ∅, for all 0 ≤ i 6= j ≤ g−1
2

;

2. |N0(v)| = 1, |N1(v)| = k and |Ni(v)| = k(k − 1)i−1, for all 0 ≤ i ≤ (g − 1)/2;

3. V (G) =
⋃

0≤i≤(g−1)/2Ni(v);

4. each vertex u ∈ N(g−1)/2(v) is adjacent to exactly one vertex in N(g−3)/2(v) and (k−1)
vertices in N(g−1)/2(v) (we will call the edges connecting the vertices from N(g−1)/2(v)
horizontal ).

We call the tree obtained from G by removing the horizontal edges the Moore tree of
G (as its vertices give us the Moore bound), and note that this tree consists of k branches
rooted at v. Each vertex u ∈ N(g−1)/2(v) is adjacent through a horizontal edge to each of
the (k − 1) branches distinct from its own.

Consider now a cycle of length g passing through v. The fact that G is a Moore graph
implies that any such cycle has to consist of two disjoint paths starting at v of length
(g− 1)/2 connecting v to u1, u2 ∈ N(g−1)/2(v) and one horizontal edge connecting u1 to u2.
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As the two (g− 1)/2-paths from v to u1 and u2 are uniquely determined by the vertices u1

and u2, there is a one-to-one correspondence between the horizontal edges connecting the
vertices in N(g−1)/2(v) and the cycles of length g through v. Therefore,

cG(v, g) = |N(g−1)/2(v)|(k − 1)/2 = k(k − 1)(g−3)/2 · (k − 1)

2
=
k

2
(k − 1)(g−1)/2,

as claimed in the first part of our lemma.
Consider next a cycle of length g + 1 passing through v. It again has to include two

vertex-disjoint paths (sharing no other vertex than v) of length (g− 1)/2 connecting v to a
pair of vertices u1, u2 ∈ N(g−1)/2(v) and a 2-path connecting u1 to u2. Note that no path of
length 2 between two vertices in N(g−1)/2(v) can use other than horizontal edges. Moreover,
no such path connects two vertices u1 and u2 with the property that the shortest path
between v and u1 and the shortest path between v and u2 share more than the vertex v: if
the two paths shared more than just v, say a vertex w from Ni(v) for some 0 < i ≤ (g−1)/2,
this would cause dG(w, u1) and dG(w, u2) both to be smaller than (g− 1)/2 and would give
rise to a cycle containing w, u1 and u2 of length dG(w, u1)+dG(w, u2)+2 ≤ 2(g−3)/2+2 < g,
a contradiction. Consequently, the number of 2-paths connecting two vertices in N(g−1)/2(v)
belonging to different branches with respect to v is equal to cG(v, g + 1). As the number
of such 2-paths starting at a fixed vertex u ∈ N(g−1)/2(v) is equal to (k − 1)(k − 2) (there
are only (k − 2) ‘unused’ horizontal edges adjacent to the neighbor of u chosen in the first
step), we obtain the desired bound

cG(v, g + 1) = |N(g−1)/2(v)|(k − 1)(k − 2)/2 =

k(k − 1)(g−3)/2 · (k − 1)(k − 2)

2
=
k(k − 2)

2
(k − 1)(g−1)/2.

For any cycle of length g+2 passing through v, the two sub-paths of this cycle of length
(g − 1)/2 connecting v to a pair of vertices u1, u2 ∈ N(g−1)/2(v) have to be connected by
a path of length 3. It is still the case that any such 3-path has to consist exclusively of
horizontal edges: to be a part of a cycle through u1, any such path has to start with a
horizontal edge (there is only one non-horizontal edge adjacent to u1 and it had already
been used to get to u1): if we followed this initial horizontal edge by a pair of non-horizontal
edges finishing in u2, we would use up our only non-horizontal edge connecting u2 to v and
if we followed this initial horizontal edge by a single non-horizontal edge, we would end
up in N(g−3)/2(v) and would have no horizontal edge to complete the path. Thus, distinct
cycles of length g + 2 through v determine 3-paths consisting of horizontal edges. While
there are exactly (k−1)(k−2)(k−2) paths of length 3 starting at any u1 ∈ N(g−1)/2(v) that
consist entirely of horizontal edges, not all such paths give rise to a (g + 2)-cycle through
v: only those of these 3-paths give rise to a (g + 2)-cycle through v that connect vertices
u1, u2 ∈ N(g−1)/2(v) with the property that the shortest path between v and u1 and the
shortest path between v and u2 share no more than the vertex v. Therefore, when choosing
the third horizontal edge to complete a 3-path giving rise a (g − 2)-cycle through v, we
have to avoid using the one horizontal edge terminating at a vertex whose shortest path to
v shares more than v with the shortest path connecting v to u1 (each u ∈ N(g−1)/2(v) has
exactly one such neighbor). This forces the number of horizontal 3-paths starting at u1 and
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corresponding to (g+ 2)-cycles through v to be equal to (k− 1)(k− 2)(k− 3) and the total
number of such paths to be equal to

|N(g−1)/2(v)|(k − 1)(k − 2)(k − 3)/2 =

k(k − 1)(g−3)/2 · (k − 1)(k − 2)(k − 3)

2
=
k(k − 2)(k − 3)

2
(k − 1)(g−1)/2,

and the result follows.
Finally consider a cycle through v of length g + 3. Unlike the above cases, this time

we have two types of cycles to consider. Both types have to consist of two paths of length
(g− 1)/2 sharing no other vertices but v and connecting v to u1, u2 ∈ N(g−1)/2(v), but they
differ in the way u1 and u2 are connected. The first type is just like the cases considered
above: u1 and u2 are connected via a 4-path comprised of horizontal edges. However, the
number of such paths has to be calculated more carefully than in the previous case and
splits into two calculations. While it is still true that for the first edge of the path we can
choose any of the (k − 1) horizontal edges of u1, and similarly, we have (k − 2) choices for
the second and (k− 2) choices for the third edge, the number of choices for the fourth edge
differs according to the branch of the Moore tree of G to which the other end of the third
edge belongs: If the third edge ends in the branch of u1 (which happens exactly once), we
can choose any of its (k − 2) remaining horizontal edges to complete the path (as we will
always end up in a branch different from the branch of u1). When choosing any of the
horizontal edges not terminating in the branch of u1 limits our choice of the fourth edge
to those not terminating in the branch of u1. Thus, the number of length (g + 3)-cycles of
this first type is

|N(g−1)/2(v)| · 1

2
· [(k − 1)(k − 2) · 1 · (k − 2) + (k − 1)(k − 2)(k − 3)(k − 3)] =

k(k − 1)(g−3)/2 (k − 1)(k − 2)(k2 − 5k + 7)

2
=
k(k − 2)(k2 − 5k + 7)

2
(k − 1)(g−1)/2,

For the rest of the cycles of length g + 3, the path connecting u1 and u2 does not have to
consist entirely of horizontal edges. While it is still the case that the first and fourth edge of
the path have to be horizontal (as we use the only non-horizontal edges adjacent to u1 and
u2 in the paths connecting them to v), the second edge can dip down into N(g−3)/2(v) and
the third edge then needs to come back into N(g−1)/2(v). As we only have one non-horizontal
edge for the dip-down and (k − 2) edges to come back up, and the last (horizontal) edge
cannot connect to the branch of u1 (so we have (k − 2) edges to choose from for the last
horizontal edge), the total count of the (g + 3)-cycles of this second type comes to:

|N(g−1)/2(v)|(k − 1)(k − 2)2/2 =

k(k − 1)(g−3)/2 · (k − 1)(k − 2)2

2
=
k(k − 2)2

2
(k − 1)(g−1)/2,

Adding the numbers of the two different types of cycles of length (g + 3) yields the final
claim of the lemma. �

Combining Lemmas 3.1 and 3.2 yields:
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Corollary 3.3. Let G be a (k, g)-Moore graph of odd girth. Then the following hold:

1. g |M(k, g) · k
2
(k − 1)(g−1)/2, for all v ∈ V (G);

2. (g + 1) |M(k, g) · k(k−2)
2

(k − 1)(g−1)/2, for all v ∈ V (G);

3. (g + 2) |M(k, g) · k(k−2)(k−3)
2

(k − 1)(g−1)/2, for all v ∈ V (G);

4. (g + 3) |M(k, g) · k(k−2)(k2−4k+5)
2

(k − 1)(g−1)/2, for all v ∈ V (G).

Even though the parameter pairs (k, g) of the Moore graphs are classified and all but
one pairs (k, g) for which (k, g)-Moore graphs exist are known, the main argument of the
classification uses linear algebra of adjacency matrices and integral eigenvalues, and no
‘purely graph theoretical’ proof is known. The corollary we just proved provides an alternate
way to exclude specific pairs. Given a pair (k, g), it is easy to calculate the four values
listed in the corollary, and then check their divisibility by the corresponding cycle lengths.
If either of the four tests fails, no Moore graph with parameters (k, g) exists. Considering,
for example, the smallest degrees for which k-regular graphs of girth 5 fail to exist, we
obtain the following table:

(k, g) cG(v, g) cG(v, g + 1) cG(v, g + 2) cG(v, g + 3)

(4,5) 306 612 612 3,060
(5,5) 1,040 3,120 6,240 31,200
(6,5) 2,775 11,100 33,300 188,700
(8,5) 12,740 76,440 382,200 2,828,280
(9,5) 23,616 165,312 991,872 8,265,600
(10,5) 40,905 327,240 2,290,680 21,270,600

where the bold faced numbers fail to meet the divisibility requirements. Out of the first
six potential candidates, four are correctly excluded by our test. It is easy to see why this
test can never provide us with complete lists of excluded pairs: once 2k or (k + 1) are
divisible by all four cycle lengths g, g+ 1, g+ 2, g+ 3, none of the tests can exclude the pair
(k, g). The most interesting case is of course the pair (57, 5) – the only pair of parameters
for which the existence of a Moore graph is unresolved. In agreement with the results of
Chvátal [22], all four of the corresponding numbers pass the divisibility tests, and we fail
to resolve this last open case.

For the remainder of this section, we develop results similar to the above for Moore
graphs of even girth. Instead of counting the number of cycles through a fixed vertex, we
switch to counting the number of cycles through a fixed edge. The reader familiar with the
proof of the Moore bound for even girth graphs can visualize the edge to be the one we
start developing the Moore tree from (i.e., each terminal vertex of the edge is the root of a
tree of depth (g − 2)/2 and the leaves of these two trees are to be connected by edges that
complete g-cycles, see Figure 3.1).

For any given edge e ∈ E(G) and integer c ≥ 3, let cG(e, c) denote the number of cycles
of length c in G containing e. The proofs of the following lemmas and corollary follow
along the same lines as the above proofs and use the facts that the number of edges in a
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Moore tree

horizontal edges

Figure 3.1: The Moore tree and horizontal edges in the (3, 6)-cage, Heawood graph.

(k, g)-Moore graph is M(k,g)·k
2

and a cycle of length c contains c distinct edges. While it is
easy to see that all Moore graphs of even girth are bipartite, and hence contain no cycles of
odd length, the non-existence results for cycles of lengths g + 1 and g + 3 can be obtained
without using this observation.

Lemma 3.4. Let G be a graph and c ≥ 3. The sum∑
e∈E(G)

cG(e, c)

is divisible by c.

Lemma 3.5. Let G be (k, g)-Moore graph of even girth. Then the following hold for all
e ∈ E(G):

1. cG(e, g) = (k − 1)g/2,

2. cG(e, g + 1) = 0,

3. cG(e, g + 2) = (k − 1)g/2(k − 2)2,

4. cG(e, g + 3) = 0.

In view of the widely believed conjecture that all even girth cages (not just the Moore
graphs) must be bipartite (see, for example, [33]), the above lemma together with similar
lemmas in the forthcoming sections as well as Theorem 2.1 may be seen supporting this
conjecture.

Corollary 3.6. Let G be a (k, g)-Moore graph of even girth. Then the following hold:

1. g |M(k, g) · k
2
· (k − 1)g/2,

2. (g + 2) |M(k, g) · k
2
· (k − 1)g/2(k − 2)2.

Recall that the existence of Moore graphs of girths 6, 8 and 12 is equivalent to the
existence of projective planes, and symmetric generalized quadrangles and generalized
hexagons, respectively. Thus, excluding cages for girths 6, 8 or 12 would have the po-
tential of proving the non-existence of corresponding generalized polygons whose existence
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is in question. Unfortunately, not a single pair (k, 6), (k, 8) or (k, 12) is excluded by the
above corollary for any 3 ≤ k ≤ 2000. On the other hand, the above divisibility criteria
exclude for example 800 of the pairs (k, 10), 1143 pairs (k, 14), and all the way to 1809
pairs (k, 38) from the range 3 ≤ k ≤ 2000.

We conclude the section with one more observation that might be known as ‘folklore’.
The reason we decided to mention this result is that we will return with similar arguments
in the forthcoming sections as well.

Lemma 3.7. If k ≥ 3 and g ≥ 3 is odd, such that a (k, g)-Moore graph exists, then there
is a (k − 1, g)-graph of order k(k − 1)(g−3)/2.

If k ≥ 3 and g ≥ 4 is even, such that a (k, g)-Moore graph exists, then there is a
(k − 1, g)-graph of order 2(k − 1)(g−2)/2.

Proof. In both cases, the graph is obtained by considering the graph induced in the corre-
sponding Moore graph by the leaves of any of its Moore trees. �

3.2 Graphs of excess 1

In this section we focus on (k, g)-graphs of orders exceeding the Moore bound by 1. It
is easy to check that for odd k, both Moore bounds M(k, g) in (2.1) are even, and thus,
M(k, g) + 1 is odd, and as such, cannot be the order of a regular graph of odd degree.
Hence, no odd degree regular graphs of order M(k, g) + 1 exist. Also, based on the result
of Bannai and Ito [5], no such graphs exist for odd girth g ≥ 5, and based on Theorem 2.2
of Biggs and Ito, no such graphs exist for even girth g ≥ 8 or even girth g ≥ 6 and k ≥ 4.
The above results together yield the non-existence of (k, g)-graphs of excess 1 for all g ≥ 5
and k ≥ 3. In what follows, we employ counting cycles to reprove some of the results
concerning graphs of even girth (and to demonstrate our techniques again) and complete
the classification of (k, g)-graphs of order M(k, g) + 1.

Other than Moore graphs, cages do not necessarily have the property cG(v, c) = cG(v′, c)
or cG(e, c) = cG(e′, c), for all v, v′ ∈ V (G), e, e′ ∈ E(G), and c ≥ 3. Nevertheless, in case of
excess 1, these numbers do have to be equal for all edges of the graph.

Lemma 3.8. Let k, g ≥ 4 be even integers, and G be (k, g)-graph of order M(k, g) + 1.
Then,

1. cG(e, g) = (k − 1)g/2 − k
2
, for all e ∈ E(G),

2. cG(e, g + 1) = k2

4
, for all e ∈ E(G).

Proof. Let k, g ≥ 4 be even, |V (G)| = M(k, g) + 1, and e = {u, v} be any edge of G.
The key observation to proving these results is to note that all (k, g)-graphs with the above
parameters and excess 1 are of the same structure. Namely, they consist of the (k, g)-Moore
tree ‘rooted’ at e and one extra vertex w of distance g−2

2
+ 1 from both u and v that is

attached via k
2

edges to the subtree attached to u and via the same number of edges to
the subtree attached to v. This observation follows easily by understanding the way the
Moore tree might be completed into a Moore graph: All the (k − 1)g/2 edges emanating
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from the the subtree attached to u must be paired with the (k−1)g/2 edges emanating from
the the subtree attached to v, and thus, if the number of edges connecting w to the two
branches differed between them, we would be left with some ‘dangling’ edges that could
not be attached to anything.

The rest of the proof follows the lines of the proofs from the previous section. The
number of g-cycles must be equal to the number of ‘horizontal’ edges connecting the two
branches and all such cycles must avoid the new vertex w. The (g+ 1)-cycles must use the
new vertex w, and thus each (g + 1)-cycle must use one of the k

2
left edges followed by one

of the k
2

right edges attached to w. �

Corollary 3.9. Let k, g ≥ 4 be even integers, and G be (k, g)-graph of order M(k, g) + 1.
Then,

1. g | [M(k, g) + 1] · k
2
·
[
(k − 1)g/2 − k

2

]
,

2. (g + 1) | [M(k, g) + 1] · k3
8

.

Once again, the above test cannot possibly exclude all pairs (k, g) for a fixed degree k:
Once k

2
is divisible by both g and g+ 1, both values satisfy the divisibility requirement and

one cannot exclude the possibility n(k, g) = M(k, g) + 1. Thus, we cannot obtain the same
kind of general result as the result of Bannai and Ito for odd g from Corollary 3.9 alone.
However, as bipartite graphs do not contain odd length cycles, Lemma 3.8 that asserts the
existence of a non-zero number of cycles of odd length g + 1 together with Theorem 2.1
that asserts the bipartiteness of these graphs yield:

Corollary 3.10. If k ≥ 4 and g ≥ 6 are both even, the order of any (k, g)-graph G that is
not a Moore graph is greater than M(k, g) + 1.

We close this section with a complete classification of parameter pairs (k, g) for which
there exists a (k, g)-graph of order M(k, g) + 1.

Theorem 3.11. Let k ≥ 2 and g ≥ 3. A (k, g)-graph of order M(k, g) + 1 exists if and
only if k ≥ 4 is even and g = 3.

Proof. As stated in the introduction for this section, due to parity reasons, if k is odd, no
(k, g)-graphs of order M(k, g) + 1 exist. If k = 2, M(2, g) = g, and any (2, g)-graph is a
system of disjoint cycles of length at least g, with at least one of the cycles of length exactly
g. Therefore, there is no (2, g)-graph of order M(2, g) + 1 = g + 1. (If one were willing to
allow for the (g + 1)-cycle to be considered a (2, g)-graph, even though it does not contain
a cycle of length g, then a (2, g)-graph would exist for all g ≥ 3.)

If k ≥ 4, the results of Bannai and Ito assert the non-existence of (k, g)- graphs of order
M(k, g) + 1 for all odd girths g ≥ 5. The above corollary (as well as the results of Biggs
and Ito [15]) excludes the existence of such graphs for all even girths g ≥ 6. Thus, the only
possible pairs that might admit the existence of a (k, g)-graph of order M(k, g) + 1 are the
pairs (k, 3), (k, 4), k ≥ 4 even.

We first show the existence of such graphs for all pairs (k, 3), k ≥ 4 and even. It is
easy to see that, for any odd n ≥ 5, the graph Kn+1 − n+1

2
K2 (the complete graph minus a
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perfect matching) is an (n− 1, 3)-graph of order M(n− 1, 3) + 1, and hence a (k, 3)-graph
of order M(k, 3) + 1 exists for every even k ≥ 4.

We conclude our proof by arguing that no (k, 4)-graphs, k ≥ 4, of order M(k, 4)+1 exist.
We proceed by contradiction. Let G be a (k, 4)-graph of order M(k, 4) + 1, k ≥ 4 even.
Let e = {u, v} be any edge of G. Then G contains the Moore tree rooted at e containing
two subtrees attached to the end-points of e, with the subtrees in this case simply being
(k − 1)-stars (recall that g = 4). It also contains an extra vertex w of degree k. All the
edges adjacent to w must terminate in the leaf sets of the Moore tree (which are simply
neighbors of u or v), and since the number of edges terminating in each leaf set must be
the same (so that we can balance out the edges between the two leaf sets), k

2
edges connect

w to one leaf set and k
2

to the other. Let v′ 6= v be a neighbor of u that is also a neighbor
of w. There are still k− 2 edges connecting v′ to the neighbors of v different from u. Since
w is adjacent to k

2
of them, and (k − 2) + k

2
> k − 1 for k ≥ 4, there must exist a neighbor

of v, say u′, connected to both v′ and w. However, the vertices u′, w, v′ form a triangle, and
G cannot be of girth 4; a contradiction. �

The above classification yields the interesting observation that no Moore (k, g)-graph of
girth greater than 3 can be extended into a k-regular graph of the same girth by adding a
single vertex.

3.3 Graphs of excess 2

We focus first on graphs of odd girth g. Every vertex u of a (k, g)-graph G of odd girth has
to be the root of a Moore tree on M(k, g) vertices. The ‘additional’ excess vertices must lie
outside this Moore tree and must be of distance at least g+1

2
from u. Thus, for each vertex

u of G, the excess vertices are determined by their distance from u being larger than g−1
2

,
and we will call them the excess vertices with respect to u and will denote the set of these
vertices by Xu. In case of excess 2, each vertex u of G corresponds to two excess vertices,
say Xu = {w1, w2}. We claim that both vertices must be of distance g+1

2
from u. If this

was not the case, and for example w1 was of distance larger than g+1
2

from u, all of its

edges would have to connect w1 to vertices of distance at least g+1
2

from u, but there are
at most two such vertices, and w1 is one of them. Hence, both w1 and w2 are adjacent to
the leaves of the Moore tree rooted at u, and there are only two possibilities to consider:
either w1 and w2 are adjacent or they are not. Unlike the case of Moore graphs, G may
contain vertices of both kinds: those whose excess vertices are adjacent and those whose
are not. The following two examples exhibit several cases of such co-existence (in rather
small graphs).

Both examples can be constructed from the Petersen graph by deleting edges and adding
two vertices. The first example starts from the Petersen graph viewed as a 6-cycle with the
(3, 5)-Moore tree attached in its center. Choosing any two opposing edges of the 6-cycle,
subdividing them by introducing a new vertex into each, and subsequently joining the two
new vertices via an edge, results in a (3, 5)-graph of order 12 (see Figure 3.2 left). The
second example is constructed from the Petersen graph by removing every other edge of
the outer 6-cycle and attaching two extra vertices to the vertices of degree 2 (see Figure
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Figure 3.2: The two (3, 5)-graphs of order 12

3.2 right). Both graphs are of order 12 = M(3, 5) + 2, and there exist no other (3, 5)-
graphs of order 12. This last claim is easy to verify either via a careful consideration of the
possibilities or via a computer search [32].

Examining the two examples from Figure 3.2 yields several interesting observations.
First, the graph on the left contains both vertices whose excess set consists of two adjacent
vertices (the vertices u1, u2, u11, u12) as well as vertices whose excess points are of distance
2 (all other vertices). On the other hand, the graph on the right contains vertices whose
excess vertices are of distance 3 (the vertices v1, v11, v12), as well as vertices whose excess
sets are formed by adjacent vertices (all other vertices).

The next example of a graph of girth 5 and excess 2 is Robertson’s graph of degree 4
and order 19 which is the unique (4, 5)-cage [33]. This graph exhibits vertices of all three
types. It contains 4 vertices whose excess vertices are of distance 1, 12 vertices with excess
vertices of distance 2, and 3 vertices with excess vertices of distance 3.

Based on the above observations, we will call the vertices of G whose excess vertices are
of distance 1 vertices of type d1, vertices whose excess vertices are of distance 2 vertices of
type d2, and all other vertices vertices of type d3. The number of cycles passing through a
vertex u of G depends of its type. We have the following.

Lemma 3.12. Let G be (k, g)-graph of odd girth g ≥ 5 and excess 2.

1. If u ∈ V (G) is of type d1, then

(a) cG(u, g) = k
2
(k − 1)

g−1
2 − k + 1;

(b) cG(u, g + 1) = 2
(
k−1

2

)
+ (k(k − 1)

g−3
2 − 2(k − 1))

(
k−1

2

)
+ 2(k − 1)

(
k−2

2

)
.

2. If u ∈ V (G) is of type d2, then

(a) cG(u, g) = k
2
(k − 1)

g−1
2 − k;

(b) cG(u, g + 1) = 2
(
k
2

)
+ (k(k − 1)

g−3
2 − 2k + 1)

(
k−1

2

)
+ 2(k − 1)

(
k−2

2

)
+
(
k−3

2

)
.

3. If u ∈ V (G) is of type d3, then

(a) cG(u, g) = k
2
(k − 1)

g−1
2 − k;
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(b) cG(u, g + 1) = 2
(
k
2

)
+ (k(k − 1)

g−3
2 − 2k)

(
k−1

2

)
+ 2k

(
k−2

2

)
.

Proof. As we have observed several times already, every g-cycle containing u has to contain
a unique horizontal edge connecting two leaves of the Moore tree rooted at u, and each
such edge determines its own g-cycle. Hence cG(u, g) is equal to the number of horizontal
edges. If u is of type d2 or d3, all edges incident to w1 and w2 are adjacent to the leaves of
the Moore tree, which diminishes the number of horizontal edges by k (there are 2k edges
from the leaves of the tree to Xu that replace k of the horizontal edges). Hence, the total

number of horizontal edges is k
2
(k − 1)

g−1
2 − k. By the same kind of argument, if u is of

type d1, cG(u, g) = k
2
(k − 1)

g−1
2 − k + 1.

Consider next the (g + 1)-cycles. For all types of vertices, these cycles include one (but
not both) or none of the excess vertices. If they include an excess vertex, they also include
two edges incident to this vertex. These two edges determine the rest of the cycle uniquely,
as their other endpoints are connected to u via unique g−1

2
-paths. It follows that there

are 2
(
k
2

)
such cycles for u’s of types d2 and d3, and 2

(
k−1

2

)
such cycles for type d1. If the

(g + 1)-cycles do not include any of the excess vertices, they must contain two incident
horizontal edges. Each pair of incident horizontal edges determines the rest of the (g + 1)-
cycle uniquely, and hence the number of the (g + 1)-cycles containing two horizontal edges
is equal to the number of pairs of incident horizontal edges. Each such pair is determined
by its shared ‘central’ vertex. This observation allows us to count the number of cycles of
this second type. If u is of type d3, the edges attaching the two excess vertices in Xu to
the leaves of the Moore tree rooted at u are never attached to the same leaf (as that would
make the distance between the excess vertices equal to 2). Consequently, there are exactly
2k leaves incident with (k − 2) horizontal edges, each contributing

(
k−2

2

)
pairs of mutually

incident pairs of horizontal edges. The remaining k(k− 1)
g−3
2 − 2k leaves are incident with

(k − 1) horizontal edges and therefore contribute
(
k−1

2

)
pairs of mutually incident pairs of

horizontal edges. In case when w1 and w2 are attached to the same leaf (i.e., u is of type

d2), there are k(k − 1)
g−3
2 − 2k + 1 leaves adjacent to (k − 1) horizontal edges, there are

2k − 2 leaves incident with (k − 2) horizontal edges, and there is a single leaf (the one
both w1 and w2 are adjacent to) with (k − 3) horizontal edges. Adding the number of
cycles involving excess vertices and cycles including two horizontal edges yields the stated
equalities for cG(u, g + 1) for vertices of types d2 and d3.

The situation with u of type d1 is simpler in that w1, w2 cannot be adjacent to the same
leaf as that would create a 3-cycle (and we assume g > 3). Thus, in this case, the set of

leaves consists of k(k − 1)
g−3
2 − 2(k − 1) leaves incident with (k − 1) horizontal edges and

2(k − 1) leaves incident with (k − 2) horizontal edges. The last claim also follows. �

The following theorem is now fairly obvious.

Theorem 3.13. Let G be a (k, g)-graph of odd girth g ≥ 5 and excess 2, let x1 be the
number of vertices of type d1, x2 be the number of vertices of type d2, and x3 be the number
of vertices of G of type d3. Then the following must be satisfied:

1. x1 + x2 + x3 = M(k, g) + 2;

2. g | x1 · [k2 (k − 1)
g−1
2 − k + 1] + (x2 + x3) · [k

2
(k − 1)

g−1
2 − k];
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3. (g + 1) |

x1 ·
[
2

(
k − 1

2

)
+ (k(k − 1)

g−3
2 − 2(k − 1))

(
k − 1

2

)
+ 2(k − 1)

(
k − 2

2

)]
+x2 ·

[
2

(
k

2

)
+ (k(k − 1)

g−3
2 − 2k + 1)

(
k − 1

2

)
+ 2(k − 1)

(
k − 2

2

)
+

(
k − 3

2

)]
+x3 ·

[
2

(
k

2

)
+ (k(k − 1)

g−3
2 − 2k)

(
k − 1

2

)
+ 2k

(
k − 2

2

)]
.

In particular, if no non-negative integers x1, x2, x3 satisfying the above arithmetic con-
ditions exist, no (k, g)-graphs of excess 2 exist.

In order to take an advantage of the above theorem, we have tested a number of pa-
rameter pairs (k, g) for those that do not allow for any solutions to the above divisibility
requirements. Unfortunately, we have found (often many) solutions x1, x2, x3 for each of
the parameter pairs considered. This might be due to having three parameters and three
divisibility criteria which somehow may always allow for a solution. While an obvious so-
lution to this problem would be to add a criterion for divisibility by (g + 2), this approach
runs into the problem that it forces further divisions of the edges into different types. This
leads to additional restrictions together with additional variables. Instead of taking this
path, we have decided to focus on the case of girth 5 where we have already argued that
k-regular graphs of girth 5 and order M(k, g) + 2 must be of diameter 3. After adding the
restriction g = 5, we obtain the following constraints.

Lemma 3.14. Let G be a (k, 5)-graph with excess 2, let x1 be the number of vertices of G
of type d1, x2 be the number of vertices of type d2, and x3 be the number of vertices of type
d3. Then

1. if x1 > 0, then x1 ≥ 4;

2. if x2 > 0, then x2 ≥ 4;

3. x3 must be divisible by 3.

In particular, if no non-negative integers x1, x2, x3 satisfying the conditions from Theo-
rem 3.13 and the above conditions exist, no (k, 5)-graphs of excess 2 exist.

Proof. Let u be a vertex of type d1 and w1, w2 be the adjacent excess vertices associated
with u. Then w1 is only adjacent to (k − 1) of the k branches of the Moore tree rooted at
u, and there exists a neighbor of u of distance greater than 2 from w1. This vertex thus
must be the second vertex from Xw1 , which makes w1 into a type d1 vertex. Similarly, w2

is also a type d1 vertex, and hence for any vertex of type d1, both of its excess vertices are
of type d1, which (applied to w1) yields that at least one of the neighbors of u is also of
type d1; granting 4 vertices of type d1.

If u is of type d2, the two vertices in Xu = {w1, w2} share a neighbor, and hence u ∈ Xw1 ,
but w2 6∈ Xw1 . We claim that the second vertex in Xw1 different from u must be of distance
2 from u; which makes w1 into a type d2 vertex. Since all edges incident to w1 connect
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w1 to leaves of the Moore tree rooted at u, w1 has to be connected to each branch of this
Moore tree (it cannot be connected twice to the same branch as that would create a cycle
of length 4), and hence all neighbors of u are of distance 2 from w1, and therefore the vertex
in Xw1 different from u is not a neighbor of u, neither it is of distance 3 from u, and hence
it is of distance 2 from u; as claimed. By a symmetric argument, w2 is a type d2 vertex as
well, and consequently, if u is of type d2, so are both of its excess vertices. Applying the
same argument to w1 yields that both excess vertices associated with w1 are also of type
d2, and hence we obtain at least one more vertex of type d2 different from the vertices u,w1

and w2.

Consider finally a vertex u of type d3. The two excess vertices w1, w2 in Xu which ar
of distance 3 one from the other are also the only two vertices of distance 3 from u, and
hence the triple u,w1, w2 consists of vertices any two of which are of distance 3. Thus,
Xw1 = {u,w2} and Xw2 = {u,w1}, and all three vertices are of type d3. Any vertex u′ of
type d3 distinct from the vertices u,w1, w2 must then come with its own pair of type d3
vertices, and hence Xu ∩Xu′ = ∅ and the claim 3 | x3 follows by induction. �

We have added the above conditions to our program looking for parameters (k, 5) not
allowing the existence of a (k, 5)-graph of order M(k, 5) + 2. In case k = 3, our program
determined that the only possible triples (x1, x2, x3) are (9, 0, 3) and (8, 4, 0); both of which
are realized by the two graphs obtained from the Petersen graph. For k = 4, there are a
number of triples satisfying the criteria, with the triple (4, 12, 3) exhibited by Robertson’s
graph included. Thus, the restrictions obtained so far do not suffice to exclude impossible
triples (x1, x2, x3). This can be also seen from the fact that none of the degrees k, 5 ≤
k ≤ 11, excluded by Eroh and Schwenk [31] are excluded by our program. Clearly, further,
possibly more complicated, criteria would be needed in order to exclude more degrees k for
which there exists no (k, 5)-graph of excess 2.

In the second part of this section, we consider graphs of excess 2 and even girth. One
such example is the Möbius-Kantor graph of degree 3, girth 6, and order 16. This is
once more an example of the situation where a Moore graph of degree 3 and girth 6 (and
order smaller by 2) also exists; namely the Heawood graph. Note in addition, that the
Möbius-Kantor graph is arc-transitive, and therefore must look the same with respect to
every edge. Extending the definition of the excess sets to edges in the natural way, we
define Xf to consist of all vertices of X whose distance from both end-points of the edge
f is greater thant g−1

2
. The arc-transitivity of the Möbius-Kantor graph yields that all

subgraphs induced by the excess vertices of any of its edges are isomorphic to K2. As we
will see in the forthcoming paragraphs, this observation holds for all (k, 6)-graphs of order
M(k, 6) + 2 (whether vertex-transitive or not).

Graphs of excess 2 and even girth are covered by Theorem 2.2. Thus, no excess 2 graphs
exist for even girths greater than 6, for k ≡ 5, 7 (mod 8), or for parameters which do not
allow for a double cover of an incidence graph of a symmetric (v, k, 2)-design. As complete
classification of (v, k, 2)-designs is not known, we focus in the remaining part of this section
on counting cycles in (k, 6)-graphs of order M(k, 6) + 2. We will only consider those graphs
that are bipartite due to Theorem 2.1.

Lemma 3.15. Let k ≥ 4. If G is a (k, 6)-graph of order M(k, 6) + 2, then G is bipartite,
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and

1. cG(e, 6) = (k − 1)3 − (k − 1), for all e ∈ E(G), and

2. cG(e, 8) = (k − 1)3(k − 2)2 − k3 + 6k2 − 10k + 5, for all e ∈ E(G).

Proof. If G is a (k, g)-graph of order M(k, g) + 2, then G is bipartite by Theorem 2.1. It
follows that G cannot contain odd-length cycles, and consequently, none of the two extra
vertices can be attached to both branches of the Moore tree rooted at e. The only way to
achieve this is for each of the two vertices to be attached to just one branch of the tree.
It is not possible, however, for either of the two vertices to be attached just to the leaves
of one of the branches: since the branches consist of (k − 1) sub-branches, a vertex of
degree k would have to be attached twice to the same sub-branch. But that would cause a
cycle of length g − 2 = 4 and violate the girth of G. It follows that each of the two extra
vertices is attached to only (k − 1) sub-branches of a different branch of the Moore tree,
and therefore the two extra vertices have to be adjacent – connected through an edge. This
information is sufficient to guarantee that cG(e, 6) is the same for each edge e ∈ E(G). In
fact, cG(e, 6) = (k − 1)3 − (k − 1) as exactly (k − 1) horizontal edges are lost due to the
connections to the two extra vertices. As for the 8-cycles, they come in two kinds: those
that consist of two 2-paths in the different branches of the Moore tree completed via a
3-path of horizontal edges (the same kind as in the Moore graph case) and those that pass
through the two extra edges. The number of 8-cycles through e and the two extra edges
can be easily seen to be equal to (k − 1)2. The number of 8-cycles ‘lost’ in comparison to
the Moore graph is (k − 1)(k − 2)2, and therefore

cG(e, 8) = (k − 1)3(k − 2)2 − (k − 1)(k − 2)2 + (k − 1)2.

�

We see that the additional information about the potential graphs being necessarily
bipartite (due to Theorem 2.1) yields a strong restriction on the structure of the graphs
considered, and, in particular, implies the existence of a single type of excess set. This
situation differs quite a bit from the case of odd girth considered in the first part of this
section. Thus, one might expect the restrictions obtained from Lemma 3.15 to exclude at
least some pairs (k, g). This is unfortunately not the case, as we have found no pairs (k, g)
that could be excluded using the divisibility criteria of Lemma 3.15. On the other hand,
the fact that all excess sets must be of the same structure suggests that vertex-transitive
graphs may play an important role in this case.

We conclude the section with an analogue of Lemma 3.7.

Lemma 3.16. If k ≥ 3 and g ≥ 3 is odd, such that a (k, g)-graph G of excess 2 and having
at least one vertex of type d1 exists, then there is a (k−1, g)-graph of order k(k−1)(g−3)/2+2.

If k ≥ 3 and g ≥ 6 is even, such that a (k, g)-graph G of excess 2 exists, then there is a
(k − 1, g)-graph of order 2(k − 1)(g−2)/2 + 2.

Proof. If u is a d1-type vertex, the desired graph is obtained by taking the subgraph of G
induced by the leaves of the Moore tree rooted at u and the two excess vertices in Xu, and
removing the edge between the excess vertices.
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In the even girth case, the graph is bipartite and all excess pairs are joined by an edge,
and so one can take the graph induced in G by the leaves of the Moore tree and the excess
vertices of any vertex u of G. The edge connecting the two excess vertices must again be
removed. �

3.4 Graphs of excess 3

Since both Moore bounds are even for odd degree k, no odd degree graphs of excess 3 exist.
The only interesting cases are those where k is even.

Let k be even and g be odd. This case is not covered by any of the previously mentioned
results, and the existence of (k, g)-graphs with even k, odd g, and order M(k, g)+3, is wide
open. The smallest cage with excess 3 is the (6, 5)-cage of order 40 obtained by removing
the vertices of a Petersen graph from the Hoffman-Singleton graph (which is the unique
(7, 5)-cage). The graph is sometimes known as the Anstee-Robertson graph (it appeared
for the first time in Robertson’s thesis [70], and was independently discovered by Anstee
[2]), but was first considered as a cage by O’Keefe and Wong [65].

If we assume that g is at least 5, only three of the four non-isomorphic graphs of order
3 can appear as subgraphs induced by the three excess vertices associated with any vertex
of the graph (the 3-cycle is too short). Thus, the subgraphs induced by the excess vertices
are either isomorphic to the graph 3K1 containing no edges, the union K2 ∪K1 containing
exactly one edge, or the 2-path P2 of two edges. This makes for a relatively complicated
situation, and we only list a result concerning cycles of length g.

Lemma 3.17. Let k ≥ 3 be even, g ≥ 5 be odd, and G be a (k, g)-graph of order M(k, g)+3.
Let x1 denote the number of vertices u of G for which the subgraph induced by Xu is
isomorphic to 3K1, x2 denote the number of vertices u of G for which the subgraph induced
by Xu is isomorphic to K2 ∪K1, and x3 denote the number of vertices u of G for which the
subgraph induced by Xu is isomorphic to P2. Then the following hold:

1. x1 + x2 + x3 = M(k, g) + 3, and

2. g divides the value

(M(k, g) + 3)
k(k − 1)

g−1
2

2
− x1

3k

2
− x2(

3k

2
− 1)− x3(

3k

2
− 2).

Proof. We have argued the first claim of the lemma prior to its statement. The second
claim follows from counting horizontal edges in G with respect to u, as each horizontal edge
corresponds to a unique g-cycle through u. If the subgraph induced by Xu is isomorphic
to 3K1, the number of horizontal edges decreases by 3 · k

2
, and is therefore equal to k

2
(k −

1)
g−1
2 − 3k

2
(where k

2
(k − 1)

g−1
2 would be the number of horizontal edges in a (k, g)-Moore

graph). If the subgraph induced by Xu is isomorphic to K2∪K1, this number only decreases
by 3 · k

2
−1, and if the subgraph induced by Xu is isomorphic to P2, it decreases by 3 · k

2
−2.

The rest of the proof then follows by the usual argument. �
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As has unfortunately repeatedly been the case before, the above lemma excludes no
small pairs of parameters (k, g).

For the case of even k and even g, Theorem 2.1 contains a great deal of information
concerning the structure of (k, g)-graphs. Interestingly, the part of the theorem that states
that the excess for these graphs must be even is only stated informally in [15]. For the sake
of completeness, we include a quick proof of the claim.

Because the first degree considered by Theorem 2.1 for the case of excess 3 is k = 5,
and the first girth it applies to is 6, we do not know whether 4-regular graphs of even girth
and excess 3 or k-regular graphs with even k and girth 4 and excess 3 necessarily have to
be bipartite. All the other cases of even girth and even degree are covered by the next
theorem.

Theorem 3.18. Let k, g ≥ 6 be both even. Then there exist no (k, g)-graphs of odd excess
e ≤ k − 2.

Proof. Assume throughout that k, g ≥ 6 are even, g = 2m. Applying Theorem 2.1 yields
that all (k, g)-graphs of excess e ≤ k − 2 are bipartite of diameter m + 1. Thus, all
such graphs consist of a bipartite Moore tree rooted at an edge {u, v} and extra vertices
w1, w2, . . . , we of distance m+1 from either u or v. Due to the bipartiteness, u and v belong
to different partition sets, and consequently the leaves of the Moore tree divide into two
distinct partition sets based on whether they are of distance m− 1 from u or v. Also, each
of the extra vertices w1, w2, . . . , we must belong to one of the partition sets. Since we have
an odd number of them, the two partition sets contain different numbers of extra vertices.
This means that the two leaf sets of the Moore tree are attached to distinct numbers of
vertices from the set w1, w2, . . . , we. This causes an imbalance contradicting the fact that
all the edges emanating from one of the sets of leaves that are not adjacent to the vertices
w1, w2, . . . , we must be paired with the edges emanating from the other set that are not
adjacent to the vertices w1, w2, . . . , we. The number of excess vertices must be even, and
they have to split evenly between the two sets of leafs. �

Corollary 3.19. If k = 3 or k ≥ 5, and g ≥ 6 is even, then no (k, g)-graphs of excess 3
exist.



.



Chapter 4

Improved lower bounds for the orders
of even girth cages

The results of this chapter are published in [48]. Recall, the exact values n(k, g) are not
known for the majority of parameter pairs (k, g), and very few lower bounds on n(k, g)
exceeding the Moore bound exist. While Theorem 2.1 does not specifically exclude any
parameter pairs (k, g), Theorem 2.2 only deals with (k, g)-graphs of excess 2. To our best
knowledge, outside some small cases for which n(k, g) has been determined and some few
cases where the existence of graphs of excess greater than 2 has been proved by exhaustive
computer search, no results excluding parameter pairs for excess larger than 2 for either
odd or even g are known (i.e., there are no infinite families of pairs (k, g) for which it has
been proven that n(k, g) > M(k, g) + 4). Thus, results obtained in this chapter, which
introduce infinite families of parameter pairs (k, g) for which do not exist any (k, g)-graphs
of excess smaller than 5, are the first results of this type. Our arguments rely on Lemma
3.1 and Lemma 3.4.

The remaining argument is based on careful counting of cycles of length g in (potential)
(k, g)-graphs of excess 4, and showing that, for certain classes of parameters, the result-
ing numbers violate the divisibility requirements of Lemma 3.4. In addition to obtaining
results concerning graphs of excess 4, we prove that the excess grows without bounds for
a meaningful but restricted family of (k, g)-graphs. While this last result does not appear
suitable for generalization to all (k, g)-graphs, it should be viewed as further evidence for
the Moore bound not being a tight bound in the majority of cases.

4.1 The structure of graphs of even girth and excess

4

In this section, we take on the case of (k, g)-graphs of degree k ≥ 6, even girth g = 2m ≥ 6,
and excess 4. All of these graphs are covered by Theorem 2.1 and are therefore bipartite
and of diameter m+1. Thanks to these results, the structure of G with respect to any edge
f = {u, v} ∈ E(G) can therefore be determined. Let NG(u, i) denote the i-th neighborhood
of the vertex u, i.e., the set of vertices of G whose distance from u in G is equal to i. Since

29
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Moore tree

horizontal edges

u v

f

w1

w2

w3

w4

...
...

Tu Tv

Xe

Figure 4.1: The Moore tree and some of the horizontal edges in a potential (3, 6)-graph of
excess 4

the girth of G is assumed to be equal to g, the set of vertices of G whose distance from
u is not larger than g−2

2
and whose distance from v is by one larger than their distance

from u and the set of of vertices of G whose distance from v is not larger than g−2
2

and
whose distance from u is by one larger than their distance from v must be disjoint and
cannot contain any cycles. Thus, the subgraph of G induced by the first set (determined
by u) induces a tree of depth g−2

2
rooted at u (we will call it Tu), while the second set

induces a tree of depth g−2
2

rooted at v (called Tv); with Tu and Tv vertex disjoint. The
degrees of u or v in their respective trees are equal to (k − 1), the degrees of all the non-
leave vertices of these trees are equal to k, and all the leaves of these trees are of distance
g−2

2
from their respective roots. As for the order of these subtrees, they are both of order

1+(k−1)+(k−1)2 + . . .+(k−1)
g−2
2 , with (k−1)i vertices of distance i from u (or v). We

will call the union of Tu and Tv together with the edge f the Moore tree of G rooted at f ;
it is the subtree of G that is the basis of the Moore bound for even g. Since G is assumed
to be of excess 4, G must contain 4 additional vertices w1, w2, w3, w4 which do not belong
to either Tu or Tv, and whose distance from both u and v is greater than g−2

2
. We will call

these vertices the excess vertices with respect to f and denote this set Xf = {w1, w2, w3, w4}.
Finally, we shall call the edges not contained in the Moore tree of G horizontal edges. The
choice of our terminology becomes fairly obvious when consulting Figure 4.1.

We begin with a lemma that restricts the possible ways in which the four excess vertices
are attached to the Moore tree.

Lemma 4.1. Let k ≥ 6, g = 2m ≥ 6. Let G be a (k, g)-graph of excess 4, u, v be two
adjacent vertices in G, and Xf = {w1, w2, w3, w4} be the four excess vertices with respect
to the edge f = {u, v}. The induced subgraph G[w1, w2, w3, w4] is isomorphic to 2K2 (two
disjoint copies of K2) or P3 (a path of length 3).

Proof. As shown in Figure 4.1, the graph G consists of a Moore tree rooted at the edge
f = {u, v} and four excess vertices w1, w2, w3, w4. Each of these vertices must be attached
to at least one of the two subtrees rooted at u or v (for the graph to be of diameter m+ 1),
and none can be attached to both, since G is bipartite (and the leaf sets of Tu and Tv
belong to different bipartite sets). Furthermore, none of the excess vertices can be joined
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to its corresponding subtree via more than (k − 1) edges; this is due to the fact that the
excess vertices cannot be joined to any branch of the subtree more than once as multiple
attachments would give rise to a cycle shorter than g, and to the fact that the subtrees Tu
and Tv each consist of exactly (k − 1) branches.

The horizontal edges of G are of three kinds. First, there are the horizontal edges
directly joining the leaf sets of Tu and Tv. Second, there are the horizontal edges between
the excess vertices w1, w2, w3, w4 and the leaf sets of Tu or Tv (but never simultaneously with
both). Finally, there are the horizontal edges between the excess vertices themselves. Note
that the number of edges incident with the leaves of Tu must match the number of edges
incident with the leaves of Tv. Thus, in order to balance and pair out the horizontal edges
adjacent to the two leaf sets, the number of edges joining the excess vertices to either of the
two subtrees must be the same. This easily yields that two of the excess vertices must be
attached to one subtree and the other two to the other, and the two pairs belong to different
bipartite sets. Without loss of generality, assume that w1, w2 are attached to the subtree
rooted at u, and w3, w4 to the subtree rooted at v (Figure 4.1). Due to bipartedness, w1 is
not adjacent to w2, and w3 is not adjacent to w4. Since the diameter of G is m + 1, both
w1 and w2 must be adjacent to at least one of w3, w4, and vice versa, both w3 and w4 must
be adjacent to at least one of w1, w2. It follows that the induced subgraph G[w1, w2, w3, w4]
is bipartite, with the two sets consisting of w1, w2 and w3, w4, and each of its vertices is of
degree at least 1. This leaves us with the possibility that all of its vertices are of degree
1, and hence G[w1, w2, w3, w4] is isomorphic to 2K2; one vertex in each set is of degree 1
and one is of degree 2, and G[w1, w2, w3, w4] is isomorphic to P3; or all of it vertices are of
degree 2, in which case G[w1, w2, w3, w4] is isomorphic to the 4-cycle, which contradicts the
assumption that the girth of G is at least 6. �

The number of cycles through any edge of the graph depends now on the form of
G[w1, w2, w3, w4].

Lemma 4.2. Let k ≥ 6, g = 2m ≥ 6. Let G be a (k, g)-graph of excess 4, u, v be two
adjacent vertices in G, f be the edge {u, v}, and w1, w2, w3, w4 be the four excess vertices
with respect to f .

1. if G[w1, w2, w3, w4] is isomorphic to 2K2, then cG(f, g) = (k − 1)m − 2k + 2;

2. if G[w1, w2, w3, w4] is isomorphic to P3, then cG(f, g) = (k − 1)m − 2k + 3.

Proof. Let us assume again that w1, w2 are attached to the subtree rooted at u, and w3, w4

to the subtree rooted at v.
If G[w1, w2, w3, w4] is isomorphic to 2K2, the number of edges between w1, w2 and the

corresponding leaves of the Moore tree is 2(k − 1). Thus, the number of horizontal edges
between the two sets of leaves of the Moore tree is equal to (k−1)m−2(k−1) (with (k−1)m

being the number of horizontal edges in a (potential) (k, g)-Moore graph). As pointed out
before, each horizontal edge corresponds to exactly one g-cycle through f , and no other
g-cycles through f exist. Thus, cG(f, g) = (k − 1)m − 2(k − 1).

If G[w1, w2, w3, w4] is isomorphic to P3, the number of horizontal edges between the two
sets of leaves of the Moore tree is equal to (k − 1)m − (k − 1) − (k − 2), and the result
follows in exactly the same way as above. �
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In order to employ the above formulas, we would have to find significant restrictions
on the number of edges of one type or the other. On the other hand, it is easy to find
arithmetic conditions on k and g that exclude the existence of ‘non-mixed’ (k, g)-graphs
of order M(k, g) + 4 (by non-mixed we mean graphs that contain only edges for which
G[w1, w2, w3, w4] is isomorphic to 2K2 or only edges for which G[w1, w2, w3, w4] is isomorphic
to P3, but not both). Hence, the situation appears similar to that of the odd-girth graphs of
excess 2. Fortunately, this is not the case. In what follows, we show that even-girth graphs
of excess 4 and girth larger than 6 cannot be mixed when it comes to counting cycles of
length g.

We begin our argument by counting g-cycles passing through vertices. In order to do
this, we have to subdivide one of the possibilities considered above for edges (the case 2K2).
For the first time, this will turn to our advantage.

Let u be a vertex of G incident with an edge f = {u, v} for which the subgraph induced
by Xf is isomorphic to 2K2. Two of the vertices in Xf are then of distance g

2
from u (let us

denote them w1, w2) and two of them are of distance g+2
2

from u (say, w3, w4). The vertices
w3 and w4 either share a neighbor (which necessarily has to belong to the set of vertices of
distance g−2

2
from v), or they do not share a neighbor. It is important to note that if g is

assumed to be greater than 4, w3, w4 cannot share more than one neighbor as that would
lead to a 4-cycle. We say that u is of the first 2K2 type if w3, w4 share a neighbor, and we
say that u is of the second 2K2 type if they do not. Having defined the types, we can now
state the first lemma the proof of which is quite elementary. In analogy with the notation
introduced previously for edges, cG(u, g) stands for the number of g-cycles in G rooted at
the vertex u.

Lemma 4.3. Let k ≥ 6, g = 2m ≥ 6. Let G be a (k, g)-graph of excess 4 and u be a vertex
of G. Then,

1. if u is of the first 2K2 type, then

cG(u, g) = ((k − 1)m − 2k + 2) + ((k − 1)m−1 − 2k) ·
(
k − 1

2

)
+ k3 − 4k2 + 5k − 1;

2. if u is of the second 2K2 type, then

cG(u, g) = ((k − 1)m − 2k + 2) + ((k − 1)m−1 − 2k) ·
(
k − 1

2

)
+ k3 − 4k2 + 5k − 2;

3. if u is incident with an edge f whose excess set Xf is isomorphic to P3, then

cG(u, g) = ((k − 1)m − 2k + 3) + ((k − 1)m−1 − 2k) ·
(
k − 1

2

)
+ k3 − 4k2 + 5k − 2.

Proof. Let u be of the first 2K2 type with respect to the edge f = {u, v}. The g-cycles
passing through u come in two kinds. First, there are the (k − 1)m − 2k + 2 g-cycles
containing f as claimed in Lemma 4.2. Then there are g-cycles containing u but avoiding
f . All of them have to consist of two disjoint g−2

2
-paths starting at u and connected through
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a pair of edges attached to vertices of distance g
2

from u (the endpoints of the two paths)
that share a vertex. The choice of these two final edges completely determines the g-cycles,
so we will count the possible pairs of such edges. Both w1 and w2 are adjacent to k − 1
vertices of distance g−2

2
from u, which gives us 2

(
k−1

2

)
g-cycles through w1 or w2. Of the

(k − 1)
g−2
2 vertices of distance g−2

2
from v, there is one adjacent to both vertices w3, w4,

there are 2(k − 2) vertices adjacent to exactly one of the vertices w3, w4, and the rest are
not adjacent to either w1 or w2. It follows that the vertex adjacent to both w3 and w4 is
incident with k − 3 horizontal edges, and is therefore contained in

(
k−3

2

)
g-cycles rooted at

u. The other 2(k − 2) vertices give rise to 2
(
k−2

2

)
g-cycles, and all the remaining vertices

contribute ((k − 1)
g−2
2 − 2k + 3)

(
k−1

2

)
g-cycles through u. Adding all these cycles yields

cG(u, g) =

((k−1)m−2k+2)+((k−1)m−1−2k+3)·
(
k − 1

2

)
+(2k−4)

(
k − 2

2

)
+

(
k − 3

2

)
+2

(
k − 1

2

)
,

which matches the quantity claimed in Case 1.
If u is of the second 2K2 type, the situation differs only in a few spots. First, there are

the (k − 1)m − 2k + 2 g-cycles containing f . The g-cycles not containing f contain either
one of the w1, w2, and there are 2

(
k−1

2

)
of those, or they pass through the 2k − 2 vertices

of distance g−2
2

from v and adjacent to w3 or w4, which contribute (2k − 2)
(
k−2

2

)
cycles,

or they pass through vertices of distance g−2
2

from v adjacent to neither w3 nor w4 which

finally contribute ((k − 1)
g−2
2 − 2k + 2)

(
k−1

2

)
g-cycles through u. Thus,

cG(u, g) = ((k−1)m−2k+2)+((k−1)m−1−2k+2)·
(
k − 1

2

)
+(2k−2)

(
k − 2

2

)
+2

(
k − 1

2

)
,

and simple arithmetic yields the claim in Case 2.
Assume finally that u is incident with an edge f = {u, v} whose excess set Xf is

isomorphic to P3. Without loss of generality we may assume that w1 is the vertex adjacent
to both w3 and w4. In a way similar to the argument preceding this proof, the vertices
w3, w4 cannot share a neighbor among the vertices of distance g−2

2
from v: they already

share one neighbor, w1, and the existence of another shared neighbor would cause the
existence of a 4-cycle. The counting of cycles through u now follows the usual lines. There
are ((k− 1)m − 2k + 3) cycles containing f (Lemma 4.2),

(
k−2

2

)
cycles containing w1,

(
k−1

2

)
cycles containing w2, (2k − 3)

(
k−2

2

)
cycles through the vertices of distance g−2

2
from v that

are adjacent to w3 or w4, and ((k − 1)m−1 − 2k + 3) ·
(
k−1

2

)
cycles through the vertices of

distance g−2
2

from v that are not adjacent to w3 or w4:

cG(u, g) =

((k−1)m−2k+3)+((k−1)m−1−2k+3) ·
(
k − 1

2

)
+(2k−3)

(
k − 2

2

)
+

(
k − 2

2

)
+

(
k − 1

2

)
.

�
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A simple comparison of the three cases in Lemma 4.3 yields that the first and the third
numbers match while the second is by one smaller than the other two. This means that no
vertex can be simultaneously incident to edges from the first and second part or the second
and third part (since the number of cycles through a vertex has to be unique).

Lemma 4.4. Let k ≥ 6, g = 2m > 6, and let G be a (k, g)-graph of excess 4. Then, G
does not contain edges f for which their corresponding excess set Xf induces a subgraph
isomorphic to P3.

Proof. Suppose that G satisfies the above conditions, and, by means of contradiction, as-
sume that the excess set Xf induces a subgraph isomorphic to P3 for some edge f of G.
Let us stress right away that we are assuming that g > 6 and therefore G does not contain
cycles of length 4 or 6. Let f = {u, v}, Xf = {w1, w2, w3, w4}, and the vertices adjacent
to u but distinct from v be denoted by v1, v2, . . . , vk−1. Also, without loss of generality,
assume that w1 and w2 are of distance g

2
from u and the vertex adjacent to both w3 and w4

is the vertex w2. The number of edges connecting w2 to the branch of height g−2
2

rooted at
u is then k − 2, and therefore w2 is not attached to one of the sub-branches rooted at the
neighbors v1, v2, . . . , vk−1 (i.e., w2 is of distance greater than g−2

2
from one of the vertices

v1, v2, . . . , vk−1). Again without loss of generality, we may assume that this special vertex
is the vertex v1. Let f ′ be the edge {u, v1}. Since the distance of w2 from v1 is greater
than g

2
, the excess of f ′ contains the vertex w2 together with the vertices w3, w4. It follows

that the subgraph induced by Xf ′ contains w2, w3 and w4 and since w2 is adjacent to both
w3 and w4, the degree of w2 in the induced subgraph must be 2, and hence the subgraph
induced by f ′ = {u, v1} must be isomorphic to P3.

Next let f ′′ be the edge {u, v2}. Then both w1 and w2 are of distance g−2
2

from v2,
and it is easy to see that the excess set of f ′′ must consist of the vertices w3, w4 and two
vertices w5, w6 belonging to the branch rooted at v, of distance g−2

2
from v. We claim

that the subgraph induced in G by the set Xf ′′ = {w3, w4, w5, w6} cannot be isomorphic to
P3, as this would give rise to a 4-cycle formed by the vertices w2, w3, w5, w4 or the vertices
w2, w3, w6, w4, depending on whether w5 or w6 would be of degree 2 in the induced subgraph.
Hence, the subgraph of G induced by Xf ′′ is isomorphic to 2K2. We further claim that the
vertices w5, w6 cannot share a neighbor, as if they did share a neighbor, this would give rise
to a 6-cycle formed of the vertices w2, w3, w4, w5, w6 and the shared neighbor. We conclude
that the edge f ′′ = {u, v2} is of the second 2K2 type. This means that u is incident to
f ′ = {u, v1} for which the subgraph induced by Xf ′ is isomorphic to P3 and to f ′′ = {u, v2}
which of the second 2K2 type. However, as pointed out in the discussion preceding this
lemma, no vertex of G can be incident with an edge whose excess set induces P3 and and
at the same time with an edge of the second 2K2 type. Therefore G cannot contain an edge
whose excess set induces P3. �

4.2 Excluding parameter pairs for even girth and ex-

cess 4

Combining Lemma 4.4 with Lemma 4.2 immediately yields:
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Lemma 4.5. Let k ≥ 6, g = 2m > 6, and let G be a (k, g)-graph of excess 4. Then g
divides the number

(M(k, g) + 4) · k
2

· ((k − 1)m − 2k + 2). (4.1)

In order to employ this lemma and to exclude some parameter pairs (k, g) for which no
(k, g)-graphs of excess 4 exist, we derive a number of simple divisibility results.

Lemma 4.6. Let k ≥ 6 and g = 2m > 6.

1. If g = 2p such that p > 3 is prime number and k 6≡ 1, 2 (mod p), then M(k, g)+4 ≡ 6
(mod p).

2. If g = 4 · 3s such that s ≥ 1 and k is divisible by 9, then

M(k, g) + 4 ≡ 4(mod 3s).

3. If g = 2p2 such that p ≥ 3 is a prime number and k is an even number, k 6≡ 1, 2
(mod p), then M(k, g) + 4 ≡ 6(mod p).

4. If g = 4p such that p ≥ 3 is a prime number and k 6≡ 1, 2 (mod p), then M(k, g)+4 ≡
2k + 4(mod p).

5. If k ≡ 3(mod g), then M(k, g) + 4 ≡ 2 · 2g/2 + 2(mod g).

Proof. We proceed case by case.

(1) Let M(k, g) ≡ r (mod p). Since M(k, g) = 2
(

(k−1)g/2−1
k−2

)
and (k − 2, p) = 1,

we get

2((k − 1)g/2 − 1) ≡ r(k − 2) (mod p).

Since (k− 1, p) = 1, Fermat’s Little Theorem asserts (k− 1)p ≡ k− 1(mod p). Thus,
(k− 2)(r− 2) ≡ 0(mod p). Due to the second restriction we have chosen for k, p does
not divide k − 2, and therefore it must divide r − 2. Hence, r ≡ 2(mod p), which
means that M(k, g) + 4 ≡ 6(mod p).

(2) Let M(k, g) ≡ r (mod 3s). Since (k − 2, 3s) = 1. As above, we obtain

2((k − 1)g/2 − 1) ≡ r(k − 2) (mod 3s).

Since (k − 1, 3s) = 1 and the Euler’s totient function value ϕ(3s) = 2 · 3s−1, Euler’s
Theorem yields

2((k − 1)g/2 − 1) ≡ 2((k − 1)2·3s − 1) ≡ 2(1− 1) ≡ 0 (mod 3s).

Thus, (k − 2)r ≡ 0(mod 3s), and consequently, r ≡ 0(mod 3s). Therefore M(k, g) +
4 ≡ 4(mod 3s).
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(3) Following the same line of argument as above, 2((k − 1)g/2 − 1) ≡ r(k − 2)(mod p).
Since (2, p2) = 1, using the multiplicativity of Euler’s function we obtain

ϕ(g) = ϕ(2p2) = ϕ(2) · ϕ(p2) = p2(1− 1

p
) = p2 − p.

Since (k − 1, g) = 1, applying Euler’s Theorem implies (k − 1)ϕ(g) ≡ (k − 1)p
2−p ≡ 1

(mod g) i.e. (k − 1)p
2 ≡ (k − 1)p (mod g). Thus, r(k − 2) ≡ 2((k − 1)p − 1)(mod g),

and hence, r(k − 2) ≡ 2(k − 2)(mod p). Since (k − 2, p) = 1, r ≡ 2(mod p), and
M(k, g) + 4 ≡ 6(mod p).

(4) Applying Fermat’s Little Theorem yields (k− 1)g/2 ≡ (k− 1)2p ≡ ((k− 1)p)2 ≡ (k− 1)2

(mod p). Therefore, 2((k−1)g/2−1)) ≡ 2(k2−2k+ 1−1) ≡ 2k(k−2)(mod p). From
this follows that (k− 2)(r− 2k) ≡ 0(mod p) i.e. r ≡ 2k (mod p),M(k, g) + 4 ≡ 2k+ 4
(mod p).

(5) Since k − 2 ≡ 1(mod g), M(k, g) ≡ 2((k − 1)g/2 − 1) ≡ 2 · 2g/2 − 2(mod g), i.e
M(k, g) + 4 ≡ 2 · 2g/2 + 2(mod g).

This completes the proofs for all cases of the lemma. �

We are finally ready to exclude infinite families of parameter pairs.

Theorem 4.7. Let k ≥ 6, g = 2m > 6. No (k, g)-graphs of excess 4 exist for parameters
k, g satisfying at least one of the following conditions:

(1) g = 2p, with p ≥ 5 a prime number, and k 6≡ 0, 1, 2(mod p);

(2) g = 4 · 3s such that s ≥ 4, and k is divisible by 9 but not by 3s−1;

(3) g = 2p2 with p ≥ 5 a prime number, and k 6≡ 0, 1, 2(mod p) and even;

(4) g = 4p, with p ≥ 5 a prime number, and k 6≡ 0, 1, 2, 3, p− 2(mod p);

(5) g ≡ 0(mod 16), and k ≡ 3(mod g).

Proof. Each of the cases of our proof starts by assuming that there exists a (k, g)-graph G
of order M(k, g) + 4 whose parameters satisfy the corresponding conditions, after which we
derive a contradiction with the divisibility of (4.1) by g from Lemma 4.5.

(1) Lemma 4.6 together with (2, p) = 1 yield M(k,g)+4
2

≡ 3(mod p). Since p divides neither
k nor k− 1, k((k− 1)p− 2(k− 1)) ≡ −k(k− 1) 6≡ 0(mod p). Hence, neither factor of
the left side of (9.1) is congruent to 0(mod 2p), which contradicts (4.1).

(2) Lemma 4.6 forces M(k,g)+4
2

≡ 2(mod 3s). Since ϕ(3s) = 2·3s−1, using Euler’s Theorem,

we obtain (k − 1)2·3s−1 ≡ 1(mod 3s), and consequently, k((k − 1)2·3s − 2(k − 1)) ≡
−k(2k − 3)(mod 3s). Since k is not divisible by 3s−1, and since k ≡ 0(mod 9) yields
that 2k− 3 is not divisible by 9, the product −k(2k− 3) 6≡ 0(mod 3s), and we obtain
a contradiction with (4.1) again.
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(3) The assumptions and Lemma 4.6 imply M(k,g)+4
2

≡ 3(mod p). Since (k − 1, p) = 1,

using Euler’s Theorem gives us (k− 1)p(p−1) ≡ 1(mod p), and therefore k((k− 1)p
2 −

2(k− 1)) ≡ k((k− 1)p− 2(k− 1)) ≡ −k(k− 1)(mod p). Since p divides neither k nor
k − 1, we arrive at the usual contradiction with (4.1).

(4) Since p does not divide k + 2, M(k,g)+4
2

≡ k + 2 6≡ 0(mod p) by Lemma 4.6. Since p
does not divide k, k−1, or k−3, we have k((k−1)2p−2(k−1)) ≡ k((k−1)2−2k+2) ≡
k(k−1)(k−3) 6≡ 0(mod p). The two congruencies together yield a contradiction with
(4.1).

(5) The congruence k ≡ 3(mod g) implies (k − 1)g/2 − 2k + 2 ≡ 2g/2 − 4(mod g), while

Lemma 4.6 yields (M(k,g)+4)k
2

≡ 3(2·2g/2+2)
2

(mod g). Hence,

(M(k, g) + 4)k

2
((k − 1)g/2 − 2k + 2) ≡

≡ 3(2 · 2g/2 + 2)

2
(2g/2 − 4) ≡ 3(2g/2 + 1)(2g/2 − 4) (mod g).

Using g ≡ 0(mod 16) gives us g
2
≥ 8, and therefore 2g/2, 2g/2+2, and 2g are all

congruent to 0 modulo 16, which implies (M(k,g)+4)k
2

((k−1)g/2−2k+2) ≡ 4(mod 16),

i.e., (M(k,g)+4)k
2

((k − 1)g/2 − 2k + 2) is not congruent to 0 modulo g, and we obtain a
contradiction with (4.1).

This completes the proofs. �

The non-existence of (k, g)-graphs of excess 4 with parameters satisfying the conditions
of the above theorem does not immediately imply that the excess of a (k, g)-cage must
be larger than 4. Nevertheless, combining the above result with the previously known
restrictions does imply such conclusion for all of the above parameter pairs. Specifically,
as noted in the introduction, there are no Moore graphs of girth 10 or girth greater than
12. Furthermore, Theorem 2.1 claims the non-existence of even girth graphs of excess 1
and degree k ≥ 3 as well as excess 3 and degree k ≥ 5. Finally, Theorem 2.2, excludes
the possibility of even girth graphs of girth greater than 6 and excess 2. These results,
combined with Theorem 4.7 yield the following.

Corollary 4.8. Let (k, g) be one of the pairs of parameters listed in Theorem 4.7. Then,
n(k, g) ≥M(k, g) + 5, for k even, and n(k, g) ≥M(k, g) + 6, for k odd.

Proof. We have proved the corollary prior to its statement for all g > 12. The only pair
(k, g) covered by Theorem 4.7 that cannot be excluded based on the above arguments
is the pair (3, 10). However, n(3, 10) is known to be equal to 70 (see e.g. [33]), while
M(3, 10) = 62. Hence, the claim is true for the pair (3, 10) as well. The case of odd k
follows from the fact that the Moore bound for even g is even, and the order of a k-regular
graph with odd k must be even. �



38 Chapter 4. Improved lower bounds for the orders of even girth cages

4.3 Graphs of even girth and excess larger than 4

It has been observed in the previous chapter that in case of odd degree, even girth, and
excess 2, all subgraphs induced by edge excess vertices are isomorphic to K2. In the previous
section, we have proved that in case of even girth greater than 6 and excess 4, all subgraphs
induced by the edge excess sets must be isomorphic to 2K2. If one was willing to see a
pattern in these observations, one might be tempted to try to prove that the edge excess
set induced subgraphs of graphs with small excess and large even girth must always be
isomorphic to tK2, for some t ≥ 1. Graphs of such structure play a prominent role in [15]
and are in a way the extreme (k, g)-graphs with odd k and even g and the property that
each subgraph Xf induced by the e = 2t excess vertices associated with an edge f contains
the minimum necessary number of edges, namely t edges. These are also the graphs that
maximize the number of girth cycles through any edge of the graph. In this last section of
this chapter, we prove that for any arbitrarily large excess e there exist parameters k and g
with the property that the excess of all (k, g)-graphs from our restricted family exceeds e.

Lemma 4.9. Let k ≥ 6, g = 2m ≥ 6, and let G be a (k, g)-graph of even excess e = 2t ≤
k− 2. If f is an edge of G with excess set Xf of size 2t and the subgraph induced by Xf in
G consists of t copies of K2, then

cG(f, g) = (k − 1)m − t(k − 1).

Proof. The proof is almost identical to that of Lemma 4.2, Part 1. �

Theorem 4.10. For every e ≥ 1, there exist parameters k, g, k odd, g even, such that if G
is a (k, g)-graph satisfying the property that for every edge f of G the subgraph induced by
Xf in G is isomorphic to disjoint copies of K2’s, then G has excess larger than e.

Proof. Let m be a prime larger than e, and also large enough to admit the existence of an
odd k such that e+ 2 < k < m and k ≡ 5 or 7 (mod 8). Take g = 2m, and assume that G
is a (k, g)-graph satisfying the property from our theorem. We claim that the excess of G
must be larger than e. To see this, assume to the contrary that the excess of G is e′ ≤ e.
Then e′ < k − 2, and Theorem 2.1 asserts that G is bipartite, in which case we know that
e′ = 2t′, for some integer t′. Employing Lemma 4.9 yields cG(f, g) = (k − 1)m − t′(k − 1),

for all edges f ∈ E(G), and therefore g divides (M(k,g)+e′)·k
2

· ((k − 1)m − t′(k − 1)). Since

M(k, g) = 2 (k−1)m−1
k−2

, the girth g = 2m of G, and therefore also the prime m, divide the
product

(2 (k−1)m−1
k−2

+ e′) · k
2

· ((k − 1)m − t′(k − 1)).

We claim, however, that neither of the two factors of this product is divisible by m. We
prove our claim separately for each of the factors. Since m is a prime, it follows from
Fermat’s Little Theorem that (k − 1)m ≡ k − 1 (mod m), and therefore

(2 (k−1)m−1
k−2

+ e′) · k
2

≡ (2 + e′)

2
· k (mod m).
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Since 2 ≤ e′ + 2 ≤ e + 2 < k < m, (2+e′)
2
≡ (1 + t′) 6≡ 0 (mod m). Similarly, the choice

e + 2 < k < m yields k 6≡ 0 (mod m), and thus neither m nor g divide the first of the
factors. Employing Fermat’s Little Theorem again, (k − 1)m − t′(k − 1) ≡ (k − 1) · (1− t′)
(mod m). Note that our choice of k ≡ 5 or 7 (mod 8) allows us to use Theorem 2.2 and
conclude that e′ 6= 2, hence t′ 6= 1, and (1− t′) 6≡ 0 (mod m). As k− 1 is also not divisible
by m, the factor (k− 1)m − t′(k− 1) is not divisible by m either. Since none of the factors
is congruent to 0 modulo m, the product (M(k, g) + e′) · k

2
· ((k − 1)m − t′(k − 1)) is not

divisible by g, and we obtain a contradiction. The excess of G is therefore bigger than e. �

If one were able to prove that (a sufficient portion) of the (k, g)-graphs whose parameters
satisfy the conditions stated at the beginning of the proof of Theorem 4.10 must have the
structure described in the statement of the theorem, the above result would yield that for
each excess e > 0, there exist parameters (k, g) with the property that the excess of any
(k, g)-graph G exceeds e. The existence of such parameter pairs for arbitrarily large e has
already been established for the (much more restricted) family of vertex-transitive (k, g)-
graphs [12], but has only been conjectured for the case of general cages. Using as further
evidence the excess of the best known (k, g)-graphs listed in the tables of [33], the existence
of (k, g)-cages of arbitrarily large excess feels like a foregone conclusion. Nevertheless,
any such proof has been elusive so far, and the conjecture, though widely believed, stays
frustratingly unproved.



.



Chapter 5

On bipartite graphs of excess 4

The results of this chapter are published in [36]. Motivated by the result in Theorem 4.7,
which was obtained through counting cycles in a hypothetical graph with given parameters
and excess 4, in this chapter we address the question of the existence of (k, g)-graphs of
excess 4 using spectral properties of their adjacency matrices. The question of the existence
of (k, g)-graphs of excess 4 is wide open, and prior to the results given in the previous
chapter, no such results were known. The results contained in this chapter extend further
our understanding of the structure of the potential graphs of excess 4.

5.1 Necessary conditions for the existence of graphs

of even girth and excess 4

Let us assume that k ≥ 6, g = 2d ≥ 6 and G is a (k, g)-graph of excess 4 and order n. Due
to the result of Biggs stated in Theorem 2.1, the restriction of the parameters k, g given
above allows us to conclude that G is a bipartite graph with diameter d+1. For each integer
i in the range 0 ≤ i ≤ d+ 1, we consider the distance matrices Ai. Clearly, A0 = I, A1 = A,
the usual adjacency matrix of G. The last non-zero matrix is the matrix Ad+1, which we
denote by E and refer to it as the excess matrix, that is, E is the adjacency matrix of the
graph with the same vertex set V as G such that two vertices of V are adjacent if and only
if they are at distance d + 1. We call this graph the excess graph of G and we denote it
G(E). If J is the all-ones matrix, the sum of the i-distance matrices Ai, for 0 ≤ i ≤ d, with
the matrix E satisfies the identity

d∑
i=0

Ai + E = J.

Let us define the following polynomials:

F0(x) = 1, F1(x) = x, F2(x) = x2 − k;

G0(x) = 1, G1(x) = x+ 1;

H−2(x) = − 1
k−1

, H−1(x) = 0, H0(x) = 1, H1(x) = x;

41
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Pi+1(x) = xPi(x)− (k − 1)Pi−1(x) for


i ≥ 2, if Pi = Fi,
i ≥ 1, if Pi = Gi,
i ≥ 1, if Pi = Hi.

(5.1)

In [72], Singleton gives many relationships between these polynomials. We use two of
them. Given any i ≥ 0,

Gi(x) =
i∑

j=0

Fj(x), (5.2)

Gi+1(x) + (k − 1)Gi(x) = (x+ k)Hi(x). (5.3)

The above defined polynomials have a close connection to the properties of a graph G.
Namely, for t < g, the element (Ft(A))x,y counts the number of paths of length t joining
vertices x and y of G. It follows from (5.2) that Gt(A) counts the number of paths of
length at most t joining pairs of vertices in G. All of the preceding claims can be found in
Delorme, Jørgensen, Miller and Villavicencio [27].

Figure 5.1: The Moore tree and some of the horizontal edges in a potential (4, 6)-graph of
excess 4

The next lemma is based on the structure of G described in Lemma 4.1.

Lemma 5.1. Let k ≥ 6 and g = 2d ≥ 6, and let G be a (k, g)-graph of excess 4. If A is
the adjacency matrix of G and E is the excess matrix of G, then

Fd(A) = kAd − AE.

Proof. Let f = {u, v} be a base edge of the Moore tree and let f1 = {w1, w2}, f2 = {w3, w4}
be the edges of the subgraph induced by Xf . Also, let us assume that d(u,w1) = d(u,w3) =
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d and d(u,w2) = d(u,w4) = d+1. We consider the case when G[w1, w2, w3, w4] is isomorphic
to 2K2, in which case the excess vertices do not share a common neighbour. The other
cases when G[w1, w2, w3, w4] is isomorphic to 2K2 and the excess vertices share a common
neighbour or the subgraph induced by the excess vertices contains P3 are analogous. Since
there are k − 1 paths of length d from u to w1 and w3, by the definition of Fi(x), we have
(Fd(A))u,w1 = (Fd(A))u,w3 = k− 1. Considering the vertices at distance d from u, there are
also the (k − 1)d−1 leaves of the subtree rooted at v. For 2(k − 1) of these vertices, there
exist k−1 paths of length d from u to them. Namely, they are the vertices adjacent to w2 or
w4. For all the other leaves, there are k paths between them and u. Thus, (Fd(A))u,s = 0 if
d(u, s) 6= d, (Fd(A))u,s = k if s is a leaf of a branch rooted at v and not adjacent to w2 and
w4, and (Fd(A))u,s = k−1 if s is w1, w3 or a leaf of a branch rooted at v and adjacent to w2

or w4. This yields the matrix kAd, such that (kAd)u,s = k if d(u, s) = d and (kAd)u,s = 0 if
d(u, s) 6= d. Now, let s be a vertex of G such that d(u, s) = d and s is adjacent to w2 or w4.
If s = w1 or s = w3, then it is easy to see that (AE)u,s = 1. On the other hand, since s is
adjacent to the subtree rooted at u through k− 2 different horizontal edges, it follows that,
between the k − 1 branches of the subtree rooted at u, there exists one sub-branch that is
not adjacent to s through a horizontal edge. Let s1 be the root of that sub-branch. Then,
d(s, s1) = d + 1 and d(u, s1) = 1, which implies (A)u,s1 = 1 and (E)s1,s = 1. Let s2 be the
other vertex at distance d+1 from s. Because all neighbours of u, except s1, are at distance
smaller than d + 1 from s, we have (A)u,s2 = 0 and (E)s2,s = 1. Thus (AE)u,s = 1. If s is
a vertex of G such that d(u, s) = d and s is not adjacent to w2 or w4, then the distance
between s and the neighbours of u is d − 1. In this case, (AE)u,s = 0. If d(u, s) 6= d,
then the distance between s and the neighbours of u is different from d + 1, and therefore
(AE)u,s = 0. The required identity follows from summing up the above conclusions. �

Lemma 5.2. Let k ≥ 6 and g = 2d ≥ 6, and let G be a (k, g)-graph of excess 4. If A is
the adjacency matrix of G, E is the excess matrix of G and J is the all-ones matrix, then

kJ = (A+ kI)(Hd−1(A) + E).

Proof. By the definition of the polynomials Gi(x) and using the fact that G has diameter
d + 1, we conclude J = Gd−1(A) + Ad + E. The relation (5.2), setting i = d, asserts
Gd(A) = Gd−1(A) + Fd(A). Substituting this identity in (5.3), where we fix i = d − 1, we
get kGd−1(A)+Fd(A) = (A+kI)Hd−1(A). Due to Lemma 5.1 the last identity is equivalent
to kGd−1(A) + kAd + kE = (A + kI)(Hd−1(A) + E). From kJ = kGd−1(A) + kAd + kE
follows kJ = (A+ kI)(Hd−1(A) + E). �

The next theorem gives a relationship between the eigenvalues of the matrices A and E
(this result is an analogue of Theorem 3.1 in Delorme, Jørgensen, Miller and Villavicencio
[27]).

Theorem 5.3. If µ(6= ±k) is an eigenvalue of A, then

Hd−1(µ) = −λ,

where λ is an eigenvalue of E.
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Proof. Let us suppose that µ is an eigenvalue of A. Since G is a k-regular graph, the all-ones
matrix J is a polynomial in A. This implies that any eigenvector of A is also an eigenvector
of J . From kJ = (A+ kI)(Hd−1(A) + E) and since Hd−1(A) is also a polynomial in A, we
have that E is a polynomial in A, and consequently, every eigenvector of A is an eigenvector
of E. Therefore, the eigenvalues of kJ are of the form (µ + k)(Hd−1(µ) + λ). As is well
known, the eigenvalues of kJ are kn (with multiplicity 1) and 0 (with multiplicity n− 1).
The eigenvalue kn corresponds to µ = k, and so all the remaining eigenvalues, except for
−k, satisfy the above equation. �

Since the eigenvalues of a disjoint union of cycles are known, we are now in a position
to determine the spectrum of A.

Lemma 5.4. Let k ≥ 6 and g = 2d ≥ 6, and let G be a (k, g)-graph of excess 4. If A and
E are, respectively the adjacency matrix and the excess matrix of G, then:

(1) The matrix E is the adjacency matrix of a graph G(E), consisting of a disjoint union
of c cycles Ci of length li with 1 ≤ i ≤ c. Moreover, if d is odd and V1 and V2 are
the two partition sets of the bipartite graph G, then every cycle in G(E) is completely
contained either in V1 or V2.

(2) The spectrum of A consists of:

(2.1) ±k, c−2 solutions of Hd−1(x) = −2, and one solution of each equation Hd−1(x) =
−2 cos(2πj

li
), for j = 1, ..., li − 1, 1 ≤ i ≤ c and d odd.

(2.2) ±k, c− 1 solutions of Hd−1(x) = −2, and one solution of each equation (except
one) Hd−1(x) = −2 cos(2πj

li
), for j = 1, ..., li − 1, 1 ≤ i ≤ c and d even.

Proof. (1) Our proof is analogous to that of Kovács [51] for girth 5, and Garbe’s proof [44]
for odd girth g = 2k + 1 > 5. Let f = {u, v} be a base edge of a bipartite Moore tree
of G. Lemma 4.1 asserts that there exist exactly two vertices of G at distance d + 1 from
u. Namely, they are the excess vertices adjacent to the leaves of the subtree rooted at v.
The excess matrix E is the adjacency matrix for the graph G(E) with same vertex set V
as G such that two vertices of G(E) are adjacent if and only if they are at distance d + 1.
Because, for each vertex u ∈ V (G), there are exactly two vertices at distance d + 1 from
u, every component of G(E) is a cycle. Let c be the number of these cycles and let li,
for i = 1, ..., c, be the lengths of these cycles ordered in an arbitrary manner. Moreover,
if d is an odd number, any two vertices of G at distance d + 1 lie in the same partite set.
Therefore, any connected component of G(E) is entirely contained either in V1 or V2.
(2) The eigenvalues of an n-cycle are known and are equal to 2 cos(2πj

n
), for j = 0, ..., n− 1.

Therefore the eigenvalues of G(E) are 2 cos(2πj
li

), for j = 0, 1, ..., li − 1 and 1 ≤ i ≤ c, (see
Garbe [44]). Since G is a k-regular bipartite graph, it has (among others) the eigenvalues k
and −k. Let V1 and V2 be the partition sets of G. Hence, the eigenvector of A corresponding
to k consists of the all-ones vector j, and the eigenvector corresponding to −k is the vector
j′ with values 1 on V1 and values −1 on V2. If d is an odd number, then two vertices of
G(E) are adjacent if and only if they are in the same partite set. Therefore E · j′ = 2j′,
which implies that from the set of c solutions on Hd−1(x) = −2, we need to subtract two
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multiplicities for the eigenvalues k and −k. If d is an even number, then two vertices of
G(E) are adjacent if and only if they are in different partite sets. Thus E · j′ = −2j′. In
this case, from the set of c solutions on Hd−1(x) = −2, we need to subtract one multiplicity
for the eigenvalue k and from the set of all solutions on Hd−1(x) = 2, we need to subtract
one multiplicity for the eigenvalue −k. �

Lemma 5.5. Let k ≥ 6 and g = 2d ≥ 6 and let G be a (k, g)-graph of excess 4. Let c be
the number of cycles of G(E) and c2 be the number of cycles of even length. Then:

(1) If Hd−1(x)− 2 is irreducible over Q[x], then d− 1 divides c− 1 or c− 2.

(2) If Hd−1(x) + 2 is irreducible over Q[x], then d− 1 divides c2 − 1 or c2.

Proof. (1) Combining Theorem 5.3 and Lemma 5.4 (2), we obtain that Hd−1(x) − 2 is an
irreducible factor of the characteristic polynomial of A. Realizing that all the roots of an
irreducible factor of a characteristic polynomial of a given rational symmetric matrix have
the same multiplicities, (see Kovács [51]), from Lemma 5.4 (2) we have the following: If d
is an even number, then the d− 1 roots of Hd−1(x)− 2 have multiplicity c−1

d−1
, which has to

be a positive integer. If d is odd, then the d− 1 roots have multiplicity c−2
d−1

.
(2) This proof follows the same reasoning as (1). �

We can base the testing of irreducibility of Hd−1(x)± 2 on the well known Eisenstein’s
criterion that asserts for a polynomial f(x) =

∑n
i=0 aix

i ∈ Z[x] and a prime p that divides
ai for all 0 ≤ i < n, does not divide an and p2 does not divide a0. Now we are ready for
the main result of this section.

Theorem 5.6. Let k(≥ 7) be an odd number and let g = 2d ≥ 8. Let c be the number of
cycles of G(E) and c2 be the number of cycles with even length. If there exists a (k, g)-graph
of excess 4, then:

(1) If d is an odd number, then d− 1 divides c− 2 and c2.

(2) If d is an even number, then d− 1 divides c− 1 and c2 − 1.

Proof. According to Lemma 5.5, it is enough to prove that the polynomials Hd−1(x) − 2
and Hd−1(x) + 2 are irreducible. We prove, using induction on d ≥ 4, that Hd−1(x) =
xd−1 + (k−1)Pd−3(x), where Pd−3(x) is an integer polynomial of degree d−3. We calculate
H3(x) = x3 − 2(k − 1)x. Let us suppose that the above formula holds for Hd−2(x) and
Hd−3(x). That yields

Hd−1(x) = x(xd−2 + (k − 1)Pd−4(x))− (k − 1)(xd−3 + (k − 1)Pd−5(x))=
= xd−1 + (k − 1)Pd−3(x).

Therefore, Hd−1(x)± 2 = xd−1 + (k− 1)Pd−3(x)± 2. By the induction hypothesis, it follows

that Hd−1(0) = (−1)
d−1
2 (k− 1)

d−1
2 for an odd d, and Hd−1(0) = 0 for an even d. Hence, for

an odd d(≥ 5) |(−1)
d−1
2 (k− 1)

d−1
2 ± 2| is not divisible by 22, and clearly for an even d(≥ 4),

±2 is not divisible by 22. Since k−1 is even, it follows that every coefficient on Hd−1(x)±2
except for the coefficient 1 of xd−1 is divisible by 2. Thus, the conditions of the Eisenstein’s
criterion are satisfied, and Hd−1(x)± 2 is irreducible. �
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5.2 The non-existence of bipartite graphs of cyclic or

bicyclic excess

In this section we deal with the same family of graphs considered in the previous section.
Again, let k ≥ 6 and g = 2d ≥ 6, and let G be a (k, g)-graph of excess 4 and order n.
Clearly, n is an even number. We proved that the excess graph G(E) consists of a disjoint
union of c cycles Ci, for 1 ≤ i ≤ c. If c = 1 and G(E) consists of an n-cycle, then G is of
cyclic excess 4, and if c = 2 and G(E) consists of a disjoint union of two cycles, then G is
of bicyclic excess 4. These are the graphs we study in this section. Note that there is no
graph G with cyclic excess 4 if d is an odd number; in this case, we showed that each cycle
of G(E) is completely contained either in V1 or V2.

Let d be an even number and let Ln be an n-cycle formed by the vertices of G(E). If
A
′

is the adjacency matrix of Ln, its characteristic polynomial χ(Ln, x) satisfies χ(Ln, x) =
(x − 2)(x + 2)(Rn(x))2, where Rn is a monic polynomial of degree n

2
− 1. Consider the

factorization xn − 1 =
∏

l|n Φl(x), where Φl(x) denotes the l-th cyclotomic polynomial . In
the following paragraph, we summarize the properties of cyclotomic polynomials as listed
in Delorme and Villavicencio [28].
The cyclotomic polynomial Φl(x) has integral coefficients, it is irreducible over Q[x], and it
is self-reciprocal (xφ(l)Φl(1/x) = Φl(x)). From the irreducibility and the self-reciprocity of
Φl(x) follows that the degree of Φl(x) is even for l ≥ 2.
Thus, we obtain the following factorization of Rn(x) : Rn(x) =

∏
3≤l|n fl(x), where fl is an

integer polynomial of degree φ(l)
2

satisfying xφ(l)/2fl(x+ 1/x) = Φl(x). Also, fl is irreducible
over Q[x], f3(x) = x + 1, f4(x) = x, f5(x) = x2 + x − 1 and f6(x) = x − 1. Substituting

y = −Hd−1(x) into χ(Ln,y)
(y−2)

, we obtain a polynomial F (x) of degree (n − 1)(d − 1), which

satisfies F (A)u = 0 for each eigenvector u of A orthogonal to the all -one vector. Then,
Fl,k,d−1(x) = fl(−Hd−1(x)) yields

F (x) = (−Hd−1(x) + 2)
∏

3≤l|n

(Fl,k,d−1(x))2.

Lemma 5.7. Let g = 2d > 6, and l ≥ 3 be a divisor of n. If there is a (k, g)-graph with
cyclic excess 4 and order n, then Fl,k,d−1(x) must be reducible over Q[x].

Proof. The degree of Fl,k,d−1(x) is equal to (d−1)φ(l)
2

. If Fl,k,d−1(x) is irreducible over Q[x],
then all its roots must be eigenvalues of A. Employing Observation 3.1. from Delorme
and Villavicencio [28], we conclude that there are at most φ(l) roots of Fl,k,d−1(x) that are

eigenvalues of A. Thus (d − 1)φ(l)
2

=φ(l), that is, d = 3. This contradicts the assumption
that 2d > 6. �

Note that deg(Fl,k,d−1(x)) = d − 1 if and only if φ(l) = 2, that is, if and only if
l ∈ {3, 4, 6}.

Lemma 5.8. Let k ≥ 6 and g = 2d > 6, and let n be the order of a (k, g)-graph with cyclic
excess 4.

(1) If n ≡ 1(mod 3), then Hd−1(x)− 1 must be reducible over Q[x].
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(2) If n ≡ 0(mod 4), then Hd−1(x) must be reducible over Q[x].

(3) If n ≡ 0(mod 6), then Hd−1(x) + 1 must be reducible over Q[x].

Proof. It follows directly from Lemma 5.7, with the additional assumptions f3(x) = x +
1, f4(x) = x and f6(x) = x− 1. �

If n ≡ 0(mod 4), then using the formula for the order of G, d − 1 must be odd. On
the other hand, since H1(x) = x,H3(x) = x3 − 2(k − 1)x and Hd−1(x) = xHd−2(x)− (k −
1)Hd−3(x), we see that if d − 1 is an odd number, then x divides Hd−1(x), which implies
that Hd−1(x) is reducible. Therefore, (2) holds.
The irreducibility of the polynomials Hd−1(x) − 1 over Q[x] is examined in Delorme,
Jørgensen, Miller and Villavicencio [27], where it is analytically proven that these poly-
nomials are irreducible for d ∈ {4, 6, 8}; and the paper contains a conjecture that if d ≥ 10,
then Hd−1(x)− 1 is irreducible. From the irreducibility of Hd−1(x)− 1, we obtain the main
non-existence result of our paper.

Theorem 5.9. If k and g satisfy one of the following conditions, there exists no (k, g)-graph
of cyclic excess 4:

(1) k ≡ 1, 2(mod 3) and g = 8.

(2) k ≡ 1(mod 3) and g = 12.

(3) k ≡ 1(mod 3) and g = 16.

Proof. Because the order of the graphs is equal to

4 + 2
(
1 + (k − 1) + · · ·+ (k − 1)(g−2)/2

)
,

we conclude n ≡ 0(mod 3). Since the polynomial Hd−1(x) − 1 is known to be irreducible
for d ∈ {4, 6, 8}, we get a contradiction to (1) from Lemma 5.8. �

Remark 5.10. Since d is an even number, Theorem 5.6 asserts that d− 1 divides c− 1 and
c2 − 1. This claim is satisfied because c = c2 = 1.

Next, let us consider graphs of bicyclic excess 4. In this case, we can assume an arbitrary
(even or odd) d, as this case does not depend on the parity of d. So, let G(E) be a graph
consisting of a disjoint union of two cycles C1 and C2. If d is an odd number, then the
vertex sets of the cycles C1 and C2 correspond to the partite sets V1 and V2, respectively.
If n ≡ 0(mod 4), d is even, each edge of C(E) has endpoints in V1 and V2. Therefore, each of
the cycles has even length, that is, c2 = 2. Furthermore, k− 1 must be odd. Unfortunately,
this will not help us in excluding any family of pairs (k, g) for which G does not exist. In
fact, for an odd d−1 and an odd k−1, we cannot conclude the irreducibility of Hd−1(x)+2,
thus, we cannot employ Lemma 5.5.
If n ≡ 2(mod 4) and d is odd, then the lengths of C1 and C2 are equal to n

2
(clearly,

n = 2s+ 1 is odd). Therefore c2 = 0, and d− 1 divides c− 2 and c2.
The main result about the non-existence of graphs G with bicyclic excess 4 is given in

the following theorem.
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Theorem 5.11. If k(≥ 7) is odd and g = 2d ≥ 8, where d is an even integer, then there
exists no (k, g)-graph with bicyclic excess 4.

Proof. We have c = 2. Theorem 5.6 implies that d− 1 divides c− 1, which is a contradic-
tion. �



Chapter 6

On the non-existence of antipodal
cages of even girth

The results of this chapter are published in [37]. In this chapter we investigate in the
existence of cages of even girth and small excess having antipodal property. Recall, a graph
of diameter d is said to be antipodal if, for any vertices u, v, w such that d(u, v) = d and
d(u,w) = d, it follows that d(v, w) = d or v = w, (see e.g. [14]). The n-dimensional
cubes Qn are trivially antipodal graphs. These graphs are bipartite and have the antipodal
property, since every vertex of Qn has a unique vertex at maximum distance from it. Also,
for n ≥ 2, the complete bipartite graph Kn,n is antipodal. Here the antipodal partition is
the same as the bipartition. The dodecahedron is an example of trivially antipodal, but not
bipartite graph. Examples of graphs which are non-trivially antipodal and not bipartite
are the complete tripartite graphs Kn,n,n, which have diameter 2, and the line graph of the
Petersen graph, which has diameter 3. Further potential antipodal cages of even girth may
exist among the (k, 6)-cages of excess e ≤ k − 2. Any graph having the property that for
each its edge the excess set induces a subgraph with just e

2
edges is antipodal. Moreover,

each such graph is a λ-fold cover of a graph D(k, λ), with λ = e
2

+ 1, see Theorem C in
[15]. The cages described in Theorem 2.2 belong to this family of antipodal graphs because
their excess sets induce subgraphs with 1 edge. Finally, let us mention one more known
antipodal cage of even girth, the unique (7, 6)-cage; a graph discovered by O’Keefe and
Wong [66]. This graph is the unique 3-fold cover with girth 6 of the incidence graph of the
points and planes of PG(3, 2). It is also a bipartite and antipodal cage of order 90 and
excess 4, [33].
The problem of the existence of antipodal regular graphs of odd girth was considered by
Bannai and Ito. Using the same approach they used to prove the non-existence of the
regular graphs with excess 1 and girth 2d+ 1 > 5, they proved the following result.

Theorem 6.1 (Bannai and Ito [6]). For d ≥ 3, there exist no antipodal regular graphs with
diameter d+ 1 and girth 2d+ 1.

Motivated by Theorem 6.1, in this chapter we address the question of the existence of
the antipodal (k, g)-cages of even girth and excess e ≤ k − 2. Employing the methodology

49
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used in [6], [15] and [67], we prove the non-existence of antipodal (k, g)-cages of excess e,
for k ≥ e+ 2 ≥ 6 and g = 2d ≥ 8; Theorem 6.12.

6.1 On (k, g)-cages of even girth and excess e ≤ k − 2

Let k, g, d and e be positive integers such that k ≥ e + 2 and g = 2d ≥ 6. Let G be
a (k, g)-cage of excess e; Theorem 2.1 asserts that e is even and G is a bipartite graph of
diameter d + 1. Since G is a bipartite graph, it contains no odd cycle; consequently there
exists no edge between the excess vertices of the same partite set. Moreover, in order to
balance the Moore tree of G and to pair out the horizontal edges of G, it is easy to observe
that half (that is, e

2
) of the excess vertices belong to the first, and the other half to the

second partite set of G. It implies that for each vertex of V (G) there exist exactly e
2

vertices
at distance d+ 1 from it (see, for example, Figure 6.1).
In order to study the spectral properties of the (k, g)-cage G, we use the polynomials Gi, Fi
and Hi introduced in Chapter 5.

Figure 6.1: The Moore tree and some of the horizontal edges in a potential (k, 6)-graph of
excess 8

The next lemma is a generalization of Lemma 5.1 from the previous chapter, where it
was used to investigate the properties of cages of even girth and excess 4.

Lemma 6.2. Let k ≥ e+ 2 and g = 2d ≥ 6, and let G be a (k, g)-cage of excess e. If A is
the adjacency matrix of G, then

Fd(A) = kAd − AAd+1.

Proof. Let f = {u, v} be a base edge of the Moore tree for G and let Xf = {w1, w2, . . . , we}
be the excess set with respect to f . Also, let us assume that d(u,w1) = d(u,w3) = . . . =
d(u,we−1) = d and d(u,w2) = d(u,w4) = . . . = d(u,we) = d + 1. Let li be the number
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of edges between wi and the leaves of Tu and Tv, where 1 ≤ i ≤ e. We consider the case
when the excess vertices do not share common neighbour among the leaves of Tu and Tv.
The opposite case can be proved in a similar way. By the definition of Fi(x), we have
(Fd(A))u,wi = li, for each odd i, 1 ≤ i ≤ e − 1. Considering the vertices at distance d
from u, there are the (k − 1)d−1 leaves of Tv. For l2 + l4 + . . . + le of these vertices, there
exist k − 1 paths of length d from u to them. Namely, they are the vertices adjacent to
w2, w4, . . . , we−2 or we. For all the other leaves, there are k paths between them and u.
Thus, (Fd(A))u,s = 0 if d(u, s) 6= d, (Fd(A))u,s = k if s is a leaf of Tv and not adjacent to
w2, w4, . . . , we, (Fd(A))u,s = k − 1 if s is a leaf of Tv and adjacent to one of w2, w4, . . . , we,
and (Fd(A))u,wi = li, for each odd i; 1 ≤ i ≤ e−1. For the matrix kAd we have (kAd)u,s = k
if d(u, s) = d and (kAd)u,s = 0 if d(u, s) 6= d. Now, let s be a vertex of G such that
d(u, s) = d and s is adjacent to one of w2, w4, . . . , we. If s is a vertex among the vertices
w1, w3, . . . , we−1, then it is easy to see that (AAd+1)u,s = k− li. On the other hand, since s
is adjacent to Tu through k− 2 different horizontal edges, it follows that, between the k− 1
branches of Tu, there exists one sub-branch that is not adjacent to s through a horizontal
edge. Let s1 be the root of that sub-branch. Then, d(s, s1) = d+ 1 and d(u, s1) = 1, which
implies (A)u,s1 = 1 and (Ad+1)s1,s = 1. Let si, 2 ≤ i ≤ e

2
be the remaining vertices at

distance d+ 1 from s. Because all neighbours of u, except s1, are at distance smaller than
d + 1 from s, we have (A)u,si = 0 and (Ad+1)si,s = 1, for 2 ≤ i ≤ e

2
. Thus (AAd+1)u,s = 1.

If s is a vertex of G such that d(u, s) = d and s is not adjacent to w2, w4, . . . , we, then
the distance between s and the neighbours of u is d − 1. In this case, (AAd+1)u,s = 0. If
d(u, s) 6= d, then the distance between s and the neighbours of u is different from d + 1,
and therefore (AAd+1)u,s = 0. The required identity follows from summing up the above
conclusions. �

Based on the previous lemma and the properties of the polynomials Gi, Hi and Fi,
we obtain the next two results. Theorem 6.4 is the main result in this section; it gives a
relationship between the eigenvalues of the matrices A and Ad+1. We omit the proofs since
they are analogous to the proofs of Lemma 5.2 and Theorem 5.3 from Chapter 5.

Lemma 6.3. Let k ≥ e + 2 ≥ 4 and g = 2d ≥ 6, and let G be a (k, g)-cage of excess e. If
A is the adjacency matrix of G and J is the all-ones matrix, then

kJ = (A+ kI)(Hd−1(A) + Ad+1).

Theorem 6.4. If θ( 6= ±k) is an eigenvalue of A, then

Hd−1(θ) = −λ,

where λ is an eigenvalue of Ad+1.

6.2 Spectral analysis of antipodal cages of even girth

and small excess

In this section, we study the spectral properties of antipodal (k, g)-cages of even girth
g = 2d ≥ 6 and excess at most k − 2. Let G be such graph, A be its adjacency matrix and
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let n be its order. Recall that G is a bipartite graph of diameter d + 1. Let V1 and V2 be
the partition sets of G. If d is an even number, then any two vertices of V (G) at distance
d+ 1 belong to different partite sets. Clearly, this case is not possible in case of antipodal
bipartite graphs. Therefore, for the rest of the chapter we assume d odd. Since for each
vertex u ∈ V (G) there exist exactly e

2
vertices at the diameter distance d+ 1 (they are the

excess vertices of the same partite set), we observe that the distance matrix Ad+1 of G is
an adjacency matrix of a disjoint union of K e

2
+1-complete graphs. Let c be the number of

such complete graphs. Obviously c = 2n
e+2

. The spectrum of the disjoint union of c complete
graphs of order e

2
+ 1 is known and determined by {( e

2
)c, (−1)n−c} (see Prop. 6 in [26]).

Applying this result in Theorem 6.4, we are in a position to determine the spectrum of A.

Theorem 6.5. If θ(6= ±k) is an eigenvalue of A, then

Hd−1(θ)− ε = 0, (6.1)

where ε = − e
2
, 1.

The roots of Hd−1(x) are equal to 2
√
k − 1 cos iπ

d
for i = 1, . . . , d−1, (see [72]). Therefore

we assume x = −2
√
k − 1 cosφ, 0 < φ < π. Let s =

√
k − 1. Then we have

Hd−1(x) = (−s)d−1 sin dφ

sinφ
.

Putting φ = iπ−α
d

, as suggested in [6] and [15], we transform the equation (6.1) as follows

sinα− ηis−d+1 sin

(
iπ − α
d

)
= 0, (6.2)

where ηi = ε(−1)d+i. The following result follows similarly as Lemma 3.3 from [15] and
Lemma 2.2 from [67].

Lemma 6.6. The equation (6.1) has d − 1 distinct roots θ1 < θ2 < . . . < θd−1, with
θi = −2s cosφi, (0 < φi < π). If we set φi = iπ−αi

d
then

0 < αi < min{s−d+1φi, s
−d+1(π − φi)} if ηi = 1;

max{−s−d+1φi,−s−d+1(π − φi)} < αi < 0 if ηi = −1;

0 < αi < min{ e
2
s−d+1φi,

e
2
s−d+1(π − φi)} if ηi = e

2
;

max{− e
2
s−d+1φi,− e

2
s−d+1(π − φi)} < αi < 0, if ηi = − e

2
.

From the bounds of αi we derive the bounds of φi as follows.

iπ
d+s−d+1 < φi <

iπ
d

if ηi = 1;

iπ
d
< φi <

iπ
d−s−d+1 if ηi = −1;

iπ
d+ e

2
s−d+1 < φi <

iπ
d

if ηi = e
2
;

iπ
d
< φi <

iπ
d− e

2
s−d+1 if ηi = − e

2
.
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We claim that tr(Aq) = n(Bq
d)0,0 for q = 0, 1, . . . , 2d− 1, where

BD =



0 1
k 0 1 0

k − 1 0 1
k − 1 0 1

. . . . . .

. . .

0 k − 1 0 k
k − 1 0


is the (D+1)×(D+1) intersection matrix of a Moore bipartite graph of degree k, diameter
D and of girth 2D, (see [67]). If q < g(G), the number of closed walks of length q that
start from a fixed vertex u is independent of the vertex u and the excess. Furthermore,
the entry (Bq

d g(G)
2
e
)0,0 gives this number, where (Bq

i )0,0 is the (0, 0)-entry of Bq
i , (see [45]).

The number of closed walks of length q in G is given by tr(Aq). Since G is a bipartite
graph, it follows that G contains no closed walk of odd length. Thus, tr(Aq) = n(Bq

d)(0,0) for
q = 1, 3, . . . , 2d−3, 2d−1. Moreover, since the girth of G is 2d we obtain tr(Aq) = n(Bq

d)(0,0)

for q = 0, 1, . . . , 2d− 1.

Theorem 6.7. Let θ be a root of Hd−1(x)− ε. The multiplicity m(θ) of θ in G, θ 6= ±k, is
given by

m(θ) =
nek(k − 1)Hd−2(θ)

2ε(2ε+ e
2
− 1)H

′
d−1(θ)(k2 − θ2)

. (6.3)

Proof. In order to compute the multiplicity of an eigenvalue θ of G, we employ the approach
from [6], [15] and [67]. Let ξ(x) = (x2 − k2)(Hd−1(x) + e

2
)(Hd−1(x) − 1) and ξθ(x) = ξ(x)

x−θ .

Since ξ(A) = 0, it follows m(θ) = tr(ξθ(A))
ξθ(θ)

.

As deg(Hd−1(x)) = d − 1 we obtain that deg(ξθ(x)) = 2d − 1. Therefore, let us assume
ξθ(x) = x2d−1 + a2d−2x

2d−2 + . . .+ a1x+ a0. Hence,

tr(ξθ(A)) = tr(A2d−1) + a2d−2tr(A
2d−2) + . . .+ a1tr(A) + a0tr(In).

Since tr(Aq) = n(Bq
d)0,0 for 0 ≤ q ≤ 2d− 1, we have

tr(ξθ(A)) = n(ξθ(Bd))0,0.

The polynomial (x2 − k2)Hd−1(x) is a minimal polynomial of Bd, (see [72]). That yields

ξθ(Bd) = −e
2

B2
d − k2In
Bd − θIn

.

Setting Li+1(x) = x2−k2
x−θ (Hi(x)−Hi(θ)) for i = 0, . . . , d− 1, we get

Ld(Bd) = −Hd−1(θ)
B2
d − k2In
Bd − θIn

= −εB
2
d − k2In
Bd − θIn

.
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Therefore, ξθ(Bd) = e
2ε
Ld(Bd).

Calculating the derivative of (x − θ)ξθ(x), that is, ((x − θ)ξθ(x))
′

= ((x2 − k2)(Hd−1(x) +
e
2
)(Hd−1(x)− 1))

′
, we have ξθ(θ) = (2ε+ e

2
− 1)H

′

d−1(θ)(θ2 − k2). Thus

m(θ) =
ne

2ε(2ε+ e
2
− 1)

(Ld(Bd))0,0

H
′
d−1(θ)(θ2 − k2)

.

In [67] was proven that (Ld(Bd))0,0 = −k(k − 1)Hd−2(θ). Substituting this identity in the
previous expression we obtain

m(θ) =
nek(k − 1)

2ε(2ε+ e
2
− 1)

Hd−2(θ)

H
′
d−1(θ)(k2 − θ2)

.

�

6.2.1 Multiplicities as functions of cosφ

Let θ be a root of Hd−1(x)−ε and let θ = −2s cosφ, 0 < φ < π. We express the multiplicity
of θ, m(θ), as a function of cosφ. For that purpose we define the following functions
f(z), g1(z), g2(z) and g3(z).

f(z) =
4s2(1− z2)

k2 − 4s2z2
;

g1(z) =
k(k − 1)(

√
1− s−2d+2(1− z2) + s−d+1z)

d
√

1− s−2d+2(1− z2) + s−d+1z
;

g2(z) =
k(k − 1)(

√
1− e2

4
s−2d+2(1− z2)− e

2
s−d+1z)

d
√

1− e2

4
s−2d+2(1− z2)− e

2
s−d+1z

;

g3(z) =
k(k − 1)(

√
1− e2

4
s−2d+2(1− z2) + e

2
s−d+1z)

d
√

1− e2

4
s−2d+2(1− z2) + e

2
s−d+1z

.

Lemma 6.8. For either value of ε, if we set θi = −2s cosφi for 1 ≤ i ≤ d− 1, then

m(θi) =
ne

4s2( e
2

+ 1)
f(cosφi)g1(ηi cosφi), if ε = 1;

m(θi) =
n

2s2( e
2

+ 1)
f(cosφi)g2(cosφi), if ε = − e

2
and i is odd;

m(θi) =
n

2s2( e
2

+ 1)
f(cosφi)g3(cosφi), if ε = − e

2
and i is even.
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Proof. The derivative of Hd−1(x) is computed in [67]. We have

H
′

d−1(θi) =
(−s)d−1(−1)i

2s sin2 φi
(d cosαi + ηis

−d+1 cosφi).

Substituting Hd−2(θi) = (−s)d−2(−1)i+1 sin(φi+αi)
sinφi

and H
′

d−1(θi) in (6.3), we obtain

m(θi) =
nek(k − 1) sinφi sin(φi + αi)

ε(2ε+ e
2
− 1)(k2 − θ2

i )(d cosαi + ηis−d+1 cosφi)
.

The equation (6.2) yields sin(φi + αi) = sinφi(cosαi + ηis
−d+1 cosφi). Hence

m(θi) =
ne sin2 φi

ε(2ε+ e
2
− 1)(k2 − θ2

i )

k(k − 1)(cosαi + ηis
−d+1 cosφi)

(d cosαi + ηis−d+1 cosφi)
.

By equation (6.2) and Lemma 6.6, as k, d ≥ 3, it follows that, if ηi = 1 or ηi = e
2
, then

0 < αi <
π
2
. Similarly, if ηi = −1 or ηi = − e

2
, then −π

2
< αi < 0. Therefore cosαi > 0, and

thus, cosαi =
√

1− η2
i s
−2d+2(1− cos2 φi). It implies

m(θi) =
ne

4s2ε(2ε+ e
2
− 1)

4s2(1− cos2 φi)

k2 − 4s2 cos2 φi

k(k − 1)(
√

1− η2
i s
−2d+2(1− cos2 φi) + ηis

−d+1 cosφi)

(d
√

1− η2
i s
−2d+2(1− cos2 φi) + ηis−d+1 cosφi)

.

Using the formulas for f, g1, g2 and g3 we get the desired result. �

The following two lemmas concern the monotonicity of f, g1, g2 and g3. The first lemma
is given in [15] and [67] (Lemma 3.5 and Lemma 4.1).

Lemma 6.9. For k ≥ 3 and |z|< 1 the function f(z) is even and concave down.

Lemma 6.10. For k ≥ 3, d ≥ 3 and |z|< 1, the monotonicities of g1(z), g2(z) and g3(z)
behave as follows.

(1) g1(z) is monotonically increasing;

(2) g2(z) is monotonically decreasing;

(3) g3(z) is monotonically increasing;

(1) It suffices to prove that g
′
1(z) is positive on the interval (−1, 1). We have

g
′

1(z) =
k(k − 1)(d− 1)s−d+1(1− s−2d+2)√

1 + s−2d+2(−1 + z2)(d
√

1 + s−2d+2(−1 + z2) + s−d+1z)2
> 0.

(2) In this case we prove that g
′
2(z) is negative on the interval (−1, 1).

g
′

2(z) =
− e

2
s−d+1k(k − 1)(d− 1)(1− e2

4
s−2d+2)√

1 + e2

4
s−2d+2(−1 + z2)(d

√
1 + e2

4
s−2d+2(−1 + z2)− e

2
s−d+1z)2

.

Since k, d ≥ 3 and k ≥ e+2, we easily conclude that e2

4
s−2d+2 < 1 and |e2

4
s−2d+2(−1+

z2)|< 1.

(3) It follows from the same reasoning as (2).
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6.3 Main result

Let λ1 < λ2 < . . . < λd−1 be the roots of Hd−1(x) + e
2
, and let µ1 < µ2 < . . . < µd−1 be the

roots of Hd−1(x)− 1.

Lemma 6.11. Let λ1, . . . , λd−1 and µ1, . . . , µd−1 be defined as above.

(1) If k ≥ 3 and d ≥ 3 is an odd number, then m(λi) = m(λd−i) and m(µi) = m(µd−i),
for 1 ≤ i ≤ d− 1;

(2) If k ≥ 6 and d ≥ 5 is an odd number, then m(λ1) < m(λi) and m(µ1) < m(µi), for
2 ≤ i ≤ d− 2.

(1) If d is odd Hd−1(−x) = Hd−1(x). Therefore θ is a root of Hd−1(x)− ε, if and only if,
−θ is a root of Hd−1(x)−ε, (see [1]). Then λi+λd−i = µi+µd−i = 0. By checking (6.3)
and using Hd−2(−x) = −Hd−2(x), we obtain m(λi) = m(λd−i) and m(µi) = m(µd−i)
for each 1 ≤ i ≤ d− 1.

(2) Since µi is a root of Hd−1(x) − 1, we have ε = 1. According to Lemma 6.6 let us
set µi = −2s cosφi, for 1 ≤ i ≤ d − 1. In this case ηi = ε(−1)d+i = (−1)i+1.
Since −µ2 = µd−2 we obtain − cosφ2 = cosφd−2. Now, for 3 ≤ i ≤ d − 3, we have
− cosφ2 = cosφd−2 < cosφi < cosφ2. Since f is even and concave down function we
have

f(cosφ2) < f(cosφi) for 3 ≤ i ≤ d− 3.

The inequality cosφi < | cosφ2| and the fact that g1(z) is a monotonically increasing
function yield g1(η2 cosφ2) = g1(− cosφ2) < g1(± cosφi).
Therefore, for 3 ≤ i ≤ d− 3, we conclude

m(µ2) =
ne

4s2( e
2

+ 1)
f(cosφ2)g1(η2 cosφ2) <

ne

4s2( e
2

+ 1)
f(cosφi)g1(± cosφi) = m(µi).

Next, we will show that m(µ1) < m(µ2). Since cosφ2 < − cosφd−1, we use the follow-
ing result given in [67],

f(cosφ2)

f(cosφd−1)
> 1 +

2(sd−1 − 1)

sd−1 + 1

k2 − 4s2

4k2 − s2
.

In order to prove thatm(µ1) < m(µ2) we will prove that f(cosφd−1)g1(ηd−1 cosφd−1) <
f(cosφ2)g1(η2 cosφ2). Since η2 = ηd−1 = −1 and g1 is increasing function we have

g1(ηd−1 cosφd−1)

g1(η2 cosφ2)
<

g1(1)

g1(−1)
=

(1 + s−d+1)(d− s−d+1)

(1− s−d+1)(d+ s−d+1)
< 1 +

2s−d+1

1− s−d+1
.

Therefore, it is enough to prove sd−1−1
sd−1+1

k2−4s2

4k2−s2 >
s−d+1

1−s−d+1 , that is, (sd−1−1)2

sd−1+1
k2−4s2

4k2−s2 > 1.

We easily conclude that if k ≥ 6 and d ≥ 5, then (sd−1−1)2

sd−1+1
> 10 and k2−4s2

4k2−s2 >
1
10
.

We proceed similarly when λi is a root of Hd−1(x) + e
2
. In this case ε = − e

2
and

ηi = e
2
(−1)i. Again let λi = −2s cosφi, for 1 ≤ i ≤ d − 1. Following the same
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reasoning as above we have f(cosφ1) < f(cosφi) for 2 ≤ i ≤ d− 2.
Now, let i be an odd number such that 3 ≤ i ≤ d − 2. For such i we note ηi =
− e

2
< 0. Sine g2(z) is a monotonically decreasing and cosφi < cosφ1, we have

g2(cosφ1) < g2(cosφi). Thus, for odd i such that 3 ≤ i ≤ d− 2 we have

m(λ1) =
n

2s2( e
2

+ 1)
f(cosφ1)g2(cosφ1) <

n

2s2( e
2

+ 1)
f(cosφi)g2(cosφi) = m(λi).

Since m(λi) = m(λd−i) occurs m(λ1) < m(λi) for each 2 ≤ i ≤ d− 2.

Based on Lemma 6.11, we are ready to give the main result in this chapter.

Theorem 6.12. If k ≥ e+ 2 ≥ 6 and g = 2d ≥ 8, then there exist no antipodal (k, g)-cages
of excess e.

Proof. We assume that d ≥ 5 since we already concluded the non-existence of antipodal
(k, g)-cages of excess e ≤ k − 2 and girth g = 2d where d is an even number. Since
m(µ1) < m(µi) for 2 ≤ i ≤ d − 2 we obtain that µ1 and µd−1 = −µ1 are either conjugate
quadratic irrationals or integers. Therefore, µ2

1 is an integer. Analogously, λ2
1 is an integer.

Hence µ2
1 − λ2

1 is an integer number. By Lemma 6.6 we have

−2s cos
π

d+ s−d+1
< µ1 < −2s cos

π

d

−2s cos
π

d
< λ1 < −2s cos

π

d− e
2
s−d+1

.

Then, as µ2
1 > 4s2 cos2 π

d
and λ2

1 < 4s2 cos2 π
d
, we have that µ2

1 − λ2
1 > 0.

Now we will prove that µ2
1 − λ2

1 < 1. As µ2
1 < 4s2 cos2 π

d+s−d+1 and λ2
1 > 4s2 cos2 π

d− e
2
s−d+1 ,

we have that

µ2
1−λ2

1 < 4s2

(
cos2 π

d+ s−d+1
− cos2 π

d− e
2
s−d+1

)
= 4s2

(
sin2 π

d− e
2
s−d+1

− sin2 π

d+ s−d+1

)
=

= 4s2

(
sin

π

d− e
2
s−d+1

− sin
π

d+ s−d+1

)(
sin

π

d− e
2
s−d+1

+ sin
π

d+ s−d+1

)
=

= 16s2 sin

(
π

2(d− e
2
s−d+1)

− π

2(d+ s−d+1)

)
cos

(
π

2(d− e
2
s−d+1)

+
π

2(d+ s−d+1)

)
·

· sin
(

π

2(d− e
2
s−d+1)

+
π

2(d+ s−d+1)

)
cos

(
π

2(d− e
2
s−d+1)

− π

2(d+ s−d+1)

)
<

< 4s2π2

(
1

(d− e
2
s−d+1)2

− 1

(d+ s−d+1)2

)
=

4π2( e
2

+ 1)s−d+3(2d+ (1− e
2
1)s−d+1)

(d− e
2
s−d+1)2(d+ s−d+1)2

.

Since (d − e
2
s−d+1)2 > (d − 1)2 > 2d + 1 > 2d + (1 − e

2
)s−d+1, it is suffices to prove that

d+ s−d+1 > 2π
√

e
2

+ 1s
−d+3

2 . Using k ≥ e+ 2 ≥ 6 and d ≥ 5, we obtain

s
d−3
2 (d+ s−d+1) >

√
k − 1d ≥

√
e+ 1d > 2π

√
e

2
+ 1.

Therefore, µ2
1 − λ2

1 is an integer number such that 0 < µ2
1 − λ2

1 < 1, which is impossible. �
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Chapter 7

On the excess of the vertex-transitive
graphs of given degree and girth

The results of this chapter are published in [39]. Many of the cages as well as the
smallest known (k, g)-graphs turn out to be vertex-transitive [33]. The reason for such
frequent occurrence among the smallest (k, g)-graphs is not well understood, but one of the
reasons might lie in the fact that vertex-transitive graphs are locally isomorphic around each
vertex, and hence each of their vertices lies on cycles of the same lengths. This seems to be a
feature shared by the extreme (k, g)-graphs as well. Based on this observation, considering
a restricted version of the original cage problem and looking for smallest vertex-transitive
(k, g)-graphs (which we shall refer to as vertex-transitive cages) and their corresponding
orders vt(k, g) will most likely lead to improvements in our understanding of both the
general Cage Problem and the structure of vertex-transitive graphs. Obviously, vt(k, g) ≥
n(k, g).

The existence of vertex-transitive (k, g)-graphs for any pair k, g ≥ 3 has been established
for example in [46]. In the case of general cages, the question of whether there exists a
universal bound on the excess is still open. On the other hand, in the more specialized case
of vertex-transitive cages, this question has been answered in negative, and the excess of
vertex-transitive (k, g)-cages can be arbitrarily large. This result is due to Biggs:

Theorem 7.1 ([12]). For each odd integer k ≥ 3, there is an infinite sequence of values
of g such that the excess e of any vertex-transitive graph of degree k and girth g satisfies

e >
g

k
.

In the PhD thesis, we show that Biggs’ result [12] holds not only for infinitely many g’s,
but, in fact, holds for almost all g’s for any given k ≥ 4. More specifically, we show that
for any given excess e and degree k ≥ 4, the set of g’s for which vt(k, g)−M(k, g) < e is of
asymptotic density 0 (when compared to the set of all girths g ≥ 3). The main technique
used here depends on counting cycles in graphs whose orders are close to the Moore bound
(this technique was introduced in Chapter 3). Our counting techniques rely on the following
fairly obvious lemma.

Lemma 7.2 ([34]). If G is a vertex-transitive graph and n ≥ 3 is a positive integer, then
the following hold:

59
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(1) cG(x, n) = cG(y, n), for all x, y ∈ V (G);

(2) n divides the product cG(x, n) · |V (G)|, for all x ∈ V (G).

In addition to obtaining the above stated density results, we address the question of
the magnitude of the excess. As the odd- and even-girth cases differ is several important
characteristics, we derive our results separately for odd- and even-girth regular graphs.

7.1 The excess of vertex-transitive graphs of odd girth

In this section we prove that for any fixed pair k ≥ 4, e ≥ 1, the excess for (k, g)-vertex-
transitive cages exceeds e for almost all odd girths g. Our arguments are analogous to
those used in [34] in which the authors show similar density results in the so-called De-
gree/Diameter Problem.

We begin by presenting an upper and lower bound on the number of g-cycles containing
a fixed vertex v in a general (i.e., not necessarily vertex-transitive) (k, g)-graph.

Lemma 7.3. Let G be a (k, g)-graph of degree k ≥ 3, odd girth g, excess e(G) ≥ 1, and
let v be an arbitrary vertex of G. The number cG(v, g) of g-cycles containing v satisfies the
following lower and upper bounds:

k(k − 1)(g−1)/2

2
− ek

2
≤ cG(v, g) ≤ k(k − 1)(g−1)/2

2
. (7.1)

Proof. If G were a Moore graph, the number of g-cycles through a fixed vertex v would
satisfy the identity cG(v, g) = 1

2
k(k− 1)(g−1)/2, proved in [43]. In order to prove the bounds

for graphs G whose orders exceeds the Moore bound M(k, g), i.e., graphs with excess
e(G) ≥ 1, we use the following notation introduced in Chapter 3. Let v be an arbitrary
vertex of G, and let N i

G(v) denote the set of vertices in G whose distance from v is equal
to i. Let g = 2t + 1, and let T Gv be the subgraph of G whose vertices belong to the union⋃t
i=0N

i
G(v) and whose edges are the edges of the subgraph of G induced by the subset⋃t

i=0N
i
G(v) minus the edges with both ends belonging to the last layer N t

G(v). Since G
contains no cycles shorter than g, it is easy to see that T Gv is a tree of order M(k, g); we
will refer to this tree as the Moore tree of G with respect to v. In addition, we will call the
edges connecting the vertices from N t

G(v) (and thus excluded from T Gv ) edges horizontal
with respect to v. The key observation of our argument relates the number of g-cycles
through v with the number of edges horizontal with respect to v. More specifically, since
T Gv is a tree of depth t rooted at v, any g = (2t + 1)-cycle through v must consist of two
edge-disjoint paths of length t connecting v to vertices u,w in N t

G(v) and a single horizontal
edge connecting u and w. Consequently, cG(v, g) is equal to the number of edges horizontal

with respect to v. This yields the upper bound cG(v, g) ≤ k(k − 1)(g−1)/2

2
, where the right

side of the inequality is the maximal possible number of horizontal edges – the number of
vertices in N t

G(v) multiplied by (k − 1) and divided by 2 (each edge is counted twice this
way). Let Xv now be the excess set of G with respect to v, i.e., the set of e vertices of
G that do not belong to T Gv . Note that the only vertices from T Gv the vertices from Xv
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might be connected to are the vertices in N t
G(v). Since the e vertices in Xv are of degree

k, the maximum number of edges between Xv and N t
G(v) is ek. The edges horizontal with

respect to v are the edges emanating from the vertices in N t
G(v) that do not connect to the

vertices in N t−1
G (v) nor to the vertices in Xv. It follows that the number of horizontal edges

with respect to v is at least
k(k − 1)(g−1)/2

2
− ek

2
, which yields the desired lower bound on

cG(v, g). �

The next lemma follows from Lemmas 7.3 and 7.2:

Lemma 7.4. Let k, g ≥ 3 be integers, and g be odd. If p is a prime divisor of g, and e ≥ 1
has the property that none of the integers in the interval

I = [k(k − 1)(g−1)/2 − ke, k(k − 1)(g−1)/2 + ke] (7.2)

is divisible by p, then the excess of any vertex-transitive (k, g)-graph is greater than e.

Proof. Suppose that k, g, p and e satisfy the assumptions of the lemma, and assume, by
means of contradiction, that the order vt(k, g) of a vertex-transitive (k, g)-cage does not
exceed M(k, g) + e. Thus, M(k, g) ≤ vt(k, g) ≤M(k, g) + e, which translates into

vt(k, g) ∈ {k(k − 1)(g−1)/2 − 2

k − 2
,
k(k − 1)(g−1)/2 − 2

k − 2
+ 1, . . . ,

k(k − 1)(g−1)/2 − 2

k − 2
+ e}. (7.3)

If G is a vertex-transitive (k, g)-graph, and p is a prime divisor of g, using Lemma 7.2 yields

p | |V (G)| · cG(v, g),

which implies that p divides at least one of the factors |V (G)| or cG(v, g). Due to Lemma 7.3,

cG(v, g) ∈ {k(k − 1)(g−1)/2

2
− ek

2
, . . . ,

k(k − 1)(g−1)/2

2
},

and since p is necessarily odd, if p divides one of the above numbers, it also divides at least
one of the numbers in

I1 = {k(k − 1)(g−1)/2 − ek, . . . , k(k − 1)(g−1)/2}.

Similarly, if p divides one of the numbers in the set defined in (7.3), it also divides one of
the numbers in

I2 = {k(k − 1)(g−1)/2 − 2, . . . , k(k − 1)(g−1)/2 − 2 + e(k − 2)}.

Note, however, that I1∪I2 ⊆ I, and therefore, if p were to divide |V (G)| ·cG(v, g), it would
have to divide at least one number in I. Since we assume that p divides none of the integers
in I, we obtain a contradiction with the assumption that the excess of a vertex-transitive
(k, g)-cage is at most e. �
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Remark: Since the union of the sets I1 and I2 is a proper subset of I, we could use
I1 ∪ I2 in place of I in the statement of Lemma 7.4. However, this would complicate but
not strengthen our forthcoming results, hence we choose to use I instead.

Next, using ideas from number theory, we will prove that for any fixed k ≥ 4 and e ≥ 1,
the density of the set of odd girths g for which the excess of any vertex-transitive (k, g)-
graph is less than e is 0 (in the set of all odd g ≥ 3). This approach comes originally from
[34], and our proof follows a similar line of arguments.

Let A be a set of positive integers. For any n > 1, let A(n) = |A ∩ [1, n]|, the number
of elements in A that do not exceed n. In what follows, we will use the following densities.

Lower asymptotic density of A:

d(A) = lim inf
n→∞

A(n)

n
,

Upper asymptotic density of A:

d(A) = lim sup
n→∞

A(n)

n
.

Clearly, 0 ≤ d(A) ≤ d(A) ≤ 1. If, in addition, d(A) = d(A), we say that A has the
asymptotic density

d(A) = lim
n→∞

A(n)

n
.

Given integers a, b, c, d, q such that a 6= 0, c 6= 0 and q > 2, let A(a, b, c, d, q) denote the set
of integers

{n ∈ N | n is odd, and n | (aq(n−1)/2 + b)(cq(n−1)/2 + d)}.

The next result was proved in [34], Lemma 4.3.

Lemma 7.5 ([34]). Let a, b, c, d and q be integers such that a 6= 0, c 6= 0, and q > 2. Then,

d(A(a, b, c, d, q)) = 0.

We now have all the necessary ingredients to prove the main theorem of this section.

Theorem 7.6. Let k ≥ 4 and e ≥ 1 be fixed integers. The asymptotic density of the set of
all odd g for which there exists a vertex-transitive (k, g)-graph with excess not exceeding e
is 0.

Proof. Lemma 7.2 asserts for all vertex-transitive (k, g)-graphs G that g divides cG(v, g) ·
|V (G)|, and therefore

g | ((k − 2)|V (G)|) · (2cG(v, g)).

Since both factors (k− 2) · |V (G)| and 2 · cG(v, g) belong to the interval I defined in (7.2),
it follows that a vertex-transitive (k, g)-graph may exist only if at least one of the numbers
in the set

I2 = {(k(k − 1)(g−1)/2 + i) · (k(k − 1)(g−1)/2 + j) | − ke ≤ i, j ≤ ke}
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is divisible by g. Obviously, each of the numbers contained in I2 has the form of the product
in the definition of the set A(a, b, c, d, q) when substituting a = k, b = i, c = k, d = j and
q = k − 1. Thus, if some g satisfies g | (k(k − 1)(g−1)/2 + i) · (k(k − 1)(g−1)/2 + j) for some i
and j, then g belongs to A(k, i, k, j, k − 1). Therefore, the set of all odd girths g for which
there exists a vertex-transitive (k, g)-graph whose excess does not exceed e is a subset of
the set ⋃

−ke≤i,j≤ke

A(k, i, k, j, k − 1).

By Lemma 7.5, all sets A(k, i, k, j, k − 1) are of density 0, and hence, the above union is
a finite union of sets of asymptotic density 0, and is therefore a set of asymptotic density
0 itself. Being a subset of a set of asymptotic density 0, the set of all odd girths g for
which there exists a vertex-transitive (k, g)-graph with excess not exceeding e must also be
of asymptotic density 0, as claimed. �

7.2 The excess of vertex-transitive graphs of even girth

The essence of arguments used in this section is close to those of the previous section.
Nevertheless, the details are different enough to justify considering the even girth case
separately. We often omit the details.

Lemma 7.7. Let G be a (k, g)-graph of degree k ≥ 3, even girth g ≥ 4, excess e ≥ 1, and
let v be an arbitrary vertex of G. The number cG(v, g) of g-cycles containing v satisfies the
following lower and upper bounds:

k(k − 1)g/2

2
− ke(k2 − 3k + 5)

4
≤ cG(v, g) ≤ k(k − 1)g/2

2
. (7.4)

Proof. The ‘usual proof’ of the Moore bound for a (k, g)-graph G, g even, considers a pair
of trees rooted at two endpoints of a fixed edge of the graph. However, to prove the upper
bound, we simply consider the tree of depth g−2

2
rooted at v, denoted by T Gv again, and

consisting of k-branches of height g−2
2

. All non-root and non-leaf vertices of T Gv are of
degree k, and the total number of vertices of T Gv is

1 + k + k(k − 1) + . . .+ k(k − 1)
g−4
2 .

All g-cycles of G containing v consist of two g−2
2

-paths starting at v, having no other
shared vertices and whose endpoints are connected to a single vertex at distance g

2
from

v. It is easy to see that the minimum number of vertices at distance g
2

from v in G is

k(k−1)
g−2
2

k
= (k − 1)

g−2
2 ; which happens when all the distance g

2
vertices are joined to the

leaves of T Gv via all of their adjacent edges. It is also easy to see that this is the situation in
which G contains the maximum number of g-cycles through v with each vertex at distance
g
2

from v giving rise to
(
k
2

)
g-cycles. This yields the upper bound on cG(v, g) (k− 1)

g−2
2 ·
(
k
2

)
asserted in our lemma.

To prove the lower bound, we go back to considering the ‘usual’ Moore tree rooted at
an edge {v, u} with k − 1 branches of depth g−2

2
rooted at v and k − 1 branches of depth
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g−2
2

rooted at u. In this view, we have three types of g-cycles passing through v (which we
will refer to as Type 1., Type 2., or Type 3. cycles):

1. the cycles that avoid u, consist of two edge-disjoint paths of length g−2
2

starting at v
with the endpoints of the two paths adjacent via horizontal edges to a vertex in the
tree rooted at u;

2. the cycles that avoid u, consist of two edge-disjoint paths of length g−2
2

started at v
with the endpoints of the two paths adjacent to a vertex belonging to the excess set
Xv,u;

3. and the cycles that contain u and consist of a g
2
-path started at v and containing

u, a g−2
2

-path started at v not containing u and one horizontal edge connecting the
endpoints of these two paths.

Let Xv,u (in parallel with the Xv used in the previous section) denote the e excess vertices
with respect to the vertices v and u, and let l denote the number of edges between the
vertices in Xv,u. The existence of these l edges implies the non-existence of some horizontal

edges, more precisely, there are only (k − 1)
g
2 − (

ke

2
− l) horizontal edges in G. There are

several cases we need to consider.
Suppose first, that no two excess vertices share a common neighbor among the leaves

of the part of the Moore tree rooted at u. Let ai, 1 ≤ i ≤ e, be the number of edges
from the i-th excess vertex to the leaves of the branch rooted at v. Then, the number
of Type 2. g-cycles through v is

(
a1
2

)
+ . . . +

(
ae
2

)
. The number of Type 1. g-cycles is

((k− 1)(g−2)/2− (
ke

2
− l))

(
k−1

2

)
+ (

ke

2
− l))

(
k−2

2

)
, since the leaves of the subtree rooted at u

divide into those that are incident with k − 1 horizontal edges and those incident to k − 2
horizontal edges. Finally, the number of Type 3. g-cycles is the number of horizontal edges,

(k − 1)g/2 − (
ke

2
− l). In summary,

cG(v, g) = ((k− 1)g/2− (
ke

2
− l)) + ((k− 1)(g−2)/2− (

ke

2
− l))

(
k − 1

2

)
+ (

ke

2
− l))

(
k − 2

2

)
+

+

(
a1

2

)
+ . . .+

(
ae
2

)
.

Next, let us suppose there exist excess vertices which share a common neighbor among the
leaves of the subtree rooted at u. Let s be the number of leaves of the subtree rooted at

u which are adjacent to the excess vertices. Then s <
ke

2
− l and s = s1 + s2, where s1

denotes the number of vertices adjacent just to one excess vertex and s2 denotes the number
of vertices adjacent to at least two excess vertices. In this case,

cG(v, g) ≥ ((k − 1)g/2 − (
ke

2
− l)) + ((k − 1)(g−2)/2 − s)

(
k − 1

2

)
+ s1

(
k − 2

2

)

+

(
a1

2

)
+ . . .+

(
ae
2

)
.
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Thus, whether there exist vertices which share a common neighbor among the leaves of the
subtree rooted at u or not, the parameter cG(v, g) satisfies:

cG(v, g) ≥ ((k− 1)g/2− (
ke

2
− l)) + ((k− 1)(g−2)/2− (

ke

2
− l))

(
k − 1

2

)
+

(
a1

2

)
+ . . .+

(
ae
2

)
.

Since the number of edges from the excess vertices to the subtree rooted at v and the number
of edges from the excess vertices to the subtree rooted at umust be equal (in order to balance
the number of horizontal edges started at the two subtrees), a1 + a2 + . . . . + ae = ke

2
− l.

Let ai1 , . . . , ait , t ≤ e, be the non-zero ai’s. Applying the inequality between the quadratic
and the arithmetic mean to the positive integers ai1 , . . . , ait yields:(

a1

2

)
+ . . .+

(
ae
2

)
=

(
ai1
2

)
+ . . .+

(
ait
2

)
=
a2
i1

+ . . .+ a2
it

2
− ai1 + ai2 + . . .+ ait

2
≥

(ai1 + ai2 + . . .+ ait)
2

2t
− ai1 + ai2 + . . .+ ait

2
≥

(
ke

2
− l)2

2e
−

(
ke

2
− l)

2
.

All of the above yield the lower bound

cG(v, g) ≥ k(k − 1)g/2

2
+

(
ke

2
− l)2

2e
− (

ke

2
− l)(k

2 − 3k + 5

2
) >

>
k(k − 1)g/2

2
− ke(k2 − 3k + 5)

4
.

�

The next lemma follows from Lemmas 7.7 and 7.2.

Lemma 7.8. Let k ≥ 4, g ≥ 4 even, e ≥ 1, and let G be a vertex-transitive (k, g)-graph.
If p is a prime divisor of g that does not divide any of the integers in the interval

J = [2k(k − 1)g/2 − ke(k2 − 3k + 5), 2k(k − 1)g/2 + k(k − 2)e− 2k],

then the excess of G is greater than e.

Proof. Let G be a vertex-transitive (k, g)-graph, and p be a prime divisor of g. Lemma 7.2
yields

p | |V (G)| · cG(v, g),

which implies in turn that p divides at least one of the factors |V (G)| or cG(v, g). Due to
Lemma 7.7,

cG(v, g) ∈ {k(k − 1)g/2

2
− ke(k2 − 3k + 5)

4
, . . . ,

k(k − 1)g/2

2
}.

If p divides one of the above numbers, it also divides at least one of the numbers in

J1 = {2k(k − 1)g/2 − ke(k2 − 3k + 5), . . . , 2k(k − 1)g/2}.
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The order of any vertex-transitive (k, g)-graph G of even girth g and excess not exceeding
e satisfies
M(k, g) ≤ |V (G)| ≤M(k, g) + e, i.e.,

|V (G)| ∈ {2(k − 1)g/2 − 2

k − 2
,
2(k − 1)g/2 − 2

k − 2
+ 1, . . . ,

2(k − 1)g/2 − 2

k − 2
+ e}.

Similarly, if p divides one of the above numbers, it also divides one of the numbers in

J2 = {2k(k − 1)g/2 − 2k, 2k(k − 1)g/2 + k2 − 4k, . . . , 2k(k − 1)g/2 − 2k + ke(k − 2)}.

As the integers in J1 and J2 all appear in J , any prime divisor of at least one of the
integers in these intervals must also divide at least one integer in J . Therefore, p divides
none of the numbers in J , and the excess of every vertex-transitive (k, g)-graph must be
greater than e. �

In the case of even girth, given integers a, b, c, d, q such that a 6= 0, c 6= 0, and q > 2, we
need to consider the set of even n such that

B(a, b, c, d, q) = {n ∈ N | n is even and n | (aq
n
2 + b)(cq

n
2 + d)}.

For any prime p and any set of positive integers B, let Bp = {n ∈ B | p ‖ n}, where p ‖ n
indicates that p divides n, but p2 does not. We will employ the following two theorems
from Number Theory. The first one is the contrapositive of Corollary 3 of Niven [64].

Theorem 7.9 ([64]). Let {pi}∞i=1 be a set of primes such that
∑∞

i=1 1/pi = +∞. If B is a
set of positive integers such that

∑
d(Bpi) < +∞, then d(B) = 0.

The second result is a theorem of Erdős [29].

Theorem 7.10 ([29]). Let {ai}∞i=1 be a set of integers such that ai - aj, unless i = j. Then∑∞
i=1

1
ai log ai

converges.

Lemma 7.11. Let a, b, c, d and q be integers such that a 6= 0, c 6= 0, and q > 2. Then,

d(B(a, b, c, d, q)) = 0.

Proof. Let p > 2 be a fixed prime such that p - acq and let n ∈ B = B(a, b, c, d, q) be a
multiple of p. Then, p | (aq

n
2 + b)(cq

n
2 + d), and thus, p | aq n2 + b or p | cq n2 + d. Since

p - acq, it follows that (a, p) = (c, p) = 1. Thus, there exist integers a−1 and c−1 such
that aa−1 ≡ 1 (mod p) and cc−1 ≡ 1 (mod p). By (a−1, p) = (c−1, p) = 1 it follows that
q
n
2 ≡ −a−1b (mod p) or q

n
2 ≡ −c−1d (mod p). Since p | n and n is an even number, n = pr,

where r is even. Since (p, q) = 1, Fermat’s little theorem yields q
n
2 ≡ (qp)

r
2 ≡ q

r
2 (mod p).

Hence,
q
r
2 ≡ −a−1b (mod p) or q

r
2 ≡ −c−1d (mod p).

Recalling (p, q) = 1 again, let k denote the smallest positive integer satisfying qk ≡ 1

(mod p). This yields p < qk, and therefore k >
log p

log q
. As shown above, there are only two



7.2. The excess of vertex-transitive graphs of even girth 67

possible residue classes modulo k that
r

2
might belong to. Thus, the asymptotic density of

the multiples rp for which r satisfies the above conditions within the set of all multiples
of p is at most 2

k
. The asymptotic density of the set of multiples of p within the set of all

positive integers is clearly equal to
1

p
, and therefore

d(Bp) <
1

p
· 2

k
≤ 2 log q

p log p
.

Thus, due to Erdős’s Theorem 7.10,

∑
p>acq

d(Bp) <
∑
p>acq

2 log q

p log p
= 2 log q ·

∑
p>acq

1

p log p
< +∞ .

Finally, since
∑

p>acq

1

p
diverges and

∑
p>acq d(Bp) < +∞, applying Niven’s Theorem 7.9

yields d(B(a, b, c, d, q)) = 0. �

We can now present the main theorem of this section:

Theorem 7.12. Let k ≥ 4 and e ≥ 1 be fixed. The asymptotic density of the set of all even
g for which there exists a vertex-transitive (k, g)-graph with excess not exceeding e is 0.

Proof. Let k ≥ 4, e ≥ 1, and let G be a vertex-transitive (k, g)-graph of excess at most e.
If g | |V (G)| · cG(v, g), then g | ((k− 2)k · |V (G)|) · (4cG(v, g)). Since both (k− 2)k · |V (G)|
and 4 · cG(v, g) belong to J , a (k, g)-vertex-transitive graph may exist only if at least one
of the numbers in the set

J 2 = {(2k(k − 1)g/2 + i) · (2k(k − 1)g/2 + j) | − ke(k2 − 3k + 5) ≤ i, j ≤ k(k − 2)e− 2k}

is divisible by g. Each of the numbers in J 2 takes the form of a product from B(a, b, c, d, q),
where a = 2k, b = i, c = 2k, d = j and q = k−1. Thus, if some g satisfies g | (2k(k−1)g/2 +
i) · (2k(k − 1)g/2 + j) for some i and j, then g belongs to B(2k, i, 2k, j, k − 1). Therefore,
the set of all even g’s for which there exists a vertex-transitive (k, g)-graph with excess not
exceeding e is a subset of the set ⋃

−ke(k2−3k+5)≤i,j≤k(k−2)e−2k

B(2k, i, 2k, j, k − 1).

This is a finite union of sets of asymptotic density 0 (satisfying the conditions of Lemma 7.11).
As a subset of a set of asymptotic density 0, the set of all even g’s for which there exists
a vertex-transitive (k, g)-graph with excess not exceeding e must also be of asymptotic
density 0. �
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7.3 A lower bound on the growth of the excess in the

odd girth case

As mentioned in the introduction of this chapter, the existence of vertex-transitive cages
whose orders exceed the Moore bound by an arbitrarily large value has already been es-
tablished by Biggs. In the previous sections, we have shown that such cages constitute the
‘majority’ of all cages. In this section, we want to derive an analogue to the second part
of Biggs’ Theorem 7.1, namely to the part where the theorem asserts that the resulting

excesses satisfy e >
g

k
. We begin with a lemma whose proof relies on basic number theory.

Lemma 7.13. Let e ≥ 1 be fixed, r be an odd integer, and k be large enough to satisfy the
inequality (k − 1)(r−1)/2 > e. If p is a prime larger than 2k(k − 1)(r−1)/2 and g = rp, then
the excess of any vertex-transitive (k, g)-graph is greater than e.

Proof. The assumption g = rp yields
g − 1

2
=

rp− 1

2
=

r(p− 1)

2
+
r − 1

2
. Since p is a

prime, employing Euler’s criterion yields:

(k − 1)(g−1)/2 ≡ ((k − 1)(p−1)/2)r · (k − 1)(r−1)/2 ≡

≡
(
k − 1

p

)r
· (k − 1)(r−1)/2 ≡

(
k − 1

p

)
· (k − 1)(r−1)/2 (mod p),

where
(
k−1
p

)
is the Legendre symbol. The interval {k(k − 1)(g−1)/2 + i | − ke ≤ i ≤ ke}, is

equivalent modulo p to

{
(
k − 1

p

)
k(k − 1)(r−1)/2 + i | − ke ≤ i ≤ ke}. (7.5)

First, consider the case

(
k − 1

p

)
= 1. In this case we have(

k − 1

p

)
k(k−1)(r−1)/2 + i = k(k−1)(r−1)/2 + i ≤ k(k−1)(r−1)/2 +ke < 2k(k−1)(r−1)/2 < p,

and

(
k − 1

p

)
k(k − 1)(r−1)/2 + i = k(k − 1)(r−1)/2 + i ≥ k(k − 1)(r−1)/2 − ke > 0.

Thus, 0 <

(
k − 1

p

)
k(k − 1)(r−1)/2 + i < p, for all −ke ≤ i ≤ ke. Using identical argument

in the case when

(
k − 1

p

)
= −1 yields −p <

(
k − 1

p

)
k(k − 1)(r−1)/2 + i < 0. The above

inequalities imply that the interval defined in (7.5) does not contain 0, which means that
the interval {k(k − 1)(g−1)/2 + i | − ke ≤ i ≤ ke} contains no multiples of p, and therefore,
by Lemma 7.4, the excess of any vertex-transitive (k, g)-graph is necessarily greater than
e. �

The following corollary of Lemma 7.13 provides us with a partial solution to a conjecture
stated in [46] which predicts that the order of a vertex-transitive graph of degree k and odd
girth g which is not a Moore graph should always be at least M(k, g) + k − 1.
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Corollary 7.14. Let k ≥ 3 be an integer, r ≥ 3 be an odd integer, and p be a prime number
such that p > 2k(k − 1)(r−1)/2. If If g = rp, and G is a vertex-transitive graph of degree k
and girth g, then |V (G)| ≥M(k, g) + k.

Proof. The result follows from Lemma 7.13 and the easy observation that (k−1)(r−1)/2 ≥ e,
for all r ≥ 3 and e ≤ k − 1. Hence, the excess of any vertex-transitive (k, g)-graph exceeds
e ≥ k − 1, and therefore vt(k, g) ≥M(k, g) + k. �

Next we prove a technical lemma that will then allow us to improve on Biggs’ Theo-
rem 7.1.

Lemma 7.15. For every k ≥ 3 there exists a constant Ck such that for each e ≥ 1 one can
find an odd girth g < Cke log(e+1) with the property that the excess of any vertex-transitive
(k, g)-graph exceeds e.

Proof. Let us fix k ≥ 3 and e ≥ 1, and let r be the smallest odd integer satisfying (k −
1)(r−1)/2 > e, or equivalently

r − 1

2
> logk−1(e). Applying Bertrand’s Postulate [49], we are

assured of the existence of a prime p such that

2k(k − 1)(r−1)/2 < p < 4k(k − 1)(r−1)/2.

The lower bound implies that p > 2ke, while the upper bound yields

p < 4k(k − 1)(r−1)/2 ≤ 4k(k − 1)dlogk−1(e)e+1 < 4k(k − 1)(logk−1(e)+1)+1 = 4k(k − 1)2e.

Since p and r satisfy the conditions from Lemma 7.13, choosing g = rp yields that any
vertex-transitive (k, g)-graph has excess greater than e. In addition,

g = rp < (2(logk−1(e) + 2) + 1)4k(k − 1)2e = (2 logk−1(e) + 5)4k(k − 1)2e < Ck log(e+ 1)e.

�

We are ready to prove:

Theorem 7.16. For any k ≥ 3, there exists an infinite sequence of odd girths {gi}∞i=1, such

that the excess of any vertex-transitive (k, gi)-graph is greater than g
1/(1+o(1))
i .

Proof. Since Ck from the previous lemma is a constant with respect to k,

lime→∞
log(Ck log(e+ 1))

log(e)
= 0. Therefore,

log(Ck log(e+ 1))

log(e)
= o(1), or Ck log(e + 1) =

eo(1), and hence, applying Lemma 7.15, we obtain e > g
1/(1+o(1))
i . �

7.4 A lower bound on the growth of the excess in the

even girth case

In the end, we obtain results parallel to those in the previous section; this time for even
girth. Once again, this is a generalization of Biggs’ Theorem 7.1.
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Lemma 7.17. Let G be a vertex-transitive graph of degree k ≥ 3 and girth g, and let
e ≥ 1. Let s ≥ 3 be a natural number such that 2(k − 1)s > e(k2 − 3k + 5) and let p be a
prime number satisfying the inequality p > 2k(k − 1)s + k(k − 2)e − 2k. If g = 2ps, then
|V (G)| > M(k, g) + e.

Proof. Due to Lemma 7.8, it is enough to prove that the integers in the interval J are not
divisible by p. Using Fermat’s theorem, we obtain: (k − 1)g/2 ≡ ((k − 1)p)s ≡ (k − 1)s

(mod p). Let 2k(k−1)g/2 + i be a number from the interval J . Clearly, −ke(k2−3k+5) ≤
i ≤ k(k − 2)e − 2k. As argued above, 2k(k − 1)g/2 + i ≡ 2k(k − 1)s + i (mod p) and
2k(k − 1)s + i ≤ 2k(k − 1)s + k(k − 2)e − 2k < p. On the other hand, 2k(k − 1)s + i ≥
2k(k−1)s−ke(k2−3k+5) > 0. Thus, p divides none of the integers in J , and it follows that
the excess of any vertex-transitive (k, g)-graph whose parameters satisfy the requirements
of our lemma is greater than e. �

Lemma 7.18. Let k ≥ 3 and e ≥ 1 be fixed. Then there exists a constant Ck and an even
girth g < Ck log(e+ 1)e, such that the excess of any vertex-transitive (k, g)-graph is greater
than e.

Proof. Let s be the smallest integer with the property 2(k − 1)s > e(k2 − 3k + 5). Then,

s > logk−1

(
e(k2−3k+5)

2

)
or s = dlogk−1

(
e(k2−3k+5)

2

)
e. Using Bertrands Postulate [49], we

can deduce that there exists a prime p such that

2k(k − 1)s + k(k − 2)e− 2k < p < 4k(k − 1)s + 2k(k − 2)e− 4k.

Thus, using the above estimate,

p < 4k(k − 1)s + 2k(k − 2)e− 4k < 4k(k − 1)
logk−1

(
e(k2−3k+5)

2

)
+1

+ 2k(k − 2)e− 4k <

< (2k(k − 1)(k2 − 3k + 5) + 2k(k − 2))e.

Since p and s satisfy the conditions from Lemma 7.17, if we take g = 2ps, then any vertex-
transitive (k, g)-cage has excess greater than e. Therefore,

g = 2ps <

< (4k(k−1)(k2−3k+5)+4k(k−2))
e

log(k − 1)
·
(

log(e) + log

(
k2 − 3k + 5

2

)
+ log(k − 1)

)
<

< Ck log(e+ 1)e.

�

Our last theorem follows directly from the previous lemma.

Theorem 7.19. For any k ≥ 3, there exists an infinity sequence of even girths {gi}∞i=1 such

that the excess of any vertex-transitive (k, gi)-graph is greater than g
1/(1+o(1))
i .
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Proof. Since lime→∞
log(Ck log(e+ 1))

log(e)
= 0, then

log(Ck log(e+ 1))

log(e)
= o(1), or

eo(1) = Ck log(e+ 1).

Using Lemma 7.18, we conclude that e > g
1/(1+o(1))
i . �
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Chapter 8

A connection between a question of
Bermond and Bollobás and
Ramanujan graphs

The results of this chapter are published in [40]. The question of Bermond and Bollobás
has already been answered in positive for the more specialized families of vertex-transitive
and Cayley graphs [34]. If we let vt(k, d) denote the largest order of a vertex-transitive
(k, d)-graph, and C(k, d) denote the largest order of a Cayley (k, d)-graph, then

C(k, d) ≤ vt(k, d) ≤ n(k, d).

Exoo et al. proved in [34] that for any fixed k ≥ 3 and c ≥ 2 there exists a set S of natural
numbers of positive density such that vt(k, d) ≤M(k, d)− c, for all d ∈ S. The same holds
for Cayley graphs as well. We list the result for the sake of completeness.

Theorem 8.1 ([34]). Let k ≥ 3 and c ≥ 2. Let r be an odd integer, and let p be a prime
such that p > 2k(k − 1)(r−1)/2 > 8k(k − 1)2c2. If 2d + 1 = rp, then any vertex-transitive
(k, d)-graph has defect greater than c.

In this chapter, we will not extend the results of [34]. Instead, we present a connection
between the question of Bermond and Bollobás and the class of Ramanujan graphs defined
as follows. Let Γ be a connected k-regular graph, and let λ(Γ) denote the largest absolute
value of an eigenvalue of Γ distinct from k or −k. We say that Γ is a Ramanujan graph
if λ(Γ) ≤ 2

√
k − 1 [54]. The significance of the value 2

√
k − 1 with regard to λ(Γ) has

been established by Alon and Boppana [1] who proved that λ(Γ) is not much smaller than
2
√
k − 1 for the majority of k-regular graphs. More precisely, if we let Xn,k denote a

k-regular graph on n vertices, then:

Theorem 8.2 ([54]). lim infn→∞ λ(Xn,k) ≥ 2
√
k − 1.

Ramanujan graphs of degree k and arbitrarily large order are known to exist when k−1
is a prime [54] or a prime power [61]. In the breakthrough paper [57], the authors proved the
existence of infinitely many bipartite Ramanujan graphs of every degree k ≥ 2. However,
the bipartedness of their graphs is deeply imbedded in their construction method, and the

73
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existence of arbitrary large non-bipartite Ramanujan graphs for degrees k for which k − 1
is neither a prime nor a prime number is a well-known open problem; the first open degree
being k = 7 [62].

In the main result of this chapter, Theorem 8.3, we prove that a negative answer to
the question of Bermond and Bollobás would imply the existence of arbitrarily large non-
bipartite Ramanujan graphs for any (prime power or not) degree k, and conversely, the
non-existence of arbitrarily large non-bipartite Ramanujan graphs for some fixed degree k
would yield a positive answer to the question of Bermond and Bollobás.

8.1 Spectral analysis

For many of our arguments, we rely on the techniques of spectral analysis applied to graphs
extremal with respect to the Degree/Diameter Problem. We begin with a brief review of
the basic facts as listed in [60].

Let Γ be a connected (k, d)-graph of order n and δ and let A be its adjacency matrix.
Recall, the polynomials Gk,i(x) for all x ∈ R are defined as follows:

Gk,0(x) = 1
Gk,1(x) = x+ 1
Gk,i+1(x) = xGk,i(x)− (k − 1)Gk,i−1(x) for i ≥ 1.

(8.1)

Moreover, the entry (Gk,i(A))α,β counts the number of paths of length at most i joining the
vertices α and β in Γ. Regular graphs with defect δ and order n satisfy the matrix equation

Gk,d(A) = Jn + B,

where B is a non-negative integer matrix with the row and column sums equal to δ. The
matrix B is called the defect matrix (see [60]).

Next, we follow the line of argument that originally appeared in [13]. Since Γ is regular
and connected, the all-ones matrix Jn is a polynomial of A, say, Jn(A). From now on, we
adopt the convention that matrices will be denoted by upper-case bold-face characters while
their corresponding polynomials will be denoted by the same character but not bold-faced.
Thus, B = B(A) = Gk,d(A)− Jn(A), and Jn = Jn(A) = Gk,d(A)− B(A). It follows that
if λ is an eigenvalue of A, then Gk,d(λ)−B(λ) = Jn(λ) is an eigenvalue of Jn. Substituting
the value k for λ yields the eigenvalue n of Jn, Gk,d(k) − B(k) = n. An easy calculation
yields that Gk,d(k) = M(k, d), and therefore B(k) = M(k, d)−n = δ is an eigenvalue of B.
Since each row and column of B sums up to δ, every eigenvalue of B has value at most δ.
If λ 6= k is another eigenvalue of A, then Gk,d(λ)−B(λ) must be the zero eigenvalue of Jn.
Therefore, Gk,d(λ) − B(λ) = 0, and since |B(λ)| ≤ δ, we obtain |Gk,d(λ)| ≤ δ. Thus, the
value |Gk,d(λ)| is a lower bound for the defect δ(Γ). In summary, if Γ is a graph of diameter
d, degree k, and order M(k, d)− δ, then every eigenvalue λ 6= k of Γ satisfies

|Gk,d(λ)| ≤ δ. (8.2)

Since A is symmetric, all eigenvalues of A are real. Let λ0 ≥ λ1 ≥ . . . ≥ λn−1 be the
eigenvalues of Γ and let λ be the eigenvalue with the second largest absolute value. It is well



8.2. Main result 75

known from Perron-Frobenius theory (e.g., [53]), that λ0 = k and k is of multiplicity one if
and only if Γ is connected. Moreover, if Γ is non-bipartite, then λn−1 > −k. Therefore, if
Γ is a connected and non-bipartite graph, λ = max{λ1, |λn−1|}.

8.2 Main result

The following theorem is the main result in this chapter.

Theorem 8.3. Let c ≥ 1 and k ≥ 3 be fixed integers. Then there exists an even Dc,k such
that any graph Γ of maximum degree k, even diameter d ≥ Dc,k, and order greater than
M(k, d)− c, is a non-bipartite k-regular Ramanujan graph with λ(Γ) < 2

√
k − 1. If k > c,

all these Ramanujan graphs must be of girth 2d or 2d− 1.

Proof. Let c ≥ 1 and k ≥ 3. As argued in the introduction, Moore and bipartite Moore
graphs exist only for very limited diameters d. Therefore, assuming that d > 6 yields the
non-existence of Moore or bipartite Moore (k, d)-graphs (and hence the non-existence of
(k, d)-graphs of girth 2d + 1). In addition, due to (2.2), taking d > logk−1(c(k − 2) + 1)
makes the order of any non-regular graph of maximum degree k and diameter d smaller
than M(k, d) − c. Similarly, due to (2.3), taking d > logk−1(c) makes the order of any
bipartite (k, d)-graph smaller than M(k, d) − c. Thus, any (k, d)-graph Γ of diameter d >
max{6, logk−1(c(k − 2) + 1)} and of order greater than M(k, d) − c must be k-regular,
non-bipartite, and of girth smaller than 2d + 1. We claim that there exists an integer
Dc,k > max{6, logk−1(c(k−2)+1)} such that every (k, d)-graph Γ of even diameter d > Dc,k

and of order greater than M(k, d)− c is in fact a non-bipartite Ramanujan graph.
We proceed by contradiction. Let us assume that Γ is a (k, d)-graph of even diam-

eter d > max{6, logk−1(c(k − 2) + 1)}, of order greater than M(k, d) − c, and satis-
fying the inequality λ(Γ) ≥ 2

√
k − 1. Since Γ is k-regular and non-bipartite, λ(Γ) ∈

(−k,−2
√
k − 1] ∪ [2

√
k − 1, k). To obtain the desired contradiction, we will show that

|Gk,d(x)| > c, for all x ∈ (−k,−2
√
k − 1]∪ [2

√
k − 1, k) and all sufficiently large even diam-

eters d. This, combined with the inequality (8.2) will imply that the defect of (k, d)-graphs
from this class is larger than c.

To achieve our goal, we derive an explicit formula for Gk,d(x). Fixing the variable x
makes the last equation of (8.1) into a second order linear homogeneous recurrence equation
for Gk,d(x) with respect to the parameter d, subject to the initial conditions Gk,0(x) = 1
and Gk,1(x) = x+ 1. We will only calculate the values of Gk,d(x) for x ∈ (−k,−2

√
k − 1]∪

[2
√
k − 1, k), and thus we only need to consider the recurrence relation in the case when

the roots of the corresponding second degree polynomial equation t2− xt+ (k− 1) = 0 are
real; with a double-root when x = ±2

√
k − 1. Solving this recurrence equation for a fixed

x ∈ (−k,−2
√
k − 1) ∪ (2

√
k − 1, k), we obtain the explicit formula

Gk,d(x) =
x+ 2 +

√
x2 − 4k + 4

2
√
x2 − 4k + 4

(
x+
√
x2 − 4k + 4

2

)d
−

−x+ 2−
√
x2 − 4k + 4

2
√
x2 − 4k + 4

(
x−
√
x2 − 4k + 4

2

)d
.
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In the case when x = ±2
√
k − 1, the second degree polynomial equation has a double

root and we obtain:

Gk,d(2
√
k − 1) = (d+ 1)

√
k − 1

d
+ d
√
k − 1

d−1
,

Gk,d(−2
√
k − 1) = (−1)d((d+ 1)

√
k − 1

d − d
√
k − 1

d−1
).

It is easy to see from (8.1) that the function Gk,d(x) is a polynomial of degree d in x,
and thus differentiable. Calculating the derivative of Gk,d(x), for x ∈ (−k,−2

√
k − 1) ∪

(2
√
k − 1, k), we obtain

G
′

k,d(x) =
d(x−

√
x2 − 4k + 4)d(x+ 2−

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
+

(x−
√
x2 − 4k + 4)d+1

2d+1(x2 − 4k + 4)
+

+
x(x−

√
x2 − 4k + 4)d(x+ 2−

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3
2

+
d(x+

√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
+

+
(x+

√
x2 − 4k + 4)d+1

2d+1(x2 − 4k + 4)
− x(x+

√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3
2

.

We will now use the above formulas to show that for sufficiently large even d’s the polyno-
mials Gk,d(x) are positive on both intervals (−k,−2

√
k − 1) and (2

√
k − 1, k) and they are

decreasing on the interval (−k,−2
√
k − 1) and increasing on the interval (2

√
k − 1, k).

The assumption x ∈ (2
√
k − 1, k) yields the inequalities x2−4k+4 > 0, x >

√
x2 − 4k + 4,

and k > x. Thus, under this assumption, Gk,d(x) > 0, for all x ∈ (2
√
k − 1, k) (as well as

Gk,d(2
√
k − 1) > 0) and all d. Similarly, the first five terms of G

′

k,d(x) are positive numbers,
while it is easy to see that there exists a positive integer D1 such that the inequality

d(x+
√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
>
x(x+

√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3
2

,

holds for all x ∈ (2
√
k − 1, k) and all d ≥ D1. Hence, G

′

k,d(x) > 0, for all x ∈ (2
√
k − 1, k)

and all d ≥ D1.
Since Gk,d(x) is continuous on [2

√
k − 1, k] (being a polynomial), and differentiable

on (2
√
k − 1, k), this means that Gk,d(x) is positive and increasing on [2

√
k − 1, k], and

therefore assumes its minimum value at 2
√
k − 1. This provides us with a lower bound on

the defect of Γ in this case:

δ(Γ) ≥ |Gk,d(λ1)| = Gk,d(λ1) ≥ Gk,d(2
√
k − 1) = (d+ 1)

√
k − 1

d
+ d
√
k − 1

d−1
.

It is easy to see the existence of a positive integer D2 such that

δ(Γ) ≥ (d+ 1)
√
k − 1

d
+ d
√
k − 1

d−1
> c,

for all d ≥ D2.
Next, let us suppose that x ∈ (−k,−2

√
k − 1). This assumption implies the inequalities

0 > x + 2 +
√
x2 − 4k + 4 > x + 2 −

√
x2 − 4k + 4, and if d is an even number, (x −
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√
x2 − 4k + 4)d > (x +

√
x2 − 4k + 4)d > 0. It follows that the functions Gk,d(x) are

positive on (−k,−2
√
k − 1) for even d’s. Using the above inequalities again, we can also

deduce that G
′

k,d(x) are negative on (−k,−2
√
k − 1). Thus, if d is an even number, the

functions Gk,d(x) are positive and decreasing on [−k,−2
√
k − 1]. This implies the bound

δ(Γ) ≥ |Gk,d(λn−1)| = Gk,d(λn−1) ≥ Gk,d(−2
√
k − 1) = (−1)d((d+ 1)

√
k − 1

d − d
√
k − 1

d−1
)

as well as the existence of a positive integer D3 such that

δ(Γ) ≥ (−1)d((d+ 1)
√
k − 1

d − d
√
k − 1

d−1
) > c,

for all even d ≥ D3.
The above arguments yield that any bipartite as well as any non-Ramanujan non-

bipartite k-regular graph Γ of even diameter d > Dc,k = max{6, logk−1(c(k−2)+1), D1, D2, D3}
and λ(Γ) ≥ 2

√
k − 1 has defect larger than c. That proves the first part of our theorem.

To prove the last part, let us assume that the girth g(Γ) of Γ is at most 2d − 2, i.e.,
3 ≤ g(Γ) ≤ 2d− 2, and assume that b ∈ V (Γ) lies on a g-cycle. Let

NΓ(b, i) = {v | v ∈ V (Γ), dΓ(b, v) = i}, for 0 ≤ i ≤ d.

It is easy to see that |NΓ(b, 0)| = 1, |NΓ(b, 1)| = k, and |NΓ(b, i)| ≤ k(k − 1)i−1 for 2 ≤ i ≤
d−2. Since b lies on a g-cycle, where g ≤ 2d−2, we obtain |NΓ(b, d−1)| ≤ k(k−1)d−2−1.
Hence |NΓ(b, d)| ≤ k(k − 1)d−1 − (k − 1). This implies the inequality

δ(Γ) = M(k, d)− |V (Γ)| = (1 + k+ k(k− 1) + . . .+ k(k− 1)d−1)− (|NΓ(b, 0)|+ |NΓ(b, 1)|+

+ . . .+ |NΓ(b, d− 1)|+ |NΓ(b, d)|) ≥ k > c.

�

8.3 Concluding remarks

Remark 8.4. If the answer to the question of Bollobás were negative (i.e., if there existed a
positive integer c such that M(k, d)−n(k, d) ≤ c, for all k ≥ 3, d ≥ 2), there would have to
exist a (k, d)-graph Γ of order |V (Γ)| ≥M(k, d)−c for every pair k, d. Due to Theorem 8.3,
for any fixed degree k ≥ 3 and sufficiently large even diameter d, the graph Γ would have to
be a non-bipartite k-regular Ramanujan graph. This would yield the existence of infinitely
many non-bipartite k-regular Ramanujan graphs for every k ≥ 3.

Remark 8.5. As the reader might have noticed, the extremal values (d + 1)
√
k − 1

d
+

d
√
k − 1

d−1
and (−1)d((d+1)

√
k − 1

d−d
√
k − 1

d−1
) can not just be made larger than c by

choosing a sufficiently large d, but can be made arbitrarily large. Because of the continuity
of the functions Gk,d this implies that the values Gk,d(x), for sufficiently large d’s, are not
only larger than c on the intervals (−k,−2

√
k − 1] ∪ [2

√
k − 1, k), but there exist positive

δk,d’s such that Gk,d(x) > c for all x ∈ (−k,−2
√
k − 1 + δk,d] ∪ [2

√
k − 1 − δk,d, k). This,

in combination with Theorem 8.2 of Alon and Boppana, appears to suggest a positive
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answer to the question of Bermond and Bollobás. The key to proving the positive answer
would however require finding a meaningful relation between the rate of the convergency
in Theorem 8.2 and the rate of decrease of the values δk,d (with respect to increase in

d). The definition of the derivative yields the rough estimate δk,d ≈ Gk,d(2
√
k−1)−c

G′k,d(2
√
k−1)

. For

the rate of convergency in Theorem 8.2, Alon in [63] has shown that if Γ is k-regular and
diam(Γ) ≥ 2b+ 2 ≥ 4, for some natural b, then

λ(Γ) ≥ 2
√
k − 1− 2

√
k − 1− 1

b
.

A further improvement of this result is due to Solé [73, 52], who proved that if Γ is a
(k, d)-graph of girth g, then

λ(Γ) ≥ 2
√
k − 1(1− 2π2

g2
+O(

1

g4
)).

Under the assumption k > c, the second part of Theorem 8.3 yields the inequality g ≥ 2d−1,
and hence the above result of Solé yields the lower bound

λ(Γ) ≥ 2
√
k − 1(1− 2π2

g2
) ≥ 2

√
k − 1(1− 2π2

(2d− 1)2
).

Thus, if one were able to show that

2
√
k − 1 · π

2

2d2
≤ δk,d

for sufficiently large d’s, the arguments included in our proof of Theorem 8.3 would yields
the proof for the positive answer to the question of Bermond and Bollobás. We were how-
ever unable to prove such inequality. Instead, we conclude this remark with the following
theorem that follows from the above discussion.

Theorem 8.6. Let c > 0, k > c, and d > max{6, logk−1(c(k− 2) + 1)} be positive integers.

If Gk,d(x) > c for all x ∈ (−k,−2
√
k − 1 + 2π2

(2d−1)2
] ∪ [2

√
k − 1− 2π2

(2d−1)2
, k), then n(k, d) <

M(k, d)− c.

Remark 8.7. The calculations included in the proof of Theorem 8.3 allow for estimating the
defect δ(Γ) of any k-regular graph Γ of sufficiently large even diameter d and girth at least
2d − 1. First, the order of a k-regular graph Γ of girth at least 2d − 1 is known to satisfy
the inequality [33]:

|V (Γ)| ≥M(k, d− 1).

This yields an upper bound on the defect of Γ:

δ(Γ) = M(k, d)− |V (Γ)| ≤ k(k − 1)d − 2

k − 2
− k(k − 1)d−1 − 2

k − 2
= k(k − 1)d−1.

Using the lower bound on the defect δ(Γ) of any k-regular graph of sufficiently large even
diameter d and of girth at least 2d − 1 derived in the proof of Theorem 8.3, we conclude

that δ(Γ) for such graphs belongs to the interval [(d+1)
√
k − 1

d−d
√
k − 1

d−1
, k(k−1)d−1].



8.3. Concluding remarks 79

This observation is related to the concept of a generalized Moore graph [18]: A k-regular
graph Γ of diameter d and girth at least 2d−1 is called a generalized Moore graph. As argued
above, the defect of any generalized Moore graph is bounded from above by k(k − 1)d−1.
For example, both Moore graphs and bipartite Moore graphs are generalized Moore graphs,
with the Moore graphs having the defect 0 and the bipartite Moore graphs having the defect
(k − 1)d. It has been conjectured that the diameter of a generalized Moore graph cannot
exceed 6 (the conjecture can be found, for example, in the notes for the talk delivered
by L.K. Jørgensen in Bandung, 2012). Our lower bounds on the defects of non-bipartite
generalized Moore graphs do not seem to contribute to the resolution of this conjecture.
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Chapter 9

On degree and diameter
monotonicity of digraphs

The results of this chapter are published in [38]. Let (d, k)-digraph denote a directed
graph of maximum out-degree d and diameter k, and let nd,k be the largest order of a
(d, k)-digraph. Let ni, for 0 ≤ i ≤ k, be the number of vertices at distance i from a
distinguished vertex. Then, ni ≤ di, for 0 ≤ i ≤ k. Hence,

nd,k =
k∑
i=0

ni ≤ 1 + d+ ...+ dk−1 + dk =

{
dk+1−1
d−1

, if d > 1,

k + 1, if d=1.
(9.1)

The number on the right-hand side of (9.1), denoted by Md,k, is called the Moore bound for
(d, k)-digraphs. In this chapter we give a positive answer to the question concerning the
degree/diameter problem of digraphs asked in [60];

is nd,k monotonic in d and k?

Employing Kautz digraphs we show nd,k is strictly monotonic increasing in k and in d. These
graphs are diregular digraphs of large order. Moreover, they are iterated line digraphs of
complete digraphs. The Kautz digraph of degree d and diameter k has order dk +dk−1, (see
[60] and [50]).
Our proof is based on a relatively simple idea. The unknown optimal digraphs must have
at least as many vertices as the Kautz digraph, but no more than the Moore digraph. Using
the numbers dk + dk−1 and dk + dk−1 + . . .+ d+ 1 as a lower and an upper bound of nd,k,
respectively, we give an elementary proof of our claim.

Diameter monotonicity

Theorem 9.1. For each k, d ≥ 1 holds nd,k+1 > nd,k.

Proof. If d = 1, then nd,k = n1,k = M1,k = k + 1. It implies

nd,k+1 = n1,k+1 = k + 2 > k + 1 = n1,k = nd,k.
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If d > 1, then we have

nd,k+1 ≥ dk+1 + dk > dk+1 >
dk+1 − 1

d− 1
≥ nd,k.

�

Degree monotonicity

Theorem 9.2. For each k, d ≥ 1 holds nd+1,k > nd,k.

Proof. If d = 1, then we get

nd+1,k = n2,k ≥ 2k + 2k−1 > k + 1 = n1,k = nd,k.

If d > 1, then we have

nd+1,k ≥ (d+ 1)k + (d+ 1)k−1 = (d+ 2)(d+ 1)k−1 ≥ d2

d− 1
(d+ 1)k−1 ≥

≥ d2

d− 1
dk−1 >

dk+1 − 1

d− 1
≥ nd,k.

�



Chapter 10

On the non-existence of families of
(d, k, δ)-digraphs containing only
selfrepeats

The results of this chapter are published in [41]. To address the question of the existence
of (d, k, δ)-digraphs with δ ≥ 2, we will generalize the concept of selfrepeat vertices as
follows. For a fixed vertex u ∈ V (G), let R(u) denote the set of vertices v ∈ V (G) for
which there are at least two walks of length ≤ k connecting u to v. In general, for δ > 1,
|R(u)| can be larger than 1. In the case when R(u) = u, we say again that u is a selfrepeat.
It is interesting to observe that the all vertices of the (2, 2, 1)-digraph, as well as of the
(d, 2, d)-digraphs for d = 2, 3, 7 and possibly d = 57, are selfrepeats [7]. Moreover, in the
unpublished paper [7], Baskoro and Garminia proved the non-existence of (d, k, δ)-digraphs
containing only selfrepeats among the (d, 2, 2)-digraphs with d ≥ 3, the (d, 2, δ)-digraphs
with δ = 4, 5 or 6 and d ≥ δ, and the (d, 3, 4)-digraphs with d ≥ 4.

10.1 Spectral analysis of (d, k, δ)-digraphs with all sel-

frepeat vertices

We consider a diregular digraph of degree d, diameter k with number of vertices

n = dk + dk−1 + . . .+ d+ 1− δ. (10.1)

As we stated in Section 2.6, we shall call such a digraph a (d, k, δ)-digraph. Similarly as
for the (d, k, 1)-digraphs, we can easily see that hold the following propositions for the
(d, k, δ)-digraphs, with d ≥ δ ≥ 2. These propositions are stated in [7].

Proposition 10.1. For any two vertices u, v of a (d, k, δ)-digraph G there is at most one
walk of length l (< k) from u to v. Moreover, G contains no cycle Cl of length l (< k).

Proposition 10.2. For every vertex u of a (d, k, δ)-digraph there exists a non-empty set
S ⊆ V (G) such that for each v ∈ S there are at least two walks of length ≤ k from u to v.
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The set S is called the repeat-set of u, and it is denoted by R(u) = S. Recall that,
if R(u) = {u}, then we say that u is a selfrepeat. As argued before, graphs consisting of
selfrepeats only are interesting and we focus on these graphs from now on.
Let d ≥ δ ≥ 1, let G be a (d, k, δ)-digraph containing only selfrepeat vertices and let A
be its adjacency matrix. Because of Proposition 10.1, in such a digraph, any two distinct
vertices are connected by a unique directed path of length at most k− 1, that is, there are
no directed cycles of length less than k in G. Since each vertex of G is a selfrepeat, any two
distinct vertices at distance k are connected by a unique directed path of length k. Thus,
among the d in-neighbours of each vertex of G, exactly δ are at distance k − 1 from it. It
implies that each vertex of G lies on exactly δ directed cycles of length k, Ck. Using this
argument, we observe that the adjacency matrix A fulfills the following matrix equation

Ak + Ak−1 + . . .+ A+ I = J + δI (10.2)

where I is the n× n identity matrix and J is the n× n matrix whose entries are all 1’s. It
is well known that the eigenvalues of J are n (with multiplicity 1) and 0 (with multiplicity
n− 1). Therefore the eigenvalues of A are d (this corresponds to n) and the roots of

xk + xk−1 + . . .+ x+ 1− δ = 0. (10.3)

Let ξA(x) = xk + xk−1 + . . . + x + 1 − δ. In the following lemma we analyze the roots of
ξA(x) and their multiplicities.

Lemma 10.3. Let k ≥ 3 and δ ≥ 1. The polynomial ξA(x) = xk + xk−1 + . . . + x + 1 − δ
has at most one negative real root, one positive real root and at least k − 2 complex roots.
Moreover, all of the roots of ξA(x) are simple.

Proof. In the proof we use Descartes’ rule of signs: the number of positive roots of a single-
variable polynomial with real coefficients is equal to the number of sign differences between
consecutive nonzero coefficients, or is less than it by an even number; similarly, the number
of negative roots is the number of sign changes after multiplying the coefficients of odd-
power terms by −1, or fewer than it by an even number [23]. According to Descartes’
rule of signs, the polynomial ξA(x) has exactly one positive real root. If θ is a positive
real root of ξA(x) with multiplicity greater than 1, then θ also is a root of its derivative
kxk−1 + (k− 1)xk−2 + . . .+ 2x+ 1, which is impossible. Thus, the unique positive real root
of the polynomial ξA(x) is simple. If δ 6= k+ 1, then the equation (10.3) has the same roots
as the equation

xk+1 − δx+ δ − 1 = 0, (10.4)

except for the extra root of (10.4) x = 1; if δ = k + 1, then x = 1 is a root of (10.3) with
multiplicity 1 and a root of (10.4) with multiplicity 2. Using Descartes’ rule of signs we
have that the equation xk+1 − δx + δ − 1 = 0 has at most two positive real roots (one
of them is x = 1) and at most one negative real root. If we suppose that θ is a root of
(10.4) with multiplicity greater than 1, we deduce that θ also satisfies the first derivative
of (10.4), that is, (k + 1)xk − δ. Combining (10.4) and the identity (k + 1)xk − δ = 0 we

obtain θ = (δ−1)(k+1)
δk

≥ 0, which yields that there exist no negative real root nor complex
roots of ξA(x) with multiplicity greater than 1. �
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To calculate the multiplicities of the eigenvalues of G we use the following lemma stated
in [35] by Feit and Higman.

Lemma 10.4 ([35]). Let θ be a simple root of the polynomial f(x), and put fθ(x) = f(x)
x−θ . If

M is a matrix satisfying f(M) = 0 then trace(fθ(M))
fθ(θ)

is the multiplicity of θ as a characteristic
root of M , and so is rational.

Since all the roots of ξA(x) are simple we can apply the result of Feit and Higman to
any of its roots. In the following lemma we give a formula for calculating multiplicities of
the eigenvalues of a (d, k, δ)-digraph G.

Lemma 10.5. Let d ≥ δ ≥ 1 and let G be a (d, k, δ)-digraph of order n containing only
selfrepeat vertices. If θ is an eigenvalue of G different to d and 1, then its multiplicity m(θ)
satisfies the following

m(θ) =
n(δ + dθk − dδ)(θ − 1)

((k + 1)θk − δ)(θ − d)
. (10.5)

Proof. We analyze the multiplicities of the eigenvalues of A using Lemma 10.4. Since the
spectrum of A consists of d and the roots of ξA(x), which are simple roots of ξA(x), we
conclude that (x−d)ξA(x) is the minimal polynomial of A. It is well-known that every square
matrix over a commutative ring satisfies its own minimal equation. We can consider f(x) =

(x−d)ξA(x) = (x−d)(xk+xk−1 + . . .+x+1−δ), and thus, fθ(x) = (x−d)(xk+xk−1+...+x+1−δ)
x−θ .

By Lemma 10.4, the multiplicity of θ equals

m(θ) =
trace(fθ(A))

fθ(θ)
. (10.6)

Since fθ(x) is a monic polynomial of degree k we can set fθ(x) = xk+ak−1x
k−1+. . .+a1x+a0.

Now, comparing the coefficients in front of xi, for 0 ≤ i ≤ k, on both sides of the identity

(x− θ)(xk + ak−1x
k−1 + . . .+ a1x+ a0) = (x− d)(xk + xk−1 + . . .+ x+ 1− δ)

we obtain the following system 

ak−1 − θ = 1− d
ak−2 − ak−1θ = 1− d

. . .
ai−1 − aiθ = 1− d

. . .
a1 − a2θ = 1− d
a0 − a1θ = 1− δ − d
−a0θ = d(δ − 1)

(10.7)

Solving (10.7) we find a0 = θk + (1 − d)(θk−1 + θk−2 + . . . + θ + 1) − δ and ai =
θk−i+ (1−d)(θk−i−1 + θk−i−2 + . . .+ θ+ 1), for 1 ≤ i ≤ k−1. Replacing the obtained values
for ai in fθ(x) we get

fθ(x) = xk+(θ+1−d)xk−1+(θ2+(1−d)(θ+1))xk−2+. . .+θk+(1−d)(θk−1+θk−2+. . .+θ+1)−δ.
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Substituting θ for x yields

fθ(θ) = (k + 1)θk + (1− d)(kθk−1 + (k − 1)θk−2 + . . .+ 2θ + 1)− δ.

Using θk + θk−1 + . . .+ θ + 1− δ = 0, we obtain

fθ(θ) = (k+1)θk+(1−d)(kθk−1+(k−1)θk−2+. . .+2θ+1)−δ = ((k+1)θk−δ)(θ − d
θ − 1

). (10.8)

Since the (d, k, δ)-digraphs do not contain directed cycles of length less than k, (see Propos.
10.1), the traces of the matrices Ai, with 1 ≤ i ≤ k − 1, are all equal to 0, trace(Ai) = 0.
Hence, using additivity of traces, we have

trace(fθ(A)) = trace(Ak + (θ + 1− d)Ak−1 + (θ2 + (1− d)(θ + 1))Ak−2 + . . .+

+(θk+(1−d)(θk−1+θk−2+. . .+θ+1)−δ)In) = trace(Ak)+(θk+(1−d)(θk−1+θk−2+. . .+1)−δ)n.

As we showed previously, each vertex of a (d, k, δ)-digraph containing only selfrepeats lies
on exactly δ directed cycles of length k. It implies

trace(Ak) = δn. (10.9)

By θk + θk−1 + . . .+ θ + 1− δ = 0 it follows

n(θk + (1− d)(θk−1 + θk−2 + . . .+ 1)− δ) = nd(θk − δ). (10.10)

In the end, substituting the results from (10.8), (10.9) and (10.10) in (10.6) we derive the
formula for the multiplicity of θ,

m(θ) =
trace(Ak) + (θk + (1− d)(θk−1 + θk−2 + . . .+ 1)− δ)n

(k + 1)θk + (1− d)(kθk−1 + (k − 1)θk−2 + . . .+ 2θ + 1)− δ
=

=
n(δ + dθk − dδ)(θ − 1)

((k + 1)θk − δ)(θ − d)
.

�

Taking advantage of Lemma 10.5 we are in a position to give the main result in this
chapter.

Theorem 10.6. Let d ≥ δ ≥ k + 1 ≥ 4. Then there exist no (d, k, δ)-digraphs containing
only selfrepeat vertices.

Proof. Let G be a (d, k, δ)-digraph containing only selfrepeat vertices. Recall that the
spectrum of G consists of d and of the roots of the polynomial ξA(x) = xk +xk−1 + . . .+x+
1− δ. From Lemma 10.3 we easily see that for k ≥ 4 and δ ≥ 1 the polynomial ξA(x) has
at least two complex roots. If k = 3, then by Descartes’ rule it follows that x4− δx+ δ− 1
has no negative real root. Therefore, the polynomial x3 + x2 + x + 1 − δ has one positive
real root and two complex roots.
In order to prove the non-existence of G, we fix a complex eigenvalue with negative real
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part, (in Remark 10.7 below we prove the existence of such eigenvalue), and we show that
its multiplicity is again a complex number, which will leads to a contradiction.

Let θ be a complex eigenvalue of G with negative real part and let |θ| = r, that is,
θ = r(cosφ + i sinφ) and cosφ < 0. Comparing the imaginary and the real parts of both

sides of θk+1 = θδ − δ + 1 we obtain sin(k+1)φ
sinφ

= δ
rk

and rk+1 cos(k + 1)φ = rδ cosφ− δ + 1,
respectively. These two relations yield

sin kφ

sinφ
=

sin(k + 1)φ cosφ− sinφ cos(k + 1)φ

sinφ
=
δ − 1

rk+1
. (10.11)

By θk+1 = θδ − δ + 1 it follows (δ + dθk − dδ)(θ− 1) = −dθk + δθ+ d− δ and ((k + 1)θk −
δ)(θ − d) = −d(k + 1)θk + kδθ + (k + 1)(1− δ) + dδ.
Next, we substitute the trigonometric form of θ into the formula (10.5), and then we
multiply its numerator and denominator by the conjugate of the denominator of m(θ). We
obtain

m(θ) = n·

· −drk cos kφ+ δr cosφ+ d− δ + i(−drk sin kφ+ δr sinφ)

−d(k + 1)rk cos kφ+ kδr cosφ+ (k + 1)(1− δ) + dδ + i(−d(k + 1)rk sin kφ+ kδr sinφ)
·

·−d(k + 1)rk cos kφ+ kδr cosφ+ (k + 1)(1− δ) + dδ − i(−d(k + 1)rk sin kφ+ kδr sinφ)

−d(k + 1)rk cos kφ+ kδr cosφ+ (k + 1)(1− δ) + dδ − i(−d(k + 1)rk sin kφ+ kδr sinφ)
.

After performing the required multiplications we are able to determine the imaginary part
of m(θ). The fact that m(θ) is a natural number makes the imaginary part equals to 0,
which leads to the identity

dδrk+1 sin(k−1)φ+drk((k+1)(d−1)−dδ) sin kφ+δr((δ−d)k+(k+1)(1−δ)+dδ) sinφ = 0.
(10.12)

Since δ
rk

= sin(k+1)φ
sinφ

= δ−1
rk+1 cosφ+ cos kφ, we have cos kφ = δ

rk
− δ−1

rk+1 cosφ. Thus

sin(k − 1)φ

sinφ
=

sin kφ

sinφ
cosφ− cos kφ =

δ − 1

rk+1
cosφ− cos kφ =

2(δ − 1)

rk+1
cosφ− δ

rk
.

Substituting sin(k− 1)φ = 2(δ−1)
rk+1 sinφ cosφ− δ

rk
sinφ and sin kφ = δ−1

rk+1 sinφ in (10.12), and
dividing by sinφ, we have

2dδ(δ − 1) cosφ =
d(δ − 1)

r
((k + 1)(1− d) + dδ) + δr((d− δ)k + (k + 1)(δ − 1)). (10.13)

If δ ≥ k+ 1, it can be easily seen that the right side of (10.13) is a positive number. On the
other hand, we have chosen θ to be a complex eigenvalue of G whose real part is negative,
(cosφ < 0). This provides us the required contradiction. �

Remark 10.7. Let δ ≥ k+1 ≥ 4. If δ > k+1, then ξA(1) = k+1−δ < 0. Since ξA(d) = n > 0
and ξA(1) < 0, we note that the unique positive root of ξA(x) belongs to the interval (1, d),
and we denote it by θ1. Descartes’ rule asserts that the polynomial ξA(x) has no negative
real root when k is an odd number. We will prove the existence of a complex root of ξA(x)
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with negative real part when ξA(x) has a negative real root θ2; in such case k must be an
even number. The case when ξA(x) has no negative root can be handled similarly.
Let θj = pj + qji, with 3 ≤ j ≤ k, be the complex roots of ξA(x). By way of contradiction
we assume that pj ≥ 0, for all 3 ≤ j ≤ k. Using the fact that the complex roots come in
conjugate pairs and applying Vieta’s formulas to the polynomial ξA(x), we obtain

−1 = θ1 + θ2 + . . .+ θk = θ1 + θ2 + (p3 + . . .+ pk) ≥ θ1 + θ2.

On the other hand, since k is an even number and θ1 is a positive, using the inequality
(1 + θ1)t > (1 + θ1)t−1 + θt1 + θt−1

1 , for 2 ≤ t ≤ k, we can deduce

ξA(−1− θ1) = (−1− θ1)k + (−1− θ1)k−1 + . . .+ (−1− θ1) + 1− δ =

= (1 + θ1)k − (1 + θ1)k−1 + . . .+ (1 + θ1)2 − (1 + θ1) + 1− δ > θk1 + θk−1
1 + . . .+ 1− δ = 0.

Since ξA(0) < 0 and ξA(−1 − θ1) > 0, it follows that the negative root of ξA(x) belongs
to the interval (−1 − θ1, 0), that is, −1 − θ1 < θ2 < 0. Thus θ1 + θ2 > −1, which is in
contradiction to θ1 + θ2 ≤ −1. For δ = k + 1 we proceed similarly.

Remark 10.8. Using the proof of Theorem 10.6 we can re-prove the non-existence of the
(d, k, 1)-digraphs containing only selfrepeats, with k ≥ 3 and d ≥ 2; the result given in
Theorem 2.3. Since δ = 1, the eigenvalues of this family of digraphs are d (with multiplicity
1) and the roots of xk + xk−1 + . . .+ x = 0, which consist of 0 and the k-th roots of unity,
e2πji/k, with 1 ≤ j < k. Note that θ = e2πji/k implies r = |θ| = 1, for each θ. Substituting
δ = r = 1 in (10.13) we have 0 = (d− 1)k, which is impossible.

The problem of the non-existence of (d, k, δ)-digraphs with only selfrepeats, for specific
parameters (d, k, δ), can be answered directly employing the formulas (10.5) or (10.13).
For each triplet (d, k, δ) with d ≥ δ ≥ 2 and k ≥ 3 we can determine the order and the
eigenvalues of the (d, k, δ)-digraphs containing only selfrepeats. Then, using (10.5) we can
calculate the corresponding multiplicities. The non-existence of the considered digraphs
can be concluded once we obtain non-integer or negative integer multiplicity. Similarly, the
non-existence of (d, k, δ)-digraphs containing only selprepeats can be secured if the right
side of (10.13) is greater than 2dδ(δ− 1) or smaller than −2dδ(δ− 1). Based on the results
obtained using the above formulas in WolframAlpha, we establish the following conjecture.

Conjecture 10.9. Let d ≥ δ ≥ 2 and k ≥ 3. There exist no (d, k, δ)-digraphs containing
only selfrepeat vertices.

10.2 Alternate proof of the nonexistence of Moore di-

graphs

Plesńık and Znám in [68] and later Bridges and Toueg in [16] showed that Moore digraphs
exist only in the trivial cases, when d = 1 (directed cycle Ck+1) or when k = 1 (complete
symmetric digraph Kd+1). In this section we give an alternate proof of this result based on
the method presented in this chapter. In order to relate the multiplicity result in Section
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10.1 with the multiplicities of the eigenvalues of the Moore digraphs, we verify Lemma 10.5
in the case of Moore digraphs, putting δ = 0 in formula (10.5).

First, the (d, k)-Moore digraphs can be viewed as (d, k, 0)-digraphs ((d, k)-digraphs with
defect δ = 0). If A is the adjacency matrix of a (d, k)-Moore digraph, then we have the
following relation:

Ak + Ak−1 + . . .+ A+ I = J.

This matrix equation yields that the spectrum of A consists of d and the roots of

xk + xk−1 + . . .+ x+ 1 = 0, (10.14)

which are the (k + 1)-st roots of unity. It is a well-known fact that the roots of unity of
(10.14) are simple roots. Clearly, the equation (10.14) has the same roots as the equation
(10.3) when δ = 0.
Since any (d, k)-Moore digraph does not contain cycles of length shorter than k + 1,
trace(Aj) = 0, for each 1 ≤ j ≤ k (see [16]). In comparison, for the (d, k, δ)-digraphs
containing only selfrepeat vertices we showed that there exists no cycle of length shorter
than k, which implies trace(Aj) = 0, for each 1 ≤ j ≤ k − 1, while trace(Ak) = δn. We
note that if δ = 0, then trace(Ak) = 0.

Now, setting δ = 0 in formula (10.5), we obtain a formula for the multiplicities of the
non-trivial eigenvalues of the Moore digraphs:

Corollary 10.10. Let θ, different to d, be an eigenvalue of a (d, k)-Moore digraph of order
n. Then its multiplicity m(θ) satisfies the identity

m(θ) =
nd

k + 1
· θ − 1

θ − d
. (10.15)

The only real roots of unity are 1 and −1. Therefore the equation (10.14) has at least
k−1 complex roots. Thus, for k > 1 we can fix a complex eigenvalue θ of A. Using formula
(10.15) we conclude that if d > 1, then m(θ) is a complex number (since θ−1

θ−d is complex),
which is impossible.
Finally, we briefly analyze the remaining two possibilities, d = 1 or k = 1, determining the
spectrum of the corresponding digraphs.

• If d = 1, then m(θ) = n
k+1

= k+1
k+1

= 1. Therefore for the spectrum of the (1, k)-Moore
digraphs (they are the directed Ck+1 cycles), we have

Spec(Ck+1) = {1(1), θ
(1)
1 , . . . , θ

(1)
k−1, θ

(1)
k },

where θi is the i-th root of the equation (10.14).

• If k = 1, then n = d + 1 and θ = θ1 = −1. Thus, m(θ) = (d+1)d
2
· −2
−1−d = d. For

the spectrum of the (d, 1)-Moore digraphs (they are the directed complete digraphs
Kd+1) we have

Spec(Kd+1) = {d(1),−1(d)}.



.



Chapter 11

Conclusions

A number of research problems from extremal graph theory are solved, in particular:
improvement of the lower bounds on the order of cages of even girth, existence of antipodal
cages of even girth and small excess, existence of vertex-transitive graphs of given degree
and girth. Moreover, in the thesis we answered the open question about the monotonicity
of the function nd,k (the largest possible order of the digraphs with maximum out-degree d
and diameter k) in d and in k, and we give a close connection between two well-known open
problems from extremal graph theory, the problem posed by Bermond in Bollobás and the
problem which address the existence of the non-bipartite Ramanujan graphs for any degree
k.

The basic tools used in this research range from combinatorial methods in graph the-
ory combined with number theory and the linear algebra considerations in matrix theory.
Finding the multiplicities of the eigenvalues of graphs, counting g-cycles in certain graphs
combining with number theory and using the power of the inequalities are the main tech-
niques employed in the thesis.

The results of this PhD Thesis represent a significant contribution to a number of long
standing open problems in graph theory.
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[9] E. T. Baskoro, M. Miller, J. Širáň and M. Sutton. Complete characterization of almost
Moore digraphs of degree three. J. Graph Theory 48 (2) (2005) 112-126.

[10] C. T. Benson. Minimal regular graphs of girth eight and twelve. Canad. J. Math
18(1966) 1091-1094.

[11] J. -C. Bermond and B. Bollobás. The diameter of graphs: A survey, Congressus Nu-
merantium 32 (1981) 3-27.

[12] N. L. Biggs. Excess in vertex-transitive graphs. Bull. London Math. Society 14 (1982)
52-54.

[13] N. Biggs. Girth, valency, and excess. Linear Algebra Appl. 31 (1980) 55-59.

[14] N. L. Biggs. Algebraic Graph Theory. Cambridge University Press, Second Edition,
Great Britain (1993).

93



94 Bibliography

[15] N. L. Biggs and T. Ito. Graphs with even girth and small excess. Math. Proc. Camb.
Philos. Soc. 88 (1980) 1-10.

[16] W. G. Bridges and S. Toueg. On the impossibility of directed Moore graphs. J. Comb.
Theory B 29 (1980) 339-341.

[17] W. G. Brown. On the non-existence of a type of regular graphs of girth 5. Canad. J.
Math. 19 (1967) 644-648.

[18] V. G. Cerf, D. D. Cowan, R. C. Mullin and R. G. Stanton. Computer networks and
generalized Moore graphs. Proc. 3rd Manitoba Conf. Numer. Math., Winnipeg 1973
(1974) 379-398.

[19] http://combinatoricswiki.org/wiki/The Cage Problem.
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[30] P. Erdős and H. Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler
Knotenzahl. Wiss. Z. Uni. Halle (Math. Nat.) 12 (1963) 251-257.

[31] L. Eroh and A. Schwenk. Cages of girth 5 and 7. Congr. Numer. 138 (1999) 157-173.

[32] G. Exoo. Private communication, 2015.



Bibliography 95

[33] G. Exoo and R. Jajcay. Dynamic cage survey. Electron. J. Combin., Dynamic Survey
16, September 2008.
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Chapter 12

Povzetek v slovenskem jeziku

12.1 Teoretična izhodǐsča

Topologijo omrežja (na primer telekomunikacijskega, multiprocesorskega ali lokalnega raču-
nalnǐskega omrežja) po navadi modeliramo z grafom, katerega vozlǐsča predstavljajo ‘vo-
zlǐsča omrežja’ (postaje oz. procesorje), neusmerjene ali usmerjene povezave grafa pa pred-
stavljajo povezave med danimi vozlǐsči. Pri načrtovanju takšnega omrežja moramo upošteva-
ti številne značilnosti grafov. Najpogostešji takšni značilnosti sta omejitev stopnje vozlǐsč
ter omejitev premera grafa. Interpretacija teh dveh parametrov v omrežju je očitna: stopnja
vozlǐsča je število povezav, ki jih ima to vozlǐsče z drugimi vozlǐsči, premer pa predstavlja
maksimalno število povezav, ki jih mora neko sporočilo prepotovati na poti med poljubnim
parom vozlǐsč. Kakšno je največje število vozlǐsč v omrežju z omejeno stopnjo vozlǐsč in
omejenim premerom? Če so povezave med vozlǐsči neusmerjene, potem imamo opravka z
naslednjim problemom v teoriji grafov:

• Problem stopnje in premera: Za dani naravni števili k in d poǐsčite največje možno
število vozlǐsč n(k, d), za katero obstaja graf z n(k, d) vozlǐsči, ki ima največjo stopnjo
k in premer d.

Če besedo ‘stopnja’ zamenjamo z ‘izhodna stopnja’, dobimo različico problema za usmer-
jene grafe. Izhodna stopnja vozlǐsča v usmerjenemu grafu je število usmerjenih povezav z
začetkom v danem vozlǐsču. Tako dobimo naslednji problem:

• Problem stopnje in premera v usmerjenemu grafu: Za dani naravni števili d in k
poǐsčite največje možno število vozlǐsč nd,k, za katero obstaja usmerjeni graf z nd,k
vozlǐsči, ki ima največjo izhodno stopnjo d in premer k.

Problem kletke, ki je znan tudi kot problem stopnje in ožine, je tesno povezan s problemom
stopnje in premera.

• Problem kletke (Problem stopnje in ožine): Za dani naravni števili k in g poǐsčite
najmanǰse število vozlǐsč n(k, g) za katero obstaja graf stopnje k in ožine g.

V doktorski disertaciji smo se osredotočili na odprta vprašanja in probleme, ki se nanašajo
na problem kletke ter na problem stopnje in premera v neusmerjenih in usmerjenih grafih.
Rezultati doktorske disertacije so objavljeni v naslednjih člankih.
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12.1.1 Problem kletke

Grafu ožine g, ki je k-regularen, pravimo (k, g)-graf. Z izrazom (k, g)-kletka pa poimenujemo
(k, g)-graf, ki ima minimalno število vozlǐsč. Red takega grafa označimo z n(k, g). Že okoli
leta 1960 je bilo znano, da za vsak par (k, g) obstaja neskončno mnogo (k, g)-grafov [30, 71].
Kljub temu je red n(k, g) za (k, g)-kletke znan samo za nekatere posebne pare števil k in g
[33].

Moore-ova meja M(k, g) je naravna spodnje meja za red (k, g)-grafa (in potemtakem
tudi za red (k, g)-kletke). Njena vrednost je odvisna od parnosti števila g:

n(k, g) ≥M(k, g) =

{
1 + k + k(k − 1) + · · ·+ k(k − 1)(g−3)/2, če jeg lih,

2
(
1 + (k − 1) + · · ·+ (k − 1)(g−2)/2

)
, če jeg sod.

Znano je, da red velike večine (k, g)-kletk presega Mooreovo mejo (glej npr. [33]).
Natančna zveza med številoma M(k, g) in n(k, g) je eno od pomembnečjih odprtih vprašanj
v teoriji kletk. Grafi, katerih red je enak Moore-ovi meji, se imenujejo Moore-ovi grafi. Po-
leg tega je znano, da Mooreov graf obstaja če in samo če je k = 2 in g ≥ 3, g = 3 in
k ≥ 2, g = 4 in k ≥ 2, g = 5 in k ∈ {2, 3, 7} ali pa je g ∈ {6, 8, 12}, pri čemer obstaja
posplošeni n-kotnik reda k − 1 [5, 25, 33]. Obstoj (57, 5)-Mooreovega grafa je še vedno
odprto vprašanje.
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Razlika med redom n nekega (k, g)-grafa G in Moore-ovo mejo M(k, g), ki jo označimo
z e, se imenuje presežek grafa G, tj. e = n − M(k, g). Izračun presežka (k, g)-kletke je
ekvivalenten izračunu števila n(k, g).

Poglavitni del disertacije je študij kletk s sodo ožino in majhnim presežkom. Rezultati
o kletkah s sodo ožino, ki so bili znani do sedaj, so povzeti v naslednjih dveh izrekih.

Izrek 12.1 ([15]). Naj bo G (k, g)-kletka z ožino g = 2m ≥ 6 in presežkom e. Če je
e ≤ k − 2, potem je e sodo števil, graf G pa je dvodelen s premerom m+ 1.

V naslednjem izreku naj D(k, 2) označuje incidenčni graf simetričnega (v, k, 2)-načrta.

Izrek 12.2 ([15]). Naj bo G (k, g)-kletka z ožino g = 2m ≥ 6 in presežkom 2. Potem je
g = 6, G je dvojni krov grafa D(k, 2), število k pa ni kongruentno 5 ali 7 (mod 8).

Kolikor nam je znano – razen za določene majhne primere grafov, za katere je bilo
število n(k, g) ugotovljeno, in za majhno število grafov s presežkom večjim od 2, katerih
obstoj je bil dokazan z izčrpnim preiskovanjem z računalnikom – ni nobenih znanih parov
parametrov (k, g), kjer bi bil presežek večji od 2 za bodisi sodo bodisi liho število g (tj.
ni znana nobena neskončna družina parov števil (k, g), za katere bi bilo dokazano, da je
n(k, g) > M(k, g) + 4). V disertaciji smo vpeljali neskončne družine parov parametrov
(k, g), za katere ne obstaja noben (k, g)-graf s presežkom manǰsim od 5. Ti rezultati so prvi
rezultati takšnega tipa. Naši argumenti temeljijo na precej očitni lemi, ki jo bomo sedaj
predstavili. Naj bo G k-regularen graf ožine g. Za poljubno povezavo f ∈ E(G) in celo
število c ≥ 3 naj cG(f, c) označuje število ciklov dolžine c v grafu G, ki vsebujejo povezavo
f .

Lemma 12.3. Naj bo G graf in naj bo c ≥ 3. Število∑
f∈E(G)

cG(f, c)

je deljivo s c.

Ključen argument v dokazu zgoraj opisanega rezultata temelji na skrbnem štetju ciklov
dolžine c v (potencialnem) (k, g)-grafu presežka 4.

Predpostavimo, da je k ≥ 6, g = 2d ≥ 6 in da je G (k, g)-graf, ki ima presežek 4 in
red n. Zaradi Biggsovega rezultata zapisanega v Izreku 12.1, nam restrikcija parametrov
k in g, ki je podana zgoraj, omogoča sklep, da je G dvodelen graf s premerom d + 1. Za
vsako celo število i, za katero velja 0 ≤ i ≤ d + 1, definiramo n × n matriko Ai = Ai(G)
na naslednji način. Vrstice in stolpci matrike Ai ustrezajo vozlǐsčem grafa G. Vrednost na
položaju (u, v) je 1, če je razdalja d(u, v) med vozlǐsčema u in v enaka i, sicer pa je vrednost
na položaju (u, v) enaka 0. Očitno je A0 = I in A1 = A, kjer A označuje običajno matriko
sosednosti grafa G.

Zadnja neničelna matrika je matrika Ad+1, ki jo bomo označili z E in jo poimenovali
matrika presežnosti. Z drugimi besedami, E je matrika sosednosti grafa, ki ima isto množico
vozlǐsč V kot graf G, dve vozlǐsči iz V pa sta sosednji natanko tedaj, ko sta na razdalji d+1
v grafu G. Tako dobljen graf imenujemo graf presežnosti grafa G in ga označimo z G(E).
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Če J označuje matriko, ki ima na vsakem položaju vrednost 1, potem razdaljne matrike
Ai, za 0 ≤ i ≤ d, in matrika E zadoščajo enakosti

d∑
i=0

Ai + E = J.

Definirajmo sedaj naslednje polinome:

F0(x) = 1, F1(x) = x, F2(x) = x2 − k;

G0(x) = 1, G1(x) = x+ 1;

H−2(x) = − 1
k−1

, H−1(x) = 0, H0(x) = 1, H1(x) = x;

Pi+1(x) = xPi(x)− (k − 1)Pi−1(x) za


i ≥ 2, če je Pi = Fi,
i ≥ 1, če je Pi = Gi,
i ≥ 1, če je Pi = Hi.

Singleton je dokazal veliko povezav med temi polinomi [72]. Uporabili smo dve izmed
teh povezav. Za vsak i ≥ 0 velja, da je

Gi(x) =
i∑

j=0

Fj(x)

in

Gi+1(x) + (k − 1)Gi(x) = (x+ k)Hi(x).

Zgoraj definirani polinomi so tesno povezani z lastnostmi danega grafa. Za t < g
namreč element (Ft(A))x,y predstavlja število poti dolžine t med vozlǐsčema x in y v grafu
G. Podobno, Gt(A) predstavlja število poti dolžine največ t med dvema vozlǐsčema. Z
uporabo zgornjih polinomov in z uporabo spektralne analize smo izpeljali potrebne pogoje
za obstoj dvodelnih (k, g)-grafov, ki imajo presežek 4. Pravimo, da ima graf G ciklični
presežek, če je graf presežnosti G(E) cikel dolžine n. Za graf G pravimo, da ima biciklični
presežek, če je G(E) disjunktna unija dveh ciklov. Opozorimo, da ni znanih nobenih (k, g)-
grafov s cikličnim presežkom 2, medtem ko lahko primere grafov z bicikličnim presežkom
2 najdemo med (3, 5)-grafi presežka 2 [28]. V doktorski disertaciji smo dokazali neobstoj
(k, g)-grafov s cikličnim in bicikličnim presežkom 4 za neskončne razrede parametrov (k, g).

Izkazalo se je, da je veliko znanih kletk vozlǐsčno-tranzitivnih [33], tj. grupa avtomorfiz-
mov grafa deluje tranzitivno na množici vozlǐsč. Zdi se, da imajo to lastnost tudi ekstremni
(k, g)-grafi. Študij vozlǐsčno-tranzitivnih kletk bo najverjetneje privedel do izbolǰsav rezul-
tatov glede splošnega problema kletk, kot tudi izbolǰsal naše razumevanje vozlǐsčno-tranzitivnih
grafov. Pri splošnih kletkah je vprašanje obstoja splošne meje za presežek še vedno odprto.
Po drugi strani pa je v bolj specializiranem primeru vozlǐsčno-tranzitivnih kletk odgovor na
to vprašanje negativen. Presežek vozlǐsčno-tranzitivnih (k, g)-kletk je lahko poljubno velik.
Ta rezultat je dokazal Biggs:
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Izrek 12.4 ([12]). Za vsako liho število k ≥ 3 obstaja neskončno zaporedje vrednosti g, tako

da za presežek e vsakega vozlǐsčno-tranzitivnega grafa stopnje k in ožine g velja e >
g

k
.

V disertaciji smo pokazali, da Biggsov rezultat [12] ne drži le za neskončno mnogo
vrednosti g, ampak v resnici velja za skoraj vse vrednosti g pri poljubnem k ≥ 4.

Pravimo, da je graf premera d antipoden, če za poljubna vozlǐsča u, v in w, za katera je
d(u, v) = d in d(u,w) = d, velja, da je d(v, w) = d ali pa v = w (glej npr. [14]). Lepi primeri
antipodnih grafov so n-dimenzionalne kocke Qn. To so dvodelni grafi, kjer za vsako vozlǐsče
v obstaja natanko eno vozlǐsče, ki je na maksimalni razdalji od v. Zaradi te lastnosti so vse
n-dimenzionalne kocke antipodne. Poleg tega so polni dvodelni grafi Kn,n, kjer je n ≥ 1,
prav tako antipodni. Pri teh grafih je antipodno razbitje isto kot dvodelno razbitje. Skelet
dodekaedra je primer trivialno antipodnega grafa, ki ni dvodelen. Primeri grafov, ki so
netrivialno antipodni in niso dvodelni, so polni tridelni grafi Kn,n,n, ki imajo premer 2, in
graf povezav Petersenovega grafa, ki ima premer 3. Možno je, da obstajajo tudi primeri
antipodnih kletk sode ožine med (k, 6)-kletkami s presežkom e ≤ k − 2. Antipoden je
tudi vsak graf z lastnostjo, da za vsako povezavo tega grafa presežna množica inducira
podgraf, ki ima le e

2
povezav. Poleg tega je vsak tak graf λ-listni krov indicenčnega grafa

nekega simetričnega (v, k, λ)-načrta, ki ga označimo z D(k, λ) in za katerega velja, da je
λ = e

2
+ 1 [15]. Kletke, o katerih govori Izrek 12.2, pripadajo tej družini antipodnih grafov,

saj njihove presežne množice inducirajo podgrafe z 1 povezavo. Enolično določena (7, 6)-
kletka je tudi primer antipodne kletke; ta graf sta odkrila O’Keefe in Wong [66]. Problem
obstoja antipodnih regularnih grafov z liho ožino sta obravnavala Bannai in Ito. Dokazala
sta naslednji izrek.

Izrek 12.5 ([6]). Za d ≥ 3 ne obstaja noben antipoden regularen graf z premerom d+ 1 in
ožino 2d+ 1.

V disertaciji smo se ukvarjali z vprašanjem obstoja antipodnih (k, g)-kletk s sodo ožino
in presežkom e ≤ k − 2. Dokazali smo njihov neobstoj za k ≥ e+ 2 ≥ 6 in g = 2d ≥ 8.

12.1.2 Problem stopnje in premera za neusmerjene grafe

Z izrazom (k, d)-graf poimenujemo vsak k-regularen graf Γ z diametrom d. Naj n(k, d)
označuje največje možno število vozlǐsč kateregakoli neusmerjenega grafa maksimalne stop-
nje k in diametra d. Parameter n(k, d) zadošča sledeči neenakosti:

|V (Γ)| ≤ n(k, d) ≤M(k, d) = 1 + k + k(k − 1) + k(k − 1)2 + ...+ k(k − 1)d−1.

Zgoraj opisana meja M(k, d) se imenuje Mooreova meja. Graf, katerega število vozlǐsč je
enako Mooreovi meji, imenujemo Mooreov graf. Takšen graf je vedno k-regularen. Mooreovi
grafi so dokazano zelo redki. Primeri takšnih grafov so popolni grafi s k+ 1 vozlǐsči in cikli
na 2d+1 vozlǐsčih. Nadaljnji primeri takšnih grafov, ki imajo premer enak 2, so Petersenov
graf, Hoffman-Singletonov graf in mogoče graf stopnje k = 57. Za k > 2 in d > 2 Mooreovi
grafi ne obstajajo [60].

Razliko med Mooreovo mejo M(k, d) in številom vozlǐsč grafa Γ z maksimalno stopnjo
k in premerom d imenujemo defekt grafa Γ ter ga označimo z δ(Γ). Če je Γ največji graf
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maksimalne stopnje k in premera d, potem je n(k, d) = M(k, d) − δ(Γ). Naj omenimo,
da je, podobno kot v primeru kletk, zelo malo znanega o točni povezavi med Mooreovo
mejo M(k, d) in pripadajočim maksimalnim številom vozlǐsč n(k, d). Čeprav obstaja med
številom vozlǐsč največjih znanih/konstruiranih grafov maksimalne stopnje k in premera
d ter pripadajočo Mooreovo mejo kar velik razkorak, občutno bolǰse teoretične meje niso
znane. Znano ni niti, če sta parametra enakega velikostnega reda (pri čemer računalnǐski
rezultati močno kažejo na to, da nista). Tako lahko na spodaj opisano vprašanje Bermonda
in Bollobása [11], ki je že dolgo odprto, gledamo kot na naravni prvi korak k razumevanju
narave odnosa med M(k, d) in n(k, d).

Ali je res, da za vsako pozitivno celo število c obstajata takšna k in d, da je število vozlǐsč
največjega grafa maksimalne stopnje k in premera d največ M(k, d)− c?

V doktorski disertaciji predstavimo povezavo med tem vprašanjem in vrednostjo 2
√
k − 1

katero je tudi kljucno v definiciji Ramanujanovih grafov definiranih kot k-regularni grafi
katerih druge največje lastne vrednosti (v absolutni vrendosti) kvečjemu 2

√
k − 1.

12.1.3 Problem stopnje in premera za usmerjene grafe

Usmerjeni graf ali digraf je struktura G = (V,A), kjer je V (G) končna množica vozlǐsč,
A(G) pa je množica urejenih parov (u, v) paroma različnih vozlǐsč u, v ∈ V (G), ki jih
imenujemo loki. Red digrafa G je število vozlǐsč digrafa G.

Vhodni sosed vozlǐsča v v digrafu G je takšno vozlǐsče u, da je (u, v) ∈ A(G). Podobno
je izhodni sosed vozlǐsča v takšno vozlǐsče w, da je (v, w) ∈ A(G). Vhodna stopnja (oz.
izhodna stopnja) vozlǐsča v ∈ V (G) je število njegovih vhodnih (oz. izhodnih) sosedov. Če
je vhodna in izhodna stopnja vsakega vozlǐsča enaki d, imenujemo digraf G diregularen
digraf stopnje d.

Sprehod W dolžine k v digrafu G je alternirajoče zaporedje (v0a1v1a2 . . . akvk) takšnih
vozlǐsč in lokov digrafa G, da je ai = (vi−1, vi) za vsak i. Če so loki a1, a2, . . . , ak sprehoda
W paroma različni, imenujemo W sled. Če so vsa vozlǐsča v0, v1, . . . , vk paroma različna,
imenujemo W pot. Cikel Ck dolžine k je zaprta sled dolžine k > 0, kjer so vsa vozlǐsča
(razen prvega in zadnjega) paroma različna. Razdalja od vozlǐsča u do vozlǐsča v v digrafu
G je dolžina najkraǰse usmerjene poti od u do v. Premer k digrafa G je največja možna
razdalja med pari vozlǐsč digrafa G. Usmerjenemu grafu maksimalne vhodne stopnje d in
premera k pravimo (d, k)-digraf. Naj bo nd,k največji možni red (d, k)-digrafa. Naj bo
ni(x), za 0 ≤ i ≤ k, število vozlǐsč na razdalji i od danega vozlǐsča x. Potem je ni(x) ≤ di

za 0 ≤ i ≤ k. Sledi

nd,k =
k∑
i=0

ni(x) ≤ 1 + d+ ...+ dk−1 + dk =

{
dk+1−1
d−1

, če je d > 1,

k + 1, če je d = 1.
(12.1)

Število na desni strani enačbe (12.1) označimo z Md,k in ga imenujemo Mooreova meja
za (d, k)-digrafe. Digraf, katerega red je enak Mooreovi meji, imenujemo Mooreov digraf.
Dobro znano je, da enakost nd,k = Md,k drži samo v trivialnem primeru, ko je d = 1
(usmerjen cikel dolžine k + 1) ali k = 1 (poln digraf reda d + 1), glej [16] in [68]. Defekt δ
danega (d, k)-digrafa G je razlika med pripadajočo Mooreovo mejo Md,k in redom digrafa
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G. Ker za d 6= 1 in k 6= 1 Mooreovi (d, k)-digrafi ne obstajajo, postane problem obstoja
diregularnih digrafov stopnje d ≥ 2, premera k ≥ 2 in s številom vozlǐsč Md,k − δ, δ 6= 0,
zanimivo vprašanje. Takšne digrafe imenujemo (d, k, δ)-digrafi, kjer je δ defekt in d ≥ δ ≥ 1.

V doktorski disertaciji smo pozitivno odgovorili na vprašanje, ki se nanaša na problem
stopnje in premera digrafov in je bilo zastavljeno v [60]:

Ali je zaporedje nd,k monotono glede na d in k?

Vsak (d, k, 1)-digrafG ima lastnost, da za vsako vozlǐsče u ∈ G obstaja enolično določeno
vozlǐsče v ∈ G, tako da obstajata natanko dve poti dolžine kvečjemu k od u do v v G (glej
[7]). Takšno vozlǐsče v imenujemo ponovitev vozlǐsča u in ga označimo z r(u). Če je r(u) = v,
potem je r−1(v) = u. Vozlǐsče u, za katero velja r(u) = u, imenujemo samoponovitev
digrafa G. Baskoro, Miller, Plesńık in Znám [8] so uporabili spektralno metodo (lastne
vrednosti matrike sosednosti) za dokaz neobstoja diregularnih (d, k, 1)-digrafov stopnje d ≥
2, premera k ≥ 3 in z lastnostjo, da je vsako vozlǐsče samoponovitev (tj. da vsako vozlǐsče
leži na usmerjenem ciklu Ck). Za k = 2 in stopnjo 2 ≤ d ≤ 12 so pokazali, da če obstaja
C2, potem vsako vozlǐsče leži na C2 (torej je samoponovitev bodisi vsako vozlǐsče bodisi
nobeno).

Izrek 12.6 ([8]). Za d ≥ 2 in k ≥ 3 ne obstaja noben (d, k, 1)-digraf z vsemi vozlǐsči na Ck.

S posplošitvijo koncepta samoponovitve bomo naslovili vprašanje obstoja (d, k, δ)-digrafov
z δ ≥ 2 na naslednji način. Za fiksno vozlǐsče u ∈ V (G) naj R(u) označuje množico vozlǐsč
v ∈ V (G), za katere obstajata vsaj dva sprehoda dolžine kvečjemu k, ki povezujeta u in v.
Za δ > 1 je lahko |R(u)| v splošnem primeru večja od 1. Če je R(u) = u, pravimo, da je
u samoponovitev. Zanimivo je, da so vsa vozlǐsča v (2, 2, 1)-digrafu in (d, 2, d)-digrafih za
d ∈ {2, 3, 7} ter mogoče tudi d = 57 samoponovitve [7]. Poleg tega sta v neobjavljenem
članku [7] Baskoro in Garminia dokazala neobstoj (d, 2, 2)-digrafa z d ≥ 3, (d, 2, δ)-digrafa z
δ = 4, 5 ali 6 in d ≥ δ, ter neobstoj (d, 3, 4)-digrafa z d ≥ 4, ki vsebuje samo samoponovitve.

V disertaciji smo te rezultate razširili z dokazom neobstoja (d, k, δ)-digrafa, ki vsebuje
samo vozlǐsča, ki so samoponovitve, za d ≥ δ ≥ k + 1 ≥ 4. Poleg tega smo z uporabo
podobnih tehnik ponovno dokazali neobstoj (d, k, 1)-digrafa, ki vsebuje le samoponovitve,
za k ≥ 3 in d ≥ 2, ter neobstoj (d, k)-Mooreovih digrafov za k ≥ 2 in d ≥ 2.

12.2 Rezultati

V disertaciji smo obravnavanih 8 povezanih tem iz ekstremalne teorije grafov, ki so pred-
stavljene v preǰsnjem razdelku. V naslednjih podrazdelkih bomo predstavili najpomemb-
neǰsa znanstvene rezultate za vsako izmed njih.

12.2.1 Izbolǰsanje spodnje meje za red kletk sode ožine

Poiskali smo neskončne družine parametrov (k, g), kjer je g > 6 sodo število. Za te grafe
smo pokazali, da je presežek kateregakoli k-regularnega grafa ožine g večji od 4. Tako smo
dobili izbolǰsano spodnjo mejo za red k-regularnih grafov ožine g z najmanǰsim možnim
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redom. Te grafi se imenujejo (k, g)-kletke. Za omejeno družino (k, g)-grafov, ki imajo
dodatno strukturno lastnost in dovolj velika parametra k in g, smo pokazali, da je presežek
teh k-regularnih grafov ožine g lahko poljubno velik. V disertaciji smo dokazali naslednja
izreka:

Izrek 12.7. Naj bo k ≥ 6 in g = 2m > 6. Potem ne obstaja (k, g)-graf s presežkom 4 za
parametra k, g, ki bi ustrezal vsaj enemu izmed pogojev:

(1) g = 2p, kjer je p ≥ 5 praštevilo, in k 6≡ 0, 1, 2 (mod p);

(2) g = 4 · 3s, kjer je s ≥ 4, k pa je deljiv z 9 in ni deljiv s 3s−1;

(3) g = 2p2, kjer je p ≥ 5 praštevilo, k pa je tako sodo število, da k 6≡ 0, 1, 2 (mod p);

(4) g = 4p, kjer je p ≥ 5 praštevilo, in k 6≡ 0, 1, 2, 3, p− 2 (mod p);

(5) g ≡ 0 (mod 16) in k ≡ 3 (mod g).

Izrek 12.8. Za vsak e ≥ 1 obstajata parametra k, g, kjer je k liho in g sodo število, tako
da velja: Če je G (k, g)-graf, v katerem je za vsako povezavo f podgraf induciran z Xf

izomorfen disjunktni uniji kopij grafa K2, potem ima G presežek večji od e.

12.2.2 Dvodelne kletke s presežkom 4

Zanimala sta nas struktura in lastnosti dvodelnih kletk s presežkom 4. Dokazali smo nasled-
nji izrek.

Izrek 12.9. Naj bo k ≥ 7 liho število in naj bo g = 2d ≥ 8. Naj bo c število vseh ciklov
grafa G(E) in naj bo c2 število ciklov sode doľzine. Če obstaja (k, g)-graf s presežkom 4,
potem velja:

(1) Če je d liho število, potem d− 1 deli c− 2 in c2.

(2) Če je d sodo število, potem d− 1 deli c− 1 in c2 − 1.

Dodatno smo se osredotočili še na obstoj dveh potencialnih družin dvodelnih grafov s
presežkom 4. To so dvodelni grafi s cikličnim in dvodelni grafi z dvocikličnim presežkom 4.
Dokazali smo še dva izreka.

Izrek 12.10. Če k in g zadoščata enemu izmed spodnjih pogojev, potem ne obstaja (k, g)-
graf s cikličnim presežkom 4:

(1) k ≡ 1, 2 (mod 3) in g = 8;

(2) k ≡ 1 (mod 3) in g = 12;

(3) k ≡ 1 (mod 3) in g = 16.

Izrek 12.11. Če je k ≥ 7 liho število in g = 2d ≥ 8, kjer je d sodo naravno število, potem
ne obstaja (k, g)-graf z dvocikličnim presežkom 4.
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12.2.3 Neobstoj antipodnih kletk sode ožine

Biggs in Ito sta dokazala, da je vsaka (k, g)-kletka sode ožine g = 2d ≥ 6, kjer je e ≤ k− 2,
dvodelen graf s premerom d+1. V disertaciji smo se ukvarjali s spektralnimi lastnostmi teh
grafov. Podali smo povezavo med lastnimi vrednostmi matrike sosednosti A in razdaljne
matrike Ad+1 teh grafov ter s tem dokazali naslednji izrek.

Izrek 12.12. Če je θ ( 6= ±k) lastna vrednost matrike A in je Hd−1(x) Dicksonov polinom
druge vrste s parametrom k − 1 in stopnjo d− 1, potem je

Hd−1(θ) = −λ,

kjer je λ lastna vrednost matrike Ad+1.

Naj bo G kletka sode ožine z antipodno lastnostjo in presežkom e največ k−2. Z uporabo
preǰsnjega izreka in upoštevanjem specifične strukture kletk sode ožine z antipodno lasnostjo
smo dokazali naslednja izreka.

Izrek 12.13. Naj bo θ ničla polinoma Hd−1(x) − ε, kjer je ε = 1 ali ε = − e
2
. Večkratnost

m(θ) ničle θ v G, θ 6= ±k, je

m(θ) =
nek(k − 1)Hd−2(θ)

2ε(2ε+ e
2
− 1)H

′
d−1(θ)(k2 − θ2)

.

Izrek 12.14. Če je k ≥ e+ 2 ≥ 6 in g = 2d ≥ 8, potem ne obstajajo antipodne (k, g)-kletke
s presežkom e.

12.2.4 Presežek vozlǐsčno-tranzitivnih grafov dane stopnje in ožine

V disertacij smo obravnavali dobro znani problem kletk na posebnem razredu vozlǐsčno-
tranzitivnih grafov. Ukvarjali smo se z iskanjem najmanǰsega vozlǐsčno-tranzitivnega k-
regularnega grafa z ožino g. Biggsov rezultat smo razširili in dokazali, da je za vsak dan
presežek e in vsako dano stopnjo k ≥ 3, asimptotska gostota množice tistih števil g, za katere
obstaja vozlǐsčno-tranzitivna (k, g)-kletka s presežkom kvečjemu e, enaka 0. Ti rezultati so
podani z naslednjimi štirimi izreki.

Izrek 12.15. Naj bosta k ≥ 4 in e ≥ 1 celi števili. Asimptotska gostota množice vseh lihih
števil g, za katere obstaja vozlǐsčno-tranzitiven (k, g)-graf z presežkom kvečjemu e, je 0.

Izrek 12.16. Naj bosta k ≥ 4 in e ≥ 1 celi števili. Asimptotska gostota množice vseh sodih
števil g, za katere obstaja vozlǐsčno-tranzitiven (k, g)-graf s presežkom kvečjemu e, je 0.

Izrek 12.17. Za vsak k ≥ 3 obstaja neskončno zaporedje lihih števil {gi}∞i=1, tako da je

presežek kateregakoli vozlǐsčno-tranzitivnega (k, g)-grafa večji od g
1/(1+o(1))
i .

Izrek 12.18. Za vsak k ≥ 3 obstaja neskončno zaporedje sodih števil {gi}∞i=1, tako da je

presežek kateregakoli vozlǐsčno-tranzitivnega (k, g)-grafa večji od g
1/(1+o(1))
i .
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12.2.5 Povezava med vprašanjem Bermonda in Bollobása in Ramanujan-
ovimi grafi

V [11] sta Bermond in Bollobás postavila naslednjo vprašanje:

Naj bo c > 0 pozitivno celo število. Ali obstajata števili k in d, tako da velja
n(k, d) ≤M(k, d)− c?

V disertacij smo pokazali, da bi negativen odgovor na vprašanje Bermonda in Bollobása
impliciral obstoj poljubno velikega ne-dvodelnega Ramanujan-ovega grafa za katerokoli
stopnjo k. Pokazali smo tudi obrat: neobstoj poljubno velikega ne-dvodelnega Ramanujan-
ovega grafa za neko fiksno stopnjo k, bi impliciral pozitiven odgovor na vprašanje Bermonda
in Bollobása. Dokazali smo naslednja dva izreka.

Izrek 12.19. Naj bosta c ≥ 1 in k ≥ 3 celi števili. Potem obstaja sodo štefilo Dc,k, tako
da je vsak graf Γ maksimalne stopnje k, sodega premera d ≥ Dc,k, in velikosti večje od
M(k, d) − c, ne-dvodelen k-regularen Ramanujan-ov graf z λ(Γ) < 2

√
k − 1. Če je k > c,

potem imajo vsi takšni Ramanujan-ovi grafi ožino 2d ali 2d− 1.

Izrek 12.20. Naj bodo c > 0, k > c, in d > max{6, logk−1(c(k − 2) + 1)} pozitivna cela

števila. Če je Gk,d(x) > c za vsak x ∈ (−k,−2
√
k − 1 + 2π2

(2d−1)2
] ∪ [2

√
k − 1 − 2π2

(2d−1)2
, k),

potem velja n(k, d) < M(k, d)− c.

12.2.6 Monotonost stopnje in premera pri digrafih

V disertacij smo podali pozitiven odgovor na spodnje vprašanje, ki se nanaša na problem
stopnje in premera pri digrafih. To vprašanje je bilo prvič omenjeno v [60].

Ali je nd,k monotono glede na d in k?

Kot odgovor na zgornje vprašanje smo dokazali naslednja dva izreka.

Izrek 12.21. Za vsa števila k, d ≥ 1 velja nd,k+1 > nd,k.

Izrek 12.22. Za vsa števila k, d ≥ 1 velja nd+1,k > nd,k.

12.2.7 Neobstoj družin (d, k, δ)-digrafov, ki vsebujejo le samopo-
novitve

V doktorski disertaciji smo izpeljali formulo za izračun večkratnosti lastnih vrednosti (d, k, δ)-
digrafov, ki vsebujejo samo samoponovitve.

Izrek 12.23. Naj bo d ≥ δ ≥ 1 in naj bo G tak (d, k, δ)-digraf reda n, ki vsebuje samo
samoponovitve. Če je θ lastna vrednost digrafa G, ki je različna od d in 1, potem njena
večkratnost m(θ) zadošča naslednji enakosti:

m(θ) =
n(δ + dθk − dδ)(θ − 1)

((k + 1)θk − δ)(θ − d)
.
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Dokazali smo neobstoj družine takšnih digrafov in sicer tako, da smo pokazali, da
večkratnost m(θ) ni celo število.

Izrek 12.24. Naj bo d ≥ δ ≥ k+ 1 ≥ 4. Potem ne obstaja noben (d, k, δ)-digraf, ki vsebuje
samo samoponovitve.



Metodologija

Orodja, ki smo jih uporabili pri predstavljenih raziskavah, vključujejo orodja kombi-
natoričnih metod v teoriji grafov, kakor tudi orodja teorije števil, linearne algebre in ma-
tričnega računa.

Združili smo kombinatorične metode preštevanja g-ciklov v (k, g)-grafih in teorijo števil,
da smo prǐsli do potrebnih pogojev, ki morajo veljati za parametra k in g. Ta pristop smo
uporabili za izbolǰsanje spodnje meje za red kletk sode ožine (Poglavje 4) in pri oceni
presežka vozlǐsčno-tranzitivnih grafov dane stopnje in ožine (Poglavje 7). Podobne metode
so uporabljene v člankih [43] in [46].

Pri dokazu neobstoja družin dvodelnih grafov s presežkom 4 (s cikličnim in dvocikličnim
presežkom 4), opisanih v Poglavje 5, neobstoja antipodnih kletk s sodo ožino in majhnim
presežkom (Poglavje 6) in neobstoja (d, k, δ)-digrafov, ki vsebujejo samo samoponovitve
(Poglavje 10), smo združili moč kombinatoričnih metod z močjo spektralne analize. Konkret-
neje, izpeljali smo formule za večkratnost pripadajočih lastnih vrednosti grafa in nato izpel-
jali relacije med njimi, ki so logično neizpolnljive. Ta pristop je v literaturi že znan in
uporabljen v mnogih obstoječih člankih, na pimer v [5, 6, 13, 15] in [67].

Da bi vzpostavili povezavo med vprašanjem Bermonda in Bollobása in Ramanujan-ovimi
grafi (Poglavje 8) smo združili spektralne metode z realno analizo.

Za dokazovanje rezultatov o monotonosti stopnje in premera pri digrafih (Poglavje 9)
smo uporabljali neenakosti.
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8 Povezava med vprašanjem Bermonda in Bollobása in Ramanujanovi grafi
73

8.1 Spektralna analiza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 Glavni rezultat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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