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Izvleček:

V magistrskem delu se ukvarjamo s problemom izbolǰsanja lastnosti standardne cenilke
lokacijskega parametra v Bernoullijevi porazdelitvi. Kriterij za izbolǰsanje cenilke je
srednja kvadratna napaka (SKN). Stein je predlagal izbolǰsano cenilko za ocenjevanje
lokacijskega parametra za multivariatno normalno porazdelitev, v magistrskem delu pa
si želimo rezultat posplošiti na Bernoullijevo porazdelitev. Glavna metoda, ki smo jo
uporabili v ta namen, je penalizirana logistična regresija z uporabo L2 penalizacijske
funkcije. Motivacija za praktični del magistrskega dela je, da nadgradimo rezultat, ki
ga je Brown podal v članku o nastopih igralcev pri igri baseball. Prvi uporabljen pristop
je, da predstavimo SKN kot funkcijo penalizacijskega koeficienta in z uporabo različnih
optimizacijskih metod, poǐsčemo koeficient, ki nam bo podal bolǰsi SKN. Drugi pristop
je, da uporabimo metode prečnega preverjanja. To naredimo tako da poǐsčemo penal-
izacijski koeficient, ki optimizira kriterijsko funkcijo pridobljenjo s pomočjo prečnega
preverjanja, kjer uporabljamo različne kriterijske funkcije. Na koncu sta oba pristopa
empirično testirana.
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Abstract:
In the master thesis, we are considering the problem of improving the standard esti-
mator of the location parameter in Bernoulli distribution. Criteria for improving the
estimator is the Mean Squared Error risk. Stein have provided improved estimator for
the location parameter of multivariate normal distribution. In the thesis, we want to
extend the result on Bernoulli distribution. The main method used for that purpose
is the logistic regression with ridge penalization. A motivation for the practical part
of the thesis is to improve the result from the Brown’s article about batting averages.
First approach was to express the MSE as a function of the penalization coefficient,
and using various optimization techniques, to find a coefficient which gives a better
MSE. The second approach was to use leave-one-out cross validation methods. That
is used such that we calculate the penalization coefficient which optimize cross valida-
tion objective function. Here we used different objective functions. At the end, both
approaches are empirically tested.
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1 Introduction

1.1 Overview on data analysis

Data is becoming a fundamental resource in the modern world. Production of data
increased rapidly in the recent period, and due to that, we would like to analyze it in
order to try to improve some aspects of our reality. That analysis can be done by many
mathematical disciplines. Different mathematical disciplines use different approaches
for modeling problems. Those disciplines were changing their names during time, but
today, the most important disciplines, when it comes to data, are Statistics, Machine
Learning and Artificial Intelligence. However, in all those fields, the main assumption is
that data is a realization of a random variable. Therefore, modeling problem is moved
to the field of the probability theory, which is the core of all above mentioned disciplines.
Because of that assumption, we would like to know more about the unknown random
variable which produced our data. The main characteristic of a random variable is the
distribution with respect to Lebesgue measure on some Euclidean space, if the variable
is continuous. If the variable is discrete, distribution with respect to the counting
measure is taken. So, one of the main tasks is to identify that distribution. There
are many methods for that, and they can be divided into two classes: parametric
and non-parametric. Parametric methods are those for which we assume that the
unknown distribution is coming from family of distributions, which is determined by a
finite number of numerical parameters. Therefore, to identify the unknown distribution
means to identify the unknown parameters. Examples of such methods are maximum
likelihood method and method of moments. On the other side, non-parametric methods
do not have such assumption. An example of a non-parametric method is kernel density
estimation, where we are using building block functions called kernels to construct
the probability distribution function. In this thesis, we will focus on the parametric
methods where we will look into particular properties of a parameter estimation.

1.2 Parameter estimation problem

Determination of unknown parameters in a family of parametric distributions is called
estimation. Let us define it more formally. Let (Ω,F ,Pθ) be a probability space, with
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an unknown probability measure, dependent on the unknown parameter θ ∈ Θ. Let
X be a measurable space, and let X : Ω → X be a random variable. Our goal is
to determine the unknown parameter θ, based on the random variable X. We define
an estimator as a function θ̂ : X → Θ, which is in fact our unknown value. For a
particular realization of the variable X, we want to have an estimation of the parameter
θ. In the case when we have given i.i.d. sample of the size n, the estimator is of the
form θ̂ : X n → Θ. The most used method for the parameter estimation, mentioned
above, is the maximum likelihood method. However, after the estimation process, we
would like to know how good our estimator is. One of the useful properties of a good
estimator is unbiasedness. An estimator is unbiased when Eθ(θ̂(X)) = θ, which is, the
expectation of the estimator is equal to the actual value of the parameter. For the
other quality indicators we will define a loss function, which plays a role of a cost for
wrong estimation. The loss function is of the form l : Θ×Θ→ R+. So, to benefit from
the estimator, we would like to have the least possible risk. Risk is defined as:

R(θ̂, θ) = Eθ(l(θ, θ̂(X))).

The risk is defined with respect to a loss function. We provide two definitions.

Definition 1.1. An estimator θ̂ dominates an estimator θ̂∗ with respect to the risk
R(·, θ) if R(θ̂∗, θ) ≤ R(θ̂, θ) for all θ, and the inequality is strict for some θ.

Definition 1.2. An estimator θ̂ is called admissible with respect to the risk function
R, when there is no estimator that dominates it with respect to R; otherwise it is
inadmissible.

Here, the term "admissibility" is used as a sort of minimality.
For our practical problems, we will have that Θ = Rm and the loss function will be

l(θθθ, θ̄θθ) =
1

m
(θθθ − θ̄θθ)T (θθθ − θ̄θθ). (1.1)

From now on, we will use bold notation for vectors. The risk with respect to the loss
function ( 1.1) is called mean squared error (MSE). We see its importance from the
decomposition which can be done in one-dimensional space. Let θ̂ be an estimator of
the parameter θ. We write:

E((θ̂ − θ)2) = E((θ̂ − E(θ̂) + E(θ̂)− θ)2)

= E((θ̂ − E(θ̂))2 − 2(θ̂ − E(θ̂))(E(θ̂)− θ) + (E(θ̂)− θ)2)

= E((θ̂ − E(θ̂))2)− 2E(θ̂ − E(θ̂))(E(θ̂)− θ) + (E(θ̂)− θ)2

= E((θ̂ − E(θ̂))2) + (E(θ̂)− θ)2.

(1.2)
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In the expression (1.2), the first term is the variance of the estimator θ̂, while the second
one without a square is called bias. Bias represents the distance of the expectation from
the real parameter value. The interpretation of those two terms is very important;
their trade-off is crucial in data analysis. Huge bias implies that the estimator missed
relevant properties of the data, and it did not recognized the real distribution of the
data. This phenomena is called underfitting. For example, it can appear when the
actual distribution of the data is extremely different than any distribution from the
parametric family. On the other side, huge variance is telling us that the small changes
in the data may cause completely different estimation (instability). This phenomena
is called overfitting. In the further chapters we will talk more about underfitting and
overfitting. Provided interpretation of the values coming from the MSE decomposition,
is showing us the relevance of the MSE as a risk. For an unbiased estimator, the bias
term is equal to 0. Therefore, the MSE of an unbiased estimator is equal to the variance.

1.3 Stein paradox

As we can see from the definition (1.2), an admissible estimator represents an estimator
with the best performance with respect to some risk. So, we are asking ourselves, for
the provided risk, in our case MSE, is there an admissible estimator. Usually, we
add a constraint that we want to have an admissible unbiased estimator. In this
case, we are looking for an unbiased estimator with the smallest possible variance.
Well-known results from that topic may be found in the articles [12] and [7]. A well
known framework for a construction of such estimators is to use sufficient statistics.
The question is, what is happening when we do not take unbiased property as our
assumption. One of the first results from this topic was given by Stein in the article [16].
For his problem, he assumed that we have data which is coming from the multivariate
normal distribution of the dimension m. Here, we have unknown mean µµµ and known
covariance matrix of the form σ2I. σ is known constant, while I stands for the identity
matrix. From the construction, we can see that he assumed independence between the
components of the normal vector. For a given sample point X1 from that distribution,
the ML method will give us an estimator θ̂̂θ̂θ = X1. Using Cramer-Rao inequality
from [2], it can be shown that the obtained estimator is unbiased with the least possible
variance. On the other side, for m = 1 or m = 2, it is shown, for example in [7], that
the ML estimator is admissible with respect to MSE (taking also biased estimators
into the consideration). Stein has shown that for m ≥ 3, the admissibility does not
hold. As a counter example, he constructed an estimator, the so-called James-Stein
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estimator:
θ̂̂θ̂θJS =

(
1− (m− 2)σ2

‖X1‖2

)
X1,

where ‖ · ‖ stands for the 2-norm of a vector. Since the unbiased estimators were
considered as those with the best properties, constructing an estimator with smaller
MSE than the MSE of an unbiased estimator was unexpected. Therefore, the existence
of such estimator is called Stein’s paradox. If we have a sample of size n, and we denote

¯
X =

∑n
i=1 Xi

n
, then James-Stein estimator can be formulated as:

θ̂̂θ̂θJS =

(
1− (m− 2)σ2

‖X̄‖2

)
X̄,

There is a more intuitive interpretation of the phenomena. Given that all components of
the multivariate normal distribution are independent, we can analyze them separately.
So, taking each component for itself, we have that the ML estimator for each component
is admissible. On the other side, taking them all together, we have a better estimator
than ML one. This shows that combined analysis of the independent events, may give
us better result than the individual analysis.

1.4 Problem formulation

Our goal is to extend Stein’s result on the Bernoulli distribution. We say that a
random variable Y has the Bernoulli distribution with a parameter π if it has two
possible outputs, 0 and 1, where probability for output 1 is π. The distribution may
be represented as:

P (Y = y) = πy(1− π)1−y, y ∈ {0, 1}.

The notation for this is Y ∼ Bern(π). The other properties are: E(Y ) = π and
Var(Y ) = π(1 − π). So, we will assume that we have data coming from K differ-
ent Bernoulli distributions, and we will try to show that estimating them together, will
give a better MSE than the average MSE of the particular estimations. We provide the
analysis for the individual case. Let Y1, . . . , Yn be an i.i.d. sample with a Bernoulli dis-
tribution with unknown parameter π, and let y1, . . . , yn be the realization of the sample.
By the MLE principle, we want to maximize the probability P (Y1 = y1, . . . , Yn = yn)

which we call likelihood. Due to independence, we know that the likelihood is:

L(π) = P (Y1 = y1, . . . , Yn = yn) =
n∏
i=1

πyi(1− π)1−yi = πa(1− π)b,

where a is the number of ones in the sample, while b is the number of zeros. For
many cases when we use the ML method, it is easier to maximize the logarithm of the
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likelihood, denoted with l(π). We have that

l(π) = a log π + b log(1− π).

Shorter, we call it log-likelihood. Maximizing over π, we get the explicit expression for
the estimator:

π̂ =
a

a+ b
=

∑n
i=1 Yi
n

,

which is again the average, the same estimator as for the location parameter of the
normal distribution. To check if it is unbiased, we have the following:

E(π̂) =

∑n
i=1E(Yi)

n
=

∑n
i=1 E(Y1)

n
= E(Y1) = π.

The estimator is unbiased, so the MSE is equal to the variance. To calculate MSE we
have that:

Var(π̂) =

∑n
i=1 Var(Yi)
n2

=

∑n
i=1 Var(Y1)

n2
=

Var(Y1)

n
=
π(1− π)

n
.

If we have K different, independent, Bernoulli distributed random variables, we can
organize their parameters into a vector πππ = (π1, . . . , πK)T , while their particular ML
estimation we organize into a vector π̂ππ = (π̂1, . . . , π̂K). That vector is formed from
samples of different sizes ak•, k ∈ {1, . . . , K}. So the joint MSE will be

R(π̂, π) = E(
1

K
(π̂ππ − πππ)T (π̂ππ − πππ)) =

1

K

K∑
k=1

E((π̂k − πk)2) =
1

K

K∑
k=1

πk(1− πk)
ak•

. (1.3)

Our goal is to improve (1.3) by using methods of the logistic regression with ridge
penalization.

1.5 Practical motivation

One of the aims of the thesis is to improve the result presented in the article [4].
Namely, the article is trying to solve the problem of the prediction of a performance
of certain baseball players. For each individual player, we have collected the data
from the first half-season, and we would like to predict the performance in the second
half-season. The parameter we want to predict is the percentage of the successful hits
for each player. Data which we have from the first half-season represents the total
number of hits and the number of successful hits. We have those data for each player
separately. From the second half-season, we have the total number of hits for each
player. Our goal is to predict the number of the successful hits in the second half-
season. Let us write the problem using the notations that we had before. Each hit
is a Bernoulli distributed variable with values 1-successful and 0-unsuccessful, with an
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unknown probability which we are supposed to estimate. That probability is different
from player to player. So, the hits may be interpreted as the data coming from different,
independent Bernoulli distributions. Here we take a reasonable assumption that the
performances of the players are independent. Here, probability is a parameter which
measures the performance of the particular player. Our goal is to estimate it in order to
estimate the performance. We provide the brief description of the approach described
in the original article. Let Nji be the total number of hits in the half-season j, j = 1, 2

of the player i, i ∈ {1, . . . , P}. Here, P is the total number of players. Let Hji be the
number of the successful hits with the same index description. We have that

Hji ∼ Bin(Nji, pi).

For the ratio of the successful hits we have Rji =
Hji

Nji
. This ratio, for j = 1, is exactly

the unbiased estimator of the probability pi for each player. The goal was not just
to end here, but to try to improve the quality of the estimation, based on certain
risk functions. For that purpose, the author used the fact that Rji has nearly normal
distribution with the mean pi [3]. This assumption is justified for large Nji and when
pi is close to 0.5. The variance, in such normal distribution, is dependent on the
unknown pi. This was not satisfiable, so the author introduced the variance-stabilizing
transformation. He created a new random variable as:

Xji = arcsin

√
Hji + 1/2

Nji + 1/4
.

For such random variable, we have that it has nearly normal distribution with E(Xji) =

arcsin
√
pi and Var(Xji) = 1

4Nji
+O( 1

N2
ji

). Big O is a notation that describes the order
of the remaining part. So, using the described transformation, the author obtained
nearly normal random variable for which the variance is independent from the unknown
parameter pi. So he satisfied the assumptions to use the James - Stein estimator.
Beside the James - Stein estimator, the author used many other methods to estimate
the unknown mean of X1i. From those results, he constructed the estimator for the
probability pi using the inverse transformation. To evaluate the performance of the
estimators, he used the loss function called total squared error (TSE). It is derived as:

TSE(R̃) =
P∑
i=1

(R2i − R̂i)
2 −

P∑
i=1

R2i(1−R2i)

N2i

, (1.4)

where R̂i is the estimator of the probability pi. This TSE risk is based on the out-of-
sample MSE, about which we will talk later. It represents MSE of the data from the
testing set, decreased by the estimation of the variance of the test data.

So, our goal is to improve the results provided in the article, hoping that we will
achieve a better TSE than the methods from the article.
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1.6 Structure of the thesis

This master thesis consists of six chapters including this one. Chapter 2 provides a
theoretical setup of the prediction problem, basic results from statistical learning the-
ory and an explanation of those results on the example of logistic regression. At the
end of the chapter, we provide a logistic regression model for our problem described
above and probability estimators obtained using the model. In Chapter 3, we intro-
duce penalization as a tool for overfitting prevention. We introduce LASSO and ridge
penalizations and we describe their benefits for linear models. Further, we use ridge
penalization for our problem of probability estimation, where we construct different
estimators for different versions of the ridge penalization. We provide basic properties
of such estimators. In the next chapter, we talk about cross validation. We provide a
basic explanation about the topic and also how it can be used for our problem. We use
cross validation to calculate the penalizing coefficient in our estimators. In Chapter 5
we have a simulation study. Since we were unable to prove many properties theoret-
ically, we test them using simulations. We test estimators for some special cases and
also for the general case. At the end of the chapter, we provide the result obtained
using the data from the Brown’s article. We compare it with the result from the ar-
ticle. In the final chapter we summarize the obtained results and we give some ideas
and plans for a future research.



2 Prediction problem and Logistic
regression

In various aspects of science we have many quantities that are measured. In many
cases, we are interested to know how one quantity affects the other, or how a set of
quantities affects another set. For example in economy, we may be interested in the
impact of the GDP growth on the unemployment rate, or how the amount of the cars in
a particular city is related to the CO2 concentration in the air. If we want to completely
explain one quantity Y using a set of quantities X, we say that we want to predict Y
using X. Such problem is called prediction problem or supervised learning problem.
The main assumption in modeling of the measured quantities is that we assume that
they are a realization of an unknown random variable. Using that assumption, we can
say that we want to explain one random variable using other one. Putting that into
more formal framework, let (Ω,F ,P) be a probability space. We define two random
variables X : Ω → X and Y : Ω → Y , where X and Y are some measurable spaces,
usually euclidean ones. We assume that the pair (X, Y ) is distributed with unknown
probability distribution P , (X, Y ) ∼ P . We define a function l : Y × Y → R+ which
we call loss function. This function represents a cost which we are ready to pay for a
wrong prediction. If we have a perfect prediction, we will not have to pay any cost, so
we add a constraint that l(y, y) = 0 for every y ∈ Y . Our goal is to find a measurable
function f ∗ : X → Y such that:

f ∗P = arg min
f
EP(l(Y, f(X))).

Variable X is called the predictor, while Y is called the target. The function f is
named oracle or Bayes predictor. If Y = R, then we are talking about a regression
problem, while if |Y| < ∞ then we face a classification problem. In the special case
when |Y| = 2, we have a binary classification problem. That problem is quite well
studied in the literature and it will be the problem of interest for us. Here, brackets
| · | applied on a set stand for the cardinality of that set. For a certain function f , the
quantity RP(f) = EP(l(Y, f(X))) is called risk. Risk of the Bayes estimator is called
Bayes risk, and we denote it as R∗P = RP(f ∗P). The difference between the risk and the
Bayes risk, RP(f)−R∗P , is called excess risk.

8
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2.1 Regression

Now, consider the case when we have a regression problem. First we need to decide
which loss function to choose in that case. One very intuitive case is to take a distance
between values: l(y, ȳ) = |y− ȳ|. This function is called Mean Absolute Error (MAE).
In practice, it can be computationally very hard to work with absolute values, because
functions with absolute values are not differentiable at some points. So, the most widely
used loss function for the regression problem is Mean Squared Error (MSE): l(y, ȳ) =

(y− ȳ)2. Using MSE, our problem becomes the minimization of EP((Y − f(X))2) over
the set of the measurable functions f .

Lemma 2.1. For the risk defined as RP(f) = EP((Y − f(X))2), the Bayes predictor
is f ∗P(x) = E(Y |X = x).

Proof. We have that:

E((Y − f(X))2) = E(E((Y − f(X))2|X)) = E(E(Y 2 − 2Y f(X) + f(X)2|X))

= E(E(Y 2|X)− 2E(Y |X)f(X) + f(X)2)

= E(E(Y |X)2 − 2E(Y |X)f(X) + f(X)2 + E(Y 2|X)− E(Y |X)2)

= E((E(Y |X)− f(X))2 + E((Y − E(Y |X))2|X))

= (E(Y |X)− f(X))2 + E((Y − E(Y |X))2).

From the last expression we see that the minimum is achieved when f(X) = E(Y |X)⇔
f(x) = E(Y |X = x).

2.2 Binary Classification

. The problem of binary classification will be of interest through the whole thesis.
Since |Y| = 2, without loss of generality, we can encode Y = {−1, 1}. A popular
encoding is also when we replace −1 with 0, but to have shorter expressions in this
section we will use encoding with −1. The most widely used loss function in this case
is accuracy measure. It measures the percentage of wrongly classified instances. If
we are estimating also probability of a correct classification, then there are other loss
functions, like binary crossentropy or area under the ROC curve. In this case, we
restricts ourselves only to the accuracy loss. We defile our loss function as: l(y, ȳ) 6=
1{y = ȳ}. Optimization problem becomes minimization of E(1{Y 6= f(X)}) = P (Y 6=
f(X)).

Lemma 2.2. For the risk defined as RP(f) = E(1{Y 6= f(X)}), the Bayes predictor
is f ∗(x) = 1{P (Y = 1|X = x) ≥ 1

2
}.
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Proof. Let us define f̄(x) = 1{P (Y=1|X=x)≥ 1
2
}(x). Let f be an arbitrary prediction

function f : X → Y . We want to show that R(f) ≥ R(f̄). We have that:

R(f) = E(1{Y 6= f(X)}) = E(E(1{Y 6= f(X)}|X))

=

∫
E(1{Y 6= f(X)}|X = x)Px(dx)

≥
∫
E(1{Y 6= f̄(X)}|X = x)Px(dx) = R(f̄).

The remaining question is how to prove the part E(1{Y = f(X)}|X = x) ≥ E(1{Y =

f̄(X)}|X = x). We have that:

E(1{Y 6= f(X)}|X = x) ≥ min
a∈{0,1}

E(1{Y 6= a}|X = x) = min
a∈{0,1}

P (Y 6= a|X = x)

=

{
P (Y 6= 1|X = x) if P (Y 6= 1|X = x) < P (Y 6= 0|X = x)

P (Y 6= 0|X = x) otherwise

=

{
P (Y 6= 1|X = x) if P (Y 6= 1|X = x) < 1

2

P (Y 6= 0|X = x) otherwise

= P (Y 6= f̄(X)|X = x) = E(1{Y 6= f̄(X)}|X = x).

With this we ended the proof.

2.3 Relation between classification and regression

Sometimes in practice, it is quite easier to formulate a classification problem as a
regression one from the various reasons. For example, accuracy loss is a non-convex
function, which will cause non-convex optimization problems. Those problems are
really hard to solve. So, the question which we ask ourselves is the following: if we
have enough good solution for the regression problem, is it also a good solution for the
classification problem. We formulate the following theorem.

Theorem 2.3. Let X and Y be random variables like described before. Let Rcl(f) =

E(1{Y 6= f(X)}) and Rreg(f) = E((Y −f(X))2) represent classification and regression
risk respectively. Let R∗cl and R∗reg represent respective Bayes risks, and let η̄(x) be an
arbitrary regressor. Define ḡ(x) = 1{η̄(x) ≥ 1

2
}. Then it holds:

Rcl(ḡ)−R∗cl ≤ 2
√
Rreg(η̄)−R∗reg.

Proof. Let g∗ and η∗ be Bayes classifier and Bayes regressor respectively. From the
previous chapter we know that g∗(x) = 1{η∗(x) ≥ 1

2
}. Notice that Rcl(ḡ) = E(1{Y 6=
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ḡ(X)}) = E((Y − ḡ(X))2), because the difference can be only 0 or 1, so the expressions
are equivalent. We have that

Rcl(ḡ) = E((Y − ḡ(X))2) = E(Y 2)− 2E(Y ḡ(X)) +

E(ḡ(X))︷ ︸︸ ︷
E(ḡ(X)2)

= E(Y 2) + E(ḡ(X))− 2E(ḡ(X)E(Y |X)))

= E(Y 2) + E(ḡ(X))− 2E(ḡ(X)η∗(X))

= E(Y 2) + 2E(ḡ(X)(
1

2
− η∗(X))).

Using analogy, for excess risk we have that:

Rcl(ḡ)−R∗cl = 2E((ḡ(X)− g∗(X))(
1

2
− η∗(X))).

If ḡ(x) > g∗cl(x), then we must have ḡ(x) = 1 and g∗cl(x). Further that implies:

η̄(x) >
1

2
∧ η∗(x) <

1

2
⇒ η̄(x) >

1

2
> η∗(x).

On the other side, by analogy, condition ḡ(x) < g∗cl(x) implies that η̄(x) < 1
2
<

η∗(x).

We define events: A = {x | ḡ(x) ≥ g∗cl(x)} , B = {x | ḡ(x) < g∗cl(x)} and C = {x | ḡ(x) =

g∗cl(x)}. We continue our calculations

Rcl(ḡ)−R∗cl = 2E(((ḡ(X)− g∗(X))(
1

2
− η∗(X))1A)

+ 2E(((ḡ(X)− g∗(X))(
1

2
− η∗(X)))1B)

+ 2E(((ḡ(X)− g∗(X))(
1

2
− η∗(X)))1C)

= 2E((
1

2
− η∗(X))1A) + 2E((η∗(X)− 1

2
))1B)

≤ 2E((η̄(X)− η∗(X))1A) + 2E((η∗(X)− η̄(X))1B)

= 2E(|η̄(X)− η∗(X)|) ≤ 2
√
E((η̄(X)− η∗(X))2)

= 2
√
Rreg(η̄)−R∗reg.

The last inequality in the previous expression the Cauchy-Swartz one.

2.4 Empirical case

Given that X and Y are random variables, and that their probability distribution
is unknown, the above described optimization problem is not solvable in reality. On
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the other hand, in practice we have given the data pairs (x1, y1), . . . , (xn, yn) for some
n ∈ N. Those data represent realizations of the random pair (X, Y ). The usual term we
use for those data is sample, and the amount of those data we call the sample size. The
idea here is to replace the probability distribution P with its empirical approximation.
The empirical distribution of zi = (xi, yi) is

P̂n(A) =
1

n

n∑
i=1

1{zi∈A}.

Using the weak law of large numbers we have that

1

n

n∑
i=1

1{zi∈A} −−−→
n→∞

EP(1{(X,Y )∈A}) = P(A),

where the above convergence is convergence in probability. It shows us that the ap-
proximation is consistent. Using analogy, we define the empirical risk using empirical
distribution. We have that:

RP̂n
(f) = EP̂n

(l(Y, f(X))) =
1

n

n∑
i=1

l(yi, f(xi)).

Since we have something deterministic, the naive idea is to try to directly minimize
RP̂n

(f)), but any function which satisfies that yi = f(xi) for every i, is an optimal
solution. In that case, the empirical loss is zero. Denote such minimizer with f ∗n. The
question is if any function from the set of minimizers can mimic f ∗. The minimizer of
the empirical risk is too dependent on the sample, and that dependency phenomena
is called overfitting. To avoid overfitting, we will restrict our search space to some
subspace of the functions S. The problem becomes to find

f ∗n,S = arg min
f∈S

1

n

n∑
i=1

l(yi, f(xi)). (2.1)

Any minimizer from (2.1) is called the empirical risk minimizer. We are interested in
how well the estimated risk minimizer f ∗n,S approximates Bayes predictor f ∗. For that
purpose, we decompose the excess risk R(f ∗)−R(f ∗n,S):

R(f ∗)−R(f ∗n,S) = R(f ∗)−R(f ∗n) +R(f ∗n)−R(f ∗n,S).

The part R(f ∗) − R(f ∗n) is called a stochastic error (learning error, prediction error).
The part R(f ∗n)−R(f ∗n,S) is named an approximation error. The art of a good prediction
lies in balancing between those two errors. We distinguish two cases here:

• A stochastic error dominates an approximation error: this phenomena is overfit-
ting mentioned above. In this case, our prediction is too much data dependent.
It can lead to a wrong prediction if we apply our function f ∗n,S , on a new sample
point.
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• An approximation error dominates a stochastic error: phenomena known as un-
derfitting. In this case, we have that our set S is very restricted. If f ∗ is very far
from S, then f ∗n,S , which is a member of S, will be a very poor approximation of
it.

In practice, it is really important to get rid of those two phenomenas. The best indicator
of underfitting is a huge empirical risk, so it is easy for detection. Underfitting ocurrs
usualy when we try to use very simple model (small set S) on the huge and complex
data. The overfitting detection is not so trivial, since in that case we can have very
satisfiable empirical risk. The overfitting detection is done by dividing our sample into
two sets, called train and test sets. The idea is to find an empirical risk minimizer
by using the train set, and to apply it on the test set. Since both sets are samples
from the same probability distribution, the calculated risks on the both sets should
be almost the same. In practice those risks are usually denoted as a train error and
a test error. Overfitting, which we characterized as a huge data dependency, appears
when the train error is significantly larger than the test error. We interpret that in the
following way: the empirical risk minimizer is so dependent on the train data that if
we provide to the minimizer a new, unseen data, it will perform badly. Division of the
sample on the train and test set should satisfy two conditions.

• The train set should still be very large, since a small train set may lead to
overfitting.

• The test set should not be very small, since in that case, it is not a representative
sample of the unknown probability distribution. A small test set may lead to an
empirical distribution that is very different from the real one. That further leads
to a large test error.

The usual division of a sample on the train and the test set is done such that the ratio
of their sizes is 5 : 1 or 10 : 1.

2.5 Modeling

There are two main modeling approaches for prediction problems: generative modeling
and discriminative modeling. We provide the main differences.

• Generative modeling

In the previous part of the thesis, we have constructed minimizers for the clas-
sification and regression risks, called bayes predictors. So in practice, one of the
possibilities is to try to estimate bayes predictor which is the optimal solution.
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That approach is called generative modeling. For the regression problem, we
would like to estimate E(Y |X = x) as a function of x. In the classification case,
the bayes predictor is the function of E(Y |X = x). So, if η̄(x) is a good esti-
mator of E(Y |X = x), then also ḡ(x) = 1{η̄(x) ≥ 1

2
} is a good approximation

for the Bayes classifier according to the theorem 2.3. In both cases, our goal
is to find a proper estimation of E(Y |X = x). Usually, here we assume that
E(Y |X), as a random variable, is coming from the parametric family of distribu-
tions. Therefore, the estimation is usually done using the maximum likelihood
method.

• Discriminative modeling

In the previous part, we have also introduced empirical risk, based on the sample.
So instead of estimating the minimum, as it was in the generative approach, we are
minimizing the empirical risk. The empirical risk may be seen as an estimatior of
the risk. For the regression problems, we usually define set S as some parametric
family of functions. Then, we are trying to optimize the empirical loss, which is
in the regression case the average of the quadratic losses. Such minimization is
differentiable and convex optimization problem. In the case of the classification,
accuracy loss is non-differentiable and non-convex function. So the optimization
is usually done by replacing the accuracy loss with suitable convex, differentiable
upper bound function. After replacing, we optimize the empirical risk using the
upper bound loss.

Process of replacing the accuracy function with a convex upper bound is called convex-
ification. We will show that in some cases, there exists a theoretical guarantee for that.
For this purpose, we will need to encode our dependent variable Y with labels {1,−1},
instead of {1, 0}. Then, the accuracy loss may be written as l(y, ȳ) = 1{yȳ<0}. We
rewrite our loss function as l(y, ȳ) = g(yȳ) for g(x) = 1{x<0}. The idea, which is used
in many known algorithms, is to replace the function g, as a function of one variable,
with some convex and differentiable h. After we repplaced g with h, we may write the
loss as l(y, ȳ) = h(yȳ). The next result from [1] give us a theoretical guarantee for such
approach.

Theorem 2.4. Let h : R → R+ be non-increasing, differentiable at 0 with h′(0) < 0.
Let R(f) = E(1{Y f(X)<0}) be the classification risk, and Rh(f) = E(h(Y f(X))) be the
risk after the convexification called h-risk. Let f ∗ be a measurable function such that:

Rh(f
∗) = min

f
Rh(f) = R∗h.

Then we have:
R(f ∗) = min

f
R(f) = R∗.
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Theorem (2.4) shows us that if we know the distribution P , then optimizing h-risk is
a good idea even if we are interested in the accuracy risk. More generally, the same
authors showed that if Rh(f) − R∗h is small, then also R(f) − R∗ is. The choice of
different functions h define different models. Famous models for generative approach
are generalized linear models, kernel methods, k-nearest neighbors, Naive Bayes, Tree
based methods, etc. Models that are using discriminative approach are Support Vector
Machine, Support Vector Regression, Neural networks, Boosting approaches and so on.
These two approaches are not completely disjoint, and many models may be interpreted
using both approaches. One of those examples is logistic regression. In the next section
we will see how the logistic regression can be derivate from both approaches.

2.6 Logistic regression

Logistic regression is one of the oldest models used for binary classification, with still
very high usage in practice. Even though there are more powerful models which are
performing with smaller errors, logistic regression is used because of its simplicity and
interpretability. That will be the model which we will use for our problem, and a great
example of the theory developed in the previous sections. The model is a part of a
wider family of generalized linear models.
We introduce the sigmoid function:

S(x) =
1

1 + e−x
.

We present the shape of the function in the Figure 1.

Figure 1: Sigmoid function

The domain of the function is the whole real line, while the range is the interval [0, 1].
This function is used mainly because of its characteristic shape, and the fact that it is
not very difficult for optimization. From the shape, we can see that the function is in
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one part very close to 0, and in the other very close to 1, which is a useful property for
the problem of binary classification.

2.6.1 Generative approach

First we show the generative approach, modeling E(Y |X). Let X = (X1, . . . , Xm) be
a real random vector for some natural m, called feature vector. Let Y ∈ {0, 1} be a
Bernoulli random variable. We formulate a logistic regression model:

E(Y |X) = P (Y = 1|X) = S(βTX + b) = S(β1X1 + · · ·+ βmXm + b). (2.2)

In the contest of the generative approach, the right side of the equation can be inter-
preted as a parametric family of distributions with parameters (β, b) = (β1, . . . , βm, b)

which need to be determined. As we already mentioned, the method used for estimation
is the maximum likelihood. Suppose that we have a sample of size n of pairs (Y,X), de-
noted with (Y1,X1), . . . , (Yn,Xn) and their realizations with (y1,x1), . . . , (yn,xn). For
particular sample, we have that:

P (Yi = yi|Xi = xi) = S(βTxi + b)yi(1− S(βTxi + b))1−yi .

By the assumption, the sample points are independent among themselves, so their joint
distribution is a product of marginals. We have that

P (Y1 = y1, . . . , Yn = yn|X1 = x1, . . . ,Xn = xn) =
n∏
i=1

S(βTxi+b)
yi(1−S(βTxi+b))

1−yi .

By the maximum likelihood method, our goal is to maximize the probability of the event
that the sample is equal to its realization. In this case, it is conditional probability,
and our goal is to maximize it. The last expression we denote with L(β, b). For easier
optimization, we introduce log-likelihood l(β, b) = logL(β, b). Hence, the previous
expression becomes:

l(β, b) =
n∑
i=1

(yi logS(βTxi + b) + (1− yi)(1− logS(βTxi + b)))

=
n∑
i=1

(yi log(
1

1 + e−βTxi+b
) + (1− yi)(1− log(

1

1 + e−βTxi+b
)))

= −
n∑
i=1

(yi log(1 + e−β
Txi+b) + (1− yi)(1− log(1 + e−β

Txi+b)).

Instead of maximizing previous quantity, the usual approach is to minimize its negation.
So, the negation of the last expression is called negative log-likelihood, and we denote
it as nl(β, b). Since it is not possible to solve the equation dnl(β)

d (β,b)
= 0 explicitly, we are
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unable to obtain the exact expression for the vector (β, b). So, for this optimization
problem numerical methods like gradient descent are used. About those methods, we
will talk in the further sections.

Another interpretation of the negative log-likelihood, multiplied with the factor 1
n
,

is in the form of an empirical risk. We define the loss function as:

l(y, ȳ) = −y log(ȳ)− (1− y) log(1− ȳ). (2.3)

Then, the negative log-likelihood can be written as

1

n
nl(β, b) =

1

n

n∑
i=1

l(yi, S(βTxi + b)).

The defined loss is called log loss, binary cross entropy or deviance. It is used with
classification methods which are able to estimate the probability of particular class.
Methods based on generalized linear models are using it widely.

2.6.2 Discriminative approach

As we mentioned above, the goal in the discriminative approach is to find an upper
bound function for the accuracy loss such that it is convex and differentiable. Different
candidates for upper bound determine different models. On the Figure 2, we provide
a few candidate functions and the corresponding models which are using them.

Model h(x)

Logistic regression log(1 + e−x)

Support vector machine (1 - SVM) max(1− x, 0)

Support vector machine (2 - SVM) max(1− x, 0)2

Boosting e−x

Figure 2: Comparison of the different upper bound functions
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The function of our interest is the logit function, used to construct the logistic regres-
sion. The logit function is defined as:

h(x) = log(1 + e−x).

Logit function satisfies the conditions of the Theorem 2.4, so we have the theoretical
base for its use. The prediction function in this case is a scalar product mapping of the
given vector X = (X1, . . . , Xn) as βTX + b. Using that, the Empirical risk for logistic
regression is:

R(β) =
1

n

∑
i=1

h(βTxi + b) =
1

n

n∑
i=1

log(1 + e−(βTxi+b)). (2.4)

This loss is constructed with the variable Y encoded with {−1, 1}. With a little bit of
algebra, it can be shown that (2.4) is equivalent to 1

n
nl(β) described in the previous

section, which was encoded with Y ∈ {−1, 1}. So optimizing different expressions for
the different encodings give us the same result.

2.7 Discrete predictor

We will now set up a solution for our problem using logistic regression approach. As we
already mentioned, we are assuming that our data is coming from K different Bernoulli
variables; call them classes. We model them as a pair of random variables (Y,X),
where X is taking values among K different discrete values, while Y , conditionally on
X, has a Bernoulli distribution i.e. P (Y = 1|X = k) = πk. To estimate unknown
probabilities, we set up a logistic regression framework, assuming that X is predictor
a and Y is target variable. Up to now, we have developed methods where independent
variable X is coming from the euclidean space. In this case, variable X is taking
finite number of values, for which a priori we do not have ordering. Modeling with
E(Y |X) = S(βX + b) is impossible in this case since X is not numerical. So we
need to encode X as set of numerical variables such that we can use logistic regression
for modeling. Different encodings give us different estimations. We define random
variables Xi = 1{X=i}, i ∈ {1, . . . , k} and a random vector X = (X1, . . . , Xk). Random
vector X is a numerical equivalent of the categorical variable X, and we can use it for
logistic regression modeling. Later on, we will show other possible encodings, which
will give us different estimations. For this purpose we will use {0, 1} encoding of the
variable Y . As before, we assume that we are given a sample X1, . . . , Xn and its
realizations x1, . . . , xn. We encode all of them as shown before, so we have random
vectors X1, . . . ,Xn and the realizations x1, . . . ,xn. We define the log-likelihood as:

l(β) =
n∑
i=1

(yi logS(βTxi) + (1− yi)(1− logS(βTxi))).
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This expression will be important later. In this particular case, we do not need to
estimate β coefficient directly. We can change the variables

βk = S−1(πk) = log
πk

1− πk
.

Denote

ak1 =
n∑
i=1

1{xi=k,yi=1}, ak• =
n∑
i=1

1{xi=k}, ak0 = ak• − ak1,

and the probability vector with πππ = (π1, . . . , πk)
T . Then the log-likelihood function

may be written as:

l(πππ) =
K∑
k=1

(ak1 log πk + ak0 log(1− πk)).

which is the sum of the individual likelihoods. Using basic differentiation, we may
express the optimal solution of the maximization directly. So we have that the optimal
solution is:

π∗k =
ak1

ak•
.

Using the result, we can construct the estimator as:

π̂k =

∑n
i=1 Yi1{Xi=k}∑n
i=1 1{Xi=k}

.

This is the same result as before, just written in a different way. Deducing from above
we have:

E(π̂k|Xi = k , i ∈ {1, . . . , n}) = EX(π̂k) = πk

and
EX((π̂)k − πk) = VarX(π̂k) = πk(1− πk).

Here we are using EX and VarX as shorter notations for conditioning on predictors.
Now, when we have set up the logistic regression framework, we introduce a technique
we will use to improve the MSE of πππ.



3 Penalization

3.1 Overview

Penalization or regularization is a method, primely used for the constrained optimiza-
tion problems which have found many applications in the machine learning. Let us
return to the empirical risk minimization problem:

f ∗n,S = arg min
f∈S

1

n

n∑
i=1

l(yi, f(xi)).

Solution of this problem dependens on the set S, which is introduced to prevent over-
fitting. For example, let S be composed from L2 bounded functions, i.e ‖f‖L2 ≤ 1.
Then we have a constrained problem

min
f∈L2

1

n

n∑
i=1

l(yi, f(xi)) such that ‖f‖L2 ≤ 1.

Instead of solving constrained optimization problem above, it is easier to control the
norm of the function, by adding an additional summand called penalty. That is:

min
f∈L2

1

n

n∑
i=1

l(yi, f(xi)) + λ‖f‖L2 .

Therefore, instead of the explicit construction of the set S, we are controlling some
property of the argument function to prevent overfitting. Formally, every penalized
optimization problem consists of the risk summand and the penalization summand,
which is dependent on the parameter λ. Parameter λ is tuned by the user.

Example 3.1. Let X = R and Y = R, so we have a regression problem. We want to
construct a prediction function f : R → R which will be smooth. Smoothness in this
case means without sharp jumps and peeks. We also want the function to be enough
time differentiable. We need to find a measure which properly controls smoothness.
Assume that the function has very sharp peek at some position. That can be interpreted
in the following way: the function is highly concave on some narrow interval around
the peek. So, the absolute value of the second derivative on the interval is high. On
the other side, if the truncation is low, like in the linear case, convexity/concavity is
also low. From the interpretation we can see that the suitable measure is the second

20
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derivative function. Because of that, to control the smoothness, we introduce the 2-
norm of the second derivative as our penalization. We formulate the learning problem
as:

min
n∑
i=1

(yi − f(xi))
2 + λ

∫
R
(f
′′
(x))2dx.

This example is called a cubic spline regression. The solution is obtained by using
numerical approximation of an unknown function.

3.2 Penalizations for the linear models

Even though linear models, for example logistic regression, are interpreted as simpler
ones, they are not used for complex prediction tasks. Due to their simplicity, they
usually do not overfit. However, overfitting can occur, so special techniques of penal-
izations are developed for linear models. The well-known are Lasso penalization and
the ridge penalization. Besides overfitting prevention, the penalizations have also other
positive benefits. We define lasso penalization:

P (βββ) = λ
m∑
i=1

|βi|.

Its main application is the feature selection process. Feature selection is the task where
we have to choose predictors which are relevant for a model among many possible
predictors which are offered to us. There exist a theoretical guarantee that the lasso
penalization will quickly force some of the coefficients to reach 0, or to be very close
to 0. This can be interpreted as if they are irrelevant for the prediction problem.
More about lasso penalization can be found in the articles which have popularized the
method [17] [15]. To understand the importance of the ridge regression, let us first see
the linear regression model:

E(Y |X1, . . . , Xm) = β1X1 + . . . βmXm.

Determining unknown coefficients is done using least squares method. If we denote
with X the data matrix, the estimator is of the form:

β̂ββ = (XTX)−1XTY.

According to [12], this estimator is an unbiased estimator with the least possible vari-
ance. What is happening when the data from the different features are highly corre-
lated? Then the matrix XTX has the determinant close to 0, which leads to instability
of the estimates. This phenomena is called bad conditioning or multicollinearity. Bad
conditioning occurs very often in practice, so it is important to handle such exception.
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In order to deal with it, we use the ridge penalization. We define the ridge penalization
as:

P (βββ) =
λ

2

m∑
i=1

β2
i .

If we add it to a linear regression model, using the least squares method, the obtained
estimator is:

β̂ββ = (λI + XTX)−1XTY,

where λ is the penalization coefficient. Now, the matrix which needs to be inverted
has increased its conditioning number as a measure of singularity. It can be adjusted
with the parameter λ. In this example with ridge penalization, we have a theoretical
guarantee that it can solve the particular issue. On the other side, for the logistic
regression we are not able the explicitly express linear coefficients. However, from the
empirical results, it has been shown that also in the case of the logistic regression, ridge
and lasso penalization can help in solving the same issue [11].

We have seen that penalizations may be very useful for solving the model related
issues which may arise. From now on, we will try to see if penalizations may be helpful
also for our problem: reducing the MSE of the combined estimation. The main idea
will be to express the MSE as a function of λ, and manipulating with λ to try to achieve
a smaller MSE. We will try to achieve that goal by using the ridge penalization.

3.3 New estimator

Now, let us construct a new estimator using the ridge penalization. We use the encoding
of categorical data described in the previous chapter. With the logistic regression model
and the ridge penalization, we obtain the likelihood:

lP (βββ) = l(βββ) + P (βββ) =
n∑
i=1

(yi logS(βTxi) + (1− yi)(1− logS(βTxi)))− λ
m∑
i=1

β2
i .

Since it is a maximization problem, we are adding the penalization with minus. Again,
using change of variables βk = log πk

1−πk
, we have that

lP (πππ) =
K∑
k=1

(ak1 log πk + ak0 log(1− πk))−
λ

2

K∑
k=1

log2 πk
1− πk

=
K∑
k=1

(ak1 log πk + ak0 log(1− πk)−
λ

2
log2 πk

1− πk
).

The last expression can be separated with respect to πk, so optimization of the complete
expression is indeed an optimization of each summand separately. That is, we are
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optimizing expressions

lPk (πk) = ak1 log πk + ak0 log(1− πk)−
λ

2
log2 πk

1− πk
, k ∈ {1, . . . , K}

separately. The first derivatives are:

lP
′

k (πk) =
ak1

πk
− ak0

1− πk
− λ log

πk
1− πk

1

πk(1− πk)
.

Solving the equation where the derivative is equal to zero is impossible explicitly. The
method proposed in [14] suggests to do one step of the Newton method to find the zero
of the derivative. In that procedure, as an initial value, we take πinitk = 1

2
. So we would

have that:

πλk =
1

2
−
lPk (1

2
)

lP
′

k (1
2
)
.

After performing that step, the obtained estimator is:

π̂λk =
ak1 + 2λ

ak• + 4λ
. (3.1)

We will denote the vector estimator as π̂ππλ = (π̂λ1 , . . . , π̂
λ
K). Obviously, if we take λ = 0,

we obtain the unbiased estimator πk = ak1
ak•

, while for very large lambda, we have that:

lim
λ→∞

ak1 + 2λ

ak• + 4λ
=

1

2
.

We have a parametric family of the estimators with parameter λ. We would like to show
that the appropriate choice of the parameter λ can improve MSE of the vector π̂ππλ.
This means that it will be better than the MSE of the vector π̂ππ. Blagus et al. showed
in [14] that there exist parameter λ which satisfies the described condition. Here, we
will move one step further, constructing a concrete example of such λ. However, that
λ will dependen on the real values of the probabilities, and it cannot be used directly
in the estimator function. MSE(π̂ππλ) = MSE(λ) denotes mean squared error of the
expression (3.1). After simple calculations, we have that

MSE(λ) =
1

K

K∑
k=1

4λ2(1− 2πk)
2 + ak•πk(1− πk)

(ak• + 4λ)2
.

Since we would like to minimize the expression, we calculate the derivative. Again,
easily we obtain that:

MSE ′(λ) =
1

K

K∑
k=1

8ak•(λ(1− 2πk)
2 − πk(1− πk))

(ak• + 4λ)3
.

To get the optimal MSE depending on λ, we need to solve the equation MSE ′(λ) = 0.
It is not possible to solve it explicitly for K > 2 (in that case we have a problem to
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find roots of a polynomial of degree greater than 4). Let K = 1. Then we have the
following:

8a1•(λ(1− 2π1)2 − π1(1− π1))

(a1• + 4λ)3
= 0 =⇒ λopt =

π1(1− π1)

(1− 2π1)2
.

This solution exists when π1 6= 1
2
. The second special case represents the scenario when

the sample size of all categories is the same, that is a1• = · · · = aK• = a•. Then, we
have the following:

MSE(λ) =
1

K

K∑
k=1

8ak•(λ(1− 2πk)
2 − πk(1− πk))

(ak• + 4λ)3

=
8a•

K(a• + 4λ)3

K∑
k=1

(λ(1− 2πk)
2 − πk(1− πk))

=
8a•

K(a• + 4λ)3
(λ

K∑
k=1

(1− 2πk)
2 −

K∑
k=1

πk(1− πk)) = 0

=⇒ λopt =

∑K
k=1 πk(1− πk)∑K
k=1(1− 2πk)2

. (3.2)

These two special cases are appearing often in practice. Case K = 1 is estimation of
the probability of success in a population. The case when all sample sizes are equal,
may be interpreted as a case when we are sampling binary vectors of size K, where
each coordinate of a vector has a Bernoulli distribution. The result exist only if all
probabilities are not equal to 1

2
. In that case, the MSE(λ) is a decreasing function,

and optimality is reached at λ→∞. Like in the general case, we are not able to find
the optimal solution explicitly. We will construct the suboptimal solution. We provide
the following lemma.

Lemma 3.2. Let g be two times continuously differentiable function on some do-
main A such that the second derivative is bounded on the domain, and we denote
L = maxx∈A |g′′(x)|. Fix some x ∈ A and let y = x − 1

L
g′(x). If y ∈ A, then the

following holds:

g(y)− g(x) ≤ − 1

2L
g′(x)2.

Proof. From the Taylor theorem, there exist ξ ∈ (0, 1) such that

g(y) = g(x) + g′(x)(y − x) +
1

2
g′′(x+ ξ(y − x))(y − x)2

Using the defined bound of the second derivative we have:

g(y) ≤ g(x) + g′(x)(y − x) +
1

2
L(y − x)2.
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Replacing y − x with − 1
L
g′(x), we have that

g(y)− g(x) ≤ − 1

L
g′(x)2 +

1

2L
g′(x)2 = − 1

2L
g′(x)2.

Lemma 3.2 is showing us that when we have a function with bounded second derivative,
then there is a way to construct a point where the value of the function is less or equal
than the current value, with a certain gap. Since unbiased case is when λ = 0, our
goal is to construct λ∗ such that MSE(λ∗) < MSE(0). For that purpose, we need to
calculate and bound the second derivative of the MSE function on the positive axis.
So we calculate the second derivative:

MSE ′′(λ) =
1

K

K∑
k=1

8ak•((1− 2πk)
2(ak• − 8λ) + 12πk(1− πk))
(ak• + 4λ)4

.

Denote k-th summand with fk. We introduce the following notations:

zk = 8a2
k•(1− 2πk)

2 + 96ak•πk(1− πk),

bk = 64ak•(1− 2πk)
2.

Then we can write
fk(λ) =

zk − bkλ
(ak• + 4λ)4

.

We construct the upper bound:

|fk(λ)| =
∣∣∣∣ zk − bkλ
(ak• + 4λ)4

∣∣∣∣ =

∣∣∣∣zk − bk
4

4λ− ak•bk
4

+ ak•bk
4

(ak• + 4λ)4

∣∣∣∣ =

∣∣∣∣ zk + ak•bk
4

(ak• + 4λ)4
− bk

4(ak• + 4λ)4

∣∣∣∣
≤
∣∣∣∣ zk + ak•bk

4

(ak• + 4λ)4

∣∣∣∣+

∣∣∣∣ bk
4(ak• + 4λ)3

∣∣∣∣ =
zk + ak•bk

4

(ak• + 4λ)4
+

bk
4(ak• + 4λ)3

≤ zk
a4
k•

+
ak•bk
4a4

k•
+

bk
4a3

k•
=

zk
a4
k•

+
bk

2a3
k•
.

Using the inequality between arithmetic and geometric mean, for each k we have that:

πk(1− πk) ≤
(
πk + 1− πk

2

)2

=
1

4
.

Using the last inequality, for the particular members we have that:

bk ≤ 64ak•, zk ≤ 8a2
k• + 24ak•.

Using the previous inequalities we finalize the calculation:

|f ′′k (λ)| ≤ 8a2
k• + 24ak•
a4
k•

+
64ak•
2a3

k•
=

40ak• + 24

a3
k•

.
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From the obtained upper bound for the individual summand, we further conclude that

|MSE ′′(λ)| ≤ 1

K

K∑
k=1

40ak• + 24

a3
k•

.

We know that for λ = 0, it holds that

MSE ′(0) = − 1

K

K∑
k=1

8πk(1− πk)
a2
k•

,

where the last expression is less than 0, except in the case when all probabilities are
equal 0 or 1 in the same time. We have now prepared all prerequisites to state the
following theorem.

Theorem 3.3. Assume that not all probabilities are equal to 0 or 1 in the same time.
Then, there exists λ∗ > 0 such that MSE(λ∗) < MSE(0), and it holds that:

λ∗ =

∑K
k=1

πk(1−πk)

a2k•∑K
k=1

5ak•+3
a3k•

. (3.3)

Proof. Using Lemma 3.2 we construct λ∗ as:

λ∗ = 0− 1

L
MSE ′(0) = − 1

L
MSE ′(0), (3.4)

where L is the upper bound of the second derivative of the MSE. We have shown that
|MSE ′′(λ)| ≤ 1

K

∑K
k=1

40ak•+24
a3k•

, so it is suitable to take

L =
1

K

K∑
k=1

40ak• + 24

a3
k•

Putting calculated L and previously calculated value of the MSE ′(0) in the expression
(3.4), we obtain (3.3). Due assumption that not all probabilities equal to 0 or 1, we
have that MSE ′(0) < 0. Because of that, we have

MSE(λ∗)−MSE(0) ≤ − 1

2L
MSE ′(0)2 < 0 with λ∗ > 0.

.

So for the general case, we constructed the suboptimal value of λ. All constructed
λ-s are directly dependent on the real probabilities which are unknown in the process
of the estimation. Because of that, we need to estimate an optimal or suboptimal λ.
In the future chapters, we will try to check the properties of the estimated λ with a
simulation study.
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In the theorem 3.3, we have the assumption that not all probabilities should be 0
or 1. If we allow that, we would have λ∗ = 0. In that case, we do not overperform
the unbiased estimator. The question is, can we overperform the unbiased estimator
in every possible case. Without loss of generality, assume that all probabilities are 0.
Then, since we are sampling from the discrete variable, we cannot have a sample point
different than 0. So, with all zeros in the sample, we would have an estimator which is
always zero. That estimator has a bias equal zero and variance is also 0. Therefore, the
MSE in that case is zero meaning that we cannot overperform MSE. This observation
leads us to the following lemma:

Lemma 3.4. Assume that not all probabilities are equal to 0 or 1 in the same time.
Then, there is no λ∗ > 0, which satisfies MSE(λ∗) ≤ MSE(0) and such that it does
not depend on πk.

Proof. Assume that there exist such λ∗ > 0 independent from the probabilities πk. We
will construct a counter example. Take that π1 = π2 = · · · = πk = π. Then we have
the function:

MSE(λ, π) =
1

K

K∑
k=1

4(λ∗)2(1− 2π)2 + ak•π(1− π)

(ak• + 4λ∗)2
.

Our goal is to find π such that MSE(λ∗, π) > MSE(0, π). We define

f(π) = MSE(λ∗, π)−MSE(0, π).

Obviously, we have that such defined function is continuous in the second argument on
the whole real line. Further we have:

f(0) = MSE(λ∗, 0)−MSE(0, 0) =
1

K

K∑
k=1

4(λ∗)2

(ak• + 4λ∗)2
> 0,

because λ∗ > 0. Due to continuty, there exist ε such that f(ε) > 0. That implies
MSE(λ∗, ε) > MSE(0, ε). Therefore, taking that π1 = · · · = πK = ε is our counter
example.

We will prove another useful property.

Theorem 3.5. Assume that not all probabilities are equal to 0 or 1 in the same time.
Let λ∗ be as in the Theorem 3.3. Then for each λ∗∗, 0 < λ∗∗ < λ∗ holds MSE(λ∗∗) <

MSE(0).

Proof. By the construction of the λ∗, we know that there exist some L such that
λ∗ = − 1

L
MSE ′(0). Fix some λ∗∗ between 0 and λ∗, and let

ε =
MSE ′(0)

λ∗
− MSE ′(0)

λ∗∗
.
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Since MSE ′(0) < 0, it holds that ε > 0. Since L was the upper bound of the
|MSE ′′(λ)|, so is also L+ ε. From the construction of ε we have that

λ∗∗ = − 1

L+ ε
MSE ′(0),

and obviously it holds that λ∗∗ > 0. Because of that, λ∗∗ satisfies also assumptions of
the Lemma 3.2, so we have that

MSE(λ∗∗)−MSE(0) ≤ − 1

2L
MSE ′(0)2 < 0.

3.4 Generalized Mean Squared Error

Sometimes, we may not be satisfied with the MSE risk in the case when we are estimat-
ing multiple parameters in the vector form. In the MSE, every parameter contributes
uniformly to the final risk. On the other side, we may consider some parameters as
more important to us. For those more important, we want to ensure that they will
be estimated better than the others. Also, MSE does not take into account the mutal
dependence between estimators. In order to take that into account, we may add a con-
tributon of the correlations between the estimators to the final risk. Due to all these
reasons, we generalize our MSE risk into Generalized Mean Squared Error (GMSE).
For that purpose, we define generalized square loss as:

l(yyy, ŷyy) = (yyy − ŷyy)TBBB(yyy − ŷyy),

where BBB is a positive semidefinite matrix. The risk based on this loss is GMSE. Now
we will prove a similar result for GMSE as the one in the previous section. We do
that for an arbitrary positive semidefinite matrix BBB. We exclude the trivial case when
BBB = 0. We have vectors π̂ππλ = (π̂λ1 , . . . , π̂

λ
K) and πππ = (π1, . . . , πK).We define GMSE as

a function of λ:
GMSE(λ) = E((π̂ππ − πππ)TBBB(π̂ππ − πππ)).

Using simple algebraic calculations we have that:

GMSE(λ) = hhhT (λ)BBBhhh(λ) + gggT (λ)DDDggg(λ),

where hhh = (h1, . . . , hK)T , ggg(λ) = (g1, . . . , gK)T ,

hk(λ) =
2λ(1− 2pk)

ak• + 4λ
, gk(λ) =

√
ak•πk(1− πk)
ak• + 4λ

and DDD = diag({Bkk | k ∈ {1, . . . , K}}). We calculate derivatives using the chain rule:

GMSE ′(λ) = hhhT (λ)BBBhhh′(λ) + hhhT (λ)BBBThhh′(λ) + 2gggT (λ)DDDggg′(λ),
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GMSE ′′(λ) = hhhT (λ)BBBhhh′′(λ) + hhh′T (λ)BBBhhh′(λ) + hhhT (λ)BBBThhh′′(λ) + hhh′T (λ)BBBThhh′(λ)

+ 2gggT (λ)DDDggg′′(λ) + 2ggg′T (λ)DDDggg′(λ),

where the derivative of the vectors is the component-wise derivative. The previous
expression is a sum of the members of the form xTAy for some vectors x and y, and a
positive semidefinite matrix A. We provide a bound for such forms:

xTAy = 〈x,Ay〉 ≤ ‖x‖2‖Ay‖2 ≤ ‖x‖2‖A‖2‖y‖2.

The first inequality is the Cauchy Swartz one, while the second is coming from the
properties of the matrix norms. For matrices A and B and any matrix norm, it holds
that ‖AB‖ ≤ ‖A‖‖B‖. For the 2-norm of the matrix A, we know that it is the largest
singular value of A. A singular value of A is a square root of an eigenvalue of ATA.
If A is a symmetric matrix, then the largest singular value is the largest eigenvalue.
Denote that singular value with σmax. We have that

xTAy ≤ σmax‖x‖‖y‖.

Denote with bmax the largest singular value of BBB and with dmax the largest singular
value of DDD, which is the largest eigenvalue of DDD. We know that dmax is the largest
diagonal value of the matrix BBB. Then we have that:

GMSE ′′(λ) ≤ 2bmax(‖hhh′′(λ)‖‖hhh(λ)‖+ ‖hhh′(λ)‖2) + 2dmax(‖ggg′′(λ)‖‖ggg(λ)‖+ ‖ggg′(λ)‖2).

For the functions g and h, it holds the following:

|hk(λ)| = 2λ|1− 2pk|
ak• + 4λ

=
|1− 2πk|

2
− ak•|1− 2πk|

2(ak• + 4λ)
≤ |1− 2πk|

2
≤ 1

2

|h′k(λ)| = 2ak•|1− 2πk|
(ak• + 4λ)2

≤ 2ak•
a2
k•

=
2

ak•
.

|h′′k(λ)| = 16ak•|1− 2πk|
(ak• + 4λ)3

≤ 16ak•
a3
k•

=
16

a2
k•
.

|gk(λ)| =
√
ak•πk(1− πk)
ak• + 4λ

≤
√
ak•

2ak•

|g′k(λ)| =
4
√
ak•πk(1− πk)
(ak• + 4λ)2

≤
2
√
ak•

a2
k•

|g′′k(λ)| =
32
√
ak•πk(1− πk)

(ak• + 4λ)3
≤

16
√
ak•

a3
k•

.

For the vectors we have the following bounds:

‖hhh(λ)‖ ≤
√
K

2
, ‖hhh′(λ)‖ ≤ 2

√√√√ K∑
k=1

1

a2
k•
, ‖hhh′′(λ)‖ ≤ 16

√√√√ K∑
k=1

1

a4
k•
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‖ggg(λ)‖ ≤ 1

2

√√√√ K∑
k=1

1

ak•
, ‖ggg′(λ)‖ ≤ 2

√√√√ K∑
k=1

1

a3
k•
, ‖ggg′(λ)‖ ≤ 16

√√√√ K∑
k=1

1

a5
k•
,

and finally, it holds that:

GMSE ′′(λ) ≤ 2bmax

(
8

√√√√K
K∑
k=1

1

a4
k•

+4
K∑
k=1

1

a2
k•

)
+2dmax

(
8

√√√√ K∑
k=1

1

ak•

√√√√ K∑
k=1

1

a5
k•

+4
K∑
k=1

1

a3
k•

)
.

To find a suitable λ, we need to calculate the derivative of the GMSE at the zero point.
We have that:

GMSE ′(0) = 2hhhT (0)BBBhhh′(0) + 2gggT (0)DDDggg′(0) = 2gggT (0)DDDggg′(0)

= 2
K∑
k=1

Bkkgk(0)g′k(0) = −2
K∑
k=1

4ak•Bkkπk(1− πk)
a3
k•

= −8
K∑
k=1

Bkkπk(1− πk)
a2
k•

.

We provide a simple lemma.

Lemma 3.6. For the nonzero positive semidefinite matrix A, all diagonal elements are
nonnegative, with at least one strictly positive.

Proof. Let ei be the i-th vector of the standard base. Then, we have that eTi Aei ≥
0⇔ Aii ≥ 0. So, all diagonal elements are nonnegative. Since the rank is greater than
0, we have that the sum of the eigenvalues is greater than 0. Since the sum of the
eigenvalues is same as the trace, we have that the trace is also greater than 0. Given
that all diagonal elements are nonnegative and that their sum is strictly positive, there
exist at least one strictly positive diagonal element.

From the Lemma 3.6 we have that all Bkk ≥ 0 with at least one strictly greater
than 0. Because of that holds GMSE ′(0) < 0.

Theorem 3.7. Assume that not all probabilities are equal to 0 or 1 in the same time.
Then there exist λ∗ such that GMSE(λ∗) < GMSE(0), and it holds that

λ∗ =

∑K
k=1

Bkkπk(1−πk)

a2k•

bmax

(
2
√
K
∑K

k=1
1
a4k•

+
∑K

k=1
1
a2k•

)
+ dmax

(
2
√∑K

k=1
1
ak•

√∑K
k=1

1
a5k•

+
∑K

k=1
1
a3k•

) .
Proof. Under the assumption that not all probabilities are equal 0 or 1, we have that
GMSE ′(0) < 0. On the other side, we have that the second derivative is bounded with
the bound provided above. We denote it with L. Using the lemma we construct λ∗ as

λ∗ = 0− 1

L
GMSE ′(0) = − 1

L
GMSE ′(0),
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which is the expression obtained above. Obviously it holds that

GMSE(λ∗)−GMSE(0) ≤ − 1

2L
GMSE ′(0)2 < 0 with λ∗ > 0.

.

3.5 Out-of-sample Mean Squared Error

Since one of the objectives of the thesis is to improve the result from the article [4],
we should also take into account the prediction part. That means we should apply our
model to unseen data. For that purpose, we will assume that we are given a new data
Xnew

1 , . . . , Xnew
n , based on which we predict the variables Y new

1 , . . . , Y new
n . We know

that the predictor is coming from K different classes. So, the particular number of
sample points from each class we denote with a1••, . . . , aK••. Using that, we can write
the out-of-sample mean squared error as:

MSEO(λ) = E(
K∑
k=1

ak••(Y − π̂λk )2), (3.5)

where Y from a different summand (Y −πλk )2 is different, independent from the others,
and is distributed Y ∼ Bern(πk). For the particular summand, we have:

E((Y − π̂λk )2) = E((Y − πk + πk − π̂λk )2)

= E((Y − πk)2) + E((πk − π̂λk )2) + 2E((Y − πk)(πk − π̂λk )).

The first term in the previous expression is the variance of the variable Y . The second
therm is the MSE of the estimator π̂λk . The third one is 0, since E(Y − πk) = 0 and
due to independence. So we have that:

E((Y − π̂λk )2) = πk(1− πk) + E((πk − π̂λk )2).

Putting this back into (3.5), we have that:

MSEO(λ) =
K∑
k=1

ak••πk(1− πk) +
K∑
k=1

ak••E((πk − π̂λk )2.

The first term in the previous equation does not depend on λ, so we can ignore it
for the optimization procedure. The second therm in the previous equation can be
seen as the weighted MSE, where the weights are proportional to the test data size.
Further, we can see it as the GMSE where our K ×K positive semidefinite matrix is
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diag(a1••, . . . , aK••). So, to find some λ for which we have a smaller MSEO, we can
use the Theorem 3.7, where we have:

λ∗ =

∑K
k=1

ak••πk(1−πk)

a2k•

a••

(
2
√
K
∑K

k=1
1
a4k•

+
∑K

k=1
1
a2k•

+ 2
√∑K

k=1
1
ak•

√∑K
k=1

1
a5k•

+
∑K

k=1
1
a3k•

) ,
where a•• = maxk∈{1,...,K}{ak••}. This out of sample case will have more meaning in
the simulation study. It has practical motivation in data from the Brown’s article.

3.6 Other estimators

In this section we present other possible estimators which can be constructed using
ridge regression. Namely, the encoding which we provided for categorical data is not
unique. The previous idea was that we have a binary vector X = (X1, . . . , Xk) which
was the numerical equivalent of the categorical variable X. For the vector X, we have
numerical data which lies in euclidean space. We known that for a numerical sample
it holds that if we perform a bijective linear transformation on each sample point, we
do not loose any information. So, we can linearly transform the encoded vector X

with a non-singular matrix A. The new encoding will be AX. For already described
encoding X, the matrix A is the identity matrix. The other well-known encoding is
when one row of that identity matrix is replaced with the vector of ones. Let us take
the last row of the matrix A to be the row of ones. Then another encoding we obtain
is X(2) = (X1, . . . , Xk−1, X1 + · · · + Xk). By the construction of the Xi, we have that
X1 + · · ·+Xk = 1.

So, instead of having a vector X = (X1, . . . , Xk) in the learning process, we have
X(2) = (X1, . . . , Xk−1, 1), where the description of the Xi stays the same as before. So,
we have a new penalized model:

lP (γγγ) = l(γγγ) + P (γγγ) =
n∑
i=1

(yi logS(γTx
(2)
i ) + (1− yi)(1− logS(γTx

(2)
i )))− λ

m∑
i=1

γ2
i .

Due to the fact that different encodings represent the same sample, we have that:

βββX = γγγX(2). (3.6)

From that expression, we express new coefficients using old ones:

γK = βK and γk = βk − βK .

Using already performed change of variables βk = log πk
1−πk

, we have that

γk = log
πk

1− πk
− log

πK
1− πK

= log
πk(1− πK)

πK(1− πk)
for k ∈ {1, . . . K − 1}
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and γK = log πK
1−πK

. We apply the penalization to all parameters except the intercept.
Using that, together with (3.6), we reformulate our model as:

lP (πππ) =
K∑
k=1

(ak1 log πk + ak0 log(1− πk))−
λ

2

K−1∑
k=1

log2 πk(1− πK)

πK(1− πk)

=
K−1∑
k=1

(aK1 log πk + aK0 log(1− πk)−
λ

2
log2 πk(1− πK)

πK(1− πk)
)

+ (aK1 log πK + aK0 log(1− πK).

So again, every summand is dependent on only one πk, so we can optimize each sum-
mand separately. Using the same approach as above, Blagus et al. showed that [14]:

π̂λ,2K =
aK1 + 4λ

∑K−1
i=1

aj1
aj•+4λ

aK• + 4λ
∑K−1

j=1
aj•

aj•+4λ

and π̂
(2)
k =

ak1 + 4λπ̂λ,2K

ak1• + 4λ
, k ∈ {1, . . . , K − 1}.

In some way, we can try with different encodings, despite the fact that such encodings
do not have any meaning in practice. For example we can define a new encoding as
X(3) = (X1, . . . , Xk, 1) which we will call overparametrizing. It leads to a singular data
matrix X. Optimization in that case would not be possible without a penalization.
Using penalization we create interesting estimators. This approach is shown in [14],
and after similar calculations as before, we obtain the estimator

π̂λ,3k =
ak1 + 4λπ̄λ

ak1• + 4λ
, k ∈ {1, . . . , K − 1},

where:

π̄λ =

∑K
j=1

aj1
aj•+4λ∑K

j=1
aj•

aj•+4λ

.

Analyzing these estimators in the similar manner as before is tiring, so we leave it
for an ambitious reader. We will test the properties of those estimators in simulation
studies, using different methods for estimating λ.



4 Cross Validation

In this chapter we present the cross validation approach, its use in machine learning
and how it can be used in our case. Cross validation is the most common approach
used to evaluate the quality of a predictor in the supervised learning problem. Another
important use of cross validation is to determine the parameter λ in penalized models,
for example in ridge regression. The main idea of cross validation is a multiple division
of a data set into the train and test set, described in Section 2.4. After the divisions
are performed, we average results of the predictions on the test sets, to obtain the
final score of our algorithm. Cross validation is also used in the model selection, since
its quality evaluation is used to compare different models and to choose the best.
Also cross validation may indicate a sort of overfitting if the variance of the averaging
values is large. Here, we introduce a few cross validation methods and their positive
and negative properties.

• Monte Carlo cross validation

Monte Carlo cross validation is the most random cross validation method. We
randomly divide our sample set into the train and test set, decent number of
times. For each division, the model is fitted on the train set and evaluated on the
test set. At the end, we average the evaluations of the test sets, and we obtain
a final quality estimation. An advantage of this approach is that we can have
a large number of random splits. That is because averaging a bigger number
of different performances may reduce the variance of the final estimation of the
quality. However, a disadvantage is that we are randomly splitting the dataset
which can cause that the train and test sets overlap among different splits (they
will have common elements). That will induce a covariance between estimated
predictors and variables from the test set. That can lead to a huge variance of
the final quality estimation. The size ratio of the train and test set is described
in Section 2.4.

• k-fold cross validation

In this approach we randomly divide our sample set S into k approximately
equally sized folds: S1, . . . , Sk. We train k different predictors on the train sets
S \ Sk, and evaluate them on the test sets Sk. A positive side of this method is

34
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that we use each point for the evaluation only once, so there are no overlapping
between the different test sets. This further implies that we got rid of the variance
induced by the overlapping of the test sets. If we follow the advice from Section
2.4, then the number of predictors will be small (between 5 and 10). Therefore,
a disadvantage is that we will do averaging with a small number of predicting
values. This again leads to a larger variance. Number k is in practice usually 5
or 10, again because of the reasons described in Section 2.4.

• leave-one out cross validation (LOOCV)

This method can be seen as a special case of the previous one, when it holds
that k = |S|. That means we are leaving only one element as the evaluation
part. The positive side in comparison to the k-fold cross validation with bigger
k is that we are using more complete set to train our model. That will reduce
the bias (assuming model does not overfitt) since we are using more data to
train the model. On the other side, only one sample point is left out which can
increase both bias and variance in evaluation of the test set. That is possible
because we may have a non-representative sample of the data distribution, i. e.
outlier. We reduce the increment of the variance with a large number of splits
(which is equal to |S|). A practical advantage of this method, compared to all
other cross validation methods, is that it is completely non-random, and the final
evaluation of the model can be expressed as a deterministic function. We will use
this property to determine the unknown parameter λ, such that we maximize the
performance of the model. The negative side of this approach is that it can be
computationally demanding. The number of models which we need to train is |S|.
For a large sample size |S| and some complex model, it can be time consuming.

4.1 Determining λ

In the previous chapter, we have introduced the penalization approach. We have seen
that it depends on the penalization coefficient λ, for which we said that it is tuned by
the user. Often, the right value which should be tuned is not so obvious. Therefore,
we need to construct a method which can be used to determine it more precisely. Now
the question is, why λ is not a part of the optimization process as an argument in
the model training. In the objective function, λ is a part of the summand where it
is multiplied with something positive. So, the optimization result will set λ to be 0.
That will nullify the effects of the penalization, which further may lead to overfitting.
Because of that, for the training procedure, we need to fix lambda, and then to optimize
over other parameters in the objective. After that, we need to construct a secondary
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objective function, based on the estimated predictor which is directly dependent on
λ. The optimization of the secondary objective over λ will give us the best predictor.
Of course, this is an idealistic concept, and direct optimization over λ is usually not
possible in practice. Often, we construct some finite set of values which λ can take.
Then we train different models with λ taking values from the defined set of values. We
choose λ for which the defined secondary objective function is the best.
The only unknown thing now is the secondary objective function, and how to construct
it. The problem of prediction is to define a predictor which will explain, in the best
way, the unknown probability distribution. Therefore, we would like to have a correct
result for any sample from that unknown distribution. That includes all values that
have not been used for the training (for the terminology purpose, the data not used
for training are called unknown data or unknown sample). Since we do not know the
true distribution, we cannot sample from it. The only way to have some sample, which
is unknown for the estimated predictor, is to keep some part of the existing data out
of training. Using that part, we can evaluate our predictor. For that purpose, we
would like that the secondary objective function in the best possible way describes the
evaluation of the predictor on an unknown data set. For that task, one possibility is
to use cross validation. The secondary objective function will be exactly the quality
estimation obtained during cross validation. The reason for that lies in the explanation
provided above. We want to have a score which is related to the evaluation on the
unknown data set. The most used cross validation strategy for this task in practice is
the k-fold cross validation. That is because it gives the best results. Moreover, it has
the least computational complexity; we need to train only k models, which for k = 5 or
k = 10 is affordable in practice. Now, we return to our idealistic concept for finding the
optimal λ. In the k-fold cross validation, the secondary objective function is random.
Optimization over a random function is not possible. Here, we can resort to LOOCV
since it does not have randomness, and we will use exactly this approach to determine λ.
In more details, for different loss functions we will construct a deterministic secondary
objective function based on LOOCV. After that, we will directly optimize the function
to get an estimation for the parameter λ. Let us now return to our estimator. We had
that probability πk is estimated using Ridge regression as:

π̂k =
ak1 + 2λ

ak• + 4λ
.

By the assumption, our sample consists of K folds coming from different Bernoulli
distributions. Assume that we omitted one 0 from the k-th fold of our sample for
k ∈ {1, . . . , K}. Then by training logistic regression on the remaining data, we get the
estimator for the k-th probability as:

π̂k0 =
ak1 + 2λ

ak• − 1 + 4λ
,
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while the estimators for other folds are as in the case when we are using the full dataset.
If we omit one 1 from the k-th fold, then our estimator will be

π̂k1 =
ak1 − 1 + 2λ

ak• − 1 + 4λ
,

while the others will remain the same. Now we need to evaluate the performance of
the obtained estimator on the data point we omitted. To do that, we need to define a
loss function, which will do the evaluation. For now, we will take the same loss that
was used for the logistic regression - log loss mentioned in (2.3). In the case when 0 is
omitted, we have that:

l(0, π̂k0) = −0 log π̂k0 + (1− 0) log(1− π̂k0) = log(1− π̂k0),

while for the other case when 1 is omitted we have:

l(1, π̂k1) = 1 log π̂k1 + (1− 1) log(1− π̂k1) = log(π̂k1).

Now, after the evaluation at every point, we have that the cross validation is

D(λ) = −
K∑
k=1

(ak1 log π̂k1 + ak0 log(1− π̂k0)).

Function D(λ) is somewhere refereed as LOOCV deviance, and it will play a roll of a
secondary objective function described above. Here we just summed without averaging,
because average factor is not relevant for optimization. We have to notice that the
deviance is not defined for the case when there is a sample fold which size is equal 1.
That is because we did not train any model using that fold. The next loss function,
with which we will try to improve our λ is the mean squared error. So, we have that:

l(0, π̂k0) = (0− π̂k0)2 = π̂2
k0, l(1, π̂k1) = (1− π̂k1)2,

and at the end, as cross validation we have:

PE(λ) =
K∑
k=1

(ak1(1− π̂k1)2 + ak0π̂
2
k0).

We will make a small comparison with the previous chapter. In Chapter 3 we have
directly computed the mean squared error of our estimator, which is a function of λ, but
it is also a function of the real values of the unknown probabilities. We have seen that
it is not possible to optimize λ directly, that is to express the optimal λ as a function
of those probabilities. We provided one suboptimal solution which was dependent on
unknown probabilities. We will estimate it and test its performance in the simulation
studies. Given that we have unknown probabilities in the MSE function, we are not able
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to perform any numerical optimization method. Therefore, from that part, we need to
be satisfied with sub-optimality. In this chapter, we created new objective functions,
based on the experimentally justified method - cross validation. These objectives are
not dependent on real probabilities and for them in practice, we can perform numerical
optimization methods to obtain λ. But, since we are not optimizing directly the MSE
of the estimators, we do not know will the numerically obtained optimal λ improve
MSE in any sense. We will try to get the answers in a simulation study. Since we will
use numerical optimization methods, we provide a review of them.

4.2 Numerical optimization methods

Discarding some trivial and degenerate cases, we have a problem of optimizing a dif-
ferentiable function. Since the function is continuous, we usually call this continuous
optimization. In comparison with discrete optimization, our search space of all possible
solutions is uncountable. Without loss of generality, we will assume that we have a
minimization problem. Theory of continious optimization is usually divided into two
branches, convex and non-convex optimization. Convex optimization is the one where
the search domain is a convex set and where the objective function is convex. An
advantage of this case is that we known that there exists only one optimal solution
which is global. Therefore, first time when we detect some local minimum, we known
that it is also a global minimum. For convex optimization, a lot of research has been
done and there are many reliable methods for which we have a theoretical guarantee
that they will lead us to an optimal solution. On the other side, in the non-convex
optimization we are working with non-convex functions and there is a possibility that
we have a lot of local minimum, but to find a global one is hard. A decent research is
done also in this topic, but there is no guarantee that we can find a global minimum.
At the moment, we need to be satisfied with heuristic and meta-heuristic solutions.
However, here we will focus on the convex optimization approach. As we will see, both
of our objective functions are non-convex. We will search for an interval where the
function is convex, and using convex optimization methods, we will try to find a local
minimum.

4.2.1 Gradient descent

First we will focus on problems without any constraints. Assume that we have a
convex function f(xxx) over a convex domain A ∈ Rn for some n. Our goal is to find
a point xxx0 such that f(xxx0) ≤ f(xxx) for every xxx ∈ A. We will give an intuition of the
proposed methods. Imagine a convex function as some valley. We are somewhere on
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the sides of the valley and we want to reach the bottom of it. Logically, we will move
down all the time, and since there is only one bottom, we will reach it at one point.
Using mathematical expressions, we start from some point of the function, and we are
iterating such that the next member of the sequence, evaluated in f , will be smaller
than the previous one. Formally written, we want to create a sequence xxx0,xxx1, . . . such
that f(xxxi+1) ≤ f(xxxi) for every i ∈ N. Since the function is bounded from below, the
sequence will converge. We want to ensure that the function will not converge to some
point before. From Calculus we know that the gradient is a vector which shows the
direction of the greatest rate of increase of the function. Because of that, the minus of
the gradient is showing us the direction of the greatest rate of decrease. So the gradient
will help us with the direction, such that we will always go down. We formulate our
iterating method as

xxxn+1 = xxxn − α∇f(xxxn), (4.1)

where α is a positive real parameter which is tuned by the user and operator ∇ stands
for a gradient. Using this method on each step we choose the direction based on the
gradient, and we move with a step proportional to α. To show that with this approach
we can achieve a decreasing sequence, we help ourselves with the following lemma.

Lemma 4.1. Assume that f is continuously differentiable function on the convex do-
main, and let xxx be a point from that domain where the gradient is not 0. Then, there
exist ε such that

f(xxx− ε∇f(xxx)) ≤ f(xxx).

Proof. We use the Taylor expansion of the first order. We have that:

f(xxx− ε∇f(xxx)) = f(xxx)− ε〈∇f(xxx),∇f(xxx− ξε∇f(xxx))〉

for some ξ ∈ (0, 1) and continuously dependent on ε. Denote with g(ε) = 〈∇f(xxx),∇f(xxx−
ξε∇f(xxx))〉. We have that g(0) = ‖f(xxx)‖2 > 0. Since g is continuous, there exist ε > 0

such that g(ε) > 0. Taking that ε we have that:

f(xxx− ε∇f(xxx)) = f(xxx)− εg(ε) < f(xxx).

This lemma is showing us that on each step we can adjust α such that we have a
decreasing sequence. By the construction, the sequence cannot converge somewhere
before the minimum, since the derivative is different than 0. So, the question is how
can we choose α, and should we choose a different α at the each iteration step. We
provide an additional definition.
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Definition 4.2. A differentiable function f is L-smooth on the domain A if its gradient
is Lipschitz continuous with the coefficient L:

‖∇f(xxx)−∇f(yyy)‖ ≤ L‖xxx− yyy‖,

for all xxx,yyy ∈ A.

If in the previous definition, we take a limit yyy → xxx, and do a bit of simple analysis,
we obtain that ∇2f(xxx) ≤ L, which means that the norm of the Hessian is bounded
with L. This further means that all eigenvalues of the Hessian are less than L. So
usually, to obtain the constant L in practice, we compute the largest eigenvalue of the
Hessian by absolute value. The importance of the defined constant L is given in the
following theorem.

Theorem 4.3. Let f be a convex and L-smooth function defined on the convex domain.
Let x0 be a starting point. For the iteration process defined as:

xxxn+1 = xxxn −
1

L
∇f(xxxn), (4.2)

we have that:
f(xxxn)− f(xxx∗) ≤ 2L‖xxx0 − xxx∗‖

n− 1
= O

(
1

n

)
.

Proof can be found in [10]. This theorem is telling us that if we choose that α = 1
L
, we

have a guarantee that the iteration will converge and that the order of the convergence
is O( 1

n
). To improve the result, we define the strong convexity.

Definition 4.4. We say that f is a strongly convex function on the convex domain A,
with the coefficient µ, if we have that

〈∇f(xxx)−∇f(yyy),xxx− yyy〉 ≥ µ‖xxx− yyy‖2.

If we assume that f is twice differentiable, the previus theorem implies that ‖∇2f(xxx)‖ ≥
µ. In this case µ is something opposite than L; while L was the upper bound of the
Hessian, the µ is the lower bound of it. In one-dimensional euclidean space, this may
be interpreted as if the second derivative is always strictly positive. With this we can
formulate the following theorem.

Theorem 4.5. Let f be a strongly convex function with coefficient µ, and L-smooth
function defined on the convex domain. Let x0 be the starting point, and let 0 < α ≤ 1

L
.

For the iteration process defined as:

xxxn+1 = xxxn − α∇f(xxxn), (4.3)

we have that:
‖xxxn − xxx∗‖2 ≤ (1− αµ)n‖xxx0 − xxx∗‖2.
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With the previous theorem we improved our convergence rate to the linear one. The
smaller α is we have slower convergence. Therefore, the best rate we obtain when we
take α = 1

L
.

So we formulated a numerical method for the convex optimization. It has a the-
oretical guarantee that it will converge, regardless where we start the walk. As a
disadvantage of the method, we have that it is not robust if we have points where the
function is not differentiable. That is because we need a gradient defined in every point.
Another disadvantage is that it is not suitable for the problems with constraints. In
the next subsection, we will present some modifications of the gradient descent to solve
these issues. Also, we will present methods which improve the speed of the convergence
in practice.

4.2.2 Other gradient descent based methods

Here we will give just a brief overview of gradient descent based methods.

Proximal gradient descent

Imagine that we have a logistic regression model, and we want to do a feature selection.
As we have already mentioned, LASSO penalization can be suitable for that, so we
can formulate our problem as an optimization problem; to optimize the log-likelihood
together with the lasso penalization. Since the LASSO penalization includes the abso-
lute values of the coefficients, it is not differentiable at 000. So, the optimization in that
case may be problematic. For that purpose, there exists a theory of proximal gradient
descent which is used for objectives of the form f(x) + g(x), where f is convex and
differentiable, while g is not differentiable but "proximal friendly", which means that
we can explicitly define an proximal operator:

proxg(vvv) = arg min
www

1

2
‖www − vvv‖2 + g(www).

When we have defined such operator, we can define a proximal gradient descent as:

xxxn+1 = proxg(xxxn − α∇f(xxxn)).

This approach can be used also for the constrained problem. If we have the objective
function f and a constraint such that xxx ∈ A for some domain A, then we can define a
function g; g(xxx) = 0 for xxx ∈ A and g(xxx) = ∞ otherwise. With such defined function
g, we can redefine our objective as f + g, without constraints. For that case, we can
show easily that the proximal operator is an orthogonal projection on the set A. We
have iteration process defined as

xxxn+1 = projA(xxxn − α∇f(xxxn)),
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where projA is a projection operator. Of course, constraints can be defined in many
ways, and often it is impossible to define the set A where we need to project. That
implies that we cannot define a projection neither. More about proximal gradient
approach may be found in [5].

Quasi Newtonian methods

The reason why we develop those numerical methods is because we cannot solve the
system of the equations ∇f(xxx) = 0. If we look from the other prespective, we can use
the Newton method to solve such problem, and the iteration step will be defined as:

xxxn+1 = xxxn − [∇2f(xxxn)]−1∇f(xxxn).

Calculating the Hessian matrix and then inverting it can be very computationally de-
manding task, so we would like to get rid of it. For that purpose, instead of calculating
the inverse of the Hessian, we use its approximation. That approximation we improve
at every iteration step, which at the end converges to the inverse of the Hessian. Still
such methods are computationally demanding, but since the Newton method itself has
quadratic convergence, this approximation method has the same. This is a better re-
sult compared to the linear convergence achieved with the classical gradient descent.
More details about Quasi-Newton methods can be found in the PhD thesis [8].



5 Simulation study and final results

5.1 Estimating λ

A simulation study or empirical study in general is an approach we use when we are not
able to theoretically prove a property of some estimator or some predictor. It consists
usually of creating artificial data from a known distribution, and then applying the
estimator which we created to those data in order to test estimator’s properties. In our
case we would like to test different estimators we obtained from the logistic regression
with ridge penalization. They will be tested together with different estimates of λ. Our
goal is to try to improve the MSE of the unbiased estimator. The reason why do we
do simulation study is that we were not able to evaluate the MSE directly for different
λ estimates.

For now, we have discussed some ways to obtain λ, but we did not express any
concrete estimator of λ. From (3.3) we have that:

λ∗ =

∑K
k=1

πk(1−πk)

a2k•∑K
k=1

5ak•+3
a3k•

. (5.1)

This expression depends on πk which is unknown in practice. Therefore, we will esti-
mate it by estimating the expression πk(1 − πk). One approach is to replace πk with
the unbiased estimator π̂k. So, we have the first λ estimator as:

λ̂∗1 =

∑K
k=1

π̂k(1−π̂k)

a2k•∑K
k=1

5ak•+3
a3k•

.

On the other side, we know that πk(1−πk) is the variance of the Bernoulli distribution.
Hence, we will also try with the unbiased estimator of that variance. We know from
before that for a sample X1, . . . , Xn, with the unbiased mean estimator X̄, the unbiased
estimator of their varience is:

σ̂ =
1

n− 1

n∑
i=1

(Xi − X̂)2 =
1

n− 1
(
n∑
i=1

X2
i − nX̄2).

Using notations from our problem, we have the estimator:

σ̂ =
ak1

ak• − 1
− a2

k1

ak•(ak• − 1)
.

43
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Therefore, the second approach gives the following estimator for λ:

λ̂∗2 =

∑K
k=1( ak1

a2k•(ak•−1)
− a2k1

a3k•(ak•−1)
)∑K

k=1
5ak•+3
a3k•

.

In the Chapter 4, we have constructed two LOOCV objective functions, which min-
imization leads to a reasonable estimation of λ. Again, an explicit optimization is
not possible due to complexity of the expression. So, we will construct an iterative
procedure for the optimization. First, we will do it for the LOOCV deviance. We had
that:

D(λ) = −
K∑
k=1

(ak1 log π̂k1 + ak0 log(1− π̂k0)).

The first derivative of the above expression is:

D′(λ) = −
K∑
k=1

(
2ak1(ak• − 2ak1 + 1)

(ak1 − 1 + 2λ)(ak• − 1 + 4λ)
+

2ak0(ak• − 2ak0 + 1)

(ak0 − 1 + 2λ)(ak• − 1 + 4λ)

)
.

After some calculations we can obtain that:

D′(0) = − 2(a2
k0 + a2

k1)− 2ak•
(ak1 − 1)(ak0 − 1)(ak• − 1)

.

Using the inequality between means, it holds that 2(a2
k0 + a2

k1) ≥ (ak0 + ak1)2 = a2
k•. It

follows that 2(a2
k0 + a2

k1) > 2ak•, under the assumption that ak• > 2. When this holds,
we have that D′(0) < 0. With this, we ensure that the objective is decreasing at 0

That implies there is a local minimum on positive line (which can be at the infinity).
The second derivative of D(λ) is:

D′′(λ) =
K∑
k=1

(
4ak1(ak• − 2ak1 + 1)(2ak1 + ak• − 3 + 8λ)

(ak1 − 1 + 2λ)2(ak• − 1 + 4λ)2

+
4ak0(ak• − 2ak0 + 1)(2ak0 + ak• − 3 + 8λ)

(ak0 − 1 + 2λ)2(ak• − 1 + 4λ)2

)
.

To perform the gradient descent algorithm, and to be sure that we will achieve the
convergence, we need to find the smoothness constant. Since it was interpreted as the
bound of the Hessian matrix in high-dimensional case, in one-dimensional case it can
be interpreted as the bound of the second derivative. Therefore, we need to bound the
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calculated second derivative. We have that

|D′′(λ)| =
∣∣∣∣ K∑
k=1

(
8ak1(ak• − 2ak1 + 1)

(ak1 − 1 + 2λ)(ak• − 1 + 4λ)2
+

4ak1(ak• − 2ak1 + 1)

(ak1 − 1 + 2λ)2(ak• − 1 + 4λ)

+
8ak0(ak• − 2ak0 + 1)

(ak0 − 1 + 2λ)(ak• − 1 + 4λ)2

)
+

4ak0(ak• − 2ak0 + 1)

(ak0 − 1 + 2λ)2(ak• − 1 + 4λ)

)∣∣∣∣
≤

K∑
k=1

(
8ak1|ak• − 2ak1 + 1|
(ak1 − 1)(ak• − 1)2

+
4ak1|ak• − 2ak1 + 1|
(ak1 − 1)2(ak• − 1)

+
8ak0|ak• − 2ak0 + 1|
(ak0 − 1)(ak• − 1)2

)
+

4ak0|ak• − 2ak0 + 1|
(ak0 − 1)2(ak• − 1)

)
,

where the last expression will be used as the smoothness constant L. We will not check
if the function is completely convex, but we will find the area where the function is
convex. On that area we can perform optimization, and find a suitable λ. We would
like to have a better objective value than in the case of the unbiased estimator which
value is reached at λ = 0. Therefore, we would like to have a convex area around zero
point. We will show that D′′(0) > 0. Using simple algebra, we obtain that:

D′′(0) =
4ak1

(ak1 − 1)2
+

4ak0

(ak0 − 1)2
− 16ak•

(ak• − 1)2
.

We consider a function f(x) = 4x
(x−1)2

= 4
x−1

+ 4
(x−1)2

. For x > 1, we have that the both
summands from f are convex, so also f is convex. Using Jensen’s inequality we have
that:

4ak1

(ak1 − 1)2
+

4ak0

(ak0 − 1)2
≥ 2

4ak1+ak0
2

(ak1+ak0
2
− 1)2

=
16ak•

(ak• − 2)2
>

16ak•
(ak• − 1)2

,

for ak• > 1. Therefore, it follows that D′′(0) > 0. From the facts that D′(0) < 0 and
D′′(0) > 0, we conclude that the gradient descent will have the right direction, so the
iteration will converge to a positive value. Also, we do not have the whole interval
where the function is convex, but since D′′(0) > 0 and due to the continuity of the
second derivative, we have that there exists a neighborhood of 0 where D is convex. A
possible problem for this scenario is that we do not know if the function D will change
the convexity before the local minimum appears. That possibility we cannot control,
but however, we will try with the gradient descent method. Since we have calculated
the first derivative and the bound of the second derivative, we have all prerequisites
for the gradient descent.

Now, we need to calculate the same thing for the LOOCV mean squared error. We
had that:

PE(λ) =
K∑
k=1

(ak1(1− π̂k1)2 + ak0π̂
2
k0) =

K∑
k=1

ak1(ak0 + 2λ)2 + ak0(ak1 + 2λ)2

(ak• + 4λ− 1)2
.
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We calculate and rewrite the derivative:

PE ′(λ) =
K∑
k=1

8(λ((ak1 − ak0)2 − ak•)− ak1ak0)

(ak• + 4λ− 1)3
.

=
K∑
k=1

2((ak1 − ak0)2 − ak•)
(ak• + 4λ− 1)2

− 2(ak• − 1)((ak1 − ak0)2 − ak•)
(ak• + 4λ− 1)3

− 8ak1ak0

(ak• + 4λ− 1)3
.

Also we have that:

PE ′(0) =
K∑
k=1

− 8ak1ak0

(ak• − 1)3
.

So we have that P ′(0) < 0, as in the deviance case. For the second derivative, we have
that:

PE ′′(λ) =
K∑
k=1

−16((ak1 − ak0)2 − ak•)
(ak• + 4λ− 1)3

+
24(ak• − 1)((ak1 − ak0)2 − ak•)

(ak• + 4λ− 1)4
+

96ak1ak0

(ak• + 4λ− 1)3
,

and for the bound we have:

|PE ′(λ)| ≤
K∑
k=1

16((ak1 − ak0)2 − ak•)
(ak• − 1)3

+
24(ak• − 1)((ak1 − ak0)2 − ak•)

(ak• − 1)4
+

96ak1ak0

(ak• − 1)3
.

We take the expression above for our smoothness constant L. Also for the convexity
around zero point we have:

PE ′(0) =
K∑
k=1

8(ak• − 1)((ak1 − ak0)2 − ak•)
(ak• + 4λ− 1)4

+
96ak1ak0

(ak• + 4λ− 1)3
> 0.

Therefore, we have convexity around zero. Also, as in the pervious case, we cannot
guarantee that the minimum will be reached before the function changes its convexity.
That is, we cannot guarantee that

min
λ>0
{λ|f ′(λ) = 0} < min

λ>0
{λ|f ′′(λ) = 0}.

However, we hope that we will reach some suboptimal solution in the simulation study.
To sum up, we have constructed 4 ways of estimating the parameter λ, where two

of them are explicit estimators, while the other two are an output of the optimization
process. The criteria for their comparison will be the MSE risk.

5.2 Special cases

Before proceeding with general estimators, we will do a simulation study for the special
cases. As we have already mentioned before, special cases are when K = 1 and when
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sample sizes of each fold are equal. First, we consider the case when K = 1. We
calculated an optimal λ for the MSE where we had that:

λopt =
π1(1− π1)

(1− 2π1)2
.

Here, we will use the estimator obtained after replacing a probability with the unbiased
estimator. The resulting estimator is of the following form:

λ̂1 =
π̂1(1− π̂1)

(1− 2π̂1)2
.

In this case, the optimum exists when the value of the unbiased estimator is not 0.5.
If the unbiased estimator is equal to that value, we estimate λ as infinity, and we set
the probability estimators to their limiting values. For the cross validation techniques,
we can calculate the optimum explicitly. So, for the case of deviance we have that:

D′(λ) = 0 =⇒ λ̂2 =
a10(a10 − 1) + a11(a11 − 1)

2(a11 − a10)2 − 2a1•
.

In case of the MSE, we have that

PE ′(λ) =
8(λ((a11 − a10)2 − a1•)− a11a10)

(a1• + 4λ− 1)3
= 0 =⇒ λ̂3 =

a11a10

(a11 − a10)2 − a1•
.

Here, we need to distinguish two cases. If it holds that (a11 − a10)2 − a1• ≤ 0, then we
have that D′(λ) < 0 and also PE ′(λ) < 0. Further this means that both objectives are
decreasing on the whole positive axis, which means that the optimal λ is at infinity.
So, if we will have λ at infinity, we will set the probability estimators to their limiting
values. Otherwise, there exist a unique optimum on the positive axis.

The simulations are done using programming language PYTHON with version
3.6 [18]. First, for a given sample size a1• and a probability π1, we generate a sam-
ple from the Bernoulli distribution using scientific package NUMPY [9]. In all further
simulations, the same language and package will be used. After we created a sample,
we compute the value of an estimator, and we calculate the squared difference between
that value and the real probability. We will call it the basic MSE. We repeat this
process 100000 times, and we obtain 100000 basic MSEs. Then we average all of them
and we obtain the empirical MSE. Due to the weak law of large numbers and since we
did a large number of repetitions, this empirical MSE is a good approximation of the
real MSE. During simulations in this case, from the estimators which are dependent
on λ, it is easy to check that for K = 1 it holds: π̂1 = π̂2,λ

1 = π̂3,λ
1 . So, we calculate

only π̂1 and π̂λ1 .
Now, we provide the results of the simulations. On each figure, we have the squared

root of the mean squared error (RMSE). We have this for the unbiased estimator and
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estimators π̂λ1 with three different λ estimates. We have also a value of optimal λ with
real probabilities. We introduce it for the comparison reasons. That value is denoted
with "lambda oracle" at the legend. For fixed a1•, on the y-axis we have RMSE while
on the x−axis we have probability. In the captions of the images, we have value of a1•

used to create the artificial sample.

Figure 3: a1• = 10

Figure 4: a1• = 100
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Figure 5: a1• = 1000

Figure 6: a1• = 10000

From the results we see that we did not succeed to improve the unbiased estimator in
general. On every figure, there is a probability interval where π̂λ1 is better than the
unbiased estimator. That interval is around 0.5. If we are far from 0.5, we have that
unbiased estimator is better for smaller fold size. This is hard to interpret since it is
hard to see what is happening with bias or with variance of the estimator after we add
λ. The possible interpretations are:

• If probabilities are far from 0.5, the unbiased estimator has smaller variance,
since the variance is proportional to π1(1 − π1). So λ may introduce additional
variability. Of course, if we add λ we do not have an unbiased estimator anymore.
So, possibly the increase of the bias caused a worse performance of πλ1 .

• If the probabilities are close to 0.5, we have obvious increase of the variability of
the unbiased estimator. Again, the unbiased estimator has the highest variance
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for π1 = 0.5. So adding λ we reduced this high variance.

Second thing we may notice is that if we increase the fold size, the estimators tend to
be the same. How this can be interpreted? In the estimator π̂λ1 , λ appears in both
numerator and denominator. Estimators of λ are ratios of polynomials of the same
degree. So, we may interpret that the increase of the fold size, does not have big
impact on λ; λ stays nearly the same. On the other side, other values in the numerator
and in the denominator will increase (a11 and a1•). So, if we increase the fold sizes, λ’s
impact on the estimator decreases. So πλ1 tends to be the same as the unbiased one.

As another special case we have identified the one where all folds are of the same
size, which means it holds that a1• = · · · = aK• = a•. For this specific example, we
can construct all 3 estimators mentioned above dependent on λ, but we can obtain
only 2 different λ estimates. As we wrote above, the optimal value of the MSE can be
achieved for:

λopt =

∑K
k=1 πk(1− πk)∑K
k=1(1− 2πk)2

.

Using the same idea as for the previous special case, the obtained estimator is:

λ̂1 =

∑K
k=1 π̂k(1− π̂k)∑K
k=1(1− 2π̂k)2

.

We cannot apply the same trick to the deviance objective function since ak1 values are
appearing in the denominator of the expression, so we cannot find the exact expression
in this case. For the MSE objective in cross validation case, we have the optimal
solution as:

λ̂2 =

∑K
k=1 ak1a10∑K

k=1(ak1 − ak0)2 −Ka•
.

First we examine the case when all probabilities are equal. That is the most trivial
case and we will provide plots like we did for the last special case. In this case, we
will not change the fold size, since we have noticed the same behavior as before: the
estimators tends to be the same for too large fold sizes. To apply estimators to the data
from the Brown’s article, the most representative case is to have a• = 500, since the
number of hits is around 500 in average. We provide 9 graphs, for 3 different values of
K. We take K ∈ {5, 50, 500}. For each value, we have three graphs for three different
estimators. On the y-axis we have RMSE, while on the x-axis we have probabilities.
The values of λopt are denoted as "lambda oracle" at the legend.
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Figure 7: Results for π̂λk for K = 5, ak• = 100

Figure 8: Results for π̂2,λ
k for K = 5, a1• = 100

Figure 9: Results for π̂3,λ
k for K = 5, a1• = 100
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Figure 10: Results for π̂λk for K = 50, ak• = 100

Figure 11: Results for π̂2,λ
k for K = 50, a1• = 100

Figure 12: Results for π̂3,λ
k for K = 50, a1• = 100
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Figure 13: Results for π̂λk for K = 500, a1• = 100

Figure 14: Results for π̂2,λ
k for K = 500, a1• = 100

Figure 15: Results for π̂3,λ
k for K = 500, a1• = 100



Palangetić M. Ridge regression for categorical data.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 54

Finally, we may say that we have a success. Namely, both of π2,λ
k and π3,λ

k performed
better for each K and for both λ. That is especially visible when the probability is
close to 0.5. In that case, the differences are huge; somewhere even 5 times. Also, at
every image we can see better performance of λ̂2 than λ̂1, which is unexpected since
λ̂1 is the estimator for optimal λ. Of course, we formed it straightforward, so it may
be an estimator with huge MSE for itself. For πλk , we have the feeling that it also
overperforms the unbiased one. For K = 50, hat is not true for extreme probabilities.
It can be shown that on the edges of the graph πλk is smaller than the unbiased one.
However, when we increase K, it becomes better, and for huge K, πλk became better
than the unbiased one. If compare all estimators between themselves, we may see that
estimator π2,λ

k is giving the best results, then π3,λ
k , and the worst is πλk . This is also

unexpected, since λ1 is optimal solution for MSE of πλk , so we would expect better
performance for πλk than for other estimators, for at least λ̂1.

Now we will try to do some analysis when the probabilities are not the same. Every
probability is a parameter for itself. Therefore, for so many parameters it is hard to
provide a general view of every possible situation. We remain to build our intuition
based on the special cases. Here we provide simulation studies for K = 3, and we will
try with six probability vectors: (0.05, 0.05, 0.05), (0.05, 0.05, 0.45), (0.05, 0.45, 0.45),
(0.05, 0.2, 0.2), (0.2, 0.2, 0.45), (0.05, 0.2, 0.45), together with three different sizes of a•.
In each cell, we have 100 ·RMSE for a particular probability estimator combined with
a particular λ estimator. We use 100 ·RMSE for better visibility of results.

λ̂1 λ̂2 λopt

π̂ 6.908 6.908 6.908
π̂λ 7.283 7.378 6.831
π̂2,λ 6.609 6.564 6.707
π̂3,λ 6.743 6.716 6.802

πππ = (0.05, 0.05, 0.05),a• = 10

λ̂1 λ̂2 λopt

π̂ 5.121 5.121 5.121
π̂λ 5.377 5.442 5.068
π̂2,λ 4.917 4.888 4.983
π̂3,λ 5.009 4.990 5.049

πππ = (0.05, 0.05, 0.05),a• = 100

λ̂1 λ̂2 λopt

π̂ 4.200 4.200 4.200
π̂λ 4.409 4.461 4.157
π̂2,λ 4.035 4.011 4.088
π̂3,λ 4.109 4.094 4.141

πππ = (0.05, 0.05, 0.05),a• = 1000

λ̂1 λ̂2 λopt

π̂ 6.506 6.506 6.506
π̂λ 6.640 6.739 6.311
π̂2,λ 6.325 6.363 6.241
π̂3,λ 6.331 6.315 6.289

πππ = (0.05, 0.05, 0.45),a• = 10

λ̂1 λ̂2 λopt

π̂ 6.014 6.014 6.014
π̂λ 6.130 6.216 5.844
π̂2,λ 5.857 5.889 5.783
π̂3,λ 5.861 5.848 5.824

πππ = (0.05, 0.05, 0.45),a• = 100

λ̂1 λ̂2 λopt

π̂ 5.507 5.507 5.507
π̂λ 5.613 5.691 5.353
π̂2,λ 5.364 5.393 5.297
π̂3,λ 5.368 5.355 5.335

πππ = (0.05, 0.05, 0.45),a• = 1000
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λ̂1 λ̂2 λopt

π̂ 7.214 7.214 7.214
π̂λ 7.104 7.293 6.716
π̂2,λ 6.835 6.932 6.668
π̂3,λ 6.937 6.976 6.791

πππ = (0.05, 0.45, 0.45),a• = 10

λ̂1 λ̂2 λopt

π̂ 6.912 6.912 6.912
π̂λ 6.810 6.983 6.454
π̂2,λ 6.562 6.651 6.409
π̂3,λ 6.657 6.692 6.523

πππ = (0.05, 0.45, 0.45),a• = 100

λ̂1 λ̂2 λopt

π̂ 6.532 6.532 6.532
π̂λ 6.436 6.599 6.101
π̂2,λ 6.203 6.286 6.058
π̂3,λ 6.292 6.325 6.166

πππ = (0.05, 0.45, 0.45),a• = 1000

λ̂1 λ̂2 λopt

π̂ 7.104 7.104 7.104
π̂λ 7.071 7.259 6.671
π̂2,λ 6.664 6.708 6.541
π̂3,λ 6.806 6.813 6.707

πππ = (0.05, 0.2, 0.2),a• = 10

λ̂1 λ̂2 λopt

π̂ 6.854 6.854 6.854
π̂λ 6.825 7.002 6.446
π̂2,λ 6.438 6.479 6.323
π̂3,λ 6.573 6.579 6.479

πππ = (0.05, 0.2, 0.2),a• = 100

λ̂1 λ̂2 λopt

π̂ 6.570 6.570 6.570
π̂λ 6.542 6.712 6.180
π̂2,λ 6.173 6.212 6.062
π̂3,λ 6.301 6.307 6.212

πππ = (0.05, 0.2, 0.2),a• = 1000

λ̂1 λ̂2 λopt

π̂ 7.384 7.384 7.384
π̂λ 7.302 7.595 6.817
π̂2,λ 6.883 6.924 6.732
π̂3,λ 7.000 6.992 6.847

πππ = (0.2, 0.2, 0.45),a• = 10

λ̂1 λ̂2 λopt

π̂ 7.210 7.210 7.210
π̂λ 7.133 7.412 6.668
π̂2,λ 6.733 6.772 6.588
π̂3,λ 6.842 6.834 6.696

πππ = (0.2, 0.2, 0.45),a• = 100

λ̂1 λ̂2 λopt

π̂ 6.974 6.974 6.974
π̂λ 6.900 7.169 6.452
π̂2,λ 6.515 6.552 6.374
π̂3,λ 6.619 6.612 6.479

πππ = (0.2, 0.2, 0.45),a• = 1000

λ̂1 λ̂2 λopt

π̂ 7.427 7.427 7.427
π̂λ 7.347 7.625 6.874
π̂2,λ 6.962 7.011 6.809
π̂3,λ 7.050 7.040 6.900

πππ = (0.05, 0.2, 0.45),a• = 10

λ̂1 λ̂2 λopt

π̂ 7.267 7.267 7.267
π̂λ 7.190 7.457 6.734
π̂2,λ 6.820 6.867 6.672
π̂3,λ 6.904 6.894 6.759

πππ = (0.05, 0.2, 0.45),a• = 100

λ̂1 λ̂2 λopt

π̂ 7.068 7.068 7.068
π̂λ 6.993 7.253 6.551
π̂2,λ 6.634 6.680 6.490
π̂3,λ 6.715 6.706 6.575

πππ = (0.05, 0.2, 0.45),a• = 1000

Table 1: Results for equal folds when K = 3

We can see from the provided results, in almost all cases, we have that the estimator
π̂2,λ showed the best results, combined with λ̂1. This is surprising given that λ̂1 was
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made based on the optimal λ value for the estimator π̂λ. On the other side, π̂λ did
not improve the unbiased one in the cases when we had vectors with 2 or 3 small
probabilities, but it is better in the cases with larger probabilities. For the estimator
π̂3,λ we can see that it is usually better than π̂λ, while it is worse than π̂2,λ. Also
the characteristic for this one is that, for larger probabilities, it works better with λ̂2

estimator than with λ̂1.

5.3 General case

In this section we provide a simulation study for general case. So, we will not assume
anymore that some probabilities or some folds are equal. In this case, we face with a
lot of parameters to be tested. We may have a situation where K = 100. So we have to
test for 100 different probabilities and 100 fold sizes. That is in total 200 parameters.
And each of these parameters should be tested for different values. So we would need
200-dimensional euclidean space to present the results. That is, of course, impossible,
so we need to find smarter strategy for testing. Let us now return to our practical
motivation. We will describe the data from the Brown’s article. We have a data from
929 players. Many of those players had just a few hits. The performance from a small
number of hits does not illustrate the real ability of the player. So Brown decided to
remove those players with a small number of hits. The threshold was 11, so we include
only players who have 11 or more hits in both half-seasons for testing. After filtering,
we remain with 499 players. So for testing, we would like to simulate artificial data
to be similar to the data from the article. For the total number of hits in the first
half-season, we provide a plot of the distribution on Figure 16. On Figure 16, we have

Figure 16: Distribution of the hits in the first half-season
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a distribution from which we would like to simulate our data. We cannot recognize any
known distribution from the image. We notice that we have a bimodal distribution,
where each modal has a similar shape to the normal distribution, more or less. So to
model the distribution, we will use a Gaussian Mixture model. Gaussian mixture is
a probability distribution which probability distribution function (PDF) is weighted
sum of PDF’s of normals. Here, we will assume that we have a sum of two normals.
To estimate parameters of such distribution we use the EM algorithm [6]. After we
found the parameters, we use them to simulate the values for the folds. To simulate

Figure 17: Distribution of the ratios of successful hits in the first half-season

probabilities, we consider ratios of the number of successful hits and the total number
of hits. We obtain a vector of unbiased estimators of probabilities of successful hits.
The distribution of such probabilities is shown at Figure 17. Again, we cannot identify
the distribution from the image. We tried with a Beta distribution, but it did not
fit the best. We have tried Gaussian Mixture model here too. Surprisingly, it gave
very good results. It even fits better than in the previous case for folds. So again, we
fitted Gaussian Mixture model for two normal distributions, and we used estimated
parameters to generate the probabilities.

Now we provide 10 tabels for 10 different samples, sampled from Gausian mixture
models for both, folds and probabilities. In every cell, for a particular probability
estimator, and a particular λ estimator, we have 100 ·RMSE for better view of results.
We have used estimators of λ described in Section 5.1.
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λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 4.815 4.815 4.815 4.815 4.815
π̂λ 4.797 4.794 4.808 4.676 4.797
π̂2,λ 4.776 4.769 4.543 4.335 4.776
π̂3,λ 4.779 4.773 4.543 4.336 4.779

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 4.962 4.962 4.962 4.962 4.962
π̂λ 4.940 4.936 4.945 4.752 4.937
π̂2,λ 4.917 4.908 4.747 4.398 4.913
π̂3,λ 4.920 4.912 4.747 4.399 4.917

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 4.955 4.955 4.955 4.955 4.955
π̂λ 4.934 4.931 4.928 4.766 4.931
π̂2,λ 4.911 4.904 4.656 4.404 4.908
π̂3,λ 4.915 4.908 4.656 4.406 4.912

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.004 5.004 5.004 5.004 5.004
π̂λ 4.984 4.980 4.990 4.822 4.981
π̂2,λ 4.957 4.950 4.705 4.418 4.953
π̂3,λ 4.963 4.956 4.706 4.421 4.959

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.012 5.012 5.012 5.012 5.012
π̂λ 4.993 4.989 5.000 4.849 4.990
π̂2,λ 4.965 4.958 4.666 4.428 4.962
π̂3,λ 4.971 4.964 4.667 4.431 4.968

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.050 5.050 5.050 5.050 5.050
π̂λ 5.030 5.026 5.039 4.874 5.027
π̂2,λ 5.001 4.993 4.724 4.440 4.998
π̂3,λ 5.007 4.999 4.725 4.443 5.004

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.038 5.038 5.038 5.038 5.038
π̂λ 5.017 5.014 5.028 4.860 5.015
π̂2,λ 4.987 4.979 4.733 4.426 4.985
π̂3,λ 4.993 4.986 4.734 4.429 4.991

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.016 5.016 5.016 5.016 5.016
π̂λ 4.996 4.993 5.012 4.851 4.994
π̂2,λ 4.967 4.959 4.710 4.416 4.965
π̂3,λ 4.973 4.965 4.712 4.418 4.971

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.010 5.010 5.010 5.010 5.010
π̂λ 4.990 4.987 5.004 4.851 4.988
π̂2,λ 4.961 4.954 4.691 4.420 4.959
π̂3,λ 4.967 4.960 4.693 4.423 4.965

λ̂1 λ̂2 λ̂3 λ̂4 λ∗

π̂ 5.015 5.015 5.015 5.015 5.015
π̂λ 4.996 4.992 5.011 4.858 4.994
π̂2,λ 4.967 4.959 4.690 4.422 4.965
π̂3,λ 4.972 4.965 4.691 4.425 4.971

Table 2: Results for general case

In most cases, we have improved the unbiased estimator. The best results are obtained
when we are using π̂2,λ and π̂3,λ combined with LOOCV constructed by using mean
squared error as a loss function. In that case, in every table we have improvement in
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every cell for more than 10%. For different probability estimators, π̂2,λ and π̂3,λ have
significantly better peformance than π̂λ. They always overperform the unbiased esti-
mator, while π̂λ under-performs in some cases. This may be because in the numerator
of π̂2,λ and π̂3,λ we have an additional multiplier of λ which is adding more regulariza-
tion to the estimator. Also we can see that π̂2,λ combined with λ̂4 gave better result
than the best possible π̂λ (the one with λopt). This is showing us that the encoding
of the categorical data has large impact on the estimation, so maybe for some other
encoding we would be able to get an even better estimator. Comparing different λ,
we may see that those obtained using cross validation are giving better results. We
noticed that when we increase K, from the reason mentioned above, λ̂1 and λ̂2 remain
the same, independent of K. That is because they are ratios of the polynomials of the
same degree, so that ratio is independent of K. For the cross validation estimators of
λ, we noticed that they are increasing while K is increasing. So for a large K, like we
had K = 500, we have that λ̂3 and λ̂4 are significantly larger than λ̂1 and λ̂2, so they
have more impact on the estimates.

So, with the satisfiable results from the previous sections, where we have improved
the unbiased estimator, we proceed to apply the new estimator on the real data.

5.4 Application on batting averages

In this section we will apply the obtained probability estimators and λ estimators on
the new data, hoping that we will improve the Brown’s result. As we have already
mentioned we have K = 499 different players for prediction. For the comparison
between different results, Brown did not use (1.4) directly, but he used the following
error:

TSE∗ =
TSE(R̂)

TSE(R̂0)
,

where R̂0 stands for the unbiased estimator. So if we have an improvement, we expect
to have the values of the above risk less than 1. As more as it is less, we have better
result. As additional information in this case, we use the number of total hits for each
player in second half-season. If we assume that those hits are known quantity for us,
we can use them to try to improve our result. For that we consider the result from
Section 3.5. There, we have constructed the loss function which can be used in the
case when we know the number of performed prediction for each fold. This is exactly
the case here, where we know the number of hits in advance. In that section, we have
constructed a particular λ which is suboptimal for that particular case. We will use it
here also as additional help. First, we need to find an estimator of it. Again we have
that πk(1− πk) is appearing in the expression. So we have the two options to estimate
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it as we described in the previous sections. From the results from the previous section,
we saw that the unbiased estimator of the variance gave better results. So, we will use
only that approach here. For the estimator of the suboptimal λ from Section 3.5 we
have

λ̂5 =

∑K
k=1 ak••(

ak1
a2k•(ak•−1)

− a2k1
a3k•(ak•−1)

)

a••

(
2
√
K
∑K

k=1
1
a4k•

+
∑K

k=1
1
a2k•

+ 2
√∑K

k=1
1
ak•

√∑K
k=1

1
a5k•

+
∑K

k=1
1
a3k•

) ,
We add new λ̂5 to the four other estimators form the previous section. We apply

three probability estimators together with five λ estimators on the real dataset. The
results are given in Table 3.

λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

π̂ 1.000 1.000 1.000 1.000 1.000
π̂λ 0.999 0.999 1.042 1.011 1.000
π̂2,λ 0.998 0.998 0.959 0.973 1.000
π̂3,λ 0.998 0.998 0.959 0.973 1.000

Table 3: Results obtained for the data from the Brown’s article
.

As we can see that again the cross validation methods gave the best results. Surpris-
ingly, λ̂5 did not provide any improvement, despite the fact that it has an additional
information. Again, this can be interpreted that λ̂5 is too small for a large K to have
any significant impact on the estimators. Additional reason is that it is not the opti-
mal, but a suboptimal solution. So, it may remain the same even if K is increasing.
Now, the final moment is the comparison with the result from the Brown’s article. Us-
ing normal approximation described in the first section, together with the James-Stein
estimator, Brown achieved TSE∗ = 0.54. This result is incomparably better than any
result that we have achieved. So, we did not succeed to improve the Brown’s result.



6 Conclusion and future work

In this thesis, we were solving the problem of estimating the parameter for multiple
Bernoulli distributions at once. We wanted to improve the mean squared error of the
unbiased estimator. We introduced certain ways to obtain different estimators for the
vector of parameters using logistic regression with ridge penalization. To use regression
on categorical data, we had to encode categories in a proper way. So, we have presented
three ways how to do that. Then we have constructed a ridge regression model for
each of those encodings, which gave us three different regression models. From those
models, we have expressed three estimators. As we have seen from the final results,
some estimators gave significantly better results than the others. That implies that
the way of encoding has a huge impact on the estimation. We have presented different
encoding as a linear mapping of the standard 1−0 encoding. So, for the future work in
this case, we propose to try to improve the result using different linear maps, even more
complex than we had. That will have a huge impact on the penalization expression,
which will give different estimators.

After we have constructed our estimators, we had that all of them are dependent
on the penalization coefficient λ. So, our task was to find a proper λ to improve our
estimators. The first method we have used is expressing MSE as a function of λ. After
we did that, we obtained MSE(λ) as a function of one variable. We wanted to obtain
the optimal λ which minimizes that function. MSE(λ) was dependent on the real
probability values, so such function is unknown in practice. So, we cannot optimize it
directly. Instead of that, we found a value, which is not optimal, but still better than
the case without penalization (λ = 0). We have tested that value. In majority cases,
it gave better results, but in few cases, it did not. We noticed that when we increase
the number of folds K, such λ performs worse. The conclusion was that the impact of
it stagnates for large K. One possible solution for this case is that, we may estimate
MSE(λ), and using numerical methods, we can find the optimal λ from estimated
MSE function. That solution would probably have a larger impact on the probability
estimator for large K.

Another approach we have used for estimating λ is the cross validation. We have
explained that approach, emphasizing its usage for determining λ. We used LOOCV
to obtain the objective function, which minimization will provide us a suitable λ as the

61
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estimator. That objective function was constructed using two different loss functions:
deviance and mean squared error. This approach gave us the best result among all for
both loss functions. With cross validation we have achieved 15% of improvement in
MSE in some cases. Beside it was the best, we do not think that too much can be done
for improvement of the approach. Only possibility is checking for more loss functions.
However, we are skeptic that these results can be improved with a new loss function.

We have also mentioned generalized mean squared error, and we have seen its small
application for a real data case. However, that application did not improve the result.
For this approach we advise doing serious simulation study, together with improving the
suboptimal λ. That can also be improved such that we estimate the GMSE function,
and then we optimize it.

At the end, as answers for our objectives we have:

• We have constructed estimators which improve MSE of the unbiased estimators.
The improvements occur in so many cases that we may assume it holds in general.

• We did not improve the Brown’s result. We did not even come close to it.
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7 Povzetek magistrskega dela v
slovenskem jeziku

Ena od glavnih lastnosti, ki jo preučujemo pri konstrukciji cenilk, je nepristranskost.
Cenilka je nepristranska, ko je njena pričakovana vrednost enaka pravi vrednosti parame-
tra, ki ga ocenjujemo. Druga pomembna lastnost, ki jo želimo, je ta, da ima cenilka
čim manǰso varianco. Obstaja veliko načinov, kako najti nepristransko cenilko z naj-
manǰso možno varianco, za različne parametre iz različnih porazdelitev. V tem mag-
istrskem delu pa nas zanima drugačen vidik. Vprašamo se, kaj se zgodi, ko pogoj o
nepristranskosti cenilke izpustimo. Zanima nas, ali lahko konstruiramo cenilko, ki ni
nepristranska, ampak ima manǰso varianco kot nepristranska cenilka. Mera, ki skupaj
meri pristranskost in varianco cenilke, se imenuje srednja kvadratna napaka - SKN
(ang. Mean squared error - MSE). Ko imamo to definirano, želimo poiskati cenilko, ki
ima manǰso SKN kot nepristranska cenilka. Izkaže se, da v nekaterih primerih lahko
poǐsčemo takšno cenilko. Prvi rezultat na tem področju je podal Stein v članku [16].
Stein je za lokacijski parameter multivariatne normalne porazdelitve podal pristran-
sko cenilko, ki ima manǰso SKN, kot je povprečje podatkov, za katerega vemo, da
je nepristranska cenilka. Rezultat je bil nepričakovan in zato se ta fenomen danes
imenuje Steinov paradoks. Vprašanje pa je, ali se lahko enako naredi za Bernoulli-
jevo porazdelitev. Takšen problem je Brown obravnaval v članku [4] na podatkih o
uspešnosti odboja za igralce pri igri baseball. Ideja njegove rešitve je ta, da se binom-
sko porazdelitev, ki je vsota Bernoullijevih spremenljivk, za veliko število podatkov,
lahko aproksimira z normalno porazdelitvijo, kar omogoča uporabo Steinove cenilke.

V magistrskem delu smo k opisanemu problemu pristopili drugače, brez uporabe
normalne aproksimacije. Problem smo preučevali s teoretičnega in praktičnega vidika.
Glavno orodje s katerim smo poizkušali rešiti problem, je model logistične regresije.
Najprej smo naredili študijo problema napovedovanja z vidika statistične teorije učenja
in o logistični regresiji v splošnem. V našem primeru logistično regresijo uporabljamo za
primere, ko so vse neodvisne spremenljivke opisne. Ko imamo takšen primer, je pogojna
porazdelitev odvisne spremenljivke Bernoullijeva. Ko smo izvedli logistično regresijo
za tovrstne podatke, nam ocenjevanje parametrov z metodo največjega verjetja poda
nepristransko cenilko za parameter Bernoullijeve porazdelitve. Tukaj pride na vrsto
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penalizacija.
Penalizacija v napovedalnih modelih ima vlogo zmanǰsevanja preprileganja, vendar

mi smo jo uporabili z namenom, da bi izbolǰsali nepristransko cenilko. Uporabili smo
L2 penalizacijo (ang. ridge penalty). V splošnem se regresijski model skupaj z L2
penalizacijo imenuje L2 regresija (ang. ridge regression), v našem primeru tako lahko
govorimo o L2 logistični regresiji. L2 regresija vsebuje penalizacijski koeficient, od
vrednosti katerega bo odvisna tudi dobljena (penalizirana) cenilka. Cenilko z manǰso
SKN smo poizkusili dobiti na ta način, da smo iskali optimalen penalizacijski koeficient
za različne kriterijske funkcije. Kriterijska funkcija je lahko tista, ki se jo dobi z uporabo
metode največjega verjetja ali pa lahko tudi kakšna druga. Možne kriterijske funkcije
so opisane v [13]. Takšen optimizacijski problem je zahteven in njegovo reševanje
predstavlja glavni teoretični prispevek tega magistrskega dela. Na to temo je bilo
narejenega že veliko dela in to je opisano v neobjavljenih člankih, kjer so Blagus et al.
pokazali obstoj takšnega penalizacijskega koeficienta za različne tipe L2 penalizacije,
ampak niso podali načina, kako ga dejansko oceniti iz dejanskih podatkov [14], kar je
temeljni prispevek tega magistrskega dela.

Po teoretični analizi, je na koncu magistrskega dela narejena še velika simulacijska
študija, v kateri smo za velik nabor primerov poizkusili poiskati numerično optimalno
rešitev.

Na koncu smo predlagane metode uporabili tudi na podatkih, ki jih je obravnaval
že Brown. Pokazali smo, da lahko z uporabo predlaganih metod izbolǰsamo rezultate
v primerjavi z standardno cenilko, žal pa nismo uspeli izbolǰsati rezultatov do katerih
je prǐsel Brown z uporabo njegovega pristopa. Pridobljene rezultate smo v zaključku
ovrednotili in podali možnosti za nadaljnje raziskovanje.
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