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Študijski program: Matematika

Mentor: izr. prof. dr. Marko Orel

Koper, avgust 2018



Baghirova N. Witt’s Theorem.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 II
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Izvleček:

Cilj naloge je preučiti in predstaviti vsebino petega poglavja knjige [3], ki vsebuje teorijo

o bilinearnih formah, vključno z Wittovim izrekom. Ker je knjiga precej stara, je en

izmed ciljev naloge napisati vsebino na bolj moderen in bralcu dostopen način. Vsebina

zaključne naloge je razdeljena na 9 poglavij. Uvodu v prvem poglavju sledita poglavji

2 in 3, ki vsebujeta osnovne lastnosti bilinearnih form. Poglavje 4 opǐse lastnosti

skalarnih produktov. Slednji predstavljajo posebno vrsto bilinearnih form. Pomemebne

vrste skalarnih produktov predstavljajo hermitiski, simetrični in alternirajoči skalarni

produkti, ki so natančneje preučevani v poglavjih 5-7. Osmo poglavje vsebuje Wittov

izrek in njegove posledice. V zadnjem poglavju je razloženo, zakaj Wittov izrek v

splošnem ne velja, če je karakteristika obsega enaka dva.
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Abstract: The aim of the final project paper is to learn, understand, and present

the content of Chapter 5 in the book [3], which contains a theory about bilinear forms,

including the Witt’s Theorem. Since the book is quite old, some parts of it are not

written in modern mathematical style and hence one of the goals of the thesis is to

rewrite the content of this chapter in a more accessible and modern way. The content

of the final project paper is divided into 9 chapters. The introduction in Chapter 1

is followed by Chapters 2 and 3, which contain the basic properties of bilinear forms.

Chapter 4 introduces scalar products, which are special kind of bilinear forms. Par-

ticular types of scalar products, namely hermitian, symmetric and alternate scalar

products are studied in Chapters 5-7. Chapter 8 contains the Witt’s theorem and its

corollaries. In Chapter 9 it is explained why the Witt’s theorem is not necessarily true

in characteristic two.
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1 Introduction

The final project paper is mostly based on Chapter 5 in the Jacobson’s book [3].

The aim of the final project paper is to understand the preliminary theory for Witt’s

theorem and ultimately understand the theorem and the proof. This theorem is of

particular interested, since it can be applied to prove certain ‘symmetric’ properties

of various graphs that are constructed from certain vector spaces [4–6]. Strangely,

the Witt’s theorem is excluded from several textbooks about linear algebra. We were

also unable to find this theorem in the handbook [2]. On the other hand, some old

masterpieces [1,3] contain this result as one of the essential ingredients. Witt’s theorem

is named after Ernst Witt. There are several different versions of the Witt’s theorem.

If F is a field of odd characteristic and Fn is a vector space that is formed by all

n-dimensional column vectors over F, then one version of Witt’s theorem says the

following.

Let V ⊆ Fn be a vector subspace and let u : V → Fn be an injective linear map. If

A is an n× n symmetric invertible matrix and

u(x)TAu(y) = xTAy (1.1)

holds for all x, y ∈ V , then u can be extended on whole Fn in such way that (1.1) holds

for all x, y ∈ Fn.

A similar kind of version of Witt’s theorem was applied in the results [4–6] mentioned

above. Moreover, the version of the Witt’s theorem in this thesis, together with its

corollary, i.e. Theorem 8.4, can be applied to deduce similar versions of the Witt’s

theorem for hermitian matrices, alternate matrices, etc.

In the final project paper we study maps that are called bilinear forms, and our par-

ticular interest is in non-degenerate bilinear forms. We study the notion of symmetric,

hermitian, alternate scalar products. Moreover we will have a look on canonical ma-

trices for such forms that are of interest in various context of geometry. We prove the

Witt’s theorem for hermitian forms in Chapter 8. Ernst Witt proved Witt’s theorem

for symmetric scalar products over a field of characteristic 6= 2 [9]. Later the theorem

was generalized by Pall [7] to obtain a result for hermitian scalar products over a di-

vision ring of characteristic 6= 2. In the last chapter of the thesis, it will be explained

why Witt’s theorem does not necessarily hold for symmetric scalar products over a

field of characteristic 2.
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2 Bilinear forms

First we will define what is left abstract vector space and right abstract vector space

for a given division ring D.

Definition 2.1. A left vector space < over a division ring D is a set < equipped with

two operations. The addition

<× < 7→ <,

(x, y) 7→ x+ y

satisfies

(x+ y) + z = x+ (y + z)

and

x+ y = y + x

for all x, y, z ∈ <. There exist an element 0 ∈ < such that

x+ 0 = 0

for all x ∈ <.

For each x ∈ < there exist an element −x ∈ < such that

x+ (−x) = 0.

The multiplication by scalars

D×< → <,

(α, x) 7→ αx

satisfies

α(x+ y) = αx+ αy,

(α + β)x = αx+ βx,

(αβ)x = α(βx)

for all α, β ∈ D and for all x, y ∈ <. There exist an element 1 ∈ D such that

1x = x

for all x ∈ <.
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If in addition there exist finite number of vectors e1, . . . , en ∈ < such that every

vector can be written in a unique way in the form φ1e1+· · ·+φnen, where φ1, . . . , φn ∈ D
then we say that < is finite dimensional and n is the dimension, dim<, of <.

Right abstract vector space is defined in a similar way, however while for defining left

vector space we were using the multiplication from the left hand-side, for defining right

vector space we will use multiplication from right hand-side.

Definition 2.2. A right vector space <′ over a division ring D is a set <′ equipped

with two operations. The addition

<′ ×<′ → <′,

(x′, y′) 7→ x′ + y′

satisfies

(x′ + y′) + z′ = x′ + (y′ + z′)

and

x′ + y′ = y′ + x′

for all x′, y′, z′ ∈ <′. There exist an element 0 ∈ < such that

x′ + 0 = 0

for all x′ ∈ <′. For all x′ ∈ < there exist an element −x′ ∈ <′ such that

x′ + (−x′) = 0.

The multiplication by scalars

<′ × D→ <′,

(x′, α) 7→ x′α

satisfies

(x′ + y′)α = x′α + y′α,

x′(α + β) = x′α + y′β,

x′(αβ) = (x′α)β

for all α, β ∈ D and for all x′, y′ ∈ <′. There exist an element 1 ∈ D such that

x′1 = x′

for all x′ ∈ <′.
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Definition 2.3. Let <1,<2 be left vector spaces over a division ring D. A map A :

<1 → <2 is left linear, or simply linear if

(x+ y)A = xA+ yA, (αx)A = α(xA)

hold for all x, y ∈ <1 and for all α ∈ D.

In the case of a left linear map, we often denote the image A(x) by xA, if there is

no risk of confusion.

Definition 2.4. Let <′1,<′2 be right vector spaces over a division ring D. A map

A : <′1 → <′2 is right linear, or simply linear if

A(x′ + y′) = Ax′ + Ay′, A(x′α) = Ax′α

hold for all x′, y′ ∈ <′1 and for all α ∈ D.

Definition 2.5. Conjugate space <∗ of a left vector space < is a set of all (left) linear

functionals f : < → D which is equipped with the following two operations.

The addition of the two linear functionals f and g is defined by

(f + g)(x) = f(x) + g(x)

for all x ∈ <. The multiplication of a linear functional f and a scalar φ ∈ D is defined

by

(fφ)(x) = f(x)φ

for all x ∈ <. With these two operations <∗ form a right vector space.

Definition 2.6. The conjugate space (<′)∗ of a right vector space <′ is a set of all

(right) linear functionals f : <′ → D, which is equipped with the following operations.

The addition of the two linear functionals f and g is defined by

(f + g)(y′) = f(y′) + g(y′)

for all y′ ∈ <′. The multiplication of a linear functional f and a scalar φ ∈ D is defined

by

(φf)(y′) = φf(y′)

for all y′ ∈ <′. With these two operations (<′)∗ form a left vector space.
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2.1 Definition of a bilinear form

In this section we study functions, called bilinear that are defined for pairs of vectors

(x, y′), where x is from a left vector space < and y′ is from a right vector space <′. Of

a particular interest are non-degenerate bilinear forms, since they determine a linear

bijective transformation of <′ onto <∗

Definition 2.7. Let <′ be a right vector space over D and let < be a left vector space

over D. Then a map: <×<′ → D is a bilinear form if it satisfies the following properties

g(x1 + x2, y
′) = g(x1, y

′) + g(x2, y
′), (2.1)

g(αx, y′) = αg(x, y′), (2.2)

g(x, y′1 + y′2) = g(x, y′1) + g(x, y′2), (2.3)

g(x, y′α) = g(x, y′)α (2.4)

for all x, x1, x2 ∈ <, for all y′, y1, y2 ∈ <′, and for all α ∈ D.

Let y : <×<′ → D be a bilinear form connecting a left vector space < over D with

a right vector space <′ over D. In the sequel we use x to denote an element from <
and y′ for an element in <′. In this way g(x, y′) ∈ D.

Given a fixed y′ ∈ <′, define the function gy′ : < → D by gy′ = g(x, y′) for all x ∈ <.

By properties (2.1) and (2.2) of the bilinear form g it follows that gy′ ∈ <∗. Moreover,

the map R : <′ → <∗, defined by

R(y′) = gy′ , (2.5)

is (right) linear.

Similarly, given a fixed x ∈ <, define the function gx : <′ → D by gx(y
′) = g(x, y′)

for all y′ ∈ <′. By properties (2.3) and (2.4) of the bilinear form g it follows that

gx ∈ (<′)∗. Moreover, the map L : < → (<′)∗, defined by

L(x) = gx, (2.6)

is (left) linear.
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2.2 Matrices of bilinear forms

Definition 2.8. The matrix of the bilinear form g relative to a given basis (e1, e2, . . . , en)

of a finite dimensional < , and a basis (f ′1, f
′
2, . . . , f

′
n′) of a finite dimensional <′ is

G :=


g(e1, f

′
1) g(e1, f

′
2) . . . g(e1, f

′
n′)

g(e2, f
′
1) g(e2, f

′
2) . . . g(e2, f

′
n′)

...
...

. . .
...

g(en, f
′
1) g(en, f

′
2) . . . g(en, f

′
n′)

 . (2.7)

The value g(x, y′) can be deduced from the representations of x and y and from the

entries of the matrix (2.7). Namely, for arbitrary x ∈ <, y ∈ <′ we can write

x =
n∑
i=1

αiei, y′ =
n′∑
j=1

fjβj.

Consequently

g(x, y′) = g

(
n∑
i=1

αiei,
n′∑
j=1

fjβj

)
=
∑
i,j

αig(ei, fj)βj.

Moreover, if G is any n × n′ matrix whose entries are from a division ring D, then

there exists some bilinear form h which has matrix G as its matrix relative to basis

(e1, e2, . . . , en) of a finite dimensional left vector space < , and basis (f ′1, f
′
2, . . . , f

′
n′) of

a finite dimensional right vector space <′.
We can also choose other basis vectors instead of (e1, e2, . . . , en) and (f ′1, f

′
2, . . . , f

′
n′)

of a vector space< and <′, respectively. We will now consider the effect of changes of

bases in the two spaces, on the matrix G of g(x, y′).

Let (u1, u2, .., un) be another basis of < and (v′1, v
′
2, . . . , v

′
n′) another basis of <′. Then

ui =
∑
µijej and v′k =

∑
f ′lvlk for some scalars µij, vlk ∈ D. Hence

g(ui, v
′
k) = g

(∑
j

µijej,
∑
l

f ′lvlk

)
=
∑
j,l

µijg(ej, f
′
l )vlk.

If M is a matrix with entries µij and V is a matrix with entries vlk, then P := MGV

is the matrix of g relative to basis (µ1, . . . , µn) of a left vector space < and basis

(v′1, . . . , v
′
n′) of a right vector space <′. We say that matrices P and G are equivalent.

Remark 2.9. In the commutative case, where D = F is a field, this relation is often

written in a slightly different form. Namely, in the commutative case the vector spaces

are usually treated as left vector spaces. Therefore, v′k ∈ <′ is represented as v′k =∑
l

vklf
′
l and consequently the matrix P of g relative to basis (µ1, . . . , µn) and basis

(v′1, . . . , v
′
n′) equals MGV T .
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Definition 2.10. Define Mn×n′(D) as the set of all n×n′ matrices with coefficients in

D. Similarly, define GLn(D) as the set of all invertible n×n′ matrices with coefficients

in D.

Let Dn denote the n-dimensional left vector space over D,which is spanned by all

the vectors e1, e2, . . . , en, where ei = (0, . . . , 0, 1, 0, . . . , 0), where 1 is the i− th entry.

Let (Dn′
)′ denote the n’-dimensional right vector space over D, which is spanned by all

vectors f ′1, f
′
2, . . . , f

′
n, where f ′i = (0, . . . , 0, 1, 0, . . . , 0)T , where 1 is i− th entry.

Given a matrix G ∈ Mn×n′(D) with coefficients gij, let the row-rank of G be the

dimension of the subspace in Dn, which is spanned by vectors

n∑
j=1

g1jej,

n∑
j=1

g2jej, . . . ,

n∑
j=1

gnjej.

Similarly, let the column-rank of G be the dimension of the subspace in (Dn′
)′, which

is spanned by vectors
n′∑
i=1

f ′igi1,
n′∑
i=1

f ′igi2, . . . ,
n′∑
i=1

f ′igin′ .

It is well-known that the row-rank of a matrix is the same as its column-rank(cf.

[Theorem 9 on page 51 in [3]). We say that the rank of A is r and write rank(A) = r

if the column-rank/row-rank of A equals r.

Theorem 2.11. (cf. Theorem 4 on page 45 in [3])

Let G ∈Mn×n′(D). Then there exist M ∈ GLn(D) and V ∈ GLn′(D) such that

MGV =

[
Ir 0r,n′−r

0n−r,r 0n−r,n′−r

]
(2.8)

where r = rank(G), Ir is the identity matrix of size r, and 0r,n′−r, 0n−r,r, 0n−r,n′−r are

zero matrices of appropriate forms.

This yields to the result on bilinear forms.

Theorem 2.12. Let g(x, y′) be a bilinear form connecting a left vector space < of

dimension n and a right vector space <′ of dimension n′. Then there exist bases

(u1, u2, .., un), (v′1, v
′
2, .., v

′
n) for these spaces such that

g(ui, v
′
j) = Dij if i, j = 1, 2, . . . , r,

g(ui, v
′
j) = 0 if i > r or j > r.
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Proof. Let G be the matrix of g with respect to some basis (e1, . . . , en) of < and

some basis (f ′1, . . . , f
′
n) of <′. By Theorem 2.11 there exist M = [µij] ∈ GLn(D) and

V = [v′ij] ∈ GLn′(D) such that

MGV =

[
Ir 0r,n′−r

0n−r,r 0n−r,n′−r

]
(2.9)

Moreover, matrix MGV is the matrix of g, with respect to the basis (µ1, . . . , µn) of <

and the basis (v′1, . . . , v
′
n′) of <′, where µi =

n∑
j=1

µijej and vi =
n′∑
i=1

f ′iv
′
ij. The result

follows.

2.3 Non-degenerate forms

Definition 2.13. Let g : <× <′ → D be a bilinear form. Then the subspace

J := {z ∈ <; g(z, y′) = 0 for all y′ ∈ <′}

is the left radical of g.

Definition 2.14. Let g : <× <′ → D be a bilinear form. Then the subspace

J ′ := {y′ ∈ <′; g(z, y′) = 0 for all z ∈ <}

is the right radical of g.

The left radical is obviously the null space of the transformation L, defined in (2.5).

Similarly the right radical is the null space of the linear transformation R, defined in

(2.6).

Definition 2.15. A bilinear form y : < × <′ → D is non-degenerate, if its left and

right radicals are trivial, that is J = {0} and J ′ = {0}.

Theorem 2.16. Let g : <×<′ → D be a bilinear form connecting a finite dimensional

left vector space < and a finite dimensional right vector space <′. Then g is non-

degenerate if and only if the following two conditions are satisfied.

a) Vector spaces < and <′ have the same dimension.

b) The matrix of the bilinear form g relative to any pair of bases is invertible.

If g is non-degenerate, then the linear maps L : < → (<′)∗ and R : <′ → <∗ are

bijective.
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Proof. Let n := dim< and n′ := dim<′.
Assume that g is non-degenerate. Then by definition its left and right radicals are

trivial, that is, the null spaces of the maps L : < → (<′)∗ and R : <′ → <∗ are trivial.

Hence, the maps L and R are injective. Since both radicals are trivial, it follows from

Theorem 2.12 that n = r = n′, where r is the rank of the matrix of g relative to any

pair of basis of < and <′. This proves a) and b). Moreover, since

dim< = n = n′ = dim<′ = dim(<′)∗

and L is linear and injective, it follows that L is also surjective, hence a bijective map.

Since dim<′ = n′ = n = dim< = dim<∗, we similarly deduce that < is bijective as

well.

Assume now that the conditions a), b) hold. By Theorem 2.12 we know that n = r = n′.

Let z ∈ J and let µ1, . . . , µr and v′1, . . . , v
′
r be as in Theorem 2.12. Write z =

r∑
i=1

αiµi

for some αi ∈ D. Then

0 = g(z, v′j) =
r∑
i=1

αig(µi, v
′
j) = αj

for all j. Hence, z = 0, that is J is trivial. Similarly we see that the right radical J ′ is

trivial. Hence, g is non-degenerate.

Definition 2.17. Let < and <′ be left and right vector spaces, respectively. If a left

vector space < and a right vector space <′ are connected by a non-degenerate bilinear

form g, then we say that < and < are dual relative to g.

Let two vector spaces < and <′ be connected by a non-degenerate bilinear form g.

In particular, dim< = dim<′ = n. We say that bases (e1, . . . , en) and (e′1, . . . , e
′
n) of <

and <′, respectively, are complementary if

g(ei, ej) = δij

for all i, j ∈ {1, . . . , n}. That is, the matrix of g relative to these two bases is the

identity matrix In.

Proposition 2.18. Let two vector spaces < and <′ be connected by a non-degenerate

bilinear form g.

a) If (e1, . . . , en) is a basis of <, then there exists a unique basis (e′1, . . . , e
′
n) of <′

such that these two bases are complementary.

b) If (e′1, . . . , e
′
n) is a basis of <′, then there exists a unique basis (e1, . . . , en) of <

such that these two bases are complementary.
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Proof. First we prove the uniqueness in part a). Suppose that (e1, . . . , en), (e′1, . . . , e
′
n)

and (e1, . . . , en), (e′′1, . . . , e
′′
n) are both pairs of complementary bases. For each j write

e′′j =
n∑
i=1

e′ivij for suitable vij ∈ D. If G is the matrix of g relative to bases (e1, . . . , en)

and (e′1, . . . , e
′
n), then GV , where V = (vij), is the matrix of g relative to bases

(e1, . . . , en) and (e′′1, . . . , e
′′
n). Since both G and GV are identity matrices, it follows

that V = In as well. That is vij = δij, hence e′′j = e′j for all j.

Next we prove the existence. Choose an arbitrary basis (f ′1, . . . , f
′
n) of <′. Let G be the

matrix of g relative to bases (e1, . . . , en) and (f ′1, . . . , f
′
n). Let vij be the (i, j)-th entry

of the inverse of G, that is, G−1 = (vij). If we define the basis (e′1, . . . , e
′
n) of <′ by

e′j =
n∑
i=1

f ′ivij for all j ∈ {1, . . . , n}, then the matrix of g relative to bases (e1, . . . , en)

and (e′1, . . . , e
′
n) equals GG−1 = In. Hence, they are complementary.

Statement b) is proved in a similar way.

Definition 2.19. Let < and <′ be left and right vector spaces respectively. Assume

that < and <′ are connected by non-degenerate bilinear form g, that is they are dual

relative to g(x, y′). Let S be a subspace of <. We define j(S) = {y′ ∈ <′ : g(x, y′) = 0

for all x ∈ S}. Then j(S) is a vector subspace in <′. We say that it is incident to S.

Definition 2.20. Let < and <′ be left and right abstract space respectively. Assume

that < and <′ are connected by non-degenerate bilinear form g, that is they are dual

relative to g(x, y′). Let S′ be a subspace of <′. We define j(S′) = {x ∈ < : g(x, y′) = 0

for all y′ ∈ S′}. Then j(S′) is a vector subspace in <. We say that it is incident to

S′.

Proposition 2.21. Let n-dimensional vector spaces < and <′ be dual relative to a

non-degenerate bilinear form g : <×<′ → D. Let S and S′ be two vector subspaces in

< and <′, respectively. Then

dimj(S) = n− dimS

and

dimj(S′) = n− dimS′.

Moreover,

j(j(S)) = S and j(j(S′)) = S′.

Proof. Let r := dimS.

Choose a basis (µ1, . . . , µr) for the subspace S and extend it to a basis (µ1, . . . , µn)

for <. Let (µ′1, . . . , µ
′
n) be the basis of <′, which is complementary to (µ1, . . . , µn).
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In order to prove that j(S) = n − dimS is suffices to show that j(S) is spanned by

vectors µ′r+1, . . . , µ
′
n.

Let y′ =
n∑

j=r+1

µ′jβj for some βr+1, . . . , βn ∈ D. Then

g(µi, y
′) =

n∑
j=r+1

g(µi, µ
′
j)βj =

n∑
j=r+1

δijβj = 0

for all i ∈ {1, . . . , r}. Hence g(x, y′) = 0 for all x ∈ S. That is y′ ∈ j(S). Conversely,

let z′ ∈ j(S). Then

g(µi, z
′) = 0

for all i ∈ {1, . . . , r}. Choose γ1, . . . , γn ∈ D such that z′ =
n∑
j=1

µ′jγj. From the

equations g(µi, z
′) = 0 for all i ∈ {1, . . . , r} we deduce that

0 = g(µi, z
′) =

n∑
j=1

δijγj = γi

for i ∈ {1, . . . , r}. Hence, z′ is in the span of µ′r+1, . . . , µ
′
n. Therefore, this span equals

j(S). Consequently,

dimj(S) = n− r = n− dimS.

Symmetrically we prove that

dimj(S′) = n− dimS′.

Consequently,

dimj(j(S)) = n− dim(j(S)) = n− (n− dimS) = dimS.

If µ ∈ S, then g(µ, y′) = 0 for all y′ ∈ j(S). Therefore µ ∈ j(j(S)), that is, S ⊆
j(j(S)). Since S and j(j(S)) are of the same dimension it follows that S = j(j(S)).

Similarly we prove that j(j(S′)) = S′
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3 Transpose of a linear

transformation relative to a pair of

bilinear forms

Let A : <1 → <2 be a left linear transformation and assume that f ∈ <∗2. Then we

define a map AT : <∗2 → <∗1 by

(ATf)x1 = f(x1A)

for all x1 ∈ <1.

Proposition 3.1. The map AT : <∗2 → <∗1 is right linear.

Proof. Let f, g ∈ <∗2 and x ∈ <1. Then

(AT (f + g))x = (f + g)(xA) = f(xA) + g(xA) = (ATf)x+ (ATg)x = (ATf + ATg)x.

Hence,

AT (f + g) = ATf + ATg.

If α ∈ D, then

(AT (fα))x = (fα)(xA) = f(xA)α = (ATf)xα = (ATfα)x.

Hence,

AT (fα) = ATfα.

Definition 3.2. The linear transformation AT : <∗2 → <∗1 is the transpose of A.

Let <1 be a left vector space and <′1 be the dual to <1 relative to a non-degenerate

bilinear form g1(x1, y
′
1). Let <2 be a left vector space as well and let <′2 be the dual to

<2 relative to a non-degenerate bilinear form g2(x2, y
′
2).

We now define the linear map A′ : <′2 → <′1 as a composition of maps

R2 : <′2 → <∗2,

AT : <∗2 → <∗1,

R−11 : <∗1 → <′1
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where AT is the transpose of A and R1, R2 are defined analogously as the map R(y′) =

gy′ in (2.5). That is A′ = R−11 ATR2. The map A′ defined above is the transpose of A

relative to non-degenerate bilinear forms g1, g2.

Now we will determine the form of a linear map A′. Let y′2 ∈ <′2, since R2 : <′2 → <∗2,
the image of an element y′2 ∈ <′ under the map R2 is the linear function x 7→ g2(x, y

′
2) ∈

<∗2. Now let’s see what happens when we apply ATR2 on an element y′2 ∈ <′2. We

already know what is R2y
′
2, now since AT : <∗2 → <∗1, the image of ATR2y

′
2 is a linear

function f1 ∈ <∗1 such that

(ATR2y
′
2)(x1) = f1(x1) = g2(x1A, y

′
2).

And finally if we apply the linear map A′ on an element y′2 ∈ <′2 we will get the vector

y′1 ∈ <′1 such that

f1(x1) = g2(Ax1, y
′
2) = g1(x1, y

′
1)

Moreover we see from the equation above that y′1 = A′y′2 is unique vector of <1 such

that

g1(x1, A
′y′2) = g2(x1A, y

′
2)

for all x1 ∈ <1. Recall that if a vector space < and a vector space <′ are connected by

a non-degenerate bilinear form then we say that they are dual. Duality is a symmetric

relation. So if A′ is linear transformation from <′2 to <′1, then what is the transpose?

Similarly as before we define a left linear transformation A′′ as a composition of maps

L1 : <1 → (<′1)∗,

A
′T : (<′1)∗ → (<′2)∗,

L−12 : (<′2)∗ → <2

where A
′T is the transpose of A′ and L1, L2 are defined analogously as the map L(x) =

gx in (2.6). That is A′′ = L1A
′TL−12 .

Let x1 ∈ <1. If we apply the map L1 to an element x1, then the image is a linear

function y′1 7→ g1(x1, y
′
1) ∈ (<′1)∗. Further if we apply A

′T we get a linear function

f2 ∈ (<′2)∗ such that f2(y
′
2) = g1(x1, A

′y′2).

Finally if we apply L−12 , we get some vector x2 ∈ <2 such that f2(y
′
2) = g1(x1, A

′y′2) =

g2(x2, y
′
2). Hence we see that x2 = x1A

′′. By substituting we get

g1(x1, A
′y′2) = g2(x1A

′′, y′2)

for all y′2 ∈ <′2. Hence we can see from the equations

g2(x1A, y
′
2) = g1(x1, A

′y′2)
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for all x1 ∈ <1 and

g1(x1, A
′y′2) = g2(x1A

′′, y′2)

for all y′2 ∈ <′2, that if A′ is the transpose of A then A is the transpose of A′. In other

words, A′′ = A. Moreover, A 7→ A′ is a bijective map from L(<1,<2) to L(<′2,<′1),
where L(<1,<2) is the set of left linear transformations from <1 to <2 and L(<′2,<′1)
is the set of right linear transformations from <′2 into <′1.
Now we list the algebraic properties of the map A 7→ A′.

Proposition 3.3. For i ∈ {1, 2, 3} assume that <i and <′i are dual vector spaces

relative a non-degenerate form gi : <i ×<′i → D.

(a) If A,B : <1 → <2 are linear, then

(A+B)′ = B′ + A′,

where X ′ denotes the transpose of X relative to the pair g1, g2.

(b) If A : <1 → <2 and B : <2 → <3 are linear, then

(B ◦ A)′ = A′ ◦B′,

where X ′ denotes the transpose of X relative to the appropriate pair of bilinear

forms.

(c) If <1 = <2, <′1 = <′2, g1 = g2, then the map A 7→ A′ is an anti-isomorphism

between rings L(<1,<1) and L(<′1,<′1).

Proof. (a) Obviously, (A+B)T = AT +BT . Therefore

(A+B)′ = R−11 (A+B)TR2 = R−11 (AT+BT )R2 = R−11 ATR2+R
−1
1 BTR2 = A′+B′.

(b) Since (B ◦ A)T = AT ◦BT it follows that

(B ◦ A)′ = R−11 ◦ (B ◦ A)T ◦R3 = R−11 ◦ AT ◦BTR3 =

= R−11 ◦ AT ◦R2 ◦R−12 BTR3 = A′ ◦B′.

(c) Follows immediately from (a), (b) and the fact that A 7→ A′ is a bijective map.

We will now determine relation between matrix of a linear transformation and a

matrix of its transpose.

Let <1 and <′1 be dual spaces relative to a non-degenerate bilinear form g1. Similarly let
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<2 and <′2 be dual spaces relative to a non-degenerate bilinear form g2. Let A : <1 → <2

be linear map. Let (e1, e2, . . . , en1) be a basis for <1 and let (e′1, e
′
2, . . . , e

′
n) be the

complementary basis in <′1. Let (f1, f2, . . . , fn2) be a basis for <2 and let (f ′1, f
′
2, . . . , f

′
n2

)

be the complementary basis. Suppose

eiA =

n2∑
k=1

αikfk, i = 1, 2, . . . , n1,

A′f ′l =

n1∑
j=1

e′jα
′
jl, l = 1, 2, . . . , n2.

Then the condition

g2(eiA, f
′
l ) = g1(ei, A

′f ′l )

yields the relations αil = α′il for the matrices. Thus if complementary bases are used

in the dual spaces, then the matrices of the transformation and of its transpose are

equal. In particular, rankA′=rankA.

3.1 Another relation between bilinear forms and

linear transformations

Assume that <1 and <′1 are dual spaces relative to a non-degenerate bilinear form g1

and <2 and <′2 are dual spaces relative to a non-degenerate bilinear form g2. Fix a

vector u′ ∈ <′1 and v ∈ <2.

Define a map u′ × v : <1 → <2 by

u′ × v : x 7→ g1(x, u
′)v

In more general case, let u′1, u
′
2, .., u

′
m ∈ <′1 and v1, v2, .., vm ∈ <2, then we define the

mapping

u′1 × v1 + u′2 × v2 + · · ·+ u′m × vm : x 7→ g1(x, u
′
1)v1 + g1(x, u

′
2)v2 + · · ·+ g1(x, u

′
m)vm

Theorem 3.4. Any linear transformation A ∈ L(<1,<2) is of the form

A = u′1 × v1 + u′2 × v2 + . . .+ u′r × vr

for some r ≤min{dim<1, dim<2}.

Remark 3.5. We will denote the range of linear transformation A by A<1.

Proof. Let (v1, . . . , vr) be a basis for the space A<1. Let x ∈ <1. Then xA = φ1v1 +

φ2v2 + · · ·+ φrvr, where φ1, φ2, . . . , φr are unique coefficients from the division ring D.
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Since coefficients are uniquely determined by x we may consider φi as a function of x.

Hence we rewrite xA in the following way

xA = φ1(x)v1 + φ2(x)v2 + · · ·+ φr(x)vr.

Let y ∈ <1. Then

r∑
i=1

φi(x)vi +
r∑
i=1

φi(y)vi = xA+ yA = (x+ y)A =
r∑
i=1

φi(x+ y)vi.

Also take α ∈ D, then

φ1(αx)v1 + · · ·+ φr(αx)vr = (αx)A = α(xA) = αφ1(x)v1 + αφ2(x)v2 + · · ·+ αφr(x)vr.

Thus we have shown that φi(x + y) = φi(x) + φi(y) and that φi(αx) = αφi(x). Hence

φi are linear.

Since g1(x, y
′) is non-degenerate by the assumption, there exist some u′i ∈ <′1, such

that

φi(x) = g1(x, u
′
i)

for all x ∈ <1. Hence

xA = g1(x, u
′
1)v1 + g1(x, u

′
2)v2 + . . . .+ g1(x, u

′
m)vr

and consequently

A = u′1 × v1 + u′2 × v2 + . . .+ u′r × vr.

For u′1, . . . , u
′
m ∈ <′1 and v′1, . . . , vn ∈ <2 we define linear transformation A′ =

u′1 ×′ v1 + . . .+ u′m ×′ vm : <′2 → <′1 by

A′x′ = u′1g2(v1, x
′) + u′2g2(v2, x

′) + ..+ u′mg2(vm, x
′)

for all x′ ∈ <′2.

Theorem 3.6. The linear transformation A′ = u′1×′v1+ . . .+u′m×′vm is the transpose

of A = u′1 × v1 + u′2 × v2 + . . .+ u′m × vm relative to the pair g1, g2.

Proof. Take x ∈ <1 and x′ ∈ <′2, then

g1(x,A
′x′) = g1

(
x,

m∑
i=1

u′ig2(vi, x
′)

)
=

m∑
i=1

g1(x, u
′
i)g2(vi, x

′)

g2(xA, x
′) = g2

(
m∑
i=1

g1(x, ui)vi, x
′

)
=

m∑
i=1

g1(x, u
′
i)g2(vi, x

′)

Hence g1(x,A
′x′) = g2(xA, x

′), as we wanted to show.
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Theorem 3.7. The product × : <′1 ×<2 → L(<1,<2) satisfies

(u′1 + u′2)× v = u′1 × v + u′2 × v,

u′ × (v1 + v2) = u′ × v1 + u′ × v2,

(u′α)× v = u′ × (αv)

for all u′, u′1, u
′
2 ∈ <′1, v, v1, v2 ∈ <2 and α ∈ D.

Proof. The bilinearity of g1 imply that

(u1 + u2)× v = g1(x, (u
′
1 + u′2))v = g1(x, u

′
1)v + g1(x, u

′
2)v = u1 × v + u2 × v,

u′ × (v1 + v2) = g1(x, u
′)(v1 + v2) = g1(x, u

′)v1 + g1(x, u
′)v2 = u′ × v1 + u′ × v2,

u′α× v = g1(x, u
′α)v = g1(x, u

′)αv = u′ × αv.
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4 Scalar products

Definition 4.1. A bijective map f : D→ D such that

f(α + β) = f(α) + f(β)

for all α, β ∈ D and

f(αβ) = f(β)f(α)

for all α, β ∈ D is an anti-automorphism of the division ring D.

Remark 4.2. If D = F is a field, then an anti-automorphism is just an automorphism

f : F→ F of the field.

Let < be a left vector space over a division ring D and <′ be a right vector space

over a division ring D. If a division ring D possesses an anti-automorphism, we have a

possibility of defining a non-degenerate bilinear form connecting a left vector space <
with itself and regarding < as the dual of itself.

Let < be a left vector space over a division ring D and <′ be a right vector space over

a division ring D. Let f be an anti-automorphism and let f−1 be its inverse. Then we

can easily turn a left vector space < into a right vector space if we set

xf(α) = αx

for all x ∈ < and for all α ∈ D. Or in other words xα = f−1(α)x. In the same way we

may also turn a right vector space into a left vector space.

Proposition 4.3. A left vector space < over a division ring D becomes a right vector

space over D if we set

xα = f−1(α)x

for all x ∈ < and for all α ∈ D.

Proof. If x, y ∈ < and α, β ∈ D are arbitrary, then

(x+ y)α = f−1(α)(x+ y) = f−1(α)x+ f−1(α)y = xα + yα,

x(α + β) = f−1(α + β)x = (f−1(α) + f−1(β))x = f−1(α)x+ f−1(β)x = xα + xβ,

and

x(αβ) = f−1(αβ)x = f−1(β)(f−1(α)x) = f−1(β)(xα) = (xα)β.

Moreover, x1 = f−1(1)x = 1x = x for all x ∈ <
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Proposition 4.4. If (e1, . . . , en) is a left basis for a vector space < then it is also a

right basis for <.

Proof. Since (e1, . . . , en) is a left basis of <, each element x ∈ < can be written as

x =
n∑
i=1

ξiei

for some ξi ∈ D. By using the anti-automorphism we deduce that

x =
n∑
i=1

eif(ξi).

Moreover, if
n∑
i=1

eiδi = 0, then
n∑
i=1

f−1(δi)ei = 0. Hence, we deduce that f−1(δi) = 0

and δi = 0.

Definition 4.5. A scalar product is a map g : <× < → D such that

g(x1 + x2, y) = g(x1, y) + g(x2, y),

g(αx, y) = αg(x, y),

g(x, y1 + y2) = g(x, y1) + g(x, y2),

and

g(x, αy) = g(x, y)f(α)

for all x, y, x1, y1, x1, y2 ∈ < and for all α ∈ D.

Definition 4.6. Let (e1, . . . , en) be a basis for a vector space < over a division ring D.

The matrix of the scalar product g relative to (e1, . . . , en) is

G :=


g(e1, e1) g(e1, e2) . . . g(e1, en)

g(e2, e1) g(e2, e2) . . . g(e2, en)
...

...
. . .

...

g(en, e1) g(en, e2) . . . g(en, en)

 . (4.1)

Similarly as before, the value of g(x, y) can be deduced from representation of x and

y and from the entries of a matrix (4.1) defined above. Namely assume that x =
n∑
i=1

ξiei

for some ξi ∈ D and y =
n∑
i=1

βiei for some βi ∈ D. Then

g(x, y) =
∑
i,j

ξig(ei, ej)f(βj).

Conversely, if a basis (e1, . . . , en) for a vector space < is given and a matrix of the

scalar product relative to a given basis is given, we can define a scalar product in <.
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Definition 4.7. Let (f1, . . . , fn) be another basis for a vector space < and suppose

that fi =
n∑
i=1

µijej for some µij ∈ D. Denote M := (µij) ∈ Mn(D). Now if we

regard a vector space < as a right vector space by using an anti-automorphism f then

fi =
n∑
i=1

ejvji, where vji = f(µij).

Thus the matrix connecting the right bases is V = [f(µij)]
T . The matrix V is the

conjugate transpose of a matrix M .

We have seen before that the new matrix of g(x, y) is P := MGV . We say that

matrices P and G are cogredient relative to a given anti-automorphism.

Let < be a vector space. Let S be a subspace of a vector space <. Obviously, the

restriction of the function g : < × < → < to the pairs of vectors of a subspace S is a

scalar product for S.

Definition 4.8. Let < be a vector space, let S1 and S2 be its subspaces. Then

subspaces S1 and S2 are g-equivalent if there exist a bijective linear map U : S1 → S2

such that

g(x1, y1) = g(U(x1), U(y1))

for all x1, y1 ∈ S1.

Theorem 4.9. Let < be a vector subspace and let S1 and S2 be subspaces of a vector

space <. Then subspaces S1 and S2 are g-equivalent if and only if matrices of scalar

products g : S1 ×S1 → D and g : S2 ×S2 → D determined by arbitrary bases in S1

and S2 are cogredient.

Proof. Let < be a vector subspace and let S1 and S2 be subspaces of a vector space

<. Assume that subspaces S1 and S2 are g-equivalent. Let (e1, . . . , en) be a basis for

S1, then by the definition

g(ei, ei) = g(U(ei), U(ej)).

Moreover (U(e1), . . . , U(en)) is a basis for a subspace S2. Hence the matrices of the re-

striction of g relative to these bases are identity matrices. Hence, if we choose arbitrary

bases in g-equivalent subspaces, matrices determined by these bases are cogredient.

Conversely, assume that subspaces S1 and S2 are subspaces such that any matrices

relative to g determined by arbitrary bases are cogredient.

Choose a basis (e1, . . . , en) for a subspace S1 and a basis (f1, . . . , fn) for a subspace

S2 such that

g(ei, ej) = g(fi, fj)
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Let x1, y1 ∈ S1. Then we know that x1 =
n∑
i=1

ξiei for some ξi ∈ D and y1 =
n∑
j=1

γjej

for some γj ∈ D. We have that,

g(x1, y1) =
∑
i,j

ξig(ei, ej)γi =
∑
i,j

ξig(fi, fj)f(γi) = g

(
n∑
i=1

ξifi,

n∑
j=1

γjfj

)
.

Define a linear map U :
n∑
i=1

ξiei →
n∑
j=1

γjfj. Clearly it is a bijective map of S1 onto S2

which satisfies the required properties. Hence subspaces S1 and S are g-equivalent.
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5 Hermitian scalar products

Definition 5.1. An anti-automorphism is involutorial if

f(f(α)) = α

for all α ∈ D. In this case we denote f(α) by α.

Definition 5.2. Let < be a vector space. A scalar product g is hermitian if

g(x, y) = g(x, y)

for all x, y ∈ <.

Definition 5.3. In the case when < is a vector space over a field F and f(α) = α is

the identity map, then a scalar product is symmetric if

g(y, x) = g(x, y).

Theorem 5.4. A scalar product g(x, y) is hermitian if and only if matrices G of a

scalar product are hermitian, that is G = G
T

.

Proof. Let < be a vector space over a division ring D. Let (e1, . . . , en) be a basis for a

vector space <, and let G be a matrix of the scalar product g relative to a given basis.

If the scalar product is hermitian, then

βij = g(ei, ej) = g(ej, ei) = βji

for all i, j, which implies that G = G
T

.

Conversely, we know that x, y ∈ < can be written as x =
n∑
i=1

ξiei for some ξi ∈ D and

y =
n∑
i=1

γiei for some γi ∈ D. Then

g(y, x) =
∑
i,j

γig(ei, ej)ξj =
∑
i,j

γig(ei, ej)ξj

and

g(x, y) =
∑
i,j

ξig(ei, ej)γj =
∑
i,j

γjg(ej, ei)ξi =
∑
i,j

γig(ei, ej)ξj

Hence, g(y, x) = g(x, y).
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Remark 5.5. In a case of a vector space over a field, which is equipped with the identity

map, the scalar product g(x, y) is symmetric if and only if its matricex is symmetric,

that is GT = G.

Definition 5.6. Let g(x, y) be a hermitian product. If g(u, v) = 0 for particular

vectors v, u, then g(v, u) = g(u, v) = 0 and vectors u and v are orthogonal relative to

g.

Definition 5.7. Let < be a vector space and let S be its subspace. Then the subspace

S⊥ := {v ∈ < : g(v, u) = 0 for all u ∈ S}

is the orthogonal complement of S.

Remark 5.8. The subspace S⊥ is not in general a complement of S in the lattice of all

subspaces.

Definition 5.9. Let < be a vector space over a division ring D. Then the subspace

<⊥ = {z ∈ < : g(z, x) = 0 for all x ∈ <}

is the radical of the scalar product g(x, y). The scalar product is non-degenerate if

<⊥ = {0}.

Remark 5.10. In the case of a non-degenerate scalar product, the orthogonal com-

plement S⊥ of S coincides with the space j(S) that was defined for more general

non-degenerate bilinear forms.

Definition 5.11. Let < be a vector space and let S be its subspace. Then S is

isotropic if

S ∩S⊥ 6= {0}.

Remark 5.12. The condition S ∩S⊥ 6= {0} implies that S contains a non-zero vector

u which is isotropic, that is

g(u, u) = 0.

Definition 5.13. Let < be a vector space over a division ring D and let S be its

subspace. A subspace S is totally isotropic if S ⊆ S⊥.

Remark 5.14. If g is non-degenerate and S is non-isotropic subspace, then S ∩S⊥ =

{0} and dimS⊥ = n−dimS. Hence in this case we have a decomposition < = S⊕S⊥.
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5.1 Matrices of hermitian scalar products

Definition 5.15. Let F be a field. If

0 = n = 1 + 1 + · · ·+ 1

then the smallest such n is the characteristic of a field F. We denote it by Char(F).

Definition 5.16. Let g be a symmetric scalar product on a vector space over a field.

The function Q(x) = g(x, x) of a single vector x ∈ < determined by the scalar product

is the quadratic form determined by g.

If a hermitian scalar product is symmetric, that is, D = F is a field and α = α is

the identity map, then in the rest of the chapter we assume that char(F) 6= 2.

Definition 5.17. Let g be a hermitian scalar product. If for an element β ∈ D there

exist a vector u 6= 0 ∈ < such that

g(u, u) = β,

then β ∈ D is represented by the scalar product.

Proposition 5.18. Elements represented by a scalar product are invariant under an

anti-automorphism f .

Proof. If β ∈ D is represented by a scalar product g, then

β = g(u, u) = g(u, u) = β.

Proposition 5.19. Let < be a vector space. If < is not totally isotropic, then there

exist a vector u ∈ < such that u is non-isotropic.

Remark 5.20. The proposition above says that if g(x, y) 6= 0 is a hermitian scalar

product, then there exists an element not equal to 0, which is represented by the scalar

product g(x, y).

Proof. Assume that there does not exist non-zero elements which are represented by

the scalar product, that is

g(u, u) = 0

for all u ∈ <. Then

g(x, y) + g(y, x) = g(x+ y, x+ y)− g(x, x)− g(y, y) = 0
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for all x, y ∈ <. By the assumption g(x, y) is a hermitian scalar product, that is

g(x, y) = g(y, x). Since

g(x, y) + g(y, x) = 0

it follows that g(x, y) = −g(x, y). Now since g(x, y) 6= 0, then there exist vectors

u, v ∈ < such that g(u, v) = ρ 6= 0. If we replace u by ρ−1u and change the notation,

we can suppose that g(u, v) = 1. Consequently,

α = g(u, v)α = αg(u, v) = g(αu, v) = −g(αu, v) = −αg(u, v) = −α.

Since 1 = 1, this implies that the characteristic is two and α = α for all α ∈ D. Hence

an anti-automorphism is the identity mapping and D = F is commutative. However

due to our assumptions we do not consider this case.

Theorem 5.21. Let < be a vector space of dimension n. Let g(x, y) be a hermitian

scalar product, then there exist a basis (u1, . . . , ur, z1, . . . , zn−r) of < such that

g(ui, ui) = βi 6= 0

for i = 1, 2, . . . , r and all other products of pairs of the basis elements equal 0.

Proof. In the case when the hermitian product g = 0 we can take r = 0 and any basis

to be a set of z’s. From now on we will assume g 6= 0. We know from Proposition 5.19

that there exists some vector u1 ∈ < such that g(u1, u1) = β1 6= 0.

Assume that (u1, u2, . . . , uk) are linearly independent vectors such that

g(ui, ui) = βi 6= 0

and g(ui, uu) = 0 whenever i 6= j.

Let Sk be the subspace in < that is spanned by vectors u1, . . . , uk.

Define a linear map Ek : < → Sk by

x 7→
k∑
i=1

g(x, ui)β
−1
i ui.

The map Ek is the identity map on Sk, since Ek(uj) =
k∑
i=1

g(uj, ui)β
−1
i ui = uj. Con-

sequently, E2
k = Ek on Sk. Hence, < = Sk ⊕ Fk(<) for the map FK := I − Ek.

Moreover

g(Ek(x), uj) = g

(
k∑
1

g(x, ui)β
−1
i ui, uj

)
=

=
k∑
1

g(x, ui)β
−1
i g(ui, uj) = g(x, uj).
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Therefore

g(Fk(x), uj) = g((I − Ek)(xk), uj) = g(x, uj)− g(Ek(x), uj) = 0,

which means that the vectors in Fk(<) are orthogonal to each vector in Sk. Conse-

quently Fk(<) ⊆ S⊥k .

Assume firstly that the scalar product g = 0 for all vectors u ∈ Fk(<). Then

choose a basis (z1, . . . , zm) for a subspace Fk(<). Since < = Sk ⊕ Fk(<), then

(u1, u2, . . . , uk, z1, . . . , zm) is a basis for <. And hence this is a basis that we wanted to

find, as Fk(<) ⊆ Sk.

If the scalar product g 6= 0 in Fk(<), then we can find a vector uk+1 ∈ Fk(<) such that

g(uk+1, uk+1) = βk+1 6= 0. This implies that (u1, . . . , uk+1) are linearly independent vec-

tors and since uk+1 ∈ Fk(<) and vectors in Fk(<) are orthogonal to ui, i ∈ (1, . . . , k),

the new set (u1, . . . , uk+1) satisfies the same conditions as (u1, . . . , uk). The process

can be repeated to find a required basis for a vector space <.

Remark 5.22. In Theorem 5.21, any vector ui can be replaced by γiui, where γi 6= 0.

Namely, if β′i := γiβiγi, then we get g(γiui, γiui) = γiβif(γi) = β′i.
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6 Symmetric and hermitian scalar

products over special division rings

In this chapter we will consider the special case of the cogredience problem. In par-

ticular we will discuss conditions for cogredience of diagonal matrices. First we will

specialize the result from the preceding section to the case when a vector space < is

over a field F and α = α is the identity map.

Recall that Mn×n(F) denotes the set of all n× n matrices with coefficients in F.

Definition 6.1. Let F be a field. Denote F[x] is the ring of polynomials in the variable

x with coefficients in F. If F contains a root for every non-constant polynomial in F[x],

then a field F is algebraically closed.

Theorem 6.2. Let F be algebraically closed field such that Char(F) 6= 2. Then any

two symmetric matrices in Mn×n(F) are cogredient if and only if they have the same

rank.

Proof. Let g(x, y) be a symmetric scalar product. Let (u1, . . . , un) be a basis such that

g(ui, uj) = δijβi

where βi 6= 0 for i ∈ {1, . . . , r}. Hence r is the rank of the matrix
β1 0 . . . 0

0 β2 . . . 0
...

...
. . .

...

0 0 . . . βn

 (6.1)

of the symmetric scalar product g(x, y). Since we can take any element βi 6= 0 that is

represented by a scalar product, r is is the rank of any matrix of the symmetric scalar

product. Denote vi := γiui. As we have seen in the last Remark of the preceding

chapter we can substitute each vector ui by vi = γiui, where γi 6= 0. Hence (v1, . . . , vn)

form another basis and the matrix determined by this basis is
β′1 0 . . . 0

0 β′2 . . . 0
...

...
. . .

...

0 0 . . . β′n

 (6.2)
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where βi = γiβiγi. However now < is a vector space over a field F, and α = α is the

identity map. Hence β′i = γ2i βi. Since F is algebraically closed, every element in F is a

square. Hence, for each i ≤ r there exists γi ∈ F such that γ2i = 1
βi
. Hence our matrix

in Equation (6.2) becomes a matrix which looks as follows[
Ir 0r,n−r

0n−r,r 0n−r,n−r

]
. (6.3)

LetG is any symmetric matrix, thenG can be used to define a symmetric scalar product

in < over the field F. The matrices of this scalar product constitute the cogredience class

determined by the matrix G. Hence any symmetric matrix G ∈Mn×n(F) is cogrediente

to a matrix of the form (6.3). And obviously matrix in Eq 6.3 is completely determined

by the rank of G.

6.1 Case F = R

Let a field F be the field of real numbers, that is F = R. Let (u1, . . . , un) be vectors

such that

βi > 0

for i = 1, . . . , p and

βj < 0

for j = p + 1, . . . , r, here, p ∈ {0, 1, . . . , r}. Define γi = 1√
βi

for i ≤ p and γj = 1√
−βj

for p < j ≤ r.

The matrix of g with respect to the basis (v1, . . . , vr, ur+1, . . . , un), where vi = γiµi,

equals Ip 0r−p 0n−r

0p Ir−p 0n−r

0p 0r−p 0n−r

 (6.4)

Hence any real symmetric matrix is cogredint to a matrix of the form (6.4).

Definition 6.3. The signature of a diagonal matrix is the difference 2p − r between

the number of positive elements and the number of negative elements on the diagonal

of matrix (6.1).

Proposition 6.4. Recall that if < is a vector space and S1,S2 are its vector subspaces,

then

dim(S1 ∩S2) = dimS1 + dimS2 − dim(S1 + S2).
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Theorem 6.5 (Sylvester). Let < be a vector space over F = R and let α = α be the

identity map. Let 
β1 0 . . . 0

0 β2 . . . 0
...

...
. . .

...

0 0 . . . βn

 (6.5)

and 
β′1 0 . . . 0

0 β′2 . . . 0
...

...
. . .

...

0 0 . . . β′n

 (6.6)

be matrices that are cogredient in Mn×n(F). Let p be the number of positive βi in the

matrix (6.5) and let p′ be the numbet of positive β′i in the matrix (6.6). Then p = p′.

Proof. Let (u1, . . . , un) be a basis relative to which the matrix of g(x, y) is the matrix

(6.5) and let (v1, . . . , vn) be a basis relative to which the matrix of g(x, y) is the matrix

(6.6). We may assume that

β1, . . . , βp > 0,

βp+1, . . . , βr < 0,

βr+1, . . . , βn = 0.

And similarly

β′1, . . . , β
′
p′ > 0,

β′p′+1, . . . , β
′
r < 0,

β′r+1, . . . , β
′
n = 0.

Hence the radical of the vector space < is the set <⊥ = [ur+1, . . . , un] = [vr+1, . . . , vn],

where [x1, . . . , xk] denotes the subspace that is spanned by vectors x1, . . . , xk. Define

<+ = [u1, . . . , up],

<− = [up+1, . . . , ur],

S+ = [v1, . . . , vp′ ],

S− = [vp′+1, . . . , vr].

Let y ∈ <+ +<⊥. Then y =

p∑
i=1

ηiui+
n∑

j=r+1

ηjuj for some η1, . . . , ηn ∈ R. Consequntly,

g(y, y) = g

(
p∑
i=1

ηiui +
n∑

j=r+1

ηjuj,

p∑
i=1

ηiui +
n∑

j=r+1

ηjuj

)
=

p∑
i=1

η2i βi.
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By the assumption βi > 0 for i ∈ {1, . . . , p}. Hence g(y, y) ≥ 0 and g(y, y) =

p∑
i=1

η2i βi =

0 if and only if ηi = 0 for i ∈ {1, . . . , p}. Hence g(y, y) ≥ 0 and g(y, y) =

p∑
1

η2βi = 0

only if y ∈ <⊥. A similar observation holds for vectors in S+ + <⊥.

On the other side, the same argument shows that if y ∈ S− + <⊥ or y ∈ <− + <⊥,

then g(y, y) ≤ 0 and g(y, y) = 0 only if y ∈ <⊥.

Now let y ∈ (<+ + <⊥) ∩ (S− + <⊥). Then g(y, y) ≥ 0 and g(y, y) ≤ 0, which implies

that g(y, y) = 0 and hence y ∈ <⊥. Consequntly,

(<+ + <⊥) ∩ (S− + <⊥) = <⊥. (6.7)

By Proposition 6.4.

dim(S1 ∩S2) = dimS1 + dimS2 − dim(S1 + S2) ≥ dimS1 + dimS2 − n.

By (6.7) we get that

n− r ≥ p+ (n− r) + (r − p′) + (n− r)− n.

Hence we get that p− p′ ≤ 0, so p ≤ p′.

Similarly, by

(<− + <⊥) ∩ (S+ + <⊥) = <⊥

we get p′ ≤ p and hence p = p′.

The content of Section 6.1 is summarized in Thereom 6.6.

Theorem 6.6. Two real symmetric matrices of the same size are cogredient if and

only if they have the same rank and the same signature.

6.2 Case F = C

We will assume in this subsection that a vector space < is over a field C. We will also

assume that an anti-automorphism f : C→ C the a map

α 7→ α

for all α ∈ C, where α is the complex conjugate. Let g(x, y) be a hermitian scalar

product in a vector space < over a field of complex numbers. Then

g(u, u) = g(u, u) ∈ R
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for any u ∈ <.

Let (u1, . . . , un) be a basis such that

g(ui, ui) = βi 6= 0

for i = 1, 2, . . . , r and all other products equals 0. Then βi ∈ R for all i. If we replace

ui by v := γiui, where γi 6= 0, then g(γiui, γiui) = γiβiγi = |γi|2βi. Hence a vector

space < has a basis relative to which the matrix of g has the formIp 0r−p 0n−r

0p Ir−p 0n−r

0p 0r−p 0n−r


Theorems 6.7. and 6.8. are proved essentially in the same way as Theorem 6.5 and

6.6., respectively.

Theorem 6.7. Let < be a vector space over F = C and let α = α be the complex

conjugation. Let

B =


β1 0 . . . 0

0 β2 . . . 0
...

...
. . .

...

0 0 . . . βn

 (6.8)

and

B′ =


β′1 0 . . . 0

0 β′2 . . . 0
...

...
. . .

...

0 0 . . . β′n

 (6.9)

be matrices that are cogredient in Mn×n(C),that is there exist an invertible matrix

M ∈Mn×n(C) such that

B′ = MBMT

Let p be the number of positive βi in the matrix (6.8) and let p′ be the numbet of positive

β′i in the matrix (6.9). Then p = p′.

Theorem 6.8. Two complex hermitian matrices of the same size are cogredient rela-

tive to the complex conjugation if and only if they have the same rank and the same

signature.
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7 Alternate scalar products

Definition 7.1. Let < be a vector space. Let g(x, y) be a scalar product. Then g(x, y)

is a skew-symmetric scalar product if

g(x, y) = −g(y, x)

for all x, y ∈ <.

Proposition 7.2. Let < be a vector space. Assume that g 6= 0 is a skew symmetric

scalar product. Then α = α is the identity map and vector space < is over a field

D = F.

Proof. Assume that g 6= 0 is a skew symmetric scalar product then we know that

g(x, y) = −g(y, x)

For all x, y ∈ <. Since g 6= 0 there exist vectors u, v ∈ < such that g(u, v) = β 6= 0. If

we replace u by β−1u and change the notation, then we can suppose that g(u, v) = 1.

Then for any α ∈ D we have that

α = αg(u, v) = g(αu, v) = −g(v, αu) = −g(v, u)α = α.

Consequently, αβ = αβ = βα = βα. Hence, D is a field.

If a scalar product g(x, y) is skew-symmetric then g(x, x) = −g(x, x) for all x ∈ <.

If Char(F) 6= 2, then we deduce that g(x, x) = 0 for all x ∈ <

Definition 7.3. Let < be a vector space. A scalar product g(x, y) alternate if

g(x, x) = 0

for all x ∈ <.

Proposition 7.4. Let < be a vector space. Let g(x, y) be alternate then g(x, y) is skew

symmetric.

Proof. Assume that g(x, y) is alternate scalar product, then we know that

g(u, u) = 0
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for all u ∈ <. Consequently,

g(x, y) + g(y, x) = g(x+ y, x+ y)− g(x, x)− g(y, y) = 0.

Hence g(x, y) + g(y, x) = 0, which implies that g(x, y) = −g(y, x).

Theorem 7.5. Let < be a vector space. Let g(x, y) be an alternate scalar product, then

there exist a basis for < such that the matrix relative to this basis has the form

S =



J1 . . . 0 . . . 0
...

. . .
...

. . .

0 . . . Jr . . . 0
...

. . .
...

. . .

0 . . . 0 . . . 0


where J1, . . . , Jr are r blocks of the form

Ji =

[
0 1

−1 0

]
.

Proof. Let g(x, y) be an alternate scalar product such that g(x, y) is not identically 0.

That is, there exist u, v ∈ < such that

g(u, v) 6= 0.

Replace v by a suitable multiple of v, say v1 := g(u, v)−1v. Then we obtain u1 = u

and v1 such that g(u1, v1) = 1. Since by Proposition 7.4 we know that g(x, y) is skew

symmetric, it follows that g(v1, u1) = −1. Hence u1, v1 are linearly independent.

Assume that u1, v1, . . . , uk, vk are k pairs of linearly independent vectors such that

g(ui, vi) = 1, g(vi, ui) = −1

and all other products among these 2k vectors are equal to 0.

Denote Sk = [u1, v1, . . . , uk, vk]. Define a linear map Ek : < → Sk such that

x 7→
k∑
i=1

g(x, vi)ui −
k∑
i=1

g(x, ui)vi

for all x ∈ <. Then

Ek(uj) =
k∑
i=1

g(uj, vi)ui −
k∑
i=1

g(uj, ui)vi = uj

and

Ek(vj) =
k∑
i=1

g(vj, vi)ui −
k∑
i=1

g(vj, ui)vi = −vj
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for all j ∈ {1, . . . , k}. Hence Ek maps as the identity on Sk and E2
k = Ek.

Define Fk = 1− Ek. Then < = Sk ⊕ Fk(<).

Also we have that

(Ek(x), uj) = g

(
k∑
i=1

g(x, vi)ui −
k∑
i=1

g(x, ui)vi, uj

)

= g

(
k∑
i=1

g(x, vi)ui, uj

)
− g

(
k∑
i=1

g(x, ui)vi, uj

)
=

=
k∑
i=1

g(x, vi)g(ui, uj)−
k∑
i=1

g(x, ui)g(vi, uj) = g(x, uj).

Similarly we get that

g(Ek(x), vi) = g(x, vi).

Consequently,

g(Fk(x), ui) = g((I − Ek)(x), ui) = g(x, ui)− g(x, ui) = 0

And similarly

g(Fk(x), vi) = 0.

Hence we see that Fk(<) ⊆ S⊥k .

The alternate scalar product g(x, y) is either equal to 0 in the space Fk(<) or we can

choose a pair of vectors uk+1, vk+1 such that

g(uk+1, vk+1) = 1 = −g(uk+1, vk+1)

Since Sk ∩ Fk(<) = {0}, then (u1, v1, . . . , uk+1, vk+1) is a linearly independent set and

since last two vectors uk+1, vk+1 are in Fk(<), it follows that they are orthogonal to

the preceding ones. Hence this set of 2(k + 1) vectors satisfies the same conditions as

the set (u1, v1, . . . , uk, vk). Hence we either span the whole space or obtain the space

Fr(<) in which g = 0.

In the latter case we choose any basis, say (z2r+1, . . . , zn), for the space Fr(<). Clearly

the matrix of the alternate scalar product g(x, y) relative to the basis

(u1, v1, . . . , ur, vr, z2r+1, z2r+2, . . . , zn)

is matrix of the form

S =



J1 . . . 0 . . . 0
...

. . .
...

. . .

0 . . . Jr . . . 0
...

. . .
...

. . .

0 . . . 0 . . . 0


,
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Let g(x, y) be an alternate scalar product. The matrices A = [aij] of an alternate

scalar product g(x, y) are alternate, that is

AT = −A

and aii = 0 for i ∈ {1, . . . , n}.
From Theorem 7.5 we immediately deduce Propositions 7.6 and 7.7.

Proposition 7.6. The rank of an alternate matrix with elements in a field is even.

Proposition 7.7. Two alternate matrices A1, A2 ∈Mn×n(F) are cogredient if and only

if their ranks are equal.
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8 Witt’s theorem

If β ∈ D satisfies β = β, then we say that β is a hermitian element. In this section we

will assume that the anti-automorphism α→ α satisfies the following condition.

Axiom. The equation ξ + ξ = β has a solution for every hermitian element β ∈ D.

In the case Char(D) 6= 2 we can take ξ = β
2

and the Axiom is automatically

satisfied.

In the case Char(D) = 2 the axiom is satisfied if, for example, there exist an element

γ ∈ C(D) such that γ 6= γ, where C(D) is the center of a division ring D. Then

δ = γ + γ 6= 0 ∈ C(D). Hence if ξ = βγδ−1, then

ξ + ξ = βγδ−1 + βγδ−1 = βδ−1(γ + γ) = β.

The case when D = F is a field and Char(F) = 2, α = α is ruled out by the axiom,

since in that case ξ + ξ = 0, while β need not to be equal to 0.

Let < be a vector space over a division ring D. Let g(x, y) be a non-degenerate hermitian

scalar product relative to the anti-automorphism α→ α.

Theorem 8.1 (Witt’s theorem). Let < be a vector space and let S1,S2 be its subspaces.

If S1 and S are non-isotropic and g-equivalent,then S⊥1 and S⊥2 are g-equivalent.

Proof. The claim is trivial if g(x, y) = 0 for all x, y. Hence, we may assume that g 6= 0.

Step 1 First we show that the claim in Witt’s theorem is true if dimS1 = 1 and

dim< = 2.

Since S1 is non-isotropic it follows that S1 = [u1] for some vector u1 such that

g(u1, u1) =: α 6= 0.

Moreover,

< = [u1]⊕ [u1]
⊥.

Since dim< = 2, it follows that dim[u1]
⊥ = 1, that is, [u1]

⊥ = [v1] for some vector v1.

Denote g(v1, v1) =: β1. Clearly g(u1, v1) = 0 = g(v1, u1).

By the assumption, S1 and S2 are g-equivalent, that is, there is a linear bijection

U : S1 → S2

such that

g(U(u1), U(u1)) = g(u1, u1).
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Now ,

S2 = U(S1) = U([u1]) = [U(u1)].

As above we see that

< = [U(u1)]⊕ [U(u1)]
⊥ and [U(u1)]

⊥ = [v2]

for some vector v2. Let u2 := U(u1) then

g(u2, u2) = g(U(u1), U(u1)) = g(u1, u1) = α.

Obviously g(u2, v2) = 0 = g(v2, u2). Denote β2 := g(v2, v2). The matrix of g in basis

(u1, v1) equals [
g(u1, u1) g(u1, v1)

g(v1, u1) g(v1, v1)

]
=

[
α 0

0 β1

]
.

The matrix of g in basis (u2, v2) equals[
g(u2, u2) g(u2, v2)

g(v2, u2) g(v2, v2)

]
=

[
α 0

0 β2

]
.

By the change of basis described in Chapter 4, we know that there exist an invertible

matrix [
µ11 µ12

µ21 µ22

]
such that [

α 0

0 β1

]
=

[
µ11 µ12

µ21 µ22

][
α 0

0 β2

][
µ11 µ12

µ21 µ22

]
.

We want to prove that

S⊥1 = [v1] and S⊥2 = [v2]

are g-equivalent. That is, we want to find a linear bijection

V : [v1]→ [v2]

such that

g(V (v1), V (v1)) = g(v1, v1). (8.1)

Clearly, any linear map V : [v1]→ [v2] is of the form V (v1) = εv2 for some scalar ε. It

is bijective if and only if ε 6= 0. The condition (8.1) tansforms into

εβ2ε = εg(v2, v2)ε = g(εv2, εv2) = g(V (v1), V (v1)) = g(v1, v1) = β1.

Therefore we want to find ε ∈ D such that

εβ2ε = β1
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or equivalently, we want to find η ∈ D such that

β2 = ηβ1η.

In the case when D = F is commutative β2 = det(M)β1det(M
T ) and hence elements

β1 and β2 are cogredient.

In the case when D is not commutative we have the conditions

µ11αµ11 + µ12β1µ12 = α (8.2)

µ11αµ21 + µ12β1µ22 = 0 = µ21αµ11 + µ22β1µ12 (8.3)

µ21αµ21 + µ22β1µ22 = β2 (8.4)

Assume that µ11 = 0. Since M is invertible, it follows that µ12 6= 0. Consequently,

(8.3) implies that µ22 = 0. Hence by (8.4) we get that

β2 = µ21αµ21.

By (8.2) we get that

µ12β1µ12 = α.

This implies that β1 and β2 are cogredient.

Now assume that µ11 6= 0 then by (8.3) we get that

αµ21 = −µ−111 µ12β1µ22,

µ21 = −µ22β1µ12µ
−1
11 α

−1.

Consequently, by (8.4) we get that

µ22(β1µ12µ
−1
11 α

−1µ−111 µ12β1 + β1)µ22 = β2.

Thus β2 is cogredient to (β1µ12µ
−1
11 α

−1µ−111 µ12β1 + β1). Now we want to show that β1

is cogredient to (β1µ12µ
−1
11 α

−1µ−111 µ12β1 + β1). We want to find ξ such that

(1 + β1µ12ξµ12)β1(1 + µ12ξµ12β1) = (β1µ12µ
−1
11 α

−1µ−111 µ12β1 + β1),

which will be satisfied if ξ + ξ + ξµ12β1µ12ξ = (µ11αµ11)
−1. From (8.2) we deduce that

α− µ11αµ11 = µ12β1µ12, and therefore

ξ + ξ + ξ(α− µ11αµ11)ξ = (µ11αµ11)
−1. (8.5)

Assume firstly that µ11 = 1. Then (8.5) transforms into

ξ + ξ = (µ11αµ11)
−1,
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which is solvable by the Axiom.

If µ11 6= 1 then substitute ξ by η−1 and multiply on the left by η and on the right by

η to get

η + η + (α− µ11αµ11) = η(µ11αµ11)
−1η. (8.6)

Next we substite η = ζ + µ11αµ11 and obtain

ζ(µ11αµ11)
−1ζ = α.

We see that the equation above is satisfied by ζ = −αµ11. Hence since we made a

substitution η = ζ + µ11αµ11 implies that (8.6) is satisfied by η = αµ11(µ11− 1). Then

ξ = η−1 satisfies (8.5). Hence this shows that β1 and β2 are cogredient.

Step 2 We show that the claim in Witt’s theorem is true if dimS1 = 1 and dim< <∞
is arbitrary.

As in Step 1 we have

< = [u1]⊕ [u1]
⊥ with g(u1, u1) 6= 0

and

< = [u2]⊕ [u2]
⊥,

where u2 := U(u1) and U : [u1]→ [u2] is the linear bijection such that

g(U(u1), U(u1)) = g(u1, u1)

that is

g(u2, u2) = g(u1, u1).

In the notation above, we have S1 = [u1] and S2 = [u2].

We split the proof of step 2 into 3 cases.

Case 1. Let dim[u1, u2] = 1.

Then u2 = λu1 for some λ ∈ D. Consequently [u1]
⊥ = [u2]

⊥. Hence, the identity map

I : S⊥1 = [u1]
⊥ → S⊥2 = [u2]

⊥

is the required map that induces the g-equivalence between S⊥1 and S⊥2 .

Case 2. Let dim[u1, u2] = 2 and assume that [u1, u2] is non isotropic. Then

< = [u1, u2]⊕ [u1, u2]
⊥.

We claim that

[u1, u2] = [u1]⊕
(
[u1, u2] ∩ [u1]

⊥) .
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Since [u1] ∩ [u1]
⊥ = {0} it follows that [u1] ∩

(
[u1, u2] ∩ [u1]

⊥) = {0}. Obviously,

[u1] ⊆ [u1, u2] and

[u1, u2] ∩ [u1]
⊥ ⊆ [u1, u2].

Consequently,

[u1]⊕
(
[u1, u2] ∩ [u1]

⊥) ⊆ [u1, u2].

Let x ∈ [u1, u2] ⊆ < be arbitrary. Since < = [u1]⊕ [u1]
⊥, x can be written in a unique

way as x = w + z, where w ∈ [u1] and z ∈ [u1]
⊥. Clearly, z = x − w ∈ [u1, u2].

Therefore z ∈ [u1]
⊥ ∩ [u1, u2] and x ∈ [u1]⊕

(
[u1, u2] ∩ [u1]

⊥) .
Therefore

[u1, u2] ⊆ [u1]⊕
(
[u1, u2] ∩ [u1]

⊥)
that is

[u1, u2] = [u1]⊕
(
[u1, u2] ∩ [u1]

⊥) ,
as claimed.

Similarly we see that

[u1, u2] = [u2]⊕
(
[u1, u2] ∩ [u2]

⊥) .
Since S1 = [u1] and S2 = [u2] are g-equivalent and dim[u1, u2] = 2, it follows that

their orthogonal complements in [u1, u2], that is [u1, u2]∩ [u1]
⊥ and [u1, u2]∩ [u2]

⊥ are g-

equivalent. Hence, there exist a linear bijective map U : [u1, u2]∩[u1]
⊥ → [u1, u2]∩[u2]

⊥

such that

g(U(x), U(y)) = g(x, y) for all x, y ∈ [u1, u2] ∩ [u1]
⊥.

Next we claim that

[u1]
⊥ =

(
[u1, u2] ∩ [u1]

⊥)⊕ [u1, u2]
⊥

Obviously,

[u1, u2] ∩ [u1]
⊥ ⊆ [u1]

⊥

and

[u1, u2]
⊥ ⊆ [u1]

⊥

Hence, (
[u1, u2] ∩ [u1]

⊥)⊕ [u1, u2]
⊥ ⊆ [u1]

⊥

Let x ∈ [u1]
⊥ ⊆ < = [u1, u2] ⊕ [u1, u2]

⊥. Then there are y ∈ [u1, u2] and t ∈ [u1, u2]
⊥

such that x = y + t. Since x ∈ [u1]
⊥, we have

0 = g(u1, x) = g(u1, y) + g(u1, t) = g(u1, y).

Therefore

y ∈ [u1]
⊥, that is y ∈ [u1, u2] ∩ [u1]

⊥.
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Consequently,

x = y + t ∈
(
[u1, u2] ∩ [u1]

⊥)⊕ [u1, u2]
⊥,

that is,

[u1]
⊥ ⊆

(
[u1, u2] ∩ [u1]

⊥)⊕ [u1, u2]
⊥

which yields the equality

[u1]
⊥ =

(
[u1, u2] ∩ [u1]

⊥)⊕ [u1, u2]
⊥.

Similarly we see that

[u2]
⊥ =

(
[u1, u2] ∩ [u2]

⊥)⊕ [u1, u2]
⊥.

Finally, we construct a map

V : [u1]
⊥ → [u2]

⊥

with the required properties. Each x ∈ [u1]
⊥ can be uniquely written as x = y + t,

where y ∈
(
[u1, u2] ∩ [u1]

⊥) and t ∈ [u1, u2]
⊥. We define V (x) := U(y) + t. Obviously,

V is linear and bijective.

Moreover, if x′ ∈ [u1]
⊥ and x′ = y′ + t′ is its unique decomposition, then

g(V (x), V (x′)) = g(U(y) + t, U(y′) + t′) = g(U(y), U(y′)) + g(U(y), t′)+

g(t, U(y′)) + g(t, t′) = g(y, y′) + g(t, t′) = g(y, t′) + g(t, y′)+

g(y, y) + g(t, t′) = g(y + t, y′ + t′) = g(x, x′).

Consequently, the map V is the g-equivalence between [u1]
⊥ and [u2]

⊥, which ends the

proof of case 2.

Case 3. Let dim[u1, u2] = 2 and assume that [u1, u2] is isotropic.

Since [u1, u2] is isotropic, then exists

0 6= w ∈ [u1, u2] ∩ [u1, u2]
⊥.

In particular, g(w, u1) = 0 = g(w, u2) and g(w,w) = 0. Since g(u1, u1) 6= 0, it follow

that u1 and w are linearly independent. Since g 6= 0 then exists t ∈ < such that

g(w, t) 6= 0. Consequntly, [u1, u2, t] is a 3-dimensional space and (w, u1, t) is its basis.

We claim that

[u1, u2, t] = [w, u1, t]

is not isotropic. Suppose that

x ∈ [w, u1, t] ∩ [w, u1, t]
⊥.

Then x = αw + βu1 + γt for some α, β, γ ∈ D and

0 = g(x,w) = αg(w,w) + βg(u1, w) + γg(t, w) = γg(t, w)
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0 = g(x, u1) = αg(w, u1) + βg(u1, u1) + γg(t, u1) = βg(u1, u1) + γg(t, u1)

0 = g(x, t) = αg(w, t) + βg(u1, t) + γg(t, t)

Since g(t, w),g(u1, u1),g(w, t) are all nonzero, we deduce that α, β, γ are all zero, that

is x = 0. Hence [u1, u2, t] is not isotropic.

Consequently,

< = [u1, u2, t]⊕ [u1, u2, t]
⊥.

We can now prove that

[u1, u2, t] = [u1]⊕
(
[u1, u2, t] ∩ [u1]

⊥) (8.7)

[u1, u2, t] = [u2]⊕
(
[u1, u2, t] ∩ [u2]

⊥) (8.8)

[u1]
⊥ =

(
[u1, u2, t] ∩ [u1]

⊥)⊕ [u1, u2, t]
⊥ (8.9)

[u2]
⊥ =

(
[u1, u2, t] ∩ [u2]

⊥)⊕ [u1, u2, t]
⊥ (8.10)

In an analagous way as the the corresponding statements in Case 2. Moreover, from

(8.7) and (8.8) it follows that dim([u1, u2, t] ∩ [u1]
⊥) = 2 = dim([u1, u2, t] ∩ [u2]

⊥).

Hence if we find a g-equivalence

U : [u1, u2, t] ∩ [u1]
⊥ → [u1, u2, t] ∩ [u2]

⊥,

then the map V : [u1]
⊥ → [u2]

⊥, defined by, V (x) := U(y) + z, where x = y + z is the

decomposition with respect to (8.9) is the required g-equivalence, similarly as in Case

2.

Recall that w ∈ [u1, u2, t] ∩ [u1]
⊥ and w ∈ [u1, u2, t] ∩ [u2]

⊥. Define

α1 := −g(t, w)−1g(t, u1)g(u1, u1)
−1,

β1 := g(t, w)−1,

q1 := α1u1 + β1t ∈ [u1, u2, t].

Then

g(q1, u1) = α1g(u1, u1) + β1g(t, u1) =

−g(t, w)−1g(t, u1)g(u1, u1)
−1g(u1, u1) + g(t, w)−1g(t, u1) = 0

Consequntly,

q1 ∈ [u1, u2, t] ∩ [u1]
⊥.

Moreover, g(q1, w) = α1g(u1, w) = β1g(t, w) = β1g(t, w) = 1 and therefore g(w, q1) = 1.

By Axiom there exists λ1 ∈ D such that λ+ λ = −g(q1, q1).



Baghirova N. Witt’s Theorem.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 43

Define z1 := q1 + λ1w. Then z1 ∈ [u1, u2, t] ∩ [u1]
⊥. Moreover,

g(z1, w) = g(q1, w) + λ1g(w,w) = g(q1, w) = 1,

g(w, z1) = g(z1, w) = 1,

g(z1, z1) = g(q1, q1) + g(q1, w)λ1 + λ1g(w, q1) + λ1g(w,w)λ1 =

g(q1, q1) + λ1 + λ1 = 0.

In particular, we see that w and z1 are linearly independent. Hence (w, z1) is a basis

of [u1, u2, t] ∩ [u1]
⊥ such that the matrix of g in [u1, u2, t] ∩ [u1] ⊥ equals[

g(w,w) g(w, z1)

g(z1, w) g(z1, z1)

]
=

[
0 1

1 0

]
.

In the same way we construct vector z2 such that (w, z2) is a basis of [u1, u2, t] ∩ [u2]
⊥

with the property that g in [u1, u2, t] ∩ [u2]
⊥ has matrix[

g(w,w) g(w, z2)

g(z2, w) g(z2, z2)

]
=

[
0 1

1 0

]
.

Define the map

U : [u1, u2, t] ∩ [u1]
⊥ = [w, z1]→ [u1, u2, t] ∩ [u2]

⊥ = [w, z2]

by

U(αw + βz1) := αw + βz2.

Obviously, it is linear and bijective. Moreover,

g(U(αw + βz1), U(α′w + β′z1) = g(αw + βz2, α
′w + β′z1)) =

αg(w,w)α′ + αg(w, z2)β′ + βg(z2, w)α′ + βg(z2, z2)β′ =

αg(w,w)α′ + αg(w, z1)β′ + βg(z1, w)α′ + βg(z1, z1)β′

= g(αw + βz1, α
′w + β′z1).

Hence, U is g-equivalence. This end the proof of Case 3 and the proof of Step 2.

Step 3 In this step we show that, the claim in Witt’s theorem is true in general case.

We prove Step 3 by applying the induction on dimS1. If dimS1 = 1, then the claim

of Witt’s theorem is true by Step 2. Suppose that the claim is true for spaces of

dimension ≤ k. Let dimS1 = k+ 1. By proposition 5.19 there exist u1 ∈ S1 such that

g(u1, u1) 6= 0. That is, [u1] is not isotropic. Hence

< = [u1]⊕ [u1]
⊥. (8.11)
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Consecuently,

S1 = [u1]⊕ U1, (8.12)

where U1 ⊆ [u1]
⊥. Moreover, (8.11), (8.12) and the fact that < = S1 ⊕S⊥1 imply that

[u1]
⊥ = U1 ⊕S⊥1 .

Let V : S1 → S2 be the g-equivalence that exists by the assumption. Define u2 :=

V (u1) and U2 := V (U1). Then S2 = [u2] ⊕ U2. Clearly, U1 and U2 are g-equivalent

by V. As above we see that < = [u2] ⊕ [u2]
⊥, U2 ⊆ [u2]

⊥ and [u2]
⊥ = U2 ⊕S⊥. Since

dim[u1] = 1, it follows from step 2 that there exists a g-equivalence.

U : [u1]
⊥ = U1 ⊕S⊥1 → [u2]

⊥ = U2 ⊕S⊥2 .

In particular,

[u2]
⊥ = U2 ⊕S⊥2 = U(U1)⊕ U(S⊥1 ).

Above we saw that U1 and U2 are g-equivalent. Hence, U2 and U(U1) are g-equivalent.

Now, since

< = [u2]⊕ [u2]
⊥

and

[u2]
⊥ = U2 ⊕S⊥2

If follows that the orthogonal complement of U2 in the space [u2]
⊥ equals S⊥2 . Sim-

ilarly, the orthogonal complement of U1 in the space [u1]
⊥ equals S⊥1 . Since U is a

g-equivalence, it follows that U(U1) and U(S⊥1 ) are orthogonal. That is, the orthog-

onal complement of U(U1) in the space [u2]
⊥ equals U(S⊥1 ). Since dim(U(U1)) =

dimU1 = dimS1 − 1 = k. It follows from the induction assumption that U(S⊥1 ) and

S⊥2 are g-equivalent. Hence S⊥1 and S⊥2 are g-equivalent. This ends the proof.

Definition 8.2. Let < be a vector space and g a non-degenerate hermitian scalar

product on it. Let U : < → < be a bijective linear map such that

g(Ux, Uy) = g(x, y)

for all x, y ∈ <. Then g is a g-unitary transformation.

Proposition 8.3. Let < be a vector space. Let S1 and S2 be two non-isotropic sub-

spaces of <. Any g-equivalence U : S1 → S2 can be extended to a g-unitary transfor-

mation defined on <.
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Proof. Suppose that S1 and S2 are two non-isotropic spaces. Assume that they are

g-equivalent. Let M : S1 → S2 be a g-equivalence. By Witt’s theorem we know that

S⊥1 and S⊥2 are g-equivalent. Let N : S⊥1 → S⊥2 be a g-equivalence. Since S1 is

non-isotropic, then < = S1 ⊕S⊥1 . Hence any vector x ∈ < can be written in the form

x = u + v, where u ∈ S1 and v ∈ S⊥1 . Similarly, < = S2 ⊕S⊥2 . Moreover, we know

that Mu ∈ S2 and Nv ∈ S⊥2 . Define a bijective linear map

U : < → <

by

x 7→Mu+Nv.

Obviously, U is bijective. Let y = u′ + v′ ∈ <. The linear map U is g-unitary, since

g(Ux, Uy) = g(Mu+Nv,Mu′ +Nv′) = g(u+ v, u′ + v′) = g(x, y).

This completes the proof.

Theorem 8.4. Let < be a vector space. Any g-equivalence of a subspace of < can be

extended to a g-unitary transformation in <.

Proof. Let S be a subspace of <. For x ∈ < define a map K : S→ D by

y 7→ gx(y) = g(y, x).

Linear functions of this type fill up the conjugate space S∗ of S. Let (y1, y2, . . . , ym)

be a basis for a vector subspace S. Let v1 be a vector such that

g(y1, v1) = 1, g(yi, v1) = 0

for i > 1. In the sequel we assume that S is isotropic, since Proposition 8.3 ends the

proof in the non-isotropic case. Let (y1, . . . , yv) be a basis for the radical of S. Then

we can choose a vector v1 so that

g(y1, v1) = 1, g(yi, v1) = 0

and in addition

g(v1, v1) = 0.

Namely, if g(v1, v1) 6= 0, then we can find λ such that λ + λ + g(v1, v1) = 0 and we

can replace vector v1 by v1 + λy1. Now the space [y1, v1] is a two-dimensional non-

isotropic subspace of a vector space <. Since it is non-isotropic, we know that we

can write < = [y1, v1] ⊕ [y1, v1]
⊥. Then [y2, . . . , yv] is the radical of [y2, . . . , ym] and
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[y2, . . . , ym] ⊆ [y1, v1]
⊥. By induction on v there exist a linearly independent set of

vectors (v1, . . . , vv) such that such that

g(yj, vj) = 1

for j = 1, . . . , v,

g(yi, vj) = 0

otherwise, and

g(vj, vk) = 0

for j, k = 1, . . . , v. Let B = [v1, . . . , vv]. Then B is totally isotropic and B ∩S = 0.

Let B be the matrix of g restricted to [yv+1, . . . , ym]. Since [y1, . . . , yv] is the radical of

S, B is non-singular. Then the matrix of g relative to the basis (y1, . . . , ym, v1, . . . , vv)

in S + B is of the form 0 0 I

0 B 0

I 0 0

 , (8.13)

where I is the identity matrix of appropriate size. Since the matrix B is non-singular

matrix, the matrix (8.13) is non-singular. Hence S+B is not isotropic. Now we need

to find a g-equivalence of S + B that extends a given g-equivalence on S, since by

Proposition 8.3 we know that a g-equivalence between non-isotropic subspaces can be

extended to a g-unitary transformation.

Let U be an equivalence of S. A subspace [Uy1, . . . , Uyv] is the radical of U(S). Hence

we can find a set of vectors (v1, . . . , vv) such that

g(Uyj, vj) = 1

for j = 1 . . . , v,

g(Uyi, vj)

otherwise, and

g(vi, vj) = 0

for i, j = 1, . . . , v. Now define a linear map U ′ on S + B such that U ′(vj) = vj for

j = 1, . . . , v and U ′ coincides with U on S. Clearly U ′ is a g-equivalence of S + B.

The result follows.

Definition 8.5. Let g(x, y) be a hermitian scalar product. Then g is totally regular if

g(x, x) 6= 0

for every x 6= 0 ∈ <.
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Remark 8.6. The definition above is equivalent to saying that every non-zero subspace

of < is not isotropic.

Definition 8.7. Let < be a vector space and let S be its totally isotropic subspace.

Then S is a maximal totally isotropic subspace of < if whenever S′ is a totally isotropic

subspace in < and S ⊆ S′, we can conclude that S = S′.

Proposition 8.8. Any two maximal totally isotropic subspaces have the same dimen-

sion.

Proof. Let S1 and S2 be two maximal totally isotropic subspaces. Assume w.l.o.g.

that dimS1 ≥ dimS2. Then there exists a totally isotropic subspace U1 ⊂ S1, such

that dimU1 = dimS2. Since U1 and S2 are totally isotropic any bijective linear map

U : U1 → S2 is a g-equivalence, by Theorem 8.4 it can be extended to a g-unitary map

U ′. Then U ′(S1) is totally isotropic and contains U ′(U1) = S2. Since S2 is a maximal

totally isotropic subspace, then U1 = S1 and hence dimS1 = dimS2.

Theorem 8.9. Any non-singular hermitian matrix is cogredient to the matrix of the

form 0 I 0

I 0 0

0 0 B

 (8.14)

where I is the identity matrix and B is totally regular. Two matrices of the form above

are cogredient if and only if the submatrices B are cogredient.

Proof. Let S be a maximal totally isotropic subspace of a vector space <. Let (y1, . . . , yv)

be linearly independent vectors such that S = [y1, . . . , yv]. In the proof of the Theorem

8.4 we have seen that we can find a totally isotropic space B = [v1, . . . , vv] such that

the matrix of g relative to the basis (y1, . . . , yv, v1, . . . , vv) is of the form[
0 I

I 0

]
, (8.15)

where I is an identity matrix of an appropriate size. Denote D := S⊕B. Since S is

a maximal totally isotropic subspace and S + B is not isotropic, then < = D ⊕ D⊥

and g is totally regular in D⊥. We can choose a basis for < so that the matrix of g has

the form 0 I 0

I 0 0

0 0 B

 , (8.16)

where I is an identity matrix of appropriate size and the matrix B is a matrix of g in

D⊥. Hence, any non-singular hermitian matrix is cogredient to the matrix of the form
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above in which B is totally regular.

Now we want to show that two matrices of the form 0 Ia 0

Ia 0 0

0 0 Ba

 ,
0 Ib 0

Ib 0 0

0 0 Bb

 (8.17)

where Ba and Bb are totally regular, are cogredient if and only if a = b and submatrices

Bb and Ba are cogredient. Firstly, observe that if we have a basis (y1, . . . , yv, v1, . . . , vv)

and the matrix of g relative to the basis is of the form (8.17), then S = [y1, . . . , yv] is

maximal totally isotropic subspace. Namely, if it is not maximal, then there exists a

totally isotropic subspace S′ of a vector space < such that S $ S′. Then a subspace

S′ contains a vector v + z 6= 0, where v ∈ [v1, . . . , vv] and z ∈ [z1, . . . , zn−2v] where

(y1, . . . , yv, v1, . . . , vv, z1, . . . , zn−2v) is a basis of <. Then

g(v + z, v + z) = g(z, z) = 0.

Hence z = 0, since by the assumsption g is totally regular. On the other hand v = 0,

since v =
∑
φivi for some φi ∈ D and g(v, yi) =

∑
φig(vi, yj) = 0. Hence v + z =

0 + 0 = 0, which is a contradiction. Hence, by Proposition 8.8, the condition a = b is

a necessary condition for matrices in (8.17) to be cogredient.

Clearly, if matrices Ba and Bb are cogredient, then both matrices in (8.17) are also

cogredient. Hence we only need to show the other direction. Let S1 and S2 be two

maximal totally isotropic subspaces. Let S1 = [y
(1)
1 , . . . , y

(1)
v ] and S2 = [y

(2)
1 , . . . , y

(2)
v ].

Now determine B1 = [v
(1)
1 , . . . , v

(1)
v ] and B2 = [v

(2)
1 , . . . , v

(2)
v ] such that the matrix of g

relative to D1 = S1 + B1 and D2 = S2 + B2 are of the form[
0 I

I 0

]
, (8.18)

and D1 and D2 are non-isotropic as above. Then D1 and D2 are g-equivalent. Then

also D⊥1 and D⊥2 are g-equivalent by the Witt’s theorem. It follows that the cogredience

of matrices in (8.17) imply the cogredience of matrices Ba and Bb.

Definition 8.10. Let < be a vector space of dimension n. Let v be the maximum

dimensionality of a totally isotropic subspaces relative to a scalar product g(x, y).

Then the Witt’s signature is n− 2v.
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9 Non-alternate skew-symmetric

forms

In this chapter we assume that g(x, y) is a skew symmetric scalar product that is not

alternate. Recall that this means that D = S is a field of characteristic two and α = α

is the identity map. In particular, g is symmetric.

Theorem 9.1. Let < be a vector space over a field F of characteristic two and let

g(x, y) be a non-alternate symmetric scalar product in <. Then there exist a basis

(u1, . . . , ur, z1, . . . , zn−r) such that the matrix of g(x, y) relative to this basis equals

β1 . . . 0 . . . 0
...

. . .
...

. . .

0 . . . βr . . . 0
...

. . .
...

. . .

0 . . . 0 . . . 0


(9.1)

where βi 6= 0.

Proof. By Lemma 5.19, there exists a vector u1 such that g(u1, u1) = β1 6= 0. Now

suppose that we have already found k vectors u1, . . . , uk such that g(ui, uj) = δijβi,

where βi 6= 0. As in the proof of Theorem 5.21 we can write < = Sk ⊕ Fk(<), where

Sk = [u1, . . . , uk] and Fk(<) ⊆ S⊥k .

Now we separate these cases. If g = 0 for all u ∈ Fk(<), then k = r and we choose

any basis (z1, . . . , zn−r) of the space Fk(<). If g is not alternate in Fk(<), then we can

choose a vector uk+1 ∈ Fk(<) such that g(uk+1, uk+1) = βk+1 6= 0 and then repeat the

process with k + 1 vectors.

Now consider the case when g is not identically zero and is alternate in Fk(<). In this

case we can find two linearly independent vectors w, v in Fk(<) such that

g(v, v) = 0 = g(w,w)

and

g(v, w) = 1 = g(w, v).
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Let u = uk, β = βk and consider a scalar product g in the three-dimensional space

[u, v, w]. Matrix of g relative to the basis (u, v, w) is of the following formβ 0 0

0 0 1

0 1 0

 . (9.2)

Let y = ξu+ ηv + γw and y′ = ξ′u+ η′v + γ′w for some ξ, ξ′η, η′, γ, γ′ ∈ F. Then

g(y, y′) = βξξ′ + ηγ′ + η′γ

Hence

y1 = u+ v

y2 = u+ βw

y3 = u+ v + βw

are pairwise orthogonal and g(yi, yi) = β. Hence if we replace vector uk by y1, change

the notation and call this vector uk again, then u1, . . . , uk, uk+1 = y2, uk+2 = y3 satisfy

g(ui, uj) = δijβi, where βi 6= 0. This completes the proof.

The argument used in the proof above shows that the matrices1 0 0

0 0 1

0 1 0

 (9.3)

and 1 0 0

0 1 0

0 0 1

 (9.4)

are cogredient. On the other hand submatrices[
0 1

1 0

]
(9.5)

and [
1 0

0 1

]
(9.6)

are not cogredient, which shows why Witt’s theorem does not hold in a field of char-

acterictic two.
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10 Conclusion

To conclude, Witt’s theorem and its corollary, i.e. Theorem 8.4, are important results

that can be useful in various matrix analysis as well as to prove vertex-transitivity,

arc-transitivity, and related properties of several graphs, which are induced by certain

vector space structures (see [4–6]). We have presented the preliminary theory, stated

Witt’s theorem, presented a proof and illustrated why this theorem is no longer true

in a field of characteristic two. However, there exist a version of Witt’s theorem, with

some additional assumptions, also for fields of characteristic two [8]. Witt’s theorem,

or more precisely Theorem 8.4, can be stated in a purely matrix theoretical way as

well.

Preliminary theory contains firstly the theory about certain types of maps, called bi-

linear. Of particular interest are non-degenerate bilinear forms, since they determine a

bijective linear map R : <′ → <∗, between the right vector space <′ of the bilinear form

and the space <∗ of all linear functionals on the left vector space < of the bilinear form.

We have also seen that if a division ring D possesses an anti-automorphism, then any

left vector space over division ring D can be also regarded as a right vector space over

D. Hence in this case there is a possibility of connecting the space with itself. Such

forms are called scalar products. Then we moved on to the study of an equivalence

relation on the set of of matrices, called cogredience relation, which is closely related

to the study of scalar products. The most important types of scalar products are the

hermitian, symmetric, and alternate scalar products. Moreover complete solutions of

the cogredience of hermitian matrices were presented in the final project paper.
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11 Povzetek naloge v slovenskem

jeziku

Poglavitni cilj naloge je preučiti in povzeti peto poglavje v knjigi [1]. Ker je knjiga precej

stara, slog pisanja v njej ne ustreza povsem modernim standardom. Posledično bralec,

ki ga zanima določen izrek v njej, potrebuje precej časa, da ugotovi, kaj natančno so

predpostavke izreka. Razumevanje dokazov je še bolj zamudno, saj so ti pogosto za-

pisani pred samim izrekom, brez znaka, ki bi označeval konec dokaza. Zaključna naloga

tako izbolǰsa ta vidik knjige.

V nalogi so preučevane bilinearne forme, ki so definirane nad parom, sestavljenim iz

končno-razsežnega levega vektorskega prostora in iz končno-razsežnega desnega vek-

torskega prostora. Pri tem sta oba vektorska prostora nad obsegom, ki ni nujno komu-

tativen, in predstavlja tudi sliko bilinearne forme. Za dano bilinearno formo in za par

baz obeh prostorov smo definirali matriko, ki pripada tej formi. Ogledali smo si, kako

se matrika spreminja, če spreminjamo bazi. Spoznali smo pojem levega in desnega

radikala bilinearne forme. Med bilinearnimi formami so še posebej pomembne tiste, ki

so nedegenerirane. V nalogi smo spoznali potrebne in zadostne pogoje za nedegeneri-

ranost. Za tovrstne bilinearne forme smo spoznali dual vektorskega prostora glede na

dano nedegenerirano formo ter pojem komplementarnih baz v prostoru in v njegovem

dualu. Za linearno preslikavo med dvema vektorskima prostoroma, ki sta opremljena

vsak s svojo nedegenerirano bilinearno formo, smo definirali njeno transponiranko glede

na omenjeni formi ter spoznali njene lastnosti. Preučili smo, kako linearno preslikavo

zapǐsemo kot vsoto preslikav ranga ena, ter kako se tovrstni zapis pozna na njeni

transponiranki. Za obsege, ki so opremljeni z antiavtomorfizmom, smo definirali t.i.

skalaren produkt, pri čemer je potrebno povdariti, da gre v splošnem za posebne vrste

bilinearnih preslikav, ki lahko zavzamejo vrednost nič na paru (x, x), kjer je x neničelen

vektor. Za vektorski prostor, ki je opremljen s skalarnim produktom g in za par nje-

govih podprostorov smo definirali pojem g-ekvivalence. To je linearna bijekcija med

prostoroma, ki ohranja skalarni produkt. Če je antiavtomorfizem obsega involucija,

potem pravimo, da je skalaren produkt hermitski. V primeru komutativnega obsega

in involucije, ki je identična preslikava, pravimo, da gre za simetričen skalaren pro-

dukt. Za hermitske skalarne produkte smo spoznali obliko matrike, ki pripada tovrstni
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bilinearni formi. Nato smo spoznali še posebne primere, če gre za algebraično zaprt

obseg, ki ni karakteristike dva, ter simetričen produkt nad realnim obsegom in her-

mitski produkt nad kompleksnim obsegom, kjer je involucija kompleksno konjugiranje.

Prav tako smo v nalogi preučili alternirajoče skalarne produkte, tj. produkte, ki uničijo

vsak par oblike (x, x). V primeru neničelnega tovrstnega produkta je obseg avtomatsko

komutativen, involucija pa je identična preslikava. Spoznali smo obliko matrike alterni-

rajočega skalarnega produkta, ki je vedno sodega ranga. Za podprostor vektorskega

prostora, ki je opremljen z nedegeneriranim hermitskim skalarnim produktom g, smo

spoznali pojem ortogonalnega komplementa. Prav tako smo spoznali, kaj pomeni, če

je podprostor izotropičen, totalno izotropičen ali neizotropičen. Poglavitni cilj naloge

je preučiti in zapisati dokaz Wittovega izreka. Slednji v eni izmed oblik pove, da g-

ekvivalenca med dvema neizotropičnega podprostoroma implicira obstoj g-ekvivalence

med njunima ortogonalnima komplementoma. Pri tem je privzeta predpostavka, da

ima enačba x + x = β rešitev x v obsegu, za vsak hermitski element β. To izloči

primer komutativnega obsega karakteristike dva, kjer je involucija identična preslikava.

Zelo pomembna posledica Wittovega izreka, ki se tudi sama pogosto imenuje Wittov

izrek, pravi, da lahko vsako g-ekvivalenco med dvema podprostoroma, ki nista nu-

jno neizotropična, lahko razširimo do g-unitarne preslikave na celotnem prostoru. V

nalogi je prikazan tudi dokaz tega rezultata. Prav tako je razloženo, da Wittov izrek v

splošnem ne drži, če je karakteristika obsega enaka dva.
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