
UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

O UKRIVLJENIH FUNKCIJAH IZVEN POPOLNEGA

MAIORANA-MCFARLAND RAZREDA IN

PERMUTACIJAH, SKONSTRUIRANIH S

TRANSLATORJI

(ON BENT FUNCTIONS LYING OUTSIDE THE

COMPLETED MAIORANA-MCFARLAND CLASS

AND PERMUTATIONS VIA TRANSLATORS)
.

NASTJA CEPAK

KOPER, 2018

UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

O UKRIVLJENIH FUNKCIJAH IZVEN POPOLNEGA

MAIORANA-MCFARLAND RAZREDA IN

PERMUTACIJAH, SKONSTRUIRANIH S

TRANSLATORJI

(ON BENT FUNCTIONS LYING OUTSIDE THE

COMPLETED MAIORANA-MCFARLAND CLASS

AND PERMUTATIONS VIA TRANSLATORS)
.

NASTJA CEPAK

KOPER, 2018 MENTOR: PROF. DR. ENES PASALIC
SOMENTOR: DOC. DR. ADEMIR HUJDUROVIĆ

Acknowledgement

First, I would like to thank Professor Enes Pasalic, who was both my PhD
supervisor and the first one to introduce me to cryptography in the second year of
my undergraduate studies that now seems so long ago. Throughout these four years
his support and cryptographic enthusiasm were invaluable.

Zahvaljujem se tudi celotnemu matematičnemu oddelku FAMNITa za preteklih
deset let, ki so me pripeljala od začetka dodiplomskega študija pa vse do zago-
vora doktorata, še predvsem prvemu in drugemu somentorju, Klavdiji Kutnar in
Ademirju Hujduroviću.

Nič od tega pa ne bi bilo mogoče brez družine in celotne GloryBread skupine.
Brez vas ne bi bila, kdor sem, in ne bi bila, kjer sem. I love you and am honoured.

Nastja Cepak

To delo sta financirala “Agencija za raziskovalno dejavnost Republike Slovenije” in
raziskovalni program“Mladi raziskovalec”.

Abstract

ON BENT FUNCTIONS LYING OUTSIDE THE COMPLETED
MARIORANA-MCFARLAND CLASS AND PERMUTATIONS VIA

TRANSLATORS

For the first main topic of this thesis, a generalised Rothaus construction is
considered when two of the three functions differ only on some suitably chosen n/2-
dimensional subspace, which yields a significant simplification of the algebraic form
of the resulting function and also gives the possibility to easily establish a connection
to the Dillon’s PS class [34]. Moreover, we show that under certain conditions,
when the initial functions are taken from the class D, the resulting bent functions
provably do not belong to the completed Maiorana-McFarland class. Briefly, the
so-called normality of constructed functions is considered and several examples of
non-normal bent functions in 10 variables are provided.

The second topic of the thesis also focuses on the problem of inclusion in specific
classes, focusing on classes C and D. Apart from an explicit subclass denoted by D0,
the bent conditions in terms of the selection of a vector subspace L and permutation
π (used to define the initial function f(x, y) = x · π(y) in M, where x, y ∈ Fn2) are
rather hard to satisfy. This problem was recently addressed in [61], where some
explicit bent functions f∗ ∈ C were constructed. Thus, given the existence of bent
functions f∗ ∈ C the most fundamental issue is to determine whether these functions
lie inside or outside the known primary classes.

We provide sufficient conditions on the choice of the permutation π and the
corresponding linear subspace so that a bent function f∗ that belongs either to C
or D is outside the completed M class. Using these conditions we show that some
instances of bent functions in C identified in [61] are indeed outside the completed
M class, thus answering positively the classification issue raised in [61].

We proceed to consider some new classes of permutations over finite fields. For
applicative purposes the use of sparse permutations, i.e. permutations which can be
expressed with few terms is an important cryptographic property. For this reason,
we are mainly interested in specifying design methods of sparse permutations, having
a few polynomial terms.

Our work on new classes of permutations is based on the work of Kyureghyan
[49], where permutations over Fprk of kind F : x 7→ L(x) + L(γ)h(f(x)), f : Fprk →
Fpk , h : Fpk → Fpk are studied. Here γ ∈ F∗

prk
is a so-called b-linear translator of

f and L a linear permutation. Our main purpose is to emphasize that the use of
functions f which have translators gives us the possibility to construct many infinite
classes of permutations with a large choice of parameters. A suitable use of this
method allows us also to construct linear permutations and sparse permutations of

i

ii

high degree and to give their compositional inverses. The connections between these
constructions and complete permutations, t.i. permutations π such that π + x is
again a permutation, is also explored.

Next, the notion of a linear translator is generalised. The main problem when
constructing permutations via traditional linear translators is that the set of func-
tions that admit a linear translator is very limited. For example, we prove that
the only binomial admitting a linear translator must be of the form f : F2n →
F

2
n
2
, f(x) = Trnn

2
(x). By defining the Frobenius translators we extend the family of

functions admitting translator and the set of new permutations multiplies in size.
With this the set of all binomials admitting a translator is, for example, extended
to all functions of the form f(x) = xp

i
+ xp

i n
2 . Then next step is to generalise

Kyureghyan’s construction of permutations in such a way that it allows the use of
Frobenius translators. This opens the way to generalising various families of permu-
tations, as well as generalising constructions of bent functions from [69].

For the last topic we present certain constructions of infinite classes of vectorial
plateaued functions, permutations, and complete permutations. While there are a
few known generic constructions of Boolean plateaued functions (a nice survey can
be found in [11]) little is known about vectorial plateaued functions. In [11], several
characterizations of those vectorial functions whose components are all plateaued
(with possibly different amplitudes) were derived. In particular, it was shown that
an extension of the Maiorana-McFarland class gives rise to vectorial plateaued func-
tions F : Fn2 → Fn2 . Yet even so the component functions of F are bent and therefore
they are not balanced. As a consequence this approach can never give rise to permu-
tations. Therefore, we consider an alternative design method of vectorial plateaued
functions. The framework is also extendible in terms of getting varying degree of
these permutations since it is based on a suitable separation of the variable space.

Using a similar framework, we also construct complete permutations, though in
this case the design of component functions is certainly more complicated.

Math. Subj. Class (2010): 94A60, 11T71

Key words: bent functions, nonlinearity, Marioana-McFarland class, C class, D
class, permutations, finite fields, linear translators, Frobenius translator.

Izvleček

O UKRIVLJENIH FUNKCIJAH IZVEN POPOLNEGA
MIORANA-MCFARLAND RAZREDA IN PERMUTACIJAH,

SKONSTRUIRANIH S TRANSLATORJI

Kot prvo temo si v tezi ogledamo posplošeno Rothausovo konstrukcijo, pri kateri
se dve od treh začetnih funkcij razlikujeta samo nad določenim primerno izbranim
n/2-dimenzionalnim podprostorm, kar vodi do konkretne poenostavitve algebraične
oblike tako sestavljene funkcije. Ponuja tudi možnost enostavne povezave z Dil-
lonovim PS razredom [34]. Poleg tega dokažemo, da pod določenimi pogoji, ko so
začetne funkcije izbrane iz razreda D, tako sestavljena ukrivljena funkcija leži izven
popolnega Maiorana-McFarland razreda. Ogledamo si tudi tako imenovano normal-
nost skonstruiranih funkcij in prikažemo nekaj primerov ne-normalnih ukrivljenih
funkcij na 10ih spremenljivkah.

Druga glavna tema je prav tako osredotočena na vsebovanost v specifičnih razredih,
bolj natančno na vsebovanost v C in D razredu. Razen eksplicitno definiranega po-
drazreda D0 so pogoji za ukrivljenost kar se tiče izbire vektorskega podprostora L
in permutacije π, ki se jih uporablja pri definiranju funkcije f(x, y) = x · π(y) v M,
kjer x, y ∈ Fn2 , težko zadovoljivi. S tem problemom so se pred kratkim ukvarjali v
[61], kjer so tudi eksplicitno skonstruirali določene ukrivljene funkcije f∗ ∈ C. S tem
je najbolj temeljno vprašanje postalo, kdaj so tako sestavljene funkcije vsebovane v
že poznanih primarnih razredih in kdaj ležijo izven njih.

V nadaljevanju predstavimo zadostne pogoje za izbiro takšne permutacije π in
odgovarjajočega linearnega podprostora, da ukrivljena funkcija f∗, ki pripada ali C,
ali D razredu, leži izven popolnegaM razreda. Z uporabo teh pogojev dokažemo, da
določene ukrivljene funkcije v C razredu, najdene v [61], dejansko ležijo izven popol-
nega M razreda, s čimer pozitivno odgovorimo na odprto vprašanje klasifikacije,
postavljeno v [61].

Nato si ogledamo tudi določene nove razrede permutacij nad končnimi polji. Za
določene aplikacije je pomembno, da imajo permutacije čim manj členov. Zaradi
tega nas večinoma zanimajo metode, s katerimi lahko skonstruiramo permutacijo z
nizkim številom členov.

Naše delo na novih razredih permutacij temelji na delu Kyureghyan [49], ki
proučuje permutacije nad Fprk oblike F : x 7→ L(x)+L(γ)h(f(x)), f : Fprk → Fpk , h :
Fpk → Fpk . Naš glavni namen je poudariti, da lahko z uporabo funkcij f , ki pre-
morejo translatorje, skonstruiramo številne neskončne razrede permutacij s širokim
naborom parametrov. Z uporabo te metode lahko sestavimo linearne permutacije
in permutacije z malo členi visoke stopnje ter lahko najdemo njihove kompozicijske

iii

iv

inverze. Razǐsčemo tudi povezavo med temi konstrukcijami in popolnimi permutaci-
jami, torej takšnimi permutacijami π, da je π(x) + x ponovno permutacija.

V četrtem poglavju je pojem linearnega translatorja posplošen. Glavni prob-
lem pri konstruiranju permutacij z uporabo tradicionalnih lienarnih translatorjev
je, da je množica funkcij, ki premorejo linearni translator, zelo omejena. Na primer,
dokažemo, da je edini binom, ki premore linearni translator, oblike f : F2n →
F

2
n
2
, f(x) = Trnn

2
(x). Z definicijo Frobeniusovih translatorjev razširimo družino

funkcij, ki premorejo translatorje, in množica novih permutacij se pomnoži v ve-
likosti. S tem je, na primer, množica vseh binomov, ki premorejo translator, razširjena
na vse funkcije oblike f(x) = xp

i
+xp

i n
2 . Naslednji korak je posplošiti Kyureghyanino

konstrukcijo permutacij na način, da dovoljuje uporabo Frobeniusovih translatorjev.
S tem je odprta pot tako k posplošitvi številnih družin permutacij, kot k posplošitvi
konstrukcij ukrivljenih funkcij iz [69].

Za zadnjo temo predstavimo določene konstrukcije neskončnih razredov vek-
torskih nivojskih funkcij, permutacij in popolnih permutacij. Kljub temu, da obstaja
kar nekaj splošnih konstrukcij Boolovih nivojskih funkcij ([11] nudi dober pregled),
je malo znanega o vektorskih nivojskih funkcijah. V [11] so predstavljene številne
karakterizacije vektorskih funkcij, katerih komponente so nivojske (z dovoljenimi
različnimi amplitudami). Dokazano je tudi, da lahko Maiorana-McFarland razred
posplošimo v vektorske nivojske funkcije F : Fn2 → Fn2 . Vendar so komponentne
funkcije od F ukrivljene in funkcija torej ni uravnovešena. Posledično Takšen pristop
ne more nikoli generirati permutacije. Torej naš pristop prilagodimo in se ukvarjamo
z alternativno konstrukcijo vektorskih nivojskih funkcij.

S podobnim pristopom skonstruiramo tudi popolne permutacije, pri čemer postane
načrtovanje permutacije F zaradi dodatnih zahtev dosti težje.

Math. Subj. Class (2010): 94A60, 11T71

Ključne besede: ukrivljene funkcije, nelinearnost, Marioana-McFarland razred,
C razred, D razred, permutacije, končna polja, linearni translatorji, Frobeniusovi
translatorji.

Contents

List of Figures vii

List of Appendices ix

1 Introduction 1

2 Notations, Definitions, and Preliminary Results 9

2.1 Boolean functions . 10

2.2 Bent functions . 12

2.2.1 Classes of bent functions . 13

2.2.2 Vectorial bent functions . 15

2.3 Other classes of highly nonlinear (vectorial) Boolean functions 16

2.4 Permutations and translators . 16

3 Bent functions outside the completed Maiorana-McFarland class 19

3.1 Constructing bent functions outside M using Rothau 19

3.1.1 A special case of Rothaus’ construction 21

3.1.2 Using Rothaus construction iteratively 29

3.1.3 Counting bent functions in PSap satisfying Rothaus condition 32

3.2 Bent functions in C and D outside the extended Maiorana-McFarland
class . 34

3.2.1 Sufficient conditions for functions in C and D to be outsideM# 35

3.2.2 Some examples of bent functions in C outside M# 37

3.2.3 Bent functions in D outside M# 39

3.2.4 Inclusion in other primary classes 41

4 Permutations and bent functions via translators 45

4.1 Linear translators . 45

4.1.1 On functions having linear translators 46

4.1.2 Compositional inverses . 51

4.1.3 Relation with complete permutations 55

4.1.4 A special class of permutations 56

4.2 Frobenius Translators . 64

4.2.1 Frobenius translators . 65

4.2.2 Some existence issues . 68

4.2.3 Application to bent functions 70

v

vi CONTENTS

5 Infinite classes of vectorial plateaued functions, permutations, and
complete permutations 79
5.1 Constructing permutations from M class 80

5.1.1 Noncubic permutations . 83
5.2 Complete permutations . 84
5.3 On existence of linear components and linear structures 86

5.3.1 Differential properties of the designed permutations 88

6 Conclusion 89

Bibliography 91

Index 113

7 Povzetek v slovenskem jeziku 115
Kazalo . 123

List of Figures

1.1 A standard encryption scheme . 2
1.2 Example of a stream cipher . 3
1.3 Example of a block cipher . 3
1.4 Oscar Rothaus, 1927 - 2003 . 5
1.5 Oleg P. Stepchenkov [82] . 5

3.1 Intermediate step - subspaces of A⊕B 33

7.1 Standardna šifrirna shema . 116
7.2 Primer pretočne šifre . 117
7.3 Primer bločne šifre . 117
7.4 Oscar Rothaus, 1927 - 2003 . 119
7.5 Oleg P. Stepchenkov [82] . 119

vii

List of Appendices

Proof of Theorem 3.1.2 . 100

Proof of Lemma 3.1.6 . 103

Proof of Proposition 3.1.7 . 106

Proof of Theorem 3.2.2. 108

ix

Chapter 1

Introduction

Cryptography’s roots reach deep into our history. As soon as a king wanted to
send written secret instructions to his generals, as soon as a craftsman wanted to
write down a trade secret the need for cryptography appeared - the discipline that
by today’s definition enables two parties to communicate over an insecure channel.
Almost everyone has heard of Julius Ceaser’s simple shift cipher, but the first uses
of cryptography can be traced to well over 1000 years before his time [44]. With
the progress of encryption, the science of breaking the ciphers and revealing the
original message, cryptanalysis, was also being developed. Together, cryptography
and cryptanalysis form the field of cryptology, which has never in human history
held a more important role in society at large than today.

Whereas cryptography was once dealing mainly with letters from alphabets,
phrases, and signs, it now works with 0s and 1s, the symbols suited for computers
and electronic communication. This modern cryptography and information theory
in general were essentially invented by Calude Shannon in 1948 with his fundamental
article “A Mathematical Theory of Communication” [79]. In order to satisfy today’s
needs there are four fundamental services that cryptography provides: confidential-
ity, data integrity, authentication, and non-repudiation.

Confidentiality (or privacy) is a service protecting the information from being
revealed by unauthorized parties. Data integrity refers to the service designed to
prevent data from being modified by unauthorized parties and to detect data mod-
ifications if they happen. The most common modifications are insertion, deletion,
and substitution. Authentication refers to the ability of the two parties in commu-
nication to successfully identify each other. Finally, non-repudiation, ensures that
neither of the two parties can deny having committed certain actions, for instance
sending a transaction or signing a document.

These properties must be considered in the practical implementations of cryp-
tosystems. Figure 1.1 depicts a standard encryption scheme designed for confi-
dentiality. There are two parties, Alice and Bob, communicating over an insecure
channel. Alice, the sender, wants to send the plaintext p to Bob, the receiver. In
order to do that she encrypts it using the secret key k and encryption algorithm
E, getting the ciphertext c = E(p, k). She sends the ciphertext c to Bob over an
insecure channel which is potentially compromised by the adversary, usually called
Eve (standing for “Enemy” or “Eavesdropper”) or Mallory (standing for man-in-the-

1

2

Figure 1.1: A standard encryption scheme

middle-attack) who performs cryptanalysis of the ciphertext. When Bob receives the
ciphertext c he decrypts it using the secret key k′ and the decryption algorithm D,
getting the plaintext p = D(c, k′).

If the secret keys k and k′ are same, this scheme is referred to as symmetric
cryptography or secret key cryptography. If the keys differ, the scheme corresponds
to so-called asymmetric cryptography or public key cryptography, which requires both
Alice and Bob to have two keys. More precisely, they both possess a public key which
is stored in a public database and accessible to anyone, and a private key which must
be kept secret. Alice can therefore use Bob’s public key to encrypt the plaintext and
Bob then decrypts the ciphertext using his corresponding private key.

In general, symmetric key cryptography is much more computationally efficient
than public key cryptography (approximately 1000 faster) and it requires shorter
key length to ensure the same level of security. On the other hand, every pair of
users that wants to communicate using symmetric encryption must share a common
secret key. If n users want to ensure a pairwise secure communication, a total of
n(n−1)

2 secret keys need to be exchanged and every user must store and keep safe
n−1 different secret keys, which is in many cases highly impractical. In comparison,
asymmetric cryptography offers a functionality of only keeping a single private key
secret.

In the sequel we focus on symmetric cryptography since the main part of this
thesis addresses properties of cryptographic primitives related to it. Symmetric
key encryption contains two families of encryption algorithms, namely block ciphers
(Figure 1.3) and stream ciphers (Figure 1.2). Stream ciphers generate a pseudo-
random sequence of bits, called keystream, that is simply added to the plaintext
modulo two to obtain the ciphertext. Among many different design rationales, a
subfamily of stream ciphers (so-called filtering generator) employs a linear feedback
shift register (LFSR) and a filtering Boolean function which process the content of
the memory cells of LFSR to generate a single bit of the keystream [46].

Introduction 3

Figure 1.2: Example of a stream cipher

Some well known examples of real-life applications of LFSR-based stream ciphers
include the A5 family of stream ciphers used in the GSM telecommunication stan-
dard [4] and the E0 encryption algorithm used in some Bluetooth applications [59].
Some other well-known encryption algorithms that belong to the family of stream
ciphers are for instance SNOW [38], RC4 [48], Trivium [8], and Grain [41].

Block ciphers represent another family of symmetric key encryption algorithms
(Figure 1.3) which in general implement a pseudo-random permutation. In more de-
tail, the plaintext is divided into blocks of data of equal length, say n, which are then
consecutively processed by a block cipher to provide the output block. This process
must be invertible and therefore for each different secret key (which is embedded
in the encryption algorithm) block cipher implements a key specific permutation on
n binary bits. The modern design of block ciphers employs an iterative applica-
tion of several identical rounds to produce a ciphertext block, though their internal
structure may be Feistel-based or alternatively substitution-permutation network.
Nevertheless, regardless of their internal structures these iterative rounds typically
implement the Shannon’s concept of confusion through so-called substitution-boxes
(S-boxes) and difussion through permutation boxes (P-boxes) [79]. The S-boxes can
be viewed as a collection of Boolean functions (cf. Chapter 2) whereas P-boxes sim-

Figure 1.3: Example of a block cipher

4

ply permute the intermediate blocks in a linear manner though achieving the effect
of the best possible diffusion of these bits so that they affect other S-boxes when
processed in the subsequent round. In this context, the confusion aims at achieving
a global effect of making the dependency of ciphertext bits on the key/plaintext
bits as complicated as possible. One essential consequence of well designed diffusion
is that changing one single bit in the plaintext should roughly cause that approxi-
mately one half of the bits in the ciphertext have flipped their values compared to
the original ciphertext.

One of the earliest block ciphers was developed in 1970 by Horst Feistel and his
team from IBM and was named Lucifer. Its improved version, DES (Data Encryp-
tion Standard), is one of the most prominent block ciphers and was in 1976 accepted
by the USA as the Federal Information Processing Standard (FIPS). In the following
years it has undergone a severe scrutiny in the academic community. Though Diffie
and Hellman argued that the key length was too short to ensure long-term security
[33], no serious immediate weakness of the cipher’s design could have been identified.
In 1992 Matsui [62] introduced a the concept of linear cryptanalysis and applied it
to DES. A few years later the DESCHALL project publicly broke a coded message
encrypted by DES. In the late nineties, it became clear that due to its short key
length (being of size 56 bits) DES was actually susceptible to brute force attacks (to-
day’s most effective attack on DES is still the exhaustive key search), which resulted
in 2001 in a new encryption standard that was named AES (Advanced Encryption
Standard) and the encryption algorithm Rijndael [31] was officially selected in an
open competition [71]. Some other well-known block ciphers are for instance IDEA
[50], Blowfish [78], RC5 [76].

In general, when considering cryptanalytic assumptions, there are four main
scenarios of applying cryptanalysis with respect to what kind of information is at
the attacker’s disposal.

• In the weakest ciphertext-only scenario, the attacker only has access to several
ciphertext that were generated by a targeted block cipher using the unknown
secret symmetric key. Their goal is then either to recover parts (or entire)
plaintexts or alternatively to recover (a portion of) the secret key. This type
of scenario is the most practical but on the other hand the cryptanalysis is
hardest to perform.

• In the case of known-plaintext scenario, the attacker has at his disposal many
plaintext/ciphertext pairs and his goal is to deduce (a portion of) the secret
key.

• The chosen-plaintext scenario is similar to the known-plaintext attack with the
difference that the attacker has the access to the encryption device and can
encrypt any messages (plaintexts) of his choice. The goal is, again, to recover
the secret key or a portion of it.

• The chosen-ciphertext scenario is similar to the latter scenario though the
attacker decrypts the ciphertexts of his choice thus obtaining the corresponding
plaintexts.

Introduction 5

In the rest of this introduction, we mainly focus on the security of block ciphers.
More precisely, we address the design and the security of S-boxes. Certain types of
attacks, such as linear or differential cryptanalysis [5], become easier if the S-boxes
(viewed as a collection of Boolean functions) have weak non-linear characteristics (cf.
Chapter 2.2). Employing the fact that the S-boxes in DES can be approximated by
suitable linear functions with certain probability, Matsui in 1993 found [64] a linear
approximation for 14 rounds of DES that holds with probability 0.50000057. As a
consequence, the full 16-round DES cipher could be broken in the known-plaintext
scenario given 247 plintext/ciphertext pairs.

To ensure high enough protection against these types of attacks the notion of
nonlinearity was introduced, see Chapter 2 for more details. Boolean functions,
which are at the largest possible distance to a set of affine functions, with the great-
est possible nonlinearity are called bent functions. This class of Boolean functions
was initially discovered by the researchers of the United States of America and the
Soviet Union in separate, confidential research projects. Oscar Rothaus, Figure 1.4,
is considered today to be the first researcher to publicly introduce bent functions.
From 1960 to 1966, when he joined the Cornell University, he worked for Defence
Department’s Institute for Defence Analyses, where he first described the bent func-
tions in his classified paper in 1966 which became available to the public only ten
years later [77].

Figure 1.4: Oscar Rothaus, 1927 - 2003 Figure 1.5: Oleg P. Stepchenkov [82]

However, in the sixties, some researchers in the Soviet Union were also work-
ing on bent functions. In [82] Tokareva writes that Y. A. Vasiliev, B. M. Kloss,
V. A. Eliseev, and O. P. Stepchenkov (Figure 1.5) were at that time studying prop-
erties of so called “minimal functions” whose definition coincides with that of bent
functions. Most of their results, though, are still classified and not accessible to the
public.

During the next decades of research on bent functions many other areas of their
applications emerged. In coding theory, for instance, it was shown that determining
the covering radius of a Reed-Muller code is equivalent to finding Boolean functions
with highest nonlinearity [47, 60]. Bent functions are also used in the construc-
tion of famous Kerdock codes [32, 80]. They are also employed in the design of
sequences with applications in certain telecommunication techniques, in particular
those employing the CDMA (Code Division Multiple Access) method. In the CDMA

6

of accessing a channel by multiple users, each user in a so-called cell must be as-
signed a sequence that is orthogonal to the sequences of all other users in this cell
(but also to the users in all the neighboring cells). The number of users per cell is
thus limited by the cardinality of the set of mutually orthogonal sequences one can
construct. Bent functions and other types of Boolean functions with very high non-
linearity have been proven vital in constructing such sets. Moreover, bent functions
are closely linked with Hadamard matrices, elementary Hadamard difference sets,
and strongly regular Cayley graphs. In [3], it was proved that a Boolean function
is bent if and only if its corresponding graph is a strongly regular Cayley graph
(v, k, λ, µ), where λ = µ.

There are still a lot of open problems related to bent functions, such as their exact
number for a fixed number of variables, their design and classification. Concerning
their design and classification, some primary construction methods (generating bent
functions directly for any even number of input variables n) are known, see sub-
section 2.2.1 for their definitions. On the other hand, there are many secondary
constructions which use the existing bent functions to build new ones as for in-
stance addressed in [15, 20, 67, 95, 93]). The interested reader is referred to a nice
survey on bent functions by Carlet and Mesnager. The main problem with the sec-
ondary constructions is the difficulty to answer the question about the classification
of such generated bent functions. More precisely, it may happen that some of these
secondary constructions simply generate bent functions which belong to the known
primary classes of bent functions in which case only their explicit representation is
of importance. Nevertheless, showing the non-inclusion into the completed primary
classes is usually a hard task, especially in the case of the so-called PS class due to
the lack of efficient indicators. For instance, in [61] it is shown that in many cases
the functions in C, which is a class of bent functions derived from the Marioana-
McFarland primary class (denoted by M) essentially remain in the M class (cf.
Chapter 2.2.1). One of the main challenges in the area of bent functions is exactly
the problem of determining whether a given bent functions lies in the completed
version (completed class contains the original class and all the other bent functions
that can be derived from a given class using certain affine transformations) of some
primary class or it is outside of it. For the completedM class there exists an inclu-
sion indicator, see [34], but even that one becomes computationally inefficient for
n > 6. For the PS class there is no similar indicator, and proving exclusion from
PS is an even more difficult problem.

Another topic that is considered in this thesis, which at the first sight does not
immediately relate to bent functions, is the construction of some new classes of
permutations over finite fields. A finite field of order pn is denoted by Fpn , where
p is any prime and n a positive integer. A polynomial F ∈ Fpn [x] is said to be a
permutation if its associated mapping x 7→ F (x) over Fpn is bijective. Permutation
polynomials received some attention already in the 19th century and due to their
applications in combinatorics, coding theory, symmetric cryptography, engineering,
and various other areas, the theoretical interest in these objects does not seem to
fade. In general, specifying a permutation polynomial over a finite field Fpn is
not a difficult task. There are exactly pn! permutations which corresponds to the
cardinality of the symmetric group on pn elements. Once the bijection between the

Introduction 7

input space and some permuted version of the input (output) has been specified, such
a permutation can be efficiently described as a univariate polynomial whose form
is obtained using the Lagrange interpolation. Nevertheless, to be used in certain
applications these permutation polynomials usually must possess some additional
properties, such as sparseness of their representation, their differential properties,
nonlinearity etc. Of course, due to a large cardinality of permutation polynomials
finding some optimal classes is infeasible even for relatively small finite fields.

During the last few years there has been a tremendous progress in construction
methods and characterization of many infinite classes of permutations, see a sur-
vey on recent works in [43] and the references therein. The use of permutations in
applications such as coding is well-known and understood. The bijectivity is also
an important cryptographic request when the design of block ciphers that use SP
structure is of concern. We are mainly interested in specifying sparse permuta-
tion polynomials (due to efficient implementation), thus having a few polynomial
terms. Most of the known explicit classes of permutation polynomials are of the

form XrH(X
pn−1
d), d < pn − 1, and are obtained by exploiting the multiplicative

structure of the finite fields. In recent papers, ([49] and references therein) some
methods to construct permutation polynomials that use the additive structure of
the finite fields have been proposed. This approach is further explored in this thesis
by providing several new infinite classes of permutation polynomials. At the same
time, the notion translators, useful in designing permutation polynomials, is further
extended which gives us the possibility to obtain even larger classes of permutation
polynomials. Nevertheless, it turns out that the permutations based on these trans-
lators are also useful in the design of secondary classes of bent functions [69]. In
this context, by introducing a notion of Frobenius translators, most of the secondary
constructions of bent functions that rely on the standard linear translators can be
easily generalized by employing Frobenius translators. Thus, apart from specifying
new infinite classes of permutations as a by-product the generalization of certain
secondary constructions of bent functions is also attained.

The rest of this thesis is structured in the following way. In Chapter 2, basic
notations and definitions that are used throughout the thesis are given. In more
detail, this section treats the concepts related to Boolean functions, definition of
bent functions and the primary classes of these functions, as well as the notions
related to permutations and translators.

Chapter 3 discusses the design of bent functions which potentially lie outside
the completed Maiorana-McFarland class. In the first subsection, the construction
of Rothaus is described and a special form of this design method is analysed. In
the second part, sufficient conditions for bent functions within C and D class to
lie outside the completed Maiorana-McFarland class are given. Some examples of
such bent functions that are provably outside the completed Marioana-McFarland
class are also given. Moreover, in certain cases the generated bent functions have an
additional property of being non-normal which is helpful for the exclusion of these
functions from some known primary classes.

Chapter 4 addresses permutations over finite fields that are constructed by means
of translators. In the first subsection the linear translators are considered and the
types of functions which admit linear translators are analysed. Based on this many

8

new classes of permutations are presented. In the second subsection, the notion of
linear translators is generalised through the concept of Frobenius translators which
allows us to extend the design methods of permutation polynomials. As already
mentioned, some secondary constructions of bent functions are then also easily gen-
eralised using the permutations obtained through Frobenius translators.

In Chapter 5, some infinite classes of vectorial plateaued functions, permutations,
and complete permutations are constructed. Unlike the method used in Chapter
4, these objects are designed by considering the multivariate representation of the
functions over finite fields. Roughly speaking, we considering the vector space rep-
resentation of the finite field and the mappings as a collection of Boolean mappings.

The results of this PhD Thesis are published in the following articles:

• F. Zhang, E. Pasalic, Y. Wei, N. Cepak. Constructing bent functions outside
the MaioranaMcFarland class using a general form of Rothaus, IEEE Trans-
actions on Information Theory, 63.8 (2017), pp. 5336–5349.

• F. Zhang, E. Pasalic, N. Cepak, Y. Wei, Bent Functions in C and D outside the
completed Maiorana-McFarland class.” International Conference on Codes,
Cryptology, and Information Security, Springer, Cham, 2017.

• N. Cepak, P. Charpin, E. Pasalic. Permutations via linear translators. Fi-
nite Fields and Their Applications, 45 (2017), pp. 19–42. Available at:
https://arxiv.org/pdf/1609.09291.pdf

• N. Cepak, E. Pasalic, A. Muratović-Ribić, Frobenius linear translators giving
rise to new infinite classes of permutations and bent functions, accepted for
the 3rd International Workshop on Boolean Functions and their Applications

• E. Pasalic, N. Cepak, Y. Wei. Infinite classes of vectorial plateaued functions,
permutations and complete permutations. Discrete Applied Mathematics. 215
(2016), pp. 177–184.

Chapter 2

Notations, Definitions, and
Preliminary Results

Let N,Z,R denote the sets of natural numbers, integers, and real numbers, respec-
tively, and let the ring of integers modulo r be denoted by Zr. Let Fq denote the
Galois field of order q = pn, where p is a prime number. Its cyclic group F∗pn is a
multiplicative group with pn − 1 elements, containing all the elements of the finite
field Fpn except the zero element. It is generated by a primitive element α ∈ F∗pn ,
and once such an element is fixed, we can use it to express the basis of the finite
field as {α0, α, . . . , αn−1}. With this we can express any γ ∈ Fpn as

γ = γ0α
0 + γ1α

1 + . . .+ γn−1α
n−1,

where γ0, . . . , γn−1 ∈ Fp. We see that a natural isomorphism ρ presents itself between
the finite field Fpn and vector space Fnp of p-ary n-tuples, mapping

ρ : α0γ0 + . . .+ αn−1γn−1 7→ (γ0, . . . , γn−1).

In the following chapters, the binary case when p = 2, is the most widely consid-
ered. When we want to emphasize that an addition is over F2 instead of over N,Z,
or R we denote it with “⊕ ” instead of “ + ”. We define the Hadamard weight of the
element x = (x1, . . . , xn) ∈ Fn2 to be equal to the number of non-zero coordinates
wH(x) = |{i|xi = 1}| ∈ N, where |A| denotes the cardinality of the set A. The
Hadamard distance between two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn2 is
equal to the the number of coordinates where their values differ dH(x, y) = |{i|xi 6=
yi}|. Unless otherwise stated, we take the ordering of the vector space Fn2 is given
as

{(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1)}.
The scalar/inner/dot product of two vectors x, y ∈ Fn2 is defined as

x · y = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn.

In the finite field, the function equivalent to the scalar product in the vector field
is trace function. Let x ∈ F2n and n = rk, then the trace function from F2n to its
subfield F2k is defined as

Trnk (x) = x+ xp
k

+ xp
2k

+ . . .+ xp
(r−1)k

.

9

10 2.1 Boolean functions

If k = 1, we denote it simply as Tr(x) and call it absolute trace. The functions
Tr(xy) over a finite field is equivalent to the function ρ(x) ·ρ(y) over a vector space.

We say that two functions f, g ∈ Bn are affinely equivalent if there exists a
linear isomorphism L : Fn2 → Fn2 and a linear function l ∈ Bn such that f(x) =
g(L(x) + a)⊕ l(x)⊕ b, where a ∈ Fn2 , b ∈ F2.

We call functions mapping from Fn2 or F2n to F2 Boolean functions on n variables
and the set of all Boolean functions is denoted by Bn. The set of all linear functions
can be described as {a · x|a ∈ Fn2} or {tr(αx)|α ∈ F2n}. For a detailed study of
Boolean functions we refer a more interested reader to Carlet [12, 13], and Cusick
and Stănică [30].

2.1 Boolean functions

There exist various ways of representing Boolean functions. The truth table is the
most straightforward. For a given Boolean function f we are given an ordered binary
sequence

{f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)}.

For higher values of n such sequences are very long and they are often presented in
a hexadecimal form, as will also be the case in Chapter 3.

Boolean functions can be concatenated. The concatenation, denoted by “||′′,
means that the truth tables of the functions are merged. For instance, for f1, f2 ∈ Bn
one may construct f = f1||f2 ∈ Bn+1, meaning that the upper half part of the truth
table of f correspond to f1 and the lower part to f2.

The support of the function is defined as supp(f) = {x|f(x) = 1}. The distance
between two Boolean function f, g on the same number of variables n is measured
as the Hamming distance between their truth tables dH(f, g) = |{x|f(x) 6= g(x)}|.

The algebraic normal form (ANF) is maybe the most widely used presentation
in cryptography. The ANF of a function f ∈ Bn is a multivariate polynomial in
x1, . . . , xn,

f(x1, . . . , xn) =
⊕

I∈P(N)

aIx
I ,

where P(N) denotes the power set of N = {1, 2, . . . , n}, aI ∈ F2, and notation xI

identifies the monomial xi1 · · ·xik when I = {i1, . . . , ik} ⊆ N . Using this form we
define the algebraic degree of f as max{|I| : aI 6= (0, . . . , 0), I ∈ P(N)}.

Then, for any I ∈ P(N) (see [12, Proposition 1]),

aI =
⊕

x∈Fn2 /supp(x)⊆I
f(x), (2.1)

where supp(x) denotes the support of x = (x1, . . . , xn), i.e, the set of indices i for
which xi 6= 0, for 1 ≤ i ≤ n. The algebraic degree is invariant under the action of
the general affine group. This fact will be useful later.

The next is univariate representation. A univariate polynomial

f(x) =

2n−1∑
i=0

δix
i,

Notations, Definitions, and Preliminary Results 11

where δi ∈ F2n , is a multivariate representation of a function f if and only if
δ0, δ2n−1 ∈ F2 and δ2i mod 2n−1 = δ2

i for i ∈ {1, . . . , 2n − 2}. Based on this form the
polynomial degree of f is defined as the largest such i for which δi 6= 0.

All these three representation are unique for a given function.

The only representation that will be mentioned here that is not unique is the
trace representation. Every Boolean function can be presented as

Tr

(
2n−1∑
i=0

δix
i

)
,

where δi ∈ F2n .

The derivative of f ∈ Bn at a ∈ Fn2 , denoted by Daf , is a Boolean function
defined by

Daf(x) = f(x+ a) + f(x), for all x ∈ Fn2 .

Higher order derivatives of a Boolean function refer to k-dimensional vector sub-
spaces, where k > 1. Suppose {a1, a2, . . . , ak} is a basis of a k-dimensional subspace
V of Fn2 (we write dim(V) = k). The k-th derivative of f with respect to V , denoted
by DV f , is a Boolean function defined by

DV f(x) = DakDak−1
. . . Da1f(x), for all x ∈ Fn2 .

It is to be noted that DV f is independent of the choice of the basis of V .

Cryptographically most important properties of Boolean functions are

• balancedness,

• strict avalanche criterion and propagation criterion,

• algebraic degree,

• correlation immunity, and

• nonlinearity.

Algebraic degree was already explained. A function on n variables is said to be
balanced if exactly half of its output bits are zero; that is if |supp(f)| = 2n−1.

The function f satisfies the propagation criterion with respect to α, where α ∈ F2n

is non-zero, if f(x) ⊕ f(x + α) is a balanced function. It satisfies the propagation
criterion of degree k if it satisfies the propagation criterion for every α such that
wH(α) ≤ k. It satisfies strict avalanche criterion (SAC) if it satisfies the propagation
criterion of degree 1. If a function satisfies SAC, it means that the change of exactly
one of its input bits causes the change in exactly half of the output bits.

The function f is said to be correlation immune of order m if the output is sta-
tistically independent of any m-subsets of the input. If the function is also balanced,
it’s called m-resilient.

Nonlinearity is the most important property for this thesis. It measures the dis-
tance between a given function f ∈ Bn and the set of all affine functions (represented

12 2.2 Bent functions

as either x · ω, ω ∈ Fn2 , or Tr(xω), ω ∈ F2n) using the Walsh-Hadamard transform,
which is defined as

Wf (ω) =
∑
x∈Fn2

(−1)f(x)⊕x·ω, ω ∈ Fn2 ,

for vector spaces and defined as

Wf (ω) =
∑
x∈F2n

(−1)f(x)⊕Tr(xω), ω ∈ F2n ,

for finite fields. The nonlinearity of the function f is then defined as N(f) = 2n−1−
1
2 maxω∈Fn2 |Wf (ω)|. Nonlinearity is an affine invariant. The multiset [Wf (ω)|ω ∈ Fn2]
is called the Walsh-Hadamard spectrum. Maximum possible amplitude of a Walsh
transform is ±2

n
2 and the maximum possible nonlinearity is therefore 2n−1 − 2

n
2 .

The functions that reach it are called bent functions. That is, a function f is bent
if Wf (ω) ∈ {−2n/2, 2n/2}, for all ω ∈ Fn2 .

2.2 Bent functions

The term “bent function” was introduced by Rothaus [77] in 1960s’ research that was
officially published in 1976. These extremal combinatorial objects have several areas
of application, such as coding theory, maximum length sequences, cryptography, the
theory of difference sets, to name a few. Some of the most basic properties of bent
functions, as already proven by Rothaus, are that they exist only for even n, they
are unbalanced (either the number of zeroes or the number of ones must be equal

to 2n−1

(
± 1

2
n
2

+ 1

)
), and their algebraic degree is at most n

2 , except when n
2 = 1.

Every bent function has a corresponding dual function. The dual function f∗ of
a bent function f is defined in such a way that

W (α)f2−
n
2 = (−1)f

∗(α).

The dual is always a bent function and (f∗)∗ = f . There also exist self-dual functions
f for which f = f∗.

There exist many equivalent definitions of bent functions, connecting bent func-
tions to other areas of mathematics such as combinatorics. Below we present some
of them:

• The function f is bent.

• The nonlinearity of the functions f is N(f) = 2n−1 − 2
n
2 .

• Let α ∈ Fn2 be an arbitrary non-zero element. Then the derivative f(x)⊕f(x+
α) is balanced.

• The function f(x)⊕ f(x) · α is bent for all α ∈ Fn2 .

• The matrix |(−1)f(x+y)|x,y∈Fn2 is a Hadamard matrix.

Notations, Definitions, and Preliminary Results 13

• Let S be the support of the function f . Then S is a Hadamard difference set
in Fn2 with parameters (2n, 2n−1 ± 2

n
2 − 1, 2n−1 ± 2

n
2
−1).

A (±1)n×n matrix is a Hadamard matrix if all its rows and columns and mutually
orthogonal. Let G be a group with g elements and H ≤ G be a subgroup with h
elements. If the set of differences {hi − hj |hi, hj ∈ K} contains every non-zero
element of G exactly t-times, then H is a (g, k, t)-difference set of G of order k − t.
If g = 4(h− t), it is a Hadamard difference set .

Bent functions are also connected to graph theory. We define a graph Γ = (V,E),
where V is a set of vertices, and E ⊆ V × V is a set of edges. If two vertices are
connected, they are called neighbours. A graph is r-regular if every vertex v has
exactly r neighbours. A graph is (v, r, λ, µ)-strongly regular if it has v vertices, is
r-regular and if the following holds:

• Every pair of adjacent vertices u, u′ ∈ V has exactly λ common neighbours.

• Every pair of non-adjacent vertices u, u′ ∈ V has exactly µ common neigh-
bours.

We define the graph Γf of a function f ∈ Bn as a graph with V = Fn2 and two
vertices v, u ∈ V are connected if and only if f(u+ v) 6= 0. The functions f is bent
if and only if its ocrresponsding graph Γf is strongly regular with parameters

(2n, 2n−1 − 2
n
2
−1, 2n−2 − 2

n
2
−1, 2n−2 − 2

n
2
−1) if |supp(f)| = 2n−1 − 2

n
2
−1,

(2n, 2n−1 + 2
n
2
−1, 2n−2 + 2

n
2
−1, 2n−2 + 2

n
2
−1) if |supp(f)| = 2n−1 + 2

n
2
−1.

2.2.1 Classes of bent functions

Understanding the behaviour and mechanics of bent functions is a difficult task and
for n > 9 there is no classification of bent functions under the action of general affine
group on which to rely. The solution is to study constructions of bent functions.
Some of these constructions rely on already known bent functions as building blocks
to create new ones. These are called secondary constructions. Primary construc-
tions, on the other hand, are direct and they are far fewer.

Definition 2.2.1 A class of bent functions {f} ∈ Bn is complete if it is globally
invariant under the action of the general affine group (the group of all invertible
matrices of size n×n over F2 extending by a shift through b ∈ Fn2 so that x 7→ Ax⊕b)
and under the addition of affine functions. The completed class is the smallest
possible class that includes the original one.

The first, and one of the most important, primary constructions was described
in 1973, [65]. Dillon mentions in [36] that Maiorana and McFarland each discovered
this same constructions independently, so it is today named the Maiorana-McFarland
construction. Functions of the form

f(x, y) = x · π(y)⊕ g(y),

14 2.2 Bent functions

where x, y ∈ F
n
2
2 , π is a permutation, and g is an arbitrary Boolean function on n

2
variables, belong to the Maiorana-McFarland M class. Alternatively, the class can
be described in terms of finite fields:

f(x, y) = Tr(xπ(y))⊕ g(y),

where x, y ∈ F
2
n
2

, and Tr is the absolute trace. Often, the completedM class,M#,
is considered.

This is one of the few classes where the explicit construction of the duals is
known. For f ∈M we have f(x, y)∗ = y · π−1(x)⊕ g(π−1(x)).

A useful indicator for the purpose of establishing whether a given bent function
belongs to the completed Maiorana-McFarland class M# is given below.

Lemma 2.2.2 [35, p. 102] An m-variable bent function f , m = 2n, belongs toM#

if and only if there exists an n-dimensional linear subspace V of Fm2 such that the
second order derivatives

DαDβf(x) = f(x)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x⊕ α⊕ β)

vanish for any α, β ∈ V .

The second primary construction, partial spread PS, was introduced by Dillon
[34] in his PhD thesis and the properties of this class have been studied in many
recent works. This class is divided into two subclasses called PS− and PS+ class
depending on the size of the support. Any function f ∈ B2k in the PS− class is
obtained by defining its support as a collection of 2k−1 disjoint k-dimensional sub-
spaces of F2k

2 with the all zero vector discarded, where disjoint means that any pair
of these subspaces intersects only in 02k. A function in the PS+ class is constructed
by selecting 2k−1 + 1 disjoint k-dimensional subspaces of F2k

2 (with the 02k vector
included).

There are some fundamental differences between the two subclasses. Whereas
the degree of any function f ∈ B2k in PS− is always equal to k, this is not the
case for functions in PS+ whose degree may be less than k, see e.g. [34, 88]. The
algebraic representation of the bent functions in the PS class appears to be hard.
Dillon [34] exhibits one explicit representation of a subclass of PS−, denoted by
PSap, defined as follows:

f : F2k × F2k → F2 (2.2)

f(x, y) = g(xy2k−2), x, y ∈ F2k ,

where g ∈ Bk is any balanced Boolean function such that g(0) = 0. If we allow that
g(0) = 1 and furthermore that f(x, y) = 1 for y = 0, then the PSap class will have

the cardinality
(

2k+1
2k−1

)
.

In 1994 Dobbertin presented the last of what is referred to as the primary con-
structions. It is called the N class, containing functions described as f(x, φ(y)) =

g
(
x+ψ(y)

y

)
, where x, y ∈ F

2
n
2

, g is a balanced Boolean function on F
n
2
2 , and φ, ψ are

two mappings from F
2
n
2

to itself such that, if T denotes an affine subspace of F
2
n
2

Notations, Definitions, and Preliminary Results 15

spanned by the support of the Walsh transform of g, then, for any a ∈ F
2
n
2

, the
functions φ, ψ are affine on aT . The mapping φ must also be one to one. Similarly
as in the case of PS functions, finding an explicit form is in most cases a difficult
task. The N class includes both M and PS classes.

In general, secondary constructions are not direct methods and they use some
known bent functions to construct new ones. In the past few years these construc-
tions have received a lot of attention [15, 20, 67, 95, 93]. A notable example of what
are usually considered secondary constructions are C and D classes by Carlet [14],
derived from the Maiorana-McFarland class in 1993 by substituting the arbitrary
Boolean function depending on the variable y, with suitable indicator functions de-
pending on variable x or both y and x. Functions from C class are of the form

f(x, y) = x ·π(y)⊕ 1L(x), where L is a linear subspace of F
n
2
2 such that π−1(a+L⊥)

is a flat for any a ∈ F
n
2
2 . The permutation φ and the subspace L are then said to

satisfy property (C), for short (φ,L) has property (C). Functions from D class are
of the form f(x, y) = x · π(y) ⊕ 1E1(x)1E2(y), where E1, E2 are linear subspaces of

F
n
2
2 such that π(E2) = E⊥1 .

2.2.2 Vectorial bent functions

A function F mapping from Fn2 or F2n to Fm2 or F2m is a vectorial Boolean function
on n variables. For a fixed F we can write F (x) = (f1(x), f2(x). · · · , fm(x)), where
fi are Boolean functions called coordinate functions of F . We can talk about the
Walsh-Hadamard transform and nonlinearity of vectorial Boolean functions in a
similar way as about the Walsh transform and nonlinearity of Boolean functions.

The Walsh-Hadamard transform of vectorial Boolean functions is defined as

WF (γ, ω) =
∑
x∈Fn2

(−1)F (x)·γ⊕x·ω, γ ∈ Fm∗2 , ω ∈ Fn2 ,

for vector spaces and defined as

WF (γ, ω) =
∑
x∈F2n

(−1)Tr(F (x)γ)⊕Tr(xω), γ ∈ F∗2m , ω ∈ F2n ,

for finite fields. By adding the parameter γ the Walsh transform decomposes the
vectorial function F into linear combinations of its component functions F (x) · γ
or Tr(F (x)γ), which are Boolean functions. If the Walsh spectra of every linear
combination of its component functions is {±2

n
2 }, that is, if every linear combination

of its component functions is a bent functions, then F is a vectorial bent function.
Finding a vectorial bent functions therefore corresponds to finding an m-dimensional
vector space of functions in n variables whose non-zero elements are all bent.

An alternative definition of vectorial bentness is, similarly as before, that a func-
tion F : Fn2 → Fm2 is bent if and only if all its derivatives DaF (x) = F (x) +F (x+a)
are balanced, where balanced means that the derivatives take every value in Fm2
exactly 2n−m times. Another similar property is that a function F can be bent only
if n is even and m ≤ n

2 .

16 2.3 Other classes of highly nonlinear (vectorial) Boolean functions

2.3 Other classes of highly nonlinear (vectorial) Boolean
functions

One of the problems we face when searching for cryptographically strong Boolean
function is that the five desirable properties we described before cannot all be opti-
mized at the same time. We have, for example, already seen that a bent functions
f ∈ Bn cannot exceed the algebraic degree n

2 and cannot be balanced. This is one
of the reasons why not only bent functions, but other classes of highly nonlienar
Boolean functions are cryptographically interesting as well.

For odd n the functions with the maximum nonlinearity are those with the Walsh

spectra {0,±2
n+1

2 }. They are known as semi-bent functions. A functions with the
Walsh spectra {0,±2k}, where n

2 ≥ k, is called a k-plateaued function and k is its
amplitude. Partially-bent functions are all functions of the form

f(x, y) = g(x) + h(y), x ∈ Fr2, y ∈ Fn−r2 ,

where g is bent and h is affine. The class of partially-bent function includes, but
is not limited to, all bent and semi-bent functions. Every partially-bent function is
plateaued, but there exist plateaued functions which are not partially-bent.

When for any given nonzero α ∈ Fn2 the set {f(x) + f(x + α)|x ∈ Fn2} is of
cardinality 2n−1, the function f is almost perfect nonlinear or APN .

There also exist some interesting classes of highly nonlinear vectorial Boolean
functions. For odd n the function F : Fn2 → Fn2 is called almost bent if its Walsh

spectra is {0,±2
n−1

2 }. The name implies that these functions are not quite optimal,
though in this case that notion is misleading. Notice that, unlike the bent functions

in case when n is even, almost bent functions are not limited with mapping to F
n
2
2

but can freely map to the whole vector space Fn2 (or finite field F2n). There still
exists a bound on their algebraic degree, though, and it is always less or equal to
n+1

2 .

A function F : Fn2 → Fn2 is almost perfect nonlinear if for every a ∈ Fn∗2 , b ∈ Fn2
the equation F (x) + F (x + a) = b has either 0 or 2 solutions. Notice that this is
a direct generalisation of almost perfect nonlinear Boolean functions. Every almost
bent function is also almost perfect nonlinear. The reverse is not true. Even more,
any vectorial function F : Fn2 → Fn2 is almost bent if and only if F is almost perfect
nonlinear and the functions γ ·F (x), γ 6= 0, are plateaued with the same amplitude.
If n is odd, the condition “with the same amplitude” is not necessary.

2.4 Permutations and translators

Let Fpn [x] denote the polynomial ring with coefficients from the finite field Fpn ,
where p is a prime. A polynomial F ∈ Fpn [x] is said to be a permutation if its
associated mapping x 7→ F (x) over Fpn is bijective.

Here we present some properties that are used in Chapter 4. The definition of a
linear translator is also provided.

Notations, Definitions, and Preliminary Results 17

Lemma 2.4.1 Let n = 2k and L : Fpn → Fpn, L(x) = ax+ bxp
k
, where a, b ∈ F∗pn.

Let G be the subgroup of F∗pn of order pk + 1. Then we have:

(i) L is a permutation if and only if ab−1 6∈ G;

(ii) L is an involution if and only if Tnk (a) = 0 and bp
k+1 = 1− a2.

Proof. Since L(x) = x(a + bxp
k−1), ab−1 6∈ G means that the kernel of L is {0}.

Now we have
L ◦ L(x) = x(a2 + bp

k+1) + xp
k
b(a+ ap

k
).

Thus L is an involution if and only if a + ap
k

= 0 and a2 + bp
k+1 = 1. When p is

odd, note that a + ap
k

= 0 implies a2 ∈ F∗
pk

. The case p = 2 is an instance of [26,

Proposition 5]. �

A functions is said to be Fpk-linear function on Fpn (n = rk) if it is of the type

L : Fpn → Fpn , L(x) =
r−1∑
i=0

λix
pki , λi ∈ Fpn .

Definition 2.4.2 Let n = rk, 1 ≤ k ≤ n. Let f be a function from Fpn to Fpk ,
γ ∈ F∗pn and b fixed in Fpk . Then γ is a b-linear translator for f if

f(x+ uγ)− f(x) = ub, for all x ∈ Fpn and for all u ∈ Fpk .

In particular, when k = 1, γ is usually said to be a b-linear structure of the function
f (where b ∈ Fp), that is

f(x+ γ)− f(x) = b for all x ∈ Fpn .

The following general theorem about the existance of lienar translators is given
in [49] without proof since the proof is an equivalent of those given in [24] and [27],
when k = 1 and k = n, respectively.

Theorem 2.4.3 A function f from Fpn to Fpk , n = rk, has a linear translator if
and only if there is a non-bijective Fpk-linear function L on Fpn such that

f(x) = Tnk (H ◦ L(x) + βx)

for some H : Fpn → Fpn and β ∈ Fpn. In this case the kernel of L is contained in
the subspace of linear translators (including 0 by convention).

Chapter 3

Bent functions outside the
completed Maiorana-McFarland
class

This chapter is composed out of two subsections, each dealing with a specific way of
constructing bent functions lying outside the completed Maiorana-McFarland class.
The first one considers the general form of Rothaus or, to be more precise, one of
its specific forms in order to easier consider the bent properties of thus constructed
functions. The second subsection focuses on bent functions within the C and D
classes and considers sufficient conditions for them to lie outside the completed
Maiorana-McFarland class. Some of the following proofs are very long and the
reader can find them in the Appendix.

3.1 Constructing bent functions outside the Maiorana-
McFarland class using a general form of Rothaus

In the past few years the secondary constructions of bent functions have received a
lot of attention [15, 20, 67, 95, 93], and apart from that many attempts have been
made to specify explicitly the bent conditions using the trace representation, cf.
[7, 9, 22, 40, 53, 54, 57, 61, 66, 68]. A nice and exhaustive survey on bent functions
can be found in [18].

In particular, the idea of using Rothaus construction to construct bent functions
in n+2 variables by employing three bent functions in n variables whose sum is also
a bent function was examined in [20]. More precisely, these triples of bent functions
whose sum is also a bent function could be easily found within the M class [20]
and the resulting function does not necessarily belong to the same class to which
the initial functions belong to. In a similar manner, based on the initial work of
Carlet [16], Mesnager [67] investigated thoroughly the possibilities of constructing
new bent functions on the same variable space by using three suitably chosen bent
functions. We also briefly address the problem of selecting three bent functions
whose sum is again bent within the PS class and give an exact estimate on the
number of possibilities of specifying such triples of bent functions (only considering

19

20 3.1 Constructing bent functions outside M using Rothau

the Desarguesian spread though other complete spreads may be used as well).

The main objective of this chapter is to consider the Rothaus construction in a
special setting. More precisely, instead of considering three bent functions whose sum
is bent, we restrict our analysis to a somewhat simplified scenario when two of these
three functions differ only on some suitably chosen n/2-dimensional subspace. This
leads to a significant simplification of the algebraic form of the resulting function and
also gives the possibility to easily establish a connection to the Dillon’s PS class [34].
This means that the initial functions are easily specified within the PS class and it
is demonstrated that affine non-equivalent functions can be easily identified within
this particular subclass of Rothaus “class” of bent functions. Moreover, we show
that under certain conditions, when the initial functions are taken from the class
D, the resulting bent functions provably do not belong to the completed Maiorana-
McFarland class. However, similar conditions for generating bent functions outside
the completedM class are not easily satisfied when the initial functions are derived
from C. A further simplification then, corresponding to the case of having only one
initial bent function and deriving the other two from it, relates this method to C
and D classes of bent functions. It is shown that one may construct bent functions
in these classes on larger variable spaces iteratively, which is a somewhat expected
feature though such a precise statement is not transparent in the literature.

Bent functions derived using this special case of Rothaus construction (thus
relating the initial bent functions through the complement operation or addition of
the indicator of an n/2-dimensional subspace) exhibit some interesting properties in
terms of normality. The (weak) normality of bent functions is defined as the property
of a function being (affine) constant on some n/2-dimensional affine subspace [37].
The main primary classes of bent functions, namely M, PS+ and N [37], were
shown to be normal bent functions [10]. This is also true for the class C derived
from theM class [10, Lemma 13]. Due to this, there are only a few examples known
in the literature [55, 37, 17] of non-normal bent functions and some of these are also
not weakly normal [55].

We provide several examples of non-normal bent functions in 10 variables (all
tested functions, derived either from C or D class, appear to be non-normal) and
in particular one example regards a bent function which is provably outside the
completed M class. We notice that a weakly normal bent function (which is non-
normal) can be turned into a normal bent function through addition of a suitable
linear function but the converse is not always true. This is because, in certain cases,
adding any linear function to a normal bent function it still might be the case that
the resulting function remains normal (thus constant on some n/2-dimensional flat).
Thus, it is of importance to investigate whether our non-normal bent functions are
also not weakly normal. More precisely, there is a possibility that non-normality
only disguises weak normality in which case such a non-normal function becomes
normal after addition of an affine function. Our efforts to identify non-normal bent
functions which are also not weakly normal have however proved unsuccessful. This
also implies that we are unable to give more precise statements whether some of
non-normal bent functions (which are weakly normal) identified here are actually
outside the completed versions of known primary classes.

Bent functions outside the completed Maiorana-McFarland class 21

3.1.1 A special case of Rothaus’ construction

Throughout this section we denote (0, 0, . . . , 0) ∈ Fn2 by 0n.

In the mid sixties (though published ten years later) Rothaus [77] proposed the
following construction method of obtaining new bent functions in n + 2 variables
starting with three suitable bent functions in n variables.
Rothaus’ construction [77]: Let x = (x1, x2, . . . , xn) ∈ Fn2 and xn+1, xn+2 ∈ F2.
Let A(x), B(x), C(x) be bent functions on Fn2 such that A(x)⊕B(x)⊕C(x) is bent
as well, then the function defined for every element (x, xn+1, xn+2) ∈ Fn+2

2 by:

f(x, xn+1, xn+2)
= A(x)B(x)⊕A(x)C(x)⊕B(x)C(x)⊕ xn+1xn+2

⊕ [A(x)⊕B(x)]xn+1 ⊕ [A(x)⊕ C(x)]xn+2

(3.1)

is a bent function in n+ 2 variables.

In what follows we employ the construction of Rothaus in a particular way. The
following lemma gives more precision to a known result on the minimum distance
of bent functions.

Lemma 3.1.1 Let f0, f1 be two bent functions in n variables. Let ∆ ⊆ Fn2 be a set
and 1∆(x) be the function that equals 1 if x is in ∆, otherwise it equals 0. If either
∆ ⊆ (supp(f0)∩supp(f1)) or ∆ ⊆ (supp(1⊕f0)∩supp(1⊕f1)) and f0⊕1∆, f1⊕1∆

are also bent, then we have |∆| = 2
n
2 .

Proof. If ∆ ⊆ supp(f0) ∩ supp(f1), then |supp(fi)| > |supp(fi ⊕ 1∆)|, for i =
0, 1. Since f0 ⊕ 1∆, f1 ⊕ 1∆ are also bent, we have |supp(fi)| = 2n−1 + 2

n
2
−1 and

|supp(fi ⊕ 1∆)| = 2n−1 − 2
n
2
−1. It implies that |∆| = 2

n
2 .

Similarly, if ∆ ⊆ supp(1⊕ f0) ∩ supp(1⊕ f1), then |supp(fi)| < |supp(fi ⊕ 1∆)|,
for i = 0, 1. Since f0 ⊕ 1∆, f1 ⊕ 1∆ are also bent, we have |supp(fi)| = 2n−1 − 2

n
2
−1

and |supp(fi ⊕ 1∆)| = 2n−1 + 2
n
2
−1. Thus, |∆| = 2

n
2 . �

Remark 3.1.2 If ∆ = ∆1 ∪ ∆2 such that ∆1 ⊆ supp(f0) ∩ supp(f1) and ∆2 ⊆
supp(1⊕f0)∩supp(1⊕f1), thus f0(x) = f1(x) for x ∈ ∆, then either |∆1| = |∆2| or
|∆1| = |∆2| ± 2

n
2 depending on the weight of fi. This case is more general since the

cardinality of |∆1| and |∆2| can be ”arbitrary” and it allows us to use bent functions
f0 and f1 from the classes C and D, see also Section 3.1.2.1.

Theorem 3.1.1 Let x = (x1, . . . , xn) ∈ Fn2 and xn+1, xn+2 ∈ F2. Let f0, f1 be two
Boolean functions in n variables such that f0(x) = f1(x) for x ∈ ∆, where ∆ ⊆ Fn2 .
Then, the function f defined as

f(x, xn+1, xn+2)
= (xn+1 ⊕ xn+2 ⊕ 1)f0(x)⊕ (xn+1 ⊕ xn+2)f1(x)
⊕ (xn+2 ⊕ 1)1∆(x)⊕ xn+1xn+2 ⊕ xn+1,

(3.2)

is bent if and only if all the functions f0, f1, f0⊕1∆, f1⊕1∆ are also bent. Moreover,
if f is bent then we necessarily have |∆| = 2

n
2 .

22 3.1 Constructing bent functions outside M using Rothau

Proof. The sufficiency can be easily proved by setting A(x) = f0(x), B(x) =
f1(x) ⊕ 1 and C(x) = f1(x) ⊕ 1∆(x) in (3.1) and verifying that we obtain (3.2).
Since A,B,C, and their sum are bent functions, it suffices that f0, f1, f0 ⊕ 1∆,
f1 ⊕ 1∆ are all bent, which is true by assumption, thus f is bent as well.

On the other hand, both necessary and sufficient conditions can be proved using
the Walsh transform of f at point (α, αn+1, αn+2) ∈ Fn+2

2 which equals to :

Wf (α, αn+1, αn+2)=Wf0⊕1∆
(α) + (−1)1+αn+1Wf1⊕1∆

(α)
+(−1)αn+2Wf1(α) + (−1)αn+1+αn+2Wf0(α),

which is easily obtained by considering the restrictions of f with respect to (xn+1, xn+2),
thus splitting

∑
(x,xn+1,xn+2)∈Fn+2

2

(−1)f(x,xn+1,xn+2)⊕(x,xn+1,xn+2)·(α,αn+1,αn+2) into four sums.

We now derive the values of Wf (α, αn+1, αn+2) for different (αn+1, αn+2) ∈ F2
2,

assuming f0(x) = f1(x) for x ∈ ∆ which is later shown to be necessary. For
(αn+1, αn+2) = (0, 0), we have

Wf (α, 0, 0)
= Wf0⊕1∆

(α) + (−1)Wf1⊕1∆
(α) + Wf1(α) +Wf0(α)

=
∑

x∈Fn2 \∆
(−1)f0(x)⊕x·α +

∑
x∈∆

(−1)f0(x)⊕1⊕x·α+Wf0(α)

+ (−1)
∑

x∈Fn2 \∆
(−1)f1(x)⊕x·α+

∑
x∈∆

(−1)f1(x)⊕x·α+Wf1(α)

= 2
∑

x∈Fn2 \∆
(−1)f0(x)⊕x·α + 2

∑
x∈∆

(−1)f0(x)⊕x·α.

Thus, Wf (α, 0, 0) = 2
∑
x∈Fn2

(−1)f0(x)⊕x·α and similarly for the remaining values of

(αn+1, αn+2):

Wf (α, αn+1, αn+2)

=

2
∑
x∈Fn2

(−1)f1(x)⊕1∆(x)⊕x·α if (αn+1, αn+2)=(1, 0),

−2
∑
x∈Fn2

(−1)f1(x)⊕x·α if (αn+1, αn+2)=(0, 1),

2
∑
x∈Fn2

(−1)f0(x)⊕1∆(x)⊕x·α if (αn+1, αn+2)=(1, 1).

Combining the above items, f is bent if and only if f0, f1, f0 ⊕ 1∆ and f1 ⊕ 1∆

are bent. The necessity that |∆| = 2
n
2 follows from the fact that both f0 and f0 +1∆

are bent. �

In Theorem 3.1.1 the given conditions are both necessary and sufficient for the
subclass of the Rothaus class considered here. This raises an important question
whether the conditions that the initial functions and their sum are bent are in
general also necessary in the Rothaus construction.

Bent functions outside the completed Maiorana-McFarland class 23

Remark 3.1.3 Theorem 3.1.1 can be extended to include three different functions
f0, f1, f2 to which some suitable characteristic functions are added. Nevertheless,
the addition of the indicator ∆ along with the condition that f0(x) = f1(x) = f2(x)
for x ∈ ∆ gives harder conditions for the choice of f0, f1, f2 and the proof that
f defined similarly as in (3.2) belongs to the completed Maiorana-McFarland class
(M#) would be much more complicated, see also Lemma 3.1.6. Furthermore, by
setting f0 = f1 for f defined as in Theorem 3.1.1 we obtain

f(x, xn+1, xn+2) = f0(x)⊕ xn+1xn+2 ⊕ xn+1 ⊕ 1∆′ , (3.3)

which is also a bent function in n+ 2 variables, where ∆′ = ∆× {(xn+1, 0)|xn+1 ∈
F2} ∈ Fn2 × F2

2.

The existence of functions satisfying the conditions in Theorem 3.1.1 is easily con-
firmed by considering the PS− class and defining ∆ to be an n

2 -dimensional linear
subspace. Indeed, if both f0 and f1 are bent functions that belong to PS− then
adding the characteristic function ∆ = S, where S is an n

2 -dimensional subspace and
S 6⊂ supp(fi), for i = 0, 1, implies that the functions f0(x)⊕1∆(x) and f1(x)⊕1∆(x)
belong to PS+. Nevertheless, it is not clear whether the function f belongs to the
PS = PS− ∪ PS+ class.

To show the affine non-equivalence of two Boolean functions (unless it is obvious
that they belong to the same class) is in general a hard problem. In what follows, we
show that for suitably chosen initial bent functions f0, f1 and f ′0, f

′
1 in Theorem 3.1.1

the functions f and f ′ defined by means of (3.2) (using f0, f1 and f ′0, f
′
1, respectively)

are not affine equivalent. To achieve this we consider two different functions f0, f1 ∈
PS−, whose sum f0⊕ f1 ∈ PS−, and define f as in (3.2) using these two functions.
The indicator ∆ is chosen to be an n/2-dimensional subspace such that both f0⊕1∆

and f1⊕1∆ are in PS+. On the other hand, one can easily select f ′0, f
′
1 ∈ PS− such

that f ′0 = f ′1 = f0 and additionally if f ′0 ⊕ 1∆ is in PS+ so is f ′1 ⊕ 1∆, for the same
indicator ∆. At the same time, we obviously have f0 6= f1. Using (3.2) we get,

f(x, xn+1, xn+2) = g(x, xn+1, xn+2)
⊕(xn+1 ⊕ xn+2)(f0(x)⊕ f1(x))⊕ xn+21∆(x),

(3.4)

where g(x, xn+1, xn+2) = 1∆(x)⊕ f0(x)⊕ xn+1xn+2 ⊕ xn+1, and similarly we have

f ′(x, xn+1, xn+2) =g(x, xn+1, xn+2)⊕ xn+21∆(x). (3.5)

We notice that, due to the above assumptions, g(x) is the same regardless of whether
we use f0, f1 or f ′0, f

′
1, and furthermore deg(g) ≤ n/2.

Theorem 3.1.2 Let n be an even integer and let f and f ′ be defined as (3.4) and
(3.5), respectively. Then there do not exist an invertible binary matrix A = (aij) of
size (n+ 2)× (n+ 2) and a binary vector b = (b1, b2, . . . , bn+2) ∈ Fn+2

2 such that

f ′(A(x, xn+1, xn+2)⊕ b) = f(x, xn+1, xn+2), (3.6)

and hence f and f ′ are affine non-equivalent.

24 3.1 Constructing bent functions outside M using Rothau

The lengthy proofs of Theorem 3.1.2 is given in the Appendix.

Remark 3.1.4 Theorem 3.1.2 essentially claims that f ′ does not belong to the com-
pleted class of f . Notice that the affine equivalence in Theorem 3.1.2 does not include
addition of an affine function which is irrelevant in this context (the proof establishes
the non-equivalence in terms of monomials of largest degree n/2 + 1).

3.1.1.1 Showing non-belongingness to the completed Maiorana-McFarland
class

In this section we propose sufficient conditions for the bent function f defined as
in Theorem 3.1.1 not to belong to the completed Maiorana-McFarland class (M#).
In [14], Carlet introduced two new classes of bent functions derived from M bent
functions, so-called C and D, by adding to the functions in theM class the indicators
of some vector subspaces.

The class D, used in Theorem 3.1.3 below, consists of all the functions of the
form

φ(x(2)) · x(1) ⊕ 1E1(x(1))1E2(x(2)),

where φ is any permutation on F
n
2
2 , E1 and E2 are two linear subspaces of F

n
2
2 such

that φ(E2) = E⊥1 , and 1E1(x(1)) (resp. 1E2(x(2)) is the characteristic function of E1

(resp. E2). Here, E⊥1 denotes the orthogonal subspace of E1, and throughout this

section we use x = (x1, . . . , xn) = (x(1), x(2)) ∈ F
n
2
2 × F

n
2
2 . In particular, an explicit

subclass of D, denoted by D0, contains all elements of the form x(1) ·φ(x(2))+δ0(x(1)).
The notation δ0(x(1)) means the Dirac symbol, namely δ0(x(1)) = 1 if x(1) = 0n

2
,

and 0 otherwise. This implies that the linear subspace E1 × E2 corresponds to

{0n
2
} × Fn/22 .
To show that Theorem 3.1.1 can generate functions that do not belong to the

completed Maiorana-McFarland class (M#), we need to use Lemma 2.2.2 and some
preparatory results.

Lemma 3.1.5 Let h ∈ Bn be an arbitrary Boolean function such that deg(h) ≥ 2.
If V is any subspace of Fn2 and dim(V) ≥ n− 1, then there exists at least one vector
α ∈ V such that

Dαh(x) = h(x)⊕ h(x⊕ α) 6= constant.

Proof. From the definition of linear structures, if Dβh(x) = constant then β ∈ Fn2
is called a linear structure of h. We also know if deg(h) ≥ 2, then |{β | Dβh(x) =
constant, β ∈ Fn2}| ≤ 2n−2. Hence, there exists at least one vector α ∈ V such that

Dαh(x) = h(x)⊕ h(x⊕ α) 6= constant,

because dim(V) ≥ n− 1 and |V | ≥ 2n−1 > 2n−2. �

For convenience, we denote a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) ∈ F
n
2
2 ×F

n
2
2 ×F2×F2

and let the subspace of Fn+2
2 given by {(x(1), 0n

2
, xn+1, 0) | x(1) ∈ F

n
2
2 , xn+1 ∈ F2} be

denoted by Λ.

Bent functions outside the completed Maiorana-McFarland class 25

Lemma 3.1.6 Let n > 4 be an even integer and let f0(x) = π(x(2)) · x(1), f1(x) =

φ(x(2)) · x(1), where π and φ are two permutations on F
n
2
2 . Then, f ∈ Bn+2 defined

as

f(x, xn+1, xn+2)

= (xn+1 ⊕ xn+2 ⊕ 1)f0(x)⊕ (xn+1 ⊕ xn+2)f1(x) (3.7)

⊕ (xn+2 ⊕ 1)1E1(x(1))1E2(x(2))⊕ xn+1xn+2 ⊕ xn+1,

is bent, where E1, E2 are linear subspaces of F
n
2
2 such that π(E2) = E⊥1 (resp.

φ(E2) = E⊥1). Assume now that π and φ satisfy:

1. π (or φ) has no nonzero linear structure;

2. ν · (π ⊕ φ) 6= constant for ν ∈ F
n
2
2 \{0n2 };

3. max
ν∈F

n
2
2

deg(ν · (π ⊕ φ)) ≥ 2,

4. E1 ⊂ F
n
2
2 and dim(E1) ≤ n

2 − 2 (that is, deg(1E1(x(1))) ≥ 2).

Let V denote an arbitrary n+2
2 -dimensional subspace of Fn+2

2 . Furthermore, as-
sume that one of the following is satisfied:

i) There exist (a1, 0n
2
, a3, 0), (b1, 0n

2
, b3, 0) ∈ Λ \ {0n+2} such that a3 = b3 = 1, or

a3 = 0, b3 = 1, or a3 = 1, b3 = 0.

ii) There exist a, b ∈ V such that (a2, a4) 6= (b2, b4), Da2Db2(π⊕ϕ)(x(2)) 6= 0 and
a4 = b4 = 0.

iii) There is a = (a1, 0n
2
, a3, 0) ∈ V ∩ Λ, such that (a1, a3) 6= 0n

2
+1, and assume

the existence of b(1) = (b
(1)
1 , b

(1)
2 , b

(1)
3 , b

(1)
4) ∈ V such that b

(1)
2 6= 0n

2
and b

(1)
3 =

b
(1)
4 , and b(2) = (b

(2)
1 , b

(2)
2 , b

(2)
3 , b

(2)
4) ∈ V such that b

(2)
2 6= 0n

2
and D

b
(2)
2

(π ⊕
φ)(x(2)) 6= constant.

iv) There exist a = (a1, 0n
2
, 0, 0) ∈ Λ, b = (b1, 0n

2
, 1, 1) ∈ V such that Da11E1(x(1)) 6=

0.

v) There exist a = (a1, 0n
2
, 0, 0) ∈ Λ, b = (b1, 0n

2
, 0, 1) ∈ V such that Da11E1(x(1)) 6=

constant.

vi) There exist a = (a1, 0n
2
, 0, 0) ∈ Λ and b = (b1, b2, b3, b4) ∈ V such that

Da1Db11E1(x(1)) 6= 0.

Then, DaDbf(x, xn+1, xn+2) does not vanish for the above specified a, b ∈ Fn+2
2 .

It is sufficient to show that for an arbitrary n+2
2 -dimensional subspace V of Fn+2

2

one can always find two vectors a, b (viewed as a basis of a 2-dimensional subspace
of V) such that DaDbf(x, xn+1, xn+2) 6= 0. The lengthy proofs of both Lemma 3.1.6
and Proposition 3.1.7 below are given in the Appendix.

26 3.1 Constructing bent functions outside M using Rothau

Proposition 3.1.7 Let f be defined as in Lemma 3.1.6. Then, for any n+2
2 -dimen-

sional subspace V of Fn+2
2 one can find two vectors a, b which fall under one of the

forms given by items i)− vi) in Lemma 3.1.6.

From Lemma 3.1.6 and Proposition 3.1.7 we easily get the following result which
essentially embeds the characterization of bent functions in D through the specifi-
cation of the indicator 1∆(x) = 1E1(x(1))1E2(x(2)) so that both f0⊕ 1∆ and f1⊕ 1∆

belong to D.

Theorem 3.1.3 Let n > 4 be an even integer and let f0(x) = π(x(2)) ·x(1), f1(x) =

φ(x(2)) · x(1), where π and φ are two permutations on F
n
2
2 . Then, f defined as

f(x, xn+1, xn+2) (3.8)

= (xn+1 ⊕ xn+2 ⊕ 1)f0(x)⊕ (xn+1 ⊕ xn+2)f1(x)

⊕ (xn+2 ⊕ 1)1E1(x(1))1E2(x(2))⊕ xn+1xn+2 ⊕ xn+1,

is bent, where E1, E2 are linear subspaces of F
n
2
2 such that π(E2) = E⊥1 (resp.

φ(E2) = E⊥1). Further, if π and φ satisfy:

1. π (or φ) has no nonzero linear structure;

2. ν · (π ⊕ φ) 6= constant for ν ∈ F
n
2
2 \{0n2 };

3. max
ν∈F

n
2
2

deg(ν · (π ⊕ φ)) ≥ 2,

4. E1 ⊂ F
n
2
2 and dim(E1) ≤ n

2 − 2 (that is, deg(1E1(x(1))) ≥ 2),

then f does not belong to M#.

Example 3.1.1 By means of Theorem 3.1.3, we were able to specify a 10-variable
bent function f of algebraic degree 5, which does not belong to M#. In addition,
this function and its dual are non-normal and therefore f 6∈ N ∪ PS+. However,
this function and its dual are weakly normal.

Let E1 = E1
⊥ = {(0000), (0011), (1100), (1111)} and E2 = {(0000), (0010), (1101),

(1111)}. The permutations π and φ (using hexadecimal format) are defined as

{0 1 2 3 4 5 6 7 8 9 A B C D E F} π7→
{3 1 F 6 E A 9 5 2 8 4 B D 0 7 C},
{0 1 2 3 4 5 6 7 8 9 A B C D E F} φ7→
{3 6 F 1 A 2 9 E B 4 5 D 7 0 8 C}.

3.1.1.2 Other bent functions derived from C class and non-normality

In difference to class D, when considering the class C of bent functions [14] which is
also derived from theM class, the situation is somewhat different since the sufficient
conditions of Theorem 3.1.3 turn out to be harder to satisfy.

Bent functions outside the completed Maiorana-McFarland class 27

The class C contains all the functions of the form

φ(x(2)) · x(1) ⊕ 1∆(x(1)),

where ∆ is a linear subspace of F
n
2
2 and φ = (φ1, . . . , φn

2
) is any permutation on F

n
2
2

such that, for any element a of F
n
2
2 , the set φ(a⊕∆

⊥
) is a flat.

The same arguments, as used in Lemma 3.1.6 and Proposition 3.1.7 to show that
f does not belong toM#, apply now to the case when 1E1(x(1))1E2(x(2)) is replaced
by 1∆(x(1)), provided that a similar set of conditions is satisfied.

Corollary 3.1.8 Let n > 4 be an even integer and denote x = (x(1), x(2)) =

(x1, . . . , xn) ∈ F
n
2
2 × F

n
2
2 and xn+1, xn+2 ∈ F2. Let f0(x) = π(x(2)) · x(1) and

f1(x) = φ(x(2)) · x(1). Then, f defined by

f(x, xn+1, xn+2) (3.9)

= (xn+1 ⊕ xn+2 ⊕ 1)f0(x)⊕ (xn+1 ⊕ xn+2)f1(x)

⊕(xn+2 ⊕ 1)1∆(x(1))⊕ xn+1xn+2 ⊕ xn+1,

is bent, where ∆ is any linear subspace of F
n
2
2 , π and φ are two permutations on F

n
2
2

such that, π(∆) = φ(∆) and for any element α(2) of F
n
2
2 , the set φ(α(2)⊕∆

⊥
) (resp.

π(α(2) ⊕∆
⊥

)) is a flat. Further, if π and φ satisfy:

1. π (or φ) has no nonzero linear structure;

2. ν · (π ⊕ φ) 6= constant for ν ∈ F
n
2
2 \{0n2 };

3. max
ν∈F

n
2
2

deg(ν · (π ⊕ φ)) ≥ 2;

4. ∆ ⊂ F
n
2
2 and dim(∆) ≤ n

2 − 2 (that is, deg(1∆(x(1))) ≥ 2),

then f does not belong to M#.

Remark 3.1.9 Unfortunately, it seems that if π satisfies π(α(2) ⊕∆
⊥

) is a flat for

any element α(2) of F
n
2
2 , then π must have nonzero linear structures. This might be

the reason that (for small n) we could not find permutations satisfying the condition
i) of Corollary 3.1.8, though we were unable to prove this fact.

We also desired to study the non-normality of thus constructed functions. Check-
ing the normality of a function is in general a difficult problem. The first non-normal
bent functions were constructed in [10] in 2006. In the same article an efficient algo-
rithm for checking the normality of a given function was also introduced. Our wish
was to check the normality of functions constructed with Theorem 3.1.3 but it turned
out that the actual implementation of the described algorithm was unfortunately not
available.

Therefore we wrote for this purpose a new algorithm using the programming
package MAGMA. We briefly describe it here. The main idea is that we construct a

28 3.1 Constructing bent functions outside M using Rothau

graph based on the function and then rely on an algorithm already implemented in
the MAGMA program to search for possible cliques in the graph which correspond
to the subspaces.

Lemma 3.1.10 Let f : Fn2 → F2 be a Boolean function, let c ∈ F2 be a constant,
and let N be the set of all such elements x ∈ Fn2 that f(x) = c. The graph G is
constructed in the following way. Let N be its set of vertices and let x, y ∈ N be
connected if and only if (y − x) ∈ N as well. Then any subspace of dimension k
on which the function f is constant must correspond to a clique of power 2k in the
graph G. The inverse is not necessarily true.

Proof. If there exists a subspace of dimension k on which the function f is constant,
then all of its elements are contained in N . Because of the properties of the subspace
all these elements will have to be pairwise connected in the graph G and therefore
form a clique of size 2k. Yet if we take an arbitrary clique of size 2k we have no
guarantee that it actually corresponds to a subspace. Let x, y be arbitrary elements
of the clique. Then y − x must be contained in N but we have no guarantee that it
is also contained in the clique. If it is not, then the clique does not correspond to a
subspace. �

The algorithm consists of three main parts and repetition:

• creating the graph G that corresponds to the function f on n variable as
described in Lemma 3.1.10,

• searching for all cliques of size 2
n
2 using MAGMA’s implemented function,

• checking whether any of the found cliques corresponds to a subspace,

• repeating the process for c = 0 and c = 1.

If no such clique is found, the function f is non-normal.
One example of π and φ satisfying the conditions ii), iii) and iv) of Corollary 3.1.8

but not condition i) is given below. The functions was tested using our normality
algorithm and it was demonstrated that it is a non-normal bent functions which
might not belong to any known primary classes (possibly toM#) of bent functions.

Example 3.1.2 Again, using Corollary 3.1.8, we can design a 10-variable non-
normal bent function f with algebraic degree 4, whose dual is also a non-normal
bent function, though both functions are weakly normal. Being non-normal, this
function does not belong to M∪PS+ ∪ N and furthermore since deg(f) = 4 then
f 6∈ PS− class. Let n = 8 and ∆ = {(0000), (0101), (1010), (1111)}. Further, we

have ∆ = ∆
⊥

.
The permutations π and φ satisfying ii)− iv) are defined as:

{0 1 2 3 4 5 6 7 8 9 A B C D E F} π7→
{A B 9 7 1 0 8 6 3 D F E 2 C 4 5},
{0 1 2 3 4 5 6 7 8 9 A B C D E F} φ7→
{A D C E 2 0 1 6 9 4 F 7 B 3 8 5}.

Bent functions outside the completed Maiorana-McFarland class 29

Computer simulations indicate that all 10-variable functions constructed by
means of Corollary 3.1.8 are non-normal bent functions but unfortunately they are
all weakly normal. It is unclear whether these functions still belong to M# since
the item i) is generally not satisfied.

We remark that in Corollary 3.1.8 the choice of the subspace indicator 1∆(x(1))
defined on the variable space x1, . . . , xn/2 appears to be crucial for ensuring that f

does not belong to M#, as illustrated in the following result. Replacing 1∆(x(1))
by any function g defined on the variable space xn/2+1, . . . , xn does not give bent

functions outside the M# class.

Corollary 3.1.11 Let n > 4 be even and denote x = (x(1), x(2)) = (x1, . . . , xn) ∈
F
n
2
2 × F

n
2
2 and xn+1, xn+2 ∈ F2. Let f0(x) = π(x(2)) · x(1) and f1(x) = φ(x(2)) · x(1).

Then, f , defined as

f(x, xn+1, xn+2) (3.10)

= (xn+1 ⊕ xn+2 ⊕ 1)f0(x)⊕ (xn+1 ⊕ xn+2)f1(x)

⊕(xn+2 ⊕ 1)g(x(2))⊕ xn+1xn+2 ⊕ xn+1,

is bent and belongs to M#, where π, φ are two permutations on F
n
2
2 and g ∈ Bn/2 is

arbitrary.

Proof. Clearly, f0 and f1, are bent. Set ∆ = F
n
2
2 × supp(g(x(2))) ⊂ Fn2 . Thus,

1∆(x) = g(x(2)). Hence, we know f0(x) ⊕ 1∆(x) and f1(x) ⊕ 1∆(x) are bent. Ac-
cording to Theorem 3.1.1, the function f is bent.

We prove that f belongs to M#, by using Lemma 2.2.2. We need to find an
(n+2

2)-dimensional subspace V such that

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, xn+1, xn+2) = 0, (3.11)

for any (a1, a2, a3, a4), (b1, b2, b3, b4) ∈ V .

Let V = {(x(1), 0n/2, xn+1, xn+1)|x(1) ∈ F
n
2
2 , xn+1 ∈ F2}. We have

D(a1,0n
2
,a3,a3)D(b1,0n

2
,b3,b3)f(x, xn+1, xn+2) = 0

for any (a1, a2, a3, a4), (b1, b2, b3, b4) ∈ V . Hence, f belongs to M#. �

Open Problem 1 The problem of providing generic methods for finding suitable
permutations and related subspaces satisfying the conditions of Theorem 3.1.3 and
its corollaries is of great significance. We believe that there are many more instances
of non-normal bent functions (which are possibly not weakly normal) that can be
specified using the results in this section.

3.1.2 Using Rothaus construction iteratively

In this section we extend the original construction of Rothaus to be valid not only
as efficient method for defining bent functions in (n+2) variables but also in (n+4)

30 3.1 Constructing bent functions outside M using Rothau

variables. Furthermore, we indicate the possibility of constructing bent functions in
C and D iteratively.

Due to symmetry, the original class of bent functions defined by (3.1) can be
easily extended by defining two additional bent functions as follows:

f ′(x, xn+1, xn+2)
= A(x)B(x)⊕A(x)C(x)⊕B(x)C(x)⊕ xn+1xn+2

⊕[B(x)⊕ C(x)]xn+1 ⊕ [A(x)⊕B(x)]xn+2,

f ′′(x, xn+1, xn+2)
= A(x)B(x)⊕A(x)C(x)⊕B(x)C(x)⊕ xn+1xn+2

⊕[A(x)⊕ C(x)]xn+1 ⊕ [B(x)⊕ C(x)]xn+2.

Using the exactly same arguments as Rothaus the functions f ′ and f ′′ are also bent
assuming that A,B,C and A ⊕ B ⊕ C are bent. Then provided that f ⊕ f ′ ⊕ f ′′
(where f is defined by (3.1)) is also bent one could use these functions as initial
functions in the Rothaus construction to possibly generate an infinite sequence of
bent functions on larger variable spaces. It is readily verified that

(f ⊕ f ′ ⊕ f ′′)(x, xn+1, xn+2) (3.12)

= A(x)B(x)⊕A(x)C(x)⊕B(x)C(x)⊕ xn+1xn+2.

Nevertheless, it is well-known that this particular form implies the following condi-
tion, namely f ⊕ f ′ ⊕ f ′′ is bent if and only if A(x)B(x) ⊕ A(x)C(x) ⊕ B(x)C(x)
is bent. Furthermore, it was shown in [67] that this function is bent if and only if

Ã ⊕ B̃ ⊕ C̃ = ˜A⊕B ⊕ C, where Ã denotes the dual bent function of A. Several
examples of such triples of bent functions were found in [67] and consequently tak-
ing such bent functions A,B and C we can use f, f ′, f ′′ ∈ B\+∈ as initial functions
in the Rothaus construction. However, these initial functions can also be specified
using suitably chosen A,B and C in the PSap class, see also Section 3.1.3. The main
question to answer is whether the bent conditions used in Rothaus construction are
automatically satisfied if we proceed with this iterative process. Thus, we analyze a
set of functions defined on B\+4 by:

h(x, xn+3, xn+4) = (ff ′⊕ff ′′⊕f ′f ′′)(x)⊕ xn+3xn+4

⊕[f(x)⊕ f ′(x)]xn+3 ⊕ [f(x)⊕ f ′′(x)]xn+4,
h′(x, xn+3, xn+4) = (ff ′⊕ff ′′⊕f ′f ′′)(x)⊕ xn+3xn+4

⊕[f ′(x)⊕ f ′′(x)]xn+3 ⊕ [f(x)⊕ f ′(x)]xn+4,
h′′(x, xn+3, xn+4) = (ff ′⊕ff ′′⊕f ′f ′′)(x)⊕ xn+3xn+4

⊕[f(x)⊕ f ′′(x)]xn+3 ⊕ [f ′(x)⊕ f ′′(x)]xn+4,

where x = (x, xn+1, xn+2) ∈ Fn+2
2 .

Once again, (h⊕ h′⊕ h′′)(x, xn+3, xn+4) = f(x)f ′(x)⊕ f(x)f ′′(x)⊕ f ′(x)f ′′(x)⊕
xn+3xn+4 and the only issue that needs to be resolved is whether f(x)f ′(x) ⊕
f(x)f ′′(x)⊕f ′(x)f ′′(x) is a bent function. For convenience, we write f(x, xn+1, xn+2) =
d(x) ⊕ u(x, xn+1, xn+2) and similarly f ′(x, xn+1, xn+2) = d(x) ⊕ u′(x, xn+1, xn+2),
f ′′(x, xn+1, xn+2) = d(x)⊕u′′(x, xn+1, xn+2), where d(x) = A(x)B(x)⊕A(x)C(x)⊕

Bent functions outside the completed Maiorana-McFarland class 31

B(x)C(x) and u, u′, u′′ correspond to the remaining parts. Then, it can be readily
verified that

(ff ′⊕ff ′′⊕f ′f ′′)(x)=d(x)⊕xn+1xn+2

⊕[xn+1 ⊕ xn+2 ⊕ xn+1xn+2][d⊕A⊕B ⊕ C](x).

Denoting by G = A ⊕ B ⊕ C, the last expression can be also written in terms of
concatenation so that ff ′ ⊕ ff ′′ ⊕ f ′f ′′ = d||G||G||G⊕ 1. Thus, it is both sufficient
and necessary to have d = G, or equivalently AB ⊕AC ⊕BC = A⊕B ⊕C, for the
iterative method to be efficient because then ff ′ ⊕ ff ′′ ⊕ f ′f ′′ is a bent function as
well. This is trivially satisfied if we assume that A = B = C but it also reduces the
Rothaus construction into a trivial method of constructing new bent functions from
the known ones.

Open Problem 2 It would be of interest to specify conditions on initial functions
A,B,C along with suitably defined f, f ′ and f ′′, where f ′ and f ′′ are symmetric
versions of f , that would give rise to an infinite sequence of bent functions stemming
from the method of Rothaus.

3.1.2.1 Iterative construction of bent functions in C and D

Even though the classes C and D are derived from M class, due to the addition
of a characteristic function 1∆ the preservation of the class in an iterative manner
is not completely straightforward. To the best of our knowledge, though rather
elementary, the result below is not stated explicitly in the literature.

Theorem 3.1.4 Let n and m be two even integers. Let f0(x) = π(x(2)) ·x(1) and its

associated bent function in C or D be defined as f0(x) + 1∆(x), where ∆ = L× F
n
2
2

or ∆ = E1 × E2. Then, the function f ∈ Bn+m defined as

f(x, xn+1, xn+2, . . . , xn+m)

= f0(x)⊕
m/2⊕
j=1

xn+2j−1xn+2j ⊕ 1∆′ ,
(3.13)

is bent and belongs to C or D (depending on the choice of ∆), where ∆′ = ∆ ×
{(xn+1, 0)|xn+1 ∈ F2}×{(xn+3, 0)|xn+3 ∈ F2}× · · ·× {(xn+m−1, 0)|xn+m−1 ∈ F2} ⊂
F
n
2
2 × F

n
2
2 × Fm2 .

In particular, if f0 belongs to D0 then f also belongs to D0.

Proof. The proof is a straightforward analysis, employing the fact that f0 ⊕ 1∆

is bent and that the choice of ∆′ indeed implies that the condition π(α ⊕ L⊥) is a
flat for any α (alternatively π(E2) = E⊥1 for class D) is roughly speaking preserved
on the increased variable space. The latter is due to the particular choice of the
indicator ∆′. �

32 3.1 Constructing bent functions outside M using Rothau

3.1.3 Counting bent functions in PSap satisfying Rothaus condition

In the context of Rothaus’ construction, the issue of specifying three bent functions
(whose sum is also bent) was initially addressed in [20] by employing the M class.
Also, based on the initial work of Carlet [16], a similar idea of considering bent
functions of the form g(x) = A(x)B(x) ⊕ A(x)C(x) ⊕ B(x)C(x), where A,B,C
are bent, was investigated by Mesnager [67]. Notice that in this case the variable
space remains unchanged and the bent conditions are also related to the duals of
the initial functions, see [67] for more details. Basically, this form corresponds to
the restriction of f given by (3.1) obtained by fixing (xn+1, xn+2) = (0, 0).

This motivates us to investigate the possibility of finding three initial bent func-
tions for (extended) Rothaus’ construction within the PS class. In particular, bent
functions f0 and f1 in Theorem 3.1.1, satisfying that f0 ⊕ 1∆ and f1 ⊕ 1∆ are also
bent (where additionally f0(x) = f1(x) when x ∈ ∆), can be easily specified using
the PS class.

Remark 3.1.12 Henceforth we deal with a fixed full (complete) spread of the space
Fn2 . For simplicity, we assume that the fixed spread is actually the Desarguesian
spread, which consists of the 2k + 1 multiplicative cosets of F∗

2k
in F∗2n, thus dealing

with the PSap class which then has an efficient algebraic representation. However,
there are many other full (such as e.g. Andrè’s spread) and partial spreads that can
be used for the same purpose.

The main idea is to select the points (disjoint linear subspaces) from the complete
spread for the bent functions A,B, and C so that they overlap and cancel each other
out in such a way that their sum again consists of either 2

n
2
−1 or 2

n
2
−1 + 1 points.

Depending on whether the functions A,B, and C belong to the PS+ or PS− class,
we have 8 different cases if we differentiate between the three functions and four if
we do not.

Our estimates on the number of functions constructed this way concerns only
one cases, when all the initial function A,B,C belong to PS−, the remaining cases
being similar to analyze.

First we may select linear subspaces that constitute A in
(2n2 +1

2
n
2−1

)
many ways.

Then, assuming that exactly |X|many points of B also belong to A, the total number

of choices for the constituent subspaces of B is estimated as:
2
n
2−1∑
|X|=0

(
2
n
2−1

|X|
)(2

n
2−1+1

2
n
2−1−|X|

)
.

Figure 3.1 shows how the function A ⊕ B looks like after A and B have been
specified. Now, the selection of 2

n
2
−1 disjoint subspaces of C must ensure that

A⊕B⊕C belongs to PS. It implies that either these subspaces extend the support
of A ⊕ B ⊕ C (when we choose subspaces in the support of C that either belong
to both A and B or that belong to neither of these - coloured white in Figure 3.1)
or some subspaces are removed from A⊕B them from the final selection (when we
choose subspaces in C that belong either to A or B but not both - coloured green in
Figure 3.1). Depending on the specification of A and B, the impact of adding C to
A⊕B is therefore the addition of |Y | subspaces, 0 ≤ |Y | ≤ 2

n
2
−1, and subsequently

the subtraction of exactly 2
n
2
−1−|Y | subspaces, and additionally A⊕B⊕C contains

either 2
n
2
−1 or 2

n
2
−1 + 1 many subspaces. There are two cases to be considered.

Bent functions outside the completed Maiorana-McFarland class 33

Figure 3.1: Intermediate step - subspaces of A⊕B

The first one is when A⊕B⊕C ∈ PS−. Then 2(2
n
2
−1−|X|)+|Y |−(2

n
2
−1−|Y |) =

2
n
2
−1, which implies that |Y | = |X|. We know there are exactly |X| points which

belong to both A and B, exactly |X|+ 1 points which belong neither to A nor to B
and therefore exactly 2

n
2 − 2|X| points which belong to either A or B. If we select i

points from |X|, |Y |− i = |X|− i points from |X|+ 1 (these points do not belong to
supp(A) ∪ sup(B)) and 2

n
2
−1 − |Y | = 2

n
2
−1 − |X| points from 2

n
2 − 2|X|, then such

a selection essentially defines a function A⊕B ⊕ C which belongs to PS−.

Therefore, we have
(2|X|+1
|X|

)(2
n
2 −2|X|

2
n
2−1−|X|

)
possibilities for choosing subspaces that

specify C. The total number of possibilities for getting A⊕B ⊕ C ∈ PS− is

(2n2 +1

2
n
2−1

) 2
n
2−1∑
|X|=0

(
2
n
2−1

|X|
)(2

n
2−1+1

2
n
2−1−|X|

)(2|X|+1
|X|

)(2
n
2 −2|X|

2
n
2−1−|X|

)
. (3.14)

The second case, A ⊕ B ⊕ C ∈ PS+ for A,B,C ∈ PS− is impossible since we
have

2(2
n
2
−1 − |X|) + |Y | − (2

n
2
−1 − |Y |) = 2

n
2
−1 + 1,

and the left-hand side is divisible by 2 whereas the right-hand is not. Therefore, the
total number of choices for functions A,B,C ∈ PS− is given by (3.14), the other
cases being similar to treat. This approach can be easily adopted for the purpose
of counting bent functions f0 and f1 in the PS class satisfying the conditions in
Theorem 3.1.1.

Though the above combinatorial results greatly resemble the problem of how
many ways are there for choosing in a set of size 2n/2 + 1 three sets of size 2n/2−1

(resp. 2n/2−1 + 1) whose symmetric difference has size 2n/2−1 (resp. 2n/2−1 + 1),
to the best of our efforts we could not find some explicit formulas in the literature.
The special cases, as discussed above, also make this combinatorial problem a bit
harder than the standard formulation. The above approach can be adopted for the
purpose of specifying the bent functions f0 and f1 in Theorem 3.1.1.

In connection to the results given in Section 3.1.2, we remark that the PSap class
is also a natural resource for identifying bent functions that apart from satisfying
that A⊕B⊕C is bent also satisfy the condition that AB⊕AC⊕BC = A⊕B⊕C.
The latter condition is satisfied if for instance B and C have disjoint supports (thus
BC = 0) and additionally both A and B as well as A and C intersect in exactly

34 3.2 Bent functions in C and D outside the extended Maiorana-McFarland class

2n/2−2 many subspaces where these intersections are mutually disjoint. Clearly,
when A,B,C ∈ PSap then such functions form a subset of the set whose cardinality
is given by (3.14). Due to space limitations we omit combinatorial analysis regarding
the cardinality of this subset.

3.2 Bent functions in C and D outside the extended
Maiorana-McFarland class

The secondary classes of bent functions C and D are derived from the M class by
adding the indicator functions of suitably chosen vector subspaces to the functions in
the M class. Nevertheless, apart from an explicit subclass denoted by D0, the bent
conditions in terms of the selection of a vector subspace L and permutation π (used to
define the initial function f(x, y) = x·π(y) inM, where x, y ∈ Fn2) are rather hard to
satisfy. This problem was recently addressed in [61] and the hardness of satisfying the
property (C) (thus identifying a suitable permutation and related vector subspace)
was confirmed true since for some classes of permutation polynomials there are no
suitable linear subspaces of certain dimension for which the modification of f ∈ M
would give a bent function f∗ ∈ C. On the other hand, for some other classes of
permutations and associated linear subspaces of the same dimension it could be
verified that indeed we get a bent function f∗ ∈ C. Thus, given the existence of bent
functions f∗ ∈ C the most fundamental issue is to determine whether these functions
are essentially contained in the known primary classes (which gives nothing new in
that case) or these functions potentially lie outside the known classes. It should
be remarked that certain choices of the indicator functions used to define f∗ from
f ∈ M are provably non-efficient in this context, thus giving rise to bent functions
f∗ within the class M.

In this section we provide sufficient conditions on the choice of the permutation
π and the corresponding linear subspace so that a bent function f∗ that belongs
either to C or D is outside the completed M class. This is the first step towards
a better understanding of classification of bent functions in these secondary classes
which also opens up for further investigation concerning a more refined classification
in terms of determining whether these functions are also outside the completed PS
and H class (which is intrinsically more difficult due to the absence of efficient
indicators for these classes). The derived sufficient conditions are relatively simple
and they roughly speaking correspond to the existence of permutations without
linear structures. Then, using the sufficient conditions that the bent functions in C
or D do not belong to the completed M class we could show that some instances
of bent functions in C identified in [61] are indeed outside the completed M class,
thus answering positively the classification issue raised in [61]. Furthermore, some
generic methods for specifying suitable monomial permutations are given for the
purpose of generating bent functions in D outside the completed M class.

Bent functions outside the completed Maiorana-McFarland class 35

3.2.1 Sufficient conditions for functions in C and D to be outside
M#

Using this criterion we firstly address the problem of deciding whether bent functions
in C are outside the completed M class.

Theorem 3.2.1 Let m = 2n > 4 be an even integer and let f(x, y) = π(y) · x ⊕
1L⊥(x), where L is any linear subspace of Fn2 and π is a permutation on Fn2 such
that (π, L) has property (C). If π satisfies:

1. dim(L) ≥ 2;

2. π has no nonzero linear structure;

then f does not belong to M#.

Proof. Let a(1), b(1), a(2), b(2) ∈ Fn2 . We prove that f does not belong to M#, by
using Lemma 2.2.2. We need to show that there does not exist an n-dimensional
subspace V such that

D(a(1),a(2))D(b(1),b(2))f = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V .

The second derivative of f with respect to a and b can be written as,

D(a(1),a(2))D(b(1),b(2))f(x) = x · (Da(2)Db(2)π(y))⊕ a(1) ·Db(2)π(y ⊕ a(2))(3.15)

⊕ b(1) ·Da(2)π(y ⊕ b(2))⊕Da(1)Db(1)1L⊥(x)

We denote the set {(x, 0n) | x ∈ Fn2} by ∆. We will distinguish two main cases
depending on whether V = ∆ or V 6= ∆.

For V = ∆, we can find two vectors (a(1), 0n), (b(1), 0n) ∈ ∆ such that

Da(1)Db(1)1L⊥(x) 6= 0

since dim(L) ≥ 2 (i.e., deg(1L⊥) ≥ 2). Further, we know

D(a(1),a(2))D(b(1),b(2))f(x) = Da(1)Db(1)1L⊥(x) 6= 0.

Let now V 6= ∆. We split the proof into three cases depending on the cardinality

of V ∩∆. We set V =
{

(v
(1)
1 , v

(1)
2), (v

(2)
1 , v

(2)
2), . . . , (v

(2n)
1 , v

(2n)
2)

}
,

1. For |V ∩∆| = 1, we have v
(i)
2 6= v

(j)
2 for any i 6= j. If there exist two vectors

v
(i1)
2 , v

(j1)
2 such that v

(i1)
2 = v

(j1)
2 , then v

(i1)
1 = v

(j1)
1 , (or (v

(i1)
1 ⊕ v(j1)

1 , 0n) ∈
V ∩∆), that is, (v

(i1)
1 , v

(i1)
2) = (v

(j1)
1 , v

(j1)
2). Further, |{v(1)

2 , v
(2)
2 , . . . , v

(2n)
2 }| =

|V | = 2n, that is, {v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = Fn2 (here, if v

(i1)
2 = v

(i2)
2 , they are

called one element).

Now, there are two cases to be considered.

36 3.2 Bent functions in C and D outside the extended Maiorana-McFarland class

(a) If there exists one vector v = (v(1), v(2)) ∈ V \ {02n} such that v(1) = 0n,
we set a = v. We know

Da(1)1L⊥(x) = 0.

For the nonzero vector a, we have

deg(Da(2)π(y)) ≥ 1

since π has no nonzero linear structure (i.e., deg(π) ≥ 2). Further, since

{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = Fn2 , we are able to select b ∈ V \ {02n, a} such

that

Da(2)Db(2)π(y) 6= 0n.

Thus, D(a(1),a(2))D(b(1),b(2))f(x) = x · (Da(2)Db(2)π(y)) ⊕ b(1) · Da(2)π(y ⊕
b(2)) 6= 0, since Da(2)Db(2)π(y) 6= 0 implies that x · (Da(2)Db(2)π(y)) is not
constant, i.e. depends on x.

(b) If there does not exist a vector v = (v(1), v(2)) ∈ V \ {02n} such that

v(1) = 0n, then we have |{v(1)
1 , v

(2)
1 , . . . , v

(2n)
1 }| = |V | = 2n (that is, {v(1)

1 ,

v
(2)
1 , . . . , v

(2n)
1 } = Fn2) since V is a subspace and |{v(1)

2 , v
(2)
2 , . . . , v

(2n)
2 }| =

|V | = 2n. We set a ∈ V \ {02n} such that a(1) ∈ L⊥. From the definition
of indicator functions, we know

Da(1)1L⊥(x) = 0.

Further, we have

Da(1)Db(1)1L⊥(x) = 0.

Further, since {v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = Fn2 , we are able to select b ∈ V \

{02n, a} such that

Da(2)Db(2)π(y) 6= 0n.

Thus, D(a(1),a(2))D(b(1),b(2))f(x) = x · (Da(2)Db(2)π(y)) ⊕ a(1) · Db(2)π(y ⊕
a(2)) ⊕ b(1) · Da(2)π(y ⊕ b(2)) 6= 0, since Da(2)Db(2)π(y) 6= 0 implies that
x · (Da(2)Db(2)π(y)) is not constant, i.e. depends on x.

Hence, we have

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0

for |V ∩∆| = 1.

2. For |V ∩∆| ≥ 2, without loss of generality, let (a(1), 0n)(6= 02n) ∈ V ∩∆. Set
b ∈ V \{02n, a}, then b(2) 6= 0n. Thus,

DaDbf(x) = a(1) ·Db(2)π(y)⊕Da(1)Db(1)1L⊥(x) 6= 0

since π has no nonzero linear structure.

Bent functions outside the completed Maiorana-McFarland class 37

Combining both cases V = ∆ and V 6= ∆ we deduce that f does not belong to
M#.

�

A similar set of conditions on permutation π used in the definition of D class of
bent functions can be deduced.

Theorem 3.2.2 Let m = 2n > 6 be an even integer and let f(x, y) = π(y) · x ⊕
1E1(x)1E2(x), where π is a permutation on Fn2 , and E1, E2 are two linear subspaces
of Fn2 such that π(E2) = E⊥1 . If π satisfies:

1. dim(E1) ≥ 2 and dim(E2) ≥ 2;

2. π has no nonzero linear structure;

3. deg(π) ≤ n− dim(E2),

then f does not belong to M#.

The lengthy proof of Theorem 3.2.2 is given in the Appendix.

3.2.2 Some examples of bent functions in C outside M#

In this section we apply the criterion derived in the previous section to those bent
functions given in [61] that satisfy the property (C). Notice that the condition in
Theorem 3.2.1 regards the condition imposed on π(x) and not on φ(x) = π−1(x)
but this is of no relevance due the result of Charpin and Sarkar [27]. More precisely,
it was shown that if F is a permutation then linear structures of F and F−1 are
closely related and in particular the non-existence of linear structures for F implies
the no-existence of linear structures for F−1, see Lemma 2 in [27]. For convenience
of the reader, we recall a few examples of bent functions satisfying the property (C),
cf. [61].

Theorem 3.2.3 [61] Suppose φ(x) = x2r+1, for all x ∈ F2n, where gcd(r, n) = e,
n/e is odd and gcd(2n − 1, 2r + 1) = 1.

(i) Then (φ,L) (where L is a subspace of dim(L) = 2) satisfies the (C) property
if and only if L = 〈u, cu〉 where u ∈ F∗2n and 1 6= c ∈ F∗2e.

(ii) We assume that e = gcd(n, r) > 1 and L = 〈u1, c1u1, . . . , cs−1u1〉, dim(L) = s,
ci ∈ F∗2e, 1 ≤ i ≤ s − 1, s ≥ 2, and u1 ∈ F∗2n . Then (φ,L) satisfies the (C)
property.

The following example was also provided in [61], thus providing an infinite class
of bent functions in C other than D0.

Example 3.2.1 Let n = 2p where p is any odd prime, r = 2 and e = gcd(n, r) = 2.
Since n/e is odd, it is known that gcd(2r + 1, 2n− 1) = 1. Therefore φ(x) = x2r+1 is

a permutation on F2n. Let ζ be a primitive element of F2n. Therefore, λ = ζ
2n−1
2e−1 =

38 3.2 Bent functions in C and D outside the extended Maiorana-McFarland class

ζ
2n−1

3 is a generator of F2e. Suppose that the permutation π(x) = φ−1(x) = xγ where
γ(2r+1) ≡ 1 (mod 2n−1). Given r and n, γ can be computed easily by the Euclidean
algorithm. Consider the Maiorana-McFarland bent f(x, y) = x · π(y). According to
Theorem 3.2.3 if we choose L = 〈1, λ〉, then the function f∗(x, y) = x ·π(y)+1L⊥(x)
is in C. The bent function f∗ can be explicitly written as

f∗(x, y) = Trn1 (xyγ) + (Trn1 (x) + 1)(Trn1 (λx) + 1) (3.16)

= Trn1 (xyγ) + Trn1 (x)Trn1 (λx) + Trn1 ((1 + λ)x) + 1. (3.17)

(3.18)

Using new tools presented in this section we can answer the question of whether
the function f∗ defined above is outside the completed M class.

Lemma 3.2.4 For r 6= 0 the function f∗ from Example 3.2.1 does not belong to the
completed M class.

Proof. Using Theorem 3.2.1 we need to prove that dim(L) ≥ 2 and that the
permutation π(x) = xγ has no linear structures. Since L = 〈1, λ〉, where λ is the
generator of F2e = F22 , we have dim(L) = 2. By Lemma 2 in [27], instead of
considering π(x) we show the non-existence of linear structures of φ(x) = x2r+1.

Suppose the mapping φ(x) has a c-linear structure a, where a, c ∈ F∗2n . Then

(x+ a)2r+1 + x2r+1 = c,

which implies x2r + a2r−1x+ a2r + a−1c = 0, for every x ∈ F2n . Taking x = 0 forces
a2r + a−1c = 0 and taking x = 1 forces a2r−1 = 1. This leaves us with the equation
x2r + x = 0 for every x ∈ F2n , which implies 2r ≡ 1 mod (2n − 1) and r = 0. It
follows that for r = 2 the permutation π does not have linear structures and thus
the function f∗ from Example 3.2.1 does not belong to the completed M class. �

Remark 3.2.5 Note that when r = 0, the function φ(x) = x2r+1 = x2 obviously
has linear structures since it is a linear permutation, and is not covered by Theorem
3.2.3.

Another class of so-called bilinear split permutations (considered originally in
[6, 51]) of the form

φ(x) = x(Trnl (x) + ax), (3.19)

where n = kl, l > 1, a ∈ F2l \ F2 and Trnl (x) =
k−1∑
i=0

x2li , was also analyzed in [61].

It was shown that when k is odd these permutations also give rise to bent functions
satisfying (C).

Lemma 3.2.6 The above defined function φ(x) has a linear structure if and only if
l = n.

Bent functions outside the completed Maiorana-McFarland class 39

Proof. Let b be a c-linear structure of φ(x) = x(Trnl (x) + ax). Then

(x+ b)(Trnl (x+ b) + a(x+ b)) + x(Trnl (x) + ax) = c

x(Trnl (b) + ab) + b(Trnl (x) + Trnl (b) + ax+ ab)) = c

xTrnl (b) + bTrnl (x) + bTrnl (b) + ab2 = c

xTrnl (b) + bTrnl (x) + (bTrnl (b) + ab2 + c) = 0,

for every x ∈ Fn2 . Taking x = 0 forces (bTrnl (b) + ab2 + c) = 0 and taking x = 1,
since k is odd, implies that Trnl (b) = b. We are left with the equation Trnl (x) = x.
This equation is valid for any x ∈ F2n if and only if l = n. �

Thus the bilinear permutations defined by (3.19) can be used in constructions
of functions satisfying (C) and being outside the completed M class whenever we
have a nontrivial factorization n = kl.

3.2.3 Bent functions in D outside M#

The set of sufficient conditions related to class D given in Theorem 3.2.2 is harder
to satisfy than those related to class C so we have limited ourselves to the study of
monomial permutations.

Proposition 3.2.7 Let n be even. Then any non-linear monomial permutation
π(y) = yd, where deg(π) ≤ n− 2, satisfies the required conditions in Theorem 3.2.2

for the 2-dimensional vector subspace E2 = 〈ζ
2n−1

3 , ζ
2(2n−1)

3 〉, where ζ is a primitive
element of F2n.

Proof. Since n is even, 3 | 2n− 1 and furthermore E2 is not only a vector subspace

but also corresponds to a subfield {0, 1, ζ
2n−1

3 , ζ
2(2n−1)

3 }. This is because π is a
monomial permutation and it must map every subfield to itself (multiplication being
closed). Therefore, π(E2) = E2 = E⊥1 . The permutation π is a non-linear monomial,
therefore it does not have a linear structure. The condition deg(π) ≤ n − dim(E2)
is satisfied as well since deg(π) ≤ n− 2 and dim(E2) = 2. �

We illustrate this approach by providing an example for n = 6.

Example 3.2.2 Let n = 6 and d = 11 (smaller d will be covered by Proposition
3.2.8 below). Since (26 − 1, 11) = 1 and the binary weight of 11 is 3, π(x) = xd

is a cubic permutation. Using the programming package Magma, the vector space
representation on F6

2 of the subspace E2 = 〈ζ21, ζ42〉, where ζ is the generating
element of the field F26, is :

E2 =

(0, 0, 0, 0, 0, 0)
(1, 0, 0, 0, 0, 0)
(1, 1, 1, 1, 0, 0)
(0, 1, 1, 1, 0, 0)

 .

40 3.2 Bent functions in C and D outside the extended Maiorana-McFarland class

Since 111 = 1, (ζ21)11 = ζ42, and (ζ42)11 = ζ21, the subspace E2 is indeed mapped to
itself. This gives us E2 = E⊥1 and

E1 =

〈 (0, 1, 0, 1, 0, 0)
(0, 0, 1, 1, 0, 0)
(0, 0, 0, 0, 1, 0)
(0, 0, 0, 0, 0, 1)

〉
.

Thus, all the requirements of Theorem 3.2.2 are satisfied and the permutation π gives
rise to a bent function f(x, y) = π(y) · x⊕ 1E1(x)1E2(x) contained in D but outside
the M∗ class.

The next result partially overlaps with Proposition 3.2.7 but, as shown in Ex-
ample 3.2.3, it also includes cases when n is odd.

Proposition 3.2.8 Let π(y) = yd be a quadratic permutation over F2n (n ≥ 4),
where d = 2i + 2j , i > j, and (2n − 1, 2i + 2j) = 1. Let also E2 = 〈ζa, ζb〉 be a
2-dimensional linear subspace of Fn2 , where ζ is a primitive element of F2n. If

(a− b)(2i − 2j) ≡ 0 mod (2n − 1)

then π satisfies all the conditions in Theorem 3.2.2.

Proof. Since π is a quadratic permutation monomial it has no linear structures.
Because n ≥ 4 and deg(π) = 2, it also satisfies deg(π) ≤ n− dim(E2). It remains to
determine when the subspace E2 is mapped to a subspace. Noting that ζa 7→ ζad and
ζb 7→ ζbd, it is required that ζa + ζb is mapped to (ζa + ζb)d = ζad + ζbd. Therefore

(ζa + ζb)2i+2j = ζa(2i+2j) + ζb(2
i+2j)

ζa(2i+2j) + ζa2i+b2j + ζb2
i+a2j + ζb(2

i+2j) = ζa(2i+2j) + ζb(2
i+2j)

ζa2i+b2j = ζb2
i+a2j .

It follows that

a2i + b2j ≡ b2i + a2j mod (2n − 1),

which implies (a−b)(2i−2j) ≡ 0 mod (2n−1), as stated. Thus, all three conditions
imposed by Theorem 3.2.2 are satisfied. �

Remark 3.2.9 It should be noted that given the set of parameters a, b, i and j sat-
isfying the main condition in Proposition 3.2.8 we are still left with some freedom
in choosing the subspace E2 since the only constraint is on the fixed difference a− b
satisfying (a− b)(2i − 2j) ≡ 0 mod (2n − 1). This gives multiple choices of a and b
for specifying the elements ζa, ζb.

Bent functions outside the completed Maiorana-McFarland class 41

It turns out that the conditions in Proposition 3.2.8 cannot be satisfied for rela-
tively small n. It was confirmed (using the programming package Magma) that the
smallest n for which a 2-dimensional subspace E2 in Proposition 3.2.8 can be found
is n = 6. Nevertheless, in order to also present a construction for odd n, we give
below an example for n = 9.

Example 3.2.3 Let n = 9 and π(y) = y9, thus i = 3, j = 0. Then π is a quadratic
permutation since (29 − 1, 9) = 1. Furthermore, (a − b) = (29 − 1)/(23 − 20) = 73.
We choose a = 74, b = 1 and use Magma to get the vector space representation of
the subspace E2 = 〈ζ, ζ74〉, where ζ is the generating element of the field F29:

E2 =

(0, 0, 0, 0, 0, 0, 0, 0, 0)
(1, 1, 0, 0, 1, 1, 0, 1, 0)
(0, 1, 0, 0, 0, 0, 0, 0, 0)
(1, 0, 0, 0, 1, 1, 0, 1, 0)

E⊥1 = π(E2) =

(0, 0, 0, 0, 0, 0, 0, 0, 0)
(1, 1, 1, 0, 1, 1, 0, 0, 1)
(1, 0, 0, 0, 1, 0, 0, 0, 0)
(0, 1, 1, 0, 0, 1, 0, 0, 1)

 .

One can readily check that all the requirements of Theorem 3.2.2 are satisfied.

Remark 3.2.10 Finding non-monomial permutations that satisfy the conditions of
Theorem 3.2.2 appears to be much harder and is still an open problem.

3.2.4 Inclusion in other primary classes

Even though we have confirmed the existence of certain subclasses of bent functions
in C and D that are provably not included in the completedM∗ class there are some
important questions that need to be answered. In the first place, it is of importance
to distinguish (at least some subclasses) these classes of functions from the class D0.
In other words, these classes may be contained in the completed class of D0 in which
case they do not belong to either M∗ or to the completed PS class (denoted by
PS∗). Therefore, we show that some instances of the classes presented previously
are not included in in the completed class of D0 which then raises the question
whether these functions are possibly outside PS∗. We also consider this problem
and provide an affirmative answer to this question.

Let f(X) = f(x, y) = x · π1(y) + 1E1(x)1E2(y), where x, y ∈ Fn2 , be a function
defined as in Proposition 3.2.8. To show that f is not contained in D0, we consider
the completed class of f given by F (X) = f(AX + b) + c · X + d, where A =[
A1 A2

A3 A4

]
is an invertible binary matrix, Ai are n × n matrices, b = (b1, b2), c =

(c1, c2), bi, ci ∈ Fn2 , and d ∈ F2. It is enough to show that the ANF of F does not
equal to the representative of the D0 class for any choice of A, b, c and d.

Theorem 3.2.11 Let F (X) be as defined above, where f is defined as in Proposition
3.2.7 or Proposition 3.2.8. If deg(π1) + dim(E1 ∩ E2) < n − 1, then F (X) is not
contained in D0.

42 3.2 Bent functions in C and D outside the extended Maiorana-McFarland class

Proof. Let us assume that π1, A, b, c, d are such that

F (X) = f(A1x+A2y + b1, A3x+A4y + b2) + c · (x, y) + d

= (A1x+A2y+b1)·π1(A3x+A4y+b2)+1E1(A1x+A2y+b1)1E2(A3x+A4y+b2)+c(x, y)+d

belongs to the D0 class. That is, let for g(X) ∈ D0 defined as g(X) = x·π2(y)+δ0(x)
assume that F (X) = g(X).

Let now x = 0n be fixed. Then,

F (0n, y) = (A2y + b1) · π1(A4y + b2) + 1E1(A2y + b1)1E2(A4y + b2) + c · (0n, y) + d

g(0n, y) = x · π2(y) + δ0(x) = 1.

We set SA2 = {A2y + b1|y ∈ Fn2}, SA4 = {A4y + b2|y ∈ Fn2}. Suppose there are
only t vectors {y(1), y(2), . . . , y(t)} such that

A2y
(i) + b1 = A4y

(i) + b2 ∈ SA2 ∩ SA4 ∩ E1 ∩ E2,

where i = 1, 2, . . . , t. Further, we know t ∈ {0, 1, 2, 22, . . . , 2n−1−deg(π)−1} since
dim(E1 ∩ E2) < n− 1− deg(π). If F (0n, y) = g(0n, y) = 1, then

deg ((A2y + b1) · π1(A4y + b2)) = deg (1E1(A2y + b1)1E2(A4y + b2)) . (3.20)

Since deg(π1) + dim(E1 ∩ E2) < n− 1, we have that

deg ((A2y + b1) · π1(A4y + b2)) ≤ deg(π) + 1 (3.21)

and
deg (1E1(A2y + b1)1E2(A4y + b2)) > deg(π) + 1. (3.22)

From (3.21) and (3.22), we know (3.20) does not hold. �

Remark 3.2.12 For any function F obtained by means of Proposition 3.2.8, we
have deg(π1) = 2 and dim(E1 ∩ E2) ≤ 2. Thus, for n > 5 the function F will lie
outside the completed D0 class. For instance, the function in Example 3.2.3 lies
outside the completed D0 class.

3.2.4.1 Inclusion in the PS class

The so-called PS class, originally considered by Dillon [35], can be viewed as a union
of PS− and PS+. The former subclass corresponds to defining the support of f as a
union of 2n/2−1 disjoint linear subspaces (intersecting trivially in 0) of dimension n/2
without including the all-zero vector. The latter subclass uses a support a union of
2n/2−1+1 disjoint linear subspaces of dimension n/2 and includes the all-zero vector.
In general, proving that a given bent function does not belong to the completed PS
class is much harder than for theMM class due to the lack of useful indicators. We
translate the problem of determining whether a given function belongs to the PS
class to a graph theoretical problem to show its difficulty.

In a graph, a clique is a set of vertices such that any two vertices are adjacent.
A clique cover of a given undirected graph is a partition of the vertices of the graph
into cliques.

Bent functions outside the completed Maiorana-McFarland class 43

Proposition 3.2.13 Let f : Fn2 → F2 be a bent function and Gf = (V,E) its corre-
sponding graph, where V = supp(f) \ {0}, E = {{x, y}|x, y ∈ V, x− y ∈ supp(f)}. If
the function f ∈ PS−(PS+) then the graph Gf has a clique covering where all cliques
are disjoint and of size 2n/2−1(2n/2−1+1). If the graph Gf has a clique covering where
all cliques correspond to subspaces, are disjoint, and are of size 2n/2−1(2n/2−1 + 1),
then f ∈ PS−(f ∈ PS+).

Proof. If a subset H ∪ {0}, H ⊆ V, forms a subspace of Fn2 , then any two x, y ∈ H
must be connected and therefore vertices corresponding to elements of H must form
a clique. If f ∈ PS−, supp(f) is exactly a union of 2n/2−1 disjoint n

2 -linear subspaces

without the 0 vector. The graph G must therefore contain exactly 2n/2−1 cliques
of size 2

n
2 − 1 which cover the entire graph and are disjoint. If f ∈ PS+, supp(f)

is exactly a union of 2n/2−1 + 1 disjoint n
2 -linear subspaces. When defining the set

of vertices V the 0 vector is removed. The graph G must therefore contain exactly
2n/2−1 + 1 cliques of size 2

n
2 − 1 which again cover the entire graph and are disjoint.

If all the cliques contained in such a covering also correspond to subspaces and
are disjoint, the converse is true as well. �

Therefore we can translate the initial problem into graph-theoretical terms in the
following way: “Given a bent function f , does the graph Gf have a clique covering
where all cliques correspond to subspaces, are disjoint, and of size 2

n
2 − 1?”

In graph theory, the so-called Clique Cover Problem is very well known: “Given
a graph G and an integer k, can the vertices of the graph be partitioned into k
cliques?” It was proven in [45] that this is an NP-complete problem. A related
problem, that of finding the minimum clique cover of a graph, that is, finding the
minimum integer k for which there exists a clique cover with k cliques, is an NP-hard
problem.

This, together with the fact that many other closely related problems in graph
theory are proven to be either NP-hard or NP-complete, makes us believe that
determining whether an arbitrary bent function f lies within the PS class is either
an NP-hard or an NP-complete problem.

Chapter 4

Permutations and bent
functions via translators

The main goal of this chapter is to contribute to the study of permutations of finite
fields. During the last few years there has been a tremendous progress in construc-
tion methods and characterisation of many infinite classes of permutations, see a
survey on recent works in [43] and the references therein. The use of permutations
in applications such as coding is well-known and understood. The bijectivity is also
an important cryptographic criterion used in the design of some block ciphers. For
applicative purposes the use of sparse permutations, i.e., which can be expressed
with few terms, is also an important property along with the degree and the nonlin-
earity which are referred to as the standard cryptographic criteria. For this reason,
we are mainly interested in specifying design methods of sparse permutations, having
a few polynomial terms.

4.1 Linear translators

This section is based on the work of Kyureghyan, [49, Theorem 1]. This result can
also be obtained by using the AGW criterion, see Section 6 in [1].

Theorem 4.1.1 [49, Theorem 1] Let n = rk, with r, k > 1. Let L be a Fpk-linear
permutation on Fpn. Let f a function from Fpn onto Fpk , h : Fpk → Fpk , γ ∈ F∗pn
and b is fixed in Fpk . Assume that γ is a b-linear translator of f . Then

F (x) = L(x) + L(γ)h(f(x))

permutes Fpn if and only if g : u 7→ u+ bh(u) permutes Fpk .

Note that this construction is in a certain sense a generalization of the so-called
switching construction [24, 25]. Akbary, Ghioca and Wang unified the Kyureghyan’s
construction for arbitrary subsets S ⊂ Fpn (not only subfields of Fpn) along with
proposing a few other constructions in [1]. This general criterion is now called
AGW criterion [73, Theorem 8.1.39]. After these pioneering works a series of papers
[84, 85, 86, 90] (among others) treated the same topic of specifying new classes of

45

46 4.1 Linear translators

permutation polynomials of the above form. For a nice survey of recent achieve-
ments related to this particular class of permutations the reader is referred to [43].
Nevertheless, most of the recent contributions attempt to specify suitable functions
h, f and L in functions F given by

F : x 7→ L(x) + L(γ)h(f(x)), f : Fprk → Fpk , h : Fpk → Fpk , (4.1)

or alternatively, for F given by

F : x 7→ γ(f(x) + δ)s + L(x), δ ∈ Fpn , (4.2)

to specify suitable degree s, δ ∈ Fpn , the function f , and also some particular field
characteristic p, see for instance [84] where three classes of permutations of the form
(4.2) were specified for p = 3.

Our main purpose is to emphasize that the use of functions f which have trans-
lators gives us the possibility to construct many infinite classes of permutations
with a large choice of parameters. A suitable use of this method allows us also to
construct linear permutations and sparse permutations of high degree and to give
their compositional inverses. Moreover, a connection of this class of permutations
to complete permutations is considered and also more general results related to an
explicit specification of permutations of the form (4.2) are given (for instance valid
for any degree s for suitable f and δ).

Actually, our generalized framework turns out to give another (simpler) method
to prove the bijectivity of some functions studied in [86, 90, 84].

On the other hand, it turns out that the results in Section 4.1.4 can be derived
from the results in [1], more precisely from Theorem 5.1 and Proposition 5.9 in
[1]. Nevertheless, our proof technique may have independent significance in the
analysis of similar classes of permutations and more importantly our approach may
potentially give an insight in the spectra of the component functions which has a
great importance in cryptographic applications.

Throughout this section p designates any prime.

4.1.1 On functions having linear translators

In this section, motivated by the possibility of specifying new classes of permuta-
tions by means of Theorem 4.1.1, we investigate the existence of linear translators for
sparse polynomials f : Fpn → Fpk (the problem being difficult for arbitrary polyno-
mials). More precisely, we show the non-existence of linear translators for monomials
and derive the exact form of binomials for which there exist linear translators. The
monomial trace function of the form Trnk (xd) is also considered.

The following two results are frequently used throughout this section.

Theorem 4.1.2 [Lucas’ theorem] Let a, b be positive integers and a =
∑n

i=1 aip
i,

b =
∑n

i=1 bip
i their p-adic expansions, where ai, bi ∈ Fp. Then(

a

b

)
(mod p) ≡

(
a1

b1

)
· · ·
(
an
bn

)
.

It follows that
(
a
b

)
(mod p) 6= 0 if and only if b � a, i.e., bi ≤ ai for all i.

Permutations and bent functions via translators 47

Let now f(x) : Fpn → Fpn , f(x) =
∑pn−1

i=0 bix
i. In [75], a compact formula

relating the coefficients bi of f and of its derivative f(x+ uγ)− f(x) =
∑pn−2

t=0 ctx
t

was derived. More precisely

ct =

pn−1∑
i=t+1

(
i

t

)
(uγ)i−tbi, t ∈ {0, 1, . . . , pn − 2}. (4.3)

The first application of these results regards the existence of translators for
f : Fpn → Fpk which is either monomial or binomial.

Proposition 4.1.3 Let f(x) = xd, f : Fpn → Fpk , where n = rk and r > 1.

i) Then the image set of f is in Fpk if and only if the exponent d is of the form

d = j(pk(r−1) + pk(r−2) + · · ·+ pk + 1), (4.4)

for some j ∈ {1, . . . , pk − 1}.

ii) The function f does not have a linear translator in sense of Definition 2.4.2.

Proof. i) Since f maps to some subfield Fpk , (xd)p
k

= xd must be true. This means

xd(pk−1) = 1 and therefore d(pk − 1) ≡ 0 (mod pn − 1). It follows that

d = j
pn − 1

pk − 1
= j(pk(r−1) + pk(r−2) + · · ·+ 1),

for some j ∈ {1, . . . , pk − 1}. ii) If a function f(x) =
∑pn−1

i=0 bix
i has a linear

translator, it must satisfy two necessary but not sufficient conditions:

1. it must map to a subfield Fpk as requested by the definition, and

2. its coefficients bi must satisfy ct = 0, for t ∈ {1, . . . , pn − 2} and c0 6= 0, where
ct and c0 are defined above by (4.3).

The first condition implies that dmust be of the form (4.4), for j ∈ {1, . . . , pk−1}.
Since bi = 0 for i 6= d, the second condition implies that ct =

(
d
t

)
(uγ)d−t = 0, for all

t ∈ {1, . . . , d − 1}. This is satisfied only if
(
d
t

)
≡ 0 (mod p) for all t. Using Lucas’

theorem, the only possibility is t � d, for all t. But since our d satisfies (4.4), for
some j ∈ {1, . . . , pk − 2}, this is impossible. �

Proposition 4.1.4 Let f(x) = βxi + xj, i < j, where f : Fpn → Fpk , β ∈ F∗pn and
n = rk, where r > 1. Then the function f has a linear translator if and only if n is
even, k = n

2 , and furthermore f(x) = Tnk (x).

Proof. Let f(x) = βxi +xj , i < j, β 6= 0. The function f must satisfy the same two
properties as in the proof of Proposition 4.1.3. The second property, according to
Definition 2.4.2 and (4.3), implies that ct must satisfy

0 = ct =

0 for j ≤ t ≤ pn − 2(
j
t

)
(uγ)j−t for i ≤ t < j(

i
t

)
(uγ)i−tβ +

(
j
t

)
(uγ)j−t for 0 < t < i

. (4.5)

48 4.1 Linear translators

Suppose i and j are both powers of p so that i = pi
′
, j = pj

′
. Since t � j and t � i

for any t in the above range, by Lucas’ theorem ct = 0 for all t 6= 0.
Assume now that i and j are not both powers of p and that (4.5) holds. First,

we must have t 6≺ j for i ≤ t < j (to have ct = 0 for such t); in particular i 6≺ j.
Then, there exists t, 0 < t < i, such that either t ≺ j or t ≺ i for t < i. Since ct = 0
we have:

• if t ≺ i then t ≺ j, because otherwise β = 0, a contradiction;

• if t ≺ j then t ≺ i, since otherwise ct =
(
j
t

)
(uγ)j−t 6= 0;

Thus, t ≺ i if and only if t ≺ j, for all t ∈ {1, . . . , i − 1}. But, since i 6≺ j there is
t′ < i which satisfies t′ ≺ i, and t′ 6≺ j, a contradiction.

Let us now analyze when f(x) = βxp
i′

+ xp
j′

. Note that we want to have

f(x+ γu)− f(x) = f(γu) = β(γu)p
i′

+ (γu)p
j′

= uA(β, γ),

where A is some function of β, γ. Then k must divide i′ and j′; set i′ = uk and
j′ = vk (0 ≤ u < v ≤ r − 1). Since F maps to a subfield Fpk , the following must be
satisfied for all x:

(βxp
uk

+ xp
vk

)p
k − βxpuk − xpvk = 0

βp
k
xp

(u+1)k
+ xp

(v+1)k − βxpuk − xpvk = 0.

Hence, the exponents {p(u+1)k, p(v+1)k, puk, pvk} cannot be two by two distinct. This
forces u = v + 1 (mod r) and further v = u + 1 (mod r). This implies u = u + 2
(mod r) showing that the only solution is u = 0 with r = 2 and v = r−1 = 1 (using
also 0 ≤ u < v ≤ r − 1). Finally, we must have

βp
k
xp

k
+ x− βx− xpk = xp

k
(
βp

k − 1
)
− x(β − 1) = 0, for all x,

which implies β = 1 so that F (x) = T 2k
k (x) completing the proof. �

Any function f : Fpn → Fpk , n = rk, can be expressed as f(x) = Tnk (P (x)),
where P is some polynomial in Fpn [x]. Note that this representation is not unique.
In the rest of this section we analyze the case when P has a single term, the cases
with several terms being significantly more complicated. The following result further
refines the choice of d for f(x) = Tnk (βxd). We denote by wtH(d) the Hamming
weight of d which is the number of nonzero components in the p-adic expansion of
integer d.

Proposition 4.1.5 The function f(x) = Tnk (βxd), β ∈ F∗pn, can have a linear
translator only if wtH(d) ∈ {1, 2}. When wtH(d) = 2, then d must be equal to
pj(1 + pi) for some 0 ≤ i, j ≤ n − 1, i 6∈ {0, n/2}. In particular, f(x) = Tnk (βx2pj)
cannot have linear translators.

Proof. In [23, Theorem 5], it was proved that the function Tn1 (βxd) can have a linear
structure only if wtH(d) ∈ {1, 2}. Especially, when wtH(d) = 2 then d = pj(1 + pi)
for some 0 ≤ i, j ≤ n− 1, i 6∈ {0, n/2}.

Permutations and bent functions via translators 49

Suppose now that the function f(x) = Tnk (βxd) has a b-translator γ. Then,

Tn1

(
β(x+ uγ)d − βxd

)
= T k1

(
Tnk (β(x+ uγ)d − βxd)

)
= T k1 (bu).

If we now fix u ∈ Fpk , then uγ becomes the T k1 (bu)-linear structure of Tn1 (βxd),

which gives the result. In particular, the function Tn1 (βx2pj) (corresponding to i = 0
in d = pj(1 + pi)) cannot have linear translators. �

The following result was mentioned by Kyureghyan in [49].

Lemma 4.1.6 Let f be an affine function from Fpn to Fpk given by f(x) = Tnk (βx)+
a, where β ∈ Fpn and a ∈ Fpk . Then, any γ ∈ Fpn is a b-translator of f , with
b = Tnk (βγ).

Proof. For any γ ∈ Fpn we have

f(x+ uγ)− f(x) = Tnk (β(x+ uγ))− Tnk (βx) = Tnk (βuγ) = uTnk (βγ),

for all u ∈ Fpk and x ∈ Fpn . �

The next result regards the existence of linear translators for the trace of quadratic
monomials which in general contains r polynomial terms for n = rk.

Lemma 4.1.7 Let n = rk and f(x) = Tnk (βxp
i+pj), where i < j. Then, f has

a derivative independent of x, that is, f(x + uγ) − f(x) = Tnk (β(uγ)p
i+pj) for all

x ∈ Fpn, all u ∈ Fpk , if and only if β, γ ∈ Fpn are related through,

βγp
i+lk

+ βp
(r−l)k

γp
i+(r−l)k

= 0, (4.6)

where 0 < l < r satisfies j = i+ kl.
In particular, if β ∈ Fpk then f(x + uγ) − f(x) = βTnk ((uγ)p

i+pi+kl) if and only if

γp
2kl−1 = −1, which requires r

gcd(r,2l) is even when p > 2.

Proof. For f(x) = Tnk (βxp
i+pj), we have

f(x+ uγ)− f(x) = Tnk

(
β(x+ uγ)p

i+pj
)
− Tnk

(
βxp

i+pj
)

= Tnk

(
βxp

i
(uγ)p

j
+ βxp

j
(uγ)p

i
+ β(uγ)p

i+pj
)

= Tnk

(
βxp

i
(uγ)p

j
)

+ Tnk

(
βxp

j
(uγ)p

i
)

+ Tnk

(
β(uγ)p

i+pj
)
.

The above expression will be independent of x if and only if Tnk (βxp
i
(uγ)p

j
) =

−Tnk (βxp
j
(uγ)p

i
), for all x ∈ Fpn and all u ∈ Fpk .

We analyze this equation in terms of the congruence i ≡ j (mod k). If i 6≡ j
(mod k), it follows that all the exponents are pairwise different. Therefore, all the

50 4.1 Linear translators

coefficients must equal 0 and so either β = 0 or γ = 0. But γ cannot be 0, following
from Definition 2.4.2, and β cannot be 0, since then f(x) = 0.

It follows that i ≡ j (mod k), thus j = i+ kl for some 0 < l < r. Note that we
exclude the case l = 0. Indeed, in this case, f is linear for p = 2 and f(x) = x2pi

for p > 2, a function which cannot have a linear translator by Proposition 4.1.5.
Therefore, we have

f(x+ uγ)− f(x) = Tnk

(
βxp

i
(uγ)p

i+lk
)

+ Tnk

(
βxp

i+lk
(uγ)p

i
)

+ Tnk

(
β(uγ)p

i+pi+lk
)

= Tnk

(
βxp

i
(uγ)p

i+lk
+ βp

(r−l)k
xp

i
(uγ)p

i+(r−l)k
+ β(uγ)p

i+pi+lk
)

= up
i
Tnk

(
xp

i
(
βγp

i+lk
+ βp

(r−l)k
γp

i+(r−l)k
))

+ u2piTnk

(
βγp

i+pi+lk
)
. (4.7)

Thus, we must have

βγp
i+lk

+ βp
(r−l)k

γp
i+(r−l)k

= 0,

to eliminate x.

In particular, if β ∈ Fpk then the above condition reduces to γp
2lk−1 = −1, which

for p odd has a solution exactly when n
gcd(n,2kl) = r

gcd(r,2l) is even (see [23, Claim 4],

for instance).

�

Remark 4.1.8 It can be easily verified that

Tnk (βxp
i+pj) =

(
Tnk (ax1+pj−i)

)pi
, a = βp

n−i
, j > i.

Thus, alternatively, one can consider the mapping x 7→ Tnk (ax1+ps).

The result below specifies further the existence of translators for quadratic trace
monomials.

Theorem 4.1.9 Let n = rk and f(x) = Tnk (βxp
i+pj), where r > 1 and j = i + kl

for some 0 < l < r. Assume that γ ∈ F∗pn is a b-translator of f , where b =

Tnk (βγp
i+pi+lk). Then :

i) If p = 2 the condition (4.6) in Lemma 4.1.7 must be satisfied and either

b = Tnk (βγ2i+2i+lk) and i = sk − 1 for some 0 < s ≤ r,

or b = 0. In particular, if β ∈ F2k then γ = 1 is a 0-translator of f if r is even
and γ = 1 is a β-translator if r is odd, where in the latter case i = sk − 1.

ii) If p > 2 we necessarily have b = 0. In particular, if β ∈ Fpk then n is even and

γ must satisfy γp
2kl−1 = −1 and Trnk (γ1+plk) = 0.

Permutations and bent functions via translators 51

Proof. If (4.6) is satisfied then, from (4.7),

f(x+ uγ)− f(x) = u2piTnk

(
βγp

i+pi+lk
)
.

For f to have linear translators, we either have u2pi = u or Tnk (βγp
i+pi+lk) = 0.

i) Let p = 2. The condition u2pi = u gives 2i+1 ≡ 1 (mod 2k − 1), which implies
i = sk − 1, for some 0 < s ≤ r. This follows from the fact that 2k − 1 | 2i+1 − 1 if

and only if k | i+ 1. Otherwise, if Tnk (βγ2i+2i+lk) = 0 then γ is a 0-translator.
In particular, if β ∈ F2k then γ = 1 is a solution to (4.6). Then,

b = βTnk (γ2i+2i+lk) = βTnk (1) = 0

if r is even and b = β for odd r where additionally i = sk − 1 as above.
ii) For p > 2 we have 2pi ≡ 1 (mod pk − 1), which implies 2pi = 1 + s(pk − 1),

for some s. Since p is odd the left-hand side of the equation is even and the right-
hand side is odd, which is impossible. The only remaining option for γ is to be a
0-translator.

In particular, if β ∈ F∗
pk

, then by Lemma 4.1.7, n
gcd(n,2kl) = r

gcd(r,2l) is even and

thus n must be even. Furthermore, (4.6) reduces to γp
2kl−1 = −1 and the fact that

b = 0 implies

Tnk (βγp
i+pi+lk) = β

(
Tnk (γ1+plk)

)pi
= 0.

�

Remark 4.1.10 The existence of translators for f(x) = Trnk (βxp
i+pj) is more eas-

ily handled when β ∈ Fpk . For β ∈ Fpn general solutions to (4.6) satisfying at
the same time the other conditions seem to be difficult to specify explicitly. Theo-
rem 4.1.9 may also induce some non-existence results as well, which however requires
further analysis.

The next corollary follows directly from Theorem 4.1.1 and 4.1.9.

Corollary 4.1.11 Let p = 2, n = rk, f(x) = Tnk (βxp
sk−1+p(s+l)k−1

) for some 0 <
l < r, 0 < s ≤ r, and let γ satisfy (4.6) in Lemma 4.1.7. Then

L(x) + L(γ)h
(
Tnk (βxp

sk−1+p(s+l)k−1
)
)
,

where L is a Fpk-linear permutation on Fpn and h : Fpk → Fpk , is a permutation if

and only if g : u 7→ u+ Tnk (βγp
sk−1+p(s+l)k−1

)h(u) permutes Fpk .

4.1.2 Compositional inverses

The main goal of this section is to show that a lot of permutations, and some
related structures can be derived from Theorem 4.1.1. In this section, we focus on
the compositional inverses of these permutations. A similar initiative was taken in
[87] where other classes of permutations (not of the form (4.2)) were analyzed with

52 4.1 Linear translators

respect to their inverses. Related to compositional inverses of permutations of the
form (4.2), we mention Corollary 3.8 in [87] which states that given gcd(n, k) =

d > 1, s(qk − 1) ≡ 0 mod (qn − 1), δ ∈ Fqn , the function f(x) = x + (xq
k − x + δ)s

permutes Fqn and its inverse is f−1(x) = x− (xq
k − x+ δ)s.

Definition 4.1.12 Let F be any function over Fpn. For any t ≥ 1, the function

Ft(x) = F ◦ · · · ◦ F︸ ︷︷ ︸
t

(x)

is said to be the t-fold composition of F with itself.

In [49, Section 4], the author studied the functions F : x 7→ x + γf(x), i.e., with
notation of Definition 2.4.2, the function h being the identity. Several results in
[49], regarding the compositional inverses, hold for such F (only). Henceforth, we
attempt to specify compositional inverses when h is not the identity.

Lemma 4.1.13 Let n = rk, k > 1. Let f : Fpn → Fpk , h : Fpk → Fpk and b ∈ Fpk .
Define

F (x) = x+ γh(f(x)), γ ∈ F∗pn
where γ is a b-linear translator of f . Then

F2(x) = x+ γh(f(x)) + γh (bh(f(x)) + f(x)) .

Proof.

F ◦ F (x) = F (x+ γh(f(x)))

= x+ γh(f(x)) + γh (f(x+ γh(f(x)))

= x+ γh(f(x)) + γh (bh(f(x)) + f(x)) ,

since f(x+ γh(f(x))) = bh(f(x)) + f(x) for all x. �

Proposition 4.1.14 Notation is as in Lemma 4.1.13. If b = 0 then Fp(x) = x so
that

F−1(x) = Fp−1(x) = x+ (p− 1)γh(f(x)).

In particular, F is an involution when p = 2.

Proof. Assume that b = 0. In this case, F is a permutation for any h (from
Theorem 4.1.1), so that its compositional inverse F−1 exists. We get from Lemma
4.1.13:

F ◦ F (x) = x+ 2 γh(f(x)).

Assume that Fj−1(x) = x+ (j − 1)γh(f(x)). We have for 2 < j ≤ p:

Fj(x) = F ◦ Fj−1(x) = Fj−1(x) + γh(f(Fj−1(x)))

= x+ (j − 1)γh(f(x)) + γh(f(x)) = x+ jγh(f(x)),

since f(x+ (j − 1)γh(f(x))) = f(x), for all x. Thus we get Fp(x) = x, for all x, for
j = p. Moreover if p = 2 then F−1 = F . �

Thus, according to Proposition 4.1.14 a large set of permutations can be obtained
whose compositional inverse is known as illustrated below.

Permutations and bent functions via translators 53

Corollary 4.1.15 Let f : Fpn → Fpk , n = rk, f(x) = Tnk (βx). Choose β, γ ∈ F∗pn
such that Tnk (βγ) = 0. Let L be any Fpk-linear permutation. Then the functions

F (x) = L(x) + L(γ)h (Tnk (βx))

are permutations for any h : Fpk → Fpk . Moreover

F−1(x) = L−1(x) + (p− 1)L(γ)h
(
Tnk (β(L−1(x)))

)
.

If p = 2 and L(x) = x, then F is an involution, i.e., F−1 = F .

Proof. From Lemma 4.1.6, γ is a 0-translator of f if and only if Tnk (βγ) = 0. So,
from Theorem 4.1.1, F is a permutation for any Fpk -linear permutation L and for
any h. Further, set G(x) = x+γh(f(x)) so that F = L◦G. Then F−1 = G−1 ◦L−1,
where, from Proposition 4.1.14,

G−1(x) = Gp−1(x) = x+ (p− 1)γh (Tnk (βx)) .

Moreover if p = 2 and L(x) = x, then F−1(x) = G−1(x) with G−1(x) = G(x). �

Taking h linear we get a large set of linear permutations. We illustrate this in
the binary case when r = 2.

Corollary 4.1.16 Notation is as in Corollary 4.1.15 with n = 2k and p = 2. As-
sume that L is a Fpk-linear involution, i.e., L(x) = ax+ bx2k as defined by Lemma
2.4.1. Then, for all β, γ ∈ F∗pn such that Tnk (βγ) = 0 and for any linear function h
the functions

F (x) = L(x) + L(γ)h (Tnk (βx)) ,

are linear permutations of Fpn and

F−1(x) = L(x) + L(γ)h (Tnk (β(L(x)))) .

Note that for p = 3 the compositional inverse is obtained by adding to F its second
term, as shown in the example below.

Example 4.1.1 Let p = 3, n = 3k and a ∈ F3k .

F (x) = x+ γ(x32k
+ x3k + x+ a)s, T 3k

k (γ) = 0.

Then, by applying Corollary 4.1.15, F is a permutation of F3n for any integer s in
the range [1, 3n − 2]. Moreover

F−1 = x+ 2γ
(
x32k

+ x3k + x+ a
)s

= F (x) + γ (Tnk (x) + a)s .

In Section 4.1.1, it was proved that a function f : Fpn → Fpk , p odd, defined by

f(x) = Tnk (xp
i+pi+`k), can have a b-translator for b = 0 only (see Theorem 4.1.9).

Based on this, we are able to derive a class of permutations of degree at least 2
whose compositional inverse is known.

54 4.1 Linear translators

Corollary 4.1.17 Let p be an odd prime, n = rk and ` be a positive integer such
that r/ gcd(r, 2`) is even. Let f(x) = Tnk (xp

i+pi+`k), where 0 ≤ i ≤ k−1. Let γ ∈ F∗pn
such that

γp
2k`−1 = −1 and Tnk (γ1+p`k) = 0.

Then

x 7→ L(x) + L(γ)h
(
Tnk (βxp

i+pi+`k)
)

is a permutation of Fpn, for any Fpk-linear permutation L and any h : Fpk → Fpk .

Moreover if F (x) = x+ γh
(
Tnk (xp

i+pi+`k)
)

then

F−1(x) = x+ γ(p− 1)h
(
Tnk (xp

i+pi+`k)
)
.

Proof. From Theorem 4.1.9, γ is a 0-linear translator of f if and only if Tnk (γ1+p`k) =
0. Further, we apply Theorem 4.1.1 and Proposition 4.1.14. �

We previously considered functions with a zero translator, i.e., b = 0, to obtain
permutations with their compositional inverses. When b 6= 0, other permutations
with their compositional inverses can be obtained. In this case however, it seems
that the definition of the function h has to be specified. The idea is to determine h
such that

h(f(x)) + h(bh(f(x)) + f(x)) = g(x), b 6= 0,

(by using Lemma 4.1.13) where g allows us to compute easily the t-fold composition
of F with itself. We illustrate our purpose by constructing involutions for any odd
p.

Proposition 4.1.18 Notation is as in Lemma 4.1.13. Let p be an odd prime. As-
sume that γ is a b-linear translator of f where b 6= 0. Set h(x) = λx where λ ∈ F∗

pk

and λ 6= −b−1. Then the function F ,

F (x) = x+ γλf(x),

permutes F∗pn. Moreover, if λ = −2b−1 then F is an involution.

Proof. From Theorem 4.1.1, F is a permutation, since

`(u) = u+ bh(u) = u(1 + λb) for u ∈ Fpk ;

so ` is a permutation because λ 6= −b−1 by hypothesis. Moreover

h(f(x)) + h(bh(f(x)) + f(x)) = 2λf(x) + bλ2f(x) = λf(x)(2 + bλ).

From Lemma 4.1.13, we get F ◦ F (x) = x if and only if 2 + bλ = 0. �

Permutations and bent functions via translators 55

4.1.3 Relation with complete permutations

The concept of complete permutations is of crucial importance for non-zero linear
translators b in terms of Theorem 4.1.1, since the main condition there was that
u 7→ u+ bh(u) permutes Fpk .

Definition 4.1.19 Let h be a function over Fpk . We say that h is complete with
respect to b, or b-complete, when both h and u 7→ u+ bh(u) permutes Fpk .

Thus we can apply Theorem 4.1.1 as follows:

Theorem 4.1.20 Let n = rk, k > 1. Let f : Fpn → Fpk , h : Fpk → Fpk , γ ∈
F∗pn and b ∈ F∗

pk
such that γ is a b-linear translator of f . Let L be a Fpk-linear

permutation on Fpn.
If h is b-complete then F (x) = L(x) + L(γ)h(f(x)) permutes Fpn.

Proof. To say that h is b-complete is to say that both h and u 7→ u+bh(u) permute
Fpk . We apply Theorem 4.1.1 assuming that h is a permutation. �

The characterizarion of complete permutations, especially monomials, is currently
discussed in many works (see for instance [2, 85, 89] and refererences). We illustrate
Theorem 4.1.20 through the example below.

Example 4.1.2 Let p = 3 and h be the permutation on Fp3 defined by h(x) =

xp
2+p+2. By [2, Theorem 6] we know those b ∈ Fp3 such that u 7→ u + bh(u)

permutes Fp3. Thus, we can apply Theorem 4.1.20 for any n = 3r and for any such
b. Let γ ∈ Fpn and

f : x ∈ Fpn 7→ x+ xp
3

+ · · ·+ xp
(r−1)3 ∈ Fp3 .

Then, for any u ∈ Fp3

f(x+ uγ)− f(x) = T 3r
3 (uγ) = uT 3r

3 (γ).

Thus, we choose γ such that b = T 3r
3 (γ) is suitable, according to the results of

[2]. Then we obtain a new permutation F , for any Fp3-linear permutation L. In
particular for L(x) = x:

F (x) : x 7→ x+ γ
(
T 3r

3 (x)
)p2+p+2

is a permutation of Fpn. Another example is L(x) = ax + xp
3
, where a ∈ Fpn and

−a are not in the image set of x 7→ xp
3−1. Then

F (x) = ax+ xp
3

+ L(γ)
(
T 3r

3 (x)
)p2+p+2

is a permutation over Fpn.

A set of trinomials which are 1-complete over F23m is proposed in [85, Theorem 4].
We give here a slightly different version of this result.

56 4.1 Linear translators

Theorem 4.1.21 For any ν ∈ F2m \ {0, 1}, the trinomial

h(x) = x22m+1 + x2m+1 + νx

is complete over F23m with respect to any b ∈ F2m \ {0, ν−1}.

Proof. It is proved in [85] that h is a permutation of F23m for any such ν. Thus
x 7→ bh(x) is also a permutation. If b ∈ F2m \ {0, ν−1} then bν + 1 ∈ F2m \ {0, 1}.
So we have

g(x) = b
(
x22m+1 + x2m+1 + νx

)
+ x = bh(x) + x,

where h and g are both bijective. �

Applying Theorem 4.1.1, we obtain directly the following class of permutation.

Corollary 4.1.22 Let n = rk with k = 3m. Denote by L any F2k-linear permuta-
tion on F2n. Let f : F2n → F2k such that f has a b-translator γ ∈ F∗2n with b ∈ F∗2m.
Then the functions

x 7→ L(x) + L(γ)
(

(f(x))22m+1 + (f(x))2m+1 + ν(f(x))
)

permute F2n for all ν ∈ F2m \ {0, 1, b−1}.

4.1.4 A special class of permutations

There is currently a lot of work related to the functions over Fpn of type

F : x 7→ (f(x) + δ)s + L(x), δ ∈ F∗pn , (4.8)

where f is linear, s is any integer and L is a linearized polynomial in Fpn [x] (see
[84],[86] and [91] for the most recent articles, and their references). The problem is
to determine some (δ, s, L) such that F is a permutation. To apply directly Theorem
4.1.1, we take L(x) = x and specific functions f . According to our previous results
and thanks to Theorem 4.1.1 we can treat some cases directly. Note that δ must be
in the image set of f to apply Theorem 4.1.1.

Proposition 4.1.23 Let n = 2k, F (x) = γ(f(x))s + x where f(x) = xp
k

+ x + δ
with δ ∈ Fpk . Set b = Tnk (γ). Then

• If b = 0 then F is a permutation over F2n for any s as well as

x 7→ L(γ)(f(x))s + L(x) where L is an Fpk-linear permutation.

• When b = 0, F−1 = x + (p − 1)γ(f(x))s. Notably, F is an involution if and
only if p = 2.

• When b 6= 0, one can apply Theorem 4.1.1 if and only if u 7→ u+ bus permutes
Fpk . It is especially the case when u 7→ us is b-complete.

Permutations and bent functions via translators 57

Proof. First, we have from Lemma 4.1.6:

f(x+ γu)− f(x) = u(γp
k

+ γ),

for all u ∈ Fpk and all x. Thus γ is a b-translator of f , with b = γp
k

+ γ.
To have b = 0 is always possible. When p = 2 we take γ ∈ Fpk . When p is odd it

is known that γp
k−1 = −1 has a solution in Fpn as soon as n/ gcd(n, k) is even (see

[23, Claim 4], for instance). Here we have 2k/ gcd(2k, k) = 2. For such γ, we can
apply Theorem 4.1.1 for any s. Moreover, the inverse of F is obtained by applying
Proposition 4.1.14. According to Theorem 4.1.20, we can apply Theorem 4.1.1 in
particular when u 7→ us is b-complete. �

Our purpose is to contribute to the current works on polynomials of type (4.8).
Generally, to prove that F is a permutation is easier when δ is in a subfield and f
has its image in this subfield. In the next subsections we study specific polynomials,
taking δ ∈ Fpn where n = 2k. The results presented by Propositions 4.1.25 and
4.1.30 (and then Corollary 4.1.34) are partly already known. The necessary and
sufficient condition of bijectivity can be obtained by using the AGW criterion. More
precisely, we give here instances and applications of the following result which is a
direct consequence of [1, Theorem 5.1]. We first give the version of [1, Proposition
5.9] that we need in our context.

Proposition 4.1.24 Let L be an Fpk-linear polynomial which permutes Fpk and

g, h : Fpn → Fpn, where h(xp
k − x) ∈ F∗

pk
.

Then the function x 7→ h(xp
k − x)L(x) + g(xp

k − x) is a permutation of Fpn if
and only if

x 7→ h(x)L(x) + g(x)p
k − g(x) permutes J = {ypk − y|y ∈ Fpn}.

We propose another way of proving the bijectivity in Propositions 4.1.25 and 4.1.30.
Our main purpose is to use the component functions of F explicitly relying on the
following criterion: F : Fpn 7→ Fpn is a permutation if and only if all its component
functions Fλ(x) = Tr(λF (x)), λ ∈ F∗pn, are balanced [58, Theorem 7.7]. This
approach may have independent significance for establishing permutation property
of other classes of functions and may be useful in the analysis of the Walsh spectra
of the component functions.

4.1.4.1 Permutation polynomials for p = 2

When p = 2, to say that the component functions Fλ(x) = Tr(λF (x)) of F are
balanced is to prove that

Aλ =
∑
x∈F2n

(−1)Tr(λF (x)) = 0, ∀ λ ∈ F∗2n . (4.9)

Proposition 4.1.25 Let n = 2k and F : F2n → F2n with F (x) = x+ (x+x2k + δ)s,
where δ ∈ F2n and s is any integer in the range [0, 2n − 2]. Notation Fλ and Aλ is
defined above. Let us define

g : y 7→ y + (y + δ)s + (y + δ)2ks from F2k to F2k .

58 4.1 Linear translators

Then we have:

(i) F is a permutation over F2n if and only if the function g is bijective. In parti-
cular, if s satisfies 2ks ≡ s (mod 2n − 1) then F is a permutation.

(ii) The Boolean functions Fλ are balanced for all λ 6∈ F2k . If λ ∈ F2k then

Aλ = 2k
∑
y∈F

2k

(−1)T
k
1 (λg(y)).

Proof. Note that s = 0, 1 are trivial cases. So we suppose that s ≥ 2. The item
(i) comes directly from Proposition 4.1.24, by taking (with its notation) L(x) = x,
g(x) = (x+δ)s and h is the constant function equal to 1. Note that in this case J =
F2k . Clearly, if 2ks ≡ s (mod 2n − 1) then g(y) = y, and thus F is a permutation.

(ii) Now, it is easy to see that F is affine on any coset of F2k : for x = a + y,
y ∈ F2k

F (a+ y) = y + a+ (a+ a2k + δ)s.

Let W be a set of representatives of these cosets. Thus F2n = ∪a∈W(a + F2k). We
have for any λ ∈ F∗2n :

Aλ =
∑
a∈W

∑
y∈F

2k

(−1)Tr(λF (y+a))

=
∑
a∈W

∑
y∈F

2k

(−1)Tr(λ(y+a+(a+a2k+δ)s))

=
∑
a∈W

∑
y∈F

2k

(−1)
Tk1

(
(λ+λ2k)y+T 2k

k (λF (a))
)
.

We deduce that Aλ = 0 for any λ 6∈ F2k , which means that Fλ is balanced for all
these λ. Now assume that λ ∈ F∗

2k
. Then

Aλ = 2k
∑
a∈W

(−1)T
k
1 (T 2k

k (λF (a))),

where
T 2k
k (λF (a)) = λ

(
a+ a2k + (a+ a2k + δ)s + (a+ a2k + δ)2ks

)
.

Since a 7→ a+ a2k is a bijection from W to F2k , to compute the values T 2k
k (λF (a))

is exacly to compute λg(y) for y ∈ F2k . Clearly, Aλ = 0 for all λ ∈ F∗
2k

if and only
if g is bijective. �

Remark 4.1.26 In a recent article [86], two classes of permutations F (x) = x +

(x + x2k + δ)s were proposed for s of the form s = i(2k ± 1) + 1. More precisely,
it was shown that F is a permutation for s = 2(2k − 1) + 1 = 2k+1 − 1 and for
s ∈ {2k + 2, 22k−1 + 2k−1 + 1, 22k − 2k − 1} when s = i(2k + 1) + 1. The above result
covers the case s = i(2k + 1) for any i ∈ [0, 2k − 2], since in this case s(2k − 1) ≡ 0
(mod 2n − 1).

Permutations and bent functions via translators 59

It is also of interest to establish whether for s = 2i, for i = 0, . . . , n−1, the linearized
polynomial F (x) is a permutation. An immediate consequence of Proposition 4.1.25
is the following.

Corollary 4.1.27 Using the same notation as in Proposition 4.1.25, if s = 2i then
F (x) = x + (x + x2k + δ)s is a linearized permutation for any δ ∈ F2n and any
i = 0, . . . , n− 1.

Proof. Since F is a permutation if and only if g(y) = y + T 2k
k ((y + δ)s) is a

permutation over F2k , then for s = 2i we have

g(y) = y + Tnk (y2i) + Tnk (δ2i) = y + Tnk (δ2i)

which is clearly a permutation. �

Another direct consequence of Proposition 4.1.25 is the following result.

Corollary 4.1.28 Using the same notation as in Proposition 4.1.25, if δ ∈ F2k then

F (x) = x+ (x+ x2k + δ)s is a permutation for any s ∈ [0, 2k − 2].

Proof. If δ ∈ F2k then (y+δ)s ∈ F2k since y ∈ F2k so that g(y) = y+Tnk ((y+δ)s) = y,
which is a permutation and so is F regardless of the choice of s. �

Remark 4.1.29 Corollary 4.1.28 also follows from Proposition 4.1.23 by noting
that in this case b = 0, that is, γ = 1 is a 0-translator. Recall that in this case F is
an involution for any δ ∈ F2k .

4.1.4.2 Permutation polynomials for odd p

Using the same technique, we deduce slightly different results when p is odd. For
odd p, the function Fλ is said to be balanced when

Aλ =
∑
x∈Fpn

ζTr(λF (x))
p = 0 (4.10)

where ζp is a p-th root of unity, i.e., ζp = e2πi/p for some i. Also, F is a permutation
over Fpn if and only if (4.10) holds for any λ ∈ F∗pn .

Proposition 4.1.30 Let p be an odd prime, n = 2k and F : Fpn → Fpn,

F (x) = L(x) + (xp
k − x+ δ)s, δ ∈ Fpn , (4.11)

where L ∈ Fpk [x] is a linear permutation and s is any integer in the range [1, pn−2].
Let us define

G(y) = −L(y) + (y + δ)s − (y + δ)p
ks, y ∈ Fpn .

Then we have:

(i) F is a permutation over Fpn if and only if the function G permutes the subspace
S = {y ∈ Fpn | Tnk (y) = 0}. In particular, if s satisfies pks ≡ s (mod pn − 1)
then F is a permutation.

60 4.1 Linear translators

(ii) The component functions Fλ of F are balanced for all λ ∈ F∗pn satisfying
Tnk (λ) 6= 0. If Tnk (λ) = 0, then

Aλ = pk
∑
y∈S

ζ
Tk1 (λG(y))
p .

Proof. First, (i) comes directly from Proposition 4.1.24, by taking (with its nota-
tion) g(x) = (x + δ)s and h is the constant function equal to 1. Obviously S = J ,

since J and S have the same cardinality pk and J ⊂ S because y = up
k −u satisfies

T 2k
k (y) = 0. Note that L(S) = S since

L(y) + (L(y))p
k

= L(y + yp
k
) = L(0) = 0, for any y ∈ S.

If s satisfies pks ≡ s (mod pn− 1), then G(y) = −L(y) implying that F is a permu-
tation since L permutes S by assumption.

As in Proposition 4.1.25, W is a set of representatives of the pk cosets of Fpk .
Recall that Fλ(x) = Tr(λF (x)). We have for any λ ∈ F∗pn :

Aλ =
∑
x∈Fpn

ζTr(λF (x))
p =

∑
a∈W

∑
y∈F

pk

ζTr(λF (y+a))
p ,

where

Tr(λF (y + a)) = Tr
(
λ(L(y + a) + (ap

k − a+ δ)s)
)

= T k1

(
L(y)(λ+ λp

k
) + T 2k

k (λF (a))
)
.

Since L ∈ Fpk [x] is a permutation over Fpn and thus over Fpk as well, we deduce that

Aλ = 0 for any λ such that λ+ λp
k 6= 0, i.e., Fλ is balanced for such λ. Further, for

λ+ λp
k

= 0, thus λ ∈ S, we get

Aλ = pk
∑
a∈W

ζ
Tk1 (T 2k

k (λF (a)))
p ,

where

T 2k
k (λF (a)) = (λL(a))p

k
+ λL(a) + T 2k

k (λ(ap
k − a+ δ)s)

= λ
(
L(a)− L(ap

k
) + (ap

k − a+ δ)s − (ap
k − a+ δ)sp

k
)

= λ
(
L(a− apk) + (ap

k − a+ δ)s − (ap
k − a+ δ)sp

k
)
.

Recall that ±(zp
k − z) ∈ S, for any z ∈ Fpn . Moreover λs ∈ Fpk for any s ∈ S, since

(λs)p
k

= λp
k
sp
k

= (−λ)(−s) = λs.

Therefore, T 2k
k (λF (a)) = λB with

B = L(a) + (ap
k − a+ δ)s −

(
L(a) + (ap

k − a+ δ)s
)pk

, (4.12)

Permutations and bent functions via translators 61

which satisfies T 2k
k (B) = 0, i.e., B ∈ S. Clearly, the function a 7→ ap

k − a is a
bijection from W to S. Finally, the function

G(y) = −L(y) + (y + δ)s − (y + δ)sp
k
,

can be viewed as a function from the subspace S to itself and λG(y) ∈ Fpk . Conse-
quently

Aλ = pk
∑
y∈S

ζ
Tk1 (λG(y))
p .

Note that Aλ = 0 for any λ ∈ S if and only if G is a permutation of S. �

Corollary 4.1.31 Notation is as in Proposition 4.1.30. Assume that Tnk (δ) = 0.
Then

• If s is even then F is a permutation of Fpn for any permutation L.

• If s is odd then F is a permutation of Fpn if and only if

y 7→ L(y)− 2(y + δ)s is a permutation of S.

• If s is even and L(x) = x, then we have F−1(x) = Fp−1(x).

Proof. As we noticed in the previous proof, L induces a permutation of S. The
case s even was proved in [90, Theorem 3.4]. Another proof is simply derived from
Proposition 4.1.30 by observing that

G(y) = −L(y) + (y + δ)s − (−y − δ)s

= −L(y) + (y + δ)s − (−1)s(y + δ)s = −L(y).

When s is odd, we get G(y) = −L(y) + 2(y + δ)s. Now consider

F (x) = x+ (f(x))s, f(x) = xp
k − x+ δ, with s even.

Note that f(x) ∈ S when Tnk (δ) = 0, since f(x)p
k

= −f(x). Moreover,

(f(x))sp
k − (f(x))s = (−f(x))s − (f(x))s = 0 (4.13)

holds for any even s. To compute the inverse of F we proceed as in Section 4.1.2.
We have here

F ◦ F (x) = F (x) + (f(x+ (f(x))s))s , (4.14)

where T 2k
k (f(x)) = 0. Setting a = (f(x))s, we get

f(x+ a)− f(x) = (x+ a)p
k − (x+ a) + δ − xpk + x− δ

= ap
k − a = 0, from (4.13).

Hence, according to (4.14),

F2(x) = F (x) + (f(x))s = x+ 2(xp
k − x+ δ)s.

62 4.1 Linear translators

Further, for j > 2, assuming that Fj−1(x) = x+ (j − 1)(f(x))s

Fj(x) = Fj−1(F (x)) = F (x) + (j − 1) (f(x+ (f(x))s))s

= x+ (f(x))s + (j − 1)(f(x))s = x+ j(f(x))s.

So, Fp(x) = x, completing the proof. �

By noting that Trnk (α) = 0 if and only if there exists β ∈ Fpn such that α =

β − βpk , we can write S = {y ∈ Fpn | Tnk (y) = 0} = {β − βpk |β ∈ Fpn}.
Clearly, G : S → S since S is a subspace and (y + δ)s − (y + δ)p

ks ∈ S.

We first consider the special case when δ ∈ S.

Proposition 4.1.32 Let p be odd, n = 2k, and S = {y ∈ Fpn | Tnk (y) = 0}. Then
the mapping

G(x) = −L(x) + (x+ δ)s − (x+ δ)p
ks

permutes the set S for any δ ∈ S, any linear permutation L, and any even s ∈
{2, 4, . . . , pn − 1}. Consequently,

F (x) = L(x) + (xp
k − x+ δ)s,

is a permutation for any δ ∈ S, for any L and any even s ∈ {2, 4, . . . , pn − 1}.

Proof. Since s is even, let us write s = 2s′ and let a ∈ S be arbitrary. Then because
a ∈ S we can write a = b− bpk for some b ∈ Fpn and

(b− bpk)2s′pk = (bp
k − bp2k

)2s′

= (bp
k − b)2s′

= (−(bp
k − b))2s′

= (bp
k − b)2s′ .

Since x+ δ is an element of S for every x, δ ∈ S, the function G(x), restricted to S,
can be also written as

G(x) = −L(x) + (x+ δ)2s′ − (x+ δ)2s′pk

= −L(x) + (x+ δ)2s′ − (x+ δ)2s′

= −L(x).

Since L(x) is a linear permutation and we already observed that it induces permu-
tation on S, G(x) must be a permutation of S. From Proposition 4.1.30, it then

follows that F (x) = L(x) + (xp
k − x+ δ)s is a permutation. �

This results provides us with many infinite classes of permutations of the form (4.11),
as illustrated by the following example.

Permutations and bent functions via translators 63

Example 4.1.3 Let p = 3, n = 2k, k = 3, L(x) be any F33-linear permutation poly-
nomial of F36, and δ ∈ F36 be such that Tr6

3(δ) = 0. It then follows from Proposition
4.1.32 that the mapping

G(x) = −L(x) + (x+ δ)s − (x+ δ)p
ks

permutes the set S = {y ∈ F36 |Tr6
3(y) = 0} for any even s. Furthermore, by

Proposition 4.1.30
F (x) = L(x) + (x33 − x+ δ)s

is a permutation for any δ ∈ S and any even s.

A closely related issue in this context is whether there are suitable L(y) and
exponents s when δ 6∈ S .

Proposition 4.1.33 Let p be odd, n = 2k, and S = {y ∈ Fpn | Tnk (y) = 0}. Then
the mapping

G(x) = −L(x) + (x+ δ)s − (x+ δ)p
ks

permutes the set S for any δ, any linearized permutation L, and any s = t(pk + 1),
where t is an integer. Consequently,

F (x) = L(x) + (xp
k − x+ δ)t(p

k+1),

is a permutation for any δ, for any L, and any integer t.

Proof. For every x ∈ Fpn we can see that

xt(p
k+1) − xpkt(pk+1) = xt(p

k+1) − xtp2k+tpk

= xt(p
k+1) − xtxtpk

= xt(p
k+1) − xt(pk+1)

= 0.

It follows that

G(x) = −L(x) + (x+ δ)t(p
k+1) − (x+ δ)p

kt(pk+1) = −L(x).

Similarly as before, it follows from Proposition 4.1.30 that G(x) is a permutation
of Fpn . �

In the case when s is odd, the next corollary generalizes [84, Theorem 4] with a
simple proof. Notation is as in Proposition 4.1.30.

Corollary 4.1.34 Let p be an odd prime, n = 2k and δ ∈ S \ {0}. Then

F (x) = L(x) + (xp
k − x+ δ)`(p

k−1)+1, 1 ≤ ` ≤ pk,

permutes Fpn if and only if y 7→ L(y)−2(−1)`y permutes S. It is especially the case
when:

F (x) = ρx+ (xp
k − x+ δ)`(p

k−1)+1, ρ ∈ F∗pn , ρ 6= 2(−1)`.

64 4.2 Frobenius Translators

Proof. Since p is odd, then `(pk − 1) + 1 is odd for any `. From Corollary 4.1.31,
F is a permutation if and only if

y 7→ G(y) = L(y)− 2(y + δ)s, s = `(pk − 1) + 1

is a permutation of S. Note that β ∈ S if and only if βp
k−1 = −1. Moreover βs ∈ S

for any odd s, since

T 2k
k (βs) = (−β)s + βs = (−1)sβs + βs = 0.

For y ∈ S, we have y + δ ∈ S and

(y + δ)s = (y + δ)`(p
k−1)(y + δ) = (−1)`(y + δ).

So, G(y) = L(y) − 2(−1)`(y + δ) and G is a permutation if and only if the linear
function y 7→ L(y) − 2(−1)`y is bijective on S. Now if L(x) = ρx then y 7→
(ρ− 2(−1)`)y is a permutation as soon as ρ− 2(−1)` 6= 0. �

4.2 Frobenius Translators

The main obstacle when considering the form 4.1 is that some new classes of permu-
tation polynomials could be specified provided the existence of suitable polynomials
admitting linear translators. For instance, it was shown in the previous section that
for n = rk (where r > 1), the function f(x) = βxi + xj , i < j, where f : Fpn → Fpk
and β ∈ F∗pn , has a linear translator if and only if n is even, k = n

2 , and furthermore
f(x) = Tnk (x). This indicates that the class of polynomials f : Fpn → Fpk admitting
linear translators is quite likely rather small. To increase its cardinality and conse-
quently to be able to derive other classes of permutation polynomials, we extend the
original definition of linear translators to cover a wider class of functions admitting
such translators. We call these translators Frobenius translators since the derivative
of f is rather expressed as f(x+uγ)−f(x) = up

i
b in contrast to standard definition

f(x + uγ) − f(x) = ub. Apparently, linear translators are just a special case of
Frobenius translators. To justify this extension we may for instance consider the
mapping f : x 7→ Tnk (x2`k+1) over F2n , where n = rk and 1 ≤ ` ≤ r − 1, which does
not have linear but admits a Frobenius translator, cf. Example 4.2.1. This gives us
the possibility to construct permutation polynomials whose form greatly resembles
(4.1) though using Frobenius translators instead, cf. Theorem 4.2.4. In connection
to the results in [21], we also address some existence issues for the classes of func-
tions given by f(x) = Tnk (βxp

i+pj), where n = rk, admitting linear translators and
specify exactly the value of γ in this case.

Assuming the existence of a Frobenius translator, the main condition that F (x) =
L(x)p

i
+ L(γ)p

i
h(f(x)) permutes Fpn , similar to the original condition for the form

(4.1), is that the mapping g(u) = u+ bh(u) permutes Fpk , where n = rk. This leads
us to the problem of specifying suitable permutations over suitable subfield which
we address thoroughly. In the first place, using a multivariate representation for a
suitable tower of extension fields we show that g(u) = u+bh(u) can be a permutation
for any choice of b in a subfield of Fpk . This gives us much more freedom to identify

Permutations and bent functions via translators 65

a function f : Fpn → Fpk satisfying f(x+ uγ)− f(x) = up
i
b. Though our approach

uses a multivariate representation, the univariate form of h can be easily recovered
and furthermore there is a great range of possibility of specifying h of various degree.
The case when b = 1 is handled separately since there are many known classes of
permutations of the form x+ h(x) which can be used. In particular, this is the case
when certain trinomials with so-called Niho exponents of the form x+xn1 +xn2 are
considered, where the exponents n1 and n2 are of Niho type [56].

Finally, yet another wide class of permutations of the form F (x) = L(x)+(xp
k−

x + δ)s is proposed by specifying those L, s, and δ that satisfy the condition given
recently in [21]. The permutation property of F is related to the condition that

G(y) = −L(y) + (y+ δ)s − (y+ δ)p
ks permutes the set S = {β ∈ Fpn : Trnk (β) = 0},

where n = 2k and p > 2. It is shown that F (x) = L(x) + (xp
k − x + δ)s is a

permutation for any Fpk -linear permutation L, any even s, and any δ ∈ S. In case
that δ does not belong to S, then F is a permutation for any Fpk -linear permutation

L and s = t(pk + 1), where t < pk − 1 is a nonnegative integer.

4.2.1 Frobenius translators

The main restriction of Theorem 4.1.1 is that it only gives new permutation poly-
nomials for linear translators of f satisfying the conditions in Definition 2.4.2.

Example 4.2.1 Let p = 2, n = rk and f : x 7→ Tnk (x2`k+1) with 1 ≤ ` ≤ r − 1. Let
γ ∈ F2n and u be any element of F2k . Then

f(x) + f(x+ uγ) = Tnk

(
x2`k+1 + (x+ γu)2`k+1

)
= Tnk

(
x2`kγu+ x(γu)2`k + (γu)2`k+1

)
= u Tnk

(
x(γ2`k + γ2n−`k)

)
+ u2Tnk

(
γ2`k+1

)
.

This shows that f(x) + f(x+ uγ) = u2 Tnk (γ2`k+1), for all x and all u ∈ F2k , if and

only if γ2`k + γ2n−`k = 0, which is equivalent to γ22`k
= γ.

In the above example b = Tnk (γ2`k+1) is not a linear translator of f since we would

obtain f(x + γu) + f(x) = u2b, for γ satisfying γ22`k
= γ, instead of having ub on

the right-hand side. To find other (not affine) functions f which have b-translators
appears to be a difficult problem. The global description is given in [49, Section 2]
but to have precise instances would be useful for some constructions. In particular,
extending Definition 2.4.2 to cover other cases, as illustrated in the above example,
would be useful for deducing other families of permutation polynomials.

To accomplish this we extend the definition of linear translators to cover the case
when f(x+ γu)− f(x) = up

i
b, as given below.

Definition 4.2.1 Let n = rk, 1 ≤ k ≤ n. Let f be a function from Fpn to Fpk ,
γ ∈ F∗pn and b fixed in Fpk . Then γ is an (i, b)-Frobenius translator for f if

f(x+ uγ)− f(x) = up
i
b for all x ∈ Fpn and for all u ∈ Fpk ,

where i = 0, . . . , k − 1.

66 4.2 Frobenius Translators

Notice that in the above definition taking i = 0 gives a standard definition
of translators. The next proposition generalizes the standard properties of linear
translators to the case of Frobenius translators.

Proposition 4.2.2 Let γ1, γ2 ∈ Fpn be (i, bi) and (i, b2)-Frobenius translators, re-
spectively, of the function f : Fpn → Fpk . Then

• γ1 + γ2 is an (i, b1 + b1)-Frobenius translator of f ,

• cγ1 is a (i, cp
i
b1)-Frobenius translator of f , for any c ∈ F∗

pk
.

Proof.

f(x+ u(γ1 + γ2))− f(x) = f(x+ uγ1) + up
i
b2 − f(x)

= f(x) + up
i
b1 + up

i
b2 − f(x)

= up
i
(b1 + b2)

f(x+ u(cγ1))− f(x) = f(x+ (uc)γ1)− f(x)

= (uc)p
i
b1

= up
i
(cp

i
b1)

�

The Corollary below will be useful when satisfying conditions of constructions
in Section 4.2.3.

Corollary 4.2.3 In the binary case the sum of any three (i, b)-Frobenius translators
γ1, γ2, γ3, such that γ1 + γ2 + γ3 6= 0, is again an (i, b)-Frobenius translator.

Proof. By applying Proposition 4.2.2 we know that γ1 + γ2 + γ3 is a (i, b+ b+ b)-
Frobenius translator. Since we are considering the binary case, that is an (i, b)-
Frobenius translator. �

Theorem 4.2.4 For n = rk, let h : Fpk → Fpk be an arbitrary mapping and let γ ∈
Fpn be an (i, b)-Frobenius translator of f : Fpn → Fpk , that is f(x+uγ)−f(x) = up

i
b

for all x ∈ Fpn and all u ∈ Fpk . Then, the mapping

G(x) = L(x)p
i

+ L(γ)p
i
h(f(x)), (4.15)

where L : Fpn → Fpn is an Fpk-linear permutation, permutes Fpn if and only if the
mapping g(u) = u+ bh(u) permutes Fpk .

Proof. We follow the same steps as in the proof of [49, Theorem 6]. Let us first
consider the special case L(x) = x, thus the function F (x) = xp

i
+ γp

i
h(f(x)).

Assume that x, y ∈ Fpn satisfy F (x) = F (y). Then

F (x) = xp
i

+ γp
i
h(f(x)) = yp

i
+ γp

i
h(f(y)) = F (y),

Permutations and bent functions via translators 67

and hence
xp

i
= yp

i
+ γp

i
(h(f(y))− h(f(x))) = yp

i
+ γp

i
a,

where a = h(f(y))− h(f(x)) ∈ Fq. This is equivalent to saying that x = y+ γap
n−i

,

thus we suppose that F (y) = F (y + γap
n−i

). Then, using

F (y + γap
n−i

) = yp
i

+ (γap
n−i

)
pi

+ γp
i
h(f(y + γap

n−i
))

= yp
i

+ γp
i
a+ γp

i
h(f(y) + ab),

we get
yp

i
+ γp

i
h(f(y)) = yp

i
+ γp

i
a+ γp

i
h(f(y) + ab),

which can be rewritten as

h(f(y)) = a+ h(f(y) + ab). (4.16)

The mapping F is a permutation of Fpn if and only if the only a satisfying (4.16) is
a = 0. Using exactly the same arguments as in [49], one can conclude that F is a
permutation if and only if g(u) = u+ bh(u) permutes Fpk .

To show that G(x) is a permutation it is enough to notice that G(x) = L(F (x)).
�

Remark 4.2.5 The condition imposed on h, which applies to both linear and Frobe-
nius translators, requiring that for a given b the function x+ bh(x) is a permutation
of Fpk is easily satisfied. Indeed, given any permutation g over Fpk we can define
h(x) = 1/b(g(x)−x) so that x+bh(x) = g(x) is a permutation. Thus, the main chal-
lenge is to specify {f : Fpn → Fpk} which admit linear/Frobenius translators. Each
such translator then gives different permutations over Fpn for different permutations
g over Fpk .

Apart from Example 4.2.1, one can for instance find Frobenius translators by com-
bining trace functions, more precisely by defining f(x) = Trnk (x) + Trn2k(x), for
n = 4k, as shown below.

Proposition 4.2.6 For n = 4k, the function f : Fpn → Fp2k , defined by f(x) =

Trnk (x) + Trn2k(x), always has a 0-translator if γ + γp
2k

= 0. In the binary case, it

also has a (k, γp
k

+ γp
3k

)-Frobenius translator.

Proof. Let n = 4k and f(x) = Trnk (x) + Trn2k(x). Let also γ ∈ F∗
p4k and u ∈ Fp2k .

Then

f(x+ uγ)− f(x) = Tr4k
k (x+ uγ) + Tr4k

2k(x+ uγ)− Tr4k
k (x)− Tr4k

2k(x)

= Tr4k
k (x+ uγ) + Tr4k

k (−x) + Tr4k
2k(x+ uγ) + Tr4k

2k(−x)

= Tr4k
k (uγ) + Tr4k

2k(uγ)

= 2uγ + (uγ)p
k

+ 2(uγ)p
2k

+ (uγ)p
3k

= 2u(γ + γp
2k

) + up
k
(γp

k
+ γp

3k
).

For p 6= 2 the only possibility that f has a linear translator is γ + γp
2k

= 0,
which results in a 0-translator. In the binary case, we have f(x + uγ) − f(x) =

u2k(γ2k + γ23k
), for any x ∈ F24k and any u ∈ F22k , which means that γ is a

(k, γp
k

+ γp
3k

)-Frobenius translator. �

68 4.2 Frobenius Translators

4.2.2 Some existence issues

In this section we specify exactly Frobenius translators for certain classes of map-
pings f : Fpn → Fpk which gives us the possibility to specify some new infinite classes
of permutations. The following existence results are similar to the ones presented
in [21], with the difference that here we consider Frobenius translators by means of
Definition 4.2.1.

Proposition 4.2.7 Let f(x) = xd, f : Fpn → Fpk , where n = rk and r > 1. Then
the function f does not have Frobenius translators in the sense of Definition 4.2.1.

Proof. This result follows directly from the proof of Proposition 1 in [21] by direct
calculation. �

On the other hand, binomial mappings of the form f(x) = βxi + xj still admit
Frobenius translators as shown below.

Proposition 4.2.8 Let f(x) = βxi + xj, i < j, where f : Fpn → Fpk , β ∈ F∗pn
and n = rk, where r > 1. Then the function f has a Frobenius translator γ if

and only if n is even, and k = n
2 . Furthermore, f(x) = xp

i′
+ xp

i′+n
2 and γ is an

(i′, γp
i′

+ γp
i′+n

2)-Frobenius translator.

The proof uses the same techniques as the proof of Proposition 4.1.4 and is
therefore omitted.

We conclude this section by specifying exactly Frobenius translators related to
quadratic mappings of the form f(x) = Tnk (βxp

i+pj) as discussed in section 4.1,
Lemma 4.1.7.

Lemma 4.2.9 Let n = rk and f(x) = Tnk (βxp
i+pj), where i < j. Then, f has

a derivative independent of x, that is, f(x + uγ) − f(x) = Tnk (β(uγ)p
i+pj) for all

x ∈ Fpn, all u ∈ Fpk , if and only if β, γ ∈ F∗pn are related through,

βγp
i+lk

+ βp
(r−l)k

γp
i+(r−l)k

= 0, (4.17)

where 0 < l < r satisfies j = i+ kl.

Nevertheless, the relation between β and γ imposed by (4.17) and their existence
were not investigated in [21]. Below, we specify the exact relationship between β
and γ, thus implying the possibility of defining some infinite classes of permutations
explicitly.

Proposition 4.2.10 Let n, r, k, l be as in Lemma 4.1.7, α be a primitive element
of Fpn, and γ = αa, β = αb ∈ Fpn. Then

βγp
i+lk

+ βp
(r−l)k

γp
i+(r−l)k

= 0

if and only if

b =

{
−api+lk(p(r−l)k + 1) mod (pn − 1), p = 2

−api+lk(p(r−l)k + 1) + pn−1
2 (1− p(r−l)k)−1 mod (pn − 1), p 6= 2.

Permutations and bent functions via translators 69

Proof. Expressed in terms of α, the equation

−αb+api+lk = αbp
(r−l)k+api+(r−l)k

is considered separately for the binary and non-binary case. Let p = 2. In this case

αb+ap
i+lk

= αbp
(r−l)k+api+(r−l)k

.

Therefore,

b+ api+lk mod (pn − 1) = bp(r−l)k + api+(r−l)k mod (pn − 1)

b(1− p(r−l)k) mod (pn − 1) = api+lk(p2(r−l)k − 1) mod (pn − 1)

b(1− p(r−l)k) mod (pn − 1) = api+lk(p(r−l)k − 1)(p(r−l)k + 1) mod (pn − 1)

b mod (pn − 1) = −api+lk(p(r−l)k + 1) mod (pn − 1)

b = −api+lk(p(r−l)k + 1) mod (pn − 1).

Let p 6= 2. In this case −1 = α
pn−1

2 and

α
pn−1

2 αb+ap
i+lk

= αbp
(r−l)k+api+(r−l)k

.

Therefore,

b+ api+lk +
pn − 1

2
mod (pn − 1) = bp(r−l)k + api+(r−l)k mod (pn − 1)

2b(1− p(r−l)k) mod (pn − 1) = 2a(pi+(r−l)k − pi+lk) mod (pn − 1)

2b(1− p(r−l)k) mod (pn − 1) = 2api+lk(p2(r−l)k − 1) mod (pn − 1)

2b(1− p(r−l)k) mod (pn − 1) = 2api+lk(p(r−l)k − 1)(p(r−l)k + 1) mod (pn − 1)

2b = −2api+lk(p(r−l)k + 1) mod (pn − 1).

�

The Frobenius translators related to the function f in Lemma 4.1.7 are further
specified in the result below.

Theorem 4.2.11 Let n = rk and f(x) = Tnk (βxp
i+pi+kl), where r > 1 and 0 < l <

r. Assume that γ ∈ F∗pn is an (s, b)-translator of f , where b = Tnk (βγp
i+pi+lk). Then:

i) If p = 2 the condition (4.17) in Lemma 4.2.9 must be satisfied and s = i+ 1.
In particular, if β ∈ F2k then γ = 1 is a 0-translator of f if r is even, and
γ = 1 is an (i+ 1, β)-translator if r is odd.

ii) If p > 2 we necessarily have b = 0. In particular, if β ∈ Fpk then n is even

and γ must satisfy γp
2kl−1 = −1 and Trnk (γp

i+pi+lk) = 0.

Proof. If (4.17) is satisfied then

f(x+ uγ)− f(x) = u2piTnk

(
βγp

i+pi+lk
)
.

70 4.2 Frobenius Translators

i) Let p = 2. Then u2pi = up
i+1

and γ is an (i+ 1, b)-translator. In particular, if

β ∈ F2k then γ = 1 is a solution to (4.17). Then, b = βTnk (γ2i+2i+lk) = βTnk (1) = 0
if r is even and b = β for odd r.

ii) For p > 2 we have 2pi ≡ pt (mod pk − 1) for some positive integer t, which
implies 2pi = m(pk − 1) + pj . Since p is odd, the left-hand side of the equation is
even and the right-hand side is odd, which is impossible. The only remaining option
is for γ to be a 0-translator.

The rest follows directly from [21, Theorem 4]. �

The following example specifies a function having a linear translator constructed
in this way.

Example 4.2.2 Let us consider f(x) = Tnk (βxp
i+pj) given in Lemma 4.1.7, where

p = 2. The relevant parameters are: n = rk = 8, r = 4, k = 2 and i = 2, l = 1, j =
i+kl = 4. Let α be a primitive element of the field F24. We fix an arbitrary element
γ = αa by setting e.g. a = 3. Now the function f : F28 → F22, having a linear
translator, can be specified using the condition (4.17) in Lemma 4.2.9. The element
β = αb is then computed, using Proposition 4.2.10, by specifying b to be

b = −api+lk(p(r−l)k+1) mod (pn−1) = −3·22+1·2 ·(2(4−1)·2+1) mod (255) = 195.

By Theorem 4.2.11, it follows that f(x) = Tnk (βxp
i+pj) = T 8

2 (α195x22+24
) has an

(s, b) = (3, T 8
2 (α195α3(22+24)))-Frobenius translator.

4.2.3 Application to bent functions

In this section we provide a generalization of results in [69] by using Frobenius
translators instead of standard linear translators, when p = 2. This allows to specify
some new infinite classes of permutations and their inverses similarly to the approach
in [69] which in turn gives rise to suitable quadruples of permutations from which
secondary classes of bent functions can be deduced. Furthermore, we also solve an
open problem [42] mentioned in the introduction which concerns the existence of
quadruples of bent functions whose duals sum to one.

4.2.3.1 Generalization of certain permutations using Frobenius transla-
tors

The main result of the method in [67] is the condition imposed on the duals of four
bent functions f1, . . . , f4 (where f4 = f1 + f2 + f3) given by f∗1 + f∗2 + f∗3 + f∗4 = 0,
where f∗i denotes the dual of fi. This condition was shown to be both necessary and
sufficient in order that the function H = f1f2 + f1f3 + f2f3 is bent. This naturally
leads to the employment of the Maiorana-McFarland class of bent functions, where a
bent function fj : F2n ×F2n → F2 in this class is defined as fj(x, y) = Trn1 (xφj(y) +
θj(y)), for some permutation φj over F2n and arbitrary function θj over F2n . It was
shown in [70] that the above quadruples of bent functions are easily identified using
a set of permutations defined by means of linear translators. We show that this
approach is easily extended to cover Frobenius translators as well, which induces
larger classes of these sets of permutations suitable to define new bent functions.

Permutations and bent functions via translators 71

Proposition 4.2.12 (Generalization of Proposition 3, [69]) Let f : F2n → F2k ,
let L : F2n → F2n be an F2k-linear permutation of F2n, and let g : F2k → F2k be a
permutation. Assume γ ∈ F∗2n and a ∈ F∗

2k
are such that γ is an (a, i)-Frobenius

translator of f with respect to F2k . Then the function φ : F2n → F2n ,

φ = L(x) + L(γ)

(
g(f(x)) +

f(x)

a

)2n−i

, (4.18)

is a permutation polynomial of F2n and

φ−1 = L−1(x) + γa2i
(
g−1

(
f(L−1(x))

a

)
+ f(L−1(x))

)2n−i

.

Proof. Let us define h : F2n → F2n as

h(x) = x+ γ

(
g(f(x)) +

f(x)

a

)2n−i

.

Then, setting y = x+ γ
(
g(f(x)) + f(x)

a

)2n−i

leads to

f(y) = f

(
x+ γ

(
g(f(x)) +

f(x)

a

)2n−i
)

= f(x)+a

(
g(f(x)) +

f(x)

a

)2n−i2i

= ag(f(x)).

Therefore, f(x) = g−1
(
f(y)
a

)
and

x = y + γ

(
g(f(x)) +

f(x)

a

)−2i

= y + γa−2n−i
(
f(y) + g−1

(
f(y)

a

))2n−i

.

This means that h is a permutation of F2n and its inverse is

h−1(x) = x+ γa−2n−i
(
f(x) + g−1

(
f(x)

a

))2n−i

.

Now we can define φ as φ = L ◦ h,

φ(x) = L(h(x)) = L

(
x+ γ

(
g(f(x)) +

f(x)

a

)2n−i
)

= L(x) + L(γ)

(
g(f(x)) +

f(x)

a

)2n−i

,

and φ−1 as

φ−1(x) = h−1 ◦ L−1 = L−1(x) + γa−2n−i
(
f(L−1(x)) + g−1

(
f(L−1(x))

a

))2n−i

.

�

In order to use these permutations in constructing new secondary classes of
bent functions they must satisfy the condition (An), which was first introduced by
Mesnager in [67] and later employed in [70].

72 4.2 Frobenius Translators

Definition 4.2.13 Three pairwise distinct permutations φ1, φ2, φ3 of F2n are said
to satisfy (An) if the following conditions hold:

• ψ = φ1 + φ2 + φ3 is a permutation of F2n,

• ψ−1 = φ−1
1 + φ−1

2 + φ−1
3 .

The main challenge is to define suitable permutations φi as in (4.18) so that
ψ = φ1 +φ2 +φ3 is also a permutation satisfying the condition (An), quite similarly
to the approach taken in [69]. To achieve this, the simplest way is to use the same
L, f, g for all φj , j ∈ {1, 2, 3}, where the functions φi only differ in the term L(γi).
More precisely, the function f admits different (a, i)-Frobenius translators γi, for
some fixed i and a, with the additional condition that γ1 + γ2 + γ3 is also an (a, i)-
Frobenius translator of f .

In the non-binary cases, finding such triples of Frobenius translators can be
difficult, but in the binary case, the sum of any three (a, i)-Frobenius translators is
again an (a, i)-Frobenius translator, as Corollary 4.2.3 proves.

Then

ψ(x) = L(x) + L(γ1 + γ2 + γ3)

(
g(f(x)) +

f(x)

a

)2n−i

,

ψ−1(x) = L−1(x) + (γ1 + γ2 + γ3)a−2n−i
(
f(L−1(x)) + g−1

(
f(L−1(x))

a

))2n−i

,

and it is easily verified that the permutations φj satisfy the condition (An). This
approach allows us to construct new bent functions using the result from [67, 70]
below.

Proposition 4.2.14 ([67, 70]) Let φ1, φ2, φ3 be three pairwise distinct permuta-
tions satisfying (An). Then, the Boolean function H : F2n × F2n → F2 defined
by

H(x, y) = Trn1 (xφ1(y))Trn1 (xφ2(y)) + Trn1 (xφ1(y))Trn1 (xφ3(y)) +

+Trn1 (xφ2(y))Trn1 (xφ3(y))

is bent. Furthermore, its dual function H∗ is given by

H∗(x, y) = Trn1 (φ−1
1 (x)y)Trn1 (φ−1

2 (x)y) + Trn1 (φ−1
1 (x)y)Trn1 (φ−1

3 (x)y) +

+Trn1 (φ−1
2 (x)y)Trn1 (φ−1

3 (x)y).

Notice that H is essentially defined as H = f1f2 + f1f3 + f2f3, where fj(x, y) =
Trn1 (xφj(y)) so that θj(y) = 0.

Remark 4.2.15 Using the same techniques the following Propositions and Theo-
rems from [69] can be generalized as well with minor modifications.

• Theorems 1, 2, 3, 4 in [69];

• Propositions 4, 5, 6 in [69].

Permutations and bent functions via translators 73

Due to similarity, we only discuss a generalization of Theorem 1 in [69] and give
an example of bent functions constructed using this generalization.

Theorem 4.2.16 (Generalized Theorem 1, [69]) Let f : F2n → F2k , let L :
F2n → F2n be an F2k-linear permutation of F2n, and let g : F2k → F2k be a per-
mutation. Assume γ1, γ2, γ3 ∈ F∗2n are all pairwise distinct (a, i)-Frobenius trans-
lators of f with respect to F2k (a ∈ F∗

2k
) such that γ1 + γ2 + γ3 is again an (a, i)-

Frobenius translator. Suppose γ1 + γ2 + γ3 6= 0. Set ρ(x) =
(
g(f(x)) + f(x)

a

)2n−i

and ρ̃(x) = a2i
(
g−1

(
f(x)
a

)
+ f(x)

)2n−i

. Then,

H(x, y) = Tr(xL(y)) + Tr(L(γ1)xρ(y))Tr(L(γ2)xρ(y)) +

Tr(L(γ1)xρ(y))Tr(L(γ3)xρ(y)) + Tr(L(γ2)xρ(y))Tr(L(γ3)xρ(y))

is bent. Furthermore, its dual function H∗ is given by

H∗(x, y) = Tr(yL−1(x)) + Tr(γ1yρ̃(L−1(x)))Tr(γ2yρ̃(L−1(x))) +

+Tr(γ1yρ̃(L−1(x)))Tr(γ3yρ̃(L−1(x)))

+Tr(γ2yρ̃(L−1(x)))Tr(γ3yρ̃(L−1(x))).

Proof. The only difference between Theorem 1 [69], and the generalized version
presented here is the modification to ρ and ρ̃. In the original approach ρ(x) =(
g(f(x)) + f(x)

a

)
and ρ̃(x) = a2i

(
g−1

(
f(x)
a

)
+ f(x)

)
. Then, raising ρ and ρ̃ to the

power of 2n−i, as it has been done in the proof of Proposition 4.2.12, the proof of
Theorem 4.2.16 is the same as the proof of Theorem 1, [69]. �

Example 4.2.3 Let n = 8, ω be a primitive element of F28, L be an arbitrary F24-
linear permutation of F28 and h be an arbitrary permutation of F24. Suppose we
want the function f : F28 → F24 to be a binomial and to use it in the construction of
a bent function using Theorem 4.2.16. Using only the standard definition of a linear
translator, we would be forced to define f(x) = Tr8

4(x) according to Proposition 2

from [21]. But using Proposition 4.2.8 we can define f(x) = x2i + x2i+4
for any i

with any γ ∈ F28 being an (γ2i + γ2i+4
, i)-Frobenius translator of f .

To use Theorem 4.2.16, we need to define three pairwise distinct (a, i)-Frobenius
translators. So we need to find three distinct γ1, γ2, γ3 such that

γ2i

1 + γ2i+4

1 = γ2i

2 + γ2i+4

2 = γ2i

3 + γ2i+4

3 = (γ1 + γ2 + γ3)2i + (γ1 + γ2 + γ3)2i+4
= a.

This would imply that γ1, γ2, γ3, γ1 + γ2 + γ3 are all (a, i)-Frobenius translators. A
quick computation shows that γ1 + γ2, γ1 + γ3, γ2 + γ3 ∈ F24 is required. We select
γ1 = ω, γ2 = ω3, γ3 = ω16 and, for example, if we fix i = 2, we get

γ2i

1 + γ2i+4

1 = γ2i

2 + γ2i+4

2 = γ2i

3 + γ2i+4

3 = (γ1 + γ2 + γ3)2i + (γ1 + γ2 + γ3)2i+4
= ω136

and ω + ω3 + ω16 = ω48 6= 0.
Let ρ, ρ̃ and H be defined as in Theorem 4.2.16. It follows that H is a bent

function.

74 4.2 Frobenius Translators

4.2.3.2 New bent functions from suitable quadruples of bent functions

In difference to the above approach, which preserves the variable space of input
functions, another method of constructing secondary bent functions on the extended
variable space was recently proposed in [42]. Nevertheless, quite a similar set of
conditions on initial bent functions f1, f2, f3, which was left as an open problem in
[42], is imposed in order that the resulting function F defined on a larger variable
space is bent.

Open Problem 3 [42] Find such bent functions f1, f2, f3 that f1 + f2 + f3 = f4 is
again a bent function and f∗1 + f∗2 + f∗3 + f∗4 = 1.

The design rationale is illustrated by Example 4.9 [42], where using f1, f2, f3 :
F2n → F2 that satisfy the above condition, implies that F : F2n ×F2×F2 defined as

F (X, y1, y2) = f1(X) + y1(f1 + f3)(X) + y2(f1 + f2)(X)

is bent.
Below we present a construction that solves this open problem and gives an

example of its use.

Theorem 4.2.17 Let fi(X) = fi(x, y) = Tr(xφi(y)) + hi(y) for i ∈ {1, 2, 3}, where
φi satisfy the condition (An) and x, y ∈ F2n/2. If the functions hi satisfy

h1(φ−1
1 (x)) + h2(φ−1

2 (x)) + h3(φ−1
3)(x)) + (h1 + h2 + h3)((φ1 + φ2 + φ3)−1(x)) = 1,

(4.19)
then f1, f2, f3 are solutions to Open Problem 3.

Proof. Let f4 = f1 + f2 + f3 = Tr(x(φ1 + φ2 + φ3)(y)) + (h1 + h2 + h3)(y). Since
the permutations φi satisfy the condition (An), their sum is again a permutation
and f4 is a bent Maiorana-McFarland function. Its dual is

f∗4 = Tr(y(φ1 + φ2 + φ3)−1(x)) + (h1 + h2 + h3)((φ1 + φ2 + φ3)−1(x)).

Then,

f∗1 + f∗2 + f∗3 + f∗4 = Tr(y(φ−1
1 (x))) + h1(φ−1

1 (x)) + Tr(y(φ−1
2 (x))) + h2(φ−1

2 (x)) +

+Tr(y(φ−1
3 (x))) + h3(φ−1

3 (x)) + Tr(y(φ1 + φ2 + φ3)−1(x)) +

+(h1 + h2 + h3)(φ1 + φ2 + φ3)−1(x))

= Tr(y((φ−1
1 + φ−1

2 + φ−1
3 + (φ1 + φ2 + φ3)−1)(x))) +

+h1(φ−1
1 (x)) + h2(φ−1

2 (x)) + h3(φ−1
3 (x)) +

+(h1 + h2 + h3)((φ1 + φ2 + φ3)−1(x))

= h1(φ−1
1 (x)) + h2(φ−1

2 (x)) + h3(φ−1
3)(x)) +

+(h1 + h2 + h3)((φ1 + φ2 + φ3)−1(x))

= 1.

�

The following example illustrates the procedure of defining three suitable bent func-
tions on F2n used to specify a bent function F on F2n × F2 × F2. The condition

Permutations and bent functions via translators 75

(4.19) imposed on hi in the definition of suitable fi(x, y) = Tr(xφi(y)) +hi(y) turns
out to be easily satisfied.

Example 4.2.4 Let α be a primitive element of F26. For simplicity, we define the
permutations φi over F26 as

φ1(y) = y + α, φ1(y) = y + α2, φ1(y) = y + α3,

which are self-inverse and it is straightforward to verify that they satisfy the condition
(An). Define the Boolean functions h2, h3 : F26 → F2 as

h2(y) = 0, h3(y) = 1.

After, we define the Boolean function h1 in such a way that

h1(φ−1
1 (y)) + h2(φ−1

2 (y)) + h3(φ−1
3)(y)) + (h1 + h2 + h3)((φ1 + φ2 + φ3)−1(y)) = 1

h1(φ−1
1 (y)) + (h1)((φ1 + φ2 + φ3)−1(y)) = 1

h1(y + α) + (h1)(y + α+ α2 + α3) = 1.

This condition is easily satisfied. We just construct the truth table of the Boolean
function h1 in such a way that for every y ∈ F26 we have h1(y) = h1(y+α2 +α3)+1.
Now we construct bent Maiorana-McFarland functions fi : F26×F26 → F2, fi(x, y) =
Tr(xφi(y)) + hi(y) and use them in the construction from Example 4.9, [42].

We define F : F212 × F2 × F2 → F2,

F (X, y1, y2) = f1(X) + y1(f1 + f3)(X) + y2(f1 + f2)(X).

The function F was implemented and tested using the programming package Magma.
It was confirmed that F is a bent function.

Remark 4.2.18 In [81, Remark 3], a method to define anti-self-dual bent functions
f1, f2, f3, f1+f2+f3 (thus f∗i = fi+1) is given which implies that f∗1 +f∗2 +f+

3 +f∗4 =
0. Another construction of f1, f2, f3 that satisfies this condition can be found in [94,
Section 5], where f1, f2, f3 all belong to the partial spread (PS) class of Dillon [34].
It is based on a well-known property of the PS class that the dual f∗ of a PS function
f is defined by substituting all the disjoint n

2 -dimensional subspaces in its support by
their orthogonal subspaces [12]. It follows that f∗4 = f∗1 + f∗2 + f∗3 and consequently
f∗1 + f∗2 + f∗3 + f∗4 = 0.

4.2.3.3 Some new infinite families of bent functions

In Chapter 4.1 many infinite families of permutations based on linear translators
were introduced, some of which were already generalized in previous sections. It
turns that in the binary case some of those families satisfy the condition (An).

Proposition 4.2.19 ([21]) Let k > 1(n = rk), f : F2n → F2k , g : F2k → F2k , and
let γ be a 0-linear translator. Then

F (x) = x+ γg(f(x))

is an involution.

76 4.2 Frobenius Translators

Note that if γ is a 0-translator it is irrelevant to differentiate between linear and
Frobenius translators.

Proposition 4.2.20 Let γ1, γ2, γ3 be pairwise distinct 0-linear translators, and let
Fi(x) = x + γig(f(x)) for i ∈ {1, 2, 3}. Then the functions Fi satisfy the condition
An.

Proof. By Proposition 4.2.2, γ1 + γ2 + γ3 must again be a 0-linear translator.

F1(x) + F2(x) + F3(x) = x+ γ1g(f(x)) + x+ γ2g(f(x)) + x+ γ3g(f(x))

= x+ (γ1 + γ2 + γ3)g(f(x))

Then, by Proposition 4.2.19, F1 +F2 +F3 is again a permutation and an involution.
This immediately implies that the second requirement of condition (An) is satisfied
as well. �

It therefore follows that we can use the above presented permutations in con-
structing new families of bent functions, as was done in Proposition 4.2.14. Since
the proof also follows the same steps it is in this case skipped.

Theorem 4.2.21 Let k > 1(n = rk), f : F2n → F2k , g : F2k → F2k , and let γi be
pairwise distinct 0-linear translators. Then

H(x, y) = Tr(xy) + Tr(γ1g(f(y)))Tr(γ2g(f(y))) + Tr(γ1g(f(y)))Tr(γ3g(f(y))) +

+Tr(γ2g(f(y)))Tr(γ3g(f(y)))

is a self-dual bent function.

Another family of permutations that turns out to satisfy the condition (An) was
introduced in [21]:

Corollary 4.2.22 ([21]) Let k > 1(n = rk), L be any F2k-linear permutation,
f(x) = Tnk (βx) such that Tr(βγ) = 0. Then the functions

F (x) = L(x) + L(γ)g(Trnk (βx))

are permutations for any g : F2k → F2k . Moreover,

F−1(x) = L−1(x) + L(γ)g(Trnk (βL−1(x))).

In a similar way as before we can show that Fi(x) = L(x) + L(γi)g(Trnk (βx))
satisfy the condition (An) if Trnk (γiβ) = 0. It follows that these permutations can
also be used in constructing new families of bent functions.

Theorem 4.2.23 Let L be any F2k-linear permutation,f(x) = Tnk (βx), g : F2k →
F2k , and let γi be such that Trnk (γiβ) = 0. Then

Permutations and bent functions via translators 77

H(x, y) = Tr(xL(y)) + Tr(L(γ1)g(Trnk (βx)))Tr(L(γ2)g(Trnk (βx))) +

+Tr(L(γ1)g(Trnk (βx)))Tr(L(γ3)g(Trnk (βx))) +

+Tr(L(γ2)g(Trnk (βx)))Tr(L(γ3)g(Trnk (βx)))

is a bent function and its dual is

H̃(x, y) = Tr(yL−1(x)) + Tr(L(γ1)g(Trnk (βL−1(x))))Tr(L(γ2)g(Trnk (βL−1(x)))) +

+Tr(L(γ1)g(Trnk (βL−1(x))))Tr(L(γ3)g(Trnk (βL−1(x)))) +

+Tr(L(γ2)g(Trnk (βL−1(x))))Tr(L(γ3)g(Trnk (βL−1(x)))).

Chapter 5

Infinite classes of vectorial
plateaued functions,
permutations, and complete
permutations

Boolean plateaued functions and vectorial functions with plateaued components have
a significant impact in many applications such as cryptography, sequences for com-
munications, and related combinatorics and designs. Boolean plateaued functions
were introduced in [96] as a class of functions characterized by the property of hav-
ing at most three values in its Walsh spectra. In particular, the semi-bent functions
play a significant role in certain cryptographic primitives and additionally these
functions constitute the component functions of certain mappings such as almost
perfect nonlinear (APN) mappings with Gold exponent. Nevertheless, while there
are a few known generic constructions of Boolean plateaued functions (a nice sur-
vey can be found in [11]) little is known about vectorial plateaued functions. In
[11], several characterizations of those vectorial functions whose components are all
plateaued (with possibly different amplitudes) were derived. In particular, it was
shown that an extension of the Maiorana-McFarland class gives rise to a vectorial
plateaued functions F : Fn2 → Fn2 . Namely, using a permutation π over F2m and two
arbitrary functions φ, ψ : F2m → F2m it could be shown that F : F2m × F2m defined
by F (x, y) = (xπ(y) + φ(y), xπ2i(y) + ψ(y)) is plateaued.

Even though the above approach gives an infinite class of vectorial plateaued
functions the component functions of F are bent and therefore they are not balanced.
As a consequence this approach can never give rise to permutations due to the
property of permutations that all linear combinations of its component functions are
balanced Boolean functions. Therefore, we consider an alternative design method of
vectorial plateaued functions which specifies the component functions of F in such
a way so that all linear combinations of them are balanced Boolean functions, thus
implying that F is a permutation. This way two infinite classes of non-quadratic
permutations are proposed but there are many variations of the proposed method
which may give many more infinite classes. The framework is also extendible in

79

80 5.1 Constructing permutations from M class

terms of getting varying degree of these permutations since it is based on a suitable
separation of the variable space. More precisely, the component functions can be
seen as a concatenation of linear functions from some fixed variable space whose size
can be adjusted to accommodate the design of permutations of even higher degree.
The polynomial form, as a univariate representation over the corresponding finite
field, appears to be complicated and it is retrieved using Lagrange interpolation.
On the other hand, the algebraic normal form (ANF) description of the component
functions is usually simple.

Complete mappings are a particular class of permutations characterized by the
property that both F (x) and F (x)+x are permutation polynomials over some finite
field F2n . Complete mappings have got attention in several works [72, 52, 92, 39]
and it appears to be a topic of current research interest as well, see [2, 85] and the
references therein. In particular, for the well-known Even-Mansour block cipher that
uses a public n-bit permutation F (x) and two n-bit secret keys k1, k2, and encrypts
an n-bit plaintext x by computing F (x + k1) + k2, it was demonstrated that this
cipher usually suffered from the attacks that rely on the non-uniform behavior of
F (x) + x. In order to resist these attacks, the distribution of F (x) + x should be
uniform, i.e., F (x) + x should also be a permutation (see the work of [39]).

Due to the additional requirement that F (x) + x is a permutation as well, the
design of component functions of F is certainly more complicated. However, we
demonstrate that even complete permutations can be generated using the same
framework as in the case of ordinary permutations. We exhibit one infinite class
of complete permutations but nevertheless the same method may give many more
(affinely non-equivalent) classes, though we do not pursue this issue further. The
polynomial form of this class of permutations is again retrieved through Lagrange
interpolation and it is very complex, though the ANF of the component functions
is somewhat simple.

5.1 Constructing permutations from M class

Let F : Fn2 → Fn2 and F = (f1, . . . , fn), where fi are component functions of F . It is
well-known [58, Theorem 7.7] that F is a permutation over F2n if and only if,∑

x∈F2n

(−1)Tr(λF (x)) = 0, (5.1)

for any λ ∈ F∗2n , where Tr denotes the absolute trace function. In terms of the vector
space representation this is equivalent to the requirement that Fλ = λ1f1⊕. . .⊕λnfn
is a balanced function for any λ = (λ1, . . . , λn) ∈ Fn2 ∗. Our goal is to specify the
component functions f1, . . . , fn of F so that the above condition is satisfied. To
achieve this we use the Maiorana-McFarland class of Boolean functions in n = s+ k
variables defined as,

f(y, x) = φ(y) · x⊕ g(y), x ∈ Fk2, y ∈ Fs2, (5.2)

where φ is any mapping from Fs2 to Fk2, and g ∈ Bs is arbitrary. Note that for fixed
y, the restriction of f (also called a subfunction of f) is an affine function in x. The

Infinite classes of vectorial plateaued functions, permutations, and complete
permutations 81

following result is well-known and the interested reader can find the proof in e.g.
[19].

Theorem 5.1.1 [19] Let n = s+k and f(y, x) = φ(y) ·x⊕g(y), for x ∈ Fk2, y ∈ Fs2,
where φ : Fs2 → Fk2 and g ∈ Bs is arbitrary. Then, if φ : Fs2 → Fk2 is injective the
Walsh spectra of f is three valued, that is, Wf (ω) ∈ {0,±2k}. In other words, f is
a plateaued function.

In terms of algebraic degree we recall the result from [29].

Theorem 5.1.2 The notation is the same as in Theorem 5.1.1. Assuming φ is
injective, the degree of f is s+1 if and only if

⊕
y∈Fs2

φ(y) 6= 0, where 0 = (0, . . . , 0) ∈
Fs2.

For the rest of this section we fix (y, x) ∈ Fn2 , x ∈ F
n−2
2 , y ∈ F2

2, and consider the
specification of the Maiorana McFarland component functions fi of the function F ,
where fi(y, x) = φi(y) ·x⊕gi(y), φi : F2

2 → Fn−2
2 and gi : F2

2 → F2 for i = 1, . . . , n, so
that Fλ is balanced. In the following constructions we further specify the functions
φi and gi.

For simplicity we assume gi(y) = 0 though it is formally true only for f1, . . . , fn−2.
Our first approach gives a class of permutations over Fn2 , whose component functions
are all plateaued and non-quadratic (their algebraic degree is 3). This method
employs the rotation of the standard basis of Fn−2

2 , that is, {e1, . . . , en−2}, where ei
has its only non-zero value (equal to 1) at position i.

Construction 1 Let ei ∈ Fn−2
2 , for i = 1, . . . , n − 2, form the canonical basis of

Fn−2
2 , where n ≥ 7. For any y ∈ F2

2 define φ(y) as below,

y φ1(y) φ2(y) · · · φn−2(y) φn−1(y) φn(y)
(0, 0) e1 e2 · · · en−2 (φn−2 ⊕ φ1)(y) (φn−2 ⊕ φ1)(y)
(0, 1) e2 e3 · · · e1 (φn−2 ⊕ φ1)(y) (φn−2 ⊕ φ1)(y) + 1
(1, 0) e3 e4 · · · e2 (φn−2 ⊕ φ1)(y) + 1 (φn−2 ⊕ φ1)(y) + 1
(1, 1) e4 e5 · · · e3 (φn−2 ⊕ φ1)(y) + 1 (φn−2 ⊕ φ1)(y)

Let fi(y, x) = φi(y) · x⊕ gi(y) for i = 1, . . . , n, where gi(y) = 0, for i = 1, . . . , n− 2.
In particular, “(φn−2 ⊕ φ1)(y) + 1” means that for some fixed y we have fi(y, x) =
(φn−2⊕φ1)(y)·x+1, for i = n−1, n. In other words, the functions fn−1 and fn have
some component functions which are affine. For instance, the function gn(y) 6= 0
since gn(0, 1) = gn(1, 0) = 1 and consequently fn(y, x) = φn(y) · x ⊕ gn(y) is affine
function for fixed y ∈ {(0, 1), (1, 0)}.

Remark 5.1.1 The use of the above notation appears to be simpler and more com-
pact than fully specifying subfunctions in terms of both φi(y) and gi(y).

Theorem 5.1.3 Let fi be defined as in Construction 1. Then, each fi is a plateaued
function with spectra {0,±2n−2}. Furthermore, the algebraic degree of each fi is 3
and the same is true for any non-zero linear combination of fi apart from fn−1 ⊕
fn, f1 ⊕ fn−2 ⊕ fn−1, and f1 ⊕ fn−2 ⊕ fn in which case the degree is 1. Also, F =
(f1, . . . , fn) is a permutation over Fn2 , i.e., Fλ is balanced for any λ ∈ Fn2 ∗.

82 5.1 Constructing permutations from M class

Proof. It is clear that each φi is injective and by Theorem 5.1.1 it follows that fi is
plateaued with spectra {0,±2n−2}. Moreover, deg(fi) = s+1 = 3 by Theorem 5.1.2,
since

⊕
y∈Fs2

φi(y) 6= 0 for any i. For each fixed y, the values φ1(y), . . . , φn−2(y) form

the standard basis of Fn−2
2 . For any α ∈ Fn−2

2
∗
, consider the linear combinations of

the form,

α1f1(y, x)⊕ . . .⊕ αn−2fn−2(y, x) = (α1φ1(y)⊕ . . .⊕ αn−2φn−2(y)) · x = φα(y) · x.

Clearly, φα(y) is by construction injective and φα(y) 6= 0 for any y ∈ F2
2. Thus, as

a concatenation of non-zero linear functions any Fα is balanced.
The functions φn−1 and φn are defined in such a way as to preserve the balance

property. Indeed, by specifying φn−1 and φn through φ1 and φn−2 along with taking
a complement of certain linear functions, one can readily check that Fλ is balanced
for any λ ∈ Fn2 ∗. Thus, F = (f1, . . . , fn) is a permutation. Finally, we notice that
fn−1⊕fn is a concatenation of four constant functions, namely 0||1||0||1, where 0,1
are constant vectors of length 2n−2. Therefore, deg(fn−1 ⊕ fn) = 1 and the same is
true for f1 ⊕ fn−2 ⊕ fn−1 and f1 ⊕ fn−2 ⊕ fn.

�

Notice that by permuting component functions f1, . . . , fn along with permuting
φ(y) (row-wise) we easily get n!4! many permutations, for any n ≥ 4 (since we need
fn, fn−1 and at least 2 more component functions with which to compose them).
Nevertheless, we can find many such constructions and below we consider (only)
one different approach.

Let the function l denote the left shift by one coordinate, i.e., l((un, un−1, . . . , u1)) =
(un−1, . . . , u1, 0). Furthermore, in the construction below we adopt the convention
that ln−4(a) = ln−4(b) = ln−4(c) = ln−4(d) = (10 . . . 0).

For convenience, we define a set of vectors of length n − 2 needed in the con-
struction by,

a = (0 · · · 010), b = (0 · · · 0110), c = (0 · · · 01110), d = (0 · · · 011110), e1 = (00 · · · 01).

Construction 2 For any y ∈ F2
2 define φ(y) as below,

y φ1(y) φ2(y) φ3(y) φ4(y) . . . φn−3(y) φn−2(y) φn−1(y) φn(y)
(0, 0) a l(a) l2(a) l3(a) . . . ln−4(a) e1 (φn−2 + φ1)(y) (φn−2 + φ2)(y)
(0, 1) e1 b l(b) l2(b) . . . ln−5(b) ln−4(b) (φn−2 + φ1)(y) (φn−2 + φ2)(y) + 1
(1, 0) ln−4(c) e1 c l(c) . . . ln−6(c) ln−5(c) (φn−2 + φ1)(y) + 1 (φn−2 + φ2)(y) + 1
(1, 1) ln−5(d) ln−4(d) e1 d . . . ln−7(d) ln−6(d) (φn−2 + φ1)(y) + 1 (φn−2 + φ2)(y)

Finally, let fi(y, x) = φi(y) · x + gi(y) for i = 1, . . . , n, where gi(y) = 0, for
i = 1, . . . , n − 2, and gi(y), for i = n − 1, n, is as specified above. In particular,
“(φn−2⊕φ1)(y) + 1” means that for some fixed y we have fi(y, x) = (φn−2⊕φ1)(y) ·
x+ 1, for i = n− 1, n.

Theorem 5.1.4 Let fi be defined as in Construction 2. Then, each fi is a plateaued
function with spectra {0,±2n−2}. Furthermore, the algebraic degree of any Fλ is 3
apart from f1 ⊕ fn−2 ⊕ fn−1, f2 ⊕ fn−2 ⊕ fn, and fn−1 ⊕ fn which are linear. Also,
F = (f1, . . . , fn) is a permutation over Fn2 .

Infinite classes of vectorial plateaued functions, permutations, and complete
permutations 83

Proof. The proof follows the same lines of reasoning as the proof of Theorem 5.1.3
by checking the balancedness of Fλ. �

Example 5.1.1 Let n = 7. Then the component functions fi of our permutation
are defined through φi as follows:

y φ1(y) φ2(y) φ3(y) φ4(y) φ5(y) φ6(y) φ7(y)
(0, 0) (00010) (00100) (01000) (10000) (00001) (00011) (00101)
(0, 1) (00001) (00110) (01100) (11000) (10000) (10001) (10110) + 1
(1, 0) (10000) (00001) (01110) (11100) (11000) (01000) + 1 (11001) + 1
(1, 1) (11000) (10000) (00001) (11110) (11100) (00100) + 1 (01100).

Using MAGMA software to perform the Lagrange interpolation and a primitive poly-
nomial p(z) = z7 +z+1 over F2, the univariate polynomial form of F specified above
is given as :

F (y) = g20y112 + g99y104 + g34y100 + g58y98 + g63y97 + g49y96 + g61y88 + g10y84 +

g23y81 + g24y80 + g77y76 + g99y74 + g116y73 + g60y72 + g48y70 + g22y69 +

g95y68 + g61y67 + g123y66 + g118y65 + g77y64 + g123y56 + g8y52 + g78y50 +

g25y49 + g122y48 + g43y44 + g58y42 + g7y41 + y40 + g83y38 + g37y37 + g67y36 +

g101y35 + g25y34 + g102y33 + g39y32 + g116y28 + g119y26 + g63y25 + g126y24 +

g68y22 + g39y21 + g77y20 + g81y19 + g48y18 + g29y17 + g91y16 + g37y14 + g26y13 +

g123y12 + g52y11 + g50y10 + g104y9 + g119y8 + g13y7 + g18y6 + g10y5 +

g117y4 + g32y3 + g27y2 + g35y,

where g is the primitive root of p(z). Notice that the maximum Hamming weight of
the exponents is equal to 3, thus the algebraic degree of degalg(F) = 3.

5.1.1 Noncubic permutations

When y is of dimension larger than 2 there exist many different ways to generalize
the construction and increase the degree of the derived permutations. One of the
methods is presented below.

Construction 3 Let ei ∈ Fn−3
2 , for i = 1, . . . , n− 3. For any y ∈ F3

2 define φ(y) as
below,

y φ1(y) φ2(y) · · · φn−3(y) φn−2(y) φn−1(y) φn(y)
(0, 0, 0) e1 e2 · · · en−3 (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y) (φn−2 ⊕ φ1)(y)
(0, 0, 1) e2 e3 · · · e1 (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y) + 1
(0, 1, 0) e3 e4 · · · e2 (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y)
(0, 1, 1) e4 e5 · · · e3 (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y) + 1
(1, 0, 0) e5 e6 · · · e4 (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y)
(1, 0, 1) e6 e7 · · · e5 (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y) (φn−3 ⊕ φ1)(y) + 1
(1, 1, 0) e7 e8 · · · e6 (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y)
(1, 1, 1) e8 e9 · · · e7 (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y) + 1 (φn−3 ⊕ φ1)(y) + 1

.

84 5.2 Complete permutations

Let fi(y, x) = φi(y) ·x⊕ gi(y) for i = 1, . . . , n, where gi(y) = 0, for i = 1, . . . , n− 3,
and gi(y), for i = n − 2, n − 1, n, is as specified above. In particular, “(φn−2 ⊕
φ1)(y) + 1” means that same as in constructions 1 and 2.

Note that in case n− |y| = |x| < 9 , where by |y| we mean the dimension of the
vector, e(i mod |x|) is used instead of ei.

Theorem 5.1.5 Let fi be defined as in Construction 3. Then, each fi is a plateaued
function with spectra {0,±2n−3}. Furthermore, the algebraic degree of any Fλ is
4 apart from some linear combinations of f1, fn−3, fn−2, fn−1, fn which are linear.
Also, F = (f1, . . . , fn) is a permutation over Fn2 .

Proof. The proof follows the same lines of reasoning as the proof of Theorem 5.1.3
by checking the balancedness of Fλ. �

Example 5.1.2 Let n = 8 and y be of length 3. Defining the component functions
fi as in Construction 3 and using MAGMA software to perform the Lagrange in-
terpolation (with a primitive polynomial p(z) = z8 + z4 + z3 + z2 + 1 over F2), the
univariate polynomial form of F can be found. It can be verified that degalg(F) = 4.
Due to space limitation we do not list the polynomial terms of F .

Remark 5.1.2 Using the similar approach as in Constructions 1 to 3, one can
design permutations F = (f1, . . . , fn) over Fn2 , where each fi is a plateaued function
with spectra {0,±2n−j}, (4 ≤ j < n/2).

5.2 Complete permutations

Whereas any permutation over finite field can be specified by properly assigning 2n

tuples (x, F (x)) and its polynomial form can be retrieved using Lagrange interpo-
lation, the situation is not the same when complete permutations are considered.
However, we show that the above construction methods can be used for specifying
the component functions in such a way that F is a complete permutation. Apart
from requiring that Fλ is balanced for F = (f1, . . . , fn) the additional request is that
F (x)+x is a permutation, when F is considered as a polynomial over finite field. In
vector space representation, viewing F : Fn2 → Fn2 , the latter condition means that,∑

x∈Fn2

(−1)λ·(F (x)⊕x) =
∑
x∈Fn2

(−1)λ1(f1(x)⊕x1)⊕···⊕λn(fn(x)⊕xn) = 0,

for any λ ∈ Fn2 ∗. In other words, we must ensure that all linear combinations of
f1(x) ⊕ x1, . . . , fn(x) ⊕ xn are balanced as well. Since we are using two variables
to represent fi, we denote these functions as fi(y, x) ⊕ (y, x)i, where(y, x)i denotes
that the i-th variable in (y1, . . . , ys, x1, . . . , xk).

The construction method described below relies heavily on the fact that the
following three sets of vectors belonging to Fn−2

2 are all linearly independent (the
independence within each distinct set).

Infinite classes of vectorial plateaued functions, permutations, and complete
permutations 85

a1 = (0 . . . 00110)
a2 = (0 . . . 01100)
a3 = (0 . . . 01110)

a4 = e5

a5 = l4(a1)
a6 = l5(a1)

...
an−3 = ln−4(a1)
an−2 = (0 . . . 0111)

b1 = (0 . . . 001100)
b2 = (0 . . . 011000)
b3 = (0 . . . 011010)

b4 = e5

b5 = e6
...

bn−3 = en−2 ⊕ e3

bn−2 = (0 . . . 01101)

c1 = (0 . . . 0011000)
c2 = (0 . . . 0110000)
c3 = (0 . . . 0110010)

c4 = e3

c5 = e6
...

cn−3 = en−2 ⊕ e3

cn−2 = (0 . . . 011001)

It can be easily verified that for a′i = ai ⊕ ei (where ei corresponds to the

variable xi) the three sets containing a′i-s, b
′
i-s, and c′i-s respectively are sets of

linearly independent vectors.
These vectors will present the values of φi(y) for i ∈ {1, . . . , n − 2}. The last

two component functions φn−1 and φn will be defined as slightly modified versions
of φn−2 and φ3. The construction is presented below.

y φ1(y) φ2(y) φ3(y) . . . φn−2(y) φn−1(y) φn(y)
(0, 0) a1 a2 a3 . . . an−2 an−2 a3

(0, 1) a1 a2 a3 . . . an−2 an−2 a3 + 1
(1, 0) b1 b2 b3 . . . bn−2 bn−2 + 1 b3 + 1
(1, 1) c1 c2 c3 . . . cn−2 cn−2 + 1 c3

The component functions of f(y, x) + (y, x) will therefore be

y φ′1(y) φ′2(y) φ′3(y) . . . φ′n−2(y) φ′n−1(y) φ′n(y)
(0, 0) a′1 a′2 a′3 . . . a′n−2 an−2 = a′1 a3 = a′2
(0, 1) a′1 a′2 a′3 . . . a′n−2 an−2 + 1 = a′1 + 1 a3 + 1 = a′2 + 1
(1, 0) b′1 b′2 a′3 . . . b′n−2 bn−2 + 1 = b′1 + 1 b3 = b′2
(1, 1) c′1 c′2 a′3 . . . c′n−2 cn−2 = c′1 c3 + 1 = c′2 + 1

.

Notice that φ′1 = φn−2 and φ′2 = φ3. Using this and the addition of 1 in the
appropriate coordinates in functions φn−1 and φn we can ensure that all the linear
combinations of functions φ′i will be linearly independent as well.

Example 5.2.1 Let us present an example of a complete permutation constructed
using the above presented method for n = 8. Note that because of the way vectors ci
are defined the above construction does not work for smaller n.

y φ1(y) φ2(y) φ3(y) φ4(y) φ5(y) φ6(y) φ7(y) φ8(y)
(0, 0) (000110) (001100) (001110) (010000) (100000) (000111) (000111) (001110)
(0, 1) (000110) (001100) (001110) (010000) (100000) (000111) (000111) (001110) + 1
(1, 0) (001100) (011000) (011010) (010000) (100100) (001101) (001101) + 1 (011010) + 1
(1, 1) (011000) (110000) (110010) (000100) (100100) (011001) (011001) + 1 (110010)

Notice that φ7 differ from φ6 by a constant and the same is true for φ8 and φ3.
If we add the (y, x)i component, we get the following scheme:

86 5.3 On existence of linear components and linear structures

y φ′1(y) φ′2(y) φ′3(y) φ′4(y) φ′5(y) φ′6(y) φ′7(y) φ′8(y)
(0, 0) (000111) (001110) (001010) (011000) (110000) (100111) (000111) (001110)
(0, 1) (000111) (001110) (001010) (011000) (110000) (100111) (000111) + 1 (001110) + 1
(1, 0) (001101) (011010) (011110) (011000) (110100) (101101) (001101) + 1 (011010)
(1, 1) (011001) (110010) (110110) (001100) (110100) (111001) (011001) (110010) + 1

In this scheme φ′7 differ from φ′1 by a constant and the same is true for φ′8 and
φ′2. Therefore, every linear combination will yield a balanced function in a similar
way as before. Similarly as before, the Lagrange interpolation gives the univariate
polynomial form of F specified above as:

F (y) = g186y224 + gy208 + g57y200 + g139y196 + g104y194 + g229y193 + g246y192 + g2y176 +

+g195y168 + g38y164 + g171y162 + g26y161 + g19y160 + g174y152 + g74y148 + g205y146 +

+g28y145 + g43y144 + g38y140 + g151y138 + g139y137 + g210y136 + g36y134 + g200y133 +

+g152y132 + g232y131 + g83y130 + g184y129 + g120y128 + g86y112 + g139y104 + g23y100 +

+g76y98 + g100y97 + g189y96 + g177y88 + g247y84 + g222y82 + g31y81 + g247y80 + g175y76 +

+g73y74 + g142y73 + g63y72 + g116y70 + g152y69 + g146y68 + g65y67 + g42y66 + g45y65 +

+g14y64 + g83y56 + g107y52 + g184y50 + g192y49 + g92y48 + g148y44 + g191y42 + g48y41 +

+g144y40 + g96y38 + g66y37 + g190y36 + g72y35 + g8y34 + g206y33 + g50y32 + g80y28 +

+g95y26 + g34y24 + g209y22 + g189y21 + g88y20 + g204y19 + g191y18 + g158y17 + g140y16 +

+g98y14 + g45y13 + g183y12 + g60y11 + g16y10 + g147y8 + g189y7 + g252y6 + g69y5 +

+g52y4 + g99y3 + g224y2 + g122y,

where g is the primitive root of p(z) = z8 + z4 + z3 + z2 + 1.

5.3 On existence of linear components and linear struc-
tures

In this section, the existence of linear components of certain nonzero linear com-
binations in a generalized framework of the design rationales behind Constructions
1 and 2 is investigated (the same reasoning applies to Construction 3). More pre-
cisely, we show that specifying φ1, . . . , φn−2 to build a vector space basis of Fn−2

2 ,
then whatever is the choice of φn−1 and φn there will exist some linear combinations
of the component functions f1, . . . , fn which are linear.

Construction 4 Let ei ∈ Fn−2
2 , for i = 1, . . . , n − 2, form the canonical basis of

Fn−2
2 , where n ≥ 7. For any y ∈ F2

2 define φ(y) as below,

y φ1(y) φ2(y) · · · φn−2(y) φn−1(y) φn(y)
(0, 0) e1 e2 · · · en−2 L1(φ1, ..., φn−2)(y) L∗1(φ1, ..., φn−2)(y)
(0, 1) e2 e3 · · · e1 L2(φ1, ..., φn−2)(y) L∗2(φ1, ..., φn−2)(y)
(1, 0) e3 e4 · · · e2 L3(φ1, ..., φn−2)(y) L∗3(φ1, ..., φn−2)(y)
(1, 1) e4 e5 · · · e3 L4(φ1, ..., φn−2)(y) L∗4(φ1, ..., φn−2)(y)

Let fi(y, x) = φi(y)·x⊕gi(y) for i = 1, . . . , n, where gi(y) = 0, for i = 1, . . . , n−2,
and both Li and L∗i are affine functions of φj , (i = 1, . . . , 4, j = 1, . . . , n− 2).

Infinite classes of vectorial plateaued functions, permutations, and complete
permutations 87

Remark 5.3.1 For convenience and shortness of notation, we use in this section
“+” instead of more correct ⊕ to denote vector addition modulo two.

Theorem 5.3.1 If F = (f1, . . . , fn) is a permutation over Fn2 , then there exists at
least one non-zero linear combination of f1, . . . , fn which is linear.

Proof. Note that the functions φn−1, φn must be defined in such a way so that
fn−1, fn and fn−1 + fn are balanced functions. Clearly,

y φn−1(y) φn(y) (φn−1 + φn)(y)
(0, 0) L1(φ1, ..., φn−2)(y) L∗1(φ1, ..., φn−2)(y) L1(φ1, ..., φn−2)(y) + L∗1(φ1, ..., φn−2)(y)
(0, 1) L2(φ1, ..., φn−2)(y) L∗2(φ1, ..., φn−2)(y) L2(φ1, ..., φn−2)(y) + L∗2(φ1, ..., φn−2)(y)
(1, 0) L3(φ1, ..., φn−2)(y) L∗3(φ1, ..., φn−2)(y) L3(φ1, ..., φn−2)(y) + L∗3(φ1, ..., φn−2)(y)
(1, 1) L4(φ1, ..., φn−2)(y) L∗4(φ1, ..., φn−2)(y) L4(φ1, ..., φn−2)(y) + L∗4(φ1, ..., φn−2)(y)

where

Li(φ1, . . . , φn−2) =
n−2∑
j=1

δijφj + δi0; L∗i (φ1, . . . , φn−2) =

n−2∑
j=1

γijφj + γi0,

for (δi1, . . . , δ
i
n−2) ∈ Fn−2

2 , (γi1, . . . , γ
i
n−2) ∈ Fn−2

2 , δi0, γ
i
0 ∈ F2, and i = 1, . . . , 4.

(1) To preserve the balancedness property of any non-zero linear combination of
f1, . . . , fn−1, we define Lis by reasoning as follows. For each Li, there must exist
Lt such that (Li, Lt) is a pair of complement functions so that Lt = 1 + Li, where
1 ≤ i 6= t ≤ 4. Assume on contrary that for some Li there is no Lt, i 6= t, such that
Lt = 1 +Li. Then, for a fixed (δi1, . . . , δ

i
n−2) ∈ Fn−2

2 which defines Li, let us w.l.o.g.

suppose that i = 1 and observe the linear combination
∑n−2

j=1 δ
1
j fj + fn−1 which in

terms of concatenation can be written as,

n−2∑
j=1

δ1
j fj +fn−1 = δ1

0 ||
n−2∑
j=1

(δ1
j + δ2

j)φj +δ2
0 ||

n−2∑
j=1

(δ1
j + δ3

j)φj +δ3
0 ||

n−2∑
j=1

(δ1
j + δ4

j)φj +δ4
0 .

Since it needs to be balanced at least one
∑n−2

j=1 (δ1
j + δtj)φj +δt0, t = 2, 3, 4 needs

to be a constant function equal to δ1
0 + 1, which would imply Lt +L1 + δ1

0 = δ1
0 + 1,

a contradiction.
(2) Similarly, to preserve the balancedness property of any non-zero linear com-

bination of f1, . . . , fn−2, fn, for each L∗i , there must exist L∗t , i 6= t, such that
(L∗t = 1 + L∗i), 1 ≤ i 6= t ≤ 4.

(3) Finally, to preserve the balancedness property of any non-zero linear com-
bination of f1, . . . , fn−2, fn−1 + fn, for each Li + L∗i , we necessarily have that
(Li + L∗i = 1 + Lt + L∗t) for some t 6= i.

(4) W.l.o.g, we assume that L2(y) = L1(y) + 1, L4(y) = L3(y) + 1, L∗2(y) =
L∗1(y) + 1, and L∗4(y) = L∗3(y) + 1, i.e.,

y φn−1(y) φn(y) (φn−1 + φn)(y)
(0, 0) L1(y) L∗1(y) (L1 + L∗1)(y)
(0, 1) L1(y) + 1 L∗1(y) + 1 (L1 + L∗1)(y)
(1, 0) L3(y) L∗3(y) (L3 + L∗3)(y)
(1, 1) L3(y) + 1 L∗3(y) + 1 (L3 + L∗3)(y)

88 5.3 On existence of linear components and linear structures

To preserve the balancedness property of φn−1 +φn as well, we must have (L3 +
L∗3)(y) = (L1 + L∗1)(y) + 1, i.e.,

y (φn−1 + φn)(y)
(0, 0) (L1 + L∗1)(y)
(0, 1) (L1 + L∗1)(y)
(1, 0) (L1 + L∗1)(y) + 1
(1, 1) (L1 + L∗1)(y) + 1

Let (L1 + L∗1)(φ1, . . . , φn−2) =
∑n−2

i=1 τiφi, where (τ1, . . . , τn−2) ∈ Fn−2
2
∗
. Moreover,

we have
∑n−2

i=1 τifi+fn−1+fn=0||0||1||1. Therefore, deg(
∑n−2

i=1 τifi+fn−1+fn) = 1.
�

5.3.1 Differential properties of the designed permutations

Due to the nature of the presented constructions, the differential properties of the
proposed permutations are rather poor and therefore these permutations are not
useful in cryptographic applications such as the design of substitution boxes (S-
boxes) in block ciphers.

Proposition 5.3.2 The functions F in Construction 1 admit linear structures, that
is,

δ(F) = max
a6=0,b∈Fn2

(#{x ∈ Fn2 | F (x+ a) + F (x) = b}) = 2n.

Proof. Let a = (0, 0, 1, . . . , 1). Notice that in general

F (x+ a) + F (x) = (f1(x+ a), . . . , fn(x+ a)) + (f1(x), . . . , fn(x))

= (f1(x+ a) + f1(x), . . . , fn(x+ a) + fn(x)).

Since our component functions fi are defined as fi(y, x) = φi(y) · x we notice that
fi((y, x)+a)+fi(y, x) = φi(y) · (x+(1, 1, . . . , 1))+φi(y) ·x = φi(y) · (1, 1, . . . , 1) = 1,
for any y ∈ F2

2 and i = 1, . . . , n− 2. In a similar manner, fi((y, x) +a) + fi(y, x) = 0
for all x, y, when i ∈ {n − 1, n}. Thus, F (x + a) + F (x) = b has 2n solutions for
b = (1, 1, . . . , 1, 0, 0). �

In a similar manner, the differential properties of the functions in Construction 2
can be analyzed. Here, however, we could not show the existence or linear structures
and computer simulations indicate that for small values of n we either have δ(F) =
2n−1 or δ(F) = 2n−2. The class of complete permutations seems to admit linear
structures which was checked by computer simulations.

Chapter 6

Conclusion

The results of the PhD Thesis represent a significant contribution to a number
of the standing open problems in cryptography which have been an active topic of
research in mathematical community in the last decades.

In the study of special Rothaus constructions, certain methods from linear alge-
bra and the analysis of the Walsh-Hadamard spectra are important tools. The bent
functions thus acquired are presented as mappings over vector spaces and the affine
non-equivalence of their classes is proved by considering their possible algebraic de-
grees. When creating the algorithm to test the normality of these bent functions
we first transformed the functions into graphs and utilized certain optimized search
algorithms for finding all possible cliques of size 2

n
2 . It is proved that under cer-

tain conditions these functions do not belong to the completed Maiorana Mc-Farland
class using a careful and detailed analysis of their double derivatives over all possible
n
2 -dimensional vector subspaces.

The sufficient conditions for C and D functions to lie outside of the completed
Maiorana-McFarland class are derived in a similar way, by considering how to ensure
that the double derivatives over all possible n

2 -dimensional vector subspaces never
completely vanish. The examples for functions in C outside theM# class are derived
from [61] using certain finite field and primitive element properties. The examples
for functions in D outside theM# class are found by relying on algebraic properties
of finite fields and the help of programming package Magma.

The existence of linear translators for certain classes of functions over finite
fields is explored relying on properties of polynomials over finite fields, Lucas’s The-
orem, and, specifically, the linear properties of trace functions. Properties of finite
fields, lienar translators, and linearised polynomials are, together with applications
of results from [49], then used in finding compositional inverses of a number of poly-
nomials, as well as several new families of permutations of form x 7→ (xp

m −x+ δ)s,
for even and odd n separately.

When constructing permutations using Frobenius translators, similar techniques
are used as when constructing them using linear translators. When applying the
Frobenius translator in the construction of bent functions, these are represented as
mappings over finite fields. Examples of these generalized constructions are then
verified using the programming package Magma. Magma is used in verifying the
solution to the Open Problem from [42], as well.

89

90

When constructing infinite classes of vectorial plateaued functions, permutations
and complete permutations these are all represented as mappings over binomial
vector spaces. All the constructions required a combinatorial approach, where we
often searched for large sets of linearly independent vectors. The construction of
complete permutations especially relied heavily on intuition-based approach where
a very strict set of combinatorial conditions needed to be satisfied.

The basic tools used in the research range from combinatorial to algebraic cryp-
tographic methods. In addition, we used the computer package Computational
Algebra System Magma to test the results and form new conjectures.

Bibliography

[1] A. Akbary, D. Ghioca, and Q. Wang, On constructing permutations of finite
fields, Finite Fields Appl., vol. 17(1) (2011), pp. 51–67.

[2] L. A. Bassalygo, and V. A. Zinoviev, Permutation and complete permutation
polynomials, Finite Fields Appl., vol. 33 (2015), pp. 198–211.

[3] A. Bernasconi, B. Codenotti, J. M. VanderKam, A characterization of bent
functions in terms of strongly regular graphs, IEEE Trans Comput, 50(9),
(2001), pp. 984–5.

[4] E. Biham, O. Dunkelman, Cryptanalysis of the A5/1 GSM stream cipher,
International Conference on Cryptology in India, Springer, Berlin, Heidelberg,
(2000).

[5] E. Biham, A. Shamir, Differential cryptanalysis of the full 16-round DES, Dif-
ferential Cryptanalysis of the Data Encryption Standard, Springer, New York,
(1993), pp. 79–88).

[6] A. Blokhuis, R. S. Coulter, M. Henderson, and C. M. O’Keefe, Permutations
amongst the Dembowski-Ostrom polynomials, Proceedings of the fifth inter-
national conference on Finite Fields and Applications Fq5, Springer, Berlin,
(2001), pp. 37–42.

[7] L. Budaghyan, A. Kholosha, C. Carlet, and T. Helleseth, Niho bent functions
from quadratic o-monomials, Information Theory (ISIT), 2014 IEEE Interna-
tional Symposium, (2014), pp. 1827–1831

[8] C. De Canniere, Trivium: A stream cipher construction inspired by block cipher
design principles, International Conference on Information Security, Springer,
Berlin, Heidelberg (2006), pp. 171–186.

[9] A. Canteaut, P. Charpin, and G. Kyureghyan, A new class of monomial bent
functions, F inite Fields and Their Applications, vol. 14, no. 1 (2008), pp.
221–241.

[10] A. Canteaut, M. Daum, H. Dobbertin, and G. Leander, Finding nonnormal
bent functions, D iscrete Applied Math., vol. 154 (2006), pp. 202–218.

[11] C. Carlet, Boolean and vectorial plateaued functions, and APN functions,
I EEE Trans. Inform. Th., vol. 61, no. 11 (2015), pp. 6272–6289.

91

92 BIBLIOGRAPHY

[12] C. Carlet, Boolean functions for cryptography and error correcting codes,
Boolean models and methods in mathematics, computer science, and engineer-
ing 2 (2010), pp.257-397.

[13] C. Carlet, Vectorial Boolean Functions for Cryptography, C hapter of the
monograph: Boolean Models and Methods in Mathematics, Computer Science,
and Engineering, Cambridge University Press, (2010), pp. 398–469.

[14] C. Carlet, Two New Classes of Bent Functions, Procedings of Eurocrypt ’93,
LNCS, vol. 765, (1994), pp. 77–101.

[15] C. Carlet, On the secondary constructions of resilient and bent functions,
Proceedings of Coding, Cryptography and Combinatorics, Progress in Computer
Science and Applied Logic, vol. 23, Birkhauser Verlag, Basel, (2004), pp. 3-28.

[16] C. Carlet, On bent and highly nonlinear balanced/resilient functions and their
algebraic immunities, Proceedings of AAECC, Lecture Notes in Computer Sci-
ence 3857, (2006), pp. 1–28.

[17] C. Carlet, and P. Gaborit, Hyper-bent functions and cyclic codes, J. Combi-
natorial Theory, Ser. A, vol. 113(3) (2006), pp. 466–482.

[18] C. Carlet, and S. Mesnager, Four decades of research on bent functions, Designs,
Codes and Cryptography, vol. 78 (1) (2016), pp. 5–50.

[19] C. Carlet, and E. Prouff, On Plateaued Functions and Their Constructions,
Fast Software Encryption: 10th International Workshop, Lund (2003), pp. 54–
73.

[20] C. Carlet, F. Zhang, and Y. Hu, Secondary constructions of bent functions and
their enforcements, Advances in Mathematics and Communications, vol. 6, no.
3 (2012), pp. 305–314.

[21] N. Cepak, P. Charpin, and E. Pasalic, Permutations via linear translators,
Finite Fields and Their Applications, vol. 45 (2017), pp.19-42.

[22] P. Charpin, and G. Kyureghyan, Cubic monomial bent functions: a subclass of
M, SIAM Journal of Discrete Math., vol. 22, no. 2 (2008), pp.650–665.

[23] P. Charpin, and G. M. Kyureghyan, Monomial functions with linear structure
and permutation polynomials, Finite Fields: Theory and Applications-Fq9-
Contemporary Mathematics, AMS, 518 (2010), pp.99–111.

[24] P. Charpin, and G. M. Kyureghyan, When does G(x) + γ Tr(H(x)) permute
F2n ?, Finite Fields Appl., vol. 15 (5) (2009), pp. 615–632.

[25] P. Charpin, G. M. Kyureghyan and V. Suder, Sparse permutations with low
differential uniformity, Finite Fields Appl., vol. 28 (2014), pp. 214–243.

[26] P. Charpin, S. Mesnager, and S. Sarkar, Involutions over the Galois field
GF (2n), IEEE Trans. Inf. Theory, vol. 62 (4) (2016), pp. 2266–2276.

BIBLIOGRAPHY 93

[27] P. Charpin, S. Sarkar, Polynomials with linear structure and Maiorana–
McFarland construction, IEEE Transactions on Information Theory, IT-57(6)
(2011), pp. 3796–3804.

[28] P. Charpin, E. Pasalic, and C. Tavernier, On bent and semi-Bent quadratic
Boolean functions, IEEE Transactions on Information Theory, vol. 51, no.12
(2005), pp. 4286–4298.

[29] S. Chee, S. Lee, D. Lee, and H. S. Sung, On the correlation immune functions
and their nonlinearity, ASIACRYPT ’96, LNCS 1163, Springer-Verlag (1996),
pp. 232–243.

[30] T. W. Cusick, P. Stănică, Cryptographic Boolean functions and applications,
Elsevier–Academic Press, (2017).

[31] J. Daemen, V. Rijmen, AES proposal: Rijndael, (1999).

[32] P. Delsarte, An algebraic approach to the association schemes of coding theory,
PhD thesis, 1973.

[33] W. Diffie, M. E. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryp-
tion Standard, Computer, (1977), pp. 74–84.

[34] J. F. Dillon, Elementary Haddamard Difference Sets, PhD thesis, University
of Maryland, U.S.A., 1974.

[35] J. F. Dillon, Elementary Hadamard difference sets, Proceedings of 6th S. E.
Conference of Combinatorics, Graph Theory, and Computing, Utility Mathe-
matics, Winnipeg, (1975), pp. 237–249.

[36] J. F. Dillon, A survey of bent functions, NSA Techical Journal 1972 ; special
issue, pp.191–215.

[37] H. Dobbertin, Construction of bent functions and balanced Boolean functions
with high nonlinearity, Proceedings of Fast Software Encryption, Leuven 1994
(1995), LNCS 1008, Springer-Verlag, pp. 61–74.

[38] P. Ekdahl, T. Johansson, SNOW-a new stream cipher Proceedings of First
Open NESSIE Workshop, KU-Leuven (2000), pp. 167–168.

[39] S. Gilboa, S. Gueron, and M. Nandi, Balanced permutations Even-Mansour
ciphers, Cryptography 1, no. 1 (2016), pp. 2

[40] G. Gong, T. Helleseth, H. Hu, and A. Kholosha, On the dual of certain ternary
weakly regular bent functions, IEEE Transactions on Information Theory, vol.
58, no. 4 (2012), pp. 2237–2243.

[41] M. Hell, T. Johansson, W. Meier, Grain: a stream cipher for constrained
environments, International Journal of Wireless and Mobile Computing, 2(1)
(2007), pp. 86–93.

94 BIBLIOGRAPHY

[42] S. Hodžić, E. Pasalic, and Y. Wei, A general framework for secondary construc-
tions of bent and plateaued functions, Submitted manuscript.

[43] X. Hou, Permutation polynomials over finite fields A survey of recent advances,
Finite Fields Appl., vol. 32 (2015), pp. 82–119.

[44] D. Kahn, The Codebreakers: A Comprehensive History of Secret Communica-
tion from Ancient Times to the Internet, Revised and Updated. Scribner Simon
and Schuster, (1996).

[45] R.M. Karp, Reducibility among combinatorial problems, Complexity of com-
puter computations, Springer, Boston, MA, 1972, pp. 85–103.

[46] J. Katz, A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, Handbook of
applied cryptography, CRC press. (1996).

[47] S. Kavut, S. Maitra, M.D. Yucel, Search for Boolean functions with excellent
profiles in the rotation symmetric class, IEEE Trans Inform Theory 53.5 (2007),
pp. 1743–1751.

[48] A. Klein, Attacks on the RC4 stream cipher, Designs, Codes and Cryptography,
48(3) (2008), pp. 269–286.

[49] G. M. Kyureghyan. Constructing permutations of finite fields via linear transla-
tors, Journal of Combinatorial Theory, Series A vol. 118 (2011), pp. 1052–1061.

[50] X. Lai, J. L. Massey, A proposal for a new block encryption standard, Workshop
on the Theory and Application of of Cryptographic Techniques, Springer, Berlin,
Heidelberg (1990), pp. 389–404.

[51] Y. Laigle-Chapuy, A note on a class of quadratic permutations over F2n , In
International Symposium on Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, Springer, Berlin, Heidelberg, (2007), pp. 130–137.

[52] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory,
Finite Fields and Their Applications 13, no. 1 (2007), pp. 58–70.

[53] N. G. Leander, Monomial bent functions, IEEE Trans. on Inform. Theory,
vol.52, no. 2 (2006), pp. 738–743.

[54] N. G. Leander, and A. Kholosha, Bent functions with 2r Niho exponents, IEEE
Trans. on Inform. Theory, vol. 52, no. 12 (2006), pp. 5529–5532.

[55] N. G. Leander, and G. McGuire, Construction of bent functions from near-bent
functions, J. Combinatorial Theory, Ser. A, vol. 116(4) (2009), pp. 960–970.

[56] N. Li, and T. Helleseth, New permutation trinomials from Niho exponents over
finite fields with even characteristic, arXiv preprint arXiv:1606.03768 (2016)

[57] N. Li, T. Helleseth, X. Tang, and A. Kholosha, Several new classes of bent
functions from Dillon exponents, IEEE Transactions on Information Theory,
vol. 59, no. 3 (2013), pp. 1818–1831.

BIBLIOGRAPHY 95

[58] R. Lidl, and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20,
Addison-Wesley, Reading, 1983.

[59] Y. Lu, S. Vaudenay Faster correlation attack on Bluetooth keystream generator
E0, Annual International Cryptology Conference, Springer, Berlin, Heidelberg,
(2004).

[60] S. Maitra, P. Sarkar, Maximum nonlinearity of symmetric Boolean functions on
odd number of variables IEEE Trans Inform Theory 48(9) 2002, pp. 2626–30.

[61] B. Mandal, P. Stănică, S. Gangopadhyay, and E. Pasalic, An analysis of C class
of bent functions, Fundamenta Informaticae, vol. 147 (3) (2016), pp. 271–292.

[62] M. Matsui, On correlation between the order of S-boxes and the strength of
DES, Workshop on the Theory and Application of of Cryptographic Techniques,
Springer, Berlin, Heidelberg, (1994), pp. 366–375.

[63] R. L. McFarland, A family of noncyclic difference sets, J. Combinatorial Theory,
Ser. A, vol. 15 (1973), pp.1–10.

[64] M. Matsui, Linear cryptanalysis method for DES cipher, Advances in cryptol-
ogyEUROCRYPT93, workshop on the theory and application of cryptographic
techniques, Lecture notes in computer science, vol. 765 (1994), p.386–97.

[65] R. L. McFarland, A family of difference sets in non-cyclic groups, Journal of
Combinatorial Theory, Series A, 15(1), 1973, pp. 1–10.

[66] S. Mesnager, Bent and Hyper-bent functions in polynomial form and their link
with some exponential sums and Dickson Polynomials, IEEE Trans. on Inform.
Theory, vol.57, no. 9 (2011), pp. 5996–6009.

[67] S. Mesnager, Several New Infinite Families of Bent Functions and Their Duals,
IEEE Trans. on Inform. Theory, vol. 60, no. 7 (2014), pp. 4397–4407.

[68] S. Mesnager, Bent functions from spreads, Journal of the American Mathe-
matical Society, vol. 632 (2015), pp. 295–316.

[69] S. Mesnager, P. Ongan, and F. Özbudak, New bent functions from permutations
and linear translators, C2SI 2017: Codes, Cryptology and Information Security,
pp. 282–297.

[70] S. Mesnager, P. Ongan, and F. Özbudak, Further constructions of infinite
families of bent functions from new permutations and their duals, Cryptography
and Communications 8.2, (2016), pp.229–246

[71] F. P. Miller, A. F. Vandome, J. McBrewster, Advanced encryption standard,
(2009).

[72] G. L. Mullen, and H. Niederreiter, Dickson polynomials over finite fields and
complete mappings, Canad. Math. Bull., vol. 30(1) (1987), pp. 19–27.

96 BIBLIOGRAPHY

[73] G. L. Mullen, and Q. Wang, Permutation polynomials in one variable, Chapter
8 in Handbook of Finite Fields, Chapman and Hall/CRC, Boca Raton, FL
(2013), pp. 215–230.

[74] A. Muratović-Ribić, and E. Pasalic, A note on complete polynomials over
finite fields and their applications in cryptography, Finite Fields and Their
Applications, 25 (2014), pp. 306–315.

[75] E. Pasalic, A. Muratović-Ribić, S. Hodžić, and S. Gangopadhyay. On deriva-
tives of polynomials over finite fields through integration, Discrete Applied
Mathematics, 217 (2017), pp. 294–303.

[76] R. L. Rivest, The RC5 encryption algorithm, International Workshop on Fast
Software Encryption, Springer, Berlin, Heidelberg, (1993), pp. 86–96.

[77] O. S. Rothaus, On Bent Functions, J. Combinatorial Theory, Ser. A, vol. 20
(1976), pp. 300–305.

[78] B. Schneier, Description of a new variable-length key, 64-bit block cipher (Blow-
fish), International Workshop on Fast Software Encryption, Springer, Berlin,
Heidelberg, (1993), pp. 191–204.

[79] C. E. Shannon A mathematical theory of communication, Bell system technical
journal, 27.3 (1948), pp. 379–423.

[80] V. M. Sidelnikov, On extremal polynomials used to estimate the size of codes,
Probl. Inform. Transm, 16 (1980), pp. 174–186.

[81] C. Tang, Z. Zhou, Y. Qi, X. Zhang, C. Fang, and T. Helleseth, Generic con-
struction of bent functions and bent idempotents with any possible algebraic
degree, IEEE Transactions on Information Theory 63.10 (2017), pp. 6149-6157.

[82] N. Tokareva, Bent functions: results and applications to cryptography, Aca-
demic Press, 2015.

[83] Z. Tu, and Y. Deng, A conjecture about binary strings and its applications on
constructing Boolean functions with optimal algebraic immunity, Des. Codes
Cryptogr., vol. 60 (2011), pp. 1–14.

[84] Z. Tu, X. Zeng, C. Li, and T. Helleseth, Permutation polynomials of the form
(xp

m − x + δ)s + L(x) over the finite field Fp2m of odd characteristic, Finite
Fields Appl., vol. 31 (2015), pp. 12–24.

[85] Z. Tu, X. Zeng, and L. Hu, Several classes of complete permutation polynomials,
Finite Fields Appl., vol. 25 (2014), pp. 182–193.

[86] Z. Tu, X. Zeng, and Y. Jiang, Two classes of permutation polynomials having
the form (x2m + x+ δ)s + x, Finite Fields Appl., vol. 31 (2015), pp. 12–24.

[87] A. Tuxanidy, and Q. Wang. On the inverses of some classes of permutations of
finite fields, Finite Fields Appl., vol. 28 (2014), pp. 244–281.

BIBLIOGRAPHY 97

[88] G. Vega, Some precisions on PS bent functions, International Mathematical
Forum, vol. 5 (2010), pp.537–544.

[89] G. Wu, N. Li, T. Helleseth, and Y. Zhang, Some classes of monomial complete
permutation polynomials over finite fields of characteristic two, Finite Fields
Appl., vol. 28 (2014), pp. 148–165.

[90] P. Yuan, and C. Ding, Further results on permutation polynomials over finite
fields, Finite Fields Appl., vol. 27 (2014), pp. 88–103.

[91] P. Yuan, C. Ding, H. Wang and J. Pieprzyk, Permutation polynomials of the
form (xp−x+δ)s+L(x), Finite Fields and Their Applications 14, no. 2 (2008),
pp. 482–493.

[92] Y. Yuan, Y. Tong, and H. Zhang, Complete mapping polynomials over finite
field F16, Proceedings of the 1st international workshop on Arithmetic of Finite
Fields, WAIFI ’07 (2007), pp.147–158.

[93] F. Zhang, C. Carlet, Y. Hu, and W. Zhang, New secondary constructions of bent
functions, Applicable Algebra in Engineering, Communication and Computing
27, no. 5 (2016), pp. 413–434.

[94] F. Zhang, E. Pasalic, Y. Wei, and N. Cepak, Constructing bent functions
outside the MaioranaMcFarland class using a general form of Rothaus, IEEE
Transactions on Information Theory 63, no. 8 (2017), pp. 5336–5349.

[95] F. Zhang, Y. Wei, and E. Pasalic, Constructions of bent-negabent functions
and their relation to the completed Maiorana-McFarland class, IEEE Trans.
on Inform. Theory, vol. 61, no. 3 (2015), pp. 1496–1506.

[96] Y. Zheng, and X. M. Zhang, On plateaued functions. IEEE Trans. Inform.
Th., vol. 47, no. 3 (2001), pp. 1215–1223.

BIBLIOGRAPHY 99

Appendix

Proof of Theorem 3.1.2:

Proof. Both x = (x, xn+1, xn+2) and b are considered as column vectors of length
n+2. Also, let Ai denote the i-th row of A, i = 1, 2, . . . , n+2. Our goal is to show the
non-existence of A and b such that the terms of algebraic degree n/2+1 in f ′(Ax⊕b)
and f(x, xn+1, xn+2) cannot be equal, which implies affine non-equivalence between
f and f ′.

Let p(x) and q(x) denote a collection of monomials of degree n/2 in the ANF
of 1∆(x) and of f0(x) ⊕ f1(x), respectively. Since f0 ⊕ f1 ∈ PS− then q(x) is
non-empty. Before applying affine transformation, the terms of algebraic degree
n/2+1 in f ′(x, xn+1, xn+2) and f(x, xn+1, xn+2) are xn+2p(x) and xn+2p(x)⊕(xn+1⊕
xn+2)q(x), respectively.

For shortness, we denote the terms of algebraic degree n/2 + 1 in (An+2 ·
x ⊕ bn+2)p(A1 · x ⊕ b1, . . . , An · x ⊕ bn) (after applying affine transformation) by
=(x, xn+1, xn+2). Furthermore, the terms of degree n/2 in p(A1·x⊕b1, . . . , An·x⊕bn)
are denoted by

℘(x, xn+1, xn+2) = c1xn+1<1(x)⊕ c2xn+2<2(x)
⊕c3xn+1xn+2<3(x)⊕ c4<4(x),

where ci ∈ F2, i = 1, . . . , 4. It is easy to deduce that

deg(<1) = deg(<2) = n/2− 1,
deg(<3) = n/2− 2,deg(<4) = n/2.

(6.1)

Clearly, the terms of degree n/2 + 1 in f ′(Ax ⊕ b) correspond to =(x, xn+1, xn+2).
If (3.6) holds, then

=(x, xn+1, xn+2) = xn+2p(x)⊕ (xn+1 ⊕ xn+2)q(x)

= xn+2(p(x)⊕ q(x))⊕ xn+1q(x). (6.2)

We denote An+2 = (a’, an+2,n+1, an+2,n+2), and the terms of degree n/2 in <i(x)(a’ ·
x) by <′i(x) for i = 1, 2, the terms of degree n/2−1 in <3(x)(a’ ·x) by <′3(x). There
are four cases to be considered.

1. Assuming that An+2 = (a’, 0, 1), we have

(An+2 · x⊕ bn+2)℘(x, xn+1, xn+2)
=c4(a’ · x)<4(x)⊕ c1xn+1<1(x)(a’ · x)
⊕c2xn+2<2(x)(a’ · x)⊕ c3xn+1xn+2<3(x)(a’ · x)
⊕c1xn+1xn+2<1(x)⊕c2xn+2<2(x)⊕c3xn+1xn+2<3(x)
⊕c4xn+2<4(x)⊕ bn+2℘(x, xn+1, xn+2).

Combining (6.1) and (6.2), we know there is no term xn+1xn+2r(x) in xn+2p(x)⊕
(xn+1⊕xn+2)q(x), where deg(xn+1xn+2r(x)) = n/2 + 1. Hence, we must have

q(x) = c1<′1(x) and c3<′3(x) = c1<1(x). (6.3)

100 BIBLIOGRAPHY

Further, we have c1 = c3 = 1 and from (6.3)

(<′3(x) = <3(x)(a’ · x)⊕ `′(x) = <1(x))
⇐⇒ (<3(x)(a’ · x)⊕ `′(x)(a’ · x) = <1(x)(a’ · x)),

where deg(`′) ≤ n/2− 2. It is easy to deduce that deg(<3(x)(a’ ·x)⊕ `′(x)(a’ ·
x)) ≤ n/2 − 1. However, deg(<1(x)(a’ · x)) = deg(q(x)) = n/2. Thus, if
An+2 = (a’, 0, 1) then there do not exist an invertible matrix A and a vector
b ∈ Fn+2

2 such that =(x, xn+1, xn+2) equals xn+2p(x)⊕ (xn+1 ⊕ xn+2)q(x).

2. Assuming that An+2 = (a’, 1, 1), we have

(An+2 · x⊕ bn+2)℘(x, xn+1, xn+2)=c4(a’ · x)<4(x)
⊕c1xn+1<1(x)(a’ · x)⊕ c2xn+2<2(x)(a’ · x)
⊕c3xn+1xn+2<3(x)(a’ · x)⊕ c1xn+1<1(x)
⊕c2xn+1xn+2<2(x)⊕c3xn+1xn+2<3(x)⊕c4xn+1<4(x)
⊕c1xn+1xn+2<1(x)⊕c2xn+2<2(x)⊕c3xn+1xn+2<3(x)
⊕c4xn+2<4(x)⊕ bn+2℘(x, xn+1, xn+2).

Moreover, combining (6.1) and (6.2), we have

c1<′1(x)⊕ c4<4(x) = q(x);
c2<′2(x)⊕ c4<4(x) = q(x)⊕ p(x);

xn+1xn+2(c3<′3(x)⊕c2<2(x)⊕c1<1(x)) = 0.

From the above relationships, we have

p(x)= c1<′1(x)⊕ c2<′2(x)
= (c1<1(x)⊕ c2<2(x))(a’ · x)⊕ `(x)
= c3<′3(x)(a’ · x)⊕ `(x)
= c3 (<3(x)(a’ · x)⊕`′(x)) (a’ · x)⊕`(x)
= c3<3(x)(a’ · x)⊕c3`

′(x)(a’ · x)⊕`(x),

(6.4)

where deg(`) ≤ n/2 − 1, <′3(x) = <3(x)(a’ · x) ⊕ `′(x),deg(`′) ≤ n/2 − 2.
However, from (6.4), we find deg(p) ≤ n/2 − 1 since deg(<3) = n/2 − 2,
deg(`′) ≤ n/2− 2 and deg(`) ≤ n/2− 1.

Thus, for An+2 = (a’, 1, 1) there do not exist an invertible matrix A and a vec-
tor b ∈ Fn+2

2 such that =(x, xn+1, xn+2) equals xn+2p(x)⊕ (xn+1⊕xn+2)q(x).

3. Assuming that An+2 = (a’, 1, 0), we have

(An+2 · x⊕ bn+2)℘(x, xn+1, xn+2)=c4(a’ · x)<4(x)
⊕c1xn+1<1(x)(a’·x)⊕c2xn+2<2(x)(a’·x)⊕c1xn+1<1(x)
⊕c3xn+1xn+2<3(x)(a’·x)⊕c2xn+1xn+2<2(x)
⊕c3xn+1xn+2<3(x)⊕c4xn+1<4(x)⊕bn+2℘(x,xn+1,xn+2).

Moreover, combining (6.1) and (6.2), we have p(x) ⊕ q(x) = c2<′2(x) and
c3<′3(x) = c2<2(x). Further, we have c2 = c3 = 1 and

(<3(x)(a’ · x)⊕ `′(x) = <2(x))
⇐⇒ (<3(x)(a’ · x)⊕ `′(x)(a’ · x) = <2(x)(a’ · x)),

BIBLIOGRAPHY 101

where deg(`′) ≤ n/2− 2. It is easy to find deg(<3(x)(a’ · x)⊕ `′(x)(a’ · x)) ≤
n/2 − 1. However, deg(<2(x)(a’ · x)) = deg(p(x) ⊕ q(x)) = n/2. Thus, if
An+2 = (a’, 1, 0) then there do not exist an invertible matrix A and a vector
b ∈ Fn+2

2 such that =(x, xn+1, xn+2) equals xn+2p(x)⊕ (xn+1 ⊕ xn+2)q(x).

4. Assume that An+2 = (a’, 0, 0). If the relationship (3.6) holds, then we have

f ′(Ax⊕ b)
= 1∆(Ax⊕ b)⊕ f0(Ax⊕ b)
⊕ (a’ · x⊕ bn+2)1∆(Ax⊕ b)
⊕ (An+1 · x⊕bn+1)(a’·x⊕bn+2)⊕An+1 · x⊕bn+1

= f(x, xn+1, xn+2).

The above relationship also implies the following,

(a’ · x)f ′(Ax⊕ b)
= (a’ · x)f0(A1 · x⊕ b1,. . . ,An · x⊕ bn)
⊕ (a’·x)bn+21∆(A1 · x⊕ b1,. . . ,An ·x⊕bn)
⊕ (a’ · x)(An+1 · x⊕ bn+1)(a’ · x⊕ bn+2)
⊕ (a’ · x)(An+1 · x⊕ bn+1)
= (a’ · x)(xn+1 ⊕ xn+2)(f0(x)⊕ f1(x))
⊕ (a’ · x)xn+21∆(x)⊕ (a’ · x)1∆(x)
⊕ (a’·x)f0(x)⊕(a’·x)xn+1xn+2⊕(a’·x)xn+1.

It is easy to deduce that deg((a’ · x)f ′(Ax⊕ b)) ≤ n/2 + 1. It is sufficient to
show that deg((a’ · x)f(x, xn+1, xn+2)) > n/2 + 1.

Since the algebraic immunity of any bent function is strictly greater than 1
[83], we know (a’ · x) (f0(x)⊕ f1(x)) 6= constant, that is,

deg ((a’ · x)(xn+1 ⊕ xn+2)(f0(x)⊕ f1(x))) ≥ 3.

Now we show that deg ((a’ · x)(f0(x)⊕ f1(x))) = n/2+1. Since f0⊕f1 ∈ PS−,

we have supp(f0⊕f1) =
⋃2n/2−1

i=1 H∗i , where Hi is an n/2−dimensional subspace
of Fn2 , Hi ∩ Hj = {0n} for 1 ≤ i < j ≤ 2n/2−1 and H∗i = Hi \ {0n}. Thus,
since (a’ · x)(f0(x) ⊕ f1(x)) 6= constant, there exists at least one H∗i1 such
that E ∩ H∗i1 6= ∅,where E = {x | a’ · x = 1, x ∈ Fn2}. It is clear that
E ∩H∗i1 = E ∩Hi1 .

From (2.1), deg ((a’ · x)(f0(x)⊕ f1(x))) equals the maximum dimension of all
the linear (resp. affine) subspaces of Fn2 on which (a’ · x)(f0(x)⊕ f1(x)) takes
the value 1 an odd number of times [12]. We know (E ∩H∗i) ∪ (E ∩Hi) = Hi

for any i ∈ {1, 2, . . . , n}, where E = {x | a’ · x = 0, x ∈ Fn2}. For i = i1, set
Di1 = E ∩Hi1 , so we have E ∩H∗i = α⊕Di1 = {α⊕ y | y ∈ E ∩Hi1}, where
α ∈ E ∩H∗i1 .

Let D⊥i1 denote a subspace of Fn2 such that dim(Di1) + dim(D⊥i1) = n and

Di1 ∩D⊥i1 = {0n}. It is easy to deduce that |(E ∩H∗i) \D⊥i1 | ≥ 2n/1−1 − 1. Set

α ∈ (E ∩ H∗i) \ D⊥i1 , we have E ∩ H∗i = α ⊕ Di1(= {α ⊕ y | y ∈ E ∩ Hi1}).

102 BIBLIOGRAPHY

Thus, Di1 is a subspace of Hi1 , and its dimension is n/2 − 1. The dimension
of the flat E ∩H∗i1 is equal to n/2− 1. Further, we have

(α⊕Di1) ∩ (α⊕D⊥i1) = {α}. (6.5)

In addition, we have |(E ∩H∗j)∩ (α⊕D⊥i1)| is even, where j 6= i1, E ∩H∗j 6= ∅.
In fact, if there exists one vector γ such that γ ∈ (E ∩H∗j) ∩ (α ⊕D⊥i1), then

γ⊕ (E ∩H∗j) is a subspace and (α⊕ γ)⊕D⊥i1(= D⊥i1) is also a subspace. Thus,
we have

|(γ ⊕ (E ∩H∗j)) ∩D⊥i1 | = |(E ∩H
∗
j) ∩ (γ ⊕D⊥i1)| (6.6)

is even. Combining (6.5) and (6.6), we find an affine subspace γ ⊕ D⊥i1 on
which (a’ · x)(f0(x) ⊕ f1(x)) takes value 1 an odd number of times, that is,
deg((a’ · x)(f0(x)⊕ f1(x))) ≥ dim(γ ⊕D⊥i1) = n− dim(Di1) = n/2 + 1.

�

Proof of Lemma 3.1.6:

Proof. The fact that f defined by (3.7) is bent follows directly from Theorem 3.1.1
by noting that f0, f1, f0 ⊕ 1∆, f1 ⊕ 1∆ are also bent, where ∆ = E1 × E2.

Using the definition of f and the above existence assumptions we need to show
that DaDbf(x) 6= 0, for the above specified vectors. The second derivative of f with
respect to a and b can be written as,

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, xn+1, xn+2)

= (xn+1 ⊕ xn+2)
[
Da2Db2(π ⊕ φ)(x(2)) · x(1)

⊕Db2(π⊕φ)(x(2)⊕a2)·a1⊕Da2(π⊕φ)(x(2)⊕b2)·b1
]

⊕ (a3 ⊕ a4)
[
Db2(π ⊕ φ)(x(2) ⊕ a2) · (x(1) ⊕ a1)

⊕ b1 · (π ⊕ φ)(x(2) ⊕ a2 ⊕ b2)
]

⊕ (b3 ⊕ b4)
[
Da2(π ⊕ φ)(x(2) ⊕ b2) · (x(1) ⊕ b1)

⊕ a1 · (π ⊕ φ)(x(2) ⊕ a2 ⊕ b2)
]

⊕
[
Da2Db2(π)(x(2)) · x(1) ⊕Db2π(x(2) ⊕ a2) · a1

⊕Da2π(x(2) ⊕ b2) · b1
]
⊕ a3b4 ⊕ a4b3

⊕ (xn+2 ⊕ 1)D(a1,a2)D(b1,b2)[1E1(x(1))1E2(x(2))]

⊕ a4D(b1,b2)[1E1(x(1) ⊕ a1)1E2(x(2) ⊕ a2)]

⊕ b4D(a1,a2)[1E1(x(1) ⊕ b1)1E2(x(2) ⊕ b2)].

(6.7)

We first notice the following facts regarding DaDbf(x, xn+1, xn+2). It is sufficient
that Da2Db2(π ⊕ φ)(x(2)) 6= 0 so that DaDbf(x, xn+1, xn+2) 6= 0 due to the involve-
ment of the variables xn+1, xn+2 (the first term in the second equality above). Thus,
a2 6= b2 6= 0n

2
gives DaDbf(x, xn+1, xn+2) 6= 0 immediately. Let us consider this

derivative for the different cases.

1. Let a = (a1, 0n
2
, a3, 0), b = (b1, 0n

2
, b3, 0) ∈ Λ \ {0n+2} such that a3 = b3 = 1,

or a3 = 0, b3 = 1, or a3 = 1, b3 = 0. In this case the only term that depends

BIBLIOGRAPHY 103

exclusively on x(2) in (6.7) is a3

(
(π ⊕ φ)(x(2)) · b1

)
⊕b3

(
(π ⊕ φ)(x(2)) · a1

)
since

ν · (π ⊕ φ) 6= constant for ν ∈ F
n
2
2 \{0n2 }. Therefore,

D(a1,0n
2
,a3,0)D(b1,0n

2
,b3,0)f(x, xn+1, xn+2) 6= 0.

2. Assume there exist a, b ∈ V such that (a2, a4) 6= (b2, b4), Da2Db2(π⊕ϕ)(x(2)) 6=
0 and a4 = b4 = 0 (their existence is proven in Proposition 3.1.7). Then,
Da2Db2(π ⊕ φ)(x(2)) 6= 0 and consequently DaDbf(x, xn+1, xn+2) 6= 0.

3. In this case there always exists a = (a1, 0n
2
, a3, 0) ∈ V , where (a1, a3) 6= 0n

2
+1.

By assumption we can find b(1) = (b
(1)
1 , b

(1)
2 , b

(1)
3 , b

(1)
4) ∈ V such that b

(1)
2 6= 0n

2

and b
(1)
3 = b

(1)
4 , and b(2) = (b

(2)
1 , b

(2)
2 , b

(2)
3 , b

(2)
4) ∈ V such that b

(2)
2 6= 0n

2
and

D
b
(2)
2

(π ⊕ φ)(x(2)) 6= constant. There are two cases to consider.

i) If a3 = 0 and consequently a1 6= 0n
2
, we find b(1) = (b

(1)
1 , b

(1)
2 , b

(1)
3 , b

(1)
4) ∈ V

such that b
(1)
2 6= 0n

2
and b

(1)
3 = b

(1)
4 . Then, (6.7) gives

DaDb(1)f(x, xn+1, xn+2)

=(xn+1⊕xn+2)
[
D
b
(1)
2

(π⊕φ)(x(2))·a1

]
⊕D

b
(1)
2

π(x(2))·a1

⊕ (xn+2 ⊕ 1)D(a1,a2)D(b
(1)
1 ,b

(1)
2)

[1E1(x(1))1E2(x(2))]

⊕ b4D(a1,a2)[1E1(x(1) ⊕ b(1)
1)1E2(x(2) ⊕ b(1)

2)],

which is nonconstant assuming that π has no linear structures (i.e., D
b
(1)
2

π(x(2))·
a1 does not equal a constant and only depends on x(2)).

ii) If a3 = 1 and consequently a3⊕ a4 = 1, we find b(2) = (b
(2)
1 , b

(2)
2 , b

(2)
3 , b

(2)
4) ∈

V such that b
(2)
2 6= 0n

2
and D

b
(2)
2

(π ⊕ φ)(x(2)) 6= constant. There are also two

cases to consider.

(a) If a1 6= 0n
2
, (6.7) gives,

DaDb(2)f(x, xn+1, xn+2)

=(xn+1 ⊕ xn+2)[D
b
(2)
2

(π ⊕ φ)(x(2)) · a1]

⊕D
b
(2)
2

(π⊕φ)(x(2))·(x(1)⊕a1)⊕b(2)
1 ·(π⊕φ)(x(2)⊕b(2)

2)

⊕(b
(2)
3 ⊕b

(2)
4)
[
Da2(π⊕φ)(x(2)⊕b(2)

2)·(x(1)⊕b(2)
1)

⊕a1 · (π ⊕ φ)(x(2) ⊕ b(2)
2)
]
⊕D

b
(2)
2

π(x(2)) · a1

⊕(xn+2⊕1)D(a1,a2)D(b
(2)
1 ,b

(2)
2)

[1E1(x(1))1E2(x(2))]

⊕b4D(a1,a2)[1E1(x
(1)⊕b(2)

1)1E2(x
(2)⊕b(2)

2)]⊕a3b
(2)
4 ,

which is nonconstant since (xn+1⊕xn+2)(D
b
(2)
2

(π⊕φ)(x(2)) ·a1) does not

equal a constant and depends on (xn+1 ⊕ xn+2).

104 BIBLIOGRAPHY

(b) If a1 = 0n
2
, (6.7) gives,

DaDb(2)f(x,xn+1,xn+2)=D
b
(2)
2

(π⊕φ)(x(2))·x(1)

⊕b(2)
1 · (π ⊕ φ)(x(2) ⊕ b(2)

2)⊕ b(2)
4 ,

which is nonconstant since D
b
(2)
2

(π⊕φ)(x(2))·x(1) does not equal a constant

and depends on x(1) and x(2).

4. Since there exist a = (a1, 0n
2
, 0, 0) ∈ Λ and b = (b1, 0n

2
, 1, 1) ∈ V such that

Da11E1(x(1)) 6= 0, then (6.7) gives,

D(a1,0n
2
,0,0)D(b1,0n

2
,1,1)f(x, xn+1, xn+2)

= (xn+2 ⊕ 1)D(a1,0n
2

)D(b1,0n
2

)[1E1(x(1))1E2(x(2))]

⊕ b4D(a1,0n
2

)[1E1(x(1) ⊕ b1)1E2(x(2))]

= (xn+2 ⊕ 1)1E2(x(2))Da1Db1(1E1(x(1)))

⊕ 1E2(x(2))Da1(1E1(x(1) ⊕ b1)) 6= 0.

5. Since there exist a = (a1, 0n
2
, 0, 0) ∈ Λ and b = (b1, 0n

2
, 0, 1) ∈ V , then (6.7)

gives,
D(a1,0n

2
,0,0)D(b1,0n

2
,0,1)f(x, xn+1, xn+2)

=(π⊕ϕ)(x(2))·a1⊕(xn+2⊕1)1E2(x(2))Da1Db11E1(x
(1))

⊕1E2(x(2))Da11E1(x(1) ⊕ b1) 6= 0,

since Da11E1(x(1)) 6= constant and

1E2(x
(2))Da1 [1E1(x(1)⊕b1)] depends on x(1) and x(2).

6. Since there exist a = (a1, 0n
2
, 0, 0) ∈ Λ and b = (b1, b2, b3, b4) ∈ V such that

Da1Db11E1(x(1)) 6= 0, then (6.7) gives,

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, xn+1, xn+2)

= (xn+1 ⊕ xn+2)(Db2(π ⊕ ϕ)(x(2)) · a1)

⊕ (b3 ⊕ b4)
[
(π ⊕ ϕ)(x(2) ⊕ b2) · a1

]
⊕Db2π(x(2)) · a1

⊕ (xn+2 ⊕ 1)D(a1,0n
2

)D(b1,b2)[1E1(x(1))1E2(x(2))]

⊕ b4D(a1,0n
2

)(1E1(x(1) ⊕ b1)1E2(x(2) ⊕ b2)).

From the above relation, we know if Da1Db11E1(x(1)) 6= 0, then

D(a1,0n
2

)D(b1,b2)(1E1(x(1))1E2(x(2)))

= 1E2(x
(2))Da1Db11E1(x(1))

⊕Db21E2(x(2))Da11E1(x(1)⊕b1) 6= 0.

Hence, (xn+2 ⊕ 1)D(a1,0n
2

)D(b1,b2)(1E1(x(1))1E2(x(2))) depends on xn+2, and

does not depend on xn+1. If Db2

(
(π ⊕ ϕ)(x(2)) · a1

)
6= 0, then (xn+1 ⊕

xn+2)Db2

(
(π ⊕ ϕ)(x(2)) · a1

)
depends on xn+2 ⊕ xn+1. Hence, we have

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, xn+1, xn+2) 6= 0.

BIBLIOGRAPHY 105

�

Proof of Proposition 3.1.7:

Proof. Let, as before, V be an arbitrary n+2
2 -dimensional subspace of Fn+2

2 and

Λ = {(x(1), 0n
2
, xn+1, 0) | x(1) ∈ F

n
2
2 , xn+1 ∈ F2}. Also, any a ∈ Fn+2

2 is written as

a = (a1, a2, a3.a4) ∈ F
n
2
2 × F

n
2
2 × F2 × F2.

1. The case V = Λ is trivial since we can always find nonzero vectors (a1, 0n
2
, a3, 0),

(b1, 0n
2
, b3, 0) ∈ Λ such that a3 = b3 = 1, or a3 = 0, b3 = 1, or a3 = 1, b3 = 0.

2. If dim(V ∩Λ) = 0, (so that these subspaces intersect in {0n+2}), then we want
to show the existence of a, b ∈ V such that (a2, a4) 6= (b2, b4), Da2Db2(π ⊕
ϕ)(x(2)) 6= 0 and a4 = b4 = 0. The condition (a2, a4) 6= (b2, b4) is actually true
for any two vectors a, b ∈ V . Indeed, assuming (a2, a4) = (b2, b4) implies that
a⊕b = (a1⊕b1, 0n

2
, a3⊕b3, 0) ∈ Λ, a contradiction. It is also easy to verify that

we can find a, b ∈ V such that a4 = b4 = 0, a2 6= b2 and Da2Db2(π⊕ϕ)(x(2)) 6=
0. This comes from the fact that |V | = 2

n+2
2 and (a2, a4) 6= (b2, b4) for any

a, b ∈ V , which implies {(v(1)
2 ,v

(1)
4), (v

(2)
2 ,v

(2)
4),. . . ,(v

(2
n+2

2)
2 ,v

(2
n+2

2)
4)}=F

n
2
2 ×F2.

3. If |V ∩ Λ| = 2, then there exists a 6= 0n+2 such that a = (a1, 0n
2
, a3, 0) ∈

V ∩ Λ for which (a1, a3) 6= 0n
2

+1. We need to show the existence of b(1) =

(b
(1)
1 , b

(1)
2 , b

(1)
3 , b

(1)
4) ∈ V such that b

(1)
2 6= 0n

2
and b

(1)
3 = b

(1)
4 , and b(2) =

(b
(2)
1 , b

(2)
2 , b

(2)
3 , b

(2)
4) ∈ V such that b

(2)
2 6= 0n

2
and D

b
(2)
2

(π⊕φ)(x(2)) 6= constant.

To show this, we first prove |{v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 }| ≥ 2

n
2
−1. Suppose car-

dinality |{v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 }| is strictly less than 2

n
2
−1 (counting differ-

ent elements in the multiset). Then, there must exist at least 8 vectors

v(j1), v(j2), . . . , v(j8) such that v
(j1)
2 = v

(j2)
2 = . . . = v

(j8)
2 . Further, without

loss of generality, let v
(j1)
4 6= v

(j2)
4 . Since v

(i)
4 ∈ F2, for i = 1, 2, . . . , 2

n+2
2 , there

are at least three vectors v(jt1), v(jt2), v(jt3), which belong to {v(j3), . . . , v(j8)},
such that v

(jt1)
4 = v

(jt2)
4 = v

(jt3)
4 . Thus, we have v

(j1)
4 = v

(jt1)
4 = v

(jt2)
4 = v

(jt3)
4

(or v
(j2)
4 = v

(jt1)
4 = v

(jt2)
4 = v

(jt3)
4), that is, v(j1)⊕v(jt1), v(j1)⊕v(jt2), v(j1)⊕v(jt3)

(or v(j2)⊕ v(jt1), v(j2)⊕ v(jt2), v(j2)⊕ v(jt3)) belong to V ∩Λ. This is in contra-

diction with |V ∩ Λ| = 2. Hence, |{v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 }| ≥ 2

n
2
−1 > 4 (since

n > 4). Further, it is easy to find b(1) ∈ V such that b
(1)
2 6= 0n

2
and b

(1)
3 = b

(1)
4 .

By assumption, max
ν∈F

n
2
2

deg(ν ·(π⊕φ)) ≥ 2. Thus, according to Lemma 3.1.5,

we are able to find b(2) ∈ V such that b
(2)
2 6= 0n

2
andD

b
(2)
2

(π⊕φ)(x(2)) 6= constant.

4. If |V ∩ Λ| = t > 2, then we write V ∩ Λ = {v(1), . . . , v(t)}, where t = 2r for
r = 2, . . . , n/2. There are two cases to be considered.

106 BIBLIOGRAPHY

(a) If there exist at least two vectors (a1, 0n
2
, a3, 0), (b1, 0n

2
, b3, 0) ∈ V ∩ Λ

such that a3 = b3 = 1, or a3 = 0, b3 = 1, or a3 = 1, b3 = 0 (that is, there

exists i ∈ {1, 2, . . . , t} such that v
(i)
3 6= 0), then a, b fall under item i) in

Lemma 3.1.6.

(b) If v
(i)
3 = 0 for i = 1, 2, . . . , t, then there are three cases to be considered.

i. If v
(i)
2 = 0n

2
for i = 1, 2, . . . , 2

n
2

+1, we have two cases:

• If v
(i)
3 = v

(i)
4 (i.e., v

(i)
3 = v

(i)
4 = 1) for i = t + 1, . . . , 2

n
2

+1, since

|V | = 2
n
2

+1, then {v(1)
1 , v

(2)
1 , . . . , v

(2
n
2 +1)

1 } = F
n
2
2 . Thus, there

exists one vector (v
(j1)
1 , 0n

2
, 0, 0) such that D

v
(j1)
1

1E1(x(1)) 6=0 since

deg(1E1(x(1))) ≥ 2.

Set (a1, a2, a3, a4) = (v
(j1)
1 , 0n

2
, 0, 0) ∈ V ∩ Λ, (b1, b2, b3, b4) =

(b1, 0n
2
, 1, 1) ∈ V. Then, a, b fall under item iv) in Lemma 3.1.6.

• If there exists a vector v(j1) such that v
(j1)
3 6= v

(j1)
4 for j1 ∈

{t + 1, . . . , 2
n
2

+1}, then v
(j1)
3 = 0, v

(j1)
4 = 1 since v

(i)
3 = 0 for

i = 1, 2, . . . , t. Further, we have v
(i)
3 = 0, v

(i)
4 = 1, for i =

t + 1, . . . , 2
n
2

+1. Similarly, if there exists a vector v(j2) such

that v
(j2)
3 = 1, v

(j2)
4 = 1, then there must exist a vector v(j3)

such that v
(j3)
3 = 1, v

(j2)
4 = 0, where j2, j3 ∈ {t + 1, . . . , 2

n
2

+1}.
However, it is in contradiction with v

(i)
3 = 0, for i = 1, 2, . . . , t.

Hence, {v(1)
1 , v

(2)
1 , . . . , v

(2
n
2 +1)

1 } = F
n
2
2 . Thus, there exists one vec-

tor (v
(`)
1 , 0n

2
, 0, 0) such thatD

v
(`)
1

1E1(x(1)) 6= 0 since deg(1E1(x(1))) ≥

2. We set (a1, a2, a3, a4) = (v
(`)
1 , 0n

2
, 0, 0) ∈ V ∩Λ, (b1, b2, b3, b4) =

(v
(j1)
1 , 0n

2
, 0, 1) ∈ V. Then, a, b fall under item v) in Lemma 3.1.6.

ii. For |{v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 }| = 2, without loss of generality, let the

set {v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 } = {0n

2
, d2}, where d2 ∈ F

n
2
2 \ {0n2 }.

• If there exists one vector (v
(i1)
1 , v

(i1)
2 , v

(i1)
3 , v

(i1)
4) ∈ V such that

v
(i1)
2 6=0n

2
and v

(i1)
3 =v

(i1)
4 , then set (a1, a2, a3, a4) = (a1, 0n

2
, 0, 0) ∈

(V ∩ Λ), (b1, b2, b3, b4) = (v
(i1)
1 , v

(i1)
2 , v

(i1)
3 , v

(i1)
4) ∈ V . Then, a, b

fall under item iii) in Lemma 3.1.6.

• If for any vector v ∈ V such that v2 = d2 6= 0n
2
, we always have

v3 6= v4, we denote these vectors such that v2 = d2 and v3 6= v4 by

{v(k1), v(k2), . . . , v(kη)}. We consider two cases: v
(ki)
3 = constant

and v
(ki)
3 6= constant for i = 1, 2, . . . , η.

– If v
(ki)
3 = constant for i = 1, 2, . . . , η, then v

(ki)
2 = d2 and

v
(ki)
4 = constant for i = 1, 2, . . . , η. Thus, we have

{(v(1)
2 ,v

(1)
3 ,v

(1)
4),. . .,(v

(2
n+2

2)
2 ,v

(2
n+2

2)
3 ,v

(2
n+2

2)
4)} = {(0n

2
, 0, 0), (d2, v

(k1)
3 , v

(k1)
4)}.

BIBLIOGRAPHY 107

Also, |{v(1)
1 ,v

(2)
1 ,. . . ,v

(2
n+2

2)
1 }|·|{(v(1)

2 ,v
(1)
3 ,v

(1)
4),. . . ,(v

(2
n+2

2)
2 , v

(2
n+2

2)
3 , v

(2
n+2

2)
4)}|

≥ |{v(1), v(2),. . . ,v(2
n+2

2)}|, that is, |{v(1)
1 , . . . , v

(2
n+2

2)
1 }| = 2

n
2 .

Thus, we are able to choose two vectors a = (a1, 0n
2
, 0, 0) ∈

V ∩Λ and b = (b1, d2, b3, b4) ∈ V such that Da1Db11E1(x(1)) 6=
0 since deg(1E1(x(1))) ≥ 2. Then, a, b fall under item vi) in
Lemma 3.1.6.

– If v
(ki)
3 6= constant for i = 1, 2, . . . , η, then there exist two

vectors v(j1), v(j2) ∈ V such that v
(j1)
2 = v

(j2)
2 = d2 and v

(j1)
3 6=

v
(j2)
3 . Thus, we have v(j1) ⊕ v(j2) = (v

(j1)
1 ⊕ v(j2)

1 , 0n
2
, 1, 1).

From conditions v
(i)
3 = 0 for i = 1, . . . , t, |{v(1)

2 , v
(2)
2 , . . . ,v

(2
n+2

2)
2 }| =

2, and we always have v
(l)
3 6=v

(l)
4 for v

(l)
2 =d2 6=0n

2
∈V , we know

|{(v(1)
2 , v

(1)
3 , v

(1)
4), . . . , (v

(2
n+2

2)
2 , v

(2
n+2

2)
3 , v

(2
n+2

2)
4)} = {(0n

2
, 0, 0),

(0n
2
, 1, 1),(d2,1,0),(d2,0,1)}|=4. Further, |{v(1)

1 , v
(2)
1 , . . . ,v

(2
n+2

2)
1 }|·

|{(v(1)
2 , v

(1)
3 , v

(1)
4), . . . , (v

(2
n+2

2)
2 , v

(2
n+2

2)
3 , v

(2
n+2

2)
4)}| ≥ |{v(1), v(2), . . . ,

v(2
n+2

2)}|, that is, |{v(1)
1 , v

(2)
1 , . . . , v

(2
n+2

2)
1 }| ≥ 2

n
2
−1. Thus, due

to Lemma 3.1.5 and using deg(1E1(x(1))) ≥ 2, we are able to
choose one vector a = (a1, 0n

2
, 0, 0) ∈ V such that Da11E1(x(1))

6= constant. Further, we are able to choose b = (b1, 0n
2
, 1, 1) ∈

V . Then, a, b fall under item iv) in Lemma 3.1.6.

iii. For |{v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 }| > 2, there must exist b ∈ V such that

b2 6= 0n
2

and b3 = b4. Since |{v(1)
2 , v

(2)
2 , . . . , v

(2
n+2

2)
2 }| > 2, there must

exist three vectors v(i1), v(i2) ∈ V and v(i1)⊕ v(i2) ∈ V . If v(i1) ∈ V is

such that v
(i1)
2 6= 0n

2
and v

(i1)
3 = v

(i1)
4 , then set b = v(i1). If v(i2) ∈ V

is such that v
(i2)
2 6= 0n

2
and v

(i2)
3 = v

(i2
4 , then set b = v(i2). Otherwise,

set b = v(i1) ⊕ v(i2) (since if u3, v3, u4, v4 ∈ F2 such that u3 6= u4

and v3 6= v4, we have u3 ⊕ v3 = u4 ⊕ v4). We set (a1, a2, a3, a4) =
(a1, 0n

2
, 0, 0) ∈ V ∩Λ such that (a1, a3) 6= 0n

2
+1. Then, a, b fall under

item iii) in Lemma 3.1.6.

�

Proof of Theorem 3.2.2:

Proof. Let a(1), b(1), a(2), b(2) ∈ Fn2 . We prove that f does not belong to M#, by
using Lemma 2.2.2. We need to show that there does not exist an (n2)-dimensional
subspace V such that

D(a(1),a(2))D(b(1),b(2))f = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V .

108 BIBLIOGRAPHY

The second derivative of f with respect to a and b can be written as,

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y))⊕ a(1) ·Db(2)π(y ⊕ a(2))

⊕b(1) ·Da(2)π(y ⊕ b(2))⊕DaDb1E1(x)1E2(y)

= x · (Da(2)Db(2)π(y))⊕ a(1) ·Db(2)π(y ⊕ a(2))⊕ b(1) ·Da(2)π(y ⊕ b(2)) (6.8)

⊕1E1(x)Da(2)Db(2)1E2(y)⊕ 1E2(y ⊕ a(2))Da(1)1E1(x)

⊕1E2(y ⊕ b(2))Db(1)1E1(x)⊕ 1E2(y ⊕ a(2) ⊕ b(2))Da(1)⊕b(1)1E1(x).

We denote the set {(x, 0n) | x ∈ Fn2} by ∆, and consider two cases V = ∆ and
V 6= ∆.

1. For V = ∆, we can find two vectors (a(1), 0n), (b(1), 0n) ∈ ∆ such that

Da(1)Db(1)1E1(x) 6= 0

since dim(E1) ≥ 2. Further, we have

D(a(1),a(2))D(b(1),b(2))f(x) = 1E2(y)(Da(1)1E1(x)⊕Db(1)1E1(x)

⊕Da(1)⊕b(1)1E1(x))

= 1E2(y)Da(1)Db(1)1E1(x) 6= 0.

2. For V 6= ∆, we split the proof into three cases depending on the cardinality of

V ∩∆. We set V =
{

(v
(1)
1 , v

(1)
2), (v

(2)
1 , v

(2)
2), . . . , (v

(2n)
1 , v

(2n)
2

}
,

(a) For |V ∩ ∆| = 1, we have v
(i)
2 6= v

(j)
2 for any i 6= j. If there exist

two vectors v
(i1)
2 , v

(j1)
2 such that v

(i1)
2 = v

(j1)
2 , then v

(i1)
1 = v

(j1)
1 , (or

(v
(i1)
1 ⊕ v(j1)

1 , 0n) ∈ V ∩ ∆), that is, (v
(i1)
1 , v

(i1)
2) = (v

(j1)
1 , v

(j1)
2). Further,

|{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| = |V | = 2n, that is, {v(1)

2 , v
(2)
2 , . . . , v

(2n)
2 } = Fn2

(here, if v
(i1)
2 = v

(i2)
2 , they are called one element). Thus, we can find two

vectors a, b ∈ V such that

Da(2)Db(2)1E2(y) 6= 0

since dim(E2) ≥ 2.

Now, there are four cases to be considered.

i. If a(1) = b(1) = 0n, from (6.8), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y))⊕ 1E1(x)Da(2)Db(2)1E2(y) 6= 0 (6.9)

since dim(E1)+dim(E2) = n and dim(E2) ≥ 2, that is, deg(1E1(x)) ≥
2.

BIBLIOGRAPHY 109

ii. If a(1) = 0n, b
(1) 6= 0n, from (6.8), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y))⊕ b(1) ·Da(2)π(y ⊕ b(2))

⊕1E1(x)Da(2)Db(2)1E2(y)

⊕ 1E2(y ⊕ b(2))Db(1)1E1(x)⊕ 1E2(y ⊕ a(2) ⊕ b(2))Db(1)1E1(x)

= x · (Da(2)Db(2)π(y))⊕ b(1) ·Da(2)π(y ⊕ b(2))

⊕ 1E1(x)Da(2)Db(2)1E2(y)⊕Db(1)1E1(x)Da(2)1E2(y ⊕ b(2)).

We know dim(E1)+dim(E2) = n and dim(E2) ≥ 2, thus deg(1E1(x)) ≥
2. Further, deg(1E1(x)) > deg(Db(1)1E1(x)). Thus, we have

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0.

iii. If a(1) 6= 0n, b
(1) = 0n, from (6.8), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y))⊕ a(1) ·Db(2)π(y ⊕ a(2)) (6.10)

⊕ 1E1(x)Da(2)Db(2)1E2(y)⊕Da(1)1E1(x)Db(2)1E2(y ⊕ a(2)).

We know dim(E1)+dim(E2) = n and dim(E2) ≥ 2, thus deg(1E1(x)) ≥
2. Further, deg(1E1(x)) > deg(Da(1)1E1(x)). Thus, we have

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0.

iv. If a(1) 6= 0n, b
(1) 6= 0n, from (6.8), we have

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0.

Since dim(E1) + dim(E2) = n and dim(E2) ≥ 2, then deg(1E1(x)) ≥
2. Furthermore, deg(1E1(x)) > deg(Db(1)1E1(x)), deg(1E1(x)) >
deg(Da(1)1E1(x)) and deg(1E1(x)) > deg(Da(1)⊕b(1)1E1(x)).

Hence, we have

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0

for |V ∩∆| = 1.

(b) For |V ∩∆| = 2, without loss of generality, let (a(1), 0n) ∈ V ∩∆, a(1) 6= 0n.

We know {v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } is a subspace of Fn2 which is denoted by V ′.

We first prove dim(V ′) = n− 1 by showing that |{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| =

2n−1, where we only count distinct vectors (e.g. if v
(i1)
2 = v

(i2)
2 only one

vector is counted). If |{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| = 2n, then it is clear that

V is not a subspace. If |{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| < 2n−1, there must exist

three vectors v
(i1)
2 = v

(i2)
2 = v

(i3)
2 , where i1 6= i2 6= i3. Thus, we will have

(v
(i1)
1 , v

(i1)
2) ⊕ (v

(i2)
1 , v

(i2)
2) ∈ V ∩ ∆, (v

(i1)
1 , v

(i1)
2) ⊕ (v

(i3)
1 , v

(i3)
2) ∈ V ∩ ∆

110 BIBLIOGRAPHY

and (v
(i3)
1 , v

(i3)
2) ⊕ (v

(i2)
1 , v

(i2)
2) ∈ V ∩ ∆, which contradicts the fact that

|V ∩∆| = 2.

We now show that |E2 ∩ V ′| ≥ 1 by using a well-known fact that

dim(E2 ∩ V ′) = dim(E2) + dim(V ′)− dim(E2 � V ′),

where E2�V ′ = {α⊕β|α ∈ E2, β ∈ V ′}. Since by assumption dim(E2) ≥
2 and we have shown that dim(V ′) = n− 1, then dim(E2 ∩ V ′) ≥ 1.

We now choose one vector b(2) from (V ′ ∩ E2)\{0n}, then b(2) 6= 0n and
1E2(y) = 1E2(y ⊕ b(2)) (since b(2) ∈ E2). Set b = (b(1), b(2)) ∈ V . From
(6.8), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= a(1) ·Db(2)π(y)⊕ 1E2(y)Da(1)1E1(x) (6.11)

⊕ 1E2(y ⊕ b(2))Db(1)1E1(x)⊕ 1E2(y ⊕ b(2))Da(1)⊕b(1)1E1(x)

= a(1) ·Db(2)π(y)⊕ 1E2(y)Da(1)Db(1)1E1(x).

Now, there are three cases to be considered. If Da(1)Db(1)1E1(x) 6= const.
or Da(1)Db(1)1E1(x) = 0, then it is clear that

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0

since π has no nonzero linear structure and b(2) 6= 0n.

If Da(1)Db(1)1E1(x) = 1, then it is clear that

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y)⊕ 1E2(y) 6= 0

since deg(π) ≤ n−dim(E2), that is, deg(a(1) ·Db(2)π(y)) < n−dim(E2) =
deg(1E2(y)).

(c) For |V ∩ ∆| > 2 (i.e., |V ∩ ∆| ≥ 4), without loss of generality, let
a = (a(1), 0n)(6= 02n) ∈ V ∩∆. Here, there are two cases to be considered.

i. If there exists one vector v = (0n, v2) ∈ V \ {02n}, then we set b = v.
Further, using that b(1) = 0n, we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y)⊕Db(2)1E2(y)Da(1)1E1(x).

If Da(1)1E1(x) 6= constant or Da(1)1E1(x) = 0, then again

D(a(1),a(2))D(b(1),b(2))f(x) 6= 0,

since π has no nonzero linear structure.
We now show that Da(1)1E1(x) = 1 is impossible. We have that
Da(1)1E1(x) = 0 if a(1) ∈ E1, or alternatively if a(1) /∈ E1

deg(Da(1)1E1(x)) = n− dim(E1)− 1,

since E1 ∪ (a(1) ⊕E1) is a subspace of dimension dim(E1) + 1. Since
n − dim(E1) − 1 > 0 and by assumption dim(E1) < n − 1, we have
Da(1)1E1(x) 6= 1.

BIBLIOGRAPHY 111

ii. Let v = (v1, v2) ∈ V \ {02n}. If we always have v = (v1, v2) such that
v1 6= 0n for every v2 6= 0n, then we set b = v ∈ V \ {02n} such that
v2 6= 0n. Further, we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y)⊕ 1E2(y)Da(1)1E1(x)

⊕1E2(y ⊕ b(2))Db(1)1E1(x)⊕ 1E2(y ⊕ b(2))Da(1)⊕b(1)1E1(x)

= a(1) ·Db(2)π(y)⊕ 1E2(y)Da(1)1E1(x) (6.12)

⊕1E2(y ⊕ b(2))Da(1)1E1(x⊕ b(1)).

There are two cases to be considered.
If b(2) ∈ E2, then we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y)⊕ 1E2(y)(Da(1)1E1(x)

⊕Da(1)1E1(x⊕ b(1))) 6= 0,

since deg(1E2(y)) > deg(a(1) ·Db(2)π(y)).
If b(2) /∈ E2, then we have three cases to be considered.

A. For a(1) ∈ E1 we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y) 6= 0.

B. For a(1) /∈ E1, b
(1) ∈ E1 we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y)

⊕Db(2)1E2(y)Da(1)1E1(x) 6= 0,

since Da(1)1E1(x) 6= constant.

C. For a(1) /∈ E1, b
(1) /∈ E1 we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) ·Db(2)π(y)

⊕Db(2)1E2(y)Da(1)1E1(x)

⊕1E2(y ⊕ b(2))Da(1)Db(1)1E1(x) 6= 0,

since Da(1)1E1(x) 6= constant and furthermore deg(Da(1)1E1(x))
> deg(Da(1)Db(1)1E1(x)).

Combining items 1 and 2, we deduce that f does not belong to M#.
�

Index

affine equivalence, 10
almost bent functions, 16
almost perfect nonlinear function, 16

balancedness, 11
bent classes
C class, 15, 26, 29, 34, 37
complete class, 13
D class, 15, 24, 29, 34, 39
Maiorana-McFarland class, 13, 22, 34
N class, 14
PS class, 14, 42

bent function, 12
vectorial bent function, 15

Boolean functions, 10
vectorial, 15

concatenation, 10
coordinate functions, 15
correlation immunity, 11

degree
algebraic, 10
polynomial, 11

difference set, 13
Hadamard, 13

dual function, 12, 70

Galois field, 9
graph, 13

strongly regular, 13

Hadamard
difference set, 13
distance, 9
matrix, 13
weight, 9

Hamming
distance, 10

linear functions, 17
linear structure, 17, 25, 35

nonlinearity, 12
normality, 20, 26

weak normality, 20

partially-bent functions, 16
permutation, 16

complete permutation, 55, 84
plateaued function, 16, 79
primary construction, 13
primitive element, 9
propagation criterion, 11
property (C), 15, 34, 37

representation
algebraic normal form, 10
trace representation, 11
univariate representation, 10

resiliency, 11
Rothaus construction, 19

secondary constructions, 13
self-dual functions, 12
semi-bent functions, 16
strict avalanche criterion, 11
support, 10

trace function, 9
absolute trace, 10

translator
Frobenius translator, 64, 65
linear translator, 17, 45

Walsh-Hadamard
spectrum, 12
transform, 12, 15

113

Chapter 7

Povzetek v slovenskem jeziku

Začetki kriptografije segajo daleč v našo preteklost. Čim je kralj želel poslati tajna
navodila svojim generalom, čim je obrtnik želel varno zapisati skrivno recepturo ali
postopek, se je pojavila potreba po kriptografiji ; disciplini, ki po današnji defini-
ciji omogoča dvema stranema, da varno komunicirata preko nezavarovanega kanala.
Skoraj vsi so že slǐsali za Cezarjevo preprosto zamenjalno šifro, vendar začetki krip-
tografije segajo še več kot 1000 let v preteklost [44]. Z napredkom šifriranja se je
razvijala tudi veda o dešifriranju in iskanju skritih sporočil, kriptoanaliza. Krip-
tografija in kriptoanaliza skupaj tvorita področje kriptologije, ki ni bila še nikdar v
zgodovini tako velikega pomena za našo širšo družbo, kot danes.

Nekoč se je kriptografija večinoma ubadala s črkami abeced, frazami in znaki,
danes pa dela z enicami in ničlami; simboli, ki so primerni za računalnike in elektron-
sko komunikacijo. Takšna moderna kriptografija in informacijska teorija nasplošno
sta se v bistvu pričeli leta 1948 s prebojnim člankom Clauda Shannona “A Mathe-
matical Theory of Communication” [79] (Matematična teorija komunikacij). Da bi
zadovoljila današnjim potrebam, mora kriptografija zagotoviti štiri osnovne storitve:
zaupnost, integriteto podatkov, avtentikacijo in ne-odklonskost.

Zaupnost (ali zasebnost) je storitev, ki ščiti informacije pred tem, da bi do njih
dostopale nepooblaščene osebe. Integriteta podatkov pomeni, da storitev preprečuje,
da bi podatke spreminjala nepooblaščena oseba, in da so spremembe, če se zgodijo,
zaznane. Najpogosteǰse spremembe podatkov so vstavljanje podatkov, izbris in za-
menjava. Avtentikacija se nanaša na to, da lahko dve strani, ki želita komunicirati,
uspešno identificirata ena drugo. Nazadnje, ne-odklonskost, zagotavlja, da nobena
stran ne more zanikati, da je naredila določena dejanja, kot na primer, da je poslala
transakcijo ali podpisala dokument.

Vse te lastnosti je potrebno upoštevati pri praktični implementaciji kriptosis-
tema. Slika 7.1 prikazuje shemo za zagotavljanje zaupnosti. Dve strani oz. osebi,
Alica in Bob, bi radi komunicirali preko nezavarovanega kanala. Alica, pošiljatelj,
želi Bobu, prejemniku, poslati sporočilo p (plaintext). Z uporabo tajnega ključa
k in šifrirnega algoritma E ga zašifrira v kodirano sporočilo c = E(p, k) (cipher-
text). Kodirano sporočilo c pošlje Bobu preko nezavarovanega kanala, kateremu
lahko prisluškuje nasprotnik, ponavadi imenovan Eva (kar stoji za “Enemy” ali
“Eavesdropper”) ali Mallory (kar stoji za man-in-the-middle napad), ki nad kodi-

115

116

Figure 7.1: Standardna šifrirna shema

ranim sporočilom izvaja kriptoanalizo. Ko Bob prejme kodirano sporočilo c, ga
dešifrira z uporabo tajnega ključa k′ in dešifrirnega algoritma D. S tem dobi
sporočilo p = D(c, k′).

Če sta tajna ključa k in k′ enaka, shema uporablja simetrično kriptografijo oz.
kriptografijo tajnega ključa. Če se ključa razlikujeta, je to shema asimetrične krip-
tografije ali kriptografije javnega ključa, ki zahteva, da imata oba Alica in Bob dva
ključa. Natančneje, oba morata imeti javni ključ, ki je shranjen v javni bazi podatkov
in dosegljiv vsem, in zasebni ključ, ki ga morata varovati. Alica tako uporabi Bobov
javni ključ, da zašifrira sporočilo, Bob pa ga neto dešifrira s svojim odgovarjajočim
zasebnim ključem.

V splošnem je simetrična kriptografija računsko približno 1000-krat hitreǰsa od
kriptografije javnega ključa in zahteva ključe kraǰse dolžine za zagotavljanje enake
ravni varnosti. Po drugi strani pa mora vsak par oseb, ki želi komunicirati z uporabo
simetrične kriptografije, hraniti skupni tajni ključ. Če želi n oseb zagotoviti med-
sebojno paroma varno komunikacijo, mora biti skupno izmenjanih n(n−1)

2 tajnih
ključev in vsak uporabnik mora hraniti in varovati n−1 različnih tajnih ključev, kar
je v mnogih primerih zelo nepraktično. Če primerjamo z asimetrično kriptografijo,
je za njeno uporabo potrebno hraniti samo en tajni ključ.

V nadaljevanju se posvetimo simetrični kriptografiji, saj glavni del teze obrav-
nava lastnosti kriptografskih primitivov, ki so vezani nanjo. Simetrično šifriranje ob-
sega dva glavni družini šifrirnih algoritmov; bločne šifre (Slika 7.3) in pretočne šifre
(Slika 7.2). Pretočne šifre generirajo psevdo-naključno zaporedje bitov, imenovano
tok ključa (keystream), ki je prǐsteto osnovnemu sporočilu modulo 2. Tako dobimo
kodirano sporočilo. Med mnogimi načini načrtovanja ena od poddružin pretočnih
šifer (tako imenovani filtrirni generator) uporablja register linearnih povratnih pre-
mikov (linear feedback shift register - LFSR) in filtrirno Boolovo funkcijo, ki proce-
sira vsebino spominski celic registra in s tem generira bite toka ključa [46].

Dva dobro poznana primera uporabe LFSR pretočnih šifer sta družini šifer A5,

Povzetek v slovenskem jeziku 117

Figure 7.2: Primer pretočne šifre

ki se uporabljajo v GSM telekomunikacijskem standardu [4], in šifrirni algoritem E0,
ki ga uporabljajo nekatere Bluetooth aplikacije [59]. Nekateri drugi dobro poznani
šifrirni algoritmi, ki pripadajo družini pretočnih šifer, so na primer SNOW [38], RC4
[48], Trivium [8] in Grain [41].

Bločne šifre predstavljajo drugo veliko družino simetričnih šifrirnih algoritmov
(Slika 7.3), ki v splošnem implementirajo psevdo-naključne permutacije. Osnovno
sporočilo je razdeljeno na bloke podatkov enake velikosti, na primer n, ki jih bločna
šifra nato zaporedoma procesira v izhodni blok. Ta postopek mora biti obrnljiv
in tako bločna šifra za vsak tajni ključ (ki je vgrajen v šifrirni algoritem) imple-
mentira specifično permutacijo n binarnih bitov. Moderno načrtovanje bločnih šifer
uporablja iterativno aplikacijo številnih identičnih rund, katerih rezultat je blok
kodiranega sporočila. Pri tem lahko njihova notranja struktura temelji ali na Feistel
omrežju, ali na substitucijsko-permutacijskem omrežju. Ne glede na interno strukturo
pa iterativne runde običajno implementirajo Shannonova koncepta zmede z uporabo
tako imenovanih substitucijskih škatel (S-škatel) in koncept difuzije z uporabo per-
mutacijskih škratel (P-škatel) [79]. Na S-̌skatle lahko gledamo kot na zbirko Boolovih
funkcij (glej Chapter 2), medtem ko P-̌skatle preprosto linearno permutirajo bloke
in dosežejo najbolǰso možno difuzijo bitov, tako da pri naslednji rundi vplivajo na

Figure 7.3: Primer bločne šifre

118

različne S-̌skatle. V tem kontekstu je cilj zmede, da doseže, da je globalna odvisnost
bitov šifriranega sporočila glede na bite ključa in osnovnega sporočila kar se da kom-
pleksna. Ena bistvenih posledic dobro zastavljene difuzije je, da sprememba enega
bita osnovnega sporočila vpliva na približno eno polovico bitov šifriranega sporočila,
ki spremenijo vrednost glede na prvotno šifrirano sporočilo.

Ena od prvih bločnih šifer, ki jih je leta 1970 razvil Horst Feistel s svojo IBM
ekipo, je bila imenovana Lucifer. Njena izbolǰsana verzija, DES (Data Encryp-
tion Standard), je ena najbolj znanih blošnih šifer in ZDA jo je leta 1976 sprejela
za Federalni standard za procesiranje informacij (Federal Information Processing
Standard - FIPS). V sledečih letih je bila podvržena natančnemu proučevanju s
strani akademske javnosti. Čeprav sta Diffie in Hellman opozorila, da je dolžina
tajnega ključa prekratka, da bi zagotovila dolgoletno varnost [33], niso bile ugo-
tovljene nobene neposredne šibke točke v načrtu šifre. Leta 1992 je Matsui [62]
predstavil koncept linearne kriptoanalize in jo uporabil na šifri DES. Nekaj let za
tem je project DESCHALL javno zlomil tajno sporočilo, šifrirano z DES šifro. V
poznih devetdesetih je postalo jasno, da DES zaradi prekratke dolžine ključa (56
bitov) ni odporen na napade s surovo močjo (še dandanes je najučinkovitješi napad
na DES izčrpno iskanje ključa). Zaradi tega je bil leta 2001 sprejet nov šifrirni stan-
dard, imenovan AES (Advanced Encryption Standard) in v odprtem tekmovanju
[71] je bil izbran šifrirni algoritem Rijndael [31].

Nekatere druge dobro znane bločne šifre so IDEA [50], Blowfish [78] in RC5 [76].

V splošnem obstajajo štirje glavni scenariji za uporabo kriptoanalize glede na
to, katere informacije so na razpolago napadalcu.

• V naǰsibkeǰsem, scenariju kodiranega sporočila, ima napadalec dostop samo
do nekaj kodiranih sporočil, ki jih je generirala ciljna bločna šifra z uporabo
neznanega tajnega simetričnega ključa. Napadalčev cilj je najti nekodirano
sporočilo (ali njegove dele), ali pa najti tajni ključ (ali njegove dele). Ta
scenarij je najbolj praktičen, vendar je izvajanje kriptoanalize najtežje.

• V primeru scenarija s poznanim nekodiranim sporočilom ima napadalec na
razpolago pare kodiranih in dekodiranih sporočil in njegov cilj je najti tajni
ključ (ali njegove dele).

• Scenarij izbranih nekodiranih sporočil je podoben scenariju s poznanim nekodi-
ranim sporočilom, vendar ima zdaj napadalec dostop do šifrirne naprave in
lahko šifrira poljubno sporočilo. Cilj je ponovno najti tajni ključ (ali njegove
dele).

• Scenarij izbranih kodiranih sporočil je podobne preǰsnjemu, vendar tu na-
padalec dešifrira poljubna kodirana sporočila in tako dobi odgovarjajoča nekodi-
rana sporočila.

V nadaljevanju uvoda se bomo večinoma posvetili varnosti bločnih šifer. Bolj
natančno, ogledali si bomo načrtovanje in varnost S-̌skatel. Določeni tipi napadov,
kot sta lienarna in diferenčna kriptoanaliza [5], postanejo lažji, če imajo S-̌skatle
šibke ne-linearne lastnosti (glej Poglavje 2.2). Z uporabo dejstva, da se da z določeno

Povzetek v slovenskem jeziku 119

verjetnostjo najti približek S-̌skatel šifreDES, sestavljen iz linearnih funkcij, je Mat-
sui [64] leta 1993 uspel najti približek 14 rund šifre DES, ki drži z verjetnostjo
0.50000057. Posledično se da celih 16 rund šifre DES zlomiti s scenarijem s poz-
nanim nekodiranim sporočilom in 247 pari kodiranih in nekodiranih sporočil.

Da bi zagotovili dovolj visoko stopnjo varnosti pred takšnim tipom napadov, je bil
uveden koncept nelinearnosti, glej Poglavje 2 za več podrobnosti. Boolove funkcije,
ki ležijo na največji možni razdalji od množice vseh afinih funkcij, torej funkcije
z največjo možno nelinearnostjo, se imenujejo ukrivljene funkcije (bent functions).
Ta razred Boolovih funkcij so prvi odkrili raziskovalci Združenih držav Amerike in
Sovjetske zveze v sklopu ločenih vzporednih tajnih raziskovalnih projektov. Danes
se obravnava Oscarja Rothausa, Slika 7.4, kot prvega raziskovalca, ki je svetu javno
predstavil ukrivljene funkcije. Od leta 1960 do 1966, ko se je pridružil Univerzi
Cornell, je delal na Inštitutu obrambnega oddelka za obrambne analize (Defence
Department’s Institute for Defence Analyses), kjer je prvič opisal ukrivljene funkcije
v klasificiranem članku leta 1966, ki je šele čez deset let postal dostopen širši javnosti
[77].

Figure 7.4: Oscar Rothaus, 1927 - 2003 Figure 7.5: Oleg P. Stepchenkov [82]

V šestdesetih letih pa so tudi raziskovalci Sovjetske zvete delali na ukrivljenih
funkcijah. V [82] Tokareca pǐse, da so Y. A. Vasiliev, B. M. Kloss, V. A. Eliseev
in O. P. Stepchenkov (Slika 7.5) v tem času proučevali tako imenovane “minimalne
funkcije”, katerih definicija se ujema z definicijo ukrivljenih funkcij. Kljub temu pa
je večina njihovih rezultatov še vedno klasificiranih in ni dostopna javnosti.

V naslednjih desetletjih raziskovanja ukrivljenih funkcij so se pokazala mnoga
področja njihove uporabe. V teoriji kodiranja je, na primer, pokazano, da je iskanje
radiusa pokritja Reed-Muller kode ekvivalentno iskanju Boolove funkcij z najvǐsjo
nelinearnostjo [47, 60]. Ukrivljene funkcije se uporabljajo tudi za konsturkcijo
znanih Kerdockovih kod [32, 80]. Uporabljajo se tudi za načrtovanje zaporedij,
ki se jih uporablja v sklopu določenih telekomunikacijskih tehnik, ki uporabljajo
CDMA metodo (Code Division Multiple Access). Pri CDMA, ko več uporabnikov
hkrati dostopa do kanala, je vsakemu uporabniku v tako imenovani celici dodeljeno
zporedje, ki je ortogonalno na zaporedja vseh drugih uporabnikov v celici in hkrati
ortogonalno na zaporedje vseh uporabnikov v sosednjih celicah. Število uporab-
nikov na celico je tako omejeno s kardinalnostjo množice paroma ortogonalnih za-
poredij, ki jo lahko skonsturiramo. Tako ukrivljene funkcije, kot ostali tipi Boolovih

120

funkcij z visoko nelinearnostjo, so se izkazali bistvenega pomena za konstruiranje
takšnih množic. Poleg tega so ukrivljene funkcije tesno povezane s Hadamarjevimi
matrikami, elementarnimi Hadamarjevimi diferenčnimi množicami in krepko regu-
larnimi Cayleyjevimi grafi. V [3] je dokazano, da je ukrivljena funkcija ukrivljena,
če in samo če je njen odgovarjajoči graf krepko regularen Cayleyjev graf s parametri
(v, k, λ, µ), kjer je λ = µ.

Na področju ukrivljenih funkcij ostajajo številna odprta vprašanja, kot je nji-
hovo točno število za fiksno število spremenljivk, njihovo načrtovanje in klasifikacija.
Kar se tiče njihovega načrtovanja in klasifikacije so poznane določene primarne kon-
strukcije, ki neposredno generirajo ukrivljene funkcije za poljubno sodo število spre-
menljivk n, glej podpoglavje 2.2.1 za natančneǰse definicije. Po drugi strani obstajajo
tudi številne sekundarne konstrukcije, ki iz že znanih ukrivljenih funkcij konstruirajo
nove, kot je, na primer, opisano v [15, 20, 67, 95, 93]). Zainteresiran bralec si lahko
pogleda tudi lep pregled ukrivljenih funkcij, ki sta ga napisala Carlet in Mesnager
[18].

Glavni problem pri sekundarnih konsturkcijah je, da je ukrivljene funkcije, ki so
generirane na ta način, težko klasificirati. Natančneje, lahko se zgodi, da nekatere
sekundarne konstrukcije generirajo funkcije, ki pripadajo kateremu od primarnih
razredov ukrivljenih funkcij. V tem primeru je pomembna samo njihova eksplicitna
reprezentacija. Kljub temu je dokazovati, da ležijo izven popolnih primarnih razre-
dov (popoln razred vsebuje osnovni razred in vse ukrivljene funkcije, ki jih lahko
dobimo z določenimi afinimi transformacijami), običajno težka naloga, še posebej za
razred PS, za katerega ne obstajajo učinkoviti indikatorji. V [61] je, na primer,
dokazano, da v mnogih primerih funkcije iz C razreda, ki je razred, izpeljan iz
Marioana-McFarland primarnega razreda ukrivljenih funkcij (iznačujemo ga z M),
še vedno ležijo v M razredu (glej Poglavje 2.2.1). Tako je eden glavnih izzivov
na področju ukrivljenih funkcij problem odločanja, če dana ukrivljena funkcija leži
v katerem od popolnih primarnih razredov, ali izven njih. Za popoln M razred
obstaja učinkovit indikator vsebovanosti, glej [34], vendar tudi ta postane računsko
neučinkovit za n > 6. Za razred PS ne poznamo še nobenega podobnega indikatorja
in problem vsebovanosti v tem razredu je še težji.

Druga tema, ki bo prav tako obravnavana v tezi in ki na prvi pogled nima
bistvene povezave z ukrivljenimi funkcijami, je konstrukcija novih razredov per-
mutacij nad končnimi polji. Končno polje reda pn označimo z Fpn , kjer je p poljubno
praštevilo in n pozitivno celo število. Polinom F ∈ Fpn [x] je permutacija, če je
njegova odgovarjajoča preslikava x 7→ F (x) nad Fpn bijektivna. Permutacijski poli-
nomi so bili deležni večje pozornosti že v 19. stoletju in zaradi njihovi uporabnosti v
kombinatoriki, teoriji kodiranja, simetrični kriptografiji, inženiringu in na številnih
drugih področij teoretično zanimanje za te objekte še vedno ne pojenja. V splošnem
določanje permutacijskega polinoma nad končnim poljem |Fpn ni težka naloga. Ob-
staja natanko pn! permutacij, ki odgovarjajo kardinalnosti simetrične grupe s pn

elementi. Ko določimo bijekcijo med vhodnim prostorom in permutiranimi vhod-
nimi elementi, lahko takšno permutacijo učinkovito opǐsemo s polinomom z eno
spremenljivko, ki ga dobimo z uporabo Langrangove interpolacije. Vendar uporaba
v določenih aplikacijah zahteva, da imajo ti permutacijski polinomi tudi dodatne
lastnosti, kot na primer kompaktno reprezentacijo, dobre diferenčne lastnosti, nelin-

Povzetek v slovenskem jeziku 121

earnost in podobno. Zaradi velike kardinalnosti permutacijskih polinomov je iskanje
optimalnih razredov na takšen način seveda nemogoče, tudi za majhna končna polja.

V zadnjih nekaj letih je prǐslo do velikega napredka v konsturkcijskih metodah in
karakterizaciji številnih razredov permutacij, glej pregled nedavnih del [43] in tam
navedene reference. Uporaba permutacij v aplikacijah, kot je kodiranje, je dobro
znana. Bijektivnost je tudi ena od pomembnih kriptografskih zahtev pri načrtovanju
bločnih šifer, ki uporabljajo SP strukturo. Zaradi učinkovite implementacije nas še
posebej zanima konstrukcija polinomov z majhnim številom členov. Večina poznanih

eksplicitnih razredov permutacijskih polinomov je oblike XrH(X
pn−1
d), d < pn − 1

in so dobljeni z uporabo multiplikativne strukture končnih polj. V nedavnih člankih
(glej [49] in reference) so bile predstavljene tudi tehnike konstrukcij permutacijskih
polinomov, ki izkorǐsčajo aditivno strukturo končnih polj. V sklopu teze nadalju-
jemo z razvojem tega pristopa in najdemo številne nove razrede permutacijskih
polinomov. Hkrati je posplošen koncept translatorjev, ki se je izkazal za uporabnega
pri načrtovanju permutacijskih polinomov, kar nam omogoči konstrukcijo še večjih
razredov permutacijskih polinomov. Poleg tega se izkaže, da so permutacije, skon-
struirane s translatorji, uporabne tudi pri načrtovanju sekundarnih razredov ukrivl-
jenih funkcij [69]. V tem kontekstu lahko z uvedbo koncepta Frobeniusovega trans-
latorja posplošimo večino sekundarnih konstrukcij, ki se zanašajo na obstoj stan-
dardnega linearnega translatorja. Tako poleg definiranja novih neskončnih razredov
permutacij dosežemo tudi posplošitev določenih sekundarnih konstrukcij ukrivljenih
funkcij.

Preostanek teze je sestavljen na sledeči način. V Poglavju 2 so predstavljene
osnovne notacije in definicije, ki se bodo pojavljale skozi vso tezo. Natančneje, to
poglavje obravnava koncepte, vezane na Boolove funkcije, definira ukrivljene funkcije
in primarne razrede teh funkcij ter predstavi permutacije in translatorje.

Poglavje 3 se posveti načrtovanju ukrivljenih funkcij, ki potencialno ležijo izven
popolnega Maiorana-McFarland razreda. V prvem podpoglavju je opisana Rothaus
konstrukcija in analizirana je ena od njenih posebnih oblik. V drugem delu so podani
zadostni pogoji, da ukrivljena funkcija, ki leži znotraj C oziroma D razreda hkrati
leži izven popolnega Maiorana-McFarland razreda. Prikazani so določeni primeri
takšnih ukrivljenih funkcij, ki dokazljivo ležijo izven popolnega Maiorana-McFarland
razreda. Poleg tega imajo v nekaterih primerih funkcije, ki jih generiramo, tudi
lastnosti ne-normalnosti, kar je zelo uporabno za dokazovanje ne-vsebovanosti v
določenih poznanih primarnih razredih.

Poglavje 4 naslovi permutacije nad končnimi polji, ki so konstruirane z uporabo
translatorjev. V prvem podpoglavju obravnavamo linearne translatorje in anal-
iziramo tipe funkcij, ki jih premorejo. S pomočjo teh ugotovitev predstavimo številne
nove razrede permutacij. V drugem podpoglavju posplošimo koncept linearnega
translatorja in uvedemo koncept Frobeniusovega translatorja, kar nam omogoča
razširiti načrtovalske metode permutacijskih polinomov. Kot že omenjeno, z uporabo
polinomov, pridobljenih s Frobeniusovimi translatorji, posplošimo tudi nekatere
sekundarne konstrukcije ukrivljenih funkcij.

V Poglavju 5 prikažemo konstrukcije neskončnih razredov vektorskih nivojskih
funkcij, permutacij in popolnih permutacij. Za razliko od metod, uporabljenih v
Poglavju 4, so ti objekti načrtovani glede na multivariabilno reprezentacijo funkcij

122

nad končnimi polji. Grobo povedano gledamo na končno polje kot na vektorski
prostor in na obravnavane preslikave kot na zbirko Boolovih funkcij.

Rezultati doktorske disertacije so bili objavljeni v sledečih člankih:

• F. Zhang, E. Pasalic, Y. Wei, N. Cepak. Constructing bent functions outside
the MaioranaMcFarland class using a general form of Rothaus, IEEE Trans-
actions on Information Theory, 63.8 (2017), pp. 5336–5349.

• F. Zhang, E. Pasalic, N. Cepak, Y. Wei, Bent Functions in C and D outside the
completed Maiorana-McFarland class.” International Conference on Codes,
Cryptology, and Information Security, Springer, Cham, 2017.

• N. Cepak, P. Charpin, E. Pasalic. Permutations via linear translators. Fi-
nite Fields and Their Applications, 45 (2017), pp. 19–42. Available at:
https://arxiv.org/pdf/1609.09291.pdf

• N. Cepak, E. Pasalic, A. Muratović-Ribić, Frobenius linear translators giving
rise to new infinite classes of permutations and bent functions, sprejeto na
tretjo mednarodno delavnico o Boolovih funkcijah in njihovih aplikacijah (
3rd International Workshop on Boolean Functions and their Applications)

• E. Pasalic, N. Cepak, Y. Wei. Infinite classes of vectorial plateaued functions,
permutations and complete permutations. Discrete Applied Mathematics. 215
(2016), pp. 177–184.

Povzetek v slovenskem jeziku 123

Kazalo

Seznam slik vii

Seznam prilog ix

1 Uvod 1

2 Notacije, definicije in uvodni rezultati 9

2.1 Boolove funkcije . 10

2.2 Ukrivljene funkcije . 12

2.2.1 Razredi ukrivljenih funkcij . 13

2.2.1 Vektorske ukrivljene funkcije . 15

2.3 Ostali razredi visoko nelinearnih (vektorskih) Boolovih funkcij 16

2.4 Permutacije in translatorji . 16

3 Ukrivljene funkcije izven popolnega Maiorana-McFarland razreda
19

3.1 Konstruiranje ukrivljenih funkcij izven popolnega Maiorana-McFarland
razreda z uporabo splošne Rothaus oblike . 19

3.1.1 Poseben primer Rothausove konstrukcije . 21

2.1.2 Iterativna uporaba Rothausove konstrukcije . 29

3.1.3 Štetje ukrivljenih funkcij v razredu PSap, ki zadostijo Rothausovi
zahtevi . 32

3.2 Ukrivljene funkcije znotraj razredov C in D, ki ležijo izven popolenga
Maiorana-McFarland razreda . 34

3.2.1 Zadostni pogoji, da funkcije v razredu C in D ležijo izven popolenga
Maiorana-McFarland razreda . 35

3.2.2 Nekaj primerov funkcij iz razreda C, ki ležijo izven M# 37

3.2.3 Ukrivljene funkcije iz razreda C, ki ležijo izven M# 39

3.2.4 Vsebovanost v drugih primarnih razredih . 41

4 Permutacije in ukrivljene funkcije, skonstruirane s translatorji 45

4.1 Linearni translatorji . 45

4.1.1 O funkcijah z linearnimi translatorji. 46

4.1.2 Kompozicijski inverzi . 51

4.1.3 Povezava s popolnimi permutacijami . 55

4.1.3 Poseben razred permutacij . 56

4.1 Frobeniusovi translatorji . 64

124

4.1.1 Frobeniusovi translatorji . 65

4.1.2 O določenih problemih obstoja . 68

4.1.3 Uporaba pri ukrivljenih funkcijah . 70

5 Neskončni razredi vektorskih nivojskih funkcij, permutacij in popol-
nih permutacij 79

5.1 Konstrukcija razredov z uporabo M razreda . 80

4.1.1 Nekubične permutacije . 83

5.2 Popolne permutacije . 84

5.3 O obstoju linearnih komponent in linearnih struktur 86

5.3.1 Diferencialne lastnosti skonstruiranih permutacij 88

6 Zaključek 89

Literatura 91

Stvarno kazalo 113

7 Povzetek v slovenskem jeziku 115

7.1 Kazalo v sloveščini . 123

Declaration

I declare that this thesis does not contain any materials previously published or
written by another person except where due reference is made in the text.

Nastja Cepak

