
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

(Final project paper)

Predstavitev objektov z multimnožicami v sistemih za

informacijsko povpraševanje

(Multiset representation of objects in information retrieval systems)

Ime in priimek: Mikita Akulich

Študijski program: Matematika

Mentor: doc. dr. Iztok Savnik

Somentor: doc. dr. Matjaž Krnc

Koper, september 2017

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Mikita AKULICH

Naslov zaključne naloge: Predstavitev objektov z multimnožicami v sistemih za infor-

macijsko povpraševanje

Kraj: Koper

Leto: 2017

Število listov: 40 Število slik: 15

Število referenc: 14

Mentor: doc. dr. Iztok Savnik

Somentor: doc. dr. Matjaž Krnc

Ključne besede: multimnožica, vreča-besed, trie, multiset-trie, informacijsko

povpraševanje, obrnjen indeks, full-text search

Math. Subj. Class. (2010): 68P05, 68P20, 68Q87

Izvleček:

V diplomski nalogi je predstavljena multiset-trie, nova podatkovna struktura, ki deluje

na objektih predstavljenih z multimnožicami. Multiset-trie je podatkovna struk-

tura, ki temelji na iskalnem drevesu in ima podobne lastnosti kot trie. Vključuje

vse standardne operacije iskalnega drevesa skupaj z operacijami vsebovanja nad mul-

timnožicami. Operacije vsebovanja, ki jih podpira multiset-trie, so pod-multimnožica

in nad-multimnožica. Te operacije se uporabljajo za izvajanje različnih poizvedb, ki

delujejo na multimnožicah v multiset-trie. Ena izmed najpomembneǰsih poizvedb je

iskanje najbližjega soseda glede na vhodno multimnožico. Iskanje najbližjega soseda v

multiset-trie je dobra alternativa indeksnim strukturam, ki se uporabljajo v sistemih za

informacijsko povpraševanje. Naša raziskava je osredotočena na uporabo multiset-trie

v sistemih za iskanje po celotnem besedilu.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 III

Key words documentation

Name and SURNAME: Mikita AKULICH

Title of final project paper: Multiset representation of objects in information retrieval

systems

Place: Koper

Year: 2017

Number of pages: 40 Number of figures: 15

Number of references: 14

Mentor: Assist. Prof. Iztok Savnik, PhD

Co-Mentor: Assist. Prof. Matjaž Krnc, PhD

Keywords: multiset, bag-of-words, trie, multiset-trie, information retrieval, inverted

index, full-text search

Math. Subj. Class. (2010): 68P05, 68P20, 68Q87

Abstract:

In this thesis we will present the multiset-trie, a new data structure that operates on

objects represented as multisets. The multiset-trie is a search-tree-based data struc-

ture with the properties similar to those of a trie. It implements all standard search

tree operations together with the special multiset containment operations. Multiset

containment operations supported by the multiset-trie are submultiset and supermul-

tiset. These operations are used for implementation of different queries that can be

performed on multisets in a multiset-trie. One of the most important queries is the

search of the nearest neighbor given an input object. The nearest neighbor search of a

multiset-trie makes it a good alternative for the index data structures that are used in

information retrieval systems. In particular, our research is focused on the application

of the multiset-trie to full-text search systems.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 IV

Acknowledgement

I would like to thank my mentor assist. prof. Iztok Savnik and co-mentor assist. prof.

Matjaž Krnc for introducing me to this topic and their guidance for completing my

final thesis. I would also like to thank assoc. prof. Riste Škrekovski for organizing a

lecture at Faculty of Mathematics and Physics at University of Ljubljana where I had

an opportunity to present our project and receive a practical feedback. Finally, I would

like to thank Faculty of Mathematics, Natural Sciences and Information Technologies

for given support trough supporting me with a scholarship during my stay, as well as

the financial help for attending competitions and conferences.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 V

Contents

1 Introduction 1

2 Multiset-trie data structure 4

3 Multiset-trie operations 6

3.1 Insert . 7

3.2 Search . 7

3.3 Delete . 7

3.4 Sub-multiset existence . 9

3.5 Super-multiset existence . 9

3.6 Get all sub-multisets and get all super-multisets 10

4 Mathematical analysis of the structure 11

4.1 Time complexity of the algorithms . 12

4.1.1 Mathematical model . 12

4.1.2 GetAllSubmsets and GetAllSupermsets 17

4.1.3 SubmsetExistence and SupermsetExistence 18

4.2 Space complexity . 19

5 Experiments 22

5.1 Experiment 1 . 24

5.2 Experiment 2 . 27

5.3 Experiment 3 . 30

5.4 Experiment 4 . 32

6 Related work 34

6.1 Multiset . 34

6.2 Information retrieval . 34

6.3 Generalized search tree . 35

6.4 Set-trie . 35

7 Conclusions and future work 36

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 VI

8 Povzetek naloge v slovenskem jeziku 38

9 Bibliography 41

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 VII

List of Figures

1 Example of multiset-trie structure. 5

2 E(|M|) and E(|M |) on probability. 20

3 Ratio E(|M||M |) on p. 21

4 Experiment 1, submsetExistence function. 24

5 Experiment 1, supermsetExistence function. 25

6 Experiment 1, getAllSubmsets function. 25

7 Experiment 1, getAllSupermsets function. 26

8 Experiment 2, submsetExistence function. 28

9 Experiment 2, supermsetExistence function. 28

10 Experiment 2, getAllSubmsets function. 29

11 Experiment 2, getAllSupermsets function. 29

12 Experiment 3, submsetExistence function. 31

13 Experiment 3, supermsetExistence function. 31

14 Experiment 4, submsetExistence function. 33

15 Experiment 4, supermsetExistence function. 33

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 1

1 Introduction

During recent years the popularity of digital data has increased. All sorts of information

such as text, audio and video can now be accessed by searching information retrieval

systems. Information retrieval (IR) is the science of searching information units in a

collection of data. Most commonly IR systems are used for searching a text-based

content such as text documents in a database. Such IR systems are called full-text

search systems.

Full-text search techniques can be applied directly on the database. However, it is

a very expensive procedure in terms of running time complexity, because it requires

a frequent accesses to the database. In order to reduce this number, indexes were

invented. Indexes narrow down the search using pre-generated meta data constructed

from the data in the database. Furthermore the meta data can be organized in a data

structure that would provide fast retrieval of data according to search queries.

In IR most systems use the concept of an inverted index to achieve full-text indexing

of a database. Inverted index consists of two parts: postings and dictionary, a search

structure that is used to locate a specific entries in a posting. A posting entry can be

created on different levels depending on data that needs to be indexed. Most common

for full-text indexes are document level entries. In this context a posting is defined to

be a list of identifiers or keys that are further used to locate a specific document in the

database [14].

An index is a search structure that is used to process user queries. The query

can be processed in different ways according to the retrieval model. The retrieval

model that will be discussed in the thesis is the boolean retrieval model that views each

document in a database as a set of words. The document itself is an information unit a

retrieval system is built over. In our case an information unit is defined to be a textual

document.

The boolean retrieval model is based on set and multiset theory together with

boolean algebra. Set and multiset containment operations are used to derive the simi-

larities between objects, and consequently make decisions on their association. Thus,

the multiset containment operations allow us to search objects not only with exact

queries but also to retrieve the most relevant set of results that satisfy a given search

query [1, 9, 13].

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 2

The dictionary (search structure) of the inverted index can be organized in different

ways in order to meet the required types of queries and specification of data. For

example, it can be organized as a search tree, hash map, array, heap, linked list,

etc. In our research we will be focused on search trees. The most efficient search

tree index nowadays is the Generalized Search Tree (GiST). Its flexibility stems from

combining functionality of B+-trees, R-trees and RD-trees. GiST further extends their

functionality providing support for a variety of data types together with the nearest-

neighbor search [3, 6, 7].

The proposed data structure multiset-trie can be used as an alternative implemen-

tation of the search structure in an inverted index. It is an extension of the set-trie

data structure proposed by Savnik [10]. Set-trie is a trie based data structure that is

used for storing and fast retrieval of objects represented as sets. The set-trie provides

the nearest-neighbor search by implementing methods that perform set-containment

queries. Multiset-trie extends the abilities of set-trie and provides support for storing

and retrieving objects that can be represented as both sets and multisets. It also im-

plements multiset-containment methods together with the basic tree methods such as

search, deletion and insertion.

The multiset-trie is an n-ary tree based data structure with properties similar to

those of a trie. This particular combination allows us to associate multisets with a col-

lection of nodes in a tree. Every node represents a symbol with particular multiplicity.

Multiset-trie is a kind of search tree. Similarly to a trie, it uses common prefixes to

narrow down the search. Unlike the compact prefix tree, Patricia, the multiset-trie does

not provide the ability to compress a path. However, the absence of path compression

makes the multiset-trie a perfectly height-balanced tree.

The multiset-trie is designed for efficient execution of the multiset containment oper-

ations. In particular, it supports the operations submsetExistence, supermsetEx-

istence, getAllSubmsets and getAllSupermsets. The so-called ”existence”

queries implement the nearest-neighbor search queries. The functions submsetExis-

tence and supermsetExistence search for the closest submultiset and supermul-

tiset in the multiset-trie respectively and return an answer whether such a multiset

exists in the data structure. The so-called ”getAll” functions act in the same way as

”existence” functions, but they do not terminate once they have reached the desired

multiset. Alternatively, these functions store the results and continue until all the

multisets that satisfy the query are retrieved.

Let us now present the organization of the thesis. In the following Chapter 2 we

present the description of the multiset-trie data structure. The representation of multi-

sets in multiset-trie is explained in detail. The organization of the data structure is also

presented graphically. In Chapter 3 we present operations that multiset-trie currently

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 3

supports. The multiset containment functions submsetExistence, supermsetEx-

istence, getAllSubmsets and getAllSupermsets are presented together with

the basic search tree functions such as insert, delete and search. The algorithms

in pseudo code are presented as well. The description of multiset-trie functions and

procedures is followed by the mathematical analysis of their complexity in Chapter 4.

In this analysis, we make an assumption that multisets are constructed uniformly at

random and are parametrized by several parameters, such as multiplicity and the al-

phabet Σ. By using probabilistic tools we describe time complexity of the algorithms

and space complexity of the structure. Further, in Chapter 5 we present an empir-

ical study of the multiset-trie. Artificially generated as well as real-world data sets

are used in experiments. The experiments are dedicated to testing the performance

of the data structure while varying selected parameters. The experiments also show

some methods for optimizing a multiset-trie. The Chapter 6 presents related work.

The connection to the set-trie data structure [10] is discussed more explicitly. We also

relate the multiset-trie to the information retrieval systems. In particular, we refer

to the inverted index data structure and discuss how the multiset-trie can be used as

a database index. Finally, in Chapter 7 our conclusion about the multiset-trie data

structure and discussion of future work are presented.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 4

2 Multiset-trie data structure

Let Σ be a set of distinct symbols that define an alphabet and let σ be the cardinality

of Σ. The multiset-trie data structure stores multisets that are composed of symbols

from the alphabet Σ. It provides the basic tree data structure operations such as insert,

delete and search together with multiset containment and membership operations such

as submultiset and supermultiset that will be discussed in the next section in greater

details.

Multiset ignores the ordering of its elements by definition, which allows us to define

a bijective mapping φ : Σ → I, where I is the set of integers {1, 2, 3, . . . , σ}. In this

way, we obtain an indexing of elements from the alphabet Σ, so we can work directly

with integers rather then with specific symbols from Σ.

The multiset-trie is an n-ary tree based data structure with the properties of trie.

A node in multiset-trie always has degree n, i.e. n children. Some of the children may

be Null (non-existing), but the number of Null children can be at most n− 1. All the

children of a node, including the Null children, are labeled from left to right with labels

cj, where j ∈ {0, 1, . . . , n − 1}. Every two child nodes u and v that share the same

parent node have different labels.

Nodes that have equal height in a multiset-trie form a level. The height of a

multiset-trie is always σ + 1 if at least one multiset is in structure. The height of the

root node (the first level) is defined to be 1. Levels in multiset-trie are enumerated

by their height, i.e. a level Li has height i. The connection between level height in

a multiset-trie and symbols from alphabet Σ is defined as follows. A level Li, where

i ∈ {1, 2, . . . , σ} represents a symbol s ∈ Σ, such that φ−1(i) = s. The last level Lσ+1

does not represent any symbol and is named leaf level (LL for short).

Since every level, except LL represents a symbol from Σ, we can define a transition

between nodes that are located at different levels in a multiset-trie. Consider two

nodes u, v in a multiset-trie at levels Li, Li+1 respectively, where i ∈ {1, 2, . . . , σ}.
Let a node u be a parent node of a node v and consequently a node v be a child

node of a node u. Suppose that a child node v is not Null and has a label cj, where

j ∈ {0, 1, . . . , n− 1}. Then the path u→ v represents a symbol s ∈ Σ with multiplicity

j, such that φ−1(i) = s. Such a transition u → v is called a path of length 1 and is

allowed if and only if a node v is not Null and u is a parent node of a node v. If a

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 5

node v has label c0, then the path u → v represents a symbol with the multiplicity 0

respectively i.e. an empty symbol.

We define a complete path to be the path of length σ in a multiset-trie with the

end points at root node (the 1st level) and LL. Thus, a multiset m is inserted into a

multiset-trie if and only if there exists a complete path in a multiset-trie that corre-

sponds to m. Note that every complete path in a multiset-trie is unique. Therefore,

the multisets that share a common prefix in a multiset-trie can have a common path

of length at most σ − 1. The complete path that passes through nodes labeled by c0

on all levels represents an empty multiset or an empty set. Thus, any multiset m that

is composed of symbols from Σ with maximum multiplicity not greater than n− 1 can

be represented by a complete path in a multiset-trie.

Let us have an example of a multiset-trie data structure. Let σ = 2 and Σ =

I = {1, 2} respectively, so the mapping φ is an identity mapping. Fix the degree of

a node n = 3, so the maximal multiplicity of an element in a multiset is n − 1 = 2.

The figure 1 presents the multiset-trie that contains multisets ∅, {1, 1, 2}, {1, 2, 2}, {2},
{1, 2}, {2, 2}. The Null children are omitted on the figure.

Root

c0 c1 c2

c0

c1 c2

c1

c1

c2

L1

L2

LL

Figure 1: Example of multiset-trie structure.

Let a pair (Li, cj) represents a node with label cj at a level Li. The pair (L1, cj) is

equivalent to (L1, root), since the first level has the root node only. According to the

figure 1 we can extract inserted multisets as follows:

(L1, root)→ (L2, c0)→ (LL, c0) equivalent to {10, 20} = ∅

(L1, root)→ (L2, c0)→ (LL, c1) equivalent to {10, 21} = {2}

(L1, root)→ (L2, c0)→ (LL, c2) equivalent to {10, 22} = {2, 2}

(L1, root)→ (L2, c1)→ (LL, c1) equivalent to {11, 21} = {1, 2}

(L1, root)→ (L2, c1)→ (LL, c2) equivalent to {11, 22} = {1, 2, 2}

(L1, root)→ (L2, c2)→ (LL, c1) equivalent to {12, 21} = {1, 1, 2}

where ek represents an element e with multiplicity k.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 6

3 Multiset-trie operations

Let M be a multiset-trie and let M be a set of multisets that are inserted into the

multiset-trie M. We define a type Multiset in order to use it as a representation of

a multiset. The type Multiset is an array m of constant length σ, where i − th cell

represents the element φ−1(i) from Σ with multiplicity m[i]. From now on we agree that

the first cell of an array has index 1. Let us have an example of a Multiset instance

with σ = 2 :

Multiset Instance of type Multiset

{1, 1, 2} ∼=
2 1

1 2

The operations supported by the multiset-trie data structure are as follows.

1. insert(M, m): inserts a multiset m into M if m 6∈M ;

2. search(M, m): returns true if a multiset m ∈ M for a given M, and returns

false otherwise;

3. delete(M, m): returns true if a multiset m was successfully deleted from M,

and returns false otherwise (in case m 6∈M);

4. submsetExistence(M, m): returns true if there exists a x ∈M for a givenM
such that x ⊆ m, and returns false otherwise;

5. supermsetExistence(M, m): returns true if there exists a x ∈M for a given

M such that x ⊇ m, and returns false otherwise;

6. getAllSubmsets(M, m): returns the set of multisets {x ∈ M : x ⊆ m} for a

given M;

7. getAllSupermsets(M, m): returns the set of multisets {x ∈M : x ⊇ m} for

a given M.

In the following subsections we will present each operation of the multiset-trie data

structure separately.

Firstly we would like to describe some notations that will be used. The multiset-

trie data structure is a recursive data structure. Hence, any sub tree of a multiset-trie

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 7

M is again a multiset-trie. This fact allows us to use the root node of a multiset-trie

as its representative. Thus, the notation M will be used instead of M.root to refer

to the root node of M. Non-existing or Null nodes in multiset-trie will be marked as

Null and existing nodes at the level LL will be marked as accepting nodes. The array

slicing operation will be used as follows. For a given array a, a[i :] represents the array

obtained from a by taking only the cells from index i until the last cell.

3.1 Insert

The procedure insert(M, m) inserts a new instance m of type Multiset into multiset-

trie M. If the complete path already exists, then procedure leaves the structure un-

changed. Otherwise it extends partially existing or creates a new complete path. The

procedure does not return any result. The pseudocode for procedure insert is pre-

sented in Algorithm 1.

Algorithm 1 Procedure insert

1: procedure insert(M, m)

2: currentNode←M
3: for i = 1 to σ do

4: if child cm[i] of currentNode is Null then

5: create new child cm[i] of currentNode

6: currentNode← cm[i]

7: mark currentNode as accepting

3.2 Search

The function search(M, m) checks if the complete path corresponding to a given

multiset m exists in the structureM. The function returns true if the multiset m exists

in M, and returns false otherwise. The function search is presented in Algorithm 2.

3.3 Delete

The function delete(M, m) searches for the complete path that corresponds to m

in order to remove it. If the path can not be found, the function immediately returns

false. During search, the function keeps track of the number of children for every node.

It marks the nodes that have more than one child as parent nodes and remembers the

label of the child which is a potential node where the sub-tree will be cut to remove

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 8

Algorithm 2 Function search

1: function search(M, m)

2: currentNode←M
3: for i = 1 to σ do

4: if child cm[i] of currentNode is Null then

5: return False

6: currentNode← cm[i]

7: return True

the multiset. The parent node is needed to perform a removal, because the multiset-

tire is an explicit data structure. When search is completed, the function removes the

sub-tree of the last found parent node, and returns true. In such a way after deletion

all the prefixes for other multisets are preserved inM and m is removed. The function

delete is presented in Algorithm 3.

Algorithm 3 Function delete

1: function delete(M, m)

2: currentNode←M
3: parent← currentNode

4: position← 1

5: for i = 1 to σ do

6: if child cm[i] of currentNode is Null then

7: return False

8: numChildren← 0

9: for j = 0 to n− 1 do

10: if child cj of currentNode is not Null then

11: numChildren← numChildren+ 1

12: if numChildren is not 1 then

13: parent← currentNode

14: position← i

15: currentNode← cm[i]

16: child cm[position] of parent← Null

17: return True

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 9

3.4 Sub-multiset existence

The function submsetExistence(M, m) checks if there exists a multiset x in M,

that satisfies the condition x ⊆ m. The function starts with searching for an exact

match x = m in M, since m ⊆ m by definition of submultiset inclusion. If an exact

match is not found inM, the function uses multiset-trie to find the closest (the largest)

submultiset of m inM by decreasing multiplicity of elements in m. At every level the

function tries to proceed with the largest possible multiplicity of an element that is

provided by m. However, when the function reaches some level where it meets a Null

node and can not go further using path provided by m, it decreases the multiplicity

of an element that corresponds to a current level. Thus, the function can decrease

multiplicity of an element or eventually skip it in order to find the closest x ⊆ m. The

function submsetExistence is presented in Algorithm 4.

Algorithm 4 Function submsetExistence

1: function submsetExistence(M, m)

2: currentNode←M
3: if currentNode is accepting then

4: return True

5: for i = m[1] down to 0 do

6: if child ci of currentNode is not Null then

7: if submsetExistence(ci, m[2 :]) then

8: return True

9: return False

3.5 Super-multiset existence

The function supermsetExistence(M, m) checks if there exists supermultiset x of a

given multiset m inM. By analogy to the function submsetExistence, the function

supermsetExistence starts by searching for an exact match x = m in M. If an

exact match is not found in M, the function searches for the closest (the smallest)

supermultiset x of m in M by increasing multiplicity of elements in m. At every level

the function tries to proceed with the smallest possible multiplicity of an element that is

provided by m. However, when function reaches some level where it meets a Null node

and can not go further using path provided by m, it increases the multiplicity of an

element that corresponds to a current level. Thus, the function supermsetExistence

can increase multiplicity of an element up to n−1, where n is the degree of a node inM,

to find the closest supermultiset x ⊇ m inM. The function supermsetExistence is

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 10

presented in Algorithm 5.

Algorithm 5 Function supermsetExistence

1: function supermsetExistence(M, m)

2: currentNode←M
3: if currentNode is accepting then

4: return True

5: for i = m[1] to n− 1 do

6: if child ci of currentNode is not Null then

7: if supermsetExistence(ci, m[2 :]) then

8: return True

9: return False

3.6 Get all sub-multisets and get all super-multisets

The algorithms for functions getAllSubmsets and getAllSupermsets are based

entirely on algorithms for submsetExistence and supermsetExistence functions

that do not terminate on the first existing sub/supermultiset, but store the results and

continue procedure until all existing sub/supermultisets in M are found and stored.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 11

4 Mathematical analysis of the

structure

In this chapter we present theoretical results of time and space complexity of the

multiset-trie data structure. In the following Section 4.1 we discuss the running time

complexity of the presented algorithms. First, in Section 4.1.1, we present our mathe-

matical model that we use to describe the distribution of multisets in the multiset-trie

and input data. Using probabilistic approach and tools from a Galton-Watson process

we measure the expected cardinality of the multiset-trie in Theorem 4.5. Further, we

derive the expected cardinality of the searched subtree of the multiset-trie parametrized

by an input multiset in Corollary 4.7.

In Section 4.1.2 we discuss the running time complexity of the functions getAll-

Submsets and getAllSupermsets. We observe that the complexity of functions is

exponential. Moreover, the worst case running time complexity is the same for both

functions and its upper bound is the cardinality of the multiset-trie.

The remaining ”existence” functions are discussed in the Section 4.1.3. We observe

that out of scope of our mathematical model unlike in functions getAllSubmsets

and getAllSupermsets the mapping φ has an impact on performance of the func-

tions submsetExistence and supermsetExistence. In particular, the frequency

analysis of the symbols from Σ in input data determines such a φ that gives a boost

in performance.

We find that the performance of the functions submsetExistence and supermse-

tExistence in the worst case scenario is also exponential and does not depend on

the outcome of the functions. We give a quite precise upper bound for the worst case

running time complexity, which appears to be the same for both functions. However,

it must be stressed that for the positive outcome an exponential behavior holds only

on specific cases, such as presence of the emptyset in the multiset-trie.

Finalizing the mathematical analysis, we present the study of space complexity of

the multiset-trie in the Section 4.2. We show that the space used for the storage is

asymptotically equal to the size of the input data.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 12

4.1 Time complexity of the algorithms

The performance of the functions will be measured by the number of visited nodes in

a multiset-trie during execution of a particular query by the functions search, delete,

submsetExistence, supermsetExistence, getAllSubmsets, getAllSupermsets

and the procedure insert.

By the design of the multiset-trie, it is easy to see that the functions search,

delete and the procedure insert have complexity of O(σ). Because σ is defined

when the structure is initialized and does not depend on the user input afterwards, the

asymptotic complexity of the functions search, delete and the procedure insert is

O(1). Nonetheless, in the general case the complexity is O(σ).

In what follows, we focus on analysis of the more involved functions: submsetEx-

istence, supermsetExistence, getAllSubmsets and getAllSupermsets.

4.1.1 Mathematical model

We start with the basics of our mathematical model. Let Σ be an alphabet of cardinality

σ, such that Σ = {1, 2, . . . , σ}. Define N to be the set of all possible multisets that

can be inserted in multiset-trie. Let n be the maximal degree of a node in multiset-

trie. Then the maximal multiplicity of an element in a multiset is equal to n − 1.

Thus, the number of multisets in a complete multiset-trie is |N | = nσ. Let M be

a collection of multisets inserted into multiset-trie M. All the multisets in M are

constructed from the alphabet Σ according to the parameters σ and n. Hence, any

multiset m ∈ M, has at most σ distinct elements that are members of Σ and every

distinct element in m has multiplicity strictly less than n. Because a multiset does

not distinguish different orderings, it is assumed, for simplicity that all elements are

ordered in an ascending order. A multiset m is represented as {1k1 , 2k2 , . . . , σkσ}, where

eke represents an element e ∈ Σ with multiplicity ke.

Denote the nodes of multiset-trie on all levels but on σ + 1 as internal and nodes

on leaf level as leaf nodes. Observe that every internal non-root node has a degree

at least 1. Indeed an insertion of a multiset requires a construction of a path of

length σ + 1, meaning that if an internal node exists in a multiset-trie it must have a

degree at least 1. It also follows that the height of a multiset-trie is always σ + 1 as

soon as at least one multiset is inserted into the data structure.

Our model assumes that all the inserted multisets are chosen with the same prob-

ability, meaning that for some p ∈ (0, 1) the following holds:

P (m ∈M) = p, ∀ m ∈ N.

Let ξ1, ξ2, . . . , ξσ+1 be random variables such that ξi represents the number of nodes in

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 13

a multiset-trie on i-th level. For every node j on i-th level we assign a random variable

ξij to be the number of its children, such that j ∈ [1, ξi]. Then ∀ i ∈ [1, σ] the following

holds:

ξi+1 =

ξi∑
j=1

ξij, (4.1)

where ξ1 = 1. It is easy to see that the variable ξi+1 can have values in the interval

[ξi, n
i] and the value of the variable ξij is within the interval [1, n]. Without conditioning

on the existence of any node in multiset-trie, it is easy to describe the probability of

existence of any individual node.

Lemma 4.1. Any potential node on a fixed level i, where i ∈ {1, 2, . . . , σ + 1} exists,

with probability

pi = 1− (1− p)nσ+1−i
. (4.2)

Proof. Let v be an arbitrary node in a multiset-trie on an arbitrary level i. Consider

the sub tree with the root v and call it v-sub tree. Since the height of the multiset-trie

is σ + 1 we can calculate the height of the v-sub tree. Taking in account that the root

node has height 1, the height of the v-sub tree is

hv = σ + 1− i.

A node in a multiset-trie exists if at least one node exists on the leaf level of its sub

tree, i.e. a node on the level σ + 1 that belongs to v-sub tree. The possible number of

nodes on the leaf level of v-sub tree can be easily calculated knowing its height. It is

equal to

nσ+1−i

A node at level σ + 1 exists with probability p, where p = P (m ∈ M). Thus, the

probability that there are no nodes on leaf level in v-sub tree is

(1− p)nσ+1−i
.

The claim follows by taking the complement probability of the above result.

However, in order to determine the distribution of ξij, one needs a lemma of a

different type.

Lemma 4.2. Suppose that a node v exists at level 1 ≤ i ≤ σ. Then the number of its

children ξiv is modeled by a zero-truncated binomially distributed random variable on

parameters n and pi+1. In particular, the probability of node v having k children equals

to

P (ξiv = k) =

(
n
k

)
(1− pi+1)

n−k

1− (1− pi+1)n
(4.3)

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 14

and the corresponding probability generating function equals to

Gi(z) =
(1 + pi+1(z − 1))n − (1− pi+1)

n

1− (1− pi+1)n
. (4.4)

Proof. In order to prove the lemma, we have to show that ξiv ∼ B0(n, pi+1). Consider

an arbitrary node v on level 1 ≤ i ≤ σ. According to the definition of the multiset-trie

a node exists at level i if and only if it has at least one child. Note that this is not true

for the nodes on the leaf level σ+1. Implies, a node on level i can have k ∈ {1, 2, . . . , n}
children. Let X0, X1, . . . , Xn−1 be random variables, they are defined as follows:

Xk =

0 child k of node v does not exist

1 child k of node v exists

As it was shown in previous Lemma 4.2, the distribution of Xk is Xk ∼ Bernoulli(pi+1).

Since our model assumes that all the multisets in M are chosen uniformly at random,

the variables Xk, Xl are independent for k 6= l. But in our case the node v can not have

0 children, so the sum
∑n

k=1Xk has a zero-truncated binomial distribution:

n∑
k=1

Xk ∼ B0(n, pi+1)

which completes the proof.

Knowing the probability density and probability generating functions of ξij from

Lemma 4.2, we now can estimate the number of nodes in a randomly generated multiset-

trie as follows:

E(|M|) = E

[
σ+1∑
i=1

ξi

]
. (4.5)

In order to evaluate (4.5) we will use some of the tools from a Galton-Watson

process, see Gardiner [4] for an introduction. Using the equations (4.1) and (4.4) we

can derive the probability generating function for the random variable ξi+1 as

Gξi+1
(z) = Gξi(Gi(z)). (4.6)

Since there is always precisely one node at the root-level, we have P (ξ1 = 1) = 1.

Hence, the probability generating function for the random variable ξ1 is

Gξ1(z) = z1 = z (4.7)

which is the initial condition for the recursive equation (4.6).

Proposition 4.3. The expectation of the random variable ξi+1 can be expressed as

follows.

E(ξi+1) = E(ξi)E(B0(n, pi+1))

for 1 ≤ i ≤ σ.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 15

Proof. Using the following property of probability generating function

G′X(1−) = E(X) (4.8)

the expectation for the random variable ξi+1 can be derived in terms of the equa-

tion (4.6).

E(ξi+1) = G′ξi+1
(1−)

= G′ξi(Gi(1
−))G′i(1

−). (4.9)

According to (4.3) and (4.4) the value of Gi(z) at 1 is 1 and the value of its derivative

at 1 is E(B0(n, pi+1)). Substituting the values of Gi(1
−) and G′i(1

−), and applying the

property (4.8) we complete the proof.

From the Proposition 4.3 above and Lemma 4.2 we can conclude that

E(ξi) = E(ξi−1)E (B0(n, pi))

= E(ξi−1)
npi

1− (1− pi)n
. (4.10)

Theorem 4.4. Let M be a multiset-trie defined with parameters n, σ, and denote the

number of nodes on every level i by a random variable ξi. Furthermore, let all multisets

appear in M with equal probability p ∈ (0, 1). Then the expected number of nodes on

every level of M, i.e. E(ξi) is defined as

E(ξi) = ni−1
1− (1− p)nσ+1−i

1− (1− p)nσ
. (4.11)

Proof. According to (4.7) the expected number of nodes on the first level is 1.

Using E(ξ1) = 1 and the result from Proposition 4.3 we get

E(ξi) =
i∏

j=2

npj
1− (1− pj)n

=
i∏

j=2

n
1− (1− p)nσ+1−j

1− (1− p)nσ+2−j

= ni−1
1− (1− p)nσ+1−i

1− (1− p)nσ

Having derived the expected number of nodes on every level of multiset-trie, the

expected value of the total number of nodes in a multiset-trie can be calculated with

respect to the parameters n, σ and p. This result is obtained in the next theorem.

Theorem 4.5. The expected cardinality of a multiset-trie defined on parameters n, σ

and p can be computed as

E(|M|) =
σ+1∑
i=1

ni−1
1− (1− p)nσ+1−i

1− (1− p)nσ
, (4.12)

where r = (1− p)n, so r ∈ (0, 1).

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 16

Proof. Using the results obtained from Theorem 4.4 we compute

E(|M|) = E

[
σ+1∑
i=1

ξi

]

=
σ+1∑
i=1

ni−1
1− (1− p)nσ+1−i

1− (1− p)nσ

With the expected number of nodes in a multiset-trie M obtained from Theo-

rem 4.5, we can now generalize the result for a subtree inM parametrized by an input

multiset m. The subtrees that we are interested in are the ones that contain all the sub-

multisets or all the supermultisets of m. In order to calculate the expected cardinality

of such subtrees we need the following definition.

Definition 4.6. Let m = {1k1 , 2k2 , . . . , σkσ}, where eke is an element e with multiplicity

ke. Let M1,M2 be the subsets of the set M, such that M1 = {x ∈ M : x ⊆ m} and

M2 = {x ∈M : x ⊇ m}. Define αi and βi as follows

αi =

1, i = 0∏i
j=1(kj + 1), 1 ≤ i ≤ σ

and

βi =

1, i = 0∏i
j=1(n− kj − 1), 1 ≤ i ≤ σ

.

The expected cardinality of the subtrees containing the multisets from M1 or M2

is defined in the following corollary.

Corollary 4.7. Let M1,M2, αi and βi be defined as in previous Definition 4.6, then

the expected cardinality of a multiset-trie subtree MM1 that contains all the multisets

from the set M1 is equal to

E(|MM1|) =
σ+1∑
i=1

αi−1
1− (1− p)αi−1

1− (1− p)ασ
. (4.13)

The expected cardinality of a multiset-trie subtree MM2 that contains all the multisets

from the set M2 is equal to

E(|MM2|) =
σ+1∑
i=1

βi−1
1− (1− p)βi−1

1− (1− p)βσ
. (4.14)

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 17

Proof. Using the results from Theorem 4.4 and Theorem 4.5 we derive the formu-

las (4.13) and (4.14) by specifying the possible number of nodes on every level in the

multiset-trie according to the multiset m. Note that the formula (4.11) assumes that

on every level but the first one there are n possible nodes. Given submultiset or su-

permultiset query and an input multiset m the number of nodes that will be traversed

on level i is defined by the number ki−1 + 1 or n − ki−1 − 1 for i ≥ 2. On level i = 1

there is only one root node in any multiset-trie M, which always exists if M 6= ∅ and

is traversed for any type of query (submultiset and supermultiset).

4.1.2 GetAllSubmsets and GetAllSupermsets

In this subsection we discuss the running time complexity of the functions getAll-

Submsets and getAllSupermsets. It is obvious that any other algorithm for re-

trieving all the submultisets or supermultisets has worst case running time complexity

at least O(|M |). Hence, the functions getAllSubmsets and getAllSupermsets

have the worst case running time complexity O(|M|). Indeed, the case when the al-

gorithms retrieve all the multisets stored in a multiset-trie by traversing the whole

structure can be easily constructed.

Consider the function getAllSubmsets. The function takes some multiset m as

an input argument. Then it returns a set of multisets {x ∈ M : x ⊆ m} from the

multiset-trie M. Having a multiset m set to the largest possible multiset in N (it can

also be larger)

m = {1n−1, 2n−1, . . . , σn−1}

the whole multiset-trie is traversed during the getAllSubmsets query.

Now let us consider the function getAllSupermsets. Similarly, the function

takes a multiset m as an input argument. However, in this case it returns the set of

multisets {x ∈ M : x ⊇ m} from the multiset-trie M. In order to obtain a traversing

of all the multiset-trie one must set m to the smallest possible multiset, i.e. an empty

multiset

m = {∅} = {10, 20, . . . , σ0}.

Thus, we can conclude that the worst case running time complexity of the func-

tions getAllSubmsets and getAllSupermsets is O(E(|M|)). According to the

Theorem 4.5 the expected number of visited nodes in the worst case is

O(
σ+1∑
i=1

ni−1
1− (1− p)nσ+1−i

1− (1− p)nσ
).

According to the Theorem 4.7 the worst case running time complexity given an input

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 18

multiset m for the function getAllSubmsets is

O(
σ+1∑
i=1

αi−1
1− (1− p)αi−1

1− (1− p)ασ
)

and for the function getAllSupermsets is

O(
σ+1∑
i=1

βi−1
1− (1− p)βi−1

1− (1− p)βσ
).

4.1.3 SubmsetExistence and SupermsetExistence

We start the analysis of the functions submsetExistence and supermsetExis-

tence with an observation. Our theoretical model assumes that all the multisets are

inserted into multiset-trie at random. It was already concluded that the probability dis-

tribution function P (m ∈M) has an impact on the size of mulitset-trieM. Moreover,

this distribution influences on the performance of the functions submsetExistence

and supermsetExistence even more.

For a real world model, such that P (m ∈M) 6= const the performance of the search

algorithms directly depends on the number of nodes on every level ξi. When the search

functions check if a multiset is in multiset-trie the complete path that corresponds to

that multiset is checked. Knowing that fact the search can be optimized during the

construction of a multiset-trie.

Recall that a multiset-trie is defined on parameters n, Σ, σ = |Σ| and φ. Let the

frequency of an element e in a multiset m be the multiplicity of e in m, denoted by

multm(e). Then the frequency of an element e can be defined as a sum
∑

m∈M multm(e).

According to the frequencies of elements in Σ, the performance of the multiset-trie can

be optimized by the mapping φ : Σ → I. Indeed the ordering of elements by their

frequencies has an influence on the performance. The frequency of an element e ∈ Σ

affects the distribution of ξφ(e) as follows. The larger the frequency of e the larger the

number of nodes on φ(e) level. So, if the number of nodes on lower levels is greater

than on higher levels, then the search functions will discard complete paths that do

not satisfy the query faster. Hence, the closest match will be found faster.

Let us now switch back to our mathematical model and note that the influence of

the mapping function φ in our model has inessential impact on performance, because all

the multisets are equally likely and the whole domain N is used for sampling multisets.

Consider both functions submsetExistence and supermsetExistence. When-

ever the result is false, i.e. no multiset in M is a submultiset or supermultiset of an

input multiset m, both functions in the worst case visit all the nodes in M but the

nodes on leaf level. Of course such a case would be very rare assuming a random input

model, but it can be constructed as follows.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 19

Consider the function submsetExistence. Then given an input multiset m =

{1k1 , 2k2 , . . . , σkσ}, the collection of inserted multisets M must be equal to M = {x ∈
M : kx,σ > km,σ}. Analogically for the function supermsetExistence with an input

multiset m = {1k1 , 2k2 , . . . , σkσ}, the collection of inserted multisets M must be equal

to M = {x ∈M : kx,σ < km,σ}.
Thus, the worst case running time complexity of the functions submsetExistence

and supermsetExistence is O(|M|− |M |). According to Theorem 4.5, this value is

O(
σ∑
i=1

ni−1
1− (1− p)nσ+1−i

1− (1− p)nσ
).

According to Theorem 4.7 the worst case running time given an input multiset m for

the function submsetExistence is

O(
σ∑
i=1

αi−1
1− (1− p)αi−1

1− (1− p)ασ
)

and for the function supermsetExistence is

O(
σ∑
i=1

βi−1
1− (1− p)βi−1

1− (1− p)βσ
).

Note that the summation goes only up to σ and not up to σ+ 1 as in the Theorem 4.5

or in the Theorem 4.7.

As for the case when the outcome of the functions submsetExistence and su-

permsetExistence is true one has to guarantee the termination of the algorithm at

some node on the leaf level. The worst case scenario can be constructed in the same

way as for the false outcome but with two more multisets in M. The first multiset is

the empty multiset. With the empty multiset the function submsetExistence will

visit the same amount of nodes as for the false case plus one more for the empty mul-

tiset. The second multiset is the maximal possible multiset from N. In this case the

function supermsetExistence will also visit the same amount of nodes as for the

false case plus one more for the maximal multiset. Hence, the worst case running time

complexity for both outcomes (true and false) is the same.

4.2 Space complexity

As in any efficient algorithm there is always some trade-off between space and time

complexity. While offering efficient sub- and supermultiset queries an additional space

must be provided for multisets storage. Clearly, the cardinality of the set M is smaller

than the size of M, because the number of multisets in M is equal to the number of

nodes only on the leaf level. The figure 2 demonstrates the relation between the number

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 20

of multisets stored and the number of nodes needed for storage, where parameters σ

and n are 26 and 10, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

No
de

s

1e26 Expected number of nodes on probability
Total nodes
Leaf nodes

Figure 2: E(|M|) and E(|M |) on probability.

As we see on the figure 2 the value of |M| is slightly shifted with respect to the

value of |M |.
Now we demonstrate a more descriptive comparison between |M| and |M |. Figure 3

shows the ratio between the expected cardinality of a multiset-trie |M| and the actual

number of multisets stored |M | for parameters n and σ being 10 and 26 respectively.

Note that analyzing the graph on figure 3 we can safely say that the upper bound

for the ratio is σ + 1. The argument holds, because of the limit

lim
p→0+

E(ξi) = 1, (4.15)

where ξi is the number of nodes on i-th level and 1 ≤ i ≤ σ + 1.

However, the ratio σ + 1 can be obtained only with a very small cardinality of the

set M, in particular |M | = 1. In order to obtain such a case the probability p must be

at most 1
nσ
.

The lower bound for the ratio is obviously at p = 1 and is equal to 1

lim
n,σ→∞

nσ+1 − 1

nσ(n− 1)
= 1. (4.16)

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 21

0.0 0.2 0.4 0.6 0.8 1.0
Probability

2

4

6

8

10

Di
m

en
sio

nl
es

s
Ratio nodes/multisets

Ratio

Figure 3: Ratio E(|M||M |) on p.

Since the ratio σ + 1 can be obtained for a very specific case only and with a

small increase of probability the ratio drops rapidly it can be concluded that the space

complexity of the multiset-trie is O(|M |).

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 22

5 Experiments

This section contains results of experiments that were performed on the multiset-trie

data structure. The implementation of multiset-trie is done in the C++ programming

language. The current implementation uses only the standard library of C++14 version

of the standard and has a command line interface. The implementation of the program

was optimized for testing and therefore, the program operates with files, in order to

process queries. After processing all the queries the results are stored in files for further

analysis.

In our experiments we will test the functions: submsetExistence, supermse-

tExistence, getAllSubmsets and getAllSupermsets. Performance of the func-

tions will be measured by the number of visited nodes in multiset-trie by the particular

function. In particular the performance is inversely proportional to the number of

visited nodes.

Before we start, we will give a few definitions about the parameters that will be

varied throughout the experiments and discuss the experimental data that was used.

Let M be a set of multisets that are inserted to multiset-trie and let n be the

maximal node degree. Let N be the power multiset of Σ, where the multiplicity of

each element is bounded from above by n− 1. We define the density of a multiset-trie

to be the ratio |M ||N | , where | · | denotes cardinality.

The selected parameters of the data structure that will be varied in experiments

are as follows:

• σ - the cardinality of the alphabet Σ;

• n - the maximal degree of a node, which explicitly defines the maximal multi-

plicity of elements in a multiset;

• φ - mapping of letters from Σ into a set of consecutive integers;

• d - density of a multiset-trie.

The cardinality of a power multiset N is equal to nσ, which means that density d of

a multiset-trie depends on parameters |M |, σ and n. Because parameters σ and n are

set when a multiset-trie is initialized, the parameter |M | will be varied to change the

density in experiments. As we mentioned in Chapter 2, the mapping φ determines the

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 23

correspondence of letters to levels in multiset-trie, i.e. it defines the ordering of levels

in multiset-trie. It is also true, that φ defines the ordering in multisets.

In the next sections we will present the behavior of the multiset-trie data structure

depending on the selected parameters. We start with experiments that are performed

on an artificially generated data in order to give a general picture of the multiset-trie

performance. In the Experiment 1 a special case of the multiset-trie is considered.

Only sets are allowed to be stored in the data structure, i.e. the maximal allowed

multiplicity is set to 1. The performance is measured with respect to the density of

the multiset-trie. The Experiment 2 is an extension of the previous one. Here, we also

measure the performance of the multiset-trie depending on its density. The difference

is that the allowed multiplicity of an element is raised, i.e. multisets are allowed to be

stored in the data structure. Summarizing the tests of performance depending on the

density we present the Experiment 3. It shows a non linearity of the performance with

respect to the density of the multiset-trie. The next experiment on the multiset-trie

uses the real world data. In Experiment 4 the influence of the mapping φ is studied.

The input data is obtained by mapping of the real words from English dictionary to

the set of consecutive integers using the function φ. The experiment shows that the

performance of the multiset-trie can be noticeably optimized using different mappings

φ. It also shows the usability of the multiset-trie in terms of real data demonstrating

the high performance of search queries.

Data generation We denote by input data the data that is inserted into multiset-trie

and by test data the data which will be used for queries in order to test the performance

of the functions.

The artificially generated input data is obtained by sampling |M | multisets from N.

All the multisets in N are constructed according to parameters σ and n and represent

the power multiset of the alphabet Σ. Every multiset in M is chosen from N with

equal probability p. Thus, the probability p gives a collection M of multisets that are

sampled from N with uniform distribution. Uniform distribution is chosen in order to

simulate a random user input.

The test data is generated artificially and constructed as follows. Given the pa-

rameters σ and n, the possible size of a multiset varies from 1 to σn. The number of

randomly generated test multisets for every value of multiset size is 1500. In other

words, we perform 1500 experiments in order to measure the number of visited nodes

for the queries with test multiset of a distinct size. The final value of visited nodes is

calculated by taking an arithmetic mean among all 1500 measurements.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 24

0 5 10 15 20 25
Length of input

50

100

150

200

250

300

350

Vi
sit

ed
 n

od
es

Subset existence
|M| = 10000
|M| = 20000
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000

Figure 4: Experiment 1, submsetExistence function.

5.1 Experiment 1

This experiment shows the performance of multiset-trie being used for storing and

retrieving sets instead of multisets. We restrict multiset-trie in order to make a closer

comparison with the set-trie data structure [10]. In this case we set the maximal

node degree n to be 2 and σ to be 25. The mapping φ does not have an influence

in this particular experiment, because the input data is generated artificially with

uniform distribution. On average the results will be the same for any φ, since all the

multisets are equally likely to appear in M. The parameter |M | varies from 10000

sets up to 320000 sets. According to the parameters n and σ, the cardinality of N is

33554432 ≈ 3.36× 107. Thus, the calculated density of the multiset-trie with respect

to |M | varies from 0.03% to 0.95%.

The performance of the functions submsetExistence and supermsetExistence

increases as the density increases (see figures 4 and 5). The results are as expected,

because the increase of the density increases the probability of finding submultiset or

supermultiset in multiset-trie, which leads to the lower number of visited nodes.

The maxima are located between 175 and 375 for submsetExistence and between

175 and 350 for supermsetExistence. According to those maxima we can deduce

that at least 7-15 multisets were checked in order to find submultiset or supermultiset,

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 25

0 5 10 15 20 25
Length of input

50

100

150

200

250

300

350
Vi

sit
ed

 n
od

es
Superset existence

|M| = 10000
|M| = 20000
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000

Figure 5: Experiment 1, supermsetExistence function.

0 5 10 15 20 25
Length of input

102

103

104

105

106

Vi
sit

ed
 n

od
es

Find all subsets
|M| = 10000
|M| = 20000
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000

Figure 6: Experiment 1, getAllSubmsets function.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 26

0 5 10 15 20 25
Length of input

102

103

104

105

106
Vi

sit
ed

 n
od

es
Find all supersets

|M| = 10000
|M| = 20000
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000

Figure 7: Experiment 1, getAllSupermsets function.

which is from 0.002% to 0.15% of the multiset-trie and from 1.9× 10−5% to 4.5× 10−5%

of the complete multiset-trie.

As the density increases the peaks shift from the center to the left, or to the right,

for submsetExistence and supermsetExistence respectively. The shifts are the

consequence of the uniform distribution of sets in M. Since every set has the same

probability to appear in M, the distribution of set sizes in M is normal. Consequently,

with increase of the density of the multiset-trie the number of sets in M with cardinality
1
2
σ will be larger than the number of sets with cardinality 1

2
σ ± ε, for 1

2
σ > ε > 0. So

the function submsetExistence needs to visit less nodes for test sets of size 1
2
σ than

for test sets of size 1
2
σ± ε. The function decreases the multiplicity of some elements (in

some cases skips them) in order to find the closest subset. Hence, the peak shifts to

the left. Oppositely the function supermsetExistence increases the multiplicity of

some elements (in this case adding new elements) in order to find the closest superset.

Thus, the peak shifts to the right.

Note that despite the peak shifts both functions submsetExistence and su-

permsetExistence have approximately the same worst case performance.

The performance of the functions getAllSubmsets and getAllSupermsets

decreases as the density increases (see figures 6 and 7). This happens because the

number of multisets in multiset-trie increases, which means that any multiset in the

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 27

data structure will have more sub- and supermultisets. The maxima for both functions

varies from 8.0× 104 to 1.5× 106 visited nodes. We can notice that local maxima for

the functions getAllSubmsets and getAllSupermsets differs with respect to the

length of input. The explanation is very simple. In order to find all submultisets of a

small set the function has to traverse a small part of multist-trie. As the size of a set

increases the part of a multiset-trie where all the submultisets of a given set are stored

also increases. The opposite holds for the function getAllSupermsets.

Despite the fact that for a lookup of any set/multiset σ nodes must be visited in

multiset-trie on average case, the data structure has a very similar performance results

in comparison to the set-trie data structure.

5.2 Experiment 2

In the Experiment 2 we demonstrate the performance of the unrestricted multiset-trie

allowing multisets to be inserted into data structure. We set n to be 6 and retain σ = 25

as it was in Experiment 1. The mapping φ does not have an influence on results, since

the input data is generated artificially with uniform distribution. The cardinality of

M varies from 40000 to 640000 multisets. Thus, the calculated density d varies from

1.4× 10−13% to 2.25× 10−12%. The density is much smaller than in Experiment 1,

because now we allow multisets to be stored in the data structure and according to the

parameters n and σ the cardinality of N is 625 = 2.84× 1019.

As we can see from the graphs on figures 8 and 9, the performance of the func-

tions submsetExistence and supermsetExistence becomes worse as the density

increases. In this case the number |M | is slightly larger than in the Experiment 1, but

the density is very small. Consequently multiset-trie become more sparse. Multisets in

a sparse multiset-trie differs more, which leads to the larger number of visited nodes.

The maxima for both functions varies from 7500 to 25000 visited nodes. According

to those maxima at least 300-1000 multisets were checked in order to find submultiset

or supermultiset, which is from 0.15% to 0.75% of the entire multiset-trie and from

1.1× 10−15% to 3.4× 10−15% of the complete multiset-trie. The percentage of visited

multisets with respect to |M | is larger than in the Experiment 1. However, if one would

compare the percentage of visited multiset with respect to complete multiset-trie, then

in case of Experiment 2 it is less by 10 orders than in the Experiment 1.

The peaks are shifted from the center to the left and right for submsetExistence

and supermsetExistence respectively. Such a behavior was previously observed in

the Experiment 1. The explanation is the same: the input data has uniform distri-

bution, implying that the size of multisets in M is normally distributed. Because of

the normal distribution of size of multisets the shift of the peak occurs as the density

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 28

0 20 40 60 80 100 120
Length of input

0

5000

10000

15000

20000

25000

Vi
sit

ed
 n

od
es

Subset existence
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000
|M| = 640000

Figure 8: Experiment 2, submsetExistence function.

0 20 40 60 80 100 120
Length of input

0

5000

10000

15000

20000

25000

Vi
sit

ed
 n

od
es

Superset existence
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000
|M| = 640000

Figure 9: Experiment 2, supermsetExistence function.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 29

0 20 40 60 80 100 120
Length of input

102

103

104

105

106

107

Vi
sit

ed
 n

od
es

Find all subsets
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000
|M| = 640000

Figure 10: Experiment 2, getAllSubmsets function.

0 20 40 60 80 100 120
Length of input

101

102

103

104

105

106

107

Vi
sit

ed
 n

od
es

Find all supersets
|M| = 40000
|M| = 80000
|M| = 160000
|M| = 320000
|M| = 640000

Figure 11: Experiment 2, getAllSupermsets function.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 30

increases.

It can be also observed that as in previous Experiment 1 both functions submse-

tExistence and supermsetExistence have similar worst case performance.

The functions getAllSubmsets and getAllSupermsets decrease their per-

formance as the density increases (see figures 10 and 11). It happens, because the

number of multisets increases as the density increases. So there are more nodes have

to be visited in order to retrieve all sub- or supermultisets of some multiset. The max-

imum for both functions varies from 0.9× 105 to 1.5× 107 visited nodes. As it was

observed in Experiment 1 the maxima occur at the opposite points. For the function

getAllSubmsets it will always be at the largest size of multiset, which is 125 in our

case. Conversely the maximum for the getAllSupermsets is at the smallest size of

multiset, which is 0 (an empty set).

The results of the Experiment 1 show that the performance of functions submse-

tExistence and supermsetExistence increases as the density increases. However,

we observe the opposite behavior in the Experiment 2. We explain the reason of such

a contradiction in the next Experiment 3

5.3 Experiment 3

The results of the Experiment 1 and Experiment 2 have shown that as the density

of a multiset-trie increases the performance of functions submsetExistence and su-

permsetExistence can both get better and worse. The reason of such a behavior is

that the dependence of the number of visited nodes on density is not a linear function.

It is obvious that the performance of the mentioned above functions is maximal when

multiset-trie is complete. As multiset-trie becomes more sparse (the density is small)

multisets differ more and the number of visited nodes increases. However, when the

density is high, multisets differ less, so the number of visited nodes decreases. Since

the dependence of the number of visited nodes on the density of multiset-trie is a con-

tinuous function on the interval [0, 1], there exists a global maximum. In other words

there exists such a value of density where the number of visited nodes is maximal.

In this experiment, we empirically find the extremum of density for functions subm-

setExistence and supermsetExistence. The parameters σ and n are set to 12

and 5 respectively. The density varies from 1.0× 10−4% to 1.0%. The number of visited

nodes was chosen to be maximal for each value of particular density.

As we see on figures 12 and 13 both functions submsetExistence and supermse-

tExistence have the maximum around d ≈ 7.0× 10−3%. The maximum is less than

0.03% and greater than 1.4× 10−13%, which explains the behavior of multiset-trie in

Experiment 1 and Experiment 2. It is safe to say that the maximum may vary depend-

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 31

0.0 0.2 0.4 0.6 0.8 1.0
Density, %

75

100

125

150

175

200

225

250

Vi
sit

ed
 n

od
es

Subset existence

Figure 12: Experiment 3, submsetExistence function.

0.0 0.2 0.4 0.6 0.8 1.0
Density, %

75

100

125

150

175

200

225

250

275

Vi
sit

ed
 n

od
es

Superset existence

Figure 13: Experiment 3, supermsetExistence function.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 32

ing on parameters n and σ, but such a maximum always exists. Therefore, we omit

the experiments with different parameters n and σ.

5.4 Experiment 4

In previous experiments the input was generated artificially with uniform distribution,

so there was no influence of the mapping function φ on performance of tested functions.

This experiment shows the influence of the mapping φ from alphabet Σ to a set of

consecutive integers. We obtain the influence by taking the real world data as an input

data.

The data is taken from English dictionary which contains 235883 different words.

Those words are mapped to multisets of integers according to the φ. In particular,

we are interested in cases when φ(Σ) enumerates letters by their relative frequency

in English language. We say that φ(Σ) maps letters in ascending order if the most

frequent letter is mapped to number σ. Conversely, in descending order this letter is

mapped to number 1. The size of the alphabet σ is set to the size of the English

alphabet 26. The degree of a node n is set to 10. On average the multiplicity of letters

is of course less than 10. We choose such a large node degree allowing the multiplicity

to be up to 10, because the dictionary contains such words.

The results on figures 14 and 15 are more balanced when letters are ordered by

frequency in ascending order. The maxima for the functions submsetExistence and

supermsetExistence are at 250 visited nodes.

According to the design of the data structure multiset-trie, we can say something

about multiset only if we try to reach it, i.e. to find the complete path that corresponds

to a particular multiset. It means that in order to give an answer whether some multiset

exists or not one have to check the leaf level in multiset-trie.

Letters that have the least frequencies are now located at the top of multiset-trie

according to ascending order of letters by frequency. This means that the search

becomes narrower, because a lot of invalid paths will be discarded on top most levels.

Thus, multiset-trie can be traversed faster.

As you may have noticed the functions getAllSubmsets and getAllSupermsets

were not tested in this experiment. Those functions are not affected by variations of

the mapping φ, because for any multiset they retrieve all sub/supermultisets. This

means that the number of visited nodes will not be changed as φ varies.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 33

0 50 100 150 200 250
Length of input

102

Vi
sit

ed
 n

od
es

Subset existence
order = descending
order = ascending

Figure 14: Experiment 4, submsetExistence function.

0 50 100 150 200 250
Length of input

100

101

102

103

104

105

Vi
sit

ed
 n

od
es

Superset existence
order = descending
order = ascending

Figure 15: Experiment 4, supermsetExistence function.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 34

6 Related work

6.1 Multiset

Multiset is a widely used data structure in different areas of mathematics, physics and

computer science [12]. The theory of multisets is based entirely on the theory of sets.

However, classical mathematics does not deal with multisets directly. Instead, one can

define a multiset to be a family of sets or the functions on ordered pairs, where the

members of a pair are an element and its multiplicity. This means that mathemat-

ically the concepts of set such as cardinality, set-containment operation, power set,

equivalence classes and others are well defined for multisets in terms of sets [2].

The concept of a multiset can also be referred to the bag-of-words model. This

model takes its origin from a linguistic context studied by Harris [5]. According to the

bag-of-words model, text can be represented as a bag (multiset) of words, where an

element is a word and the number of its occurrences in the text is multiplicity. A bag

of words does not keep track of grammar and ordering of words.

6.2 Information retrieval

Information retrieval (IR) refers to a problem of finding material of an unstructured

nature that satisfies an information need [9]. Usually, one is searching for a specific

documents in a significantly large text documents database. The size of a database

makes the search a time consuming operation. In order to resolve the issue IR systems

pre-process data and create indexes for future use in search operation.

The bag-of-words model is widely used in IR. In particular, such a representation

of text documents is used in database indexes when a full text search of a database

is required. The full-text search problem refers to indexing techniques for full-text

databases. The most efficient index nowadays uses the concept of an inverted index [14].

The proposed data structure multiset-trie can be used as an alternative implemen-

tation of the search structure of an inverted index. It represents words as multisets

and stores them into data structure. The query processing is achieved using boolean

retrieval model [9] and multiset containment operations. Multiset containment opera-

tions of the multiset-trie implement the nearest neighbor search queries which retrieve

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 35

not only exact but also the most relevant results to a user.

6.3 Generalized search tree

The properties and operations of the multiset-trie makes it a competitor to the most

efficient implementation of a search tree the Generalized Search Tree (GiST) [3, 6, 7]

that is used in inverted index. GiST is a very flexible data structure that can be

customized in order to behave like B+-tree, R-tree or RD-tree. It also provides support

for an extensible set of queries and data types that B+-tree, R-tree or RD-tree do not

support originally. GiST supports all the basic search tree operations such as insert,

delete and search, and in addition provides such extensions as the nearest-neighbor

search and multiset containment operations. The extensions provided by GiST are

native in the multiset-trie. The multiset-trie also has a fixed height while GiST is a

self-balanced tree and has to use additional methods in order to preserve its balance.

6.4 Set-trie

The multiset containment queries are well studied in the area of relational databases.

The queries are well-defined in the context of relational algebra [8]. This problem was

previously studied for a restricted case of queries. In particular, the storage and fast

retrieval of sets were previously accomplished in data structure set-trie proposed by

Savnik [10].

The set-trie data structure is based on a trie data structure. It supports set con-

tainment operations such as retrieval of the nearest sub- and supersets and retrieval of

all sub- and supersets from the data structure.

The data structure multiset-trie adapts the properties of the set-trie implementing

the functions submsetExistence, supermsetExistence, getAllSubmsets and

getAllSupermsets together with the basic tree functions such as insert, delete

and search. Moreover, multiset-trie extends the abilities of the set-trie allowing to

store and retrieve multisets. The downside of such an extension is that multiset-

trie no longer supports path compression that was obtained in set-trie. However, the

design of multiset-trie provides a constant worst case time complexity of search function

independently of user input.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 36

7 Conclusions and future work

One of the conclusions of studying the multiset-trie both theoretically and empirically

is that our data structure is input sensitive. Input sensitivity implies a non consistent

performance on different input data. However, our argument that the performance

can be optimized by pre-processing the input data is confirmed in the Experiment 4.

Pre-processing determines the optimal encoding for input data and ensures the best

performance of the multiset-trie on particular input data. In case of storing words in

the multiset-trie, the search queries can be always optimized based on the frequencies

of letters in a specific language. We also see from Experiments 1 and 2 that dependence

of the multiset-trie performance on the density is not a linear function. Yet the function

is continuous and the point of inflection is unique on the whole domain as it is shown

in Experiment 3. This allows us to predict whether multiset-trie can be used for some

particular application, serving a high performance.

The mathematical analysis of the space complexity shows that multiset-trie re-

quires only O(|M |) space, which is the minimal possible space that is required by any

data structure for storage of |M | objects. As for the running time complexity of the

algorithms the basic tree functions such as insert, search and delete all have a

constant complexity once the multiset-trie is defined. The ”getAll” multiset contain-

ment functions have worst case running time complexity of O(|M|), where |M| is the

cardinality of the multiset-trie data structure. The ”existence” multiset containment

functions have the worst case running time complexity of O(|M|− |M |), where |M| is
the cardinality of the multiset-trie and |M | is the number of inserted multisets (nodes

on leaf level).

It can also be concluded that the multiset-trie is an input sensitive data structure,

because the size of multiset-trie |M| depends on the distribution of multisets in M.

Our mathematical model assumes that multisets m in M are distributed uniformly.

However, in a real world models such an assumption is not true in a lot of the cases.

Specifically, the probability P (m ∈ M) may vary dramatically and can be even equal

to 0. For example, if words are mapped to multisets, then the sample space contains

very large multisets. Nonetheless, most of them will have zero probability to appear in

M , because a word that would correspond to such a multiset simply does not exist.

The above results have opened even more interesting questions for the future re-

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 37

search. Further steps in our research will be to extend the functionality of the multiset-

trie. We are interested in more flexible multiset containment queries, where the types of

sub and supermultisets can be specified. As an example, the multiplicity of an element

in a multiset can be bounded in operations getAllSubmsets and getAllSupermsets.

Such functionality would allow more specific queries of multisets. The second line of

research is to investigate the multiset-trie as an index data structure in detail. It will

be very interesting to study the comparison of the multiset-trie with other existing

index data structures.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 38

8 Povzetek naloge v slovenskem

jeziku

Multimnožica je široko uporabljan koncept na področjih matematike, fizike in ra-

čunalnǐstva. Z dovoljevanjem večkratnosti elementov multimnožica razširja koncept

množice [2].

Na področju informacijskega povpraševanja (angl. information retrieval) se multi-

množice uporabljajo za predstavitev informacijske enote v kontekstu modela vreče-

besed. V tem modelu je informacijska enota predstavljena kot vreča elementov za

katere ni ohranjen vrstni red, ohranjena je pa večkratnost pojavitve elementov [12].

Operacije vsebovanosti definirane nad multimnožicami omogočajo eksaktno iskanje

objektov kot tudi iskanje najbolj relevantne množice rezultatov, ki ustrezajo določeni

poizvedbi. V primeru, da so objekti dokumenti, potem so predstavljene operacije

realizirane v okviru iskalnih tehnik nad tekstovno predstavitvijo podatkov (angl. full-

text search techniques). Večina sistemov, ki omogočajo tekstovno iskanje po podatkih

uporablja za iskanje neko varianto obrnjenega indeksa [3,14]. Iskalna struktura obrnje-

nega indeksa je lahko organizirana na različne načine glede na dan tip shranjenih

podatkov. V tem delu se bomo osredotočili na iskalna drevesa [6, 7].

Predlagana podatkovna struktura multiset-trie je posplošitev podatkovne strukture

set-trie, ki jo je predlagal Savnik [10]. Zmožnosti podatkovne strukture set-trie razširja

z učinkovitimi operacijami za iskanje multimnožic. Vsebuje tudi operacije vsebovanosti

nad multimnožicami, kar pomeni da lahko služi kot dobra alternativa iskalni strukturi

obrnjenega indeksa.

Podatkovna struktura multiset-trie je n-arno drevo, ki ohrani lastnosti podatkovne

strukture trie. Označimo ga z M , definirajo pa ga parametri Σ, σ, n in φ. Parameter

Σ je množica med sabo si različnih simbolov, ki predstavljajo abecedo multimnožice.

Moč množice Σ označimo s σ. Multimnožice sestavljajo simboli iz množice Σ, tako

da ima vsak simbol v multimnožici večkratnost omejeno navzgor z vrednostjo n − 1.

Parameter φ je bijektivna funkcija definirana kot φ : Σ → I, kjer je I = {1, 2, ..., σ}.
Ta preslikava nam da možnost da v multiset-trie shranimo različne vrste podatkov, ne

glede na njihovo strukturo.

V zaključni nalogi so podrobno predstavljene operacije vsebovanosti multimnožic.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 39

Predstavljene operacije so: submsetExistence, supermsetExistence, getAll-

Submsets ter getAllSupermsets. Obe ”eksistenčni” operaciji realizirata iskanje

najbližjega soseda. Funkcija submsetExistence poǐsče najbližjo multimnožico x v

pripadajoči strukturi multiset-trie, ki ustreza poizvedbi m ter relaciji x ⊆ m. Funkcija

poǐsče najbližjo multimnožico z zniževanjem večkratnosti elementov v dani multimnožici.

Rezultat pri obeh funkcijah je odgovor na vprašanje, če taka multimnožica obstaja v

danem drevesu multiset-trie. Funkcija supersmsetExistance podobno ǐsče najbolǰse

ujemanje, vendar ne znižuje ampak povečuje večkratnost v iskani multimnožici x, ki

zadošča pogoju x ⊇ m. Preostali funkciji tipa ”getAll” delujeta na enak način kot

prej omenjeni ”eksistenčni” funkciji, za razliko da se ne ustavita ko najdeta želeno

mutimnožico x. Funkciji shranita rezultat in nadaljujeta dokler ne najdeta vseh multi-

množic ki zadoščajo dani poizvedbi. Opisane so tudi preostale osnovne operacija za

iskanje, vstavljanje in brisanje multimnožic v multiset-trie.

Opisu funkcij nad multiset-trie sledi matematična analiza časovne kompleksnosti

funkcij, kjer uporabimo naključen vhodni model. Pri konstrukciji modela predposta-

vimo, da se vse možne multimnožice iz prostora omejenega s parametri Σ, σ in n v

multiset-trie M pojavljajo z enako verjetnostjo p. Omenjeni matematični model nato

enakovredno opǐsemo s pomočjo orodij iz teorije Galton-Watson procesov razvejanja ter

izrazimo E(|M|), tj. pričakovano število vozlǐsč v multiset-trie , s parametri σ, n in p.

Za opis učinkovitosti uporabimo število obiskanih vozlǐsč, s čemer lahko matematično

izrazimo nekaj relevantnih opažanj.

Pokažemo, da je število obiskanih vozlǐsč za funkcije ”getAll” v najslabšem primeru

enako |M|, ter da za obe funkciji obstoja število obiskanih vozlǐsč ne presega O(|M|−
|M |). Poleg tega pokažemo da funkcije ”search”, ”insert” in ”delete” obǐsčejo največ

σ + 1 vozlǐsč. Ob predpostavki da je σ predefiniran parameter strukture multiset-

trie, lahko določimo da imajo te funkcije konstantno kompleksnost O(1). Med drugim

opǐsemo tudi prostorsko zahtevnost multiset-trie. Naša študija kaže, da ta zahtevnost

je enaka O(|M |).
V zaključni nalogi je predstavljena tudi empirična študija multiset-trie. Obnašanje

podatkovne strukture testiramo glede na gostoto d, večkratnost m in funkcijo φ. Gos-

tota multiset-trie je enaka razmerju med številom multimnožic, ki so dejansko vnesene

in številom multimnožic, ki bi potencialno lahko bile vnesene v strukturo.

Prvi trije poskusi uporabljajo umetno ustvarjene vhodne podatke in merijo učinko-

vitost multiset-trie pri različnih vrednostih gostote. Prvi poskus dokaže da multiset-

trie lahko uporabimo kot razširjeno različico podatkovne strukture set-trie. Kljub

temu v povprečju velja da je set-trie bolj primeren za množice zaradi kompresije

poti, ki jo multiset-trie ne vsebuje. Drugi poskus pokaže učinkovitost multiset-trie

na multimnožicah. Po primerjavi rezultatov prvega in drugega poskusa pridemo do

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 40

zaključka da učinkovitost muliset-trie ni linearna glede na gostoto. V tretjem poskusu

dokažemo našo hipotezo. Poskus pokaže da obstaja globalni maksimum za funkcijo

števila obiskanih vozlǐsč v odvisnosti od gostote muliset-trie.

V četrtem poskusu testiramo multiset-trie na podatkih pridobljenih v vsakdanjem

življenu. Podrobneje demonstriramo vpliv funkcije φ. Odkrijemo, da lahko preslikava

φ dramatično optimizira učinkovitost muliset-trie. Poleg tega, preslikava φ je lahko

izbrana tako da uredi črke iz Σ po pogostosti pojavitve in tako zoža iskalni prostor v

muliset-trie.

Eden izmed zaključkov pri teoretičnem in empiričnem preučevanju muliset-trie je

občutljivost podatkovne strukture na vhodne podatke. Ta občutljivost implicira ne-

konsistentno obnašanje v odvisnosti od različnih vhodnih podatkov. Kljub temu, smo

v zadnjem poskusu pokazali da lahko učinkovitost optimiziramo s pred-procesiranem

vhodnih podatkov. Določimo lahko optimalno kodiranje za dane vhodne podatke in s

tem zagotavimo najbolǰso učinkovitost muliset-trie na danih vhodnih podatkih. Vidimo

tudi, da odvisnost muliset-trie od gostote ni linearna funkcija. Funkcija je zvezna in

ima enolično določeno točko prevoja na celotnem definicijskem območju.

Značilnosti in učinkovitost muliset-trie, ki smo jih opazovali v naši raziskavi, odpi-

rajo zanimiva vprašanja za prihodnje delo. Naslednji koraki bodo razširitev funkcional-

nosti muliset-trie. Zanimajo nas bolj fleksibilne poizvedbe vsebovanosti, kjer lahko

določimo tipe pod in nad multimnožic. Na primer, v operacijah getAllSubmsets

in getAllSupermsets lahko omejimo večkratnost elementov v multimnožici. Taka

funkcionalnost bi omogočila bolj specifične poizvedbe na multimnožicah.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 41

9 Bibliography

[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval, Vol-

ume 463. New York: ACM press, 1999.

[2] W. Blizard, Multiset theory. Notre Dame Journal of formal logic 30(1) (1988)

36–66.

[3] A. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel,

J. McPherson, R. Qi, and E. Shekita, Indexing shared content in informa-

tion retrieval systems. International Conference on Extending Database Technology

(2006) 313–330.

[4] C. Gardiner, Stochastic methods, Springer-Verlag, Berlin, 1985.

[5] Z. Harris, Distributional structure. Word 10(2-3) (1954) 146–162.

[6] J. Hellerstein, J. Naughton, and A. Pfeffer, Generalized search trees for

database systems. September, 1995.

[7] M. Kornacker, High-performance extensible indexing. VLDB 99 (1999) 699–

708.

[8] G. Lamperti, N. Melchiori, and M. Zanella, On Multisets in Database

Systems. Workshop on Membrane Computing (2000) 147–215.

[9] C. Manning, P. Raghavan, and H. Schütze, Introduction to information

retrieval, Volume 1. Cambridge university press, 2008.

[10] I. Savnik, M. Krnc, and R. Škrekovski, Data structure for set containment

queries: theoretical and empirical analysis. 2017, submitted.

[11] R. Sedgewick and P. Flajolet, An introduction to the analysis of algorithms.

Addison-Wesley, 2013.

[12] D. Singh, A. Ibrahim, T. Yohanna, and J. Singh, An overview of the appli-

cations of multisets. Novi Sad Journal of Mathematics 37(3) (2007) 73–92.

[13] J. Zobel and A. Moffat, Inverted files for text search engines. ACM computing

surveys (CSUR) 38(2) (2006) 6–6.

Akulich M. Multiset representation of objects in information retrieval systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 42

[14] J. Zobel, A. Moffat, and R. Sacks-Davis, An efficient indexing technique for

full-text database systems. PROCEEDINGS OF THE INTERNATIONAL CON-

FERENCE ON VERY LARGE DATA BASES INSTITUTE OF ELECTRICAL

& ELECTRONICS ENGINEERS (IEEE) (1992) 352–362.

	Introduction
	Multiset-trie data structure
	Multiset-trie operations
	Insert
	Search
	Delete
	Sub-multiset existence
	Super-multiset existence
	Get all sub-multisets and get all super-multisets

	Mathematical analysis of the structure
	Time complexity of the algorithms
	Mathematical model
	GetAllSubmsets and GetAllSupermsets
	SubmsetExistence and SupermsetExistence

	Space complexity

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Related work
	Multiset
	Information retrieval
	Generalized search tree
	Set-trie

	Conclusions and future work
	Povzetek naloge v slovenskem jeziku
	Bibliography

