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Izvlecek:

Ena izmed najbolj pogosto uporabljenih statisticnih metod je testiranje razlike med
dvema povprec¢jema. V ta namen se obicajno predpostavi normalno porazdelitev in
homogenost varianc, podatke pa se analizira s testom t za dva neodvisna vzorca. Zal
finanéni podatki pogosto niso porazdeljeni normalno, ampak izkazujejo neko pozitivno
asimetricno obliko porazdelitve, kot je na primer Pareto porazdelitev. V zakljucni na-
logi bomo opisali nekaj osnovnih statisti¢nih definicij. Predstavili bomo test t in test
razmerja verjetij, s katerima testiramo zadale hipoteze pri primerjanju dveh povprecij.
Dokazali bomo, da sta test t in test razmerja verjetji, v primeru normalno porazdelje-
nih populacij, ekvivalentna. S pomocjo izrekov bomo izrac¢unali porazdelitve testnih
statistik, kar nam bo omogocilo dolociti kdaj bo test zavrnil nicelno domnevo. Predsta-
vili bomo Pareto porazdelitev in preverili lastnosti testa t ter izpeljali testno statistiko
razmerja verjetij za dve Pareto porazdeljeni populaciji, kjer nas bosta zanimala veli-
kost in mo¢ testa. Tu bomo povedali zakaj so permutacijski testi sploh uporabni ter
kako se jih izvede. Ogledali si bomo tudi ali je mogoce dobiti bolj zanesljive rezultate
z uporabo permutacijskih testov. Rezultati bodo temeljili na simuliranih podatkih.
Sledila bo obrazlozitev algoritma, s katerim bomo izvedli simulacije. Algoritem bomo

zagnali v programu R. Rezultate bomo graficno in besedno tudi obrazlozili.
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Abstract: One of the most used statistical method is testing differences between two
means. For this purpose we usually assume normal distribution and homogeneity of
variance while data are analysed by t-test for two independent samples. Unfortunately,
financial data are not often normally distributed but they show some positive asymme-
tric distribution form for example Pareto distribution. In this diploma we will describe
some basic statistical definitions. We will present t-test and likelihood ratio test which
are used for testing hypothesis for testing two means. We will prove that t-test and
likelihood ratio test are equivalent in case of normally distributed populations. With
the help of theorems we will calculate distributions of test statistics which will enable
decide when will test reject the null hypothesis. We will present Pareto distribution,
check the properties of t-test and derive test statistic for likelihood ratio for two Pa-
reto distributed populations where we will be interested in size and power of the test.
Here we will say why are permutation tests useful and how to perform them. We will
see if we can get more reliable results by using permutation tests. The results will
be based on simulated data. Following by the explanation of algorithm which we will
perform simulations with. The algorithm will be run in program R. The results will

be graphically and verbal explained.
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1 Uvod

Pri statistiki pogosto zelimo preveriti resni¢nost dveh nasprotnih si hipotez oziroma ali
sta dve spremenljivki povezani in kako moc¢an vpliv imata ena na drugo. V zakljuéni
nalogi nas bo zanimala primerjava povprecij med dvema populacijama in na ta nacin
si bomo hipotezi tudi zadali. Pred testiranjem hipotez bomo pojasnili statisticne defi-
nicije za lazjo predstavo kaj sploh zeimo izracunati in kako rezultate interpretirati ter
izreke, ki jih bomo pri testiranju uporabili. Predstavili bomo test razmerja verjetij,
t-test in permutacijski test, s katerimi se v statistiki testira razlike med dvema popu-
lacijama in pojasnili njihove lastnosti. Z omenjnimi test bomo v simulacijah tudi mi
testirali nase hipoteze. Pred samim testiranjem bomo morali dolociti predpostavke o
porazdelitvah obeh populacij. Najprej bomo predpostavljali, da sta populaciji poraz-
deljeni normalno, ki velja za najbolj pogosto porazdelitev. Nato bomo predpostavljali
Se, da sta populaciji porazdeljeni Pareto, s katero se pogosto sre¢ujemo v ekonomiji.
Lastnosti obeh porazdelitev bomo v teoreticnem delu tudi predstavili. Tu bomo pou-
darili prednosti in slabosti testa razmerja verjetij ter t-testa pri obeh porazdelitvah in
zaka] s permutacijskim testom te slabosti odpravimo. Sledila bo razlaga algoritma in
predstavitev programa R, s katerim bomo izvedli simulacije. Rezultate simulacij bomo

besedno in grafi¢no interpretirali.
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2 Splosno o testiranju hipotez

Ko zelimo preveriti ali neka trditev v populaciji velja, moramo zaradi nedostopnosti
podatkov celotne populacije izvesti vzorec, na katerem testiramo zadale hipoteze. Sta-
tisticna hipoteza je trditev o vrednosti enega ali ve¢ populacijskih parametrov. Lahko
pa je tudi trditev o celotni verjetnostni porazdelitvi. Hipoteza je enostavna, ¢e po-
polnoma doloca porazdelitev. Pri vsakem testiranju hipotez postavimo dve nasprotni
si hipotezi. Prvo hipotezo imenujemo nic¢elna hipoteza in jo oznac¢imo s Hy. Drugo
hipotezo, ki je nasprotna nicelni, imenujemo alternativna hipoteza in jo oznac¢imo s
H,. Na podlagi vzorca zelimo izvedeti, ali imamo dovolj razlogov za zavrnitev Hj in
sprejetje H4. V nasprotnem primeru Hy ne moremo zavrniti. Pravilu, ki ga upora-
bimo za sprejetje odloc¢itve ali zavrniti Hy ali ne, na podlagi vzorca, imenujemo testni
postopek. Ker testni postopek izvajamo na vzorcu, lahko pri tem naredimo dve vrsti
napak. Prvo napako imenujemo napaka I. vrste. To napako naredimo, ¢e zavrnemo
Hy, ko ta v resnici velja. Drugo napako imenujemo napaka II. vrste. Naredimo jo, ce
ne zavrnemo Hy, ko je ta v resnici napac¢na. Ti dve napaki nastaneta, ker testiramo
hipotezi na podlagi vzorca, torej je skoraj nemogoce, da bi ju popolnoma odpravili.
Zelimo pa si, da bi bili ti dve napaki ¢im manjsi. Verjetnost, da naredimo napako I
vrste, imenujemo tudi stopnja znacilnosti in jo oznac¢imo z «. Pove nam, kolikokrat
bomo na dolgi rok nepravilno zavrnili Hy, ki sicer velja, ¢e testni postopek ponava-
ljamo na razlicnih vzorcih iz iste populacije. Najpogosteje uporabljene vrednosti za
a sta 0.01 in 0.05. Verjetnost napake II vrste ozna¢imo z 3. Pove nam, koliko krat
bomo na dolgi rok nepravilno sprejeli Hy, ko je ta napac¢na. Verjetnost zavrnitve Hy,
ko je ta napa¢na imenujemo moc testa. Izracunamo jo kot 1 — 3. Po vseh koncanih
izracunih dobimo konéno vrednost testiranja hipotez, ki jo imenujemo testna statistika.
Glede na njeno vrednost dolo¢imo v katero izmed hipotez bomo bolj verjeli. Mnozici
vrednosti testne statistike, pri kateri zavrnemo H, pravimo obmocje zavrnitve, mnozici
vrednosti pri kateri ne zavrnemo H, pa obmocje sprejema. Tu je kljucno, da poznamo
tudi porazdelitev testne statistike. Pogosto eksaktne porazdelitve testne statistike ni
mogoce najti. V tem primeru izracunamo asimptotsko porazdelitev, ki opisuje pri-
bljizno porazdelitev testne statistike pri dovolj velikem vzorcu. Poleg testne statistike
poznamo Se p-vrednost ali opazovana stopnja znacilnosti. Deifnirana je kot verjetnost,

ki je izracunana ob predpostavki pravilne Hy, da je dobljena testna statistika vsaj to-
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liko ali bolj kontradiktorna Hj, kot dejanska vrednost, ki smo jo dobili. Ker bomo
v nadaljevanju H, zavracali samo za velike vrednosti testne statistike lahko formalno

definicijo p-vrednosti zapisemo kot:

a =sup (T > ¢),
Hy

p=sup P(T > t),
Hy
kjer je slucajna spremenjivka T vrednost testne statistike, ¢ in ¢ pa izbrani vrednosti.

Velja naslednje:
e H, zavrnemo, ¢e p — vrednost < «
e Hj ne zavrnemo, ¢e p — vrednost > a [1]

Ce je dejanska verjetnost napake I. vrste manjsa od Zeljene, potem takemu testu pra-
vimo konservativni test. Ce je dejanska verjetnost napake L. vrste vecja od zeljene,
potem takemu testu pravimo liberalni test. Pri predstavitvi simulacij bomo najprej
preverili velikost testa. Moc testa pa bomo preverjali samo za konservativne teste.
Povedali smo ze, da pri testiranju hipotez vedno postavimo dve nasprotni si hipotezi

Hy in H4. Testni statistiki
Po(x)/Pa(x),

kjer je Py(x) verjetnost dogodka x pod veljavno Hy, Pa(x) pa verjetnost dogodka x
pod veljavno H 4, pravimo test razmerja verjetij. Glede na Neyman-Pearsonovo lemo,
je test razmerja verjetij optimalen za testiranje dveh enostavnih hipotez, kar pomeni,
da ima najvecjo mo¢ med vsemi testi. [3] Test razmerja verjetij bo v prid Hy, ko bo
Py(z)/Pa(z) > 1 in v prid Ha, ko bo Fy(z)/Pa(x) < 1. Vcasih se test razmerja
verjetij pise kot Py(z)/FPy(z). V tem primeru moramo tudi konéno vrednost obratno

interpretirati. [1]

2.1 PosploSen test razmerja verjetij

V primeru, ko hipotezi nista enostavni, testa razmerja verjetij ne moremo uporabiti.
Se ve¢, optimalni test za preverjanje dveh sestavljenih hipotez niti ne obstaja. Lahko
pa uporabimo test, ki je kljub temu, da nam noben izrek ne zagotavlja njegove optimal-
nosti, zelo koristen. Imenujemo ga posploseni test razmerja verjetij. Za razumevanje
le-tega moramo najprej razumeti metodo najvecjega verjetja, ki jo uporabljamo pri
ocenjevanju parametrov. Ce so X7, ..., X, slu¢ajne spremenljivke porazdeljene s sku-

pno gostoto f(xy,...,x,|0), potem je verjetje za 6, kot funkcija dobljenih vrednosti na
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vzorcu X; = z; za i = 1,...,n, definirano kot lik(0) = f(x1,...,2,|0). Najvecja ver-
jetnostna cenilka za 6 je tista vrednost parametra 6, pri kateri je verjetje najvecje. Ce
so slucajne spremenljivke Xy, ..., X,, med sabo neodvisne in enako porazdeljene, velja,

da je njihova skupna gostota enaka produktu posameznih gostot, torej lahko zapisemo
lik(0) = [ [ £(Xil6)
i=1

Maksimirati tako funkcijo je vcasih lahko zapleteno, zato ponavadi raje maksimiramo

njen naravni logaritem
1(6) = Y In[f(Xi[0)].
i=1

Pogosto srecamo hipoteze, ki dolo¢ajo vrednost parametrov porazdelitve slu¢ajnih spre-
menljivk Xy, ..., X, glede na dobljene vrednosti x4, ..., x, na vzorcu. Tako lahko H
doloca 8 € wy, kjer je wy podmnozica vseh moznih vrednosti za 6, H4 pa doloca 0 € w4
, kjer je wa = Q\ wp, ¢eje Q = wyUwy in wyNw, = (). Posploseni test razmerja verjetij

definiramo kot razmerje verjetij ocenjeni s tistim parametrom 6, ki ju maksimira

MATgeu,[lik(0)]

A = )
maxoey, [lik(0)]

Hy zavrnemo za majhne vrednosti A*. Zaradi tehni¢nih razlogov raje uporabimo testno

statistiko
_ MaTeew, [lik(0)]

" mazgeqlik(Q)]

Upostevajmo, da A = min(A*, 1), torej bomo za majhne vrednosti A* Hy zavrnili tudi

pri majhnih vrednostih A. Obmocje zavrnitve za test razmerja verjetij je sestavljeno
iz majhnih vrednosti A, na primer, za vse A < Ag, kjer je \g izbran tako, da P(A <
Xo|Ho) = «, zZeljena stopnja znacilnosti. Ker zadali hipotezi pri posplosenem testu
razmerja verjetij nista enostavni, o porazdelitvi A tudi ne vemo nicesar. Naslednji
izrek, ki ga je napisal ameriski matematik Samuel Stanley Wilks, nam pove asimptotsko

porazdelitev A.

Izrek 2.1. (Wilksov izrek) Ob dani gostoti in predpostavki, da Hy velja, porazdelitev
—2In(A), ko n — oo, konvergira proti x* s dim ) — dimwy stopinjami prostosti, kjer

sta dim € in dimwq Stevilo prostih parametrov pod 2 ter wy.
3]

Dokaz. Dokaz izreka lahko najdemo v [4]. O
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3 Normalna porazdelitev in t-test

3.1 Lastnosti normalne porazdelitve

Pri iskanju porazdelitve slucajnih spremenljivk najveckrat naletimo na normalno ali
Gaussovo porazdelitev. Uporabna je predvsem zaradi centralnega limitnega izreka, ki
nam pod dolocenimi pogoje pove, da vzorcno povprecje slucajnih spremenljivk, izbrano
neodvisno iz neodvisnih porazdelitev konvergira v porazdelitvi k normalni porazdelitvi,
ko je stevilo observacij dovolj veliko. Normalna porazdelitev ima zvonasto obliko,
zato lahko véasih naletimo na ime zvonasta krivulja. Porazdelitev vsebuje parametra
u € R, kateri oznacuje populacijsko povpreéje, ter o2 > 0, kateri oznacuje populacijsko

varianco. Oznaka za normalno porazdelitev je N(u,c?). Njena gostota je

1 (z—p)?
fx(x) = e at

vV 2mo?

Porazdelitvena funkcija slucajne spremenljivke porazdeljene normalno je

=3 (5]

kjer je erf(z) funkcija napake. Pricakovana vrednost sluc¢ajne spremenljivke porazde-

ljene normalno je

E(X) = p.

Varianca sluc¢ajne spremenljivke porazdeljene normalno je
Var(X) = o®.

[5]

3.2 PosploSen test razmerja verjetij pri normalni

porazdelitvi

V naslednjem primeru bom predstavil uporabo posplosenega testa razmerij za podatke,

kjer predpostavljamo normalno porazdelitev. Naj bodo podatki Xj, ..., X, med sabo
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neodvisni in enako porazdeljeni s povpreéjem g in varianco o2, kjer je o poznana.

Zadamo si nic¢elno in alternativno hipotezo:

Hoy : p= pio
Hy:p# po,
kjer je uo nek dana vrednost. Definirajmo mnozice parametrov wy = i, wa = {p|p #
fo} in Q@ = —oo < pu < oo. Ker pod wy natanéno dolo¢amo p, lahko Stevec razmerja
verjetij zapiSemo kot
1 —3h S (Ximpo)?
(V2mo)n

Za imenovalec razmerja verjetij moramo poiskati tisti u, za katerega bo verjetje najvecje.
Tak p dobimo z uporabo metode najvecjega verjetja, za katero je znano, da bomo za
rezultat dobili 1 = X. Torej, bo imenovalec razmerja verjetij

R S N e o

(V2mo)"
Testna statistika razmerja verjetij je torej

A = e 3o [Ein (Kimpo) =i (Xi=X07]

Opazimo, da H, zavrnemo za majhne vrednosti A. Kar pomeni, da Hy zavrnemo za

velike vrednosti

n n

C9lnA = & > (X = o) =) (X - X)?

2
g
i=1 i=1

Za preureditev izraza uporabimo naslednjo enakost:

n n

D (X —p0)” =D (X = X)* +n(X — o)’

i=1 i=1
Dobljen test razmerja verjetij zavrne za velike vrednosti
n(X —
—9InA = w
o
Vemo, da je pod Hy, X ~ N (o, %2), zato velja @ ~ N(0,1). Prepoznamo, da
je porazdelitev testne statistike pod H, kvadrirana standardna normalna porazdelitev,
za katero velja Z% ~ x2. Torej,

—2InA ~ x?

Ta porazdelitev testne statistike je eksaktna. Ce je a izbrana stopnja znacilnosti, bo
test zavrnil Hy, ko o

n(X — po)? 2

2 > X1 (@),
kjer je x3(a) vrednost, ki jo od¢itamo iz tabele za hi-kvadrat porazdelitev. V tem
primeru pri odcitavanju upostevamo, da imamo stopnjo znacilnosti a pri 1 stopinji

prostosti. [3]
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3.3 Testiranje razlik med dvema normalno poraz-
deljena populacijama - t-test

Pri testiranju hipotez pogosto preverjamo razlike med dvema populacijama. To pogosto
storimo tako, da primerjamo razliko njunih povprecij, torej zelimo s pomocjo dveh med
sabo neodvisnih vzorcev preveriti vrednost p; — o, kjer sta p; povpreéna vrednost
v prvi populaciji in ps povpreéna vrednost v drugi populaciji. Torej bomo iskane
vrednosti dobili za vsak vzorec posebej. Tu predpostavimo, da je prvi vzorec Xq,..., X,
izbran iz populacije porazdeljene normalno s povprec¢jem gy, drugi vzorec Yy,..., Y,
pa je izbran iz neke druge populacije porazdeljene normalno s povprecjem py. Obe
populaciji imata enako varianco o2. Po metodi najvecjega verjetja je cenilka za py —
py enaka X — Y. To lahko izrazimo kot linearno kombinacijo neodvisnih normalno
porazdeljenih slucajnih spremenjivk. Iz tega sledi, da je tudi slucajna spremenjivka
X — Y porazdeljena normalno:

— 1
X—Y~NLw—u%dg+%ﬂ

Izrek 3.1. Ce predpostavimo, da je Hy pravilna in obe opazovani populaciji porazdeljeni
normalno in z enako varianco, potem je standardizirana spremenljivka
Ty — To — (p1 — p2)

141
ni | ng

t =
S

eksaktno porazdeljena st porazdelitvijo z m 4+ n — 2 stopinjami prostoti. Takemu testu

pravimo t-test.

Dokaz. Dokaz izreka lahko najdemo v [3]. O

Testna statistika, na podlagi katere se bomo odlocili ali zavrniti Hy : pi, = py je
X-Y

3,/%—1—%

Porazdelitev te testne statistike pod Hy je t porazdelitev z m + n — 2 stopinjami

prostoti. [3]

3.3.1 Ekvivalenca t-testa in posploSenega testa razmerja ver-
jetij

V naslednjem postopku bomo pokazali, da sta t-test in posploSen test razmerja ver-

jetij ekvivalentna. Definirajmo mnozico €2, ki predstavlja vse mozne vrednosti vseh

parametrov:

Q= {—00 < pty <00,—00 < piy < 00,0 <0 <00}
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Ti parametri nam niso poznani, zato definiramo vektor neznanih parametrov kot 6 =

(fzs fby, 0). Sedaj lahko postavimo nicelno hipotezo:

Hy:0€wy, wo={ps=1p,0<0<o0}

. Verjetje dveh vzorcev Xi,..., X, in Yy,... Y, zapiSemo kot
- 1 (X;—pz)? o 1 (Yj—uy)2
Lik(tg, f1y,02) = | | —=¢ 22 —e 252
(ts 1.7 I‘[\/ 2mo? =1 V2mo?
Izraz logaritmiramo in dobimo
o (m+n) (m +n) . - 2 - 2
s iy o) = =5 2= 2o | B = )+ ;m — 1)

Poiskati moramo maksimum tega verjetja pod wp in €2 ter izracunati razmerje obeh
maksimiranih verjetij. Ker pod wy trdimo, da sta povprecji obeh vzorcev enaki p1, = py,
imamo tu dva neznana parametra jio in o2, ki ju moramo oceniti. Torej, nasi podatki so
normalno porazdeljeni s povprecjem g in varianco o2 Velikost vzorca je m+n. Cenilke

za [ in 02 dobimo z uporabo metode najvecjega verjetja in s tem maksimiramo verjetje:

n

D (X — )+ (Y - W]

i=1 j=1

1
m—+n

~2
UO—

Po nekaj korakih dobimo vrednost logaritmiranega verjetja:

~9 m-+n m-+n

N . m+n
l(fu,65) = — 5 In(27) — 2

In(ag) — 9

Poiskati moramo Se maksimum verjetja pod 2. V nasprotju z wg, tu trdimo, da sta
povprecji obeh vzorcev razliéni p, # p,. Torej, imamo tri neznane parametre fi,, fi,

in 02, ki jih moramo oceniti:
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Ko vstavimo cenilke v logaritmirano verjetje dobimo
m+n

l(ﬂﬂ:u ﬂya 5-31) = 9 ln(27r) -

Sedaj lahko sestavimo razmerje verjetij:

~92
m-4+n In (%)
2 oh

Opazimo, da bo test razmerja verjetij zavrnil Hy pri velikih vrednostih

o 2 (Xi— fio)? + Zl(yy — fip)?

Q
.
I
~
.
Il

Stevec tega razmerja lahko zapisemo na naslednji nacin:
D (X =) =) (X = X))+ n(X — fi)?
i=1 i=1

Z(Yj —fi0)” =Y _(V; =Y+ m(Y — i)’

Vemo, da
iy = X +m¥)= — X+ 7
m-+n m-+n m+n
Iz tega sledi o
— m(X —Y)
X — g =
Ho m-+n
- nY — X
Y—Mozg
m—+n

Torej lahko stevec verjetja zapisemo kot

n

)0 T S o P SCINLLING i ot

m-+n

i=1 j=1

Testna statistika zavrne pri velikih vrednostih

mn (X

1+ —Y)
MAET S (X =X+ (Y - V)2
i=1 j=1

oziroma pri velikih vrednostih

\/i<xi—7>2+§<¥j—?>2

i=1

Ce zanemarimo konstante, ki niso odvisne od podatkov opazimo, da sta dobljeni testni

statistiki pri razmerju verjetja in ¢ testu ekvivalentni, kar smo tudi zeleli pokazati. [3]
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4 Pareto porazdelitev in

permutacijski test

4.1 Lastnosti Pareto porazdelitve

Do sedaj smo predpostavljali, da so slucajne spremenljivke porazdeljene normalno.
Porazdelitev slucajnih spremenljivk je seveda ve¢ in v praksi mnogokrat spremen-
ljivke niso porazdeljene normalno. Od tu naprej bomo namesto normalne porazdelitve
predpostavljali Paretovo porazdelitev, katero se pogosto uporablja v ekonomiji. Ime-
nuje so po italjanskemu ekonomistu Vilfredu Paretu. Porazdelitev vsebuje parametra
Ty € (0,00), ki je minimalna vrednost, ki jo slucajna spremenljivka X lahko zavzame,

ter a € (0,00). Oznaka za Pareto porazdelitev je Pareto(a, x,,). Njena gostota je
S x> Xy,
fX(fL‘) _ 8 +1 m
0 T < Ty

Porazdelitvena funkcija slu¢ajne spremenljivke porazdeljene Pareto je

1— (&) 2>z,
FX(x):{ (OI) T <z

Pricakovana vrednost sluc¢ajne spremenljivke porazdeljene Pareto je

<1
BX) =y
T oa>1
Varianca slu¢ajne spremenljivke porazdeljene Pareto je
00 a € (1,2,
Var(X) =4 .« (1,2]
(ainl)Qﬁ o > 2

Ce a < 1, potem pricakovana vrednost in varianca ne obstaja. Poznamo ve¢ tipov

Pareto porazdelitve. Mi se bomo ukvarjali zgolj s Pareto porazdelitvijo tipa I. [7]



Batagelj B. Uporaba permutacijskih testov za primerjavo povprecij dveh populacij.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 11

4.2 Posplosen test razmerja verjetij za Pareto po-

razdelitev

V naslednjem postopku bomo izpeljali testno statistiko razmerja verjetij za dve Pareto
porazdeljeni populaciji. Pri testu razmerja verjetij v primeru normalno porazdeljene
populacije smo preverjali enakost povprecij v obeh populacijah. V primeru Pareto
porazdeljenih populacij pa preverjamo enakost porazdelitve v obeh populacijah. For-
malno, pod H, postavimo trditev, da sta porazdelitvi obeh populacij enaki, pod H4
pa trdimo nasprotno.

Hy: X ~Y

Hy: X =Y

Definirajmo mnozice parametrov wy = {ag, Tm,} in wa = {ax, oy, Tm, ym . Verjetje
dveh vzorcev Xi,..., X, in Yi,...,Y,,, ki smo ju izbrali iz populacije porazdeljene
Pareto zapisemo kot

n

lik(ax, ay, T, Ym) = H

a M a
axTy, ayYp,

ax+1 ay+1
i—1Ti * j=1 Zj i
Verjetje logaritmiramo
lax,ay, Tm,Ym) = nlnaxy +naxInz, — (ax +1)>  InX; + minay

=1
+may Iny,, — (ay +1)> InY;

7=1
V stevcu razmerja upostevamo, da sta porazdelitvi obeh populacij enaki, zato velja

ax = ay in x, = y,,. Torej, logaritmirano verjetje pod wy je
o, Tmy) = (n+m)Inag + (n+m)agIna,, — (ag+ 1) (Z Inz; + Zlny])
i=1 j=1

Tu imamo dva parametra(ag in Z,,,), ki ju ocenimo po metodi najvecjega verjetja

A m—+n
Qo = n m o
0 Do Iz + 30 Iny; — 2(m +n)Indy,

by = min (1,1;)
V imenovalcu razmerja upostevamo, da sta porazdelitvi obeh populacij razliéni, kar

nam da naslednje logaritmirano verjetje pod w4

Inz; + mInay
1

lax,ay, Tm,Ym) = nlnay +naxInz, — (ax +1)

7

+may Iny, — (ay +1)> InY;
=1

n



Batagelj B. Uporaba permutacijskih testov za primerjavo povprecij dveh populacij.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 12

Tu imamo $tiri parametre(a.x,ay ,Zm,Ym ), Ki jih pravtako ocenimo po metodi najvecjega

verjetja
. n
(8% =
X YorInz;, —nlng,
. m
Ay = Sm =
T = Min x;
gm = mm Yj
j
(n+m)Indy + (n+m)aoIny,, — (G + 1) (Zlnxi +> lnyj)
i=1 j=1
A=

nlndy +naxInz, — (dx +1)> Inz;, + mIndy + méy Ing, — (Gy + 1)) InY;
i=1 j=1
Test bo Hy zavracal pri majhnih vrednostih A. Posledi¢no bo test Hy zavrnil pri velikih
vrednostih —21In A.

—2InA =~ =2|(n+m)(Indy + aolni,,) — do (Z Inz; + Zlnyj)
i=1 =1

—n(lnayx — axInz,,,) + &lelnxi
1=

—m(lndy — ay Ingy,,) +ay >, In yj]
j=1
Porazdelitev testne statistike dobimo z uporabo Wilksovega izreka. Pod wy imamo 2
prosta parametra, pod wy pa 4 proste parametre, kar pomeni, da imamo 2 stopinji
prostosti.
—2InA ~ x3

Ta porazdelitev testne statistike je zgolj asimptotska. Da bi izracunali eksaktno poraz-
delitev testne statistike, moramo uporabiti drugacno metodo testiranja hipotez. Ena
od le-teh je permutacijska metoda ali randomizacija, ki jo bomo predstavili v nadalje-

vanju. [7]

4.3 Permutacijski test

Permutacijska metoda ali randomizacija je zelo splosen pristop za testiranje stati-

sti¢cnih hipotez. Njena porazdelitev je generirana iz podatkov samih. Zagotavlja nam



Batagelj B. Uporaba permutacijskih testov za primerjavo povprecij dveh populacij.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 13

ucinkovito testiranje hipotez, ko podatki niso skladni s predpostavko o njihovi po-
razdelitvi. Problema neodvisnosti med opazovanji permutacijska metoda ne odpravi,
lahko pa jo uporabimo pri opazovanjih, ki niso bila izbrana naklju¢no. Slabost metode
je velika racunska zahtevnost za preracunavanje velikega Stevila permutacij in testnih
statistik. Z vse hitrejsimi racunalniki na trgu se ta slabost odpravlja.

Za nicelno porazdelitev velja, da so ob pravilni Hy vsi mozni pari dveh spremenljivk
enako verjetni, da se pojavijo. Pod Hy vrednosti vektorja x; nakljuéno razporedimo,
medtem, ko pozicije vrednosti vekotrja xs fiksiramo. S tem dosezemo, da ima vsaka
vrednost vektorja x; enako verjetnost, da bo z dolo¢eno vrednostjo zo v paru. Ko so
pari doloceni, izracunamo vrednost testne statistike. Ta postopek ponovimo veckrat,
kar pomeni, da bomo na koncu dobili vektor vrednosti testnih statistik. Te vrednosti
primerjamo s testno statistiko, ki smo jo izracunali na podlagi nepermutiranih vre-
dnosti. Tako pridemo do cenilke za porazdelitev testne statistike pod Hy. Tako kot
pri drugih statisti¢nih testih se tudi pri permutacijskem testu o zavrnitvi Hy odlo¢imo
tako, da primerjamo dobljeno vrednost testne statistike in porazdelitev pod Hy. Ce
je vrednost testne statistike vprid nicelne hipoteze, torej, da vektorja z; in zs nista
povezana, potem Hy ne moremo zavrniti. V nasprotnem primeru, ¢e je vrednost testne
statistike vprid alternativne hipoteze, Hy zavrnemo pri doloc¢eni stopnji znacilnosti ter
sprejmemo H 4.

S permutacijskimi testi preverjamo veljavnost porazdelitve, ki je bila pridobljena
tako, da smo dane podatke permutirali. To pomeni, da testna statistika nima nikakrsne
povezave z opazovano populacijo. Zaradi tega ni potrebno, da so podatki izbrani
nakljucno.

Za majhne nabore podatkov lahko izracunamo vse mozne permutacije. S tem bi
pridobili popolno permutacijsko porazdelitev testne statistike oziroma izvedli ekzakten
ali popolni permutacijski test. Za velike nabore podatkov izvedemo vzor¢ni permuta-
cijski test, zaradi prevelikega Stevila permutacij. Zelo pomembno je, da se vse mozne
permutacije lahko kreirajo z enako verjetnostjo.

Pri uporabi permutacijskega testa za primerjanje razlik povprecij med dvema sku-
pinama nakljuéno permutiramo dva objekta obeh skupin namesto dveh spremenljivk.
Nac¢in permutiranja je odvisen od zadale nic¢elne hipoteze. Nekateri testi so le preo-
blikovani od nekega drugega testa. Na primer, primerjava povprecij dveh populacij
s t-testom je ekvivalentna primerjavi korelacij med vektorjem opazovanih vrednosti
in vektorjem, ki tem vrednostim dodeli populacijo. Ne glede na to katero metodo
uporabimo, dobimo isto vrednost testne statistike. Enostavni statisticni testi kot so
korelacijski koeficient ali razlike povprecij med dvema populacijama so lahko izvedeni
s permutiranjem zacetnih podatkov. Problem nastane, ¢e imamo v modelu komple-

ksne povezave med spremenjivkami. V tem primeru smo lahko primorani permutirati
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ostanke modela namesto zacetnih podatkov. Takemu nacinu pravimo permutacije ba-
zirane na modelu. Mi bomo nase podatke testirali tako, da bomo permutirli vektor, ki
predstavlja populacijo.

Ce pri vzorénem permutacijskem testu dodamo referenéno vrednost testne statistike
k porazdelitvi, prisilimo test, da proizvede ekstremno vrednost. Ta nacin rac¢unanja
verjetnosti je pristranski, vendar velja, da je statisticno pravilen. Natancnost te ver-
jetnostne cenilke je obrat Stevila permutacij. Na primer, ¢e smo izracunali 1000 per-
mutacij, bo natancnost verjetnosti 0.001. Torej nam permutacijski test zagotavlja, da
p-vrednost ne bo nikoli enaka 0.

Ko se odlocamo o stevilu permutacij, zelimo poiskati ravnotezje med natancénostjo
cenilke in zmoglivostjo racunalnika. Ker so cenilke izracunane na podlagi vzorca in so
s tem prisotne napake, ¢im ve¢ permutacij izvedemo, tem bolje je. Za prvo testiranje
hipoteze velja, da naj bi 500 do 1000 permutacij bilo zadostno. Za rezultate, ki jih

zelimo objaviti v javnosti, naj bi izvedli vsaj 10000 permutacij. [2]



Batagelj B. Uporaba permutacijskih testov za primerjavo povprecij dveh populacij.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 15

5 Simulacije

5.1 Opis algoritma

Za izvedbo simulacij testiranja hipotez potrebujemo ustrezen algoritem. Definirajmo
funkcijo, kateri podamo dva vhodna podatka. Prvi vhodni podatek predstavlja izzrebane
vrednosti obeh skupin, drugi vhodni podatek pa predstavlja skupino, iz katere je
dolocena vrednost bila izzrebana. Funkcija izvede posploSeni test razmerja verjetij
ob predpostavki, da sta opazovani populaciji porazdeljeni Pareto. Za izhodni podatek
dobimo vrednost testne statistike. Na podlagi dobljene testne statistike izracunamo p-
vrednosti. Upostevamo, da je testna statistika porazdeljena po hi-kvadrat porazdelitvi
(za kar uporabljamo razlicne stopinje prostosti). Pri permutacijskem testu pa zelimo
za vsako permutacijo izracunati vektor testnih statistik. To naredimo s pomocjo for
zanke, v kateri za vsako permutacijo generira nakljuc¢en vrsti red komponent v vektorju
y in izvede posploSen test razmerja verjetij glede na nakljuéni vektor y. Torej, za vsako
permutacijo izracunamo drugacno testno statistiko. Ta postopek se ponavlja, dokler
ne doseze zeljenega Stevila permutacij. Konéni rezultat je vektor testnih statistik. P-
vrednost je potem dolocena, kot Stevilo permutiranih testnih statistik, ki so vecje, ali
enake, od testne statistike dobljene na osnovnih podatkih. Sedaj lahko izvedemo si-
mulacije. Definirajmo funkcijo, kateri podamo velikost vzorca in vrednosti paramterov
obeh populacij. Poleg tega podamo Se stevilo Zeljenih permutacij. Definirati moramo
Se dva vektorja. V prvi vektor podamo vrednosti spremenljivke, medtem, ko v drugi
vektor generiramo stevilo 1 in 2 glede na velikost vzorca prve in druge populacije s
¢imer doloc¢imo pripadnost skupini. Glede na dobljena vektorja izvedemo ¢ test in po-
splosen test razmerja verjetij za dva populacij porazdeljeni Pareto. Dobljene vrednosti
shranimo v nov vektor. Izvedemo tri razlicne simulacije, pri katerih spreminjamo ve-
likosti vzorca, vrednosti parametrov in razlike parametrov med obema populacijama.
Razlike parametrov bomo oznacevali z A. Prva simulacija predstavlja velikost testa
pri istih vrednostih parametrov z,, in « za obe populaciji, zato tu ni razlik med pa-
rametri obeh populacij. Druga simulacija predstavlja moc testa, kjer se parameter «
med obema populacijama razlikuje za A. Tretja simulacija predstavlja moc testa, kjer

se parameter x,, med obema populacijama razlikuje za A.
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5.2 Predstavitev programa R

V racunalniskem programu R bomo uporabili omenjeni algoritem. R je programski
jezik za statisticno racunanje in grafiko. Razvil ga je John Chambers s sodelavci na
amerigki firmi Bell Laboratories. R nam zagotavlja sirok izbor statisti¢nih (linearno
in nelinearno modeliranje, testiranje hipotez, analiza ¢asovnih vrst, razvrscanje, groz-
denje) in grafiécnih tehnik. Ena od prednosti programa R je enostavno in kakovostno
risanje grafov, vkljuéno z matemati¢nimi simboli in formulami. S pomocjo programa R
lahko manipuliramo in izra¢unavamo s podatki ter jih predstavimo z graficnimi prikazi.

Vkljucuje
e ucinkovito obdelavo in shranjevanje podatkov,
e zbirko operaterjev za racunanje s polji in matrikami,
e velika in skladna zbirka vmesnih orodij za analizo podatkov,
e graficne zmogljivosti za analizo podatkov in prikaz na zaslonu ali na papirju,

e dobro razvit, preprost in uc¢inkovit programski jezik, ki vkljucuje pogojne izjave,

zanke, rekurzivne funkcije ter vhodne in izhodne zmogljivosti

R omogc¢a uporabniku definiranje novih funkcij, enostavno sledenje odlocitvam algo-

ritma in povezavo do drugih programskih kod v ¢asu izvajanja. [6]
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6 Predstavitev rezultatov simulacij

6.1 Velikost testov

Slika 1 prikazuje velikost testa za dve populaciji porazdeljeni Pareto, kjer smo za izra¢un
p-vrednosti uporabili dve stopinje prostosti. Na z-osi so razlicne vrednosti parametra
a(shape). Na y-osi je delez zavrnitve testa. Razliéne barve krivulj prikazujejo razliéne
velikosti vzorca. Stolpci grafov se razlikujejo po parametru x,,, vrstice grafov pa po
zeljeni stopnji znacilnosti. Zaradi vzoréne napake toleriramo manjsa odstopanja od
zeljene stopnje znacilnosti, zato sprejemo vse tocke grafov, ki so znotraj crtkanih vo-
doravnih ¢rt. Iz slike 1 razberemo, da se vse tocke nahajajo izven ¢rtkanih vodoravnih
¢rt, kar pomeni, da za vsako tocko velja, da je dejanska verjetnost napake I. vrste vecja
od Zeljene. Pri Zeljeni 0.01 stopnji znacilnosti bo test Hy zavrnil v priblizno 0.03 pri-
merih. Pri zeljeni 0.05 stopnji znacilnosti bo test Hy zavrnil v priblizno 0.12 primerih.
Pri zeljeni 0.1 stopnji znacilnosti bo test Hy zavrnil v priblizno 0.2 primerih. To po-
meni, da je v vseh primerih test liberalen in poslediéno nesprejemljiv. Ce primerjamo
razlicne vrednosti parametra o opazimo, da se delez zavrnitve testa ne spreminja. Ce
primerjamo razli¢ne velikosti vzorcev opazimo, da se delez zavrnitve testa pravtako ne
spreminja. Enako velja tudi za razli¢ne vrednosti parametra z,,. Koncna ugotovitev je,
da velikost testa za dve populaciji porazdeljeni Pareto, kjer smo za izracun p-vrednosti
uporabili dve stopinje prostosti nikoli ne zavrne nicelne domneve pri Zeljeni meri, ne
glede na velikost vzorca, vrednosti parametra «, vrednosti parametra x,, in stopnjo
znacilnosti. Ta rezultat je precej presenetljiv, saj smo v teoreticnem delu povedali, da

moramo pri x? porazdelitvi upostevati 2 stopinji prostosti.
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Slika 2 prikazuje velikost testa za dve populaciji porazdeljeni Pareto, kjer smo za
izracun p-vrednosti uporabili tri stopinje prostosti. Na z-osi so razlicne vrednosti pa-
rametra a(shape). Na y-osi je delez zavrnitve testa. Razlicne barve krivulj prikazujejo
razlicne velikosti vzorca. Stolpci grafov se razlikujejo po parametru x,,, vrstice grafov
pa po zeljeni stopnji znacilnosti. Zaradi vzoréne napake toleriramo manjsa odstopanja
od zeljene stopnje znacilnosti, zato sprejemo vse tocke grafov, ki so znotraj ¢rtkanih
vodoravnih ¢rt. 1z slike 2 razberemo, da pri majhnih vzorcih se tocke nahajajo izven
¢rtkanih vodoravnih ¢rt, kar pomeni, da je pri majhnih vzorcih dejanska verjetnost
napake I. vrste vec¢ja od zeljene. To pomeni, da je v primerih, ko imamo majhen vzo-
rec test liberalen in posledi¢no nesprejemljiv. V primerih, ko imamo velik vzorec, pa
se tocke vec¢inoma nahajajo znotrah ¢rtkanih vodoravnih ¢rt, kar pomeni, da je test
konservativen in posledi¢no sprejemljiv. Ce primerjamo razliéne vrednosti parametra
a opazimo, da se delez zavrnitve testa ne spreminja. Enako velja tudi za razlicne
vrednosti parametra z,,. Koncna ugotovitev je, da velikost testa za dve populaciji
porazdeljeni Pareto, kjer smo za izrac¢un p-vrednosti uporabili tri stopinje prostosti
zavrne Hy pri Zeljeni meri le, ¢e imamo dovolj velik vzorec. Vrednosti parametra «,
vrednost parametra x,, in Zeljena stopnja znacilnosti na rezultat ne vplivata. Opazimo
tudi, da smo s tremi stopinjami prostosti dobili sprejemljiv test, kar smo pricakovali

pri testu z dvema stopinjama prostosti.
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Slika 3 prikazuje velikost testa za dve populaciji porazdeljeni Pareto z uporabo
permutacijskega testa. Na z-osi so razlicne vrednosti parametra a(shape). Na y-osi
je delez zavrnitve testa. Razlicne barve krivulj prikazujejo razliéne velikosti vzorca.
Stolpci grafov se razlikujejo po parametru z,,, vrstice grafov pa po zeljeni stopnji
znacilnosti. Zaradi vzoréne napake toleriramo manjsa odstopanja od zeljene stopnje
znacilnosti, zato sprejmemo vse tocke grafov, ki so znotraj ¢rtkanih vodoravnih ért. Iz
slike 3 razberemo, da se vecina tock nahaja znotraj ¢rtkanih vodoravnih ¢rt, kar pomeni,
da za vecino tock velja, da je dejanska verjetnost napake I. vrste v zeljeni okolici vseh
stopenj znacilnosti. To pomeni, da je v vec¢ini primerih test sprejemljiv. Ce primerjamo
razlicne vrednosti parametra o opazimo, da se delez zavrnitve testa ne spreminja. Ce
primerjamo razli¢ne velikosti vzorcev opazimo, da se delez zavrnitve testa pravtako ne
spreminja. Enako velja tudi za razlicne vrednosti parametra x,,. Kon¢na ugotovitev
je, da velikost testa za dve populaciji porazdeljeni Pareto z uporabo permutacijskega
testa zavrne nicelno domnevo pri zeljeni meri ne glede na velikost vzorca, velikost
parametra «, velikost parametra x,, in stopnjo znacilnosti. To dokazuje uporabnost in

ucinkovitost permutacijskega testa.
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Slika 4 prikazuje velikost testa za dve populaciji porazdeljeni Pareto z uporabo t
testa. Na z-osi so razlicne vrednosti parametra a(shape). Na y-osi je delez zavrnitve
testa. Razlicne barve krivulj prikazujejo razliéne velikosti vzorca. Stolpci grafov se
razlikujejo po parametru x,,, vrstice grafov pa po Zeljeni stopnji znacilnosti. Zaradi
vzoréne napake toleriramo manjSa odstopanja od Zeljene stopnje znacilnosti, zato sprej-
memo vse tocke grafov, ki so znotraj crtkanih vodoravnih ¢rt. Iz slike 4 razberemo,
da so nekatere tocke znotraj obsega crtkanih vodoravnih ¢rt, nekatere pa pod obsegom
ali celo na sami nicli. To pomeni, da v nekaterih primerih je test preve¢ konserva-
tiven. Tudi taksni testi za nas niso sprejemljivi. Opazimo, da ti primeri nastopijo,
ko je vrednost parametra o enaka 2.5 ali manj in ko je velikost vzorca manjsa od 30.
Ce primerjamo razliéne vrednosti parametra z,, opazimo, da se delez zavrnitve testa
ne spreminja. Konéna ugotovitev je, da velikost testa za dve populaciji porazdeljeni
Pareto z uporabo t-testa zavrne nicelno domnevo pri zeljeni meri, ¢e imamo dovolj
velik vzorec in dovolj velik parameter a. Opazimo tudi, da pri vec¢ji zeljeni stopnji
znacilnosti dobimo bolj zadovoljive teste. Testi pri manjsi zeljeni stopnji znacilnosti
preveckrat zavracajo Hy. ManjSo stopnjo znacilnosti kot si zadamo, vecji vzorec in
vecji parameter o potrebujemo, da dosezemo Zzeljeni test. Velikost parametra x,, na

rezultat ne vpliva.

6.2 Moc testov

Slika 5 prikazuje vpliv parametra 1, na moc testa za dve populaciji porazdeljeni Pareto,
kjer smo za izracun p-vrednosti uporabili tri stopinje prostosti. Na x-osi so razlicne
vrednosti parametra y,,(location2). Na y-osi je delez zavrnitve testa. Razlicne barve
krivulj prikazujejo razlicne velikosti vzorca. Stolpci grafov se razlikujejo po parame-
tru «, vrstice grafov pa po zeljeni stopnji znacilnosti. Tu predpostavljamo, da sta
parametera ax in ay enaka, vrednost parametra x,, pa je fiksirana pri 100. Slika 6
prikazuje vpliv parametra y,, na moc¢ testa za dve populaciji porazdeljeni Pareto, kjer
smo za izracun p-vrednosti uporabili tri stopinje prostosti. Na z-osi so razlicne vredno-
sti parametra y,,(location2). Na y-osi je delez zavrnitve testa. Razli¢cne barve krivulj
prikazujejo razlicne velikosti vzorca. Stolpci grafov se razlikujejo po parametru a;, vr-
stice grafov pa po zeljeni stopnji znacilnosti. Tu predpostavljamo, da sta parametera
ax in ay enaka, vrednost parametra x,, pa je fiksirana pri 0.2. Iz slike 5 razberemo, da
so tocke na levi strani grafa precej nizko, tocke na desni strani grafa pa precej visoko.
To nam pove, da bolj kot sta si parametra x,, in v, razlicna, vecja je moé testa. Ce
primerjamo grafe po stolpcih opazimo, da je pri desnih stolpcih precej ve¢ tock na vrhu
grafa, kar nakazuje, da vecji kot je parameter v vedja je moé testa. Ce primerjamo

barve posameznih krivulj opazimo, da vecji vzorec kot krivulja prikazuje, ve¢ tock ima
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pri vrhu grafa. To nam pove, da vecji kot je vzorec, vecja je moé testa. Ce primerjamo
sliki 5 in 6 ugotovimo, da na slednji imamo precej ve¢ tock na vrhu grafa, kar pomeni,
da ima precejsen vpliv tudi odstotkovna razlika med parametroma z,, in y,,. Vecja
kot je odstotkovna razlika, vecCja je moc testa. Konc¢na ugotovitev je, da bolj kot sta
si &, in y,, razlicna, vecja je mo¢ testa, kar smo tudi pricakovali. Velik vpliv ima tudi
odstotkovna razlika med x,, in y. Opazimo tudi, da ve¢ja kot sta vrednost parametera
a in velikost vzorca, veCja je moc testa, medtem, ko Zeljena stopnja znacilnosti na

razultat ne vpliva.
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Slika 8: Moc testa za razlicna z,,, x,, = 0.2 - permutacijski test.
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Slika 7 prikazuje vpliv parametra y,, na moc testa za dve populaciji porazdeljeni Pa-
reto s permutacijskim testom. Na x-osi so razliéne vrednosti parametra y,, (location2).
Na y-osi je delez zavrnitve testa. Razlicne barve krivulj prikazujejo razliéne veliko-
sti vzorca. Stolpci grafov se razlikujejo po parametru «, vrstice grafov pa po zeljeni
stopnji znacilnosti. Tu predpostavljamo, da sta parametera ax in ay enaka, vrednost
parametra x,, pa je fiksirana pri 100. Slika 8 prikazuje vpliv parametra y,, na moc testa
za dve populaciji porazdeljeni Pareto s permutacijskim testom. Na x-osi so razlicne
vrednosti parametra y,,(location2). Na y-osi je delez zavrnitve testa. Razlicne barve
krivulj prikazujejo razlicne velikosti vzorca. Stolpci grafov se razlikujejo po parametru
«, vrstice grafov pa po zeljeni stopnji znacilnosti. Tu predpostavljamo, da sta pa-
rametera ax in ay enaka, vrednost parametra z,, pa je fiksirana pri 0.2. Iz slike 7
razberemo, da so tocke na levi strani grafa precej nizko, tocke na desni strani grafa pa
precej visoko. To nam pove, da bolj kot sta si parametra x,, in y,, razlicna, vecja je
mo¢ testa. Ce primerjamo grafe po stolpcih opazimo, da je pri desnih stolpcih precej
ve tock na vrhu grafa, kar nakazuje, da vecji kot je parameter o vecja je mo¢ testa. Ce
primerjamo barve posameznih krivulj opazimo, da vecji vzorec kot krivulja prikazuje,
ve¢ tock ima pri vrhu grafa. To nam pove, da vecji kot je vzorec, vecja je moc testa.
Manjsi vpliv ima tudi zeljena stopnja znacilnosti. Pri vecji stopnji znacilnosti krivulje
hitreje dosezejo vrh grafa, kar pomeni, da vecja kot je zeljena stopnja znacilnosti vecja
je mo¢ testa. Ce primerjamo sliki 7 in 8 ugotovimo, da na slednji imamo precej vec
tock na vrhu grafa, kar pomeni, da ima precejSen vpliv tudi odstotkovna razlika med
parametroma x,, in y,,. Vecja kot je odstotkovna razlika, vec¢ja je moc testa. Konc¢na
ugotovitev je, da bolj kot sta si z,, in y,, razlicna, vecja je moc testa, kar smo tudi
pricakovali. Velik vpliv ima tudi odstotkovna razlika med z,, in y. Opazimo tudi,
da vec¢ja kot sta vrednost parametera «, velikost vzorca in zZeljena stopnja znacilnosti,

vecja je moc testa.
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Slika 9: Moc¢ testa za razlicna x,,, x,, = 100 - t-test.
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Slika 10: Moc testa za razlicna x,,, x,, = 0.2 - t-test.
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Slika 9 prikazuje vpliv parametra ¥, na moc testa za dve populaciji porazdeljeni
Pareto s t-testom. Na z-osi so razlicne vrednosti parametra y,,(location2). Na y-osi
je delez zavrnitve testa. Razlicne barve krivulj prikazujejo razli¢ne velikosti vzorca.
Stolpci grafov se razlikujejo po parametru «, vrstice grafov pa po zeljeni stopnji
znacilnosti. Tu predpostavljamo, da sta parametera ax in ay enaka, vrednost pa-
rametra x,, pa je fiksirana pri 100. Slika 10 prikazuje vpliv parametra y,, na moc testa
za dve populaciji porazdeljeni Pareto s t-testom. Na x-osi so razlicne vrednosti parame-
tra y,,(location2). Na y-osi je delez zavrnitve testa. Razlicne barve krivulj prikazujejo
razlicne velikosti vzorca. Stolpci grafov se razlikujejo po parametru «, vrstice grafov pa
po zZeljeni stopnji znacilnosti. Tu predpostavljamo, da sta parametera ax in ay enaka,
vrednost parametra x,, pa je fiksirana pri 0.2. Iz slike 9 razberemo predvsem to, da
pri vrednosti parametra a manjsi od 1.5 zelo skromno mo¢ testa, ne glede na ostale
parametre. Vidimo, da so tocke na levi strani grafa precej nizko, tocke na desni strani
grafa pa precej visoko, kar nam pove, da vecja kot je razlika med parametroma z,, in
Ym, vecja je moc testa. Opazimo tudi, da veéji vzorec kot krivulja prikazuje, ve¢ tock
ima pri vrhu grafa. To nam pove, da vecji kot je vzorec, vec¢ja je moc testa. Vendar v
primerjavi s prejsnjimi testi velikost vzorca nima taksnega vpliva, saj so krivulje bolj
skupaj kot pri testih za razliéna z,,. Ce primerjamo razlicne vrednosti zeljenih stopenj
znacilnosti vidimo, da so krivulje skoraj identicne. To nakazuje, da Zeljena stopnja
znacilnosti nima vpliva na rezultat. Ce primerjamo sliki 9 in 10 opazimo, da slednja
ima precej ve¢ tock na vrhu grafa, kar pomeni, da ima precejsen vpliv tudi odstotkovna
razlika med parametroma x,, in y,,. Vecja kot je odstotkovna razlika med njima, vecja
je mo¢ testa. Konc¢na ugotovitev je, da bolj kot sta si xz,, in y,, razlicna, vecja je
mo¢ testa. Velik vpliv ima tudi odstotkovna razlika med x,, in y. Opazimo tudi, da
vecja kot sta vrednost parametera « in velikost vzorca, vec¢ja je moc¢ testa, medtem,
ko zeljena stopnja znacilnosti na razultat ne vpliva. Za majhne vrednosti parametra «

t-test ne zagotavlja zeljene moci, ne glede na ostale dejavnike.
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Slika 11 prikazuje vpliv parametra a na moc testa za dve populaciji porazdeljeni
Pareto, kjer smo za izracun p-vrednosti uporabili tri stopinje prostosti. Na x-osi so
razlicne vrednosti parametra ay (shape2). Na y-osi je delez zavrnitve testa. Razli¢ne
barve krivulj prikazujejo razlicne velikosti vzorca. Stolpci grafov se razlikujejo po
parametru ax, vrstice grafov pa po zeljeni stopnji znacilnosti. Tu predpostavljamo, da
sta parametera x,, in y,, enaka in fiksirana pri 100. Slika 12 prikazuje vpliv parametra
« na moc testa za dve populaciji porazdeljeni Pareto, kjer smo za izracun p-vrednosti
uporabili tri stopinje prostosti. Na z-osi so razliéne vrednosti parametra ay (shape2).
Na y-osi je delez zavrnitve testa. Razlicne barve krivulj prikazujejo razlicne velikosti
vzorca. Stolpci grafov se razlikujejo po parametru ay, vrstice grafov pa po zeljeni
stopnji znacilnosti. Tu predpostavljamo, da sta parametera x,, in y,, enaka in fiksirana
pri 0.2. Iz slike 11 razberemo, da so tocke na levi strani grafa precej nizko, tocke na
desni strani grafa pa precej visoko. To nam pove, da bolj kot sta si parametra ax in ay
razlicna, vecja je mo¢ testa. Ce primerjamo grafe po stolpcih opazimo, da je pri levih
stolpcih precej ve¢ tock na vrhu grafa, kar nakazuje, da vecja kot je odstotkovna razlika
med parametroma ax in ay, vecja je moc testa. Opazimo, da vecji vzorec kot krivulja
prikazuje, ve¢ tock ima pri vrhu grafa. To nam pove, da vecji kot je vzorec, vecja
je mo¢ testa. Tudi tu so krivulje razlicnih barv precej skupaj, zato lahko trdimo, da
velikost vzorca nima taksnega vpliva v primerjavi s testi za razlicna x,,,. Ce primerjamo
razlicne vrednosti zeljenih stopenj znacilnosti vidimo, da so krivulje skoraj identicne,
kar pomeni, da zeljena stopnja znaéilnosti nima vpliva na rezultat. Ce primerjamo sliki
11 in 12 vidimo, da med grafi ni razlik, kar nam pove, da razlicne vrednosti parametra
T, na rezultat nimajo vpliva. Konéna ugotovitev je, da bolj kot sta si ax in ay
razlicna, vecja je moc testa, kar smo v teoreticnem delu tudi trdili. Velik vpliv ima
tudi odstotkovna razlika med ax in ay. Vecja kot je odstotkovna razlika, vecja je moc
testa. Manjsi vpliv ima tudi velikost vzorca, medtem, ko vrednost parametra x,, in

zeljena stopnja znacilnosti na razultat nimata vpliva.
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Slika 13: Moc testa za razli¢cna «, x,, = 100 - permutacijski test.
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Slika 13 prikazuje vpliv parametra a na moc testa za dve populaciji porazdeljeni
Pareto s permutacijskim testom. Na z-osi so razlicne vrednosti parametra ay (shape2).
Na y-osi je delez zavrnitve testa. Razlicne barve krivulj prikazujejo razlicne velikosti
vzorca. Stolpci grafov se razlikujejo po parametru ay, vrstice grafov pa po zeljeni
stopnji znacilnosti. Tu predpostavljamo, da sta vrednosti parametera x,, in y,, enaki
in fiksirani pri 100. Slika 14 prikazuje vpliv parametra a na moc testa za dve populaciji
porazdeljeni Pareto s permutacijskim testom. Na z-osi so razlicne vrednosti parame-
tra ay (shape2). Na y-osi je delez zavrnitve testa. Razlicne barve krivulj prikazujejo
razlicne velikosti vzorca. Stolpci grafov se razlikujejo po parametru ay, vrstice grafov
pa po zeljeni stopnji znacilnosti. Tu predpostavljamo, da sta vrednosti parametera x,,
in y,, enaki in fiksirani pri 0.2. Iz slike 13 razberemo, da so tocke na levi strani grafa
precej nizko, tocke na desni strani grafa pa precej visoko, kar nam nakazuje, da bolj
kot sta si parametra ay in ay razlicna, vecja je moc testa. Ce primerjamo grafe po
stolpcih opazimo, da je pri levih stolpcih precej ve¢ tock na vrhu grafa, kar pomeni,
da vecja kot je odstotkovna razlika med parametroma ay in ay, vecja je moc testa.
Vidimo, da vecji vzorec kot krivulja prikazuje, ve¢ tock ima pri vrhu grafa. To naka-
zuje, da vecji kot je vzorec, vecja je moc testa. Tudi tu so krivulje razlicnih barv precej
skupaj, zato lahko trdimo, da velikost vzorca nima taksnega vpliva v primerjavi s testi
za razliéna «,,. Ce primerjamo razlicne vrednosti zeljenih stopenj znacilnosti vidimo,
da so krivulje skoraj identicne, kar pomeni, da zeljena stopnja znacilnosti nima vpliva
na rezultat. Ce primerjamo sliki 13 in 14 opazimo, da med grafi ni razlik, kar nam
pove, da razlicne vrednosti parametra x,, na rezultat nimajo vpliva. Kon¢na ugotovi-
tev je, da bolj kot sta si ay in ay razliéna, vecja je moc testa, kar smo v teoreti¢nem
delu tudi trdili. Velik vpliv ima tudi odstotkovna razlika med ax in ay. Vecja kot je
odstotkovna razlika, vecja je moc testa. Manjsi vpliv ima tudi velikost vzorca, medtem,

ko vrednost parametra x,, in zZeljena stopnja znacilnosti na razultat nimata vpliva.
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Slika 15: Moc testa za razli¢cna «, x,, = 100 - t-test.
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Slika 16: Moc testa za razlicna «, x,, = 0.2 - t-test.
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Slika 15 prikazuje vpliv parametra o na moc testa za dve populaciji porazdeljeni Pa-
reto s t-testom. Na z-osi so razlicne vrednosti parametra ay (shape2). Na y-osi je delez
zavrnitve testa. Razliéne barve krivulj prikazujejo razlicne velikosti vzorca. Stolpci
grafov se razlikujejo po parametru ay, vrstice grafov pa po zeljeni stopnji znacilnosti.
Tu predpostavljamo, da sta vrednosti parametera x,, in ¥, enaki in fiksirani pri 100.
Slika 16 prikazuje vpliv parametra o na mo¢ testa za dve populaciji porazdeljeni Pa-
reto s t-testom. Na z-osi so razlicne vrednosti parametra ay (shape2). Na y-osi je delez
zavrnitve testa. Razlicne barve grafov prikazujejo razlicne velikosti vzorca. Stolpci
grafov se razlikujejo po parametru ay, vrstice grafov pa po zeljeni stopnji znacilnosti.
Tu predpostavljamo, da sta vrednosti parametera z,, in y,, enaki in fiksirani pri 0.2.
Iz slike 15 najprej razberemo, da pri vrednosti parametrov ax in ay manjsi od 1.5
dobimo precej skromno moc testa, ne glede na ostale parametre. Tocke na levi strani
grafa so precej nizko, tocke na desni strani grafa pa precej visoko, kar nam pove, da
bolj kot sta si parametra ax in ay razlicna, vecja je moc¢ testa. Vidimo, da vecji
vzorec kot krivulja prikazuje, ve¢ tock ima pri vrhu grafa. To nakazuje, da vecji kot je
vzorec, veCja je moc¢ testa. Tu so krivulje razlicnih barv nekoliko narazen, zato lahko
trdimo, da velikost vzorca ima vec¢ji vpliv v primerjavi s prejsnjimi testi za razlicna a.
Ce primerjamo razliéne vrednosti zeljenih stopenj znacilnosti vidimo, da se krivulje le
delno spremenijo, kar pomeni, da zZeljena stopnja znacilnosti ima zelo majhen vpliv na
rezultat. Ce primerjamo sliki 15 in 16 opazimo, da med grafi ni razlik, kar nam pove,
da razlicne vrednosti parametra z,, na rezultat nimajo vpliva. Kon¢na ugotovitev je,
da bolj kot sta si ay in ay razliéna, vecja je moc testa, kar smo v teoreticnem delu tudi
trdili. Vpliv na rezultat ima tudi velikost vzorca. Odstotkov razlika med parametroma
ayx in ay, vrednost parametra x,, in zeljena stopnja znacilnosti na razultat nimajo

vpliva.
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7 Zakljucek

V zakljuéni nalogi smo skusali z uporabo permutacijskega testa preveriti enakost pov-
precij dveh populacij porazdeljeni Pareto. Ugotovili smo, da je permutacijski test zelo
dober nac¢in preverjanja statisticnih domnev, saj smo z njegovo uporabo dobili zelo
dobre rezultate. Ni pa to edini test, s katerim smo prisli do zeljenih rezultatov. Test
razmerja verjetij nam je najboljSe rezultate dal pri treh stopinjah prostosti. Pri ¢-testu
je precej vpliva imel parameter a. Za dovolj velik « in pri dovolj velikem vzorcu smo

tudi pri t-testu dobili Zeljene rezultate.
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