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Izvleček:

Fisherjev eksaktni test je ena od najpogosteje uporabljenih metod za preverjanje

povezave med dvema kategorialnima spremenljivkama. Temelji na hipergeometrični

diskretni porazdelitvi vnaprej določene testne statistike. Test je asimptotično enakovre-

den testu χ2, ki je ekvivalenten z−testu za enakost dveh neodvisnih deležev kadar imata

obe spremenljivki le dve vrednosti. Medtem ko sta zadnja dva testa le približna testa,

se pravi da, je njuna velikost enaka nominalni ravni, ko gre n v neskončnost, tukaj

pokažemo, da je tudi Fisherjev točni test netočen pri majhnih vzorcih z uporabo 2× 2

preglednih tabel. Fisherjev točni test velja za točen test, kar pomeni, da je pri njem

nominalna raven enaka efektivni napaki prvega tipa, vendar temu ni tako. Pravzaprav

je konzervativen test, kar pomeni, da resnična verjetnost nepravilne zavrnitve ničelne

hipoteze nikoli ni večja ali enaka nominalni ravni.



Tepegjozova M. On the inexactness of Fisher’s exact test for testing the equality of two independent

proportions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 III

Key words documentation

Name and SURNAME: Marija TEPEGJOZOVA

Title of final project paper: On the inexactness of Fisher’s exact test for testing the

equality of two independent proportions

Place: Koper

Year: 2017

Number of pages: 37 Number of figures: 5 Number of tables: 12

Number of appendices: 1 Number of appendix pages: 2 Number of references: 18

Mentor: Assist. Prof. Rok Blagus, PhD

Keywords: Hypothesis testing, conservative test, χ2 test, z−test, Fisher’s exact test,

simulations.

Math. Subj. Class. (2010): 62F03, 62G10, 62H17

Abstract:

Fisher’s exact test is one of the most commonly used methods for testing the asso-

ciation between two categorical variables. It is based on the hypergeometric discrete

distribution of the predefined test statistic. The test is asymptotically equivalent to

the χ2 test, which when both variables have only two levels, is equivalent as the z−test

for the equality of two independent proportions. While the latter two tests are known

to be only approximate tests, i.e. their size is equal to the nominal level when n goes

to infinity, we show that also the Fisher’s exact test is inexact with small samples using

2 × 2 contingency tables. The Fisher’s exact test is said to be an exact test, and a

statistical test for which the nominal level is equal to the effective type I error, but that

is not the case. It is actually a conservative test, meaning that the true probability of

incorrectly rejecting the null hypothesis is never greater or equal to the nominal level.
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1 Introduction

1.1 Lady Tasting Tea

In the early XX-th century the very famous statistician and biologist Ronald Fisher

during a conversation with a friend of his, Dr. Muriel Bristol, came up with a very

profound idea in statistics. Namely, during drinking their teas, Dr. Bristol claimed

that she could distinguish whether the tea or the milk was poured first in her cup of

tea. Fisher doubted her claim, and wanted to test her claim. Therefore, he designed

an experiment as follows. He provided 8 cups of tea from which in 4 of then the tea

was poured first, and the other 4 the milk was poured first. He randomly ordered the

cups, explained that there are 4 cups in which the tea was poured first, and 4 were

with the milk poured first and asked Bristol to taste them and choose four of them of

one type.

This randomized experiment, the lady tasting tea, was elaborately explained in his

book entitled ’The Design of Experiments’ [7]. It was then when he firstly introduced

the notion of null hypothesis,

”...the null hypothesis is never proved or established, but is possibly disproved, in

the course of experimentation. Every experiment may be said to exist only in order to

give the facts a chance of disproving the null hypothesis.”

In this experiment the null hypothesis, or the hypothesis which we want to test, was

the claim that the lady is not able to distinguish whether milk or tea is poured first.

The proposed test statistic, or the value needed for comparison was the number of

successful selections in the 4 cups the lady choose. The null hypothesis distribution

was calculated by the number of permutations. Thus, given 8 cups and choosing 4 of

them, gives us
8!

4!(8− 4)!
= 70

possible combinations.

The critical region, or the region in which we will reject the validity of the null hypoth-

esis was the single case when the lady successfully guessed all 4 cups she chose. The

probability of doing so is 1 in 70 which is 0.014, giving a significance level of 1.4% .
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This simple experiment is one of the supporting pillars of the topic of hypothesis testing

and randomization of experimental data [6].

Bellow are all the possible outcomes of the experiment, where with empty dots we

denote a successful guess and the x’s are faulty guesses.

Success count Permutations of selection Number of permutations

0 oooo 1 1 = 1

1 oox, ooxo, oxoo, xooo 4 4 = 16

2 ooxx, oxox, oxxo, xoxo, xxoo, xoox 6 6 = 36

3 oxxx, xoxx, xxox, xxxo 4 4 = 16

4 xxxx 1 1 = 1

Total 70

Table 1: Lady Tasting Tea experiment

1.2 Hypothesis Testing

In statistics a hypothesis is an assumption about a population parameter which may or

may not be true. Hypothesis testing is the process of deciding from a sample whether

some stated hypothesis is correct. The decision is to be made between accepting or

rejection the hypothesis stated. A decision procedure for such a problem is called a

test of the hypothesis. A test statistic is a value calculated from the sample, in a way

that it summarizes the sample for comparison purposes.

During a statistical investigation we need to carefully define the population, then we

need to randomly select a sample from the population which will be our set of obser-

vations i.e. the values our chosen random variable X takes. We also need to define an

assumption about the parameter θ which will label X and its distribution Pθ, this will

be our hypothesis. The set of all possible values the parameter θ can take is called a

parameter space, and is denoted with Ω.

The decision in hypothesis testing is made based on the outcome of a certain random

variable X and the distribution Pθ which belongs to a distribution class P = {Pθ, θ ∈
Ω}. The distributions of P can be classified into two mutually exclusive classes, one

for which the hypothesis is true and the other for which the hypothesis is false. We will

denote them by H0 and Ha, respectively. The parameter space will be also similarly

divided into Ω0 and Ωa, each consisting of parameters for which the hypothesis is true

or false, respectively. Also, note that H0 ∪Ha = P and Ω0 ∪Ωa = Ω. Mathematically,
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whether the hypothesis is true is equivalent to whether Pθ in an element of H0. There-

fore, it is convenient to identify the hypothesis with the above statement and denote

the testing hypothesis with H0, usually stated as null hypothesis. The distributions

that are in Ha we call alternatives, and we say that Ha is a class of alternatives. Now

let us define a decision function δ whose domain is X and its range is {d0, da} where

the decision of accepting the null hypothesis is assigned the value d0 and the decision

of rejecting the null hypothesis is assigned the value da.

A nonrandomized test procedure assigns to each possible value x of X one of these

two decisions, accept or reject, and divides the sample space into two complementary

regions S0 and Sa. If X falls into S0, the hypothesis is accepted, otherwise it is rejected.

Therefore, the set S0 is called region of acceptance, and the set Sa the region of rejection

or critical region.

When we perform a test we may chose the correct decision or make one of the two

possible mistakes. The first one is rejecting the null hypothesis when it is true, which

is called type I error and is denoted by α

α = P (δ(X) = da|θ ∈ Ω0) = P (X ∈ Sa|θ ∈ Ω0).

The other one is accepting the null hypothesis when it is false, type II error denoted

by 1− β(θ), where β(θ) is the power function of the test,

β (θ) = P (X ∈ S0|θ ∈ Ωa)

1− β (θ) = P (X ∈ Sa|θ ∈ Ωa).

The consequences done by these mistakes vary. For example, if we test the presence

of some virus, and our test leads us to a conclusion that the virus is not present, but

the patient in reality is infected by the virus, such diagnosis may lead to a death of

the patient. Therefore, we need to minimize the probability of the errors occurring.

However, we can not control both those probabilities simultaneously . Therefore, it is

customary to bound the probability of incorrectly rejecting H0 when it is true and try

to minimize the other probability. Thus, we bound α ∈ (0, 1) and we also call it level of

significance. Usually α is somewhat arbitrary, but usage of conventional levels of 0.01

and 0.05 is the most common procedure. These values were originally chosen to reduce

the number of tables needed to carry out various computations in different tests. Later

they were adapted mainly due to habit and due to convenience of standardization in

providing a common frame of reference in different tests [11].
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1.3 Contingency Tables

A categorical variable is one that has a measurement scale consisting of a set of cate-

gories. In our case we are going to focus on variables having only two categories. For

example, gender is a categorical variables having two categories (male and female) or

whether a treatment is successful or not in biomedical statistics. Usually, we distin-

guish between two types of categorical variable, response or dependent variables. A

response variable is the particular quantity for which we ask a question in a study

and an explanatory variable is any influence or factor that can influence the response

variable. As an example we may consider testing whether the number of hours spent

doing homework has an effect on the grade a student earns on an exam. In such a case,

we are having a variable and we would like to know how it affects another variable.

This means that the variable representing the number of hours studied is an explana-

tory variable and the score on the test is a response variable. Now we can define a

contingency table.

LetX and Y be two categorical response variables, such thatX has I possible categories

and Y has J categories. Classifications of subjects on both variables (X, Y ) have

I × J possible combinations. Such responses (X, Y ) from a sample have a probability

distribution. A rectangular I × J table, that has I rows for categories of X and

J columns for categories of Y , represents this distribution. The cells of such table

represent each of the I × J possible outcomes. When the cells contain frequency

counts of outcomes for a sample it is called a contingency table or a cross-classification

table. A contingency table with I rows and J columns is called an I × J table [1].

In our case we will only only consider 2 × 2 contingency tables, with two discrete

response variables.
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1.4 The Neyman-Pearson Fundamental Lemma

Definition 1.1. A uniformly most powerful (UMP) test is a hypothesis test that has

the greatest power β(θ) among all possible tests of a given size α.

If a class of distributions contains a single distribution then it is called simple, otherwise

it is said to be composite. The problem of hypothesis testing is said to be completely

specified when Ha is simple. Its solution can be given explicitly when the same is true

for H0.

Now, let the distributions under a simple hypothesis H0 and alternative Ha be P0 and

Pa, respectively and suppose that these distributions are discrete with Pi(X = x) =

Pi(x) for i = 0, a.

Theorem 1.2. Let P0 and Pa be probability distributions possessing densities p0 and

p1 respectively with respect to a measure .

(i) Existence. For testing H0 : p0 against the alternative Ha : pa there exists a test φ

and a constant k such that

E0φ(X) = α (1.1)

and

φ(x) =

{
1 when pa(x) > kp0(x)

0 when pa(x) < kpa(x).
(1.2)

(ii) Sufficiency condition for a most powerful test. If a test satisfies 1.1 and 1.2 for

some k, then it is most powerful for testing p0 against pa at level α.

(iii) Necessary condition for a most powerful test. If φ is most powerful at level α for

testing p0 against pa, then for some k it satisfies 1.2 a.e. µ. It also satisfies 1.1 unless

there exists a test of size < α and with power 1.

Proof. We omit the proof. It can be read from here reference.

Corollary 1.3. Let β denote the power of the most powerful level−α test (0 < α < 1)

for testing P0 against Pa. Then α < β unless P0 = Pa.

Proof. Since the level−α test given by φ(x) ≡ α has power α, it is seen that α ≤ β. If

α = β < 1, the test φ(x) ≡ α is most powerful and by Theorem 1.2 (iii) must satisfy

1.2. Then p0(x) = pa(x) a.e. µ and hence P0 = Pa.
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1.5 p−value

The p−value is one another important concept in hypothesis testing. It is defined as

the smallest significance level, at which the null hypothesis would be rejected for the

given observation. In other words, it is the probability of a result as or more extreme

then the actually observed one if the null hypothesis is true. Mathematically, we define

it as the value of the test statistic T on data t

p = sup
θ∈Ω0

P (T ≥ t).

The smaller the p−values is, we have stronger evidence against the null hypothesis.

We have statistically significant results only when p < α, otherwise the results are

disregarded.

Having said all of this, the question is what happens if we increase or decrease α, our

predefined significance level, to an already obtained set of data. That is, one can ask

what happens in the situation if you reject the null hypothesis at a level α1, will you

still reject the null hypothesis at another significance level α2 for which holds that

α1 ≤ α2. The question can be partially answered if we are using at both significance

levels the most powerful nonrandomized α test under the assumption that the null

hypothesis holds. Using the most powerful nonrandomized α test we get the rejection

regions nested, that is

Sα1 ⊂ Sα2 if α1 < α2, (1.3)

where Sα denotes the rejection region for the significance level α. We also have to note

that if we are not using the most powerful nonrandomized α test this does not need

to be the case. But when this is the case, we have the rejection regions nested, and

then we define the p−value as exactly the smallest significance level at which the null

hypothesis would be rejected for the given observation. More formally written we have

the p−value defined as

p̂ (X) = inf {α : X ∈ Sα} .

Returning the p−value gives an idea of how strongly a certain observation contradicts

the null hypothesis. Now we can go on to investigating some general properties of the

p−values with the following theorem:
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Theorem 1.4. Suppose X has distribution Pθ for some θ ⊂ Ω, and the null hypothesis

H specifies θ ∈ Ω0. Assume further the rejection regions satisfy the nesting property

1.3 then we have

(i) if

sup
θ∈Ω0

Pθ {X ∈ Sα} ≤ α for all 0 < α < 1

then the distribution of p̂ under θ ∈ Ω0 satisfies

Pθ {p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1

(ii) if, for θ ∈ Ω0,

Pθ {X ∈ Sα} = α for all 0 < α < 1

then

Pθ {p̂ ≤ u} = u for all 0 ≤ u ≤ 1

that is p̂ is uniformly distributed over (0, 1).

Proof. (i) If θ ∈ Ω0 then because of the nesting property of rejection regions {p̂ ≤ u}
implies {X ∈ Sv} for all u < v . Now from the assumption we have that

Pθ {X ∈ Sv} ≤ v for all 0 ≤ v ≤ 1

since {p̂ ≤ u} implies {X ∈ Sv} for all u < v we will have that

Pθ {p̂ ≤ u} ≤ Pθ {X ∈ Sv} ≤ v for all 0 ≤ v ≤ 1

taking the limit as v −→ u we obtain the following

limv−→u Pθ {p̂ ≤ u} = Pθ {p̂ ≤ u} ≤ limv−→u Pθ {X ∈ Sv}
= Pθ {X ∈ Su}
≤ u

so we obtain

Pθ {p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1

which is exactly what we needed.

(ii) Since we have that the event {X ∈ Su} implies {p̂ ≤ u} which follows directly from

the definition of the p−value and since the first event implies the second we have that

Pθ {p̂ ≤ u} ≥ Pθ {X ∈ Su}

now if the assumption from part (ii) holds (which implies the assumption from part

(i)) we have that

Pθ {p̂ ≤ u} ≥ Pθ {X ∈ Su} = u for all 0 ≤ u ≤ 1

but from part (i) we have that Pθ {p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 so this implies that

Pθ {p̂ ≤ u} = u for all 0 ≤ u ≤ 1

which completes our proof.
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2 Theoretical Part

2.1 Definitions and Theorems

Definition 2.1. The normal distribution with mean µ and variance σ2 is denoted with

N (µ, σ2) and has the probability density function

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

The standard normal distribution is the normal distribution with mean 0 and variance

1.

Definition 2.2. The Chi-square distribution (χ2−distribution) with k degrees of free-

dom is the distribution of the sum of squares of k independent standard normal random

variables. The Chi-square distribution with k degrees of freedom is denoted as χ2
k and

has the probability density function

f(x) =


x(k/2−1)e−x/2

2k/2Γ( k2 )
x > 0;

0 otherwise,

where Γ(k/2) denotes the Gamma function.

Definition 2.3. The Bernoulli distribution with parameter p is the distribution of

a random variable which takes the value 1 with probability p and the value 0 with

probability 1− p. The probability mass function of this distribution is

P (X = k) = pk(1− p)1−k for k ∈ {0, 1} .

Definition 2.4. The Binomial distribution with parameters n and p is the discrete

probability distribution of the number of successes in a sequence of n independent trials

of which each trial has a Bernoulli distribution with parameter p. This distribution

has the probability mass function:

P (X = k) =

(
n

k

)
pk(1− p)1−k,

for k = 1, 2, . . . n.



Tepegjozova M. On the inexactness of Fisher’s exact test for testing the equality of two independent

proportions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 9

Definition 2.5. The Multinomial distribution is the probability distribution that mod-

els the probability of any particular combination of numbers of successes for various

categories where n independent trials are conducted, each of which leads to a success

for exactly one out of the k categories with each category having a given fixed success

probability pi. The multinomial distribution with n trials and p = (p1, . . . , pk) defining

the success probabilities has the probability mass function

P (X1 = x1 and . . . and Xk = xk) =

{
n!

x1!···xk!
px11 · · · p

xk
k when

∑k
i=1 xi = n

0 otherwise,

Definition 2.6. The Hypergeometric distribution is a discrete probability distribution

describing the probability of k successes in n draws from a finite population of size

N containing exactly K successes, without replacement, where each draw is either a

success or a failure.

The probability mass function of hypergeometric distribution is defined as

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) .

Definition 2.7. The Uniform continuous distribution on an interval [a, b], denoted

with U(a, b), is the distribution with the probability mass function

f(x) =

{
1
b−a for a ≤ x ≤ b

0 for x < a or x > b.

The cumulative distribution function of U(0, 1) is

F (x) =


0 : x < 0

x : 0 ≤ x < 1

1 : x ≥ 1.

Theorem 2.8. Lebesgue’s Dominated Convergence Theorem Suppose {fn} is a se-

quence of complex measurable functions on X such that

f(x) = lim
n−→∞

fn(x)

exists for every x ∈ X. If there is a function g ∈ L1(µ) such that

|fn(x)| ≤ g(x)

for n = 1, 2, 3... then f ∈ L1(µ),

lim
n−→∞

∫
X

|fn − f |dµ = 0

and

lim
n−→∞

∫
X

fndµ =

∫
X

fdµ.
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Proof. We omit the proof here. It is given in [15].

Theorem 2.9. Central Limit Theorem Let X1, X2... be a sequence of random variables,

which are independent and identically distributed and let Sn = X1 + ...+Xn. Assume

E(|XI |) <∞ and E(|XI |2) <∞ ∀i, then for any a < b we have

lim
n−→∞

P

{
a ≤ Sn − nµ

δ
√
n
≤ b

}
= φ(b)− φ(a),

where µ = E(X1), δ = var(X1) and φ is the distribution function of standard normal

distribution.

Proof. We omit the proof here. It is given in [10].

Theorem 2.10. Multidimensional Central Limit Theorem Let X1, . . . ,Xn be inde-

pendent Rd-valued vectors, each having mean zero. Write S =
∑n

i=1 Xi and assume

Σ = Cov [S] is invertible. Let Z ∼ N(0,Σ) be a d−dimensional Multinormal distribu-

tion with the same mean and covariance matrix as S. Then for all convex set U ⊆ Rd

we have that

|P [S ∈ U ]− P [Z ∈ U ]| ≤ Cd1/4γ,

where C is a universal constant, γ =
∑n

i=1E
[
||Σ1/2Xi||3

]
.

Proof. We omit the proof here. It is given in [2].

In other words we can interpret this result as that S converges in distribution to Z.
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3 Pearson’s Chi-Squared Test

The Pearson’s Chi-Squared Test is one of the most common tests for testing the inde-

pendence of two binomial proportions. The test is used to determine whether the two

variables are independent of each other or whether there is a pattern of dependence be-

tween them. Under the null hypothesis it assumes that there is no relationship between

the two variables, i.e. that the variables are independent, and under the alternative

hypothesis that there is some relationship between the two variables, that is that there

is a pattern of dependence between them. If we denote the variables as X and Y , the

hypotheses are:

H0 : No relationship between X and Y

Ha : Some relationship between X and Y

In terms of independence we can state them as follows:

H0 : X and Y are independent

Ha : X and Y are dependent

The Chi-Squared Test uses 2× 2 contingency tables to examine the nature of relation-

ship between the two variables. The test will say whether the observed pattern between

the two variables in the table is strong enough to conclude that the two variables are

dependent on each other or not [17].

3.1 Chi-Squared Statistic

The value of the Pearson Chi-square test statistics is defined as follows:

χ2 =
k∑
j=1

(Oj − Ej)2

Ej
= N

k∑
j=1

(
Oj
N
− pj

)2

pj
,

where we use χ2 to denote the cumulative test statistic, for which we will later prove

that it approaches to a χ2−distribution. The notation used is the following: Oi is

the number of observations of type i, N the total number of observations, k the total
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number of cells in the table and Ei is the expected number of outcomes of type i

which is known to be (theoretically) Npi since our sample comes from a Multinomial

distribution.

If we want to test whether there is a statistical dependence between r observations, and

the null hypothesis is chosen to be that the observations are statistically independent,

the contingency table that arises will have r rows and c columns. The theoretical

expectation of a cell in the contingency table, given the assumption of independence

and due to the fact that the cells are chosen from a Multinomial distribution, is

Ei,j = Npi+p+j,

where we define pi+ and p+j as follows:

pi+ =
Oi+

N
=

c∑
j=1

Oi,j

N
and p+j =

O+j

N
=

r∑
i=1

Oi,j

N
.

Thus, plugging in gives us the test statistic to be

χ2 =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
= N

r∑
i=1

c∑
j=1

pi+p+j

(
Oi,j
N
− pi+p+j

pi+p+j

)2

.

Now, we will consider our case of interest, when we examine the case where our test

consists of testing the statistical independence of two observations both having only

two possible outcomes, where the null hypothesis is stated that the observations are

statistically independent. Then our contingency table will have two rows and two

columns, that is the contingency table will look as follows

X Y Total

A a b n1

B c d n2

m1 m2 N

where we denote a = p11, b = p12, c = p21, d = p22 and n1 = Np1+, n2 = Np2+, m1 =

Np+1, m2 = Np+2 and thus our test statistics will look as follows

χ2 =
1

N

[
(aN − n1m1)2

n1m1

+
(bN − n1m2)2

n1m2

+
(cN − n2m1)2

n2m1

+
(dN − n2m2)2

n2m2

]
.

The above form of the test statistic simplifies to the following form

χ2 =
N(ad− bc)2

(a+ b)(c+ d)(a+ c)(b+ d)
,

which is the most common form of the Chi-Square test statistic for 2× 2 contingency

tables.



Tepegjozova M. On the inexactness of Fisher’s exact test for testing the equality of two independent

proportions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 13

3.2 Pearson’s Theorem

Let us consider the following situation: we have r labeled boxes B1, B2, . . . , Br and we

throw n balls X1, X2, . . . , Xn into the boxes randomly and independent of each other

with probabilities of hitting a box with some ball given as

P (Xi ∈ B1) = p1, . . . , P (Xi ∈ Br) = pr,

where we assume that every ball falls in some box, that is that the probabilities

p1, . . . , pr add up to one. Let us now define ϑj as the number of balls that fall into box

j that is

ϑj =
n∑
l=1

I(Xl ∈ Bj).

Further we have that

E(ϑj) =
n∑
l=1

1 · pj + 0 · pj = npj

Now we have the following theorem:

Theorem 3.1. We have that the random variable
r∑
j=1

(ϑj − npj)2

npj
−→ χ2

r−1 (3.1)

converges in distribution to the χ2
r−1 distribution with r − 1 degrees of freedom.

Proof. Let us now observe a fixed box Bj. The random variables

I(X1 ∈ Bj), . . . , I(Xn ∈ Bj)

that indicate whether each observation Xi is in the fixed box Bj or not are indepen-

dent and identically distributed with Bernoulli distribution B(pj) with expectation and

variance

E (I(X1 ∈ Bj)) = P (X1 ∈ Bj) = pj

V ar (I(X1 ∈ Bj)) = pj(1− pj).

Defining the vector Υ =

(
ϑ1−np1√
np1(1−p1)

, . . . , ϑr−npr√
npr(1−pr)

)
and using the Multidimensional

Central Limit Theorem we directly obtain that Υ converges in distribution to Z ∼
N(0,Σ) which has multinormal distribution. Further we know that, by the Central

Limit Theorem, the random variable

ϑj − npj√
npj(1− pj)

=

∑n
l=1 I(Xl ∈ Bj)− npj)√

npj(1− pj)

=

∑n
l=1 I(Xl ∈ Bj)− nE (I(Xl ∈ Bj))√

nV ar (I(Xl ∈ Bj))

−→ N(0, 1)
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converges to the standard normal distribution [14]. Therefore, we have that the random

variable
ϑj − npj√

npj
−→

√
1− pj ·N(0, 1) = N (0, 1− pj) ,

converges to the normal distribution with mean zero and variance
√

1− pj. Let us now

write that
ϑj − npj√

npj
−→ Zj.

where Zj is a random variable with distribution N
(
0,
√

1− pj
)
. Here we need to note

that Zj is a marginal distribution of the multinormal Z since we have that Υ converges

in distribution to Z. And we have that
r∑
j=1

(ϑj − npj)2

npj
−→

r∑
j=1

Z2
j . (3.2)

Unfortunately we can not say much about the distribution of
∑
Z2
j from this result

since we do not know whether the random variables Zj are independent or not. We

can easily see that the random variables ϑj are not independent, because going back to

the definition of the ϑj through balls and boxes we see that the total number of balls

is n so we will have that
∑
ϑj = n and thus if we know the value of n − 1 variables

we will automatically have the value for the n−th. This means that we will need the

covariance between Zi and Zj, but first let us compute the covariance between
ϑj−npj√

npj

and ϑi−npi√
npi

. Since we have that

E

(
ϑj − npj√

npj

)
=
E (ϑj)− npj√

npj
=
npj − npj√

npj
= 0.

Analogously we have also for E
(
ϑi−npi√
npi

)
= 0, thus we have that the covariance of

ϑj−npj√
npj

and ϑi−npi√
npi

is equal to

E

(
ϑj − npj√

npj

ϑi − npi√
npi

)
.

Now to compute this expression we have

E

(
ϑj − npj√

npj

ϑi − npi√
npi

)
=

1

n
√
pipj

(
E(ϑiϑj)− E(ϑinpj)− E(ϑjnpi + n2pipj)

)
=

1

n
√
pipj

(
E(ϑiϑj)− npinpj − npjnpi + n2pipj

)
=

1

n
√
pipj

(
E(ϑiϑj)− n2pipj

)
.

To compute E(ϑjϑi) we will again look at the definition of ϑj and ϑi with balls and

boxes. We will use the fact that one ball can not simultaneously be in two boxes which

means that

I (Xl ∈ Bi) I (Xl ∈ Bj) = 0.
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Thus we will have

E(ϑjϑi) = E

((
n∑
l=1

I (Xl ∈ Bi)

)(
n∑
k=1

I (Xk ∈ Bj)

))

= E

(∑
l=k

I (Xl ∈ Bi) I (Xk ∈ Bj)

)
+ E

(∑
l 6=k

I (Xl ∈ Bi) I (Xk ∈ Bj)

)
= n(n− 1)E (I (Xl ∈ Bi))E (I (Xk ∈ Bj))

= n(n− 1)pipj.

So, the covariance of
ϑj−npj√

npj
and ϑi−npi√

npi
is equal to

1

n
√
pipj

(
n(n− 1)pipj − n2pipj

)
= −√pipj.

Now by Lebesgue Dominant Convergence theorem it follows directly that

E(ZiZj) = −√pjpi ∀i, j.

And since Zj ∼ N(0, 1− pj) we have that E(Z2
j ) = 1− pj. To finish the proof we need

to show that this covariance structure will imply that the sum of Zi’s converges to χ2
r−1.

Let define the random variables G1, . . . , Gr be a sequence of independent identically

distributed random variables with standard normal distribution. And let us define the

vectors

G = (G1, . . . , Gr) and p = (
√
p1, . . . ,

√
pr).

Consider the vector V = G − (G · p)p, where G · p = G1
√
p1 + . . . + Gr

√
pr is the

scalar product of G and p. Now we will prove that V has the same joint distribution

as (Z1, . . . , Zr) = Z. To show this let us consider two coordinates of the vector V

Vi = Gi −
r∑
l=1

Gl
√
pl
√
pi and Vj = Gj −

r∑
l=1

Gl
√
pl
√
pj

and let us compute their covariance which is equal to

E

((
Gi −

r∑
l=1

Gl
√
pl
√
pi

)(
Gj −

r∑
l=1

Gl
√
pl
√
pj

))
.
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since E
(
Gi −

∑r
l=1Gl

√
pl
√
pi
)

= 0, now we have that

E

((
Gi −

r∑
l=1

Gl
√
pl
√
pi

)(
Gj −

r∑
l=1

Gl
√
pl
√
pj

))
=

= E (GiGj)−
r∑
l=1

√
pj
√
plE (GlGi)−

r∑
l=1

√
pi
√
plE (GlGj) +

+
∑
l 6=k

√
pl
√
pk
√
pj
√
piE (GlGk) +

r∑
l=1

pl
√
pi
√
pjE

(
G2
i

)
= −√pj

√
pi −
√
pi
√
pj +

√
pi
√
pj

r∑
l=1

pl

= −√pi
√
pj.

Similarly we have also that

E

(Gi −
r∑
l=1

Gl
√
pl
√
pi

)2
 = 1− pi.

This proves that we have the same joint distributions between (V1, . . . , Vr) and (Z1, . . . , Zr)

since they both have joint multinormal distributions and the same means and covari-

ance structure, which gives us a way to formulate the convergence from 3.2 as

r∑
j=1

(
ϑj − npj√

npj

)2

→
r∑
i=1

(Vi)
2

Now looking at the vector V since we have that |p| = 1 is a unit vector, it means

that the vector W = (G · p) p is a projection of the vector G on the line along p, and

therefore the vector V will be the projection of G onto the plane orthogonal to p. Let

us now consider a new orthonormal coordinate system with the last basis vector equal

to p, in this new coordinate system the vector G will have coordinates

G′ = (G′1, . . . , G
′
r) = GT

obtained from G by orthogonal transformation T that maps the canonical basis into

the new basis. But this means that G′1 . . . , G
′
r will also be independent and identically

standard normally distributed. Also it can be seen that the vector V will have co-

ordinates
(
G′1, . . . , G

′
r−1, 0

)
in the new coordinate system, and therefore we will have

that
r∑
i=1

(Vi)
2 = (G′1)2 + . . .+ (G′r−1)2

but by definition the right hand side of the above equation has Chi-square distribution

with r − 1 degrees of freedom since G′i have standard normal distribution. And this
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ends our proof since we have that

r∑
j=1

(
ϑj − npj√

npj

)2

→
r∑
i=1

(Vi)
2 ∼ χ2

r−1,

where χ2
r−1 is the random variable distributed with the Chi-square distribution with

r − 1 degrees of freedom.

Now that we proved the theorem we go back to the introduction where we defined

the ϑj. It is obvious from the definition of the random variables ϑj and the definition

of the multinomial distribution that all random variables ϑj come from a multinomial

distribution. Having established this we go on to the test statistic of the χ2−test which

as we remember is
k∑
j=1

(Oj − Ej)2

Ej
=

k∑
j=1

(Oj −Npj)2

Npj
,

where Oj are observations from a multinomial distribution and Npj is their expectation.

Having this form we can directly apply Pearson’s theorem to the χ2−test statistic from

where follows that the χ2−test statistic converges in distribution to the Chi-Square

distribution with k − 1 degrees of freedom.

3.3 z-test for two independent proportions

Let us consider the following problem, we are given two coins c1 and c2 and we toss

both coins 20 times. For the first coin we get 12 heads and 8 tails, for the second coin

we get 6 heads and 14 tails. Now does this result imply that the coins have different

probabilities of obtaining head, or is this difference from our trial due to chance only?

The z−test for two independent proportions can be used to address this and similar

problems involving two levels of a discrete random variable. Now we go on to formally

define the z−test.

The z-test for two independent proportions is a statistical test involving proportions

from two levels of a discrete independent variable. This variable may take only two

discrete possible outcomes, mutually exclusive and exhaustive. The null hypothesis

states that the two proportions, lets call them P1 and P2, are equal.

H0 : P1 = P2

Ha : P1 6= P2
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In order for one to be able to use the z−test we must have randomly selected samples

from two independent variables and the samples must be large enough in order to be

able to use a normal approximation.

3.3.1 z−statistic

The z-statistic is defined as the ratio of the difference between the proportions and the

standard error of the difference of the proportions [?]. That is,

z =
difference between the proportions

standard error

Let us assume that we have the same situation as we examined for the χ2 test, that is,

we have two samples of sizes n1 and n2, the number of successes in the first sample is

a, in the second sample is c and the number of failures are b and d, respectively. The

estimate of the difference between two proportion is straight forward, we simply use

the means for the two samples that is

p̂1 =
a

n1

p̂2 =
c

n2

For the standard error of the difference we use quantity that is the square root of the

sum of squares of the standard errors for the first and second sample. This is supported

by the assumption that the two samples come from independent variables where then

the variance is simply the sum of variances. Now the z−test statistics will be derived

as follows

z =
observed difference − expected difference

SE for difference

Going on to find the components for the formal definition of the z−test statistic we

first note that under the null the expected difference p1 − p2 = 0, since p1 = p2, so we

can forget about this part, the observed difference is also easy to obtain, one has only

to take the difference between the two already defined estimates p̂1− p̂2. The standard

error will be computed as the as follows:

SE for difference =
√
SE2

1 + SE2
2

where SE1 is the standard error for the proportion of variable one and SE2 the standard

error for the proportion of variable two. From here we calculate SE1 and SE2 which

are

SE1 =

√
p̂(1− p̂)
n1

SE2 =

√
p̂(1− p̂)
n2
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where we have that p̂ is the estimate of overall proportion, i.e. p̂ = a+c
n1+n2

. So finally

we formally combine all this to define the z−test statistic as

z =
a
n1
− c

n2√
a+c

n1+n2

(
1− a+c

n1+n2

)
n1

+
a+c

n1+n2

(
1− a+c

n1+n2

)
n2

We still have to prove that this test statistic converges to the standard normal random

variable. In order to prove this we note that the standard error will converge to the

standard deviation of average of the two variables, and since our nominator is the

estimated mean minus the expectation, which is zero we have directly by the Central

Limit Theorem that

lim
N→∞

p̂1 − p̂2 − 0√
p̂(1−p̂)
n1

+ p̂(1−p̂)
n2

∼ N(0, 1)

3.4 Equivalence of the Chi-square test and the z−test

As we showed already in the previous section when having a sample from the contin-

gency table

X Y Total

A a b n1

B c d n2

m1 m2 N

the test statistic for the χ2−test is

χ2 =
1

N

[
(aN − n1m1)2

n1m1

+
(bN − n1m2)2

n1m2

+
(cN − n2m1)2

n2m1

+
(dN − n2m2)2

n2m2

]

For the same sample the test statistic for the z−test is

z =
a
n1
− c

n2√
a+c

n1+n2

(
1− a+c

n1+n2

)
n1

+
a+c

n1+n2

(
1− a+c

n1+n2

)
n2

which is equivalent to

z =
an2−cn1

n1n2√
(a+c)(b+d)

(n1+n2)n1n2

Now we will prove that the χ2−statistic is equivalent to the z−statistic squared.
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To do this we will introduce some new notation. Let us define x1 = a
n1

, y1 = b
n1

,

x2 = c
n2

and y2 = d
n2

, further we define

p =
n1x1 + n2x2

n1 + n2

q =
n1y1 + n2y2

n1 + n2

We note that from this it follows that

m1 = a+ c = n1x1 + n2x2 = pN m2 = b+ d = n1y1 + n2y2 = qN

and we have that q = 1− p. Plugging this into the formula for the χ2 test statistic we

obtain

χ2 =
1

N

[
(x1n1N − n1Np)

2

n1Np
+

(y1n1N − n1Nq)
2

n1Nq
+

(x2n2N − n2Np)
2

n2Np
+

(y2n2N − n2Nq)
2

n2Nq

]

=
1

N

[
n1N (x1 − p)2

p
+
n1N (y1 − q)2

q
+
n2N (x2 − p)2

p
+
n2N (y2 − q)2

q

]

= n1

[
(x1 − p)2

p
+

(y1 − q)2

q

]
+ n2

[
(x2 − p)2

p
+

(y2 − q)2

q

]

=
n1 (x1 − p)2 (1− p) + n1 (1− x1 − 1 + p)2 p+ n2 (x2 − p)2 (1− p) + n2 (1− x2 − 1 + p)2 p

pq

=
n1 (x1 − p)2 (1− p) + n1 (p− x1)2 p+ n2 (x2 − p)2 (1− p) + n2 (p− x2)2 p

pq

=

[
n1 (x1 − p)2] [(1− p) + p] +

[
n2 (x2 − p)2] [(1− p) + p]

pq

=
n1 (p− x1)2 + n2 (p− x2)2

pq

Now plugging p = n1x1+n2x2
n1+n2

into the transformed test statistics we obtain

χ2 =
n1

(
n2x1−x2x2
n1+n2

)2

+ n2

(
n1x2−n1x1
n1+n2

)2

pq

=
(x1 − x2)2 (n2

1n2 − n1n
2
2)

pqN2

=
(x1 − x2)2

pq (n1+n2)2

(n2
1n2−n1n2

2)

=
(x1 − x2)2

pq
(

1
n1

+ 1
n2

)
Now substituting back to the standard notation we obtain

χ2 =

(
a
n1
− c

n2

)2(
a+c
n1+n2

)(
b+d
n1+n2

)(
n1+n2

n1n2

) = z2

which is exactly what we needed.
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4 Fisher’s Exact Test

Fisher’s Exact Test, named after its inventor Ronald Fisher, is a statistical significance

test that is most commonly used in the analysis of contingency tables, that is in the

analysis of 2×2 contingency tables. The test is in practice employed mostly with small

sample sizes even though it is valid for all sample sizes. Fisher’s exact test determines

whether there is a statistically significant association between two categorical variables.

While examining Fisher’s test we will assume that we are given two discrete binomial

random variables from which one tells us whether an individual out of the population

is in category A or B and the other tells us whether one individual is in category 1 or

category 2. The setup of Fisher’s exact test when having a population of size n and

taking a sample of total size N will look as follows

• n1 of the subjects belong to category A and n2 belong to category B, such that

n1 + n2 = N

• m1 of the subjects belong to category 1 and m2 belong to category 2, such that

m1 +m2 = N

• There are a subject of category A that belong to category 1 and b subject of

category A belonging to category 2, such that a+ b = n1

• There are c subject of category B that belong to category 1 and d subject of

category B belonging to category 2, such that c+ d = n2

• Similarly it holds that a+ c = m1 and b+ d = m2

The above stated setup for Fisher’s test can be put in a contingency table, given below,

Category 1 Category 2 Total

Category A a b n1

Category B c d n2

Total m1 m2 N

Table 2: Contingency table

Once we are given the table with the values we fix the marginal values m1, m2 and

n1, n2 and then we can calculate the exact probability of the table occurring among
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all tables with the same marginal sums. Calculating this probability relies heavily on

the hypergeometric distribution which we defined previously. In our case, we have that

in the finite population of size n, n1 subjects are of one type and n2 of the other type,

where each subject is either one type or the other. Also, we need to choose a particular

number of subjects of each type, meaning that the probability of the particular table

occurring has hypergeometric distribition. From here we can directly compute the

probability of a given contingency table occurring which is defined as

Definition 4.1. Probability of a given contingency table

pt = P (a = t) =

(
n1

t

)(
n2

m1−t

)(
n
m1

)
for max{0, n1 +m1 − n} ≤ t ≤ min{n1,m1}

We note that a 2×2 contingency table with both margins fixed is completely determined

by one of its elements, that is if we choose a value for any of the elements a, b, c, d of the

table, all the other value will be determined due to the fixed margins. Thus it follows

that the probability of a given table occurring, pt, can be calculated as the probability

of the element a being equal to a given value t.

The p−value of the test is calculated as the sum of the pt values of the contingency

tables that give stronger evidence in favour of Ha.

P − value = P (a ≥ t) =
∑
t0≥t

pt0 =
∑
t0≥t

(
n1

t0

)(
n2

m1−t0

)(
n
m1

)
4.1 Two-Sided P-Values

In the case when we test the null hypothesis against an alternative hypothesis which

is two-sided, we have a few different approaches how to calculate the p−value [1].

• P = P [pa ≤ pt0 ] for the observed value t0.

• another possibility is

P = P [|a− E(a)| ≥ |t0 − E(a)|]

where the hypergeometric E(a) = m1n1/n.

• P = min [P (a ≥ t0), P (a ≤ t0)] plus an attainable probability in the other tail

that is close as possible to, but not greater than one-tailed probability.
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We will omit to deal with two sided p−values in our work and concentrate only on one

sided p−value. The only part in which we use two sided p−value is in our simulation

study where we are analysing the data using the R language which gives two sided

p−values as a result, but the computation is based on multiplying the one sided p−value

with two and thus being equivalent to computing one sided p−values.

4.2 Tea-tasting Experiment

If we go back to the previously defined Lady Tasting Tea experiment we can analyse

this experiment with the Fisher’s Exact Test. Firstly, we observe that there are 4 cups

with milk poured first and 4 with tea poured first, therefore one of the margins is fixed.

Next, we also know, that this information was given to the lady, so she knew that she

had to choose 4 cups of each category. Therefore, the other margin is fixed. So, we

need to calculate the pt values for all tables with all margins equal to 4.

Guess poured first

Poured first Milk Tea Total

Milk a b 4

Tea c d 4

Total 4 4 8

Table 3: Contingency table for the tea-testing experiment

The variable a may take the values 0, 1, 2, 3, 4, thus we will have 5 possible contigency

tables. We will calculate the pt for t ∈ {0, 1, 2, 3, 4}.

p4 =

(
4
4

)(
4
0

)(
8
4

) =
1

70
= 0.014

p3 =

(
4
3

)(
4
1

)(
8
4

) =
32

70
= 0.229

p2 =

(
4
2

)(
4
2

)(
8
4

) =
36

70
= 0.514

p1 =

(
4
1

)(
4
3

)(
8
4

) =
32

70
= 0.229

p0 =

(
4
0

)(
4
4

)(
8
4

) =
1

70
= 0.014
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Also, it is easy to see that their sum is equal to 1, which is what we expect from a

distribution. ∑4
i=0 pi = p0 + p1 + p2 + p3 + p4

= 0.014 + 0.229 + 0.514 + 0.229 + 0.014

= 1

Now, lets calculate the p−value for each of the possible contingency tables:

• the p−value for the table with a = 4 is 0.014,

• for a = 3 is 0.014+0.229=0.243,

• for a = 2 it is 0.014+0.229+0.514=0.757,

• for a = 1 it is 0.014+0.229+0.514+0.229=0.986

• for a = 0 it is 0.014+0.229+0.514+0.229+0.014 =1.

We already said that we have statistically significant results only when p < α, and since

our predefined value of α is 0.05, the only such p−value is 0.014, which is the only case

when we can reject the H0, when the lady successfully guesses all four cups she chooses.

The possible reasons behind the inexactness of the Fisher’s Exact Test are the following:

• discrete null distribution, because the hypergeometric distribution is very discrete

and the pt values can take only a few values in the interval (0, 1) such that the

sum of the all such values is 1,

• conditioning on both margins, which is a fact we already mentioned. Actually, if

we condition on one margin only, we get more possible cases making the statistic

less discrete. In the most extreme case, if we do not condition on any of the

margins we will not get enough information to run a test [3].
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5 Simulations

Definition 5.1. Size of a test is the probability of incorrectly rejecting the null hy-

pothesis. In other words, it is the effective significance level of a test, denoted by

αe.

Definition 5.2. A conservative test is a statistical test for which the true probability

of incorrectly rejecting the null hypothesis is never greater than the predefined nominal

level.

5.1 Inexactness of the Fisher’s Exact Test

As we already mentioned we will use simulations to show that the Fisher’s Exact test

is conservative and that for small sample sizes, for which is mostly used, the effective

significance level never reaches the nominal level. The nominal significance level in our

simulations is chosen to be α = 0.05. We simulate the test for different sample sizes, de-

noted by N and for different probabilities in the binomial samples that we use, denoted

by p. The values for the sample sizes that we use are (5, 10, 15, 20, 25, 30, 50, 75, 100)

and each of them was tested for different p, probabilities in the binomial distribution

from where we generate the sample. Each step was of the simulation was run 10000

times. R language for statistical computation was used to conduct the analysis [18].

Figure 1: Sample size N = 5
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The first case was for a small sample size of only 5. In this case we generated a curve

showing how the effective rate behaves as we change the value of the p. We can easily

see that the effective level is much smaller than the expected nominal value of 0.05.

The highest effective rate we get is 0.0238 for the value p = 0.47 and in such a small

sample this test is really conservative, it never reaches any value near the nominal 0.05.

Figure 2: Sample size N = 10

The second case we considered was taking a sample of size 10. Similarly as before, we

generated a curve showing how the effective rate behaves as we change the value of

the p. We can easily see that the effective level is in a very small range around 0.012,

which is much below the expected nominal value of 0.05. The highest effective rate we

get is 0.0141 for the value p = 0.58 and again, in such a small sample this test is really

conservative, it never reaches any value near the nominal 0.05.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.0055 0.0171 0.0165 0.0157 0.0173 0.0009

Table 4: Sample size N = 15

Then we took slightly larger sample of 15, for which we only considered a few different

values of p, namely the values 0.1,0.25,0.4,0.5,0.8 and 0.95. Analysing the table above

we can again see that the effective rate again stays very small, and the highest value

we produced, 0.0173, is much smaller then our given nominal level of 0.05.
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Figure 3: Sample size N = 20

Next, we considered a sample of size 20. Similarly as before, we generated a curve

showing how the effective rate behaves as we change the value of the p. We can easily

see that the effective level is in a very small range around 0.025, which is below the

expected nominal value of 0.05. The highest effective rate we get is 0.0273 for the

value p = 0.31 and again, in such a small sample this test is really conservative, it

never reaches any value near the nominal 0.05.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.0073 0.0221 0.0301 0.0332 0.0207 0.0011

Table 5: Sample size N = 25

Then we took slightly larger sample of 25, for which we only considered a few different

values of p, namely the values 0.1,0.25,0.4,0.5,0.8 and 0.95. Analysing the table above

we can again see that the effective rate again stays very small, and the highest value we

produced, 0.0332, is greater then the values we had before, but again not close enough

to our given nominal level of 0.05.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.0086 0.0248 0.023 0.0253 0.0238 0.0014

Table 6: Sample size N = 30

As we had a trend of getting greater αe we increased the sample a little bit, and

considered a sample of size 30. Again, we used a few different values of p, the values

0.1,0.25,0.4,0.5,0.8 and 0.95. Analysing the table above we can again see that the

effective rate again stays very small, and the highest value we produced, 0.0253, is less
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then the values we had before for the sample of 25, so there is no trend of increasing

the αe as we increase sample size, when considering small samples.

Figure 4: Sample size N = 50

Next, we considered a sample of size 50. Again we generated a curve showing how

the effective rate behaves as we change the value of the p. We can easily see that the

effective level is in a very small range around 0.03, which is below the expected nominal

value of 0.05. The highest effective rate we get is 0.0358 for the value p = 0.47 and

again, in such a small sample this test is really conservative, it never reaches any value

near the nominal 0.05.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.0282 0.0321 0.0378 0.0457 0.0286 0.0152

Table 7: Sample size N = 75

Then we consider a sample of size of 75. We did the simulations for a few values of

5, 0.1,0.25,0.4,0.5,0.8 and 0.95, and we got better results then before. In this case the

αe for p = 0.1, which is quite an extreme case, is 0.0282 which is greater then all such

values for smaller samples. For p = 0.5 we have αe = 0.0457 which is very close to

0.05, but it will never reach it, because as p will increase the αe will decrease.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.0276 0.0359 0.035 0.0422 0.0297 0.0219

Table 8: Sample size N = 100

Next, we increase the sample size to 100. In this case we have greater αe for p = 0.25,

p = 0.8 and p = 0.95, so all extreme cases that are very close, then in the previous case,
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but in the other cases this does not happen. For p = 0.05 we are getting smaller αe,

of 0.0422. So, again the test is conservative and does not reach that close the nominal

level.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.02986 0.0395 0.0408 0.0426 0.0343 0.0325

Table 9: Sample size N = 200

Now, we consider a sample of size 200. From the table, we can easily see that the

results are getting closer to the nominal level. Even thought we twice increased the

sample size, from 100 to 200, αe for p = 0.05 changes just a little bit, from 0.0422 to

0.0426. However, all the αe got higher and closer to 0.05, but never 0.05.

p 0.1 0.25 0.4 0.5 0.8 0.95

αe 0.0387 0.045 0.0452 0.04832 0.04267 0.0347

Table 10: Sample size N = 500

Finally, we consider a sample of size 500. Looking at the table with our αe it is easy to

see that almost all αe are quite close to 0.05 then in the other case for smaller sample

size. αe even reaches 0.04832 which is the closest we get to 0.05.

Comparing all these results, shows us that the Fisher’s Exact Test is indeed conser-

vative. Analysing the simulations, we can see that as we increase the sample sizes

the effective rate gets bigger, but not big enough to reach the nominal level of 0.05.

However, this trend is not consistent for small samples, but is what we expect from a

conservative test. Also, it is easy to see that if the binomial samples are having value p

close to 0 or 1, the test works much worse then it works for values of p near 0.5. In all

our cases, we got the highest αe in a small range around the p = 0.5. We can expect

that as the sample size increases the Fisher’s test will work better, but only when we

have infinite sample we may reach to have equal nominal and effective rate.

All in all, even that the test is said to be exact, it is conservative for small sample sizes,

for which it is mostly used and is believed to be very exact. It incorrectly rejects the

null hypothesis much less that the nominal vale which is what we expected to see.
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5.2 Comparison between the Fisher’s Exact Test

and the χ2 Test

When we want to distinguish which test to use for a specific case, usually it is said

to use the Fisher’ Exact Test for small samples and use the χ2 Test for large samples.

However, we already saw that the Fisher’s Test is very conservative for small samples,

and that even for larger samples is stays quite conservative. For the usage of the χ2

test it is usually said that the only restriction we need to consider is that the expected

number of cases should exceed 5 in most cells of the contingency table, because the test

statistic only asymptotically converges to the χ2 distribution. Therefore it is advised

to use it for large sample sizes, while for small sample sizes to use the Fisher’s test.

That is why we ran simulations for different sample sizes, and compared the effective

rates for the Fisher’s and the χ2 test. We took sample sizes of 30, 50, 100 and 200.

In the first case, the sample size was 30, and we got very interesting results. Almost

everywhere the αe for both tests was the same. This is quite opposite of what we

expected, because the Fisher’s test was expected to perform better, but it performed

exactly as the χ2 test. In the table some of the values of αe for the tests is given and

we can easily see that those values are indeed the same for both tests. Also, in the

appendix all the values can be seen that we got from the simulations.

p 0.1 0.25 0.4 0.5 0.8 0.95

Fisher’s effective rate 0.0103 0.0269 0.0280 0.0287 0.0255 0.0012

Chi-squared effective rate 0.0103 0.0269 0.0280 0.0287 0.0255 0.0012

Table 11: Sample size N = 30

In the second case, the sample size was 50, and we got similar results as before. Almost

everywhere the αe for both tests was the same. Again, the Fisher’s test performed

exactly as the χ2 test. In the table some of the values of αe for the tests is given and

we can easily see that those values are indeed the same for both tests. Also, in the

appendix all the values can be seen that we got from the simulations.

p 0.1 0.25 0.4 0.5 0.8 0.95

Fisher’s effective rate 0.0163 0.0307 0.0297 0.0391 0.0289 0.0081

Chi-squared effective rate 0.0163 0.0307 0.0297 0.0391 0.0289 0.0081

Table 12: Sample size N = 50
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Then we performed simulations for bigger samples, of 100 and 200. In both cases we

got similar results, the αe for both cases are again very close. This is an expected

result, because we expect that for large sample sizes he both test to work very similar.

In the case of sample of size 100, there is just a small difference for values of p on

the boundaries, when it is very close to 0 or to 1. And, in the other case, when the

sample size is 200, the αe matches for both of the test almost everywhere, even at the

boundaries of the value of p.

Figure 5: Samples of sizes N = 100 and N = 200

All in all, we can conclude that both tests, Fisher’s Exact Test and the χ2 test perform

similarly, both for small and large sample sizes. Also, they are both very conservative,

and produce values of αe much smaller then the nominal level, α = 0.05.
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6 Conclusion

Our goal was to see the inexact behaviour of the Fisher’s exact test and see its behaviour

compared to the other tests used instead of Fisher’s test.

Firstly, we elaborately explained the concept of hypothesis testing, what categorical

variable is, the 2 × 2 contingency table we used and included some important results

about hypothesis testing. One of them is the proof that under the null hypothesis the

distribution of the p−values is uniform on the interval (0, 1) and the Neyman-Pearson

Fundamental Lemma about uniformly most powerful tests.

For testing the association between two binary categorical variables, a few well known

tests are used. One of them is the χ2−test, for which we showed how to derive the test

statistic in the general case for r× c contingency tables. Then using the Person’s The-

orem we showed that it asymptotically converges to the χ2 distribution. Afterwards,

we focused on the special case of 2 × 2 contingency tables, used for variables having

only two levels. In this case we proved that the χ2 test statistic is equal to the square

of the z-test statistic for two proportions, from which we concluded that the χ2 test

for 2× 2 contingency tables is equivalent to the z−test for testing the equality of two

independent proportions. The z−test is another statistical test involving proportions

from two levels of a discrete independent variable. This variable may take only two

discrete possible outcomes, mutually exclusive and exhaustive.

Next, we had Fisher’s exact test, as one of the most commonly used methods for testing

the association between two categorical variables. The historical background of this

test is very interesting, as Fisher came up with this idea because he doubted that one of

his friends can distinguish whether in a cup of tea the tea or the milk was poured first.

Therefore, we also included the historical background of the test and the theory behind

the well known Lady Tasting Tea experiment. Further, we explained how the Fisher’s

exact test is based on the hypergeometric discrete distribution of the predefined test

statistic. We included an example how we can perform the test, and how different test

statistics are defined, based whether we have one-sided or two-sided test.
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At the end, after defining all the theoretical background, we did simulations and showed

the inexactness of Fisher’s test. While the χ2−test is known to be only approximate

test, i.e. its size is equal to the nominal level when n goes to infinity, we show that also

the Fisher’s exact test is inexact with small samples using 2 × 2 contingency tables.

The Fisher’s exact test is said to be a test for which the nominal level is equal to

the effective type I error, but that is not the case. It is actually a conservative test,

meaning that the true probability of incorrectly rejecting the null hypothesis is never

greater or equal to the nominal level. There are a few reasons for its conservatism,

such as the discrete null distribution, the usage of a fixed nominal level and the con-

ditioning on two margins. We showed this in the analysis of our simulation study. We

also wanted to see how Fisher’s test behaves with comparison to the χ2 test, and even

though we expected better results from Fisher’s test we actually got the same effective

rates for both tests, even thought we expected that Fisher’s test will work better for

small samples, as it is usually advised to be used in such cases. To conclude with, both

Fisher’s exact test and the asymptotic χ2−test are both conservative statistical test,

giving very similar results both for small and large samples.
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7 Povzetek naloge v slovenskem

jeziku

Testiranje hipotez je zelo pomemben koncept v statistiki. Statistična hipoteza je nare-

jena na podlagi opazovanj, ki jih imamo in nato odvisno od tega kakšne podatke imamo,

uporabljamo poseben test. Ničelna hipoteza je postavljena a na takšen način, da jo

želimo zavrnuti, ne pa sprejeti. Testiranje hipotez ima veliko različnih aplikacij, eden

od njih pa preverja, ali obstaja povezava med kategoričnimi spremenljivkami. Kat-

egorična spremenljivka je spremenljivka, ki je določena z nivoji ali kategorijami. V

našem primeru nas je zanimalo testiranje povezave med dvema kategoričnima spre-

menljivkama. Na primer, želimo vedeti, ali obstaja povezava med deležem ljudi, ki

kadijo v ženski in moški populaciji. Torej, oseba je bodisi kadilec ali ne, bodisi moški

ali ženska, kar nam daje dve kategorični spremenljivki. Pojasnili smo koncept testiranja

hipotez, kaj je kategorični datum, kaj je tabela kontigentnosti 2× 2, ki smo jo upora-

bili, in vključili smo nekaj pomembnih rezultatov testiranja hipotez. Eden od njih je

dokaz, da je pod ničelno hipotezo porazdelitev p−vrednosti enakomerna na intervalu

(0, 1) in Neyman-Pearsonova Fundamentala Lema o enakomerno najmočneǰsih testih.

Za testiranje povezave dveh binarnih kategoričnih spremenljivk se uporablja nekaj do-

bro znanih testov. Točen test Fisherja je ena od najpogosteǰse uporabljenih metod za

testiranje povezave med dvema kategoričnima spremenljivkama. Zgodovinsko ozadje

tega testa je zelo zanimivo, saj je Fisher prǐsel do te ideje, ker je dvomil, da lahko

eden od njegovih prijateljev razlikuje, ali je v skodelici čaja najprej nalit čaj ali mleko.

Zato smo vključili tudi zgodovinsko ozadje testa in teorijo v ozadju zelo znanega Lady

Tasting Tea testa. Temelji na hipergeometrični diskretni porazdelitvi vnaprej določene

testne statistike. Drugi test je χ2 test, za katerega smo pokazali, kako izpeljati testno

statistiko v splošnem primeru za r × c kontingenčno tabelo. Potem smo z uporabo

Personeva izreka pokazali, da asimptotsko konvergira proti χ2 porazdelitvi. Nato smo

se osredotočili na poseben primer 2 × 2 kontingenčne tabele, ki so uporablja za spre-

menljivke, ki imajo le dva nivoja. V tem primeru smo dokazali, da je χ2 statistika

enaka kvadratu statistike z−testa za dva deleža, iz katerega smo ugotovili, da je χ2

test za 2× 2 kontingenčne tabele enakovreden z-testu za testiranje enakosti dva neod-

visna deleža. Z-test je še en statistični test, ki vključuje deleže dva nivoja diskretne
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neodvisne spremenljivke. Ta spremenljivka lahko vključuje le dva ločena možna izida,

medsebojno izključujoči in izčrpni. Medtem, ko sta zadnja dva testa znana le kot

približna testa, oziroma njihova velikost je enaka nominalnem nivoju, ko n gre proti

neskončno, smo mi pokazali, da je tudi Fisherjev natančen test nenatančen z majhnimi

vzorci z uporabo 2 × 2 kontingenčnih tabel. Točen test Fisherja naj bi bil točen test,

kar pomeni, da je statistični test, pri katerem je nominalni nivo enak napaki tipa I,

vendar temu ni tako. Pravzaprav je konzervativni test, kar pomeni, da prava verjet-

nost nepravilne zavrnitve ničelne hipoteze nikoli ni večja ali enaka nominalnem nivoju.

Obstaja nekaj razlogov za njegov konservatizem, kot je diskretna ničelna porazdelitev,

uporaba točneg nominalnega nivoja pogojevano na dveh robovih. Prav tako smo želeli

videti, kako se Fisherjev test obnaša v primerjavi s testom χ2, in čeprav smo pričakovali

bolǰse rezultate iz Fisherjevega testa, smo dejansko dobili enake efektivne stopnje za

oba testa, čeprav smo pričakovali, da bo Fisherjev test bolǰse deloval pri majhnih vzor-

cih, saj je v takšnih primerih priporočljivo, da se uporablja. Da zaključimo, Fisherjev

natančen test in asimptotski χ2 test sta oba konzervativna statistična testa, ki dajeta

zelo podobne rezultate tako za majhne kot velike vzorce.
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Appendices



A Tables for comparison of αe for

Fisher’s and χ2 test

Sample size N = 30
p αe for Fisher’s test αe for χ2 test p αe for Fisher’s test αe for χ2 test

0.01 0.0000 0.0000 0.51 0.0238 0.0238

0.02 0.0000 0.0000 0.52 0.0284 0.0284

0.03 0.0002 0.0002 0.53 0.0264 0.0264

0.04 0.0005 0.0005 0.54 0.0242 0.0242

0.05 0.0020 0.0020 0.55 0.0270 0.0270

0.06 0.0024 0.0024 0.56 0.0251 0.0251

0.07 0.0049 0.0049 0.57 0.0276 0.0276

0.08 0.0064 0.0064 0.58 0.0229 0.0229

0.09 0.0080 0.0080 0.59 0.0242 0.0242

0.10 0.0103 0.0103 0.60 0.0257 0.0257

0.11 0.0112 0.0112 0.61 0.0240 0.0240

0.12 0.0126 0.0126 0.62 0.0257 0.0257

0.13 0.0130 0.0130 0.63 0.0273 0.0273

0.14 0.0153 0.0153 0.64 0.0266 0.0266

0.15 0.0178 0.0178 0.65 0.0253 0.0253

0.16 0.0203 0.0203 0.66 0.0299 0.0299

0.17 0.0190 0.0190 0.67 0.0263 0.0263

0.18 0.0191 0.0191 0.68 0.0281 0.0281

0.19 0.0228 0.0228 0.69 0.0266 0.0266

0.20 0.0212 0.0212 0.70 0.0284 0.0284

0.21 0.0204 0.0204 0.71 0.0242 0.0242

0.22 0.0239 0.0239 0.72 0.0256 0.0256

0.23 0.0266 0.0266 0.73 0.0245 0.0245

0.24 0.0257 0.0257 0.74 0.0279 0.0279

0.25 0.0269 0.0269 0.75 0.0252 0.0252

0.26 0.0257 0.0257 0.76 0.0268 0.0268

0.27 0.0263 0.0263 0.77 0.0251 0.0251

0.28 0.0220 0.0220 0.78 0.0255 0.0255

0.29 0.0233 0.0233 0.79 0.0219 0.0219

0.30 0.0287 0.0287 0.80 0.0255 0.0255

0.31 0.0257 0.0257 0.81 0.0214 0.0214

0.32 0.0267 0.0267 0.82 0.0206 0.0206

0.33 0.0231 0.0231 0.83 0.0183 0.0183

0.34 0.0281 0.0281 0.84 0.0179 0.0179

0.35 0.0270 0.0270 0.85 0.0162 0.0162

0.36 0.0256 0.0256 0.86 0.0139 0.0139

0.37 0.0242 0.0242 0.87 0.0160 0.0160

0.38 0.0269 0.0269 0.88 0.0146 0.0146

0.39 0.0245 0.0245 0.89 0.0138 0.0138

0.40 0.0280 0.0280 0.90 0.0108 0.0108

0.41 0.0251 0.0251 0.91 0.0068 0.0068

0.42 0.0289 0.0289 0.92 0.0069 0.0069

0.43 0.0271 0.0271 0.93 0.0051 0.0051

0.44 0.0245 0.0245 0.94 0.0025 0.0025

0.45 0.0242 0.0242 0.95 0.0012 0.0012

0.46 0.0262 0.0262 0.96 0.0001 0.0001

0.47 0.0301 0.0301 0.97 0.0002 0.0002

0.48 0.0312 0.0312 0.98 0.0000 0.0000

0.49 0.0288 0.0288 0.99 0.0000 0.0000

0.50 0.0287 0.0287 - - -



Sample size N = 50
p αe for Fisher’s test αe for χ2 test p αe for Fisher’s test αe for χ2 test

0.01 0.0000 0.0000 0.51 0.0336 0.0336

0.02 0.0003 0.0003 0.52 0.0340 0.0340

0.03 0.0019 0.0019 0.53 0.0315 0.0315

0.04 0.0043 0.0043 0.54 0.0344 0.0344

0.05 0.0075 0.0075 0.55 0.0368 0.0368

0.06 0.0117 0.0117 0.56 0.0351 0.0351

0.07 0.0124 0.0124 0.57 0.0337 0.0337

0.08 0.0146 0.0146 0.58 0.0304 0.0304

0.09 0.0161 0.0161 0.59 0.0349 0.0349

0.10 0.0163 0.0163 0.60 0.0319 0.0319

0.11 0.0182 0.0182 0.61 0.0301 0.0301

0.12 0.0201 0.0201 0.62 0.0356 0.0356

0.13 0.0209 0.0209 0.63 0.0358 0.0358

0.14 0.0236 0.0236 0.64 0.0319 0.0319

0.15 0.0234 0.0234 0.65 0.0298 0.0298

0.16 0.0236 0.0236 0.66 0.0285 0.0285

0.17 0.0262 0.0262 0.67 0.0321 0.0321

0.18 0.0245 0.0245 0.68 0.0321 0.0321

0.19 0.0251 0.0251 0.69 0.0264 0.0264

0.20 0.0266 0.0266 0.70 0.0320 0.0320

0.21 0.0282 0.0282 0.71 0.0338 0.0338

0.22 0.0328 0.0328 0.72 0.0329 0.0329

0.23 0.0268 0.0268 0.73 0.0302 0.0302

0.24 0.0308 0.0308 0.74 0.0306 0.0306

0.25 0.0307 0.0307 0.75 0.0312 0.0312

0.26 0.0279 0.0279 0.76 0.0302 0.0302

0.27 0.0292 0.0292 0.77 0.0290 0.0290

0.28 0.0288 0.0288 0.78 0.0319 0.0319

0.29 0.0275 0.0275 0.79 0.0291 0.0291

0.30 0.0307 0.0307 0.80 0.0289 0.0289

0.31 0.0315 0.0315 0.81 0.0289 0.0289

0.32 0.0287 0.0287 0.82 0.0264 0.0264

0.33 0.0311 0.0311 0.83 0.0251 0.0251

0.34 0.0307 0.0307 0.84 0.0248 0.0248

0.35 0.0296 0.0296 0.85 0.0236 0.0236

0.36 0.0282 0.0282 0.86 0.0225 0.0225

0.37 0.0298 0.0298 0.87 0.0206 0.0206

0.38 0.0268 0.0268 0.88 0.0193 0.0193

0.39 0.0320 0.0320 0.89 0.0191 0.0191

0.40 0.0297 0.0297 0.90 0.0167 0.0167

0.41 0.0356 0.0356 0.91 0.0169 0.0169

0.42 0.0336 0.0336 0.92 0.0153 0.0153

0.43 0.0335 0.0335 0.93 0.0118 0.0118

0.44 0.0335 0.0335 0.94 0.0103 0.0103

0.45 0.0318 0.0318 0.95 0.0081 0.0081

0.46 0.0365 0.0365 0.96 0.0040 0.0040

0.47 0.0327 0.0327 0.97 0.0026 0.0026

0.48 0.0377 0.0377 0.98 0.0001 0.0001

0.49 0.0343 0.0343 0.99 0.0000 0.0000

0.50 0.0391 0.0391 - - -


