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Abstract

This PhD thesis consists of three interrelated parts: 1-perfectly orientable graphs, graph
products, and the price of connectivity. The central common theme among the three parts is
the study of graph classes. In particular, three well known intersection graph classes will play
a key role in many of our results: chordal graphs, interval graphs, and circular arc graphs.

Following the terminology of Kammer and Tholey, we say that an orientation of a graph is
1-perfect if the out-neighborhood of every vertex induces a tournament, and that a graph is 1-
perfectly orientable if it has a 1-perfect orientation. This hereditary graph class forms a common
generalization of the classes of chordal graphs and circular arc graphs. 1-perfectly orientable
graphs are known to be polynomially recognizable, but a complete structural understanding
of the class, a problem posed in 1982 by Skrien, is still an open question. In the thesis we
obtain characterizations of 1-perfectly orientable graphs in various graph classes, including
cographs, block-cactus graphs, cobipartite graphs, K4-minor-free graphs, outerplanar graphs,
and nontrivial product graphs for each of the four standard graph products (Cartesian, direct,
strong, and lexicographic product).

As a consequence of the characterization of nontrivial 1-perfectly orientable product graphs,
characterizations of when a nontrivial product of two graphs is chordal, interval, or circular arc,
respectively, are derived.

For a family of graphs F , an F-transversal of a graph G is a subset S ⊆ V (G) that intersects
every subset of V (G) that induces a subgraph isomorphic to a graph in F . Given a connected
graph G, we denote by tF (G) the minimum size of an F-transversal of G, and by ctF (G) the
minimum size of an F-transversal of G that induces a connected graph. For a class of connected
graphs, we say that the price of connectivity of F-transversals is multiplicative if, for all G in
the class, ctF (G)/tF (G) is bounded by a constant, and additive if ctF (G)− tF (G) is bounded
by a constant. The price of connectivity is zero-additive if tF (G) and ctF (G) are always equal
and unbounded if ctF (G) cannot be bounded in terms of tF (G). The price of connectivity
is discussed in the context of hereditary graph classes defined by a single forbidden induced
subgraph.
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Povzetek

Disertacija je sestavljena iz treh medsebojno povezanih delov: 1-popolno usmerljivi grafi,
produktni grafi in cena povezanosti. Skupna točka vsem trem delom je proučevanje razredov
grafov. Pomembno vlogo v naših raziskavah imajo trije znani presečni razredi grafov: tetivni
grafi, intervalni grafi in grafi krožnih lokov.

Z uporabo terminologije Kammerja in Tholeyja pravimo, da je usmeritev grafa 1-popolna,
če izhodna soseščina vsake točke inducira turnir, in da je graf 1-popolno usmerljiv, če pre-
more 1-popolno orientacijo. Omenjeni razred grafov tvori skupno posplošitev razredov tetivnih
grafov in grafov krožnih lokov. Kljub temu da lahko 1-popolno usmerljive grafe prepoznamo v
polinomskem času, pa je razumevanje strukture tega razreda grafov, problem, ki ga je že leta
1982 podal Skrien, še vedno odprt problem. V disertaciji podamo karakterizacije 1-popolno us-
merljivih grafov, ki pripadajo različnim grafovskim razredom, vključujoč kografe, bločno-kaktus
grafe, ko-dvodelne grafe, grafov brez K4 minorja, zunanje ravninske grafe in netrivialne pro-
duktne grafe za vsakega od štirih standardnih grafovskih produktov (kartezičnega, direktnega,
krepkega in leksikografskega).

Kot posledica karakterizacije netrivialnih 1-popolno usmerljivih produktnih grafov so izpel-
jane tudi karakterizacije, kdaj je netrivialni produkt dveh grafov tetiven graf, intervalen graf
ali graf krožnih lokov.

Za družino grafov F je F-trasverzala grafa G poljubna podmnožica S ⊆ V (G), ki ima
neprazen presek z vsako podmnožico množice V (G), ki inducira podgraf, izomorfen grafu iz F .
Naj bo tF (G) minimalna velikost F-transverzale grafa G in naj bo ctF (G) minimalna velikost F-
transverzale grafa G, ki inducira povezan graf. Za razred povezanih grafov G rečemo, da je cena
povezanosti F-transverzal multiplikativna, če je za vse grafe G ∈ G razmerje ctF (G)/tF (G)
omejeno s konstanto, in aditivna, če je razlika ctF (G) − tF (G) omejena s konstanto. Cena
povezanosti je ničelno aditivna, če sta vrednosti tF (G) in ctF (G) vedno enaki, in neomejena, če
je vrednost ctF (G) neomejena glede na tF (G). Ceno povezanosti preučimo v kontekstu heredi-
tarnih grafovskih razredov definiranih s pomočjo enega prepovedanega induciranega podgrafa.

Math. Subj. Class (2010): 05C20, 05C40, 05C62, 05C69, 05C75, 05C76
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Chapter 1

Introduction

The PhD thesis consists of three interrelated parts: 1-perfectly orientable graphs, graph prod-
ucts, and the price of connectivity. The central common theme among the three parts is the
study of graph classes. In particular, three well known intersection graph classes will play a key
role in many of our results: chordal graphs, interval graphs, and circular arc graphs. A graph
G is said to be chordal if it is the intersection graph of subtrees of a tree (equivalently, if every
cycle of length at least 4 in G has a chord), interval if it is the intersection graph of a family of
closed intervals on the real line, and circular arc if it is the intersection graph of a set of closed
arcs on a circle. The classes of chordal, interval, and circular arc graphs are well studied in the
literature. Every interval graph is both a chordal and a circular arc graph; both inclusions are
proper. Chordal graphs and interval graphs are subclasses of the class of perfect graphs. For
more information on these graph classes we refer the reader to [10,25,37,41,58,59], for example.

It has been shown by Kammer and Tholey [55] that several geometric intersection graph
classes are k-perfectly orientable, that is, they admit an orientation in which the out-
neighborhood of every vertex can be covered with at most k cliques.

The first main topic of the PhD thesis will be that of 1-perfectly orientable graphs. A
tournament is an orientation of a complete graph. We say that an orientation of a graph is
1-perfect if the out-neighborhood of every vertex induces a tournament and that a graph is
1-perfectly orientable (1-p.o. for short) if it admits a 1-perfect orientation.

The notion of 1-p.o. graphs was introduced by Skrien [81] in 1982 (under the name {B2}-
graphs), where the problem of characterizing this graph class was posed. By definition, 1-
p.o. graphs are exactly the graphs that admit an orientation that is an out-tournament. A
simple arc reversal argument shows that that 1-p.o. graphs are exactly the graphs that admit
an orientation that is an in-tournament. Such orientations were called fraternal orientations in
several papers [35,36,38,39,65,66,85].

1-p.o. graphs form a hereditary class of graphs that forms a common generalization of the two
well studied classes of chordal graphs and circular arc graphs, as observed in [85] and in [81,85],
respectively. While a structural understanding of 1-p.o. graphs is still an open question, partial
results are known. Bang-Jensen et al. [4] (see also [70]) gave characterizations of 1-p.o. line
graphs and of 1-p.o. triangle-free graphs and proved that every graph having a unique induced
cycle of order at least 4 is 1-p.o..

We will develop several results about the structure of 1-perfectly orientable graphs. In
particular, we will give a characterization of 1-perfectly orientable graphs in terms of edge
clique covers, identify several graph transformations preserving the class of 1-perfectly orientable
graphs, exhibit an infinite family of minimal forbidden induced minors for the class of 1-perfectly
orientable graphs, and characterize the class of 1-perfectly orientable graphs within the classes
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of cographs and of cobipartite graphs. We will show that the class of 1-perfectly orientable
cobipartite graphs coincides with the class of cobipartite circular arc graphs. As a side result
we will define a new infinite family of bipartite graphs and show that their complements are
1-p.o.

Based on a reduction of the study of 1-perfectly orientable graphs to the biconnected case,
we will characterize, both in terms of forbidden induced minors and in terms of composition
theorems, the classes of 1-perfectly orientable block-cactus graphs, 1-perfectly orientable K4-
minor-free graphs and of 1-perfectly orientable outerplanar graphs. As part of our approach,
we will introduce a class of graphs defined similarly as the class of 2-trees and relate the classes
of graphs under consideration to two other graph classes closed under induced minors studied
in the literature: cyclically orientable graphs and graphs of separability at most 2.

The second topic to be studied in this thesis is that of graph products. Product graphs within
various graph classes have been considered in several papers; however, complete characteriza-
tions of graph theoretic properties within all four standard products (Cartesian, direct, strong,
and lexicographic) are often difficult to obtain. Ravindra and Parthasarathy [74] characterized
perfect Cartesian, direct, and lexicographic product graphs; the Cartesian case was also studied
further by de Werra and Hertz [20]. There is no known characterization of perfect strong prod-
uct graphs; partial characterizations and sufficient conditions were obtained by Ravindra [73]
(see also [1]). Characterizations of line graphs and total graphs for various products were given
by Rao [71] and by Rao and Vartak [72], of modulo m well covered lexicographic product graphs
by Orlovich [69], and of uniquely pairable Cartesian product graphs by Che [14]. The results of
this thesis will contribute to the knowledge of characterizations of graph classes within graphs
decomposable with respect to one of the four standard graph products, by adding 1-perfectly
orientable, chordal, interval, and circular arc graphs to the list.

The third topic that will be considered in the thesis is the so-called price of connectivity.
For a family of graphs F , an F-transversal of a graph G is a subset S ⊆ V (G) that intersects
every subset of V (G) that induces a subgraph isomorphic to a graph in F . Let tF (G) be the
minimum size of an F-transversal of G, and ctF (G) be the minimum size of an F-transversal
of G that induces a connected graph. For a class of connected graphs G, we say that the price
of connectivity of F-transversals is multiplicative if, for all G ∈ G, the ratio ctF (G)/tF (G) is
bounded by a constant, and additive if the difference ctF (G)− tF (G) is bounded by a constant.
The price of connectivity is zero-additive if tF (G) and ctF (G) are always equal and unbounded if
ctF (G) cannot be bounded in terms of tF (G). In certain cases, F-transversals are well studied.
For example, a vertex cover is a {P2}-transversal and a feedback vertex set is an F-transversal
for the infinite family F = {C3, C4, C5, . . .}. As the examples suggest, it is natural to study
minimum size F-transversals.

We can put an additional constraint on an F-transversal S of a connected graph G by
requiring that the subgraph of G induced by S is connected. Minimum size connected F-
transversals of a graph have been investigated. In particular, minimum size connected vertex
covers are well studied (see, for example, [8,11,12,21,27,33,79,89]) and minimum size connected
feedback vertex sets have also received attention (see, for example, [6, 19,42,62,80]).

In the PhD thesis we will consider the following question: What is the effect of adding the
connectivity constraint on the minimum size of an F-transversal for a graph family F?

More precisely, we will study classes of graphs characterized by one forbidden induced sub-
graph H and F-transversals where F contains an infinite number of cycles and, possibly, also
one or more anticycles or short paths. We aim to determine exactly those classes of connected
H-free graphs where the price of connectivity of these F-transversals is unbounded, multiplica-
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tive, additive, or zero-additive. In particular, our tetrachotomies will extend known results for
the case when F is the family of all cycles.

The thesis is structured as follows. In Chapter 2, we define the notions needed, fix the
notation, and give some preliminary results. In Chapter 3, some initial structural results for the
class of 1-perfectly orientable graphs are derived. In Chapter 4, characterizations for 1-perfectly
orientable graphs within the classes of cobipartite graphs, cographs, block-cactus graphs, K4-
minor-free graphs, and outerplanar graphs are obtained. Chapters 5 and 6 deal with product
graphs. More precisely, in Chapter 5 we characterize when a nontrivial product of two graphs
is 1-perfectly orientable for each of the four standard graph products, namely the Cartesian
product, the lexicographic product, the direct product, and the strong product, respectively,
and in Chapter 6, we characterize nontrivial chordal, interval, and circular arc product graphs,
respectively, for each of the four standard graph products. Chapter 7 deals with the price of
connectivity. In this chapter we determine almost exactly those classes of connected H-free
graphs where the price of connectivity of F-transversals is unbounded, multiplicative, additive,
or zero-additive, for families F containing an infinite number of cycles and, possibly, also one or
more anticycles or short paths. Additivity remains an open problem in the case when family F
consists of all holes and all even cycles. All other cases are characterized giving necessary and
sufficient conditions. In particular, our tetrachotomies will extend known results for the case
when F is the family of all cycles. Finally, in Chapter 8 we give some concluding remarks and
pose some open problems.

3



4



Chapter 2

Definitions, notation, and
preliminary results

In this chapter, we provide the basic notation and definitions, recall the basic properties of some
graph classes relevant to our study, and prove some preliminary results.

2.1 General preliminaries on graphs

All graphs in this thesis are finite and simple, but may be either directed (in which case we will
refer to them as digraphs) or undirected (in which case we will refer to them as graphs). We
use standard graph and digraph terminology. In particular, the vertex and edge sets of a graph
G will be denoted by V (G) and E(G), respectively, and the vertex and arc sets of a digraph
D will be denoted by V (D) and A(D). In this section, we recall the definitions of some of the
most used notions in this work. For further background on graphs, we refer to [22,87], on graph
classes, to [10,41], and on digraphs, to [3].

An orientation of a graph G = (V,E) is a digraph D = (V,A) obtained by assigning a
direction to each edge of G. An edge in a graph (resp., arc in a digraph) connecting vertices u
and v will be denoted by uv or {u, v} (resp., (u, v)). We will also use the notation u → v to
denote the fact that an edge uv of a graph G is oriented from u to v in an orientation of G. The
set of all vertices adjacent to a vertex v in a graph G will be denoted by NG(v) (or simply by
N(v) if the graph is clear from the context), and its cardinality, the degree of v in G, by dG(v)
(or simply by d(v)). The closed neighborhood of v in G is the set NG(v)∪{v}, denoted by NG[v]
(or simply by N [v] if the graph is clear from the context). A tournament is an orientation of a
complete graph. Given a digraph D, the in-neighborhood of a vertex v in D, denoted by N−D (v),
is the set of all vertices w such that (w, v) ∈ A. Similarly, the out-neighborhood of v in D is the
set of all vertices w such that (v, w) ∈ A. The cardinalities of the in- and the out-neighborhood
of v are the in-degree and the out-degree of v and are denoted by d−D(v) and d+D(v), respectively.

The distance between two vertices u and v in a connected graph G is denoted by dG(u, v)
and defined as the minimum length (that is, number of edges) of a u,v-path in G. The maximum
distance in G is called the diameter of G.

A cut vertex in a connected graph G is a vertex v such that the graph G−v is disconnected.
A graph G is biconnected if it is connected and has no cut vertices, and 2-connected if it is
biconnected and has at least 3 vertices. A block of a graph G is a maximal biconnected subgraph
of G. Every connected graph decomposes into a tree of blocks called the block tree of the graph.
The vertex set of the block tree T of G is the set B ∪C where B is the set of blocks of G and C
is the set of cut vertices of G; a block B ∈ B and a cut vertex v ∈ C are connected by en edge
in T if and only if v ∈ V (B). Blocks of G that are leaves of T are called end blocks of G. Every
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leaf of the block tree T is a block of G, thus every graph with a cut vertex has at least two end
blocks.

Given two graphs G and H, their union is the graph G∪H with vertex set V (G)∪V (H) and
edge set E(G) ∪E(H). Their disjoint union is the graph G+H with vertex set V (G) ∪̇ V (H)
(disjoint union) and edge set E(G)∪E(H) (if G and H are not vertex disjoint, we first replace
one of them with a disjoint isomorphic copy). We denote the disjoint union of r copies of G by
rG. The join of two graphs G and H is the graph denoted by G ∗ H and obtained from the
disjoint union of G and H by adding to it all edges joining vertices of G with vertices of H.
Given two graphs G and H and a vertex v of G, the substitution of v in G for H consists in
replacing v with H and making each vertex of H adjacent to every vertex in NG(v) in the new
graph.

Given a graph G and a subset S of its vertices, we denote by G[S] the subgraph of G induced
by S, that is, the graph with vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. By G − S we
denote the subgraph of G induced by V (G) \S, and when S = {v} for a vertex v, we also write
G−v. The graph G/e obtained from G by contracting an edge e = uv is defined as G/e = (V,E)
where V = (V (G) \ {u, v}) ∪ {w} with w a new vertex and E = E(G − {u, v}) ∪ {wx | x ∈
NG(u) ∪NG(v)}.

A clique (resp., independent set) in a graph G is a set of pairwise adjacent (resp., non-
adjacent) vertices of G. The complement of a graph G is the graph G with the same vertex set
as G in which two distinct vertices are adjacent if and only if they are not adjacent in G. The
fact that two graphs G and H are isomorphic to each other will be denoted by G ∼= H. In this
work we will often not distinguish between isomorphic graphs.

Two distinct vertices u and v in a graph G are said to be true twins if NG[u] = NG[v].
The operation of true twin addition to a graph G is defined as adding a new vertex w to G
and making it adjacent to some vertex v of G and all its neighbors. We say that a graph G is
true-twin-free if no pair of vertices of G are true twins.

The path, the cycle, and complete graph on n vertices will be denoted by Pn, Cn, and Kn,
respectively, and the complete bipartite graph with parts of size m and n by Km,n. The claw is
the complete bipartite graph K1,3. The bull is a graph with 5 vertices and 5 edges, consisting
of a triangle with two disjoint pendant edges. In Fig. 2.1 some examples for Pn, Cn, and Kn

are shown, together with the claw and the bull.

Figure 2.1: P5, C6, K4, the claw (K1,3), and the bull, respectively.

Induced subgraphs, minors and induced minors. A graph H is an induced subgraph of
a graph G if it can be obtained from G by a sequence of vertex deletions. For graphs F and G,
we write F ⊆i G to denote that F is an induced subgraph of G. A graph H is said to be a minor
of a graph G if H can be obtained from G by a sequence of vertex deletions, edge deletions, and
edge contractions. Equivalently, H is minor of G if there exists an minor model of H in G, that
is, a collection {Sv : v ∈ V (H)} of pairwise disjoint subsets of V (G) each inducing a connected
subgraph such that for every two adjacent vertices u and v of H, we have {x, y} ∈ E(G) for some
x ∈ Su and y ∈ Sv. A graph H is said to be an induced minor of G if H can be obtained from
G by a sequence of vertex deletions and edge contractions. Equivalently, H is an induced minor
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of G if there exists an induced minor model of H in G, that is, a collection {Sv : v ∈ V (H)} of
pairwise disjoint subsets of V (G) each inducing a connected subgraph such that for every two
distinct vertices u and v of H, we have {u, v} ∈ E(H) if and only if {x, y} ∈ E(G) for some
x ∈ Su and y ∈ Sv.

Note that for every graph H an induced minor model of H in G is also a minor model of
it, and if H is a complete graph, then the converse holds as well. Moreover, if H is a graph of
maximum degree at most three and G is any graph, then H is isomorphic to a minor of G if
and only if G contains a subgraph isomorphic to a subdivision of H. A subdivision of a graph
G is a graph resulting from a sequence of edge subdivisions in G. The subdivision of an edge e
with endpoints {u, v} yields a graph containing one new vertex w, and with edge set in which
e is replaced by two new edges, {u,w} and {w, v}.

Given a set F of graphs, a graph G is said to be:

• F-free if no induced subgraph is isomorphic to a member of F .

• F-induced-minor-free if no induced minor of G is isomorphic to a member of F .

• F-minor-free if no minor of G is isomorphic to a member of F .

Given two graphs G and H, we say that G is H-free (H-minor-free, resp., H-induced-minor-free)
if no induced subgraph of G (no minor of G, resp., no induced minor of G) is isomorphic to H. A
graph class is hereditary if it is closed under induced subgraphs, that is, every induced subgraph
of a graph in the class is also in the class. The notions of minor-closed and induced-minor-closed
graph classes are defined analogously. A proper induced subgraph (proper minor, resp., proper
induced minor) of a graph G is any induced subgraph (minor, resp., induced minor) of G other
than G itself.

Every minor-closed class G of graphs can be uniquely characterized in terms of forbidden
minors. That is, there exists a unique set F of graphs such that: (i) a graph G is in G if and
only if G is F-minor-free, and (ii) every proper minor of every graph in F is in G. The notions
of F-induced-minor-free graphs and of forbidden induced minors are defined analogously, with
respect to the induced minor relation. For minor-closed graph classes, the sets of forbidden
minors are always finite [77], while in the case of induced-minor-closed graph classes, the sets
of forbidden induced minors can also be infinite (see, for example, [56]).

Some hereditary graph classes. A hole is a cycle of length at least 4. An antihole is
the complement of a hole. A cycle, hole or antihole is even if it contains an even number of
vertices; otherwise it is odd. A hole is long if it is of length at least 5, and a long antihole
is the complement of a long hole. A graph is odd-hole-free or odd-antihole-free if it contains
no induced odd holes or no induced odd antiholes, respectively. An even-hole-free graph is
defined similarly. A graph is weakly chordal if it has no induced long hole and no induced long
antihole. A graph is perfect if the chromatic number of every induced subgraph equals the size
of a largest clique in that subgraph. By the Strong Perfect Graph Theorem [15], a graph is
perfect if and only if it is odd-hole-free and odd-antihole-free. A graph is a split graph if its
vertex set can be partitioned into a clique and an independent set. Split graphs coincide with
the {2P2, C4, C5}-free graphs [30]. A graph is threshold if it is {2P2, P4, C4}-free, trivially perfect
if it is {P4, C4}-free, cotrivially perfect if it is {2P2, P4}-free and a cograph if it is P4-free. A
graph is said to be bipartite if its vertex set can be partitioned into two independent sets. We
say that a graph is cobipartite if it is the complement of a bipartite graph.

Given a family of sets, the intersection graph of the family is the graph that represents
the pattern of intersections of sets in the family. More precisely, given a family of sets Si,
i = 1, 2, . . . , `, its intersection graph is the undirected graph formed by creating one vertex
vi for each set Si, and connecting two distinct vertices vi and vj by an edge whenever the
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corresponding two sets have a nonempty intersection, that is, E(G) = {{vi, vj}|Si ∩ Sj 6= ∅}.
For more details, see [60].

A graph G is said to be chordal if it is Ck-free for all k ≥ 4. Equivalently, a graph G is
chordal if it is the vertex-intersection graph of subtrees of a tree [37]. A vertex in a graph G
is simplicial if its neighborhood forms a clique. A perfect elimination ordering in a graph is a
linear ordering of the vertices of the graph such that, for each vertex v, the neighbors of v that
occur after v in the order form a clique. Fulkerson and Gross showed that graph is chordal if
and only if it has a perfect elimination ordering [34]; equivalently, if it can be reduced to the
one-vertex graph by a sequence of simplicial vertex removals. Note that the class of chordal
graphs is closed both under vertex deletions and edge contractions, hence it is also closed under
induced minors. Consequently, a graph G is chordal if and only if it is C4-induced-minor-free.
A well known subclass of the class of chordal graphs is the class of interval graph. A graph G
is said to be interval if it is the intersection graph of closed intervals in the real line.

1-perfectly orientable graphs. Following the terminology of Kammer and Tholey [55],
we say that a graph G is 1-perfectly orientable if it admits an orientation such that for every
vertex v ∈ V (G), the out-neighborhood of v in D induces a tournament (that is, it is a clique
in G). The notion of 1-p.o. graphs was first introduced by Skrien [81] in 1982 (under the name
{B2}-graphs), where the problem of characterizing this graph class was posed.

The following theorem uses a reduction to 2-SAT to show that 1-p.o. graphs can be recog-
nized in polynomial time.

Theorem 2.1 (Bang-Jensen, Huang and Prisner [4]). 1-perfectly orientable graphs can be rec-
ognized in polynomial time.

While the complexity of recognizing 1-p.o. graphs is known, a structural understanding of
this graph class remains an open problem.

A connected graph is said to be unicyclic if it has exactly one cycle. The following simple
proposition will be used in some of our proofs.

Proposition 2.2. Every unicyclic graph is 1-p.o.

Proof. Every unicyclic graph G admits an orientation in which d+(v) ≤ 1 for all v ∈ V (G).
Any such orientation is 1-perfect.

2.2 Preliminaries on circular arc graphs

A graph is circular arc if it is the intersection graph of a set of closed arcs on a circle. The
class of circular arc graphs forms an important and well studied subclass of 1-p.o. graphs; see,
e.g., [25,59]. Given a circular arc graph G and a representation of G with arcs around a circle,
a set of arcs whose union equals the entire circle is said to cover the circle. Notice that if the
set of arcs in the representation does not cover the circle, the corresponding circular arc graph
G is an interval graph. The following lemma characterizes when a disjoint union of two graphs
is circular arc.

Lemma 2.3. The disjoint union G+H of two graphs G and H is a circular arc graph if and
only if both G and H are interval graphs.

Proof. Assume first that G + H is circular arc. Both graphs G and H are circular arc, since
they are induced subgraphs of G+H. Since there is no edge between V (G) and V (H) in G+H,
then the sets of arcs F and F ′ corresponding to G and H respectively, cannot cover the circle,
which implies that both G and H are interval graphs.
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Conversely, if G and H are interval graphs, then so is G + H. Thus, G + H is circular
arc.

The following fact is well known, see, e.g., [25].

Fact 2.4. For every n ≥ 4, every circular arc graph is Cn +K1-free.

While a characterization of the class of circular arc graphs by forbidden induced subgraphs
remains an open problem, in a recent study the first forbidden structure characterization of
circular arc graphs was obtained [32]. The class of cobipartite circular arc graphs, however, has
been characterized in many ways (see, e.g., [59, Section 7] and [25]). In particular, we now state
a characterization of cobipartite circular arc graphs due to Hell and Huang and a consequence
of it, which we will use:

• in the characterization of 1-p.o. cobipartite graphs (Section 4.1),

• in order to prove that the family of complements of grid-walk graphs is an infinite family
of 1-perfectly orientable graphs (Section 4.1.1), and

• in the characterization of the circular arc nontrivial lexicographic product graphs in Chap-
ter 6.

Let G be a cobipartite graph with a bipartition {U,U ′} of its vertex set into two cliques.
An edge of G connecting a vertex from U with a vertex of U ′ is said to be a crossing edge of G.
A coloring of the crossing edges of G with colors red and blue is said to be good (with respect
to {U,U ′}) if for every induced C4 in G, the two cross edges in it are of the opposite color. The
following characterization of cobipartite circular arc graphs is a reformulation of [49, Corollary
2.3].

Theorem 2.5 (Hell and Huang [49]). Let G be a cobipartite graph with a bipartition {U,U ′}
of its vertex set into two cliques. Then G is a circular arc graph if and only if it has a good
coloring.

As a consequence of the previous theorem, we can obtain the following result.

Lemma 2.6. The class of cobipartite circular arc graphs is closed under join.

Proof. Let G and H be cobipartite circular arc graphs, with bipartitions of their vertex sets
into two cliques U1 and U2, and V1 and V2, respectively. Then F = G ∗H is cobipartite as well,
with bipartition into two cliques W1 = U1 ∪ V1 and W2 = U2 ∪ V2. We will now show that F
admits a good coloring. By Theorem 2.5 this will imply that the join of G and H is cobipartite.

By Theorem 2.5 there exists a good coloring of G and a good coloring of H. Every crossing
edge of F is exactly of one of the following four types: a crossing edge of G, a crossing edge of
H, a U1, V2-edge, or a U2, V1-edge. We construct a good coloring of F as follows: the crossing
edges of G or of H are colored as in (some fixed) good colorings of G, resp. H, every U1, V2-
edge is colored red, and every U2, V1-edge is colored blue. Since every induced C4 in F either
lies entirely in one of G and H, or it is formed by two non-adjacent vertices in G and two
non-adjacent vertices in H, the so obtained coloring is indeed a good coloring of F .

In the following lemma, combining the results of Lekkerkerker and Boland [58], and of
Harary and Schwenk [46], we summarize the known characterizations of interval (resp., circular
arc) forests. A forest is an acyclic graph. A caterpillar is a tree T such that the removal of
all degree-one vertices yields a path. A caterpillar forest is a disjoint union of caterpillars. A
bipartite claw is the graph obtained from the claw by subdividing each of its edges exactly once.
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Lemma 2.7. Let F be a forest. Then, the following are equivalent:

1. F is an interval graph,

2. F is a circular arc graph,

3. F is a caterpillar forest,

4. F contains no induced bipartite claw.

Proof. Let F be a forest. Clearly, if F is interval then it is circular arc. Now, assume F is
circular arc. Since F contains no cycle, the set of arcs in any circular arc representation of
F cannot cover the circle, which implies that F is interval. The fact that F is interval if and
only if it contains no induced bipartite claw follows from the characterization of interval graphs
from [58]. The fact that F is a caterpillar forest if and only if F contains no induced bipartite
claw was proved in [46].

2.3 Preliminaries on graphs of separability at most 2, cyclically
orientable graphs, and outerplanar graphs

For a positive integer k, graphs of separability at most k were defined by Cicalese and Milanič
in [16] as the graphs in which every two non-adjacent vertices are separated by a set of at most k
other vertices. Several characterizations of graphs of separability at most 2 were given in [16]. In
the next theorem we summarize those relevant to this work (Theorems 1 and 9 in [16]). We say
that a graph G is obtained from two graphs G1 and G2 by pasting along a k-clique, and denote
this by G = G1 ⊕k G2, if for some r ≤ k there exist two r-cliques K(1) = {x1, . . . , xr} ⊆ V (G1)
and K(2) = {y1, . . . , yr} ⊆ V (G2) such that G is isomorphic to the graph obtained from the
disjoint union of G1 and G2 by identifying each xi with yi, for all i = 1, . . . , r. In particular, if
k = 0, then G1⊕kG2 is the disjoint union of G1 and G2, and if k = 1, then the graph G1⊕kG2

has a cut vertex.

Theorem 2.8 (Cicalese and Milanič [16]). For every graph G, the following statements are
equivalent.

1. G is of separability at most 2.

2. G is {K2,3,K
+1
2,3 ,K

+2
2,3 ,K

+3
2,3}-induced-minor-free, where K2,3,K

+1
2,3 ,K

+2
2,3 ,K

+3
2,3 are the four

graphs depicted in Fig. 2.2.

3. G can be constructed from complete graphs and cycles by an iterative application of pasting
along 2-cliques.

K2,3 K+1
2,3 K+2

2,3 K+3
2,3

Figure 2.2: Forbidden induced minors for the class of graphs of separability at most 2

A related class of graphs is that of cyclically orientable graphs. A graph G is said to
be cyclically orientable if it admits an orientation in which every chordless cycle is oriented
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cyclically. Motivated by applications of cyclically orientable graphs to cluster algebras, this
family of graphs was introduced by Barot et al. [5] and studied further by Gurvich [44] and
Zou [90]. The following theorem combines [44, Theorems 1 and 4] and [82, Theorem 1].

Theorem 2.9 (Combining results of Gurvich [44] and Speyer [82]). For every graph G, the
following statements are equivalent:

1. G is cyclically orientable.

2. G can be built from copies of K1, K2, and cycles by an iterative application of pasting
along 2-cliques.

3. G is a K4-free graph of separability at most 2.

As a consequence, we obtain the following.

Corollary 2.10. If G is biconnected and cyclically orientable, then G can be build from cycles
by an iterative application of pasting along edges.

The following is [44, Lemma 2].

Lemma 2.11 (Gurvich [44]). Cyclically orientable graphs contain no subgraphs isomorphic to
a subdivision of K4.

The above results imply the following characterization of cyclically orientable graphs in
terms of forbidden induced minors.

Theorem 2.12. For every graph G, the following statements are equivalent:

1. G is cyclically orientable.

2. G is {K4,K2,3}-induced-minor-free.

Proof. We first argue that the class of cyclically orientable graphs is closed under induced
minors. It is clearly closed under vertex deletions. To see that it is also closed under edge
contractions, recall that by Theorem 2.9 G is cyclically orientable if and only if G is a K4-free
graph of separability at most 2. Since the class of graphs of separability at most 2 is closed
under induced minors (cf. Theorem 2.8), contracting an edge of a cyclically orientable graph
G results in a graph G′ of separability at most 2. By Lemma 2.11, G does not contain any
subdivision of K4 (as a subgraph), which is equivalent to the fact that G does not contain K4

as a minor. Since contracting an edge cannot produce a K4 minor, graph G′ has no K4 minor,
in particular, it is K4-free. Thus, G′ is cyclically orientable by Theorem 2.9.

Since the class of cyclically orientable graphs is closed under induced minors and the graphs
K4 and K2,3 are not cyclically orientable, the implication 1 ⇒ 2 follows. Suppose now that G
is a {K4,K2,3}-induced-minor-free graph. Since each of the graphs in the set {K+1

2,3 ,K
+2
2,3 ,K

+3
2,3}

(cf. Fig. 2.2) can be contracted to a K4, the class of {K4,K2,3}-induced-minor-free graphs is
a subclass of the class of {K2,3,K

+1
2,3 ,K

+2
2,3 ,K

+3
2,3}-induced-minor-free graphs. It follows from

Theorem 2.8 that every {K4,K2,3}-induced-minor-free graph is a K4-free graph of separability
at most 2. The implication 2⇒ 1 now follows from Theorem 2.9.

A graph G is outerplanar if it can be drawn in the plane without edge crossings and with
all vertices incident with the outer face. Outerplanar graphs are exactly the {K4,K2,3}-minor-
free graphs [13]. The following characterization in terms of forbidden induced minors is an
immediate consequence of the characterization in terms of forbidden minors. We denote by
K+

2,3 the graph obtained from K2,3 by adding an edge between the two vertices of degree 3.
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Proposition 2.13. For every graph G, the following statements are equivalent:

1. G is outerplanar.

2. G is {K4,K2,3,K
+
2,3}-induced-minor-free.

Proof. Since none of the graphs K4, K2,3, K
+
2,3 is outerplanar (as it has either a K4 or a K2,3 as

a minor), the class of outerplanar graphs is contained in the class of {K4,K2,3,K
+
2,3}-induced-

minor-free graphs. Conversely, we will show that every {K2,3,K
+
2,3,K4}-induced-minor-free

graph G is {K4,K2,3}-minor-free (and hence outerplanar). Indeed, suppose that G contains
H ∈ {K4,K2,3} as a minor. If H = K4 then G contains K4 as induced minor, which is
impossible. So H = K2,3. Consider a minor model S = {Sv : v ∈ V (K2,3)} of K2,3 in G and let
x and y be the two vertices of degree 3 in K2,3. To avoid that S is an induced minor model of
K2,3 in G, we infer that G has an edge {x, y} for some x ∈ Su and y ∈ Sv. This implies that
either K+

2,3 or K4 is an induced minor of G, contrary to the assumption.

2.4 Preliminaries on product graphs

We will now give the definitions and some basic facts about each of the four graph products
studied in Chapters 5 and 6.

For each of the four considered products, we say that the product of two graphs is nontrivial
if both factors have at least two vertices. For further details regarding product graphs and their
properties, we refer to [45,52].

Cartesian product graphs. The Cartesian product G�H of two graphs G and H is the
graph with vertex set V (G)×V (H) in which two distinct vertices (u, v) and (u′, v′) are adjacent
if and only if

(a) u = u′ and v is adjacent to v′ in H, or

(b) v = v′ and u is adjacent to u′ in G.

See Fig. 2.3 for an example.

P3

P4

P3 P4

Figure 2.3: A small example for the Cartesian product.

The Cartesian product of two graphs is commutative, in the sense that G�H ∼= H�G. The
product G�H is connected if and only if both factors are connected (see [45, Corollary 5.3]).
More precisely, if G has components G1, . . . , Gk and H has components H1, . . . ,H`, then the
components of G�H are exactly Gi�Hj for i ∈ {1, . . . , k} and j ∈ {1, . . . , `}.
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Lexicographic product graphs. Given two graphs G and H, the lexicographic product of
G and H, denoted by G[H] (sometimes also by G◦H) is the graph with vertex set V (G)×V (H),
in which two distinct vertices (u, v) and (u′, v′) are adjacent if and only if

(a) u is adjacent to u′ in G, or

(b) u = u′ and v is adjacent to v′ in H.

Fig. 2.4 shows an example.

P3[P4]

P4 P4 P4

Figure 2.4: A small example for the lexicographic product.

Note that contrary to the other three products considered in this thesis, the lexicographic
product is not commutative, that is, G[H] � H[G] in general. By [45, Corollary 5.14], the
lexicographic productG[H] of two nontrivial graphs is connected if and only ifG is connected. In
particular, if G has components G1, . . . , Gk, then the components of G[H] are G1[H], . . . , Gk[H].

Direct product graphs. The direct product G × H of two graphs G and H (sometimes
also called tensor product, categorical product, or Kronecker product) is the graph with vertex
set V (G)× V (H) in which two distinct vertices (u, v) and (u′, v′) are adjacent if and only if

(a) u is adjacent to u′ in G, and

(b) v is adjacent to v′ in H.

Fig. 2.5 gives an example.
The direct product of two graphs is commutative, in the sense that G×H ∼= H ×G. If the

product G×H is connected, then both factors are connected, however the converse is generally
not true. (For example, if G ∼= H ∼= K2, then G×H ∼= 2K2 is disconnected.) By [45, Corollary
5.10], the direct product of two connected nontrivial graphs is connected if and only if at
most one of the factors is bipartite. If G has components G1, . . . , Gk and H has components
H1, . . . ,H`, then G × H is the disjoint union of the products of the components, Gi × Hj for
i ∈ {1, . . . , k} and j ∈ {1, . . . , `}.
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P3

P4

P3 × P4

Figure 2.5: A small example for the direct product.

Strong product graphs. The strong product G�H of graphs G and H is the graph with
vertex set V (G)×V (H) in which two distinct vertices (u, v) and (u′, v′) are adjacent if and only
if

(a) u is adjacent to u′ in G and v = v′, or

(b) u = u′ and v is adjacent to v′ in H, or

(c) u is adjacent to u′ in G and v is adjacent to v′ in H.

It is easy to see that the fact that one of the conditions (a), (b) and (c) holds is equivalent
to the pair of conditions u′ ∈ NG[u] and v′ ∈ NH [v], that is, that (u′, v′) ∈ NG[u] × NH [v].
Consequently, for every two vertices u ∈ V (G) and v ∈ V (H), we have NG�H [(u, v)] = NG[u]×
NH [v].

See Fig. 2.6 for an example.

P3

P4

P3 P4

Figure 2.6: A small example for the strong product.

The strong product of two graphs is commutative, in the sense that G � H ∼= H � G.
By [45, Corollary 5.6], the strong product of two graphs G and H is connected if and only
if both factors are connected. More precisely, if G has components G1, . . . , Gk and H has
components H1, . . . ,H`, then the components of G�H are exactly Gi�Hj for i = 1, . . . , k and
j = 1, . . . , `.
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2.5 A few basic structural results

We now present a number of known results, that will be needed as lemmas in order to prove
our results from Chapter 7.

A graph is a linear forest if it is the disjoint union of a set of paths.
Two vertex-disjoint subgraphs (or vertex subsets) F1 and F2 of a graph G are adjacent if

there is at least one edge in G between a vertex in F1 and a vertex in F2. Similarly, a vertex
u not in F1 is adjacent to F1 if {u} and F1 are adjacent. A set D ⊆ V dominates G if every
vertex u ∈ V \D is adjacent to D. We also say that G[D] dominates G. If D = {u, v} for two
adjacent vertices u, v, then uv is called a dominating edge of G. A set D ⊆ V dominates a set
S ⊆ V \D if every vertex in S is adjacent to D.

We give four structural results (three known ones and one observation). The first result is
well known (see, for example, [10]).

Lemma 2.14. Every connected P4-free graph on two or more vertices has a dominating edge.

We will need the following result of Bacsó and Tuza [2] for the class of connected P5-free
graphs.

Lemma 2.15 (Bacsó and Tuza [2]). Every connected P5-free graph has a dominating P3 or a
dominating clique.

We also need a lemma due to Duchet and Meyniel [24].

Lemma 2.16 (Duchet and Meyniel [24]). Let G be a connected graph. Let β be the size of a
minimum dominating set of G. Then G has a connected dominating set of size at most 3β − 2.

Lemma 2.17. Let G be a connected graph with diameter d. Let A be a subgraph of G consisting
of r ≥ 1 components. Then G has a connected subgraph A′ that contains A and that has less
than |V (A)|+ (r − 1)d vertices.

Proof. Let the components of A be D1, . . . , Dr. We need to add less than d vertices to A
in order to connect D1 to each other Di (i 6= 1). The resulting graph A′ has size less than
|V (A)|+ (r − 1)d.
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Chapter 3

Basic results on 1-perfectly
orientable graphs

In this chapter we prove various structural properties of 1-perfectly orientable graphs, which
will be applied in Chapter 4 to derive characterizations of 1-perfectly orientable graphs within
the classes of cobipartite graphs, cographs, block-cactus graphs, K4-minor-free graphs, and
outerplanar graphs, respectively.

Our results from this chapter can be summarized as follows:

1. We give a characterization of 1-p.o. graphs in terms of edge clique covers similar to a
known characterization of squared graphs due to Mukhopadhyay.

2. We identify several graph transformations preserving the class of 1-p.o. graphs. In partic-
ular, we show that the class of 1-p.o. graphs is closed under taking induced minors. We
also study the behavior of 1-p.o. graphs under the join operation, which motivates the
study of 1-p.o. cobipartite graphs.

3. We identify several minimal forbidden induced minors for the class of 1-p.o. graphs, in-
cluding 10 small specific graphs and two infinite families: the complements of even cycles
of length at least 6 and the complements of the graphs obtained from odd cycles by adding
a component consisting of a single edge.

4. We develop a reduction of the study of general 1-perfectly orientable graphs to the bicon-
nected case.

5. We introduce a class of graphs defined similarly as the class of 2-trees, namely the class
of hollowed 2-trees, and prove some structural results for these two graph classes. This
graph class will prove to be useful in the study of 1-perfectly orientable K4-minor-free and
outerplanar graphs.

The results presented in this chapter are based on results from the following two papers.

• T. R. Hartinger and M. Milanič, Partial Characterizations of 1-Perfectly Orientable
Graphs. J. Graph Theory. Vol. 85, 2, 2017, 378 – 394.

• B. Brešar, T. R. Hartinger, T. Kos, and M. Milanič (2016), 1-perfectly orientable K4-
minor-free and outerplanar graphs. Submitted. arXiv:1604.04598. An extended abstract
appeared in Electronic Notes in Discrete Mathematics, Vol. 54, (2016), 199 – 204.
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3.1 A characterization in terms of edge clique covers

A graph G is said to have a square root if there exists a graph H with V (H) = V (G) such that
for all u, v ∈ V (G), we have uv ∈ E(G) if and only if the distance in H between u and v is either
1 or 2. An edge clique cover in a graph G is a collection of cliques {C1, . . . , Ck} in G such that
every edge of G belongs to some clique Ci. In this section, we characterize 1-p.o. graphs in terms
of edge clique covers, in a spirit similar to the well known Mukhopadhyay’s characterization of
graphs that admit a square root, which we now recall.

Theorem 3.1 (Mukhopadhyay [64]). A graph G with V (G) = {v1, . . . , vn} has a square root if
and only if G has an edge clique cover {C1, . . . , Cn} such that the following two conditions hold:

(a) vi ∈ Ci for all i,

(b) for every edge vivj ∈ E(G), we have vi ∈ Cj if and only if vj ∈ Ci.

In the original statement of the theorem, the second condition is required for all i 6= j,
but since vivj 6∈ E(G) clearly implies vi 6∈ Cj and vj 6∈ Ci, the equivalence in condition 2
automatically holds for all non-adjacent vertex pairs.

Theorem 3.2. For every graph G with V (G) = {v1, . . . , vn}, the following conditions are
equivalent:

1. G is 1-perfectly orientable.

2. G has an edge clique cover {C1, . . . , Cn} such that the following two conditions hold:

(a) vi ∈ Ci for all i,

(b) for every edge vivj ∈ E(G), we have vi ∈ Cj or vj ∈ Ci, but not both.

3. G has an edge clique cover {C1, . . . , Cn} such that the following two conditions hold:

(a) vi ∈ Ci for all i,

(b) for every edge vivj ∈ E(G), we have vi ∈ Cj or vj ∈ Ci.

Before proving Theorem 3.2, we give two remarks. First, note that the difference between
Theorem 3.1 and the equivalence of conditions 1 and 3 in Theorem 3.2 consists in replacing the
equivalence in condition (b) of Theorem 3.1 with disjunction. This seemingly minor difference
is in sharp contrast with the fact that recognizing graphs admitting a square root is NP-
complete [63], while 1-p.o. graphs can be recognized in polynomial time 2.1. Second, a pointed set
is a pair (S, v) where S is a nonempty set and v ∈ S. To every family S = {(S1, v1), . . . , (Sn, vn)}
of pointed sets, one can associate a graph, the so called catch graph of S by setting V (G) =
{v1, . . . , vn} and joining two distinct vertices vi and vj if and only if vi ∈ Sj or vj ∈ Si (see,
e.g. [60]). The equivalence between conditions 1 and 3 in the above theorem gives another proof
of the fact that every 1-p.o. graph is the catch graph of a family of pointed sets, which also
follows from the characterization of 1-p.o. graphs due to Urrutia and Gavril (stating that a
graph is 1-p.o. if and only if it is the vertex-intersection graph of a family of mutually graftable
subtrees in a graph) [85].

Proof of Theorem 3.2. First, we show the implication 1 ⇒ 2. Given a 1-perfect orientation D
of a 1-p.o. graph G with V (G) = {v1, . . . , vn}, we define an edge clique cover {C1, . . . , Cn} of G
by setting Ci = {vi}∪N+

D (vi). By definition, each Ci contains vi, and, since D is 1-perfect, is a
clique in G. Note that for all i 6= j, we have vj ∈ Ci if and only if (vi, vj) ∈ A(D). In particular
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vj ∈ Ci and vi ∈ Cj cannot happen simultaneously. Since for every edge vivj ∈ E(G), we have
either (vi, vj) ∈ A(D) or (vj , vi) ∈ A(D) but not both, condition 2(b) follows.

The implication 2⇒ 3 is trivial.
Finally, we show the implication 3 ⇒ 1. Suppose that G has an edge clique cover

{C1, . . . , Cn} such that vi ∈ Ci for all i, and for every edge vivj ∈ E(G), vi ∈ Cj or vj ∈ Ci.
Define an orientation D of G as follows: for 1 ≤ i < j ≤ n such that vivj ∈ E(G), set
(vi, vj) ∈ A(D) if vj ∈ Ci, and (vj , vi) ∈ A(D), otherwise. By definition, for every vertex
vi ∈ V (G) we have

N+
D (vi) = {vj | j < i ∧ vi 6∈ Cj} ∪ {vj | j > i ∧ vj ∈ Ci}

⊆ {vj | j < i ∧ vj ∈ Ci} ∪ {vj | j > i ∧ vj ∈ Ci} ⊆ Ci ,

where the first inclusion relation holds due to condition 3(b). Hence, D is a 1-perfect orientation
of G, and G is 1-p.o.

For later use, we also record the following immediate consequences of Theorem 3.2.

Corollary 3.3. For every graph G with V (G) = {v1, . . . , vn}, the following conditions are
equivalent:

1. G is 1-perfectly orientable.

2. G has a collection of independent sets {I1, . . . , In} such that the following two conditions
hold:

(a) vi ∈ Ii for all i,

(b) for every non-adjacent vertex pair vivj ∈ E(G), we have vi ∈ Ij or vj ∈ Ii.

Corollary 3.4. The edges of every 1-perfectly orientable graph with n vertices can be covered
by n cliques.

Note that the converse of Corollary 3.4 does not hold. For example, the complement of the
10-vertex graph G1 (see Fig. 3.1 below) is not 1-p.o. (see Theorem 3.9), but can be edge-covered
with (at most) 9 cliques. (Determining if the edges of a given n-vertex graph can be covered by
n cliques is NP-complete [67]; see also [26].)

G1

Figure 3.1: A graph on 10 vertices whose complement is not 1-p.o. and can be edge-covered
with 9 cliques.

3.2 Operations preserving 1-perfectly orientable graphs

In this subsection, we identify several operations preserving 1-p.o. graphs and characterize when
the join of two graphs is 1-p.o. Two distinct vertices u and v in a graph G are said to be true
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twins if NG[u] = NG[v]. (Similarly, u and v are said to be false twins if NG(u) = NG(v).)
Recall that a vertex v is simplicial if its neighborhood forms a clique, and universal if it is
adjacent to every other vertex of the graph. The operations of adding a true twin, a simplicial
vertex or a universal vertex to a given graph are defined in the obvious way. The operation of
duplicating a 2-branch in the complement of a graph G is defined as follows. A 2-branch in a
graph G is a path (a, b, c) such that dG(b) = 2 and dG(c) = 1. We say that such a 2-branch is
rooted at a. Duplicating a 2-branch G results in a graph H where (a, b, c) is a 2-branch in G,
V (H) = V (G) ∪ {b′, c′}, where b′ and c′ are new vertices, H − {b′, c′} = G, and (a, b′, c′) is a
2-branch in H. Finally, the result of duplicating a 2-branch in the complement of a graph G is
the complement of a graph obtained by duplicating a 2-branch in G.

Theorem 3.5. The class of 1-perfectly orientable graphs is closed under each of the following
operations:

1. Disjoint union.

2. Adding a universal vertex (that is, join with K1).

3. Adding a true twin.

4. Adding a simplicial vertex.

5. Duplicating a 2-branch in the complement.

6. Vertex deletion.

7. Edge contraction.

Proof. For a 1-p.o. graph G, let us denote by D(G) an arbitrary (but fixed) 1-perfect orientation
of G.

1. If G = G1 +G2 is the disjoint union of two 1-p.o. graphs G1 and G2, then the disjoint union
of D(G1) and D(G2) is a 1-perfect orientation of G.

2. Suppose we have a 1-p.o. graph G with orientation D(G) and we add a universal vertex v
to G, thus obtaining a graph G′. A 1-perfect orientation D′ of G′ can be obtained by orienting
an edge xy ∈ E(G) from x to y if the edge is oriented from x to y in D(G), and orienting the
edges of the form uv from u to v. It is easy to see that D′ is indeed 1-perfect.

3. Let w be a vertex in a 1-p.o. graph G, and let G′ be the graph obtained from G by adding
to it a true twin of w, say v. We obtain a 1-perfect orientation D′ of G′ by maintaining the
same orientation as in D(G) for the edges in G and orienting the new edges (incident with v)
as v → u if u ∈ N+

D(G)(w), and u→ v if u ∈ N−D(G)(w). We also orient the edge between w and
v as w → v. It is a matter of routine verification to check that the so obtained orientation of
G′ is 1-perfect.

4. If we add a simplicial vertex v to a 1-p.o. graph G, then extending D(G) by orienting all
edges incident with v away from v results in an orientation D′ of the new graph, say G′, such
that N+

D′(v) is a clique in G′. The other out-neighborhoods were not changed, so they are
cliques in G′ as well.

5. Let V (G) = {v1, . . . , vn}. If G is 1-p.o., then Corollary 3.3 applies to G. Hence, G has
a collection of independent sets {I1, . . . , In} such that vi ∈ Ii for all i, and for every edge
vivj ∈ E(G), we have vi ∈ Ij or vj ∈ Ii. Let H be the graph resulting from duplicating a
2-branch (a, b, c) in G; without loss of generality, we may assume that (a, b, c) = (v1, v2, v3);
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furthermore, let the two new vertices b′ and c′ be labeled as vn+1 and vn+2, respectively. It
suffices to prove that H has a collection of independent sets {J1, . . . , Jn+2} such that vk ∈ Jk for
all k, and for every edge vivk ∈ E(H), we have vi ∈ Jk or vk ∈ Ji. We may assume without loss
of generality that the sets Ij are maximal independent sets in G, which in particular implies that
each Ij contains exactly one of the vertices b and c. We define the sets Jk for k ∈ {1, . . . , n+ 2}
with the following rule:

• For all vk ∈ V (G), set

Jk =

{
Ik ∪ {b′}, if b ∈ Ik;
Ik ∪ {c′}, if c ∈ Ik.

• For k = n+ 1 (that is, vk = b′), set Jk = (I2 \ {b}) ∪ {b′, c}.

• For k = n+ 2 (that is, vk = c′), set Jk = (I3 \ {a, c}) ∪ {b, c′}.

Clearly, each Jk is an independent set in H. Let vivk ∈ E(H). Since b′c′ 6∈ E(H), we may
assume that vi ∈ V (G). We analyze three cases according to where is vk.

If vk ∈ V (G), then vivk ∈ E(G) and hence vi ∈ Ik or vk ∈ Ii, implying vi ∈ Jk or vk ∈ Ji.
If vk = b′, then either vi ∈ Jk (in which case we are done), or vi 6∈ Jk = (I2 \ {b}) ∪ {b′, c},

in which case either vi = b or vi 6∈ I2. In the former case, we have i = 2 and vk = b′ ∈ J2, while
in the latter case, we have b = v2 ∈ Ii, which implies vk = b′ ∈ Ji.

If vk = c′, then either vi ∈ Jk (in which case we are done), or vi 6∈ Jk = (I3 \ {a, c})∪{b, c′},
in which case either vi ∈ {a, c} or vi 6∈ I3. In the former case, we have c ∈ Ii (if vi = a this
follows from the maximality of Ii) and consequently vk = c′ ∈ Ji. In the latter case, we have
c = v3 ∈ Ii, which implies vk = c′ ∈ Ji.

We have shown that vk ∈ Jk for all k, and for every edge vivk ∈ E(H), we have vi ∈ Jk or
vk ∈ Ji. By Corollary 3.3, H is the complement of a 1-p.o. graph, which establishes item 5.

6. Closure under vertex deletions follows immediately from the fact that the class of complete
graphs is closed under vertex deletions.

7. Let e = uv be an edge of a 1-p.o. graph G, and let D be a 1-perfect orientation of G, with
(without loss of generality) u → v. Let G′ = G/e be the graph obtained by contracting the
edge e, and let w be the vertex replacing u and v.

Set

X = NG(u) \NG(v) ,

Y = {x ∈ NG(u) ∩NG(v) | (x, v) ∈ A(D)} ,
U = {x ∈ NG(u) ∩NG(v) | (v, x) ∈ A(D)} ,
W = {x ∈ NG(v) \NG(u) | (x, v) ∈ A(D)} ,
Z = {x ∈ NG(v) \NG(u) | (v, x) ∈ A(D)} ,
R = V (G) \ (X ∪ Y ∪ U ∪W ∪ Z ∪ {u, v}) .

Let D′ be an orientation of G′ defined as follows:

(i) For all edges e ∈ E(G′) whose endpoints are not incident with w, orient e the same way
as it is oriented in D.

(ii) For all x ∈ X, orient the edge xw as x→ w.

(iii) For all x ∈ Y , orient the edge xw as x→ w.

(iv) For all x ∈ U , orient the edge xw as w → x.
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(v) For all x ∈W , orient the edge xw as x→ w.

(vi) For all x ∈ Z, orient the edge xw as w → x.

We complete the proof by showing that D′ is a 1-perfect orientation of G′. We do this by
directly verifying the defining condition that for every vertex x of V (G′), the set N+

D′(x) is a
clique in G′. Note that X ∪Y ∪U ∪W ∪Z ∪{w}∪R is a partition of V (G′). We consider seven
cases depending on to which part of this partition x belongs.

(1) x ∈ X. In this case, N+
D′(x) = (N+

D (x) \ {u}) ∪ {w}. Note that since (u, v) ∈ A(D) and D
is a 1-perfect orientation of G, we have u ∈ N+

D (x). Consequently, since N+
D (x) is a clique in G

containing u, it contains no vertex from R ∪ Z, and thus N+
D′(x) = (N+

D (x) \ {u}) ∪ {w} is a
clique in G′.

(2) x ∈ W . In this case, v ∈ N+
D (x), and a similar reasoning as above shows that N+

D′(x) =
(N+

D (x) \ {v}) ∪ {w} is a clique in G′.

(3) x ∈ Z. In this case, N+
D′(x) = N+

D (x) and this set is a clique in G and hence in G′.

(4) x ∈ Y . In this case, we have two possibilities, either u ∈ N+
D (x) or not. In the former case,

we have N+
D′(x) = (N+

D (x) \ {u, v}) ∪ {w} which is a clique in G′, since N+
D (x) is a clique in G

containing u and v, and every neighbor of w in G′ is a neighbor of either u or of v in G. In the
latter case, we have N+

D′(x) = (N+
D (x) \ {v}) ∪ {w}, which is again a clique in G′ by a similar

argument.

(5) x ∈ U . Now, N+
D′(x) = N+

D (x)\{u}, which is a clique in G not containing u or v, and hence
a clique in G′.

(6) x ∈ R. Since the edges with endpoints in R have no endpoint in {u, v}, the edges which
have x as an endpoint will maintain the same orientation as in D. Therefore, N+

D′(x) = N+
D (x)

is a clique in G′.

(7) x = w. In this case, we have N+
D′(x) = N+

D (v), therefore N+
D′(x) forms a clique in G′.

In the study of 1-p.o. graphs we may restrict our attention to connected graphs. It is a nat-
ural question whether we may also assume that G is co-connected, that is, that its complement
is connected, or, equivalently, that G is not the join of two smaller graphs. The join operation
does not generally preserve the class of 1-p.o. graphs: the graphs 2K1 and 3K1 are trivially
1-p.o., but their join, K2,3, is not (as can be easily verified; see also Theorem 3.9). In the next
theorem we characterize when the join of two graphs is 1-p.o. Recall that a graph is said to be
cobipartite of its complement is bipartite.

Theorem 3.6. Suppose that a graph G is the join of two graphs G1 and G2. Then, G is
1-perfectly orientable if and only if one of the following conditions hold:

1. G1 is complete and G2 is 1-p.o., or vice versa.

2. Each of G1 and G2 is a cobipartite 1-p.o. graph.

In particular, the class of cobipartite 1-p.o. graphs is closed under join.

Proof. Suppose first that G is 1-p.o. Clearly, both G1 and G2 are 1-p.o. graphs. If one of G1

or G2 is complete or both are cobipartite, we are done. So suppose that neither of them is
complete and G1, say, is not cobipartite. Then, G1 contains the complement of an odd cycle,
C2k+1 for some k ≥ 1, as induced subgraph. Since G2 is not complete, it contains 2K1 as
induced subgraph. Consequently, G contains the join of C2k+1 and 2K1 as induced subgraph.
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As this graph is isomorphic to the complement of C2k+1 +K2, it is not 1-p.o. (see Theorem 3.9),
and hence neither is G, a contradiction.

For the converse direction, suppose first that G1 is complete and G2 is 1-p.o., or vice versa.
In this case G is 1-p.o., since it can be obtained from a 1-p.o. graph by a sequence of universal
vertex additions, and Theorem 3.5 applies. Suppose now that G1 and G2 are two cobipartite
1-p.o. graphs with bipartitions of their respective vertex sets into cliques {A1, B1} and {A2, B2},
respectively (one of the two cliques in each graph can be empty). Fixing a 1-perfect orientation
Di of each Gi (for i = 1, 2), we can construct a 1-perfect orientation, say D, of G = G1 ∗G2, as
follows. Every edge of G that is an edge of some Gi is oriented as in Di. Orient the remaining
edges of the join from A1 to A2, from B1 to B2, from A2 to B1 and from B2 to A1. Let us
verify that the out-neighborhood of a vertex x ∈ A1 with respect to D forms a clique in G (the
other cases follow by symmetry). We have N+

D (x) = N+
D1

(x)∪A2, and since N+
D1

(x) is a clique

in G1, A2 is a clique in G and there are all edges between G1 and A2, the set N+
D (x) is indeed

a clique in G. This shows that G is 1-p.o.
Since the class of bipartite graphs is closed under disjoint union, the class of cobipartite

graphs is closed under join. Consequently, the set of cobipartite 1-p.o. graphs is closed under
join.

3.3 A family of minimal forbidden induced minors

Theorem 3.5 implies that the class of 1-p.o. graphs is closed under vertex deletions and edge
contractions. Hence, it is also closed under taking induced minors. Recall that a graph H is said
to be an induced minor of a graph G if H can be obtained from G by a series of vertex deletions
or edge contractions. Graph classes closed under induced minors include all the minor-closed
graph classes, as well as many others (see, e.g., [16,53,56,57,84]). Since the class of 1-p.o. graphs
is closed under induced minors, it can be characterized in terms of minimal forbidden induced
minors. That is, there exists a unique minimal set of graphs F̃ such that (i) a graph G is
1-p.o. if and only if G is F̃-induced-minor-free (that is, no induced minor of G is isomorphic
to a member of F̃), and (ii) every proper induced minor of every graph in F̃ is 1-p.o. In this
section we identify an infinite subfamily F ⊆ F̃ of minimal forbidden induced minors for the
class of 1-p.o. graphs.

We start with two preliminary observations. The fact that every circular arc graph is 1-p.o.
implies the following.

Proposition 3.7. The complement of every odd cycle is 1-perfectly orientable.

Proof. Recall that the k-th power of a graph G is the graph with the same vertex set as G in
which two distinct vertices are adjacent if and only if their distance in G is at most k. It is
easy to see (and also follows from the fact that the class of circular arc graphs is closed under
taking powers [75]) that all powers of cycles are circular arc graphs. Therefore, the fact that
the complement of every odd cycle is 1-p.o. follows from two facts: (i) that the complement of
C3 is 1-p.o., and (ii) for every k ≥ 2, the complement of the odd cycle C2k+1 is isomorphic to a
power of a cycle, namely to Ck−1

2k+1.

Since every disjoint union of paths is an induced subgraph of a sufficiently large odd cycle,
Proposition 3.7 and Theorem 3.5 yield the following. Recall that a linear forest is the disjoint
union of a set of paths.

Corollary 3.8. The complement of every linear forest is 1-perfectly orientable.

The following theorem describes a set of minimal forbidden induced minors for the class of
1-p.o. graphs.
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Theorem 3.9. Let F = {F1, F2, F5, . . . , F12} ∪ F3 ∪ F4, where:

• graphs F1, F2 are depicted in Fig. 3.2, and

• F3 = {C2k | k ≥ 3}, the set of complements of even cycles of length at least 6,

• F4 = {K2 + C2k+1 | k ≥ 1}, the set of complements of the graphs obtained as the disjoint
union of K2 and an odd cycle,

• for i ∈ {5, . . . , 12}, graph Fi is the complement of the graph Gi−4, depicted in Fig. 3.2.

Then, every graph in set F is a minimal forbidden induced minor for the class of 1-perfectly
orientable graphs.

F1 F2

G1 = F5

F4 = K2 + C3F3 = C6

G2 = F6 G3 = F7 G4 = F8

G5 = F9 G6 = F10 G7 = F11 G8 = F12

Figure 3.2: Four non-1-p.o. graphs and 8 complements of non-1-p.o. graphs. Graphs F3 and F4

are the smallest members of families F3 and F4, respectively.

Proof. We need to show that each F ∈ F is not 1-p.o., but every proper induced minor of F
is. We first show that no graph in F is 1-p.o., and will argue minimality for all F ∈ F in the
second part of the proof.

No graph is in F is 1-p.o.

First consider the graphs F1 and F2. Since they are both triangle-free, every edge clique
cover of Fi (for i ∈ {1, 2}) contains all edges of Fi and hence has at least |E(Fi)| > |V (Fi)|
members. Hence, Corollary 3.4 implies that F1 and F2 are not 1-p.o.

The family F3 consists precisely of complements of even cycles of length at least 6. In
particular, every F ∈ F3 is cobipartite. By Theorem 4.2, F is 1-p.o. if and only if F is circular
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arc. Since the family F3 is one of the six infinite families of minimal forbidden induced subgraphs
for the class of circular arc cobipartite graphs [83], we infer that F is not 1-p.o.

Now let F ∈ F4, that is, F = K2 + C2k+1 for some k ≥ 1. We will prove that F is not
1-p.o. using Lemma 4.1. Let the vertices of the cycle component of F be named u1, . . . , u2k+1,
according to a cyclic order of C2k+1. Also, let the two vertices of the K2 component of F be
named v1 and v2. Suppose that F admits a 1-perfect orientation D. For every two consecutive
vertices from the cycle we have an induced C4 given by these two vertices together with v1
and v2. By Lemma 4.1, every such C4 must be oriented cyclically. Consider the C4 induced
by vertices {u1, u2, v1, v2}. Without loss of generality we may assume that it is oriented as
v1 → u1 → v2 → u2 → v1. This determines the orientation of the C4 induced by {u2, u3, v1, v2}.
Since the edge {v1, u2} is oriented as u2 → v1, the edge {v1, u3} must be oriented as v1 → u3.
Proceeding along the cycle, we infer that v1 → ui for odd i and ui → v1 for even i. However,
this implies that v1 → u1 and v1 → u2k+1, contrary to the fact that D is a 1-perfect orientation
of F . Therefore, F is not 1-p.o.

Each of the remaining graphs, F5–F12, belongs to the list of minimal forbidden induced
subgraphs for the class of circular arc cobipartite graphs [83]. By Theorem 4.2, none of these
graphs is 1-p.o.

It remains to show minimality, that is, that every proper induced minor of every graph in F
is 1-p.o.

First consider the graphs F1 and F2. Deleting any vertex of either F1 or F2 results in either a
chordal graph or in a unicyclic graph, hence in a 1-p.o. graph (cf. Proposition 2.2). Contracting
any edge of F1 results in a graph that is either chordal, or is obtained from a cycle by adding
to it a simplicial vertex, hence in either case a 1-p.o. graph. Contracting any edge of F2 results
in a graph that can be reduced to a cycle by removing true twins and simplicial vertices, hence
this graph is also 1-p.o.

We are left with graphs that are defined in terms of their complements. To argue minimality
for them, it will be convenient to understand the effect of performing the operation of edge
contraction on a given graph on its complement. It can be seen that if G is the graph obtained
from a graph H by contracting an edge uv, then G is the graph obtained from H identifying
a pair of non-adjacent vertices (namely, u and v) and making the new vertex adjacent exactly
to the common neighbors in H of u and v. We will refer to this operation as co-contracting a
non-edge.

Let F ∈ F3, that is, F = C2k for some k ≥ 3. Deleting a vertex from F results in the
complement of a path, which is 1-p.o. by Corollary 3.8. Similarly, one can verify that co-
contracting a non-edge of F results in a disjoint union of paths. Thus, every proper induced
minor of F is 1-p.o.

Let F ∈ F4, that is, F = C2k+1 +K2 for some k ≥ 1. Deleting a vertex in the cycle
component of F from F results in the complement of a disjoint union of path, which is 1-p.o. by
Corollary 3.8. Deleting a vertex in the K2 component of F from F results in the graph that
consists of the join of K1 and the complement of an odd cycle, which is 1-p.o. by Theorem 3.5
and Proposition 3.7. Furthermore, co-contracting a non-edge of F results in a disjoint union of
paths, and Corollary 3.8 applies again. Thus, every proper induced minor of F is 1-p.o.

We recall that each of the remaining graphs, F5–F12, is a minimal forbidden induced sub-
graph for the class of circular arc cobipartite graphs. Deleting a vertex from any of them
results in a circular arc cobipartite graph, hence in a 1-p.o. graph. Note that F9 has 9 vertices,
each of F5, F6, F7, F8, F10 has 10 vertices, and F11 and F12 have 12 vertices. Also note that
since cobipartite graphs are closed under edge contractions, in order to show that every graph
obtained from one of the graphs F5–F12 by contracting an edge is 1-p.o., it suffices to argue
that it is circular arc, which (since it is cobipartite) is equivalent to verifying that it does not
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contain any of the minimal forbidden induced subgraphs for the class of circular arc cobipartite
graphs [83]. The only graphs with at most 10 vertices on this list are C6, C8, C10, and graphs
F5–F10. The list also contains a unique graph of order 11; let G9 denote its complement. Let
G ∈ {F5, . . . , F12} = {G1, . . . , G8}. A direct inspection of the possible graphs resulting from
co-contracting a non-edge of G shows that every such graph has either at most 10 vertices, in
which case its complement is {C6, C8, C10, G1, . . . , G6}-free, or it has 11 vertices, in which case
its complement either has an isolated vertex and the rest is {C6, C8, C10, G1, . . . , G6}-free, or it
is connected, of order 11, and {C6, C8, C10, G1, . . . , G6, G9}-free. Thus, in all cases contracting
an edge of a graph in {F5, . . . , F12} results in a circular arc graph, hence in a 1-p.o. graph. This
completes the proof.

The previous result implies that F ⊆ F̃ , where F̃ is the set of minimal forbidden induced
minors for the class of 1-p.o. graphs. However, the complete set F̃ remains unknown. It is
conceivable that one can obtain further graphs in F̃ by computing the minimal elements with
respect to the induced minor relation of the list of forbidden induced subgraphs for the class of
circular arc cobipartite graphs due to Trotter and Moore [83]. Besides the three small graphs
F5, F6, F7 and the family F3 of complements of even cycles of length at least 6, the list contains
five other infinite families, the smallest members of which are graphs F8, . . . , F12, respectively.

3.4 Reduction to the biconnected case

Since a graph is 1-p.o. if and only if each component of G is 1-p.o., we may restrict our attention
to connected graphs. In this subsection, we analyze to what extent the study of 1-perfectly
orientable graphs can be reduced to the biconnected case. It turns out that biconnectivity
comes at a price: the study of slightly more general structures is required, namely of pairs
(G, v) where G is a biconnected 1-perfectly orientable graph having a 1-perfect orientation D
such that v is a sink in D. A sink in a directed graph is a vertex of out-degree zero. A directed
graph is said to be sink-free if it has no sinks.

The reduction to the biconnected case presented in this section will be used in Sec-
tions 4.3, 4.4, and 4.5 for the characterizations of 1-perfectly orientable block-cactus, K4-minor-
free, and outerplanar graphs, respectively.

Definition 3.10. A rooted graph is a pair (G, v), denoted also by Gv, such that G is a graph
and v ∈ V (G). A rooted graph Gv is said to be connected (resp., biconnected) if G is connected
(resp., biconnected), and 1-perfectly orientable if G has a 1-perfect orientation in which v is a
sink.

Before stating the main theorem of this subsection we write the following two lemmas, one
regarding sinks in 1-perfect orientations of connected graphs and one characterizing 1-perfect
orientations of trees.

Lemma 3.11. Every 1-perfect orientation of a connected graph has at most one sink.

Proof. Let D be a 1-perfect orientation of a connected graph G with two sinks x and y. Suppose
for a contradiction that x 6= y. Let P = (x = v0, v1, . . . , vk = y) be a shortest x,y-path in G.
Since v0 = x is a sink, the edge {v0, v1} is oriented as v1 → v0 in D. This implies that there is a
unique maximum index j ∈ {1, . . . , k} such that (vj , vj−1) is an arc of D. Since y is a sink, the
edge {vk−1, vk} is oriented as vk−1 → vk in D, which implies j < k. The definition of j implies
that (vj+1, vj) is not an arc of D. Hence (vj , vj+1) is an arc of D. Since the out-neighborhood
of vj in D is a clique in G, vertices vj−1 and vj+1 are adjacent, contradicting the minimality of
P .
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An in-tree is a directed graph D that has a vertex r called the root such that for every
vertex v ∈ V (D), there is exactly one directed path from v to r. Equivalently, an in-tree is a
directed rooted tree in which all arcs point towards the root (that is, for every edge {x, y} of the
underlying undirected tree T , we have that (x, y) is an arc of D if and only if dT (x, r) < dT (y, r)).
It is easy to see in every in-tree D, every vertex v ∈ V (D) satisfies d+D(v) = 1, except for the
root r, which is a sink.

Lemma 3.12. Let T be a tree and let D be an orientation of T . Then, D is 1-perfect if and
only if D is an in-tree. Moreover, for every vertex r ∈ V (T ) there exists a 1-perfect orientation
D of T such that r is the root of the in-tree D.

Proof. If D is an in-tree then the fact that D is a 1-perfect orientation of T follows from the
fact that every vertex v ∈ V (T ) satisfies d+D(v) ≤ 1.

Suppose now that D is a 1-perfect orientation of T . Then d+D(v) ≤ 1 for all vertices v ∈ V (T ).
By Lemma 3.11, D has at most one sink. If D does not have any sink, then for every vertex v of
T , we have d+D(v) = 1, which implies that the total number of arcs in D equals |V (D)| = |V (T )|,
contrary to the fact that T is acyclic. It follows that D has a unique sink, say r. We claim
that D is an in-tree with root r, that is, for every vertex v ∈ V (D) there is exactly one directed
path from v to r. Since D is an orientation of a tree, for every vertex v ∈ V (T ) there is at most
one directed path from v to r. Clearly, for v = r there is a unique v,r-directed path. Since
every vertex v that is not the root has a unique out-neighbor and D has no directed cycles, any
maximal path from v ends in the root.

The last statement of the lemma is immediate since, given a vertex r ∈ V (T ), orienting all
edges of T towards r results in an in-tree with root r.

We summarize the reduction to biconnected rooted graphs in the following theorem. Given
a tree T and a vertex r ∈ V (T ), the 1-perfect orientation of T in which r is the unique sink
(cf. Lemma 3.12) will be referred to as the r-rooted orientation of T .

Theorem 3.13. Let G be a connected graph with a cut vertex, let B and C be the sets of blocks
and cut vertices of G, respectively, and let T be the block tree of G. Then, G is 1-perfectly
orientable if and only if one of the following conditions holds:

1. There exists a block Br of G such that Br is 1-perfectly orientable and for every arc
(B, v) ∈ B × C of the Br-rooted orientation of T , the rooted graph Bv is 1-perfectly ori-
entable.

2. There exists a cut vertex vr of G such that for every arc (B, v) ∈ B × C of the vr-rooted
orientation of T , the rooted graph Bv is 1-perfectly orientable.

Proof. Necessity. Suppose first that G is 1-perfectly orientable, and let D be a 1-perfect ori-
entation of G. Consider the orientation TD of the block tree T defined by orienting any edge
{v,B} of T (with v ∈ C and B ∈ B) as B → v if and only if v is a sink in the subgraph of D
induced by V (B).

We claim that for every node x of the block tree T , we have d+TD
(x) ≤ 1. If x = B is a

block of G, then the inequality d+TD
(B) ≤ 1 follows from Lemma 3.11. So let x = v be a cut

vertex of G and suppose for a contradiction that d+DT
(v) ≥ 2. Then there exist two blocks B

and B′ of G containing v such that v is not a sink in the subgraph of D induced by X for any
X ∈ {V (B), V (B′)}. It follows that the out-neighborhood of v in D contains a vertex from
V (B) \ {v} and a vertex from V (B′) \ {v}. As these two vertices are not adjacent in G, this
contradicts the fact that D is 1-perfect.
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Since every node of TD is of out-degree at most 1, TD is a 1-perfect orientation of T .
Lemma 3.12 implies that orientation TD is an in-tree. As there are two types of nodes in T ,
the blocks of G and the cut vertices of G, the unique sink of TD can be either a block of G or
a cut vertex. Suppose first that the unique sink of TD is a block of G, say Br. Then TD is the
Br-rooted orientation of T . Since the subgraph of D induced by V (Br) is a 1-perfect orientation
of Br, it follows that Br is 1-perfectly orientable. Moreover, for every arc (B, v) ∈ B×C of TD,
the subgraph of D induced by V (B) is 1-perfect orientation of B in which v ∈ V (B) is a sink,
which implies that Bv is 1-perfectly orientable. Thus, condition 1 holds in this case. A similar
argument shows that condition 2 holds if the unique sink of TD is a cut vertex of G.

Sufficiency. We now show that each of the two conditions is sufficient for G to be 1-perfectly
orientable.

First, suppose that condition 1 holds, that is, there exists a block Br of G such that Br is
1-perfectly orientable and for every arc (B, v) ∈ B × C of the Br-rooted orientation of T , the
rooted graph Bv is 1-perfectly orientable. Fix a 1-perfect orientation DBr of Br and, for every
arc (B, v) ∈ B×C of the Br-rooted orientation of T , fix a 1-perfect orientation DB of B in which
v is a sink. Note that since every block B 6= Br is of out-degree 1 in the Br-rooted orientation
of T , each of the blocks of G is oriented by exactly one of the above |B| orientations. Since
each edge of G lies in a unique block of G, combining the above orientations defines a unique
orientation of G, say D. We claim that D is a 1-perfect orientation of G. Every vertex v ∈ V (G)
that is not a cut vertex belongs to a unique block, say B, and therefore N+

D (v) = N+
DB

(v). Since

DB is a 1-perfect orientation of B, the set N+
DB

(v) is a clique in B, and hence also a clique in
G. If v ∈ V (G) is a cut vertex, then there is a unique block B of G such that (v,B) is an arc
of the Br-rooted orientation of T , which means that for every block B′ containing v other than
B, the vertex v is a sink in DB′ . Again we obtain that N+

D (v) = N+
DB

(v), hence this set is a
clique in G. This shows that D is a 1-perfect orientation of G, showing that G is 1-perfectly
orientable.

The proof in the case when condition 2 holds is very similar. Suppose that there is a cut
vertex vr of G such that for every arc (B, v) ∈ B × C of the vr-rooted orientation of T , the
rooted graph Bv is 1-perfectly orientable. For every such arc (B, v), fix a 1-perfect orientation
DB of B in which v is a sink. In this case, every block B of G is of out-degree 1 in the vr-rooted
orientation of T and combining the above |B| orientations defines a unique orientation of G, say
D. Arguments analogous to those in the above paragraph show that D is a 1-perfect orientation
of G, hence G is 1-perfectly orientable in this case too. This completes the proof.

We also prove a lemma on chordal graphs for later use.

Lemma 3.14. Every rooted extension of a chordal graph is 1-perfectly orientable.

Proof. Let G be a chordal graph and v ∈ V (G). Since G is chordal, it has a perfect elimi-
nation ordering, that is, a linear ordering σ = (v1, . . . , vn) of the vertices of G such that for
all i ∈ {1, . . . , n}, vertex vi is a simplicial vertex in the subgraph of G induced by {v1, . . . , vi}.
Moreover, the perfect elimination orderings of G are exactly the sequences of the form (σ′, vn)
where vn is a simplicial vertex of G and σ′ is a perfect elimination ordering of G− vn.

We claim that G has a perfect elimination ordering σ = (v1, . . . , vn) such that v = v1. As
observed already by Dirac [23], every minimal separator in a chordal graph is a clique, which
implies that every chordal graph is either complete or has a pair of non-adjacent simplicial
vertices. It follows that every chordal graph with at least two vertices has a pair of perfect elim-
ination orderings σ = (u1, . . . , un) and σ′ = (u′1, . . . , u

′
n) such that un 6= u′n. In particular, one

can construct a perfect elimination ordering (v1, . . . , vn) of G by iteratively deleting simplicial
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vertices (and at the end reversing the order of deleted vertices) so that vertex v is deleted only
at the very end, that is, so that v = v1, as claimed.

Let σ = (v1, . . . , vn) be a perfect elimination ordering of G such that v = v1. Orienting the
edges of G as vi → vj if and only if i > j result in a 1-perfect orientation of G in which v is a
sink, showing that Gv is 1-perfectly orientable.

3.5 Hollowed 2-trees and their relation to 1-perfectly orientable
graphs

In this section we introduce the graph class of hollowed 2-trees, which is defined similarly as the
class of 2-trees, and prove some structural results for these two graph classes. The classes of
2-trees and hollowed 2-trees will play an important role in our characterizations of 1-perfectly
orientable K4-minor-free and outerplanar graphs, obtained in Sections 4.4 and 4.5, respectively.

It is well known that trees can be constructed recursively as follows: (i) K1 is a tree, (ii)
a graph obtained from a tree by adding to it a vertex of degree 1 is a tree, and (iii) there are
no other trees. The class of 2-trees is defined in a similar way: (i) K2 is a 2-tree, (ii) a graph
obtained from a 2-tree by adding to it a simplicial vertex of degree 2 is a 2-tree, and (iii) there
are no other 2-trees. We now consider the following extension of the notion of 2-trees.

Definition 3.15. A hollowed 2-tree is defined as follows: (i) any cycle of length at least four
is a hollowed 2-tree, (ii) a graph obtained from a hollowed 2-tree by adding to it a simplicial
vertex of degree 2 is a hollowed 2-tree, and (iii) there are no other hollowed 2-trees.

The name of this graph class relates to the fact that a hole in a graph G often refers to an
induced cycle of length at least four in G. Every hollowed 2-tree has a unique hole (and, in
particular, is not a 2-tree).

Note that all 2-trees and all hollowed 2-trees are biconnected. They will play an important
role in our characterization of 1-perfectly orientable K4-minor-free graphs (Theorem 4.12) and
in its reduction to the biconnected case.

We first note some properties of 1-perfect orientations of 2-trees and of hollowed 2-trees.

Lemma 3.16. All 2-trees and their rooted extensions are 1-perfectly orientable. Every hollowed
2-tree is 1-perfectly orientable, however, all its 1-perfect orientations are sink-free. (That is, no
rooted extension of a hollowed 2-tree is 1-perfectly orientable.)

Proof. Since 2-trees are chordal, Lemma 3.14 implies that all their rooted extensions are 1-
perfectly orientable. In particular, every 2-tree is 1-perfectly orientable.

Now, let G be a hollowed 2-tree. We prove by induction on |V (G)| that G is 1-perfectly
orientable, having only sink-free 1-perfect orientations. If G is a cycle of length at least 4, then
this holds by Lemma 4.1. Otherwise, G is obtained from a hollowed 2-tree G′ by adding to it
a simplicial vertex, say v, of degree 2. Extending a 1-perfect orientation of G′ by orienting the
two edges incident with v away from v yields a 1-perfect orientation of G, hence G is 1-perfectly
orientable. Suppose for a contradiction that G has a 1-perfect orientation D with a sink s. If
s 6= v, then the subgraph of D induced by V (G′) would be a 1-perfect orientation of G′ with a
sink, contrary to the inductive hypothesis. Therefore s = v. Let x and y be the two neighbors
of v and suppose without loss of generality that x→ y in D. Since D is a 1-perfect orientation
of G, we infer that y is a sink in D′, the subgraph of D induced by V (G′). However, this implies
that D′ is a 1-perfect orientation of G′ with a sink, contrary to the inductive hypothesis.

In the rest of the section, we prove four interrelated lemmas: one regarding K4-
minor-free biconnected graphs, one showing that 2-trees and hollowed 2-trees are the only
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biconnected {K4,K2,3, F1}-induced-minor-free graphs, one showing that every connected
{K4,K2,3, F1, F2}-induced-minor-free graph has at most one hole, and, finally, one character-
izing the {K2,3, F1, F2}-induced-minor-free graphs within the class of connected K4-minor-free
graphs.

Lemma 3.17. Let G be a biconnected K4-minor-free graph with at least two vertices. Then G
is chordal if and only if G is a 2-tree.

Proof. It follows immediately from the definition of 2-trees that every 2-tree is chordal.
Conversely, suppose that G is a biconnected chordal K4-minor-free graph with at least two

vertices. The fact that G is a 2-tree can be proved by induction on the number of vertices.
If G has exactly 2 vertices, then G = K2 is a 2-tree. Suppose that |V (G)| > 2. Since G is
chordal, it has a simplicial vertex, say v. Since G is K4-free, v is of degree at most 2. Since G
is biconnected, v is of degree at least 2. Therefore, v is of degree exactly 2. It is easy to see
that the graph G − v is a biconnected chordal K4-minor-free graph with at least two vertices.
Therefore, by the inductive hypothesis, G− v is a 2-tree. It follows that G is also a 2-tree.

Lemma 3.18. Let G be a biconnected K4-minor-free graph. Then, G is {K2,3, F1}-induced-
minor-free if and only if G is either K1, a 2-tree, or a hollowed 2-tree.

Proof. If G is either K1, a 2-tree or a hollowed 2-tree, then G has at most one hole, which
immediately implies that neither F1 nor K2,3 is an induced minor of G.

Suppose now that G is {K2,3, F1}-induced-minor-free. If G is chordal, then, since G is
K4-minor-free, it follows from Lemma 3.17 that G is a 2-tree. Therefore we may assume that
G is non-chordal. We will show that in this case G is a hollowed 2-tree. It follows from
Theorem 2.12 that G is cyclically orientable. By Corollary 2.10, G can be constructed from
cycles by an iterative application of pasting along an edge. Assume that we are in step k > 1 of
this construction procedure, and assume inductively that the graph G′ constructed right before
step k is a hollowed 2-tree. Now, in step k we will paste a cycle C along some edge e = xy of G′.
If C is of length 3, the graph will remain a hollowed 2-tree after the last operation. So we can
assume that C is of length at least 4. Let C ′ be the unique hole in G′. Since G is biconnected,
it has a pair P , Q of vertex-disjoint paths between x and C ′ and between y and C ′, respectively.
Let P and Q be chosen so that their common length |E(P )|+ |E(Q)| is minimized. Let x′ and y′

be the endpoints of P and Q on C ′, respectively. Note that G′ contains three pairwise internally
vertex-disjoint x′, y′-paths (two along C ′ and one more through P ∪Q); in particular, vertices
x′ and y′ they cannot be separated by a set of less than 3 other vertices. Since G′ is cyclically
orientable, it is of separability at most 2 (by Theorem 2.9). Therefore, x′ and y′ are adjacent.
Let z be the neighbor of x on C other than y, and similarly, z′ be the neighbor of x′ on C ′

other than y′. Now, the sets V (P ), V (Q), {z}, {z′}, V (C) \ {x, y, z}, V (C ′) \ {x′, y′, z′}, form
an induced minor model of F1 in G, contrary to the fact that G is F1-induced-minor-free.

Lemma 3.19. Let G be a connected {K4,K2,3, F1, F2}-induced-minor-free graph. Then G has
at most one hole.

Proof. Let G be a biconnected {K4,K2,3, F1, F2}-induced-minor-free graph. If G has a hole,
then G is not chordal and in this case G is a hollowed 2-tree (by Lemma 3.18). Therefore, G
has at most one hole.

Therefore we may assume that G is not biconnected. Since each block of G is
{K4,K2,3, F1, F2}-induced-minor-free, each block of G can contain at most one hole. Sup-
pose that G contains two holes, say C and C ′. Then C and C ′ belong to different blocks, say
B and B′, respectively. Let P = v1, . . . , vn be a shortest path between C and C ′. If n = 1
then F2 appears as induced minor, a contradiction. If n = 2, then we consider the adjacencies
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between v1 and C ′. If v1 has exactly one neighbor or exactly two neighbors in C ′ which are
consecutive then we get F2 as induced minor, if it has exactly two neighbors in C ′ which are
not consecutive, we get either F2 or K2,3 as induced minor, and if it has 3 or more neighbors
in C ′ we get K4 as induced minor. If n ≥ 3, then by minimality of the path we cannot have
adjacencies between the vertices of the two cycles and internal vertices of the path, and thus
we may contract n− 2 edges of P to reduce it to the previous case.

Lemma 3.20. Let G be a connected K4-minor-free graph with a cut vertex. Then, G is
{K2,3, F1, F2}-induced-minor-free if and only if every block of G is a 2-tree, except possibly
one, which is a hollowed 2-tree.

Proof. Let G be a connected K4-minor-free graph with a cut vertex.
Suppose first that G is {K2,3, F1, F2}-induced-minor-free. Since every block of G is

{K2,3, F1}-induced-minor-free, Lemma 3.18 implies that every block of G is either a 2-tree
or a hollowed 2-tree. Suppose for a contradiction that G has two distinct blocks, say B and
B′, that are not 2-trees. Each of these two blocks is a biconnected K4-minor-free graph with at
least two vertices. Therefore, by Lemma 3.17, neither of B and B′ is chordal. By Lemma 3.19,
G contains at most one hole, and therefore such a pair of blocks B and B′ cannot exist.

Suppose now that every block is a 2-tree, except possibly one, which is a hollowed 2-tree.
Then G has at most one hole. By Lemma 3.18, every block is {K2,3, F1}-induced-minor-free.
Since any induced minor K2,3 or F1 can only belong to a single block, G is {K2,3, F1}-induced-
minor-free. It remains to show that G is F2-induced-minor-free. Assume by contradiction that
G contains F2 as an induced minor. Fix an induced minor model of F2 in G, say Sv1 , . . . , Sv7 ,
minimizing the size of the union of the Svi ’s. Suppose that the two four-cycles of F2 are
induced by vertex sets {v1, v2, v3, v4} and {v4, v5, v6, v7}. By the minimality of the model, the
set Sv1 ∪ Sv2 ∪ Sv3 together with a path within Sv4 forms a hole in G. Similarly, the sets
Sv5 ∪Sv6 ∪Sv7 together with a path within Sv4 form a hole in G. However, since these two holes
are distinct, this contradicts the fact that G has at most one hole.
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Chapter 4

Characterizations of 1-perfectly
orientable graphs within five
induced-minor-closed graph classes

In this chapter we will give characterizations of 1-perfectly orientable graphs within the classes
of cobipartite graphs, cographs, block-cactus graphs, K4-minor-free graphs, and outerplanar
graphs, respectively.

We show that within the class of cobipartite graphs, 1-p.o. graphs coincide with circular arc
graphs. This adds to the list of the many characterizations of cobipartite circular arc graphs.

We characterize 1-p.o. cographs, obtaining characterizations both in terms of forbidden
induced subgraphs and in terms of a composition theorem.

Finally, based on a reduction of the study of 1-perfectly orientable graphs to the biconnected
case, we characterize, both in terms of forbidden induced minors and in terms of composition
theorems, the classes of 1-perfectly orientable block-cactus graphs, 1-perfectly orientable K4-
minor-free graphs and of 1-perfectly orientable outerplanar graphs. As part of our approach,
we relate the classes of graphs under consideration to the classes of 2-trees and hollowed 2-trees
and two other graph classes closed under induced minors studied in the literature, namely the
classes of cyclically orientable graphs and graphs of separability at most 2.

This chapter contains the main results from the following two papers.

• T. R. Hartinger and M. Milanič, Partial Characterizations of 1-Perfectly Orientable
Graphs. J. Graph Theory. Vol. 85, 2, 2017, 378 – 394.

• B. Brešar, T. R. Hartinger, T. Kos, and M. Milanič (2016), 1-perfectly orientable K4-
minor-free and outerplanar graphs. Submitted. arXiv:1604.04598. An extended abstract
appeared in Electronic Notes in Discrete Mathematics, Vol. 54, (2016), 199 – 204.

4.1 1-perfectly orientable cobipartite graphs

The behavior of 1-p.o. graphs under the join operation motivates the study of 1-p.o. cobipartite
graphs. In this section we show that a cobipartite graph is 1-p.o. if and only if it is circular
arc. This equivalence will be derived using two ingredients: a necessary condition for the 1-
p.o. property, which holds in general, and a characterization of cobipartite circular arc graphs
due to Hell and Huang (Theorem 2.5).

We say that a chordless cycle C in a graph G is oriented cyclically in an orientation D of G
if every vertex of the cycle has exactly one out-neighbor on the cycle (see [44,90] for results on
orientations defined in terms of this property).
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Lemma 4.1. In every 1-perfect orientation D of a 1-p.o. graph G, every chordless cycle of
length at least four is oriented cyclically.

Proof. Suppose that a chordless cycle C in G is not oriented cyclically in some 1-perfect ori-
entation D of G. Let C ′ be the orientation of C induced by D. By assumption, C contains
a vertex v with d+C′(v) 6= 1. Since

∑
u∈V (C) d

+
C′(u) = |A(C ′)| = |E(C)| = |V (C)|, it is not

possible that d+C′(u) ≤ 1 for all u ∈ V (C), as this would imply d+C′(v) = 0 and consequently∑
u∈V (C) d

+
C′(u) < |V (C)|. Thus, C contains a vertex v with d+C′(v) = 2. Since C is of length

at least 4 and chordless, the out-neighborhood of v in C ′, and hence in D, is not a clique in G,
contradicting the fact that D is a 1-perfect orientation of G.

Recall the characterization of cobipartite circular arc graphs due to Hell and Huang described
in Theorem 2.5 from Chapter 2. The characterization states that, given a graph G and a
bipartition of its vertex set into cliques {U,U ′}, G is circular arc if and only if it has a good
coloring with respect to the bipartition. Recall that a good coloring of the crossing edges (those
with one endpoint in U and one in U ′) with two colors is good with respect to a bipartition
whenever for every induced 4-cycle of G its two crossing edges have different colors.

Theorem 4.2. The following statements are equivalent for a cobipartite graph G:

1. G is 1-perfectly orientable.

2. G has an orientation in which every induced 4-cycle is oriented cyclically.

3. G is circular arc.

Proof. As shown by Skrien [81], implication 3⇒ 1 holds for general (not necessarily cobipartite)
graphs. Similarly, implication 1⇒ 2 holds in general as follows from Lemma 4.1.

It remains to prove that if G is cobipartite, then condition 2 implies condition 3. Let D be
an orientation of G in which every induced 4-cycle of G is oriented cyclically. Fix a partition
{U,U ′} of V (G) into two cliques. We will now show that G admits a good coloring (with respect
to {U,U ′}), and Theorem 2.5 will imply that G is circular arc. We obtain a good coloring of G
as follows: for every crossing edge e of G, we color e red if the arc of D corresponding to e goes
from U to U ′, and blue if it goes from U ′ to U . To see that this is indeed a good coloring, let C
be an arbitrary induced 4-cycle of G. Since C is oriented cyclically in D, out of the two crossing
edges of C exactly one is oriented from U to U ′ in D. This implies that the two crossing edges
of C will have different colors in the above coloring. It follows that the obtained coloring is a
good coloring, as claimed.

Note that Theorems 4.2 and 3.6 yield an alternative proof of Lemma 2.7.

Many characterizations of circular arc cobipartite graphs are known, including a character-
ization in terms of forbidden induced subgraphs due to Trotter and Moore [83] and several (at
least five) others, see, e.g., [25, 59]. By Theorem 4.2, each of these yields a characterization of
1-p.o. cobipartite graphs. Theorem 4.2 can also be seen as providing further characterizations
of cobipartite circular arc graphs.

The forbidden induced subgraph characterization of 1-perfectly orientable graphs within the
class of complements of forests was given in [47, Theorem 15]. The characterization states that
the complement of a forest is 1-perfectly orientable if and only if it is G1-free, where G1 is
displayed in Fig. 3.1. Note that this characterization follows from Theorem 4.2 along with the
characterization of cobipartite circular arc graphs in terms of forbidden induced subgraphs due
to Trotter and Moore [83] (see also [28]).

34



4.1.1 Grid-walk graphs

In this subsection we define a family of bipartite graphs, which we name grid-walk graphs. We
show that the complement of every member of this family is a circular arc graph, a result that,
by Theorem 4.2, implies that the complement of each member of this family is 1-p.o..

In her PhD thesis, R. Zhang [88] introduced the notion of (k, n)-ladders, which for k = 4
coincides with the notion of grid-walk graphs. She gave a formula for the number of spanning
trees of (k, n)-ladders, generalizing the corresponding formulas for fans and ladders, and shown
some problems to be NP-complete for (k, n)-ladder graphs.

A grid-walk graph is a graph G that can be written as the union of n ≥ 1 four-cycles
C1, . . . , Cn such that for every i ∈ {2, . . . , n}, cycle Ci intersects the graph ∪i−1j=1C

j in a single

edge, say ei−1, of Ci−1. See Fig. 4.1 for an example with n = 20.

C1 C2 C3

e1 e2

e3

C4

C20C19

e19

C5

C6

C7

e6 = e7
C8

e12 = e13 = e14

Figure 4.1: A grid-walk graph composed of twenty four-cycles. The edges e1, . . . , e19 are depicted
grey.

The name “grid-walk graph” is motivated by the fact that every grid-walk graph can be
represented by a finite walk in the infinite square grid graph. The infinite square grid is the
graph with vertex set Z2 and edge set {(i, j)(k, `) : i, j, k, ` ∈ Z and |i − j| + |k − `| = 1}.
And conversely, every such walk gives rise to a unique (up to isomorphism) grid-walk graph. A
walk starting in the origin representing the graph depicted in Fig. 4.1 is shown in Fig. 4.2. The
correspondence follows from the fact that, assuming the usual planar embedding of the grid,
vertices of the square grid graph correspond bijectively to faces (all of which are four-cycles) of
the dual grid, and that edges of the square grid are in a bijective correspondence with edges
of the dual grid. The edges corresponding to the edges of the walk are precisely the edges
e1, . . . , en−1 of the corresponding grid-walk graph (as in the definition of grid-walk graphs).

To prove the following theorem, we will make use of the characterization of cobipartite
circular arc graphs due to Hell and Huang (Theorem 2.5).

Theorem 4.3. Let G be a grid-walk graph. Then, G is a cobipartite circular arc graph.

Proof. Let G be a grid-walk graph. By definition, G can be written as the union of n ≥ 1
four-cycles C1, . . . , Cn such that for every i ∈ {2, . . . , n}, cycle Ci intersects the graph ∪i−1j=1C

j

in a single edge, say ei−1, of Ci−1. For 1 ≤ i ≤ n, let Gi denote the graph ∪ij=1C
j .

A straightforward inductive argument on n shows that G is bipartite, which implies that G is
cobipartite. Fix a bipartition {U,U ′} of its vertex set into two cliques. By Theorem 2.5 it suffices
to prove that G has a good coloring with respect to {U,U ′}. We will prove a slightly stronger
statement. For every i ∈ {2, . . . , n}, let ui, u

′
i be the two (adjacent) vertices of cycle Ci that are

not in Gi−1 and such that ui ∈ U and u′i ∈ U ′ (in particular, V (Ci) = ei−1 ∪ {ui, u′i}). Then,
we can write U = {u0, u1, . . . , un} and U ′ = {u′0, u′1, . . . , u′n} so that for every i ∈ {0, 1, . . . , n},
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(0, 0) (1, 0)

C1 C2

C6 = C8 = (1, 2)

C7

C12 = C14 = (0,−1)C13 = C15 = (0,−2)
C20

Figure 4.2: A walk in the square grid corresponding to the grid-walk graph depicted in Fig. 4.1.
For reasons of clarity, pairs of points that repeat in the walk are shown with displacement.

vertices ui and u′i are adjacent in Gi and the graph Gi is cobipartite, with a bipartition {Ui, U
′
i}

of its vertex set into two cliques, where Ui = {u0, u1, . . . , ui} and U ′i = {u′0, u′1, . . . , u′i}. The
statement that we will prove is the following:

For every i ∈ {1, . . . , n}, the graph Gi has a good coloring with respect to {Ui, U
′
i} such that

(∗) a crossing edge uju
′
k of Gi (with 0 ≤ j, k ≤ i and j 6= k) is colored red if j < k and blue

if j > k.

We prove the above claim by induction on i. If i = 1, then Gi
∼= 2K2, and coloring the edge

u0u
′
1 red and the edge u1u

′
0 blue yields the desired coloring. Now, let i > 1 and let ci−1 be a

good coloring of Gi−1 with respect to {Ui−1, U ′i−1} satisfying condition (∗) (with i− 1 in place
of i). Since Ui = Ui−1 ∪ {ui} and U ′i = U ′i−1 ∪ {u′i}, we can extend this coloring to a coloring ci
of the crossing edges of Gi (with respect to {Ui, U

′
i}) by setting, for every crossing edge uju

′
k of

Gi:

ci(uju
′
k) =





ci−1(uju′k), if j 6= i and k 6= i;
blue, if j = i;
red, if k = i.

Note that the mapping ci is well-defined since vertices ui and u′i are non-adjacent in Gi. Clearly,
since ci−1 satisfies condition (∗), so does ci. Therefore, it remains to show that ci is a good
coloring, that is, that for every induced 4-cycle in Gi, the two crossing edges in it are of the
opposite color.

Suppose for a contradiction that there is an induced 4-cycle, say C, of Gi in which the two
crossing edges are of the same color. Since the coloring ci−1 was good in Gi−1, cycle C must
contain at least one of the vertices ui and u′i. Without loss of generality, we may assume that
it contains ui. Moreover, since all the crossing edges incident with ui are colored blue by ci, we
infer that the two crossing edges of C are colored blue. Since all the crossing edges incident with
u′i are colored red by ci, this implies that u′i 6∈ V (C). Writing V (C) = {ui, uj , u′k, u′`} where
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E(C) = {uiuj , uju′k, u′ku′`, u′`ui}, we thus have 0 ≤ j, k, ` ≤ i − 1. Vertex u′k is non-adjacent to
ui in C (and thus also not in Gi). Since in graph Gi, vertex ui has a unique neighbor other than
u′i, this unique neighbor must be u′k. It follows that u′k is a common vertex of cycles Ci−1 and
Ci; in particular, u′k is adjacent to ui−1 in the graph Gi. Since the edge uju

′
k is a crossing edge

of C, it is colored blue, which implies that j > k. If j = i− 1, then vertex uj = ui−1 belongs to
cycle Ci−1 and is therefore adjacent to u′k ∈ V (Ci−1) in Gi, contrary to the fact that uj and u′k
are adjacent in Gi. Therefore k < j < i − 1. Since j 6∈ {k, i − 1} and vertices u′k and u′i−1 are
the only neighbors of ui−1 in the graph Gi−1, vertex ui−1 is adjacent to vertex u′j in the graph

Gi−1; moreover, since j < i − 1, the edge ui−1u′j is colored blue by ci and therefore by ci−1.
It follows that the subgraph of Gi−1 induced by {ui−1, uj , u′k, u′j} is a 4-cycle in which the two
crossing edges are of the same color, contrary to the inductive hypothesis. This completes the
proof.

4.2 1-perfectly orientable cographs

We now derive a characterization of 1-p.o. cographs, obtaining characterizations both in terms
of forbidden induced subgraphs and in terms of structural properties. Recall that cographs can
be characterized in terms of forbidden induced subgraphs by a single obstruction, namely the
4-vertex path P4. Alternatively, the class of cographs can be defined recursively by stating that
K1 is a cograph, the disjoint union of two cographs is a cograph, the join of two cographs is a
cograph, and there are no other cographs.

Theorem 4.4. For every cograph G, the following conditions are equivalent:

1. G is 1-perfectly orientable.

2. G is K2,3-free.

3. One of the following conditions holds:

• G ∼= K1.

• G ∼= mK2 for some m ≥ 2.

• G is the disjoint union of two smaller 1-p.o. cographs.

• G is obtained from a 1-p.o. cograph by adding to it a universal vertex.

• G is obtained from a 1-p.o. cograph by adding to it a true twin.

Proof. The implication 1⇒ 2 follows from Theorems 3.5 and 3.9.
To show the implication 2 ⇒ 3, suppose that G is a K2,3-free cograph on at least two

vertices that is not disconnected and does not have a universal vertex or a pair of true twins.
We want to show that G = mK2. Since G is not disconnected and G 6= K1, its complement G
is disconnected. Let m ≥ 2 denote the number of co-components of G (subgraphs of G induced
by the vertex sets of components of G). If one of the co-components has exactly one vertex,
then that vertex is universal in G, which is a contradiction. Therefore, each co-components has
at least two vertices. The recursive structure of cographs implies that each co-component of G
is disconnected. In particular, it has independence number at least 2. On the other hand, since
G is K2,3-free, each co-component of G has independence number at most 2. This implies that
each co-component is the disjoint union of two complete graphs. Since G has no true twins,
each co-component is isomorphic to 2K1, that is, G ∼= mK2 for some m ≥ 2, as claimed.

Finally, we show the implication 3⇒ 1. Suppose that G is a cograph such that one of the five
conditions in item 3 holds. An inductive argument shows that G is 1-p.o., using Theorem 3.5
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and the fact that K1 and all graphs of the form mK2 are 1-p.o. (which follows, e.g., from
Corollary 3.8).

As a consequence from Theorem 4.4, we obtain the following result.

Corollary 4.5. Let G be a graph. Then, the following conditions are equivalent.

(a) G is a 1-perfectly orientable cograph.

(b) G is {K2,3, P4}-induced-minor-free.

(c) G is {K2,3, P4}-free.

Proof. The implication (b) ⇒ (c) is trivial, and the fact that (c) implies (a) follows from
Theorem 4.4. Implication (a)⇒ (b) follows from the fact 1-p.o. graphs and cographs are closed
under induced minors, K2,3 is not 1-p.o. and P4 is not a cograph.

4.3 1-perfectly orientable block-cactus graphs

In this section we derive a characterization of 1-p.o. graphs within the class of block-cactus
graphs. A block-cactus graph is a graph such that all its blocks are either cycles or complete
graphs. It is not difficult to see that the class or block-cactus graphs is induced-minor-closed,
and thus, can be characterized in terms of minimal forbidden induced minors. Theorem 4.6
states such a characterization. The diamond graph consists of the complete graph K4 minus
an edge.

Very recently, Kamiński and Raymond [54] characterized the connected graphs that cannot
be contracted to a diamond as exactly the connected block-cactus graphs (which the authors
refer to as connected clique-cactus graphs). The reverse implication of the following equivalence
could also be derived from their characterization, but we here give an independent and shorter
proof.

Theorem 4.6. A graph G is a block-cactus graph if and only if G is diamond-induced-minor-
free.

Proof. Let G be a block-cactus graph. Since block-cactus graphs are induced-minor-free, and
the diamond is not a block-cactus graph (it is 2-connected and is neither a complete graph nor
an induced cycle), G must be diamond-induced-minor-free.

Suppose now that G is a diamond-induced-minor-free graph, and suppose that G has a block
B that is not complete and not an induced cycle. Then, there exist two vertices x, y ∈ B such
that {x, y} /∈ E(G). Since x and y belong to the same block, there exist two vertex-disjoint
x, y-paths. Let us consider the two such paths minimizing their total length, say P 1 and P 2. If
any vertex of P 1 is adjacent to any vertex of P 2, we would immediately obtain a diamond as
induced minor, a contradiction. So we may assume that x and y together with P 1 and P 2 form
an induced cycle in B, say C.

Since B is not a cycle, there must exist some vertex z in B \ V (C). Suppose that z has
exactly two neighbors in C, say v1 and v2. If {v1, v2} ∈ E(G), then, since C contains at least
two more vertices, we obtain a diamond as induced minor by a suitable contraction of edges
from the v1, v2-path which is not the edge v1, v2. If {v1, v2} /∈ E(G), then the two v1, v2-paths
in C each contain at least one more vertex. Thus, a suitable contraction of edges in each of
the paths would result in a diamond as induced minor. Suppose now that z has at least three
neighbors in C, and denote them by v1, v2, v3, . . . , v` (` ≥ 3). Since C has at least 4 vertices,
there exist two neighbors of z in C that are non-adjacent. We may assume without loss of
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generality that {v1, v3} /∈ E(G) and denote by v2 the neighbor of z between them in C. But
then, by contracting some edges in the v1, v3-path in C that passes through v2 and deleting the
other vertices of C, we obtain a diamond as induced minor.

Thus, we may assume that every vertex outside of C has at most one neighbor in C. Consider
then a vertex z outside of C with its neighbor v in C minimizing the length of a shortest path P
between z and C not going through v. Note that we may assume that v has no other neighbor
in P , since we could then select another vertex instead of z which would give a shorter path
than P . Let v′ be the vertex in C such that P is a z, v′-path, and z′ its neighbor in P . Using
an analogous argument we may assume that v′ has no other neighbor in P . Note that the
minimality of P also implies that the internal vertices of P have no neighbors in C.

Therefore, we may contract some edges in P , and, possibly, in the two vertex disjoint v, v′-
paths in C to obtain a diamond as induced minor.

We showed then that every block of G is either complete or a cycle, and so G is a block-cactus
graph.

As a consequence of the previous result and Theorem 3.13, we obtain the following charac-
terization of 1-perfectly orientable block-cactus graphs. A rooted extension of a graph G is a
rooted graph Gv for any v ∈ V (G).

Proposition 4.7. Let G be a connected block-cactus graph. Then, the following statements are
equivalent:

1. G is 1-perfectly orientable.

2. At most one block of G is not complete.

3. G is F2-induced-minor-free (see Fig. 3.2).

Proof. (1. ⇔ 2.) If G is biconnected, then G has only one block and both conditions 1. and
2. can be seen to hold. Suppose now that G has a cut-vertex. Graph G has blocks of two
types: blocks that are complete – for which every rooted extension is 1-perfectly orientable (by
Lemma 3.14) – and blocks that are not complete – which are cycles of length at least four, and
for which, by Lemma 4.1, no rooted extension is 1-perfectly orientable. The two conditions from
Theorem 3.13 are now easily seen to be equivalent to the following two conditions, respectively:
(i) there exists a block B of G such that all blocks of G other than B are complete, and (ii) all
blocks of G are complete. By Theorem 3.13 G is 1-p.o. if and only if one of conditions (i) and
(ii) holds, which is in turn equivalent to condition 2.

(1.⇒ 3.) Since G is 1-p.o., Theorem 3.9 implies that G is F2-induced-minor-free.

(3. ⇒ 2.) Let G be an F2-induced-minor-free graph. Since G is block-cactus, its blocks are
complete graphs or cycles. Suppose by contradiction that there exist two blocks of G, say B
and B′, that are not complete (and thus, are cycles of length at least 4). By contracting each of
these cycles to a C4, contracting the edges in a shortest path between B and B′, and deleting
all vertices not in the path or in either of B and B′, we would obtain F2 as an induced minor,
a contradiction.

The following corollary is an immediate consequence of Theorem 4.6 and Proposition 4.7.

Corollary 4.8. A graph G is a 1-perfectly orientable block-cactus graph if and only if it is
{diamond, F2}-induced-minor-free.
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4.4 1-perfectly orientable K4-minor-free graphs

In this section we develop a structural characterization of 1-perfectly orientable graphs within
the class of K4-minor-free graphs. Since the class of K4-minor-free graphs contains the class
of outerplanar graphs, this will imply a structural characterization of 1-perfectly orientable
outerplanar graphs (developed in Section 4.5).

We first characterize the biconnected case and then apply Theorem 3.13 to characterize the
general case.

4.4.1 The biconnected case

To apply Theorem 3.13, we need to understand both biconnected 1-perfectly orientable K4-
minor-free graphs and biconnected 1-perfectly orientable K4-minor-free rooted graphs. Both
characterizations are easy to obtain using results from Chapter 3.

Lemma 4.9. For a biconnected K4-minor-free graph G, the following statements are equivalent:

1. G is 1-perfectly orientable.

2. G is {K2,3, F1}-induced-minor-free.

3. G is either K1, a 2-tree, or a hollowed 2-tree.

4. G is either K1, K2, or can be constructed from a cycle by a sequence of additions of
simplicial vertices of degree 2.

5. G is either K1, K2, or has a sink-free 1-perfect orientation.

Proof. The implication 1 ⇒ 2 follows from Theorem 3.9, Lemma 3.18 yields the equivalence
2 ⇔ 3. The equivalence between statements 3 and 4 follows immediately from the definitions
of 2-trees and hollowed 2-trees. The implication 5⇒ 1 is clear.

To complete the proof, we show the implication 3 ⇒ 5. Suppose that G is either K1, a
2-tree, or a hollowed 2-tree. If G is K1 or K2, then there is nothing to prove. Therefore, G
is either a cycle or is obtained from a 2-connected possibly hollowed) 2-tree by adding to it a
simplicial vertex of degree 2. We prove that G has a sink-free 1-perfect orientation by induction
on |V (G)|. If G is a cycle, then G has a sink-free 1-perfect orientation. If G is obtained from
a 2-connected (possibly hollowed) 2-tree G′ by adding to it a simplicial vertex, say v, of degree
2, then the inductive hypothesis implies that G′ has a sink-free 1-perfect orientation, say D′.
Extending D′ by orienting the two arcs incident with v away from v yields a sink-free 1-perfect
orientation of G, as claimed.

Lemma 4.10. For a biconnected K4-minor-free graph G, the following statements are equiva-
lent:

1. Some rooted extension of G is 1-perfectly orientable.

2. All rooted extensions of G are 1-perfectly orientable.

3. G is chordal.

4. G is either K1 or a 2-tree.
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Proof. First, we show the implication 1 ⇒ 4. Suppose that some rooted extension of a bicon-
nected K4-minor-free graph G is 1-perfectly orientable. In particular, G is 1-perfectly orientable,
and hence {K2,3, F1}-induced-minor-free by Theorem 3.9. By Lemma 3.18, G is either K1, a 2-
tree, or a hollowed 2-tree. By Lemma 3.16, G cannot be a hollowed 2-tree, and hence condition
4 holds.

Implication 4 ⇒ 3 is clear, implication 3 ⇒ 2 follows from Lemma 3.14, and implication
2⇒ 1 is trivial.

Corollary 4.11. For a biconnected K4-minor-free graph G and v ∈ V (G), the rooted graph Gv

is 1-perfectly orientable if and only if G is either K1 or a 2-tree.

4.4.2 The general case

Now we have all the ingredients ready to complete the characterization of 1-perfectly orientable
K4-minor-free graphs. In Theorem 4.12 we will use the following two operations:

• (A1): attach a simplicial vertex of degree 1.

• (A2): attach a simplicial vertex of degree 2 (that is, add a new vertex and connect it by
an edge to exactly two vertices of the graph, which are adjacent to each other).

Fig. 4.3 shows an example of a graph constructed starting from C6 and using a sequence of
operations (A1) and (A2).

Figure 4.3

Theorem 4.12. Let G be a connected K4-minor-free graph. Then the following statements are
equivalent:

1. G is 1-perfectly orientable.

2. G is {K2,3, F1, F2}-induced-minor-free.

3. Every block of G is a 2-tree, except possibly one, which is either K1 or a hollowed 2-tree.

4. G can be constructed from either K1 or a cycle by a sequence of operations (A1) and (A2).

Proof. Suppose first that G is biconnected. By Theorem 3.9, condition 1 implies condition 2.
By Lemma 4.9, condition 2 implies condition 3, and condition 3 implies condition 4. Suppose
now that G can be constructed from either K1 or a cycle by a sequence of operations (A1)
and (A2). Since G is biconnected, we may assume that operation (A1) was never used in the
sequence, unless G is isomorphic to K2. Therefore, G is either K1, K2, or can be constructed
from a cycle by a sequence of operations (A2). By Lemma 4.9, this implies condition 1.
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We are left with the case when G has a cut vertex. In this case, we first establish the
equivalence of conditions 1 and 3. Let T be the block tree of G. By Theorem 3.13, G is
1-perfectly orientable if and only if one of the following conditions holds:

• There exists a block Br of G such that Br is 1-perfectly orientable and for every arc
(B, v) ∈ B × C of the Br-rooted orientation of T , the rooted graph Bv is 1-perfectly ori-
entable.

• There exists a cut vertex vr of G such that for every arc (B, v) ∈ B × C of the vr-rooted
orientation of T , the rooted graph Bv is 1-perfectly orientable.

Since each block of G is a biconnected K4-minor-free graph, Lemma 4.9 and Corollary 4.11
imply that the above two conditions are equivalent, respectively, to the following two:

• There exists a block Br of G such that Br is either a 2-tree or a hollowed 2-tree, and for
every arc (B, v) ∈ B × C of the Br-rooted orientation of T , the graph B is a 2-tree.

• There exists a cut vertex vr of G such that for every arc (B, v) ∈ B × C of the vr-rooted
orientation of T , the graph B is a 2-tree.

Since the only sink of a w-rooted orientation of a tree T ′ (with w ∈ V (T ′)) is w, the two
conditions can be further simplified as follows:

• There exists a block Br of G such that Br is either a 2-tree or a hollowed 2-tree, and every
other block B 6= Br is a 2-tree.

• All blocks of G are 2-trees.

Clearly, one of these two conditions holds if and only if condition 3 holds. This establishes the
equivalence of conditions 1 and 3.

The equivalence of conditions 2 and 3 follows from Lemma 3.20. The implication 3⇒ 4 can
be proved by induction on |V (G)|, as follows. If |V (G)| = 1, then G is isomorphic to K1 and
we are done. Otherwise, G has an end block B that is not a hollowed 2-tree. Let v be the cut
vertex of G contained in B. By induction, the graph G′ = G− (V (B) \ {v}) can be constructed
from either K1 or a cycle by a sequence of operations (A1) and (A2). Such a sequence can be
extended with an operation of the form (A1) (resulting in a simplicial vertex w with a unique
neighbor v) to create a new block corresponding to B and then with a sequence of operations of
the form (A2) to grow B out of the edge {v, w}. The implication 4⇒ 1 can also be proved by
induction on the number of vertices, using the fact that K1 and cycles are 1-perfectly orientable
and that a 1-perfect orientation of a graph G can be extended to a 1-perfect orientation of a
graph obtained from G by adding to it a simplicial vertex v by orienting the edges incident with
v away from v.

Recall that a graph is said to be cyclically orientable if it admits an orientation in which
every chordless cycle is oriented cyclically. As a consequence of Theorem 4.12 we obtain the
following result.

Corollary 4.13. For every graph G, the following statements are equivalent:

1. G is 1-perfectly orientable and K4-minor-free.

2. G is 1-perfectly orientable and cyclically orientable.

3. G is {K4,K2,3, F1, F2}-induced-minor-free.

42



Proof. Since each of the three properties are closed under taking components and disjoint union,
we may assume that G is connected. The equivalence 1⇔ 3 is then an immediate consequence
of Theorem 4.12. The implication 2⇒ 3 follows from Theorems 3.9 and 2.12. The implication
3⇒ 2 follows from Theorems 4.12 and 3.9.

4.5 1-perfectly orientable outerplanar graphs

Since every outerplanar graph is K4-minor-free, we can derive from Theorem 4.12 a character-
ization of 1-perfectly orientable outerplanar graphs. In Theorem 4.14 we will use the following
two operations:

• (A1) attach a simplicial vertex of degree 1.

• (A′2) attach a simplicial vertex of degree 2 to adjacent vertices v and w where the edge
vw lies in at most one induced cycle.

Note that the example in Fig. 4.3 is not constructed starting from C6 using a sequence of
operations (A1) and (A2)

′ since there exists an edge which lies in the starting induced 6-cycle
and two other induced 3-cycles, which means that at some point we must have attached a
simplicial vertex of degree 2 to adjacent vertices v and w where the edge vw lies in more than
one induced cycle.

Theorem 4.14. For a connected outerplanar graph G, the following statements are equivalent:

1. G is 1-perfectly orientable.

2. G is {K2,3, F1, F2}-induced-minor-free.

3. Every block of G is a 2-tree, except possibly one, which is either K1 or a hollowed 2-tree.

4. G can be constructed from either K1 or a cycle by a sequence of operations (A1) and (A′2).

Proof. The equivalences 1⇔ 2⇔ 3 as well as the implication 4⇒ 1 follow from Theorem 4.12.
From Theorem 4.12 we also know that if one of conditions 1, 2, or 3 holds, then G can be
constructed from either K1 or a cycle by a sequence of operations (A1) and (A2). Suppose that,
when using the operation (A2) to add a simplicial vertex u with neighbors v and w, the edge
vw already lies in two (distinct) induced cycles, say C and C ′. First, we claim that C and C ′

intersect in a path (which contains the edge vw). Suppose that this is not the case. Then the
intersection of C and C ′ consist of at least two components, each of which is a path. Let x be an
endvertex of one of these path components, and let P be the path in C ′ with x as an endvertex,
whose internal vertices and edges are not in C, and the other endvertex is y ∈ V (C) ∩ V (C ′).
Now, it is easy to see that the subgraph induced by V (C) ∪ V (P ) contains K2,3 as a minor;
this implies that the graph is not outerplanar, and since this property is preserved in further
steps of the procedure, this contradicts the assumption that G is outerplanar. Thus C and C ′

intersect in a path, which contains vw. If this path contains other vertices than v and w, then
one can again easily derive that K2,3 appears as a minor, contradicting outerplanarity of G.
Hence C and C ′ intersect exactly in the subgraph K2 formed by v and w. Then, after applying
the operation (A2) of adding the vertex u as the neighbor of v and w, we infer that the sets
{u}, {v}, {w}, V (C) \ {v, w}, and V (C ′) \ {v, w} form an induced minor model of K+

2,3. Hence,
in this case the obtained graph would not be outerplanar, and it would remain non-outerplanar
until the end of the procedure. Therefore, we deduce that in each step of the construction that
uses (A2), in fact an operation is of the form (A′2). This proves the implication 1⇒ 4.
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As a consequence of Proposition 2.13 and Theorem 4.14 we obtain the following result.

Corollary 4.15. For every graph G, the following statements are equivalent:

1. G is 1-perfectly orientable and outerplanar.

2. G is {K4,K2,3,K
+
2,3, F1, F2}-induced-minor-free.

Proof. Let G be a 1-perfectly orientable outerplanar graph. Then G is {K4,K2,3,K
+
2,3}-induced-

minor-free since G is outerplanar, and {F1, F2}-induced-minor-free since it is 1-perfectly ori-
entable. Conversely, if G is {K4,K2,3,K

+
2,3, F1, F2}-induced-minor-free then G is outerplanar

by Proposition 2.13. By Theorem 4.14, G is also 1-perfectly orientable.
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Chapter 5

1-perfectly orientable graphs and
graph products

In this chapter we consider the four standard graph products: the Cartesian product, the strong
product, the direct product, and the lexicographic product. For each of these four products, we
completely characterize when a nontrivial product of two graphs G and H is 1-p.o. While the
results for the Cartesian and the lexicographic products turn out to be rather straightforward,
the characterizations for the cases of the direct and the strong product are more involved. Some
common features of the structure of the factors involved in the characterization can be described
as follows. In the cases of the Cartesian and the direct product the factors turn out to be very
sparse and very restricted, always having components with at most one cycle. In the case of the
lexicographic and of the strong product the factors can be dense. More specifically, cobipartite
1-p.o. graphs, including co-chain graphs in the case of strong products, play an important role
in these characterizations. The case of the strong product also leads to a new infinite family of
1-p.o. graphs.

This chapter contains results from the following paper.

• T. R. Hartinger, and M. Milanič, 1-perfectly orientable graphs and graph products. Discrete
Mathematics, 340 (2017), 1727 – 1737.

In the previous two chapters, several results about 1-p.o. graphs were proved. We now
restate some of them for later use.

Proposition 5.1. No graph in the set {F1, F2, F3, F4} (see Fig 5.1) is 1-perfectly orientable.

F1 F2 F4 = K2,3F3 = C6

Figure 5.1: Four small non-1-p.o. graphs.

Note that as a consequence from Theorem 3.5, we obtain the next result.

Proposition 5.2. If G is 1-p.o. and H is an induced minor of G, then H is 1-p.o.

Theorem 3.5 and Proposition 5.2 imply the following.
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Corollary 5.3. A graph G is 1-p.o. if and only if each component of G is 1-p.o.

And from Propositions 5.1 and 5.2 we obtain the following.

Corollary 5.4. Let G be a graph such that some graph Fi (with 1 ≤ i ≤ 4, see Figure 5.1) is
an induced minor of it. Then G is not 1-p.o.

5.1 The Cartesian product

We start with a characterization of nontrivial Cartesian product graphs that are 1-p.o.

The product G�H is connected if and only if both factors are connected (see [45, Corollary
5.3]). More precisely, if G has components G1, . . . , Gk and H has components H1, . . . ,H`, then
the components of G�H are exactly Gi�Hj for i ∈ {1, . . . , k} and j ∈ {1, . . . , `}. Therefore,
since the study of 1-p.o. graphs reduces to the connected case (by Corollary 5.3), no generality
is lost in characterizing nontrivial Cartesian product graphs that are 1-p.o. only among the
connected graphs (equivalently, only among the products having connected factors). For the
proof, let us note that P3�K2 is isomorphic to the domino (graph F1 in Figure 5.1), and K3�K2

is isomorphic to C6 (graph F3 in Figure 5.1).

Theorem 5.5. A nontrivial Cartesian product, G�H, of two connected graphs G and H is
1-p.o. if and only if G ∼= H ∼= K2.

Proof. If each of G and H is isomorphic to K2, then G�H is isomorphic to C4 and thus 1-
p.o. (the cyclic orientation of the C4 is 1-perfect).

Conversely, suppose that G�H is 1-p.o. and that one of G and H, say G, is not isomorphic to
K2. Since both G and H are induced subgraphs of G�H, they are both 1-p.o. (by Corollary 5.2).
Since G and H are connected graphs on at least two vertices, each contains an edge. Moreover,
G contains P3 as a (not necessarily induced) subgraph. If G contains an induced P3, then
G�H contains an induced domino, and is therefore not 1-p.o. by Corollary 5.4. Similarly, if G
contains an induced K3, then G�H contains an induced copy of K3�K2

∼= C6, and is therefore
not 1-p.o., again by Corollary 5.4. In either case, we reach a contradiction.

We now state the theorem for the general case, the proof of which follows easily from the
connected case. For a positive integer k, we say that a k-linear forest is a disjoint union of paths
each having at most k vertices. In particular, 1-linear forest are exactly the edgeless graphs,
and 2-linear forests are exactly the graphs consisting only of isolated vertices and isolated edges.

Theorem 5.6. A nontrivial Cartesian product, G�H, of two graphs G and H is 1-perfectly
orientable if and only if one of the following conditions holds:

(i) G is edgeless and H is 1-perfectly orientable, or vice versa.

(ii) G and H are 2-linear forests.

Proof. If G�H is 1-p.o., then each of G and H is 1-p.o. as they are induced subgraphs of the
product (by Corollary 5.2). Suppose that neither of G and H is edgeless. Then they both
contain an induced K2 and, as a consequence of Theorem 5.5, each component of either of them
is either a K1 or a K2. Hence both are 2-linear forests.

Now, if G is edgeless and H is 1-p.o., the product G�H consists of the disjoint union of
copies of H, which is 1-p.o. due to Corollary 5.3. If both G and H are 2-linear forests, it
follows from Theorem 5.5 that each component of G�H is 1-p.o., and applying Corollary 5.3
we conclude that G�H is 1-p.o.
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5.2 The lexicographic product

In this section, we characterize nontrivial lexicographic product graphs that are 1-p.o.
By [45, Corollary 5.14], the lexicographic product G[H] of two nontrivial graphs is connected

if and only if G is connected. In particular, if G has components G1, . . . , Gk, then the com-
ponents of G[H] are G1[H], . . . , Gk[H]. Therefore, when characterizing nontrivial lexicographic
product graphs that are 1-p.o., we may without loss of generality restrict our attention to the
case of nontrivial products G[H] such that G is connected. The following theorem states the
corresponding characterization.

Theorem 5.7. A nontrivial lexicographic product, G[H], of two graphs G and H such that G
is connected is 1-p.o. if and only if one of the following conditions holds:

(i) G is 1-p.o. and H is complete.

(ii) G is complete and H is a cobipartite 1-p.o. graph.

Proof. Suppose first that G[H] is 1-p.o. Then, both G and H are 1-p.o. since they are induced
subgraphs of G[H]. Suppose for a contradiction that none of conditions (i) and (ii) holds. Since
G is a nontrivial connected graph, it has an edge, and, since (i) fails, H is not complete. We
infer that K2[H] is an induced subgraph of G[H] isomorphic to the join of two copies of H.
Consequently, H ∗H is 1-p.o. By Theorem 3.6 we obtain that H is cobipartite. Therefore, since
we assume that (ii) fails, G is not complete. In particular, there exists an induced P3 in G.
Since H contains an induced 2K1 and P3[2K1] ∼= K2,4, we obtain that G[H] contains K2,3 as
an induced subgraph, and by Corollary 5.4 it cannot be 1-p.o., a contradiction.

For the converse direction, we will show that in any of the two cases (i) and (ii), the graph
G[H] is 1-p.o. If G is 1-p.o. and H is complete, then the product G[H] is isomorphic to the
graph obtained by repeatedly substituting a vertex of G with a complete graph. Substituting
a vertex v with a complete graph is the same as adding a sequence of true twins to vertex v,
which by Theorem 3.5 results in a 1-p.o. graph. It follows that G[H] is 1-p.o. If G is complete
and H is a cobipartite 1-p.o. graph, then an inductive argument on the order of G together with
the fact that cobipartite 1-p.o. graphs are closed under join (Theorem 3.6) shows that G[H] is
1-p.o.

The characterization for the general case follows from the previous theorem.

Theorem 5.8. A nontrivial lexicographic product, G[H], of two graphs G and H is 1-perfectly
orientable if and only if one of the following conditions holds:

(i) G is edgeless and H is 1-perfectly orientable.

(ii) G is 1-perfectly orientable and H is complete.

(iii) Every component of G is complete and H is a cobipartite 1-p.o. graph.

Proof. Suppose first that G[H] is 1-p.o. Since each of G and H is an induced subgraph of the
product, they are 1-p.o. (by Corollary 5.2). Suppose now that G is not edgeless and H is not
complete (otherwise we are in cases (i) or (ii)). Let Gi be an arbitrary component of G. By
Theorem 5.7 applied to the graph Gi[H], which is 1-p.o., since H is not complete, we infer that
Gi is complete and H is a cobipartite 1-p.o. graph. Thus, each component of G is complete and
we are in case (iii).

Let us now prove the converse implication. If G is edgeless and H is 1-p.o., the product G[H]
consists of the disjoint union of copies of H, and is 1-p.o. due to Corollary 5.3. If G is 1-p.o. and
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H is complete, it follows from Theorem 5.7 and Corollary 5.3 that G[H] is 1-p.o. Finally, if
every component of G is complete and H is a cobipartite 1-p.o. graph, applying Theorem 5.7
and Corollary 5.3 we conclude that G[H] is 1-p.o.

5.3 The direct product

In this section, we characterize nontrivial direct product graphs that are 1-p.o.

If the direct product G × H is connected, then both factors are connected, however the
converse is generally not true. (For example, ifG ∼= H ∼= K2, thenG×H ∼= 2K2 is disconnected.)
By [45, Corollary 5.10], the direct product of two connected nontrivial graphs is connected if
and only if at most one of the factors is bipartite. If G has components G1, . . . , Gk and H has
components H1, . . . ,H`, then G × H is the disjoint union of the products of the components,
Gi×Hj for i ∈ {1, . . . , k} and j ∈ {1, . . . , `}. It follows that, in order to characterize nontrivial
direct product graphs that are 1-p.o., we may without loss of generality restrict our attention
to the case of nontrivial products in which both factors are connected.

We start with some necessary conditions for the direct product of two graphs to be 1-p.o.
We say that a graph is triangle-free if it is C3-free.

Lemma 5.9. Suppose that the direct product of two connected graphs G and H is 1-p.o. Then:

1. If one of G and H contains an induced P3 or C3, then the other one is
{claw , C3, C4, C5, P5}-free.

2. At least one of G and H is triangle-free.

3. At least one of G and H is P4-free.

Proof. As we can see in Figures 5.2, 5.3, and 5.4 below, each of P3×claw , P3×C4, and C3×claw
contains an induced K2,3, each of P3 × C3, P3 × C5, and P3 × P5 contains an induced F2, the
graph C3 × C3 contains an induced F3 = C6, and P4 × P4 contains an induced domino (F1).

P3 × C4P3 × claw C3 × claw

Figure 5.2: K2,3 as induced subgraph of P3 × claw , P3 × C4, and C3 × claw .

P3 × C5 P3 × P5P3 × C3

Figure 5.3: F2 as induced subgraph of P3 × C3, P3 × C5, and P3 × P5.
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C3 × C3 P4 × P4

Figure 5.4: The complement of C6 as induced subgraph of C3 ×C3 and the domino as induced
subgraph of P4 × P4.

Each of C3×C4, C3×C5, and C3×P5 contains an induced C3×P3
∼= P3×C3, and therefore

also an induced F2.
The lemma now follows from the above observations and Corollary 5.4.

The characterization of 1-perfectly orientable direct products of two nontrivial connected
graphs is given in the following theorem. Before stating the result, we define some concepts
that will be necessary for the proof of Theorem 5.10. We say that an undirected graph is a
pseudoforest if each component of it contains at most one cycle and a pseudotree if it is a
connected pseudoforest. Recall that a graph is unicyclic if it contains exactly one cycle.

Theorem 5.10. A nontrivial direct product, G × H, of two connected graphs G and H is
1-p.o. if and only if one of the following conditions holds:

(i) One factor is isomorphic to K2 and the other one is a pseudotree.

(ii) One factor is isomorphic to P3 and the other one to P3 or to P4.

Proof. We first show that each of the conditions (i) and (ii) is sufficient for G×H to be 1-p.o.
Recall that every chordal graph and every graph having a unique induced cycle of order at least
4 is 1-p.o. [4]. In particular, this implies that every pseudoforest is 1-p.o. Suppose first that
G ∼= K2 and H is a pseudotree. If H is bipartite, then K2×H is isomorphic to the pseudoforest
2H, which is 1-p.o. If H is non-bipartite, then it is unicyclic, in which case K2 × H is again
unicyclic and therefore 1-p.o. Finally, P3×P4 is isomorphic to 2F where F is a unicyclic graph,
and is therefore a 1-p.o. graph. This also implies that P3 × P3 is 1-p.o.

To show necessity, suppose that G×H is 1-p.o. We consider two cases depending on whether
one of the two factors is isomorphic to K2 or not. Suppose first that G is isomorphic to K2.
Then K2×H is triangle-free, and it follows from [4, Corollary 5.7] that K2×H is a pseudoforest.
If H is bipartite, then the product K2 × H is isomorphic to 2H, therefore H is a connected
1-p.o. bipartite graph, and by [4, Corollary 5.7] H must be a pseudotree. Suppose now that H
is non-bipartite. Then, K2 × H is connected [45, Theorem 5.9] and hence a pseudotree. Let
us observe that in this case H must be a unicyclic graph (and therefore a pseudotree). Indeed,
if H has a cycle (v1, . . . , vk) (for some odd k) then K2 × H has a cycle of length 2k formed
by vertices (u1, v1), (u2, v2), (u1, v3), . . . , (u1, vk), (u2, v1), (u1, v2), (u2, v3), . . . , (u2, vk), where u1
and u2 are the two vertices of the K2. Therefore if H had more than one cycle, then so would
K2 ×H, and we know that this is not the case.

Now consider the case when both factors have at least three vertices. By Lemma 5.9, at least
one of the two factors, say G, is triangle-free. Since G has at least three vertices, it contains an
induced P3. Applying Lemma 5.9 further, we infer that H is {claw , C3, C4, C5, P5}-free. Since
H is {claw , C3}-free, it is of maximum degree at most 2, thus a path or a cycle. Since H is also
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{C4, C5, P5}-free and connected, we conclude that H is a path with either 3 or 4 vertices. If
H ∼= P4, then G is P4-free by Lemma 5.9, and since it contains a P3, we must have G ∼= P3. If
H ∼= P3, then applying the same arguments as above we obtain that G ∼= P3 or G ∼= P4. This
concludes the proof of the forward implication, and with it the proof of the theorem.

As a consequence from the previous theorem we can obtain a characterization for the general
case.

Theorem 5.11. A nontrivial direct product, G × H, of two graphs G and H is 1-perfectly
orientable if and only if one of the following conditions holds:

(i) G is a 1-linear forest and H is any graph, or vice versa.

(ii) G is a 2-linear forest and H is a pseudoforest, or vice versa.

(iii) G is a 3-linear forest and H is a 4-linear forest, or vice versa.

Proof. Suppose first that G×H is 1-p.o. If one of G and H is a 1-linear forest, we are in case
(i). So we may assume that both G and H contain K2 as an induced subgraph. It follows
from Theorem 5.10 that each component of both G and H is a pseudotree, and thus G and
H are pseudoforests. If G is a 2-linear forest, we are in case (ii). Let Hj denote an arbitrary
component of H. If G is a 3-linear forest containing a component Gi

∼= P3, it follows from
Theorem 5.10 (applied to Gi ×Hj , which is an induced subgraph of G ×H and hence 1-p.o.)
that Hj is a path on at most 4 vertices, and thus H is a 4-linear forest and we are in case
(iii). If G is a 4-linear forest containing a component Gi

∼= P4, by Theorem 5.10 applied to
Gi × Hj , component Hj must be a path on at most 3 vertices, and therefore H is a 3-linear
forest. Finally, if G has a component different from K1, K2, P3, and P4, Theorem 5.10 applied
to Gi ×Hj implies that Hj is either K1 or K2, and thus H is a 2-linear forest.

Let us now show that for each of the three cases (i), (ii), and (iii), the product G ×H is
1-p.o. If G is a 1-linear forest and H is any graph, then G×H is edgeless and therefore 1-p.o. If
G is a 2-linear forest and H is a pseudoforest, then G × H is the disjoint union of the direct
products Gi ×Hj where Gi is a component of G and Hj is a component of H. Each of those
products Gi ×Hj is either the direct product of a K1 and a pseudotree, which is 1-p.o., or of a
K2 and a pseudotree, which is 1-p.o. by Theorem 5.10. Then, G×H is 1-p.o. by Corollary 5.3.
Finally, if G is a 3-linear forest and H is a 4-linear forest, the products Gi×Hj are of the form
Pi × Pj with i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}, which are 1-p.o. due to Theorem 5.10. Applying
Corollary 5.3, we obtain that G×H is 1-p.o.

5.4 The strong product

In this section, we characterize nontrivial strong product graphs that are 1-p.o.

By [45, Corollary 5.6], the strong product of two graphs G and H is connected if and only
if both factors are connected. More precisely, if G has components G1, . . . , Gk and H has
components H1, . . . ,H`, then the components of G � H are exactly Gi � Hj for i = 1, . . . , k
and j = 1, . . . , `. Therefore, in order to characterize nontrivial strong product graphs that are
1-p.o., we may again restrict our attention to the case of nontrivial products G �H in which
both factors are connected.

Our characterization will be proved in several steps. In Section 5.4.1, we state two pre-
liminary lemmas on the strong product and give two necessary conditions for 1-p.o. strong
product graphs. The necessary conditions motivate the development of a structural character-
ization of {P5, C4, C5, claw , bull}-free graphs. This is done in Section 5.4.2, where connected

50



{P5, C4, C5, claw , bull}-free graphs are shown to be precisely the connected co-chain graphs.
Connected true-twin-free co-chain graphs are further characterized in Section 5.4.3, and form
the basis of an infinite family of 1-p.o. strong product graphs described in Section 5.4.4. Build-
ing on these results, we prove our main result of the section, Theorem 5.23 in Section 5.4.5,
which gives a complete characterization of 1-p.o. strong product graphs both factors of which
are nontrivial and connected.

5.4.1 Three lemmas

Recall that a vertex v in a graph G is simplicial if its neighborhood forms a clique. In Sec-
tion 5.4.4 we will need the following property of simplicial vertices in relation to the strong
product.

Lemma 5.12. Let G and H be graphs and let u and v be simplicial vertices in G and H,
respectively. Then, vertex (u, v) is simplicial in the strong product G�H.

Proof. It suffices to show that the closed neighborhood NG�H [(u, v)] is a clique in G�H. Note
that NG�H [(u, v)] = NG[u] ×NH [v], the set NG[u] is a clique in G (since u is simplicial in G)
and, similarly, the set NH [v] is a clique in H. The desired result now follows from the fact that
the strong product of two complete graphs is a complete graph.

Recall also that two distinct vertices u and v in a graph G form a pair of true twins if
NG[u] = NG[v]. We say that a graph is true-twin-free if it contains no pair of true twins. The
next lemma shows that it suffices to characterize 1-p.o. strong product graphs in which both
factors are true-twin-free.

Lemma 5.13. Let G,G′, and H be graphs such that G′ is obtained from G by adding a true
twin. Then, G�H is 1-p.o. if and only if G′ �H is 1-p.o.

Proof. Note that G � H is an induced subgraph of G′ � H. Therefore, by Proposition 5.2, if
G′ �H is 1-p.o., then so is G�H.

Suppose now that G�H is 1-p.o., and that G′ was obtained from G by adding to it a true
twin x′ to a vertex x ofG. Note that for every v ∈ V (H), we haveNG′�H [(x, v)] = NG′ [x]×NH [v]
and NG′�H [(x′, v)] = NG′ [x′] × NH [v]. Since NG′ [x] = NG′ [x′], each vertex of the form (x′, v)
for v ∈ V (H) is a true twin in G′ �H of vertex (x, v). It follows that G′ �H can be obtained
from G�H by a sequence of true twin additions. By Proposition 3.5, G′ �H is 1-p.o.

A similar approach as for the direct product (Lemma 5.9) gives the following necessary
conditions for the strong product of two graphs to be 1-p.o.

Lemma 5.14. Suppose that the strong product of two graphs G and H is 1-p.o. Then:

1. If one of G and H contains an induced P3, then the other one is {P5, C4, C5, claw , bull}-
free.

2. At least one of G and H is P4-free.

Proof. We can verify that each of the graphs P3 � C4, P3 � C5, P3 � claw, and P3 � bull has
K2,3 (graph F4 in Figure 3.2) as induced minor, that P3 � P5 contains an induced copy of F2,
and that P4 � P4 contains an induced copy of F1. Therefore, by Corollary 5.4, none of these
graphs is 1-p.o. We can observe models of such induced minors in Figure 5.5.

The lemma now follows from the above observations and Corollary 5.4.
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P3 C4 P3 clawP3 C5

P3 bull P3 P5 P4 P4

Figure 5.5: K2,3 as induced minor of P3 � C4, P3 � C5, P3 � claw, P3 � bull, F2 as induced
subgraph of P3 � P5, and the domino (F1) as induced subgraph of P4 � P4.

Lemma 5.14 motivates the development of structural characterizations of P3-free graphs,
of P4-free graphs, and of {P5, C4, C5, claw , bull}-free graphs. P3-free graphs are precisely the
disjoint unions of complete graphs. P4-free graphs (also known as cographs) are also well un-
derstood: they are precisely the graphs that can be obtained from copies of K1 by applying a
sequence of the disjoint union and join operations [17]. The {P5, C4, C5, claw , bull}-free graphs
are characterized in the next section.

5.4.2 The structure of {P5, C4, C5, claw , bull}-free graphs

Our characterization of {P5, C4, C5, claw , bull}-free graphs will rely on the notion of co-chain
graphs. A graph G is a co-chain graph if its vertex set can be partitioned into two cliques,
say X and Y , such that the vertices in X can be ordered as X = {x1, . . . , x|X|} so that for
all 1 ≤ i < j ≤ |X|, we have N [xi] ⊆ N [xj ] (or, equivalently, N(xi) ∩ Y ⊆ N(xj) ∩ Y ). The
pair (X,Y ) will be referred to as a co-chain partition of G. The following observation is an
immediate consequence of the definitions.

Proposition 5.15. The set of co-chain graphs is closed under true twin additions and universal
vertex additions.

The following structural characterization of connected {P5, C4, C5, claw , bull}-free graphs
can also be seen as a forbidden induced subgraph characterization of co-chain graphs within
connected graphs.

Theorem 5.16. A connected graph G is {P5, C4, C5, claw , bull}-free if and only if it is co-chain.

Proof. Sufficiency of the condition is easy to establish. The graphs P5, C5, the claw, and the
bull, are not cobipartite and therefore not co-chain. The 4-cycle admits only one partition of
its vertex set into two cliques, which however does not have the desired property.
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Now we prove necessity. Let G be a connected {P5, C4, C5, claw , bull}-free graph. We will
show that G is 3K1-free. This will imply that G is co-chain due to the known characterization
of co-chain graphs as exactly the graphs that are {3K1, C4, C5}-free [48].

Suppose for a contradiction that G has an induced 3K1, with vertex set {x, y, z}, say. Since
G is connected and P5-free, every two vertices among {x, y, z} are at distance 2 or 3.

Suppose first that d(x, y) = d(x, z) = 2. Let y′ be a common neighbor of x and y, and let z′

be a common neighbor of x and z. Since G is claw-free, y′z 6∈ E(G) and similarly yz′ 6∈ E(G).
In particular, y′ 6= z′. Now, the vertex set {y, y′, x, z′, z} induces either a P5 (if y′ and z′ are
non-adjacent), or a bull (otherwise), a contradiction.

Therefore, at least two out of the pairwise distances between x, y, and z are equal to 3. By
symmetry, we may assume that d(x, y) = d(x, z) = 3. Note that the set of vertices at distance 2
from x form a clique, since otherwise we could apply the arguments from the previous paragraph
to the triple {x, y′, z′} where {y′, z′} is a pair of non-adjacent vertices with d(x, y′) = d(x, z′) = 2.

Fix a pair of paths P and Q such that P = (x = p0, p1, p2, p3 = y) is a shortest x-y
path, Q = (x = q0, q1, q2, q3 = z) is a shortest x-z path, and P and Q agree in their initial
segments as much as possible, that is, the value of k = k(P,Q) = max{j : pi = qi for all
0 ≤ i ≤ j} is maximized. Clearly, k ∈ {0, 1, 2}. If k = 2, then G contains a claw induced
by {p1, p2, y, z}. Therefore k ∈ {0, 1}. If k = 1, then, recalling that p2 is adjacent to q2,
we infer that G contains either a claw induced by {p1, p2, y, z} (if p2 is adjacent to z) or a
bull induced by V (Q) ∪ {p2}. Therefore k = 0. By the minimality of (P,Q), we infer that
{p1q2, p2q1, p2z, yq2} ∩ E(G) = ∅. But now, G contains a claw induced by {p1, p2, y, q2}. This
contradiction completes the proof.

5.4.3 Rafts and connected true-twin-free co-chain graphs

In Section 5.4.4, we will identify an infinite family of 1-p.o. strong product graphs. The family
will be based on the following particular family of co-chain graphs. Given a non-negative integer
n ≥ 0, the raft of order n is the graph Rn consisting of two disjoint cliques on n + 1 vertices
each, say X = {x0, x1, . . . , xn} and Y = {y0, y1, . . . , yn} together with additional edges between
X and Y such that for every 0 ≤ i, j ≤ n, vertex xi is adjacent to vertex yj if and only if
i+ j ≥ n+ 1 [61]. Note that vertices x0 and y0 are simplicial in the raft. The cliques X and Y
will be referred to as the parts of the raft. Figure 5.6 shows rafts of order n for n ∈ {1, 2, 3}.

x3

x2

x1

y1

y2

y3

x0

x2

x1

R2
R3

y0

y1

y2

y0x0

R1

x0 x1 y1 y0

Figure 5.6: Three small rafts

It is an easy consequence of definitions that every raft is a co-chain graph. Moreover, as
we show next, rafts play a crucial role in the classification of connected true-twin-free co-chain
graphs.

Proposition 5.17. Let G be a connected true-twin-free graph. Then, G is co-chain if and only
if G ∈ {K1} ∪ {Rn, n ≥ 1} ∪ {Rn ∗K1, n ≥ 0}. Moreover, if G is P4-free, then G is co-chain if
and only if G ∼= K1 or G ∼= P3.
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Proof. Sufficiency is immediate since every graph in {K1} ∪ {Rn, n ≥ 1} ∪ {Rn ∗K1, n ≥ 0} is
co-chain.

Now, let G be a connected true-twin-free co-chain graph, with a co-chain partition (X,Y ).
Since G is true-twin-free, the closed neighborhoods of vertices in X = {x1, . . . , x|X|} are properly
nested. Equivalently,

N(x1) ∩ Y ⊂ N(x2) ∩ Y ⊂ · · · ⊂ N(x|X|) ∩ Y .

Since there are no pairs of true twins in Y , we have |N(xi+1) ∩ Y | = |N(xi) ∩ Y | + 1 for all
i ∈ {1, . . . , |X| − 1}. This implies an ordering of vertices in Y , say Y = {y1, . . . , y|Y |} such that
N(yi) ∩X ⊂ N(yi+1) ∩X and |N(yi+1) ∩X| = |N(yi) ∩X|+ 1 for all i ∈ {1, . . . , |Y | − 1}.

If X = ∅ or Y = ∅, then since both X and Y are cliques and G is true-twin-free, we infer
that G ∼= K1.

Now, both X and Y are non-empty, and we analyze four cases depending on the smallest
neighborhoods of vertices in the two parts. If N(x1) ∩ Y = N(y1) ∩ X = ∅, then since G is
connected, we have |X| = |Y | ≥ 2, and G is isomorphic to R|X|−1. If N(x1) ∩ Y = ∅ and
N(y1) ∩ X 6= ∅, then |X| ≥ 2, and deleting the universal vertex x|X| from G leaves a graph
isomorphic to R|X|−2. Thus, G ∼= R|X|−2∗K1. The case when N(x1)∩Y 6= ∅ and N(y1)∩X = ∅
is symmetric to the previous one. Finally, if N(x1) ∩ Y 6= ∅ and N(y1) ∩X 6= ∅, then vertices
x|X| and y|Y | are both universal in G, contrary to the fact that G is true-twin-free.

Suppose now that G is also P4-free but not isomorphic to either K1 or P3. Note that since
R1
∼= P4, every raft of order at least 1 contains an induced P4. It follows that G is isomorphic

to a graph of the form Rn ∗K1 for some n ≥ 0. Since R0 ∗K1
∼= P3, we have n ≥ 1. But then

R1
∼= P4 is an induced subgraph of G, a contradiction.

5.4.4 An infinite family of 1-p.o. strong product graphs

The following observation is an immediate consequence of Lemma 5.12.

Observation 5.18. Let G be a graph with a simplicial vertex v, and let P3 = (u1, u2, u3) be the
3-vertex path, with leaves u1 and u3. Then, vertices (u1, v) and (u3, v) are simplicial in P3�G.

Proposition 5.19. For every n ≥ 1, the strong product P3 �Rn is 1-p.o.

Proof. First, notice that since Rn has two simplicial vertices, Observation 5.18 implies that the
product P3�Rn has 4 simplicial vertices. Let G be the product P3�Rn minus these 4 simplicial
vertices. Since 1-p.o. graphs are closed under simplicial vertex additions, it is enough to verify
that G is 1-p.o. To prove this we will give an explicit orientation of G and show that it is a
1-perfect orientation.

Let V (P3) = {u1, u2, u3} where u1 and u3 are the two leaves. Moreover, assuming the
notation as in the definition of rafts, let V (Rn) = X ∪ Y , where X = {x0, x1, . . . , xn} and
Y = {y0, y1, . . . , yn} are the two parts of the raft. Vertices in G will be said to be left, resp. right,
depending on whether their second coordinate is in X or in Y , respectively. A schematic
representation of G is shown in Figure 5.7. We partition the graph’s vertex set into 8 cliques: two
singletons, {a} and {b}, where a = (u2, x0) and b = (u2, y0), and 6 cliques of size n each, namely
A1, A2, A3, B1, B2, and B3, defined as follows: for i ∈ {1, 2, 3}, we have Bi = {ui}× (X \{x0})
and Ai = {u4−i}× (Y \{y0}). Bold edges between certain pairs of sets mean that every possible
edge between the two sets is present. If the corresponding edge is not bold, then only some of
the edges between the two sets are present.

To describe such edges, we introduce the following ordering of the vertices within each of
the 6 cliques of size n. Note that for every 1 ≤ i < j ≤ n, we have that NRn [xi] ⊂ NRn [xj ] and
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Figure 5.7: A schematic representation of graph G

NRn [yi] ⊂ NRn [yj ]. We order the vertices in the 6 cliques accordingly, that is, for each clique of
the form Ai, the linear ordering of its vertices is (ui, x1), . . . , (ui, xn); for each clique of the form
Bi, the linear ordering of its vertices is (u4−i, y1), . . . , (u4−i, yn). To keep the notation light,
we will slightly abuse the notation, speaking of “vertex i in clique C” (for i ∈ {1, . . . , n} and
C ∈ {A1, A2, A3, B1, B2, B3}) when referring to the i-th vertex in the linear ordering of C. We
will also speak of “left” and of “right” cliques.

The edges of graph G can be now concisely described as follows. We will say that two cliques
Ai and Aj (or Bi and Bj) are adjacent if |i − j| ≤ 1. The neighborhood of a is A1 ∪ A2 ∪ A3.
The neighborhood of b is B1 ∪ B2 ∪ B3. For each vertex i in a left clique, say Aj , its closed
neighborhood consists of vertex a, all the vertices belonging to some left clique adjacent to Aj ,
and of vertices {n − i + 1, . . . , n} in each right clique adjacent to B4−j . For each vertex i in a
right clique, say Bj , its closed neighborhood consists of vertex b, all vertices belonging to some
right clique adjacent to Bj , and of vertices {n − i + 1, . . . , n} in each left clique adjacent to
A4−j . Figure 5.8 shows a concrete example of G, namely for the case n = 3.

1
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32

A2

1

A3
32

a

1
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3 2

B2

13 2

b

B1

Figure 5.8: Graph G in the case n = 3

We now define an orientation of G, say D, as follows:

– Edges between vertex a and a vertex i ∈ Aj are oriented from i to a for j = 1 and from a to
i for j ∈ {2, 3}. Symmetrically, edges between vertex b and a vertex i ∈ Bj are oriented from
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i to b for j = 1 and from b to i for j ∈ {2, 3}.

– Edges within each clique are oriented from vertex i to vertex j (with j 6= i) if and only if
i < j.

– All edges between vertices in A1 and A2 are oriented from A1 to A2. Symmetrically, all edges
between vertices in B1 and B2 are oriented from B1 to B2.

– Edges between vertices in A2 and A3 are oriented as follows: For i ∈ A2 and j ∈ A3, from i to
j if i < j, and from j to i, otherwise. Symmetrically, edges between B2 and B3 are oriented
as follows: For i ∈ B2 and j ∈ B3, from i to j if i < j, and from j to i, otherwise.

– All edges between vertices in A1 and B3 are oriented from B3 to A1. Symmetrically, all edges
between vertices in A3 and B1 are oriented from A3 to B1.

– All edges between vertices in A1 and B2 are oriented from B2 to A1. Symmetrically, all edges
between vertices in A2 and B1 are oriented from A2 to B1.

– All edges between vertices in A2 and B1 are oriented from B1 to A2. Symmetrically, all edges
between vertices in A3 and B2 are oriented from A3 to B2.

– Finally, all edges between vertices in A2 and B2 are oriented from A2 to B2.

To conclude the proof it remains to check that D is a 1-perfect orientation of G, that is,
that for each vertex v in G, its out-neighborhood in D forms a clique in G. We consider several
cases according to which part of the above vertex partition vertex v belongs to:

(i) v ∈ {a, b}. We have N+
D (a) = A2 ∪ A3, which forms a clique in G. Symmetrically, N+

D (b)
forms a clique in G.

(ii) v ∈ A1 ∪ B1. By symmetry, we may assume that v ∈ A1, say v = i. Then, N+
D (i) =

{a} ∪ {j ∈ A1, j > i} ∪A2, which forms a clique in G.

(iii) v ∈ A2, say v = i. We have N+
D (i) = A ∪ B, where A = {j ∈ A2 ∪ A3, j > i} and

B = {j ∈ B2 ∪ B3, j > n − i}. Note that A and B are cliques in G. Moreover, if j ∈ A
and k ∈ B, then j + k > i + (n − i) = n, which implies that j and k are adjacent in G.
Therefore, N+

D (i) is a clique in G.

(iv) v ∈ A3∪B3. By symmetry, we may assume that v ∈ A3, say v = i. We have N+
D (i) = A∪B,

where A = {j ∈ A2, j ≥ i} ∪ {j ∈ A3, j > i} and B = {j ∈ B2 ∪B3, j > n− i}. Again, A
and B are cliques in G. Moreover, if j ∈ A and k ∈ B, then j+k ≥ i+ (n− i+ 1) = n+ 1,
which implies that j and k are adjacent in G. Therefore, N+

D (i) is a clique in G.

(v) v ∈ B2, say v = i. Then, N+
D (i) = A ∪ B, where A = {j ∈ A1, j > n − i} and

B = {j ∈ B2 ∪ B3, j > i}. Again, A and B are cliques in G such that if j ∈ A and
k ∈ B, then j + k > (n − i) + i = n, which implies that j and k are adjacent in G.
Therefore, N+

D (i) is a clique in G.

This completes the proof that G is 1-p.o.

Note that for every n ≥ 0, the graph Rn ∗K1 is isomorphic to an induced subgraph of Rn+2.
Therefore, Proposition 5.19 and the fact that 1-p.o. graphs are closed under taking induced
subgraphs implies the following.

Corollary 5.20. For every n ≥ 0, the strong product P3 � (Rn ∗K1) is 1-p.o.
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5.4.5 A characterization of connected nontrivial strong product graphs that
are 1-p.o.

We now derive the main result of this section. We first show that Proposition 5.19 and Corol-
lary 5.20 describe all nontrivial strong products of two true-twin-free connected graphs that are
1-p.o.

Lemma 5.21. A nontrivial strong product, G � H, of two true-twin-free connected graphs G
and H is 1-p.o. if and only if one of them is isomorphic to P3 and the other one belongs to
{Rn, n ≥ 1} ∪ {Rn ∗K1, n ≥ 0}.

Proof. If G ∼= P3 and H ∈ {Rn, n ≥ 1}∪{Rn ∗K1, n ≥ 0}, the strong product G�H is 1-p.o. by
Proposition 5.19 and Corollary 5.20.

Conversely, suppose that G �H is 1-p.o. If one of the factors is P3-free, its connectedness
would imply that the graph is complete and therefore contains a pair of true twins, which is a
contradiction. Thus, both factors contain an induced P3, and by the first part of Lemma 5.14,
they are both {P5, C4, C5, claw , bull}-free. In particular, by Theorem 5.16, they are both co-
chain. Moreover, by Proposition 5.17, they both belong to the set {Rn, n ≥ 1} ∪ {Rn ∗K1, n ≥
0}. By the second part of Lemma 5.14, at least one of G and H is P4-free, and thus, by
Proposition 5.17, isomorphic to P3.

To describe the main result of this section, the following notions will be convenient. We say
that a graph is 2-complete if it is the union of two (not necessarily distinct) complete graphs
sharing at least one vertex. Equivalently, a graph is 2-complete if and only if it can be obtained
from either K1 or P3 by applying a sequence of true twin additions. Moreover, a true-twin-
reduction of a graph G is any maximal induced subgraph of G that is true-twin-free. It is not
difficult to observe that any two true-twin-reductions of a graph G are isomorphic to each other,
thus we can speak of the true-twin-reduction of G.

Theorem 5.22. A nontrivial strong product, G � H, of two connected graphs G and H is
1-p.o. if and only if one of the following conditions holds:

(i) One of the factors is 1-p.o. and the other one complete.

(ii) One of the factors is co-chain and the other one 2-complete.

Proof. Suppose first that given two nontrivial connected graphs G and H, the product G�H
is 1-p.o. Then, G and H are both 1-p.o. We may assume that neither of the two factors is
complete (since otherwise condition (i) holds). Let G′ and H ′ be the true-twin-free reductions
of G and H, respectively. Clearly, G′ and H ′ are true-twin-free and G′ � H ′ is 1-p.o. (since
it is an induced subgraph of G � H). Applying Lemma 5.21 to the product G′ � H ′ (which
is 1-p.o.), we infer that one of G′ and H ′ is isomorphic to P3 and the other one belongs to
the set {Rn, n ≥ 1} ∪ {Rn ∗ K1, n ≥ 0}. Without loss of generality, let H ′ ∼= P3. Then
G′ ∈ {Rn, n ≥ 1} ∪ {Rn ∗K1, n ≥ 0}. In particular, by Proposition 5.17, G′ is co-chain. Since
G is obtained from G′ by a sequence of true twin additions and G′ is co-chain, Proposition 5.15
implies that G is co-chain. Since H ′, the true-twin-free reduction of H, is isomorphic to P3, it
follows that H is 2-complete, and hence condition (ii) holds.

Let us now prove that each of the two conditions is also sufficient. Suppose first that G is 1-
p.o. and H is complete. Then, the product G�H can be obtained by applying a sequence of true
twin additions to vertices of G. Applying Proposition 3.5, we infer that G�H is 1-p.o. in this
case. In the other case, G is co-chain and H is 2-complete. Let G′ and H ′ be the true-twin-free
reductions of G and H, respectively. By Lemma 6.7, it suffices to show that G′�H ′ is 1-p.o. By
Proposition 5.17, G′ is isomorphic to a graph from the set {K1}∪{Rn, n ≥ 1}∪{Rn∗K1, n ≥ 0}.
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Since H ′ is the true-twin-free reduction of a 2-complete graph, H ′ is isomorphic to either K1

or to P3. The fact that G′ � H ′ is 1-p.o. now follows from Corollary 5.20 and the fact that
1-p.o. graphs are closed under taking induced subgraphs.

Finally, we state the theorem for the general case.

Theorem 5.23. A nontrivial strong product, G � H, of two graphs G and H is 1-perfectly
orientable if and only if one of the following conditions holds:

(i) Every component of G is complete and H is 1-perfectly orientable, or vice versa.

(ii) Every component of G is 2-complete and every component of H is co-chain, or vice versa.

Proof. Suppose first that G � H is 1-p.o. Then, each of G and H is 1-p.o., since they are
induced subgraphs of the product. By Theorem 5.22, the components of the factors can either
be complete, 2-complete, co-chain, or 1-p.o. Note that all complete graphs are 2-complete, all
2-complete graphs are co-chain, and all co-chain graphs are 1-p.o. If every component of G is
complete, we are in case (i). Suppose that all components of G are 2-complete and G contains
a component Gi that is not complete. Let Hj be an arbitrary component of H. Consider the
product Gi�Hj (which is a component of G�H and hence 1-p.o.). By Theorem 5.22, Hj must
be co-chain, and thus we are in case (ii). If all components of G are co-chain and G contains
a component Gi that is not 2-complete, by Theorem 5.22 applied to Gi � Hj , we infer that
Hj is 2-complete, and thus we are in case (ii). Finally, if G contains a component Gi that is
1-p.o. but not co-chain, applying Theorem 5.22 to Gi �Hj we obtain that Hj is complete, and
therefore we are in case (i).

For the converse implication, it follows from Theorem 5.22 that if every component of G is
complete and H is 1-p.o., or every component of G is 2-complete and every component of H is
co-chain, then every component of the product G�H is 1-p.o. We can then apply Corollary 5.3
to conclude that G�H is 1-p.o.
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Chapter 6

Chordal, interval, and circular arc
product graphs

In this chapter we consider the four standard graph products: the Cartesian product, the strong
product, the direct product, and the lexicographic product. For each of these four products, we
completely characterize when a nontrivial product of two graphs G and H is chordal, interval, or
circular arc, respectively. While the characterizations for chordal and interval graphs are rather
straightforward and can be proved directly, the characterizations of circular arc product graphs
are more involved and are derived using characterizations of 1-perfectly orientable product
graphs (for each of the four standard products) presented in the previous chapter. Recall
that a graph is said to be 1-perfectly orientable if it admits an orientation such that the out-
neighborhood of every vertex induces a tournament. As shown by Urrutia and Gavril [85] and
by Skrien [81], respectively, the class of 1-perfectly orientable graphs generalizes both chordal
graphs and circular arc graphs. Since every chordal, interval, or circular arc graph is 1-perfectly
orientable, Theorems 5.6, 5.8, 5.11, and 5.23 give necessary conditions that every chordal,
interval, resp. circular arc product graph must satisfy.

The results of this chapter contribute to the knowledge of characterizations of graph classes
within graphs decomposable with respect to one the four standard graph products, by adding
chordal, interval, and circular arc graphs to the list. This chapter is based on the following
paper:

• T. R. Hartinger, Chordal, interval, and circular-arc product graphs. Applicable Analysis
and Discrete Mathematics. Vol. 10, No 2 (2016), 532 – 551.

6.1 The Cartesian product

In the following theorem we characterize when a nontrivial Cartesian product of two graphs G
and H is chordal, interval, or circular arc, respectively.

Theorem 6.1. A nontrivial Cartesian product, G�H, of two graphs G and H is:

• chordal if and only if G is edgeless and H is chordal, or vice versa,

• interval if and only if G is edgeless and H is interval, or vice versa,

• circular arc if and only if one of the following conditions holds:

(i) G is edgeless and H is an interval graph, or vice versa,

(ii) G ∼= H ∼= K2.
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Proof. First we characterize the chordal case. If G is edgeless and H is chordal, then G�H
is isomorphic to a disjoint union of |V (G)| copies of H. Thus, since chordal graphs are closed
under disjoint union, the stated condition is sufficient. To show necessity, assume now that
G�H is chordal. Both graphs G and H must be chordal since they are induced subgraphs of
G�H. Suppose that none of G and H is edgeless. In that case, G�H contains an induced
K2�K2

∼= C4 and is therefore not chordal, a contradiction. Thus, at least one of G and H is
edgeless.

Suppose now that G�H is interval. Both graphs, G and H, must be interval since they are
induced subgraphs of G�H. Since G�H is interval, it is chordal, and thus, by the above, one of
G and H, say G, must be edgeless. Conversely, if G is edgeless and H is interval, the Cartesian
product G�H is isomorphic to a disjoint union of copies of H, and therefore interval.

For the circular arc case, it is clear that any of the conditions (i) and (ii) is sufficient for
G�H to be a circular arc graph. To prove necessity, suppose that G�H is circular arc. If one
of G and H, say G, is edgeless, then, since the product is nontrivial, it is isomorphic to the
disjoint union of |V (G)| ≥ 2 copies of H. By Lemma 2.3 and an inductive argument on the
number of components of G, we infer that H is interval. Suppose now that both G and H have
an edge. Since G�H is circular arc, it is also 1-perfectly orientable. By Theorem 5.6, G and
H are 2-linear forests. If one of G and H contains at least 2 edges, then G�H contains 2C4

as an induced subgraph. This would imply the existence of an induced C4 + K1, contrary to
Fact 2.4. A similar reasoning shows that each of G and H has a unique component, and thus
each of them is isomorphic to K2.

Since the Cartesian product of a graph G with an n-vertex edgeless graph is isomorphic to
the disjoint union of n copies of G, we obtain the following.

Corollary 6.2. Let C�, I�, resp. CA� denote the sets of (isomorphism classes of) nontrivial
Cartesian product graphs that are chordal, interval, resp. circular arc. Then:

C� = {nG : G chordal, n ≥ 2, |V (G)| ≥ 2} ,
I� = {nG : G interval, n ≥ 2, |V (G)| ≥ 2} ,
CA� = {nG : G interval, n ≥ 2, |V (G)| ≥ 2} ∪ {C4} .

6.2 The lexicographic product

The following theorem characterizes when a nontrivial lexicographic product of two graphs G
and H is chordal, interval, or circular arc, respectively.

Theorem 6.3. A nontrivial lexicographic product, G[H], of two graphs G and H is:

• chordal if and only if one of the following conditions holds:

(i) G is edgeless and H is chordal,

(ii) G is chordal and H is complete,

• interval if and only if one of the following conditions holds:

(i) G is edgeless and H is interval,

(ii) G is interval and H is complete,

• circular arc if and only if one of the following conditions holds:

60



(i) G is edgeless and H is interval,

(ii) G is circular arc and H is complete,

(iii) G is complete and H is cobipartite circular arc.

Proof. First, we characterize the chordal case. Suppose first that G[H] is chordal. Then, both
G and H are chordal since they are induced subgraphs of G[H]. If neither of conditions (i) or
(ii) above holds, then G has an edge and H is not complete. This implies that the product
G[H] contains an induced subgraph isomorphic to K2[2K1] ∼= C4, contrary to the fact that it
is chordal. For the converse direction, we will show that in both cases (i) and (ii), the product
graph G[H] is chordal. If G is edgeless and H is chordal, then the product G[H] is isomorphic
to the disjoint union of |V (G)| copies of H, and therefore chordal. If G is chordal and H is
complete, then the product G[H] is isomorphic to the graph obtained by repeatedly substituting
a vertex of G with a complete graph, and this operation is easily seen to preserve chordality.

Now we analyze the interval case. Assume that G[H] is interval. Then, G and H are
interval. Since G[H] is interval, in particular G[H] is chordal, and thus we obtain the desired
result. Conversely, if G is edgeless and H interval, G[H] is isomorphic to a disjoint union of
copies of H, and if G is interval and H is complete, G[H] can be obtained from a sequence of
true twin additions to H. In both cases the lexicographic product G[H] is interval.

Finally, we characterize the circular arc case. Suppose first that G[H] is a circular arc graph.
Then, both G and H are circular arc graphs, since they are induced subgraphs of G[H]. If G is
edgeless, then the lexicographic product G[H] is isomorphic to the Cartesian product G�H and
by Theorem 6.1, conditions (i) holds. So we may assume that G has an edge. If H is complete
then condition (ii) holds. Suppose now that G is not edgeless and that H is not complete.
Since G[H] is 1-perfectly orientable, one of conditions (i)–(iii) from Theorem 5.8 holds, and so
we infer that every component of G is complete and H is cobipartite. Therefore, the product
G[H] contains an induced subgraph isomorphic to K2[2K1] ∼= C4, from which we infer that G
is connected (that is, complete), since by Fact 2.4 G[H] is C4 + K1-free. Therefore, condition
(iii) holds. This completes the proof of the forward direction.

For the converse direction, we will show that in any of the three cases, the product graph
G[H] is circular arc. If G is edgeless and H interval, then the lexicographic product G[H]
is isomorphic to the disjoint union of |V (G)| copies of H, and therefore circular arc. If G is
circular arc and H is complete, then the product G[H] is isomorphic to the graph obtained by
repeatedly substituting a vertex of G with a complete graph. Substituting a vertex v with a
complete graph is the same as adding a sequence of true twins to vertex v, an operation easily
seen to preserve the property of being a circular arc graph. Finally, suppose that G is complete
and H is a cobipartite circular arc graph. In this case, an inductive argument on the order of G
together with the fact that the class of cobipartite circular arc graphs is closed under join (by
Lemma 2.6) shows that G[H] is a circular arc graph.

Since the lexicographic product of an n-vertex edgeless graph with a graph G is isomorphic
to the disjoint union of n copies of G, Theorem 6.3 has the following consequence.

Corollary 6.4. Let Clex , Ilex , resp. CAlex , denote the sets of (isomorphism classes of) nontrivial
lexicographic product graphs that are chordal, interval, resp. circular arc. Then:

Clex = {nG : G chordal, n ≥ 2, |V (G)| ≥ 2} ∪ {G[Kn] : G chordal , n ≥ 2, |V (G)| ≥ 2} ,
Ilex = {nG : G interval, n ≥ 2, |V (G)| ≥ 2} ∪ {G[Kn] : G interval, n ≥ 2, |V (G)| ≥ 2} ,
CAlex = {nG : G interval, n ≥ 2, |V (G)| ≥ 2} ∪ {G[Kn] : G circular arc, n ≥ 2, |V (G)| ≥ 2}

∪ {Kn[G] : n ≥ 2, G cobipartite circular arc, |V (G)| ≥ 2} .
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6.3 The direct product

In the next theorem we characterize when a nontrivial direct product of two graphs G and
H is chordal, interval, or circular arc, respectively. A circular caterpillar (resp. odd circular
caterpillar) is a connected graph such that the removal of all degree-one vertices yields a cycle
(resp. an odd cycle).

Theorem 6.5. A nontrivial direct product, G×H, of two graphs G and H is:

• chordal if and only if one of the following conditions holds:

(i) at least one of G and H is edgeless,

(ii) G is a 2-linear forest and H is a forest, or vice versa,

• interval if and only if one of the following conditions holds:

(i) at least one of G and H is edgeless,

(ii) G is a 2-linear forest and H is a caterpillar forest, or vice versa,

• circular arc graph if and only if one of the following conditions holds:

(i) at least one of G and H is edgeless,

(ii) G is a 2-linear forest and H is a caterpillar forest, or vice versa,

(iii) G ∼= K2 and H is an odd circular caterpillar, or vice versa.

Proof. We prove the three equivalences in the order as stated in the theorem.
First suppose that G × H is chordal, and that both G and H contain an edge. We claim

that G (and then, by symmetry, also H) is a forest. Indeed, if G contained a cycle, then G×H
would contain an induced subgraph isomorphic to the direct product of K2 with a cycle, which
contains an induced cycle of length at least 4, contrary to the fact that G × H is chordal. It
remains to show that at least one of G and H is a 2-linear forest. If this were not the case, then
G×H would contain an induced copy of P3 × P3, which contains an induced C4 and therefore
is not chordal, a contradiction.

For the converse direction, suppose that one of conditions (i) and (ii) holds. If condition (i)
holds, then G×H is edgeless and hence chordal. Assume now that condition (ii) holds, say G is
a 2-linear forest and H is a forest. In this case, for each component T of H, the graphs K1× T
and K2 × T are acyclic, and hence so is G ×H, which is the disjoint union of such graphs. It
follows that G×H is chordal.

Assume now that G ×H is interval. Since G ×H is interval, it is chordal, thus one of the
conditions for the chordal case holds. Therefore, necessity of the stated conditions is achieved,
unless (without loss of generality) G is a 2-linear forest containing an edge and H is a forest
that is not a caterpillar forest. By Lemma 2.7, H contains an induced bipartite claw, and
consequently G × H contains an induced subgraph, say F , isomorphic to the direct product
of K2 with the bipartite claw. A direct inspection shows that F is isomorphic to the disjoint
union of two copies of the bipartite claw, therefore by Lemma 2.7, F is not interval, and hence
neither is G ×H. This establishes necessity. Let us now prove sufficiency. If one of G and H,
say G, is edgeless, then G×H is edgeless and therefore interval. Now, if G is a 2-linear forest
and H is a caterpillar forest, then each component of G×H is interval. This is because for each
component K of H, the components of G ×H are either K1 ×K or K2 ×K, both caterpillar
forests, and in particular interval graphs (Lemma 2.7). The result now follows from the fact
that interval graphs are closed under disjoint union.
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Finally, we consider the circular arc case. Suppose first that G×H is a circular arc graph.
Then it is 1-perfectly orientable, in particular, one of the conditions (i)–(iii) from Theorem 5.11
holds. Condition (i) from that theorem coincides with condition (i) in Theorem 6.5, so we may
assume that both G and H contain an edge.

Suppose that condition (ii) from Theorem 5.11 holds, say G is a 2-linear forest and H is a
pseudoforest (the other case is symmetric). We consider two cases depending on whether H is
acyclic or not.

Case 1: H is acyclic. We claim that in this case H is a caterpillar forest (and hence
condition (ii) holds in this case). If this is not the case, then, by Lemma 2.7, H would contain
an induced subgraph, say K, isomorphic to the bipartite claw, but then G×H would contain
K2×K ∼= 2K as induced subgraph, contradicting the fact that 2K is not is a circular arc graph
(by Lemma 2.7). Hence, condition (ii) of the proposition holds in this case.

Case 2: H contains a component, say K, with a cycle. If K contains an even cycle (say of
length 2k ≥ 4), then G×H contains 2C2k as induced subgraph, contrary to the fact that it is
a circular arc graph (by Fact 2.4, C2k + K1 is not circular arc and therefore neither is 2C2k).
Hence, K contains a (unique) odd cycle, say C. If H has a vertex with no neighbors on C, then
G ×H contains an induced subgraph isomorphic to C2k + K1 where k ≥ 3 is the length of C,
contrary to the fact that G ×H is a circular arc graph. It follows that every vertex not in C
has a neighbor in C, and in particular, since H is a pseudoforest, that every vertex not in C
has a unique neighbor in C and that V (H) \C is an independent set in H. Consequently, H is
an odd circular caterpillar. If G were not isomorphic to K2, the product G×H would contain
an induced C2k + K1, contradicting Fact 2.4. We conclude that G ∼= K2 and hence condition
(iii) applies in this case.

Finally, suppose that condition (iii) from Theorem 5.11 holds, say G is a 3-linear forest and
H is a 4-linear forest. To avoid the already considered condition (ii) (from Theorem 5.11), we
may assume that neither of G and H is a 2-linear forest. But then G×H contains an induced
copy of P3 × P3, which is not a circular arc graph (since it contains an induced C4 + K1), a
contradiction.

For the converse direction, suppose that one of the conditions (i)–(iii) holds. If condition (i)
holds, then G×H is edgeless and hence circular arc. Assume now that both G and H contain
an edge and that condition (ii) holds, say G is a 2-linear forest and H is a caterpillar forest. In
this case, for each component K of H, the graphs K1×K and K2×K are caterpillar forests, in
particular, by Lemma 2.7, they are interval graphs. It follows that G×H, which is the disjoint
union of such graphs, is also interval, and hence circular arc. Finally, if condition (iii) holds,
say G ∼= K2 and H is an odd circular caterpillar, then G×H is a circular caterpillar. It is easy
to see that every circular caterpillar is circular arc: we can obtain a circular arc representation
of it by covering the circle with arcs corresponding to vertices of the cycle, and placing a new
arc corresponding to each leaf within the arc corresponding to its unique neighbor in the cycle
without intersecting any other arc.

Theorem 6.5 implies the following.

Corollary 6.6. Let C×, I×, resp. CA×, denote the sets of (isomorphism classes of) nontrivial
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direct product graphs that are chordal, interval, resp. circular arc. Then:

C× = {mnK1 : m ≥ 2, n ≥ 2}
∪{2mF + n|V (F )|K1 : F is a forest, m ≥ 1, n ≥ 0, |V (F )| ≥ 2} ,

I× = {mnK1 : m ≥ 2, n ≥ 2}
∪{2mF + n|V (F )|K1 : F is a caterpillar forest, m ≥ 1, n ≥ 0, |V (F )| ≥ 2} ,

CA× = {mnK1 : m ≥ 2, n ≥ 2}
∪{2mF + n|V (F )|K1 : F is a caterpillar forest, m ≥ 1, n ≥ 0, |V (F )| ≥ 2}
∪ {G : G is a circular caterpillar satisfying conditions (∗)} ,

where conditions (∗) are the following:

• the unique cycle C of G is of length 4k + 2 for some k ≥ 1, and

• every two vertices at distance 2k + 1 on C are of the same degree in G.

Proof. The statement of the corollary follows immediately from the characterizations given by
Theorem 6.5 and the following facts:

– If G ×H is a nontrivial direct product such that m = |V (G)| ≥ 2, n = |V (H)| ≥ 2, and at
least one of the two factors is edgeless, then G×H is an edgeless graph of order mn.

– If H is a bipartite graph, then K2 ×H ∼= 2G (see, e.g., [45, Exercise 8.14]). In particular, if
H is a forest (resp. caterpillar forest), then K2 ×H ∼= 2H.

– The direct product is distributive (up to isomorphism) with respect to the disjoint union.

– Suppose that H is an odd circular caterpillar, with its unique cycle, say C, of length 2k + 1
for some k ≥ 1. Then, K2×H is isomorphic to a circular caterpillar, say G, the unique cycle
of which, say C ′, has length 2(2k+ 1) = 4k+ 2. Moreover, every vertex v of C corresponds to
a pair of vertices v′, v′′ of C ′ at distance 2k+1 in C ′, such that dG(v′) = dG(v′′) = dH(v).

6.4 The strong product

In this section we consider the strong product and we characterize when a nontrivial strong
product of two graphs G and H is chordal, interval, or circular arc, respectively.

To prove the characterization of circular arc nontrivial strong product graphs, we need one
further lemma.

Lemma 6.7. Let G,G′, and H be graphs such that G′ is obtained from G by adding a true
twin. Then, G�H is circular arc if and only if G′ �H is circular arc.

Proof. Note that G�H is an induced subgraph of G′ �H, therefore if G′ �H is circular arc,
then so is G � H. Suppose now that G � H is circular arc, and that G′ was obtained from
G by adding to it a true twin x′ to a vertex x of G. Note that for every v ∈ V (H), we have
NG′�H [(x, v)] = NG′ [x]×NH [v] and NG′�H [(x′, v)] = NG′ [x′]×NH [v]. Since NG′ [x] = NG′ [x′],
each vertex of the form (x′, v) for v ∈ V (H) is a true twin in G′ �H of vertex (x, v). It follows
that G′ �H can be obtained from G�H by a sequence of true twin additions. Since circular
arc graphs are closed under true twin additions, G′ �H is circular arc.
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We now state and prove the main result of this section. Recall that a graph G is said to
be co-chain if its vertex set can be partitioned into two cliques, say X and Y , such that the
vertices in X can be ordered as X = {x1, . . . , x|X|} so that for all 1 ≤ i < j ≤ |X|, we have
N [xi] ⊆ N [xj ], and 2-complete if G can be obtained from P3 by applying a sequence of true
twin additions.

Theorem 6.8. A nontrivial strong product, G�H, of two graphs G and H is:

• chordal if and only if every component of G is complete and H is chordal, or vice versa,

• interval if and only if every component of G is complete and H is interval, or vice versa,

• circular arc if and only if one of the following conditions holds:

(i) G is complete and H is a circular arc graph, or vice versa,

(ii) G is 2-complete and H is a connected co-chain graph, or vice versa,

(iii) each component of G is complete and H is interval, or vice versa.

Proof. Again, we prove the three equivalences in the order as stated in the theorem.
Suppose first that G�H is chordal. Each graph G and H must also be chordal since they

are induced subgraphs of G�H. Suppose now that not all components of G are complete and
no all components of H are complete. Therefore there is a component of G and a component
of H each having an induced P3. But P3 �P3 contains an induced 4-cycle, and is therefore not
chordal, a contradiction. Thus, all components of one of the factors must be complete.

To show sufficiency, let G1, . . . , Gk be the components of G, let H1, . . . ,H`, be the compo-
nents of H, and suppose that Gi is complete for i = 1, . . . , k, and H is chordal. Note that the
components of G � H are of the form Gi � Hj for 1 ≤ i ≤ k, 1 ≤ j ≤ `. Every component
Gi �Hj of G�H is chordal since it is the result of applying a sequence of true twin additions
to a chordal graph, namely Hj . (The operation of adding a true twin is easily seen to preserve
chordality.) Since each component of G � H is chordal and chordal graphs are closed under
disjoint union, we conclude that G�H is chordal.

Suppose now that G�H is interval. Again, G and H must be interval since they are induced
subgraphs of the product. Necessity follows immediately from the chordal case. To conclude
the proof for the interval case, assume that every component of G is complete and H is interval.
In that case, the strong product G � H can be obtained as disjoint union of graphs each of
which is the result of applying a sequence of true twin additions to the interval graph H. Since
the operations of disjoint union and true twin addition preserve the class of interval graphs, we
conclude that G�H is interval.

It remains to analyze the circular arc case.
Necessity. Suppose that G � H is circular arc. Then, G and H are induced subgraphs of

G � H and therefore circular arc as well. Suppose that G and H are both connected. Since
G�H is 1-perfectly orientable, by Theorem 5.23, either G is complete, or G is 2-complete and
H is co-chain. So we are in cases (i) or (ii), respectively.

Now, if not both factors are connected, the product G�H is disconnected. Since G�H is
circular arc, by Lemma 2.3 we know that all its components are interval. Moreover, since for
every component Gi of G and every component Hj of H their product Gi �Hj is a component
of G�H we infer that all components of G are interval, and similarly for H. Therefore, G and
H are interval. Since G�H is a disjoint union of interval graphs, it is interval, and in particular
chordal. Thus we can apply the already stablished characterization for the chordal case, and so
one of G and H must be a disjoint union of complete graphs. This concludes the proof of the
forward implication.
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Sufficiency. We will show that if one of (i), (ii), or (iii) holds, then G�H is circular arc.
If condition (i) holds, say G is complete and H is circular arc, then the product G �H is

the result of applying a sequence of true twin additions to a circular arc graph, namely H, and
so it is circular arc.

Suppose now that (ii) holds, say G is 2-complete and H is a connected co-chain graph. By
Lemma 6.7, we may assume that both factors are true-twin-free. Therefore, G ∼= P3 and, by
Lemma 5.21 H ∈ {K1} ∪ {Rn, n ≥ 1} ∪ {Rn ∗ K1, n ≥ 0}. Notice first that P3 � K1

∼= P3 is
circular arc. Since Rn ∗K1 is an induced subgraph of Rn+2, it is enough to show that P3 �Rn

is circular arc for all n ≥ 1.
Let V (P3) = {u1, u2, u3} where u1 and u3 are the two leaves. Assuming the notation as in

the definition of rafts, let V (Rn) = X ∪Y , where X = {x0, x1, . . . , xn} and Y = {y0, y1, . . . , yn}
are the two parts of the raft. Vertices in P3 �Rn will be said to be left, resp. right, depending
on whether their second coordinate is in X or in Y , respectively.

Fig. 6.1 shows a schematic representation of P3�Rn. We partition the vertex set of the graph
in the following way: 6 singletons, namely {a1}, {a2}, {a3}, {b1}, {b2}, {b3}, where ai = (ui, x0)
and bi = (u4−i, y0), and 6 cliques of size k each, namely A1, A2, A3, B1, B2, and B3, defined
as follows: for i ∈ {1, 2, 3}, we have Ai = {ui} × (X \ {x0}) and Bi = {u4−i} × (Y \ {y0}).
Bold lines between certain pairs of sets mean that every possible edge between the two sets is
present. If the corresponding line is not bold, then only some of the edges between the two sets
are present.

a2 b2

1 2 n

1 2 n

1 2 n

12n

12n

12n

a1

a3

b3

b1

A1

A2

A3

B3

B2

B1

Figure 6.1: A schematic representation of P3 �Rn

To describe such edges, we introduce the following ordering of the vertices within each of
the 6 cliques A1, A2, A3, B1, B2, B3 of size n. Note that for every 1 ≤ i < j ≤ n, we have that
NRn [xi] ⊂ NRn [xj ] and NRn [yi] ⊂ NRn [yj ]. We order the vertices in the 6 cliques accordingly,
that is, for each clique of the form Ai, the linear ordering of its vertices is (ui, x1), . . . , (ui, xn);
for each clique of the form Bi, the linear ordering of its vertices is (u4−i, y1), . . . , (u4−i, yn). To
keep the notation light, we will slightly abuse the notation, speaking of “vertex i in clique C”
(for i ∈ {1, . . . , n} and C ∈ {A1, A2, A3, B1, B2, B3}) when referring to the i-th vertex in the
linear ordering of C.

The edges of graph G can be now concisely described as follows. We will say that two cliques
Ki and Kj (where K` is either A`, B`, {a`}, or {b`} for some `) are adjacent if |i− j| ≤ 1. The
closed neighborhood of ai is the union of the cliques Aj adjacent to ai and {a1} ∪ {a2} ∪ {a3}.
The neighborhood of bi is the union of the cliques Bj adjacent to bi and {b1} ∪ {b2} ∪ {b3}.
For each vertex i in a left clique, say Aj , its closed neighborhood consists of the vertices ai in
its adjacent cliques {ai}, all the vertices belonging to some left clique adjacent to Aj , and of
vertices {n − i + 1, . . . , n} in each right clique adjacent to B4−j . For each vertex i in a right
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clique, say Bj , its closed neighborhood consists of the vertices bi in its adjacent cliques {bi}, all
vertices belonging to some right clique adjacent to Bj , and of vertices {n− i+ 1, . . . , n} in each
left clique adjacent to A4−j .

For any two adjacent cliques Ai, Bj , the vertices of Ai ∪Bj induce a special co-chain graph,
called a semiraft. Given a non-negative integer n ≥ 0, the semiraft of order n is the graph Sn
consisting of two disjoint cliques on n vertices each, say X = {x1, . . . , xn} and Y = {y1, . . . , yn}
together with additional edges between X and Y such that for every 1 ≤ i, j ≤ n, vertex xi is
adjacent to vertex yj if and only if i+ j ≥ n.

As shown by the interval representation given in Fig. 6.2, every semiraft is an interval graph.

n

n− 1

2

1

1

2

n− 1

n

nA

n− 1A

n− 2A

3A

2A
1A

3B
2B
1B

nB
n− 1B
n− 2B

A B

n− 2

n− 23

3

clique clique

Figure 6.2: The semiraft Sn and its interval representation.

Suppose first that n = 1. A circular arc representation of P3 � R1 is depicted in Fig. 6.3.
(The rectangles P and Q also depicted in Fig. 6.3 are not part of the representation, they will
be used later on in the proof.)

B2

B3

B1

A2

A1

A3

b2
a2

a1

a3

b3

b1

P

Q

Figure 6.3: A circular arc representation of P3 �R1.

Suppose now that n > 1. We will give a circular arc representation of P3 � Rn similar
to that of P3 � R1 shown in Fig. 6.3, combined with the interval representations of semirafts
represented by Fig. 6.2. The circular arc representation of P3 � Rn is the same as in Fig. 6.3,
but this time instead of each clique C ∈ {A1, A2, A3, B1, B2, B3} being represented by a single
arc, it will consist of n arcs. If we were to “zoom in” at the rectangles marked as P and Q
in Fig. 6.3 to see how the arcs representing the four cliques interact, then we would see the
representations shown in Fig. 6.4 and 6.5 below.
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nA1
= (u1, xn)

n− 1A1
= (u1, xn−1)

n− 2A1
= (u1, xn−2)

3A1
= (u1, x3)
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nA2
= (u2, xn)
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Figure 6.4: Intersection of cliques A1, A2, B2, and B3.
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Figure 6.5: Intersection of cliques A2, A3, B1, and B2.

This gives a circular arc representation of the graph P3 � Rn. This implies that if G is
2-complete and H is co-chain, the strong product G�H is circular arc, concluding this part of
the proof.

Finally, if condition (iii) holds, say each component of G is complete and H is interval, then
each component of the strong product, Gi�Hj , is interval, since it can be obtained by applying
a sequence of true twin additions to an interval graph, Hj . It follows from Lemma 2.3 that
G�H is circular arc.

It was shown in Lemma 5.19 that for each n ≥ 1, the graph P3�Rn is 1-perfectly orientable.
Theorem 6.8 (and its proof) imply that for each n ≥ 1, the graph P3�Rn is circular arc. Since
the class of circular arc graphs is a subclass of the class of 1-perfectly orientable graphs, this
gives an alternative proof of the fact that graphs of the form P3�Rn are 1-perfectly orientable.

Since the strong product is distributive (up to isomorphism) with respect to the disjoint
union, Theorem 6.8 implies the following.
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Corollary 6.9. Let C�, I�, resp. CA�, denote the sets of (isomorphism classes of) nontrivial
direct product graphs that are chordal, interval, resp. circular arc. Then:

C� =

{
k

+
i=1

(G�Kni) : G chordal, |V (G)| ≥ 2, k ≥ 1, ni ≥ 1 ∀i = 1, . . . , k,

k∑

i=1

ni ≥ 2

}
,

I� =

{
k

+
i=1

(G�Kni) : G interval, |V (G)| ≥ 2, k ≥ 1, ni ≥ 1 ∀i = 1, . . . , k,
k∑

i=1

ni ≥ 2

}
,

CA� = {G�Kn : G circular arc, n ≥ 2, |V (G)| ≥ 2}
∪{G�H : G 2-complete, H connected and co-chain, |V (H)| ≥ 2}

∪
{

k

+
i=1

(G�Kni) : G circular arc, |V (G)| ≥ 2, k ≥ 1, ni ≥ 1 ∀i = 1, . . . , k,
k∑

i=1

ni ≥ 2

}
.
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Chapter 7

The price of connectivity for cycle
transversals

Recall that an F-transversal of a graph G = (V,E) is a subset S ⊆ V such that G−S is F-free;
that is, S intersects every subset of V that induces a subgraph isomorphic to a graph in F . For
a connected graph G, tF (G) denotes the minimum size of an F- transversal of G, and ctF (G)
denotes the minimum size of a connected F-transversal of G. Recall that for graphs H and G,
we write H ⊆i G to denote that H is an induced subgraph of G.

Our aim in this chapter is to find relationships between ctF (G) and tF (G); more particularly,
we ask for a class of connected graphs G, whether we can find a bound for ctF (G) in terms of
tF (G) that holds for all G ∈ G.

More precisely, we consider a number of families F that contain cycles, paths and com-
plements of cycles. We study F-transversals for graph classes characterized by one forbidden
induced subgraph and ask whether the size of a minimum size connected F-transversal can be
bounded (and if so, to what extent) in terms of the size of a minimum size F-transversal.

This chapter contains results from the following paper:

• T. R. Hartinger, M. Johnson, M. Milanič and D. Paulusma, The price of connectivity
for cycle transversals. European Journal of Combinatorics. 58, (2016), 203-224. An
extended abstract appeared in Mathematical Foundations of Computer Science 2015. Part
II, volume 9234 of Lecture Notes in Computer Science, 395 – 406, Springer, 2015.

7.1 Our results

Table 7.1 summarizes our results together with related previous work. Results can be seen both
according to the family F and the corresponding property of the graph G − S, where S is an
F-transversal of G. We note that when F is the family of even cycles or holes there is an open
case. In all other cases, the stated conditions in Table 7.1 are both necessary and sufficient for
F-multiplicativity (F-boundedness), F-additivity, and F-zero-additivity, respectively, in the
class of connected H-free graphs.

Table 7.1 shows conditions on the graph H for the price of connectivity of F-transversal
for the class of H-free graphs to be multiplicative, additive or zero-additive, respectively, when
F is a family of graphs that contains the specified infinite family of cycles and possibly some
other small graphs. The results on cycles in the first row are due to Belmonte et al. [6] and the
multiplicativity result on cycles and P2 in the ninth row is due to Camby et al. [11]. All other
results are new and presented in this work. All conditions are necessary and sufficient except
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for even cycles and holes, as in these two cases (marked by a † in the table) we do not know if
H-free graphs are F-additive for H ⊆i P3 + P2 + sP1.

From Table 7.1 we can draw a number of conclusions. If a transversal that intersects (small)
paths is wanted, we obtain multiplicative bounds for any class of H-free graphs. In all other
cases, H may not contain a cycle or a claw (so is a linear forest). We also see that when we
add a requirement that all triangles are intersected, there is always a jump from H = P4 + sP1

to H = P5 + sP1 for the additive bound. In general, it can be noticed that adding small
graphs to F has differing effects. We say that a family of graphs F or a graph F positively
(negatively) influences a family of graphs F ′ if the row in the table for their union contains
more (fewer) bounded cases than the row for F ′. So, for example, 2P2 does not influence
{C4, C5, C6, . . .}∪{P4}, and P4 does not influence the family of long holes. Moreover, odd holes
do not influence even holes, whereas even holes influence odd holes positively.

Property Condition for Condition for Condition for
F of G− S F-multiplicativity F-additivity F-zero-

(for F-boundedness) additivity

cycles forest H is a linear H ⊆i P5 + sP1 or H ⊆i P3 [6]
forest [6] H ⊆i sP3 [6]

odd cycles bipartite H is a linear forest H ⊆i P5 + sP1 or H ⊆i P3

H ⊆i sP3

even cycles† even-hole-free H is a linear forest H ⊆i P4 + sP1 H ⊆i P3

(equiv.: even holes)

holes† chordal H is a linear forest H ⊆i P4 + sP1 H ⊆i P3

odd holes odd-hole-free H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

odd holes and perfect H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

odd antiholes

long holes long-hole-free H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

long holes and weakly chordal H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

long antiholes

cycles and P2 edgeless no restriction [11] H ⊆i P5 + sP1 or H ⊆i P3

(equiv.: {P2}) H ⊆i sP3

holes and 2P2 split no restriction H ⊆i P4 + sP1 or H ⊆i P3

(equiv.: {C4, C5, 2P2}) H ⊆i P3 + sP2

holes and 2P2, P4 threshold no restriction H ⊆i P4 + sP1 H ⊆i P3

(equiv.: {C4, 2P2, P4})
holes and P4 trivially perfect no restriction H ⊆i P4 + sP1 H ⊆i P3

(equiv.: {C4, P4})
long holes and 2P2 {C5, 2P2}-free no restriction H ⊆i P4 + sP1 H ⊆i P3

(equiv.: {C5, 2P2}) H ⊆i P2 + P1

long holes and 2P2, P4 cotrivially no restriction H ⊆i P4 + sP1 H ⊆i P3 or
(equiv.: {2P2, P4}) perfect H ⊆i P2 + P1

long holes and P4 cograph no restriction H ⊆i P4 + sP1 H ⊆i P4

(equiv.: {P4})

Table 7.1: Table showing conditions on the graph H for the price of connectivity of F-transversal
for the class of H-free graphs to be multiplicative, additive or zero-additive, respectively, for a
given family F .

In the remainder of the chapter, after presenting some known and new basic results, we
present a number of general theorems, from which the results in Table 7.1 directly follow.
We emphasize that all proofs of these theorems are algorithmic in nature, that is, they can
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be translated directly into polynomial-time algorithms that modify an F-transversal into a
connected F-transversal of appropriate cardinality.

We provide a brief guide to the proof of Table 7.1. Theorem 7.9 implies the second row.
Theorem 7.11 implies the third and fourth row, and Theorem 7.14 implies the next four rows.
The ninth row follows from Theorem 7.22 and the tenth from Theorem 7.23. Theorem 7.24
implies the eleventh and twelfth rows. The final three rows follow from Theorems 7.25, 7.26
and 7.27, respectively.

7.1.1 Some results on the price of connectivity

We now give five results that are directly related to the concept of price of connectivity and that
we will need in our later proofs. All results, except the first one, which follows from Lemma 2.14,
can be found in the papers of Belmonte et al. [6, 7] or follow from results in these papers after
a straightforward generalization (which we need).

Lemma 7.1. For every family F of graphs, the class of connected P4-free graphs is F-additive.

Proof. Let G be a connected P4-free graph with two or more vertices, with a minimum F-
transversal S. By Lemma 2.14, G has a dominating edge, say uv. So S ∪ {u, v} is a connected
F-transversal of G, implying that ctF (G) ≤ tF (G)+2. Since the above inequality trivially holds
for the one-vertex graph, we conclude that the class of connected P4-free graphs is F-additive,
with dP4 ≤ 2.

The second result has been proven by Belmonte et al. [6] for the special case when the family
F consists of all cycles.

Lemma 7.2. For any family of graphs F with Kr ∈ F for some integer r ≥ 1, the class of
connected P5-free graphs is F-additive.

Proof. Let G be a connected P5-free graph. Let S be a minimum F-transversal of G. By
Lemma 2.15, G has a dominating set D that induces a P3 or a complete graph. In the first case,
S∪D is a connected F-transversal of G of size at most |S|+3. In the second case, |D\S| ≤ r−1.
So in this case S ∪D is a connected F-transversal of G of size at most |S|+ r − 1.

We also need to generalize a result that was proved by Belmonte et al. [6] for the graph
H = P5. The proof for the general case is the same and we state it here for completeness.

Lemma 7.3. For a family of graphs F and a graph H, if the class of connected H-free graphs
is F-additive, then so is the class of connected {H + sP1}-free graphs for all s ≥ 1.

Proof. Let G be a connected {H + sP1}-free graph for some s ≥ 0. We prove that ctF (G) ≤
tF (G) + dH+sP1 for some constant dH+sP1 by induction on s. If s = 0 the statement holds by
assumption. Now let s ≥ 1. If G is {H + (s − 1)P1}-free, then the statement holds by the
induction hypothesis. Suppose G is not {H + (s− 1)P1}-free. Let F be an induced subgraph of
G isomorphic to H + (s− 1)P1. Because G is {H + sP1}-free, F dominates G. By Lemma 2.16
we find that G has a connected dominating set D of size at most 3|V (F )| − 2. Let S be
a minimum F-transversal of G. Then S ∪ D is a connected F-transversal of G of size at
most tF (G) + 3|V (F )| − 2. Hence, we can take dH+sP1 = 3|V (H)|+ 3s− 5.

Belmonte et al. [6] proved that the class of connected {P2 + P4, P6}-free graphs is not
F-additive if F is the class of all cycles. To prove this result they showed that the family
{Lk : k ≥ 1} of connected }P2 + P4, P6}-free graphs displayed in Figure 7.1 is not F-additive.
Using the observation made in the caption of Figure 7.1 leads to the following more general
result.
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Lemma 7.4. For any family of cycles F with C3 ∈ F , the class of connected {P2 +P4, P6}-free
graphs is not F-additive.

As a consequence of Lemma 7.4, any class of connected graphs that contains all connected
{P2 + P4, P6}-free graphs is not F-additive either. More generally, if G and G′ are two classes
of connected graphs such that G ⊆ G′ and G is not F-additive, then neither is G′. We will use
this fact implicitly throughout this chapter.

x

y1 y2 yk

Figure 7.1: The graph Lk, defined by Belmonte et al. [6] for every k ≥ 1; note that {y1, . . . , yk, x}
is the unique minimum F-transversal whenever F is any family of cycles with C3 ∈ F and that
any minimum connected F-transversal has size 2k + 1.

Finally, the following technical lemma of Belmonte et al. [6] will also be useful for proving our
results.

Lemma 7.5 (Belmonte et al. [6]). Let s ≥ 1 be an integer and let G be a connected sP3-
free graph with a subset S ⊆ V (G) and an independent set U ⊆ V (G) \ S. If there exists a
component Z of G[S] that contains an induced copy of (s− 1)P3, then there exists a set S′ with
S ⊆ S′ of size at most |S|+ 2s− 2 such that

(i) G[S′] has a component Z ′ containing all vertices of V (Z) ∪ (S′ \ S);

(ii) every vertex of U ′ = U \S′ is adjacent to at most one component of G[S′] that is not equal
to Z ′;

(iii) every component of G[S′] not equal to Z ′ is adjacent to at most one vertex of U ′.

7.2 A new general theorem

The following theorem is used in all our tetrachotomies. The third part was shown by Belmonte
et al. [6] for the case when F is the family of all cycles, and our proof for that part is a
modification of theirs.

Theorem 7.6. Let F be a family of graphs and let H be a graph. Then, the following three
statements hold:

(i) If F contains a linear forest, then the class of all connected graphs is F-multiplicative.

(ii) If H is a linear forest, then the class of connected H-free graphs is F-multiplicative.

(iii) If F contains an infinite number of cycles and no linear forests and H is not a linear
forest, then the class of connected H-free graphs is F-unbounded.
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Proof. We start with (i). First suppose that F contains a linear forest F ; that is, it is, say, the
disjoint union of p paths. Let G be a connected graph, and let S be a minimum F-transversal
of G with components D1, . . . , Dr for some integer r ≥ 1. Because G is connected, we can
connect the components of S by r−1 paths using vertices of G−S only. Let S′ be the resulting
connected F-transversal. Because G − S is F-free, G − S is F -free. Let q be the length of a
longest path in F . As the path Pp(q+2) contains F as an induced subgraph and G−S is F -free,
G− S is Pp(q+2)-free. Hence, each of the r − 1 paths contains less than p(q + 2) vertices. Thus
we find that |S′| ≤ |S| + rp(q + 2) ≤ |S| + |S|(p(q + 2)) = (p(q + 2) + 1)|S|, and we can take
cF = (p(q + 2) + 1).

Now we prove (ii). Suppose that H is a linear forest; that is, it is, say, the union of k paths,
each of length at most `. Let G = (V,E) be a connected H-free graph. Then, as G is H-free,
we find that G has diameter less than k(`+ 2). Let S ⊆ V be a minimum F-transversal of G.
Let D1, D2, . . . , Dr (r ≥ 1) be the components of G[S]. In order to make S connected we need
to add less than (r− 1)k(`+ 2) ≤ (|S| − 1)k(`+ 2) vertices by Lemma 2.17. Hence we can take
cH = k(`+ 2).

Finally, we prove (iii). Suppose that F contains an infinite number of cycles and no linear
forests and that H is not a linear forest.

Let p′ be an integer greater than the maximum length of a cycle in H; if H has no cycle,
let p′ = 5. Let p be an integer such that p ≥ p′ and Cp ∈ F (such an integer p exists because
F contains infinitely many cycles).

First suppose that H is C3-free. We construct the following graph. Take two cycles C =
u1 · · ·up+1u1 and C ′ = u′1 · · ·u′p+1u

′
1. Connect u1 and u′1 via a path u1v1 . . . vku

′
1 for some k ≥ 1.

Add the edges u2up+1 and u′2u
′
p+1. Denote the resulting graph by Gk; see Figure 7.2 for an

example. Note that Gk is connected and K1,3-free and that it has four induced cycles, two of
which have length p and two of which have length 3.

As H is not a linear forest, H either contains an induced K1,3 or an induced cycle, which
has length between 4 and p−1 by our choice of p and our assumption that H is C3-free. Hence,
every Gk is H-free. Let S = {u2, u′2}. As Gk − S is a path and F contains no linear forests,
S is an F-transversal. Because Gk has two induced copies of Cp at distance more than k and
Cp ∈ F , the family {Gk} is F-unbounded.

Now suppose that H contains an induced C3. Take two cycles C = u1 · · ·upu1 and C ′ =
u′1 · · ·u′pu′1. Connect u1 and u′1 via a path u1v1 . . . vku

′
1 for some k ≥ 1. The resulting graph

G∗k is connected and H-free, as it is C3-free. We repeat the above arguments and find that the
family {G∗k} is F-unbounded.

C C ′u1 u′
1

u2

up+1 u′
p+1

u′
2

Figure 7.2: An example of the construction in the proof of Theorem 7.6 (iii) in the case when
H is C3-free, only contains cycles of length at most 4 and C5 ∈ F .

Parts (ii) and (iii) of Theorem 7.6 imply the following.

Corollary 7.7. For any graph H and for any family of graphs F containing an infinite number
of cycles and no linear forests, the class of connected H-free graphs is F-multiplicative if and
only if H is a linear forest.
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7.3 Cycle families with odd cycles

In this section we assume we are given a family F of graphs that contains all odd cycles,
although we will show more general results whenever possible. We start with the following
lemma, which generalizes the corresponding result of Belmonte et al. [6] when F is the family
of all cycles. We use a similar approach as used in their proof but our arguments (which are
based on bipartiteness instead of cycle-freeness) are different and this proof demonstrates some
techniques used several times in obtaining our results.

Lemma 7.8. For any family of graphs F containing either all odd cycles or P2 and for any
fixed s ≥ 1, the class of connected sP3-free graphs is F-additive.

Proof. The proof is by induction on s. Let s = 1. Then every connected sP3-free graph G is
complete. Hence, every minimum F-transversal of G is connected.

Now let s ≥ 2. Let G be a connected sP3-free graph. We may assume by induction
that G contains an induced copy Γ0 of an (s − 1)P3. Let S be a minimum F-transversal of
G. Let Γ be a minimum connected induced subgraph of G that contains Γ0. Because G is
sP3-free, G has diameter less than 4s. Then, by Lemma 2.17, we find that Γ has size less than
3(s−1)+(s−2)4s = 4s2−5s−3. Let S′ = S∪V (Γ). Then we have that |S′| ≤ |S|+4s2−5s−3.

If S′ is connected then we take dsP3 = 4s2 − 5s − 3 as our desired constant and we are
done. Suppose S′ is not connected. Below we describe how to refine S′. During this process, we
always use Z to denote the component of S′ containing Γ, and we will never remove a vertex
of Z from S′; in fact, one can think of the proof as “growing” Z and connecting it to the other
vertices of S′ until Z = S′.

Observe that the sP3-freeness of G implies that every component of S′ other than Z is
complete. Throughout the proof, we let A denote the union of clique components of S′, so
V (A) = S′ \ V (Z) = S \ V (Z). We also note that the graph G − S′ is bipartite, as even its
supergraph G−S contains no odd cycles by the definition of S. Hence we can partition G−S′
into two (possibly empty) sets U1 and U2 so that U1 and U2 are independent sets.

We start with the following two claims, both of which follow from Lemma 7.5, which we
apply twice, namely once with respect to U1 and once with respect to U2. By Lemma 7.5 this
leads to a total increase in the size of S′ by an additive factor of at most 2(2s− 2) = 4s− 4.

Claim 1: Without loss of generality, we may assume that every vertex of U1 ∪U2 is adjacent to
at most one component of A.

Claim 2: Without loss of generality, we may assume that every component of A is adjacent to
at most one vertex of U1 and to at most one vertex of U2.

Using Claims 1 and 2 we prove the following crucial claim.

Claim 3: Without loss of generality, we may assume that every vertex of every component of
A has exactly one neighbour in U1 and exactly one neighbour in U2.

We prove Claim 3 as follows. Let A∗ be the union of components for which the statement of
Claim 3 does not hold. Let D be a component of A∗. By Claim 2, D is adjacent to at most
one vertex of U1 and to at most one vertex of U2. First suppose that D is non-adjacent to U1

or to U2, say D is not adjacent to U1. Because G is connected, this means that D is adjacent
to (exactly one) vertex z ∈ U2, say v ∈ D is adjacent to z. As D belongs to A∗, we find that D
contains a vertex v′ not adjacent to z. Hence, vv′z is an induced P3. Now suppose that D is
adjacent to U1 and to U2, say D has vertices u, v (possibly u = v) so that u is adjacent to x ∈ U1

and v is adjacent to z ∈ U2. Then, as D is in A∗, there exists a vertex v′ that is non-adjacent
to at least one of x, z, say to z. Again, vv′z is an induced P3. As G is sP3-free and no vertex in
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U1 ∪ U2 is adjacent to more than one component of A by Claim 1, we deduce that A∗ contains
at most s − 1 components. Moreover, each vertex z ∈ U1 ∪ U2 included in an induced P3 as
described above must be adjacent to Z (due to sP3-freeness of G and the fact that Z contains
an induced (s− 1)P3). Hence, we can add these vertices to Z increasing the size of Z, and thus
the size of S′, by at most s − 1. The remaining components of A have the desired property.
Moreover, Claims 1 and 2 are still valid. This completes the proof of Claim 3.

Due to Claim 3 we may assume without loss of generality that each vertex v in each component
D of A has exactly two neighbours in G − S′, namely one neighbour in U1 and one neighbour
in U2. By Claim 2, these neighbours are the same for all vertices in D. Hence, we may denote
these two neighbours by sD and tD, respectively,

Consider a component D of A. If one of its neighbours in U1 ∪U2, say sD, is adjacent to Z,
then replacing S′ with (S′ ∪ {sD}) \ {v} and Z with the connected component of S′ containing
Z ∪{sD} does not result in an odd cycle in G−S′. Moreover, such a swap does not increase the
size of S′ either. It does, however, reduce the number of vertices of S′ that are not in Z (which
is our goal). Consequently, we perform these swaps until, in the end, both the neighbours sD
and tD of each component of A are not adjacent to Z. In particular this implies that sD and
tD are adjacent, so VD ∪ {sD, tD} is a clique. Then, due to Claims 1–3, the components in A
together with their neighbours in U1 ∪ U2 induce a union of complete graphs. This union is a
disjoint union, as otherwise G would contain an induced P3 not adjacent to Z and, as Z has an
induced (s− 1)P3, we would obtain an induced sP3 in G. Note that the swaps did not change
the size of S′.

Let U ′1 and U ′2 denote the subsets of U1 and U2, respectively, that consist of vertices adjacent
to no components of A. Let W1 consist of all vertices sD adjacent to U ′2 and let W2 consist of
all vertices tD adjacent to U ′1. Note that W1 ⊆ U1 \ U ′1 and that W2 ⊆ U2 \ U ′2. Because G is
connected and no sD or tD is adjacent to Z or to some other component of A not equal to D,
we find that W1 ∪W2 contain at least one of sD, tD for each component D of A.

We choose smallest sets U ′′1 and U ′′2 in U ′1 and U ′2, respectively, that dominate W2 and W1,
respectively. By minimality, each vertex u ∈ U ′′1 must have a “private” neighbour tD in W2,
and hence together with tD and sD, corresponds to a “private” P3. Consequently, as G is sP3-
free and U ′′1 ⊆ U1 is an independent set, U ′′1 has size at most s − 1. Similarly, U ′′2 has size at
most s − 1. Moreover, each vertex in U ′′1 ∪ U ′′2 is adjacent to Z (again due to the sP3-freeness
of G).

Figure 7.3 shows an example in which the components of A consist on three cliques (the
first two of size two and the last one of size one) to illustrate the situation.

We now do as follows. First, for each component D of A we pick one of its vertices v and
swap v with sD if sD ∈W1 and otherwise we swap v with tD (note that tD ∈W2 in that case).
We also add all vertices of U ′′1 ∪U ′′2 to Z and thus to S′. The results of these swaps are as follows.
First, G[S′] has become connected. Second, S′ has increased in size at most by 2(s− 1), which
is allowed. Third, G−S′ is still bipartite (as swapping a vertex of a component D of A with sD
or tD does not create any odd cycles). Consequently, we have found a connected F-transversal
of size at most |S|+ 4s2 − 5s− 3 + 4s− 4 + (s− 1) + 2(s− 1) = |S|+ 4s2 + 2s− 10, so we can
take dsP3 = 4s2 + 2s− 10.

We are now ready to prove the main result of this section.

Theorem 7.9. For any graph H and for any family of cycles F containing all odd cycles, the
class of connected H-free graphs is

• F-multiplicative if and only if H is a linear forest;

• F-additive if and only if H ⊆i P5 + sP1 or H ⊆i sP3 for some s ≥ 0;
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Figure 7.3: The situation in the proof of Lemma 7.8.

• F-zero-additive if and only if H ⊆i P3.

Proof. The first claim follows immediately from Corollary 7.7. We now prove the second claim.
First suppose H ⊆i P5 + sP1 or H ⊆i sP3 for some s ≥ 0. If H ⊆i P5 + sP1 for some s ≥ 0, the
result follows from combining Lemmas 7.2 and 7.3. If H ⊆i sP3 for some s ≥ 1, the result follows
from Lemma 7.8. Now suppose H *i P5+sP1 and H 6⊆i sP3 for any s ≥ 0. By Theorem 7.6 (iii),
we may assume that H is a linear forest. Then P6 ⊆i H or P2 + P4 ⊆i H, hence the class of
connected H-free graphs is a superclass of the class of connected {P2 + P4, P6}-free graphs and
we can use Lemma 7.4.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete,
so the result follows directly. If H *i P3 then, by Theorem 7.6 (iii), we may assume that H
is a linear forest. Hence, 3P1 ⊆i H or P1 + P2 ⊆i H. Let K2,2,2 be the graph on vertices
u1, u2, v1, v2, w1, w2 and edges uiwj , uivj and viwj for 1 ≤ i ≤ j ≤ 2. Note that K2,2,2 is
{3P1, P1 + P2}-free. Any minimum F-transversal has size 2, whereas any minimum connected
F-transversal is of size 3.

7.4 Cycle families with 4-cycles but no 3-cycles

In this section we consider families of cycles F such that C3 /∈ F but C4 ∈ F . We need the
following lemma.

Lemma 7.10. For any family F of cycles with C3 6∈ F and C4 ∈ F ,

• the class of connected P5-free graphs is not F-additive;

• the class of connected P2 + P4-free graphs is not F-additive;

• the class of connected 2P3-free graphs is not F-additive;

• the class of connected 3P2-free graphs is not F-additive.
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Proof. We consider the four parts one at a time.

First, we describe a family of connected P5-free graphs that is not F-additive. Each graph
G is a clique on k vertices, k ≥ 4, and k copies of C4. Each vertex in the clique is adjacent to
every vertex in a distinct copy of C4. Figure 7.4 gives an example with k = 4. Note that G is
P5-free: any induced path on at least four vertices can contain at most one vertex from each C4,
and thus at most two such vertices in total, and can only contain two vertices from the clique.

Figure 7.4: A graph in a family of P5-free graphs that is not F-additive whenever C3 6∈ F and
C4 ∈ F .

We have tF (G) ≤ k since a set S containing one vertex from each copy of C4 is an F-
transversal as G−S is chordal. On the other hand, every connected F-transversal of G contains,
in addition to at least one vertex from each C4, all the vertices of the clique. So ctF (G) ≥ 2k.

Second, we describe a family of connected P2 + P4-free graphs that is not F-additive. Each
graph G consists of k ≥ 2 copies of K3,3, identified at a single vertex denoted v. Figure 7.5
shows the construction for k = 4.

v

Figure 7.5: A graph in a family of P4 +P2-free graphs that is not F-additive whenever C4 ∈ F .

Note that G is P4 + P2-free: every induced P4 contains v, and deleting the vertices in such
a P4 and their neighbours results in an edgeless graph. We have tF (G) ≤ k + 1 since a set
S containing v and one vertex that is not adjacent to v from each K3,3 is an F-transversal as
G− S is a forest. On the other hand, every connected F-transversal of G contains, in addition
to v, at least two other vertices from each copy of K3,3. So ctF (G) ≥ 2k + 1.

Third, we describe a family of connected 2P3-free graphs that is not F-additive. Each graph G
consists of a complete graph K4k for k ≥ 2 denoted K, and a set M of 2k additional vertices
forming an induced matching and each joined to two other vertices in K. Figure 7.6 shows the
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construction for k = 3. Note that G is 2P3-free: any induced P3 contains a vertex from K, and
deleting this vertex and all its neighbours results in a disjoint union of cliques, a P3-free graph.

K

M e

Figure 7.6: A graph in a family of 2P3-free graphs that is not F-additive whenever C3 6∈ F ,
C4 ∈ F .

We have tF (G) ≤ k, since a set S containing one vertex from each edge in M is an F-
transversal as G−S is chordal. On the other hand, every connected F-transversal of G contains
at least two vertices from each subgraph consisting of an edge e in M and vertices in K adjacent
to an endpoint of e. So ctF (G) ≥ 2k.

Finally, we describe a family of connected 3P2-free graphs that is not F-additive. Each
graph G consists of three copies K, K ′ and K∗ of a complete graph on 2k vertices for k ≥ 2,
and an independent set M of k vertices. Every vertex in K∗ is joined to every vertex in K and
K ′ and every vertex in M is joined to a distinct pair of vertices in K and K ′. Figure 7.7 shows
the construction for k = 3. Note that G is 3P2-free: when an induced P2 and all its neighbours
are deleted the resulting graph is either an independent set (if the P2 is contained in K∗) or a
graph in which every P2 is incident with the same clique (if the P2 intersects either K or K ′).

K ′

K
K∗

Figure 7.7: A graph in a family of 3P2-free graphs that is not F-additive whenever C3 6∈ F ,
C4 ∈ F .

We have tF (G) ≤ k, since M is an F-transversal as G−M is chordal. On the other hand,
a connected F-transversal of G either contains K∗ or, for each vertex v of M , either v and one
of its neighbours, or, if it does not contain v, two of its neighbours. So ctF (G) ≥ 2k.

We now state our result for infinite families of cycles F with C3 /∈ F and C4 ∈ F . It does not
provide a complete characterization as we are unable to give necessary and sufficient conditions
for the class of H-free graphs to be F-additive. This would be possible if it could be shown
that {P3 + P2 + sP1}-free graphs are F-additive for all s ≥ 0. By Lemma 7.3, this is the case
if and only if {P3 + P2}-free graphs are F-additive, which we conjecture to be true.

Theorem 7.11. For any graph H and for any infinite family of cycles F with C3 /∈ F and
C4 ∈ F , the class of connected H-free graphs is
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• F-multiplicative if and only if H is a linear forest;

• F-additive if H ⊆i P4+sP1 for some s ≥ 0, but not if H 6⊆i P4+sP1 nor H 6⊆i P3+P2+sP1

for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P3.

Proof. The first claim follows immediately from Corollary 7.7. We now prove the second claim.
If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from Lemmas 7.1 and 7.3. Now suppose
H *i P4 + sP1 and H 6⊆i P3 + P2 + sP1 for any s ≥ 0. By Theorem 7.6 (iii), we may assume
that H is a linear forest. Then P5 ⊆i H, P2 + P4 ⊆i H, 2P3 ⊆i H, or 3P2 ⊆i H, and we can
use Lemma 7.10.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete, so
the result follows directly. If H *i P3 then, by Theorem 7.6 (iii), we may assume that H is a
linear forest. Hence, 3P1 ⊆i H or P1 + P2 ⊆i H.

If P1 + P2 ⊆i H, then we have that the complete bipartite graph G = K3,3 is a connected
H-free graph (since it is P1 + P2-free). And tF (G) = 2 < 3 = ctF (G) so the class of connected
H-free graphs is not F-zero-additive.

Finally, suppose that 3P1 ⊆i H, and let G be the complement of the graph shown in
Figure 7.8. Since G is triangle-free and every two vertices of G have a common non-neighbour,
G is a connected 3P1-free graph. As every F-transversal of G must intersect every induced 2P2

in G, the minimum F-transversals of G are in bijective correspondence with the four edges of
the 4-cycle in G. So tF (G) = 2 < 3 = ctF (G), and the class of connected H-free graphs is also
not F-zero-additive in this case.

G

Figure 7.8: The complement of a graph G with tF (G) < ctF (G) whenever C3 6∈ F and C4 ∈ F .

7.5 Cycle families with 5-cycles but no 3- or 4-cycles

In this section we consider families of cycles F such that C3, C4 /∈ F but C5 ∈ F . We first prove
the following lemma; note that C3 and C4 are both induced subgraphs of 2P4.

Lemma 7.12. Let F be a family of graphs with C5 ∈ F that contains no induced subgraphs of
sP4 for any s ≥ 1. Then the class of connected 2P2-free graphs is not F-additive.

Proof. We describe a family of connected 2P2-free graphs that is not F-additive, where F is
any family of cycles as in the statement of the lemma. The graphs in the family are constructed
from k ≥ 2 copies H1, . . . ,Hk of the graph that is obtained from 2P4 by adding all possible
edges between the vertices of one copy and the other one. For each Hi, there is a new vertex vi
adjacent to both endpoints of the two P4s, and in addition there are all possible edges between
vertices in different Hi’s. Figure 7.9 shows an example for k = 4.
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v1

v4 v3

v2

H1 H2

H3H4

Figure 7.9: A member of a family of connected 2P2-free graphs that is not F-additive whenever
C5 ∈ F and F contains no induced subgraphs of sP4 for any s ≥ 1. A thick edge between two
sets of vertices inducing a P4 means the presence of all possible edges between the two sets.

We first show that every graph G in this family is 2P2-free. Every edge e of G has at least
one endpoint in some Hi, say in H1. Deleting the closed neighbourhood of e results in the
subgraph induced by a subset of {v1, . . . , vk} (if e ∈ E(H1)), or in the subgraph induced by
{u, v2, . . . , vk} for some u ∈ V (H1) (otherwise). In either case, the resulting graph is edgeless.
Therefore, G is 2P2-free.

Let G be a graph in this family, and let k be the number of Hi’s. We have tF (G) ≤ k since
deleting the vertices v1, . . . , vk results in a graph that is isomorphic to 2kP4 and thus F-free.
On the other hand, every connected F-transversal S of G must contain at least two vertices
from each subgraph induced by V (Hi)∪ {vi}, for every i (otherwise it either misses an induced
C5 or contains only vi, making it isolated in G[S]). Therefore, ctF (G) ≥ 2k, which establishes
the non-F-additivity of the family.

We also need the following lemma.

Lemma 7.13. Let F be a family of graphs that contains C5 but no induced subgraph of 4P4.
Then the class of connected 3P1-free graphs is not F-zero-additive.

Proof. Let F be any family of cycles as in the statement of the lemma and let G be the
complement of the graph depicted in Figure 7.10. Since G is triangle-free and every two vertices
of G have a common non-neighbour, G is a connected 3P1-free graph.

Since C5 = C5, in the complement of G we need to cover all the C5’s. Therefore there is a
unique minimum F-transversal S of G, consisting of the two endpoints of the central edge of
G. Indeed G − S is isomorphic to 4P4, so the graph G − S ∼= 4P4 is F-free. Since the graph
G[S] is not connected, we have ctF (G) > tF (G).
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G

Figure 7.10: The complement of a graph that shows that the class of connected 3P1-free graphs
is not F-zero-additive whenever C5 ∈ F and F contains no induced subgraphs of 4P4.

Theorem 7.14. For any graph H and for any graph family F which only contains graphs with
an induced P4, including C5 and an infinite number of other cycles but no linear forests and no
induced subgraphs of sP4 for any s ≥ 1, the class of connected H-free graphs is

• F-multiplicative if and only if H is a linear forest;

• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P4.

Proof. The first claim follows immediately from Corollary 7.7. We now prove the second claim.
First suppose that H ⊆i P4 + sP1 for some s ≥ 0. Then the class of connected H-free graphs
is F-additive due to Lemmas 7.1 and 7.3. Now suppose that H 6⊆i P4 + sP1 for any s ≥ 0.
By Theorem 7.6 (iii), we may assume that H is a linear forest. Hence, 2P2 ⊆i H and we can
use Lemma 7.12. Finally, we show the third claim. Recall that if H ⊆i P4 then any H-free
graph is already F-free. Suppose that H 6⊆i P4. If 2P2 ⊆i H we use Lemma 7.12 again. Hence
3P1 ⊆i H. In that case we use Lemma 7.13. This completes the proof of Theorem 7.14.

7.6 Families of short paths and cycles

In Section 7.6.2 we prove our results for families F of graphs that contain P2, 2P2 or P4, in
particular for families F for which the graph minus an F-transversal is a split graph, a threshold
graph, a trivially perfect graph, or a cograph, respectively. In order to show these results we
need a number of lemmas, which we will prove in Section 7.6.1. As before, lemmas and theorems
are often stated in a more general form than needed.

7.6.1 Lemmas

Lemma 7.15. For F = {C4, C5, 2P2} and any fixed s ≥ 0, the class of connected {P3+sP2}-free
graphs is F-additive.

Proof. The proof is by induction on s. Let s = 0. Every connected P3-free graph G is complete.
Hence, every minimum F-transversal of G is connected.

Now let s ≥ 1. Let G be a connected {P3 + sP2}-free graph. We may assume by induction
that G contains an induced copy Γ0 of an P3 + (s − 1)P2. Let S be a minimum F-transversal
of G. Let Γ be a minimum connected induced subgraph of G that contains Γ0. Because G is
{P3 + sP2}-free, G has diameter less than 3(s+ 1)− 1 = 3s− 2. Then, by Lemma 2.17, we find
that Γ has size less than 3(s− 1) + (s− 2)(3s− 2) = 3s2 − 3s+ 1. Let S′ = S ∪ V (Γ). Then we
have that |S′| ≤ |S|+ 3s2 − 3s+ 1.
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Z

A
︷ ︸︸ ︷
a1 a2 a3Γ0

Γ

I

K

X
x1 x2 x3

Figure 7.11: The decomposition of the graph G in the proof of Lemma 7.15.

If S′ is connected then we take dP3+sP2 = 3s2 − 3s + 1 as our desired constant and we are
done. Suppose S′ is not connected. Below we describe how to refine S′. During this process, we
always use Z to denote the component of S′ containing Γ, and we will never remove a vertex of
Z from S′.

Observe that the {P3 + sP2}-freeness of G implies that every component of S′ other than
Z consists of a single vertex. We let A denote the union of these single vertices, so A =
S′ \V (Z) = S \V (Z). We also note that the graph G−S′ is split, as even its supergraph G−S
is {C4, C5, 2P2}-free by the definition of S. Hence we can partition G − S′ into two (possibly
empty) sets: a clique K and an independent set I.

We start with the following two claims, both of which follow from Lemma 7.5. By Lemma 7.5,
this leads to a total increase of S′ by an additive factor of at most 2s− 2.

Claim 1: Without loss of generality, we may assume that every vertex of I is adjacent to at
most one vertex of A.

Claim 2: Without loss of generality, we may assume that every vertex of A is adjacent to at
most one vertex of I.

We proceed as follows. If A contains a vertex u not adjacent to a vertex in I then we move
u from A to I. Hence, we may assume without loss of generality that A has no such vertices.
Then, by Claim 2, every vertex in A is adjacent to exactly one vertex of I. Let A = {a1, . . . , aq}
for some integer q ≥ 1 and let X = {x1, . . . , xq} be the subset of I in which xi is the unique
neighbour of ai for i = 1, . . . , q. By Claim 1, G[A ∪X] is isomorphic to qP2. See Figure 7.11
for an example.

Due to the {P3 + sP2}-freeness of G and the fact that Z contains an induced P3 + (s− 1)P2,
each xi is adjacent to Z. We swap ai and xi, that is, we put ai into I and xi into A. Then,
because ai is not adjacent to any other vertex in I, we still have the property that G − S′

is split. However, we now also have that Z = S′, as desired. So we have found a connected
F-transversal S′ of size at most |S|+ 3s2 − 3s+ 1 + 2s− 2 = |S|+ 3s2 − s− 1 meaning we can
take dP3+sP2 = 3s2 − s− 1. This completes the proof of Lemma 7.15.
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Lemma 7.16. Let F be a family of graphs with either F = {P2}, or F ∩ {P4, 2P2} 6= ∅ and
F \ {P2, P4, 2P2} a (possibly empty) set of holes. If H is not a linear forest then the class of
connected H-free graphs is not F-additive.

Proof. Let H be a graph that is not a linear forest, so H contains a cycle or an induced K1,3. Let
us verify that the class of all paths is a class of H-free connected graphs that is not F-additive.

If F = {P2}, then for large enough n we have cF (Pn) ≤ n/2 (since taking every other vertex
on the path results in an F-transversal), while ctF (Pn) ≥ n−2 (since any F-transversal contains
a vertex u from the first 2 vertices of Pn and also a vertex v from the last 2 vertices, and these
two need to be made connected by taking all the vertices of the path that lie in between).

If F ∩ {P4, 2P2} = {P4} then, similarly, for large enough n we have cF (Pn) ≤ n/4 while
ctF (Pn) ≥ n − 6. If F ∩ {P4, 2P2} = {2P2} then for large enough n we have cF (Pn) ≤ n/2,
while ctF (Pn) ≥ n − 8. Finally, if F ∩ {P4, 2P2} = {P4, 2P2} then for large enough n we have
cF (Pn) ≤ n/2, while ctF (Pn) ≥ n− 6.

Lemma 7.17. Let F be a family of graphs that contains C4 but no induced subgraph of K1,3.
Then the class of {P2 + P1}-free graphs is not F-zero-additive.

Proof. The complete bipartite graph K3,3 is {P2 + P1}-free. Removing a single vertex or two
adjacent vertices does not make the graph C4-free. If we remove two non-adjacent vertices then
we obtain a claw, which is F-free. Hence, a minimum F-transversal has size 2 and a minimum
connected F-transversal has size at least 3.

Lemma 7.18. Let F be a family of graphs that contains P4 but no complete graph. Then the
class of 2P2-free graphs is not F-additive.

Proof. We construct a family of connected 2P2-free graphs {Gk} as follows. Let Gk have a
clique Kk = {u1, . . . , u2k} and an independent set {a1, . . . , ak}. For i = 1, . . . , k, add the edges
aiu2i−1 and aiu2i. (See Figure 7.12.)

u1 u2 u3 u4 u5 u6

a1 a2 a3

Figure 7.12: The graph Gk for k = 3 used in the proof of Lemma 7.18.

Note that Gk is 2P2-free, for all k ≥ 1. Note that each set {ai, aj , ui, u2i, uj , u2j} induces
four different P4’s. On the one hand, the set {a1, . . . , ak} forms an F-transversal of G of size
k. On the other hand, as any two distinct ai and aj are non-adjacent and have no common
neighbour, any connected F-transversal of G contains at least two vertices from at least k − 1
of the k pairwise disjoint sets {ai, u2i−1, u2i} and therefore has size at least 2(k − 1).

Lemma 7.19. Let F be a family of graphs that contains P4 but no disjoint union of two complete
graphs. Then the class of 3P1-free graphs is not F-zero-additive.

Proof. Construct the following 14-vertex graph G∗. Take a set A of seven vertices
a, a′, b, b′, c, d, d′, add the edges making each of A1 = {a, a′, b, b′} and A2 = {d, d′} a clique,
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and add the edges bc, b′c, cd, cd′. Take a set B of seven vertices s, s′, t, t′, u, v, v′, add the edges
making each of B1 = {s, s′, t, t′} and B2 = {v, v′} a clique, and add the edges tu, t′u, uv, uv′.
Add every edge between a vertex of A1 and a vertex of B1 (thus making A1∪B1 a clique), every
edge between a vertex of B1 and a vertex of B2 (thus making A2 ∪B2 a clique), add edges from
c to every vertex of B \{u}, and add edges from u to every vertex of A\{c}. See Figure 7.13 for
a picture of G∗. Note that G∗ is 3P1-free and that {u, c} is the unique minimum F-transversal,
hence every minimum connected F-transversal has size (at least) 3.

a a′ b b′ c d d′

s s′ t t′ u v v′

Figure 7.13: The graph G∗ used in the Proof of Lemma 7.19. A thick edge between two sets of
vertices means the presence of all possible edges between the two sets.

Let K+
6 be the graph that consists of a clique on six vertices and another vertex made

adjacent to three vertices of the clique.

Lemma 7.20. Let F be a family of graphs that contains 2P2 and P4 but no induced subgraph
of K+

6 . Then the class of 3P1-free graphs is not F-zero-additive.

Proof. We construct the following graph G with ten vertices a1, a2, b1, b2, u1, u2, u3, v1, v2, v3
so that {a1, a2, u1, u2, u3}, {b1, b2, v1, v2, v3} and {u1, u2, u3, v1, v2, v3} are three cliques. See
Figure 7.14 for a picture of G. Note that G is 3P1-free, as the first two cliques partition V (G).
Then every minimum F-transversal consists of three vertices, namely one of {a1, a2} and two of
{b1, b2}, or vice versa (as otherwise either an induced 2P2 is left or an induced P4). Consequently,
the size of a minimum connected F-transversal is 4.

u1

u2

u3

a1

a2

b1

b2

v1

v2

v3

Figure 7.14: The graph G used in the proof of Lemma 7.20.

Lemma 7.21. Let F be a family of graphs that contains 2P2 but no induced subgraph of 4P3.
Then the class of 3P1-free graphs is not F-zero-additive.

Proof. The proof mimics that of Lemma 7.13. Let G be the complement of the graph shown in
Figure 7.15. Since G is triangle-free and every two vertices of G have a common non-neighbour,
G is a connected 3P1-free graph. Since 2P2 = C4, in the complement of G we need to cover
all the C4’s. Therefore there is a unique minimum F-transversal S of G, consisting of the two
endpoints of the central edge of G. Indeed G−S is isomorphic to 4P3, so the graph G−S ∼= 4P3

is F-free. Since the graph G[S] is not connected, we have ctF (G) > tF (G).
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G

Figure 7.15: The complement of a graph G with tF (G) < ctF (G) whenever 2P2 ∈ F and no
induced subgraph of 4P3 is in F .

7.6.2 Theorems

We are now ready to prove the following six theorems.

Theorem 7.22. For any graph H and for F = {P2}, the class of connected H-free graphs is

• F-multiplicative;

• F-additive if and only if H ⊆i P5 + sP1 or H ⊆i sP3 for some s ≥ 1;

• F-zero-additive if and only if H ⊆i P3.

Proof. The first claim follows immediately from Theorem 7.6 (i). We now prove the second
claim. If H ⊆i P5 + sP1 for some s ≥ 0, the result follows from combining Lemmas 7.2 and 7.3.
If H ⊆i sP3 for some s ≥ 0, the result follows from Lemma 7.8. Suppose that H 6⊆i P5 +sP1 for
any s ≥ 0 and H 6⊆i sP3 for any s ≥ 0. If H is not a linear forest then we can use Lemma 7.16.
Hence we may assume that H is a linear forest. Then, since H 6⊆i P5 + sP1 and H 6⊆i sP3 for
any s ≥ 0, we find that P4 + P2 ⊆i H or P6 ⊆i H. Consider the {P4 + P2, P6}-free graph Gk

obtained from k 4-cycles aibicidiai for i = 1, . . . , k after identifying all a1, . . . , ak into a single
vertex a (so Gk consists of disjoint P3’s, whose end-vertices are both adjacent to a). For every
k ≥ 1, a minimum F-transversal has size k + 1 and a minimum connected F-transversal has
size 2k + 1.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete, so
the result follows directly. Suppose H *i P3. By the previous claim we may assume that H is
a linear forest. Thus, H *i C4 and the graph G = C4 is an H-free graph with tF (G) = 2 < 3 =
ctF (G).

Theorem 7.23. For any graph H and for F = {C4, C5, 2P2}, the class of connected H-free
graphs is

• F-multiplicative;

• F-additive if and only if H ⊆i P4 + sP1 or H ⊆i P3 + sP2 for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P3.

Proof. The first claim follows immediately from Theorem 7.6 (i). We now prove the second
claim. First suppose H ⊆i P4 + sP1 or H ⊆i P3 + sP2 for some s ≥ 0. If H ⊆i P4 + sP1 for
some s ≥ 0, the result follows from combining Lemmas 7.1 and 7.3. If H ⊆i P3 + sP2 for some
s ≥ 0, the result follows from Lemma 7.15. Now suppose H 6⊆i P4 + sP1 and H 6⊆i P3 + sP2 for
any s ≥ 0. If H is not a linear forest then we can use Lemma 7.16. Hence we may assume that
H is a linear forest. Then P5 ⊆i H or P4 + P2 ⊆i H or 2P3 ⊆i H.
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First suppose that P5 ⊆i H or 2P3 ⊆i H. We construct a family of connected H-free graphs
{Gk} as follows. Let Gk have a clique Kk = {u1, . . . , uk} and two independent sets {a1, . . . , ak}
and {b1, . . . , bk}. For i = 1, . . . , k, add edges aibi, aiui and biui. See Figure 7.16 for an example.

u1 u2 u3

a1
a2

a3
b1

b2

b3

u1 u2 u3

b3b1 b2

a1

a2

a3 c1

c2

c3

Figure 7.16: The graphs Gk (left) and G∗k (right) for k = 3 used in the proof of Theorem 7.23.

Note that Gk is {2P3, P5}-free, and thus H-free, for all k ≥ 1. Every minimum F-transversal
consists of exactly one vertex of each pair {ai, bi}, as we need to remove at least one vertex from
at least k−1 pairs {ai, bi} to remove induced 2P2’s and then another vertex from the remaining
pair (which forms an induced 2P2 with a non-adjacent pair of clique vertices). On the other
hand, every connected F-transversal consists of at least 2k vertices.

Now suppose that P4 + P2 ⊆i H. We construct a family of connected H-free graphs {G∗k}
as follows. Let G∗k have a clique Kk = {u1, . . . , uk} and three independent sets {a1, . . . , ak},
{b1, . . . , bk} and {c1, . . . , ck}. For i = 1, . . . , k, add edges aibi and bici. Also add an edge between
each ai and each uj , and an edge between each ci and each uj . See Figure 7.16 for an example.
As each uj is adjacent to all vertices of G∗k except the mutually non-adjacent vertices b1, . . . , bk,
we find that G∗k is {P4 + P2}-free for all k ≥ 1. By the same arguments as in the previous
case, we find that {b1, . . . , bk} is the unique minimum F-transversal. On the other hand, every
connected F-transversal contains at least 2k + 1 vertices.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete, so
the result follows directly. Now suppose H 6⊆i P3. By the previous claim, we may assume that
H ⊆i P4 + sP1 or H ⊆i P3 + sP2 for some integer s ≥ 0.

Suppose that 3P1 ⊆i H, and let G be the complement of the graph shown in Figure 7.17.

G
v1 v2

v3

v4v5

v6 v′6 v′3

Figure 7.17: The complement of a graph G with tF (G) < ctF (G) whenever F = {C4, C5, 2P2}.

Since G is triangle-free and every two vertices of G have a common non-neighbour, G is a
connected 3P1-free (and hence H-free) graph. The set S = {v1, v2} is an F-transversal of G
since G − S (and consequently G − S) is a split graph. On the other hand, deleting any pair
of non-adjacent vertices from G leaves at least one subgraph isomorphic to 2P2 or C4, which
implies that tF (G) = 2 < ctF (G).
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Now suppose that 3P1 *i H. If P2 + P1 ⊆i H then we can apply Lemma 7.17. If H is
{3P1, P2 +P1}-free, then we conclude (since H is a linear forest) that H ⊆i P3, a contradiction.

Theorem 7.24. For any graph H and for F = {C4, P4} or F = {C4, P4, 2P2}, the class of
connected H-free graphs is

• F-multiplicative;

• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P3.

Proof. The first claim follows immediately from Theorem 7.6 (i). We now prove the second
claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining Lemmas 7.1 and 7.3.
Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear forest then we can use
Lemma 7.16. Hence we may assume that H is a linear forest. Then, as H 6⊆i P4 + sP1, we find
that 2P2 ⊆i H and we can use Lemma 7.18.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete, so
the result follows directly. Now suppose H 6⊆i P3. By the previous claim, we may assume that
H ⊆i P4 + sP1 for some integer s ≥ 0. Hence it holds that 3P1 ⊆i H or P2 + P1 ⊆i H.

We start with the case where 3P1 ⊆i H. If 2P2 ∈ F then we use Lemma 7.20. Suppose
that 2P2 /∈ F . Then F = {C4, P4} and we can use Lemma 7.19. We now consider the case
P2 + P1 ⊆i H. As C4 ∈ F we apply Lemma 7.17. This completes the proof of Theorem 7.24.

Theorem 7.25. For any graph H and for F = {C5, 2P2}, the class of connected H-free graphs is

• F-multiplicative;

• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P3 or H ⊆i P2 + P1.

Proof. The first claim follows immediately from Theorem 7.6 (i). We now prove the second
claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining Lemmas 7.1 and 7.3.
Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear forest then we can use
Lemma 7.16. Hence we may assume that H is a linear forest. Then, as H 6⊆i P4 + sP1, we find
that 2P2 ⊆i H and thus we can use Lemma 7.12.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete,
and if H ⊆i P1 + P2 then any connected H-free graph is F-free. So in both cases the result
follows directly. Now suppose that H 6⊆i P3 and H 6⊆i P1 + P2. By the previous claim, we may
assume that H ⊆i P4+sP1 for some integer s ≥ 0. If 3P1 ⊆i H, then we can apply Lemma 7.21.
If 3P1 6⊆i H, then H = P4 and we can consider the 7-vertex graph G consisting of 6 vertices
forming a 3P2 and one more vertex adjacent to all the other vertices. Graph G is a connected
P4-free graph with tF (G) = 2 < 3 = ctF (G). This completes the proof of Theorem 7.25.

Theorem 7.26. For any graph H and for F = {P4, 2P2}, the class of connected H-free graphs is

• F-multiplicative;

• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P3 or H ⊆i P2 + P1.

89



Proof. The first claim follows immediately from Theorem 7.6 (i). We now prove the second
claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining Lemmas 7.1 and 7.3.
Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear forest then we can use
Lemma 7.16. Hence we may assume that H is a linear forest. Then, as H 6⊆i P4 + sP1, we find
that 2P2 ⊆i H and thus we can use Lemma 7.18.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is complete,
and if H ⊆i P1 + P2 then any connected H-free graph is F-free. So in both cases the result
follows directly. Now suppose that H 6⊆i P3 and H 6⊆i P1 + P2. By the previous claim, we may
assume that H ⊆i P4 + sP1 for some integer s ≥ 0. Hence it holds that 3P1 ⊆i H and we can
apply Lemma 7.20. This completes the proof of Theorem 7.26.

Theorem 7.27. For any graph H and for F = {P4}, the class of connected H-free graphs is

• F-multiplicative;

• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;

• F-zero-additive if and only if H ⊆i P4.

Proof. The first claim follows immediately from Theorem 7.6 (i). We now prove the second
claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining Lemmas 7.1 and 7.3.
Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear forest then we can use
Lemma 7.16. Hence we may assume that H is a linear forest. Then, as H 6⊆i P4 + sP1, we find
that 2P2 ⊆i H and thus we can use Lemma 7.18.

We now prove the third claim. If H ⊆i P4 then any connected H-free graph is F-free, so
the result follows directly. Now suppose H 6⊆i P4. By the previous claim, we may assume that
H ⊆i P4 + sP1 for some integer s ≥ 1. Hence, 3P1 ⊆i H and we can use Lemma 7.19.

90



Chapter 8

Conclusion

A number of graph theory research problems were considered in this PhD thesis. The results
presented in the thesis will contribute to the expansion of knowledge in the field of structural
graph theory.

Our approach in the research work was a combinatorial and structural one. We made use
of various properties and characterizations of the graph classes under consideration, combining
graph theoretic and combinatorial tools and proof techniques such as proof by contradiction,
proof by minimal counterexample, inductive proofs, extremality, characterizations of graph
classes by forbidden substructures (induced subgraphs, induced minors, minors), graph decom-
positions, etc. An important role in the study was played by various graph transformations and
graph invariants. In this final chapter we summarize our findings and discuss open questions
and possible directions for future research work.

The results and open problems given in this chapter can be found in the following papers.

• T. R. Hartinger and M. Milanič, Partial Characterizations of 1-Perfectly Orientable
Graphs. J. Graph Theory. Vol. 85, 2, 2017, 378 – 394.

• B. Brešar, T. R. Hartinger, T. Kos, and M. Milanič (2016), 1-perfectly orientable K4-
minor-free and outerplanar graphs. Submitted. arXiv:1604.04598. An extended abstract
appeared in Electronic Notes in Discrete Mathematics, Vol. 54, (2016), 199 – 204.

• T. R. Hartinger, M. Johnson, M. Milanič and D. Paulusma, The price of connectivity
for cycle transversals. European Journal of Combinatorics. 58, (2016), 203-224. An
extended abstract appeared in Mathematical Foundations of Computer Science 2015. Part
II, volume 9234 of Lecture Notes in Computer Science, 395 – 406, Springer, 2015.

1-perfectly orientable graphs. In this PhD thesis, we developed several results on the
structure of 1-perfectly orientable graphs, including the identification of several graph trans-
formations preserving the class of 1-perfectly orientable graphs and an infinite family of min-
imal forbidden induced minors for the class of 1-p.o. graphs. We characterized the class of
1-perfectly orientable graphs within several induced-minor-closed graph classes, namely the
classes of cographs, cobipartite graphs, K4-minor-free graphs, outerplanar graphs, and block-
cactus graphs.

Theorem 3.9 from Section 3 implies that F ⊆ F̃ , where F̃ is the set of minimal forbidden
induced minors for the class of 1-p.o. graphs. However, the complete set F̃ is unknown. It is
conceivable that one can obtain further graphs in F̃ by computing the minimal elements with
respect to the induced minor relation of the list of forbidden induced subgraphs for the class of
circular arc cobipartite graphs due to Trotter and Moore [83]. Besides the three small graphs
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F5, F6, F7 and the family F3 of complements of even cycles of length at least 6, the list contains
five other infinite families, the smallest members of which are graphs F8, . . . , F12, respectively.
(In [83], the lists represent the complementary property and are denoted by Ti, Wi, Di, Mi,
and Ni, respectively.)

Open problem. Determine the set of minimal forbidden induced minors for the class of
1-perfectly orientable graphs.

Throughout the thesis, several graph classes proved to be important in the study of 1-
perfectly orientable graphs. The known and new results on the relationships between the graph
classes studied in this thesis are summarized in the Hasse diagram on Fig. 8.1. The results
marked in grey have been proved in this PhD thesis.

K4-minor-free
= treewidth ≤ 2
= K4-induced-minor-free

separability ≤ 2
= {K2,3,K

+1
2,3 ,K

+2
2,3 ,K

+3
2,3}-induced-minor-free

cyclically orientable
= K4-minor-free of separability ≤ 2
= {K4,K2,3}-induced-minor-free

outerplanar
= {K4,K2,3}-minor-free
= {K4,K2,3,K

+
2,3}-induced-minor-free

1-perfectly orientable
= ?-induced-minor-free

circular arc

chordal
= C4-induced-minor-free

= ?-induced-minor-free

1-perfectly orientable K4-minor-free

= {K4,K2,3, F1, F2}-induced-minor-free
= 1-perfectly orientable cyclically orientable

1-perfectly orientable outerplanar
= {K4,K2,3,K

+
2,3, F1, F2}-induced-minor-free

1-perfectly orientable cobipartite

= cobipartite circular arc
= ?-induced-minor-free

1-perfectly orientable block-cactus
= {F2, diamond}-induced-minor-free

1-perfectly orientable cographs

= {K2,3, P4}-induced-minor-free

Figure 8.1: Hasse diagram of inclusion relations between induced-minor-closed graph classes
considered, summarizing known results and results obtained in this thesis.

As a consequence of our results on K4-minor-free and outerplanar 1-p.o. graphs (Chapter 4)
we can observe the following. Since outerplanar and K4-minor-free graphs are subclasses of the
class of planar graphs (see, e.g., [10]), it is a natural question whether the characterizations of
1-perfectly orientable graphs within these two graph classes given by Theorems 4.12 and 4.14
could be generalized to the class of planar graphs. While no such characterizations are presently
known, we observe below that known results on treewidth imply a partial result in this direction,
namely that 1-perfectly orientable planar graphs are of bounded treewidth. We remind the
reader that every outerplanar graph is of treewitdh at most 2 and, more generally, K4-minor-
free graphs are exactly the graphs of treewidth at most 2. For details on treewidth we refer the
reader to [9].

A k × k grid is the graph with vertex set {1, . . . , k}2 and edge set {{(i, j), (i′, j′)} : 1 ≤
i, j, i′, j′ ≤ k, |i − i′| + |j − j′| = 1}. One of the results from the graph minor project due to
Robertson and Seymour [76] states that for every positive integer k there is a positive integer
N such that if G is a graph of treewidth at least N then the k × k grid is a minor of G. This
result was further strengthened for planar graphs in several ways. For example, a result due to
Gu and Tamaki [43] implies the following.

Proposition 8.1. For every planar graph G, the treewidth of G is at most 4.5k− 1 where k is
the largest integer such that G contains a k × k grid as a minor.
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Proof. Let G be a planar graph, let k be as above, and let b and t denote the treewidth and the
branchwitdh of G, respectively. Since G is planar, a result by Gu and Tamaki [43] implies that
b ≤ 3k. Moreover, we have t ≤ max{1.5b−1, 1} by a general result relating the treewidth and the
branchwidth due to Robertson and Seymour [78]. Consequently, t ≤ max{4.5k−1, 1} = 4.5k−1
since k ≥ 1.

Corollary 8.2. For every k > 1, the treewidth of every planar graph having no k × k grid as
minor is at most 4.5(k − 1)− 1.

Next, observe that a minor model of a 6× 6 grid in a planar graph G can be used to obtain
an induced minor model of F1 in G (see Fig. 8.2).

Figure 8.2: Obtaining F1 as induced minor in a planar graph having the 6× 6 grid as a minor.

Therefore, no 1-perfectly orientable planar graph can have a 6 × 6 grid as a minor and
Corollary 8.2 implies the following.

Corollary 8.3. The treewidth of every 1-perfectly orientable planar graph is at most 21.

More generally, for every positive integer r, the treewidth is bounded in the class of 1-
perfectly orientable Kr-minor-free graphs. This follows from the analogous statement in the
more general setting, for Kr-minor-free graphs excluding any fixed planar graph as induced
minor, which can be proved using arguments as in Case 2 of the proof of [86, Theorem 9].
(Theorem 9 from [86] was derived from results due to Fellows et al. [29] and Fomin et al. [31].)
This observation has the following algorithmic consequence: since the defining property of 1-
perfectly orientable graphs can be expressed in Monadic Second Order Logic with quantifiers
over edges and edge subsets, Courcelle’s Theorem [18] implies that 1-perfectly orientable graphs
can be recognized in linear time in any class of graphs of bounded treewidth. In particular, by
the above observation, this is the case for any class of graphs excluding some complete graph
as a minor.

The next open question could lead to further insights on the structure of 1-perfectly ori-
entable graphs; a positive answer would generalize Corollary 8.3.

A maximal clique is a clique that does not exist exclusively within the vertex set of a larger
clique. The clique number of a graph G, denoted by ω(G), is the size of a largest clique or
maximal clique of G.

Open problem. Is it true that for every positive integer k there is a positive integer N such
that every 1-perfectly orientable graph with clique number k is of treewidth at most N?

Graph products. In this thesis we considered the four standard graph products, namely
the Cartesian product, the lexicographic product, the direct product, and the strong product.
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For each of them we characterized when a nontrivial product of two graphs is 1-p.o., chordal,
interval, or circular arc, respectively (Chapters 5 and 6).

An open problem which could be considered is that of characterizing the studied graph
classes in terms of other graph products, such as the conormal product [68], the modular
product [51], the rooted product [40] or the homomorphic product [50], for instance.

The price of connectivity. In Chapter 7 we extended the tetrachotomy result of Belmonte
et al. [6] for the family F of all cycles by giving tetrachotomy results for a number of natural
families F containing cycles and anticycles (see Table 7.1). Let us recall that a tetrachotomy for
the price of connectivity of F-transversals when F is the family of even cycles or of all holes is
still an open case. To settle it, it would suffice to show that the class of connected (P3 +P2)-free
graphs is F-additive, which we conjecture to be true.

Conjecture. The class of connected (P3 + P2)-free graphs is F-additive if F consists of all
even cycles or all holes.

A final open problem worth mentioning regarding the price of connectivity if that of obtaining
a tetrachotomy for infinite families F of cycles that contain C3 but that miss some other odd
cycle.

By Corollary 7.7 we know that the class of H-free graphs is F-multiplicative if and only if H
is a linear forest. We also know, due to Lemma 7.4, that the class of connected (P2+P4, P6)-free
graphs is not F-additive. Moreover, the class of connected H-free graphs is F-zero-additive if
and only if H ⊆i P3, as we can use the example of G = K2,2,2 from Theorem 7.9. Hence, using
Lemmas 7.1–7.3, we see that what remains is to check, for every s ≥ 2, whether the class of
H-free graphs is F-additive if H = sP3.
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[6] R. Belmonte, P. van ’t Hof, M. Kamiński, and D. Paulusma. The price of connectivity
for feedback vertex set. In The Seventh European Conference on Combinatorics, Graph
Theory and Applications, volume 16 of CRM Series, pages 123–128. Ed. Norm., Pisa, 2013.
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[16] F. Cicalese and M. Milanič. Graphs of separability at most 2. Discrete Appl. Math.,
160(6):685–696, 2012.

[17] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. Discrete
Appl. Math., 3(3):163–174, 1981.

[18] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inform. and Comput., 85(1):12–75, 1990.

[19] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Kernelization hardness of
connectivity problems in d-degenerate graphs. Discrete Appl. Math., 160(15):2131–2141,
2012.

[20] D. de Werra and A. Hertz. On perfectness of sums of graphs. Discrete Math., 195(1-3):93–
101, 1999.

[21] F. Delbot, C. Laforest, and S. Rovedakis. Self-stabilizing algorithms for connected vertex
cover and clique decomposition problems. In Principles of Distributed Systems, volume
8878 of Lecture Notes in Comput. Sci., pages 307–322. Springer, Cham, 2014.

[22] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, third edition, 2005.

[23] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.

[24] P. Duchet and H. Meyniel. On Hadwiger’s number and the stability number. In Graph
theory (Cambridge, 1981), volume 62 of North-Holland Math. Stud., pages 71–73. North-
Holland, Amsterdam-New York, 1982.

[25] G. Durán, L. N. Grippo, and M. D. Safe. Structural results on circular-arc graphs and circle
graphs: A survey and the main open problems. Discrete Appl. Math., 164(part 2):427–443,
2014.

[26] R. D. Dutton and R. C. Brigham. A characterization of competition graphs. Discrete Appl.
Math., 6(3):315–317, 1983.

[27] L. Fan, Z. Zhang, and W. Wang. PTAS for minimum weighted connected vertex cover
problem with c-local condition in unit disk graphs. J. Comb. Optim., 22(4):663–673, 2011.

[28] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combina-
torica, 19(4):487–505, 1999.

[29] M. R. Fellows, J. Kratochv́ıl, M. Middendorf, and F. Pfeiffer. The complexity of induced
minors and related problems. Algorithmica, 13(3):266–282, 1995.

[30] S. Foldes and P. L. Hammer. Split graphs. In Proceedings of the Eighth Southeastern Con-
ference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton
Rouge, La., 1977), pages 311–315. Congressus Numerantium, No. XIX. Utilitas Math.,
Winnipeg, Man., 1977.

[31] F. V. Fomin, P. Golovach, and D. M. Thilikos. Contraction bidimensionality: the accurate
picture. In Algorithms—ESA 2009, volume 5757 of Lecture Notes in Comput. Sci., pages
706–717. Springer, Berlin, 2009.

96



[32] M. Francis, P. Hell, and J. Stacho. Forbidden structure characterization of circular-arc
graphs and a certifying recognition algorithm. In Proceedings of the Twenty-sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, pages 1708–1727, Philadel-
phia, PA, USA, 2015. Society for Industrial and Applied Mathematics.

[33] T. Fujito. On approximability of the independent/connected edge dominating set problems.
Inform. Process. Lett., 79(6):261–266, 2001.

[34] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J. Math.,
15:835–855, 1965.

[35] H. Galeana-Sánchez. Normal fraternally orientable graphs satisfy the strong perfect graph
conjecture. Discrete Math., 122(1-3):167–177, 1993.

[36] H. Galeana-Sánchez. A characterization of normal fraternally orientable perfect graphs.
Discrete Math., 169(1-3):221–225, 1997.

[37] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J.
Combinatorial Theory Ser. B, 16:47–56, 1974.

[38] F. Gavril. Intersection graphs of proper subtrees of unicyclic graphs. J. Graph Theory,
18(6):615–627, 1994.

[39] F. Gavril and J. Urrutia. Intersection graphs of concatenable subtrees of graphs. Discrete
Appl. Math., 52(2):195–209, 1994.

[40] C. Godsil and B. McKay. A new graph product and its spectrum. BULL. AUSTRAL.
MATH. SOC., 18:21–28, 1978.

[41] M. C. Golumbic. Algorithmic Graph Theory and Pperfect Graphs, volume 57 of Annals of
Discrete Mathematics. Elsevier Science B.V., Amsterdam, second edition, 2004. With a
foreword by Claude Berge.

[42] A. Grigoriev and R. Sitters. Connected feedback vertex set in planar graphs. In Graph-
theoretic concepts in computer science, volume 5911 of Lecture Notes in Comput. Sci.,
pages 143–153. Springer, Berlin, 2010.

[43] Q.-P. Gu and H. Tamaki. Improved bounds on the planar branchwidth with respect to the
largest grid minor size. Algorithmica, 64(3):416–453, 2012.

[44] V. Gurvich. On cyclically orientable graphs. Discrete Math., 308(1):129–135, 2008.

[45] R. H. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs. Discrete
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Chapter 9

Povzetek v slovenskem jeziku

V disertaciji obravnavamo tri glavne probleme.
Najprej se posvetimo problemu, kako pridobiti nekaj potrebnih ali zadostnih pogojev za

razred 1-popolno usmerljivih grafov. Poudarek je na karakterizaciji 1-popolno usmerljivih grafov
znotraj posebnih družin grafov, natančneje, znotraj kografov, ko-dvodelnih grafov, bločno-
kaktus grafov, grafov brez K4 minorja in zunanje ravninskih grafov.

Na drugem mestu proučujemo štiri standardne produkte grafov, torej kartezični produkt,
leksikografski produkt, direktni produkt in krepki produkt, ter za vsakega od produktov karak-
teriziramo, kdaj je netrivialen produkt dveh grafov 1-popolno usmerljiv. Popolnoma karakter-
iziramo tudi tetivne grafe, intervalne grafe in grafe krožnih lokov, ki jih je moč razstaviti glede
na poljubnega od štirih standardnih produktov.

Nazadnje obravnavamo, kako določiti ceno povezanosti za F-tranzverzale grafov določenih
družin grafov F . Posvetimo se razredom grafov, karakteriziranih z enim prepovedanim induci-
ranim podgrafom H, in F-tranzverzalam, kjer F vsebuje neskončno mnogo ciklov in morda
tudi enega ali več anticiklov ali kratkih poti. Določimo natanko tiste razrede povezanih H-
prostih grafov, kjer je cena povezanosti teh F-tranzverzal neomejena, multiplikativna, aditivna
ali ničelno aditivna.

Rezultate disertacije lahko povzamemo s sledečim seznamom:

1. Karakterizacija 1-popolno usmerljivih grafov glede na pokritje povezav s klikami.

2. Identifikacija številnih transformacij grafov, ki ohranjajo razred 1-popolno usmerljivih
grafov. Podan je dokaz dejstva, da je razred 1-popolno usmerljivih grafov zaprt za induci-
rane minorje.

3. Karakterizacija 1-popolno usmerljivih grafov znotraj razreda ko-dvodelnih grafov.

4. Identifikacija neskončne družine ko-dvodelnih 1-popolno usmerljivih grafov.

5. Identifikacija neskončne družine minimalnih prepovedanih induciranih minorjev za razred
1-popolno usmerljivih grafov.

6. Karakterizaciji 1-popolno usmerljivih kografov: s prepovedanimi induciranimi podgrafi in
s kompozicijskim izrekom.

7. Karakterizacija 1-popolno usmerljivih bločno-kaktus grafov.

8. Karakterizacije 1-popolno usmerljivih grafov znotraj razreda grafov brez K4 minorja in
znotraj zunanje ravninskih grafov, tako glede na prepovedane inducirane minorje kot s
kompozicijskim izrekom.
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9. Karakterizacija, kdaj je netrivialen produkt dveh grafov G in H 1-popolno usmerljiv, za
vsakega od štirih standardnih produktov.

10. Karakterizacija, kdaj je netrivialen produkt dveh grafov G in H tetiven graf, intervalen
graf, oziroma graf krožnih lokov, za vsakega od štirih standardnih produktov.

11. Določitev natanko tistih razredov povezanih H-prostih grafov, kjer je cena povezanosti
F-transverzal neomejena, multiplikativna, aditivna ali ničelno aditivna, kjer F vsebuje
neskončno število ciklov in morda enega ali več anticiklov ali kratkih poti.

Vsak izmed rezultatov pripomore k razširitvi znanja s področja strukturne teorije grafov.
Večina rezultatov je vključena v naslednje znanstvene članke:

• T. R. Hartinger and M. Milanič, Partial Characterizations of 1-Perfectly Orientable
Graphs. J. Graph Theory. Vol. 85, 2, 2017, 378–394.

• B. Brešar, T. R. Hartinger, T. Kos in M. Milanič (2016), 1-perfectly orientable K4-minor-
free and outerplanar graphs. Poslan v objavo. arXiv:1604.04598. Razširjen povzetek je
bil objavljen v Electronic Notes in Discrete Mathematics 54 (2016) 199–204.

• T. R. Hartinger in M. Milanič, 1-perfectly orientable graphs and graph products. Discrete
Mathematics 340 (2017) 1727–1737.

• T. R. Hartinger, (2016), Chordal, interval, and circular-arc product graphs. Applicable
Analysis and Discrete Mathematics 10 (2016) 532–551.

• T. R. Hartinger, M. Johnson, M. Milanič in D. Paulusma, The price of connectivity for
cycle transversals. European Journal of Combinatorics 58 (2016) 203–224. Razširjen
povzetek je bil objavljen v Mathematical Foundations of Computer Science 2015. Part
II, volume 9235 of Lecture Notes in Comput. Sci., strani 395–406. Springer, Heidelberg,
2014.

9.1 1-popolno usmerljivi grafi: operacije in karakterizacije v
štirih razredih grafov, zaprtih za inducirane minorje

Prva obravnavana tema se nanaša na 1-popolno usmerljive grafe. Turnir je usmeritev polnega
grafa. Z uporabo terminologije Kammerja and Tholeyja [55] pravimo, da je usmeritev grafa
1-popolna, če izhodna soseščina vsake točke inducira turnir, in da je graf 1-popolno usmerljiv
(na kratko, 1-p.u.), če premore 1-popolno usmeritev.

Idejo 1-p.u. grafov je prvič predstavil Skrien [81] leta 1982 (pod imenom {B2}-grafi), ko je
tudi zastavil problem karakterizacije tega razreda grafov. Po definiciji so 1-p.u. grafi tisti grafi,
ki premorejo usmeritev, ki je izhodni turnir. S preprostim argumentom zamenjave usmeritve
povezav pokažemo, da so 1-p.u. grafi natanko grafi, ki premorejo usmeritev, ki je vhodni turnir.
Taka usmeritev je v številnih člankih [35,36,38,39,65,66,85] poimenovana bratska usmeritev.

S pomočjo prevedbe na 2-SAT je bilo pokazano, da lahko družino 1-p.u. grafov prepoznamo
v polinomskem času [4]. Čeprav je razumevanje strukture tega hereditarnega razreda grafov še
vedno odprto vprašanje, so znani nekateri delni rezultati. Bang-Jensen idr. [4] (glej tudi [70])
so podali karakterizacijo 1-p.u. povezavnih grafov in 1-p.u. grafov brez trikotnikov in dokazali,
da je vsak graf z enim samim induciranim ciklom reda vsaj 4 tudi 1-p.u. graf. V člankih [85]
in [81, 85] je bilo pokazano, da sta razreda tetivnih grafov in grafov krožnih lokov podrazreda
1-p.u. grafov.
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V disertaciji je predstavljenih kar nekaj rezultatov o strukturi 1-p.u. grafov. Podana je karak-
terizacija 1-p.u. grafov glede na pokritje povezav s klikami, identificirane so številne transforma-
cije grafov, ki ohranjajo razred 1-p.u. grafov, prikazana je neskončna družina minimalnih pre-
povedanih induciranih minorjev za razred 1-p.u. grafov in karakteriziran je razred 1-p.u. grafov
v razredih kografov in ko-dvodelnih grafov (tj. komplementov dvodelnih grafov). Pokažemo,
da razred 1-p.u. ko-dvodelnih grafov sovpada z razredom ko-dvodelnih grafov krožnih lokov.
Kot stranski rezultat definiramo novo neskončno družino dvodelnih grafov in dokažemo, da so
njihovi komplementi 1-p.u.

Z uporabo prevedbe proučevanja razreda 1-p.u. grafov na 2-povezane grafe karakteriziramo,
tako glede na prepovedane inducirane minorje kot glede na kompozicijske izreke, razreda 1-
p.u. grafov brez K4 minorja in 1-p.u. zunanje ravninskih grafov. Kot del našega pristopa
uvedemo razred grafov, definiran podobno kot razred 2-dreves, ter povežemo obravnavani razred
grafov z dvema drugima razredoma, zaprtima za inducirane minorje, ki sta že bila proučevana
v literaturi: s ciklično usmerljivimi grafi in z grafi ločljivosti kvečjemu 2. Karakteriziramo tudi
1-p.u. bločne-kaktus grafe.

V nadaljevanju so natančneje predstavljeni glavni rezultati tega dela. Pravimo, da je graf H
induciran minor grafa G, če lahko graf H dobimo iz grafa G z zaporednim odstranjevanjem točk
in skrčevanjem povezav. Naši rezultati implicirajo, da je razred 1-p.u. grafov zaprt za inducirane
minorje in ga torej lahko karakteriziramo glede na minimalne prepovedane inducirane minorje.
Z drugimi besedami, obstaja taka minimalna množica grafov F , da je graf G 1-p.u. graf, če
in samo če ne vsebuje nobenega grafa iz množice F kot induciranega minorja. Taka množica
je minimalna v smislu, da je vsak pravi induciran minor poljubnega grafa v F 1-p.u. graf.
Naslednji rezultat bo opisal neskončno poddružino F ⊆ F̃ minimalnih prepovedanih induciranih
minorjev za razred 1-p.u. grafov.

Izrek 9.1. Naj bo F = {F1, F2, F5, . . . , F12} ∪ F3 ∪ F4 množica grafov, za katero velja:

• Grafa F1 in F2 sta prikazana na sliki 9.1,

• F3 = {C2k | k ≥ 3} je množica komplementov sodih ciklov doľzine vsaj 6,

• F4 = {K2 + C2k+1 | k ≥ 1} je množica komplementov grafov, ki jih dobimo kot disjunktno
unijo grafa K2 z nekim lihim ciklom,

• za i ∈ {5, . . . , 12} je graf Fi komplement grafa Gi−4, prikazanega na sliki 9.1.

Potem je vsak graf iz množice F minimalen prepovedan induciran minor za razred 1-popolno
usmerljivih grafov.

Sledijo karakterizacije 1-p.u. grafov znotraj naslednjih grafovskih razredov: ko-dvodelni
grafi, kografi, bločno-kaktus grafi, grafi brez K4 minorjev in zunanje ravninski grafi. Graf
je dvodelen, če je njegovo množico točk moč razdeliti na dve neodvisni množici. Pravimo, da je
graf ko-dvodelen, če je njegov komplement dvodelen. Dalje pravimo, da je cikel brez tetiv C v
grafu G usmerjen ciklično v neki usmeritvi D grafa G, če ima vsaka točka cikla natanko enega
izhodnega soseda, ki pripada ciklu.

Izrek 9.2. Za vsak ko-dvodelen graf G so naslednje trditve ekvivalentne:

1. Graf G je 1-popolno usmerljiv.

2. Graf G premore usmeritev, v kateri je vsak induciran cikel doľzine 4 usmerjen ciklično.

3. G je graf krožnih lokov.
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F1 F2

G1 = F5

F4 = K2 + C3F3 = C6

G2 = F6 G3 = F7 G4 = F8

G5 = F9 G6 = F10 G7 = F11 G8 = F12

Slika 9.1: Štirje ne-1-p.u. grafi in 8 komplementov ne-1-p.u. grafov. Grafa F3 in F4 sta najmanǰsa
člana družin F3 in F4, v tem vrstnem redu.

Razred kografov je definiran rekurzivo, s pogoji, da je graf K1 kograf, da je disjunktna unija
dveh kografov kograf, da je spoj dveh kografov kograf in da so to vsi kografi. Kografi so natanko
P4-prosti grafi [10].

Izrek 9.3. Za vsak kograf G so naslednje trditve ekvivalentne:

1. Graf G je 1-popolno usmerljiv.

2. Graf G je K2,3-prost.

3. Velja ena od naslednjih trditev:

• G ∼= K1.

• G ∼= mK2 za nek m ≥ 2.

• Graf G je disjunktna unija dveh manǰsih 1-p.u. kografov.

• Graf G je rezultat dodajanja univerzalne točke nekemu manǰsemu 1-p.u. kografu.

• Graf G je rezultat dodajanja pravega dvojčka nekemu manǰsemu 1-p.u. kografu.

Blok grafa G je maksimalen povezan podgraf brez prereznih točk. Graf G je bločno-kaktus,
če je vsak blok grafa G bodisi cikel ali pa poln graf.

Izrek 9.4. Naj bo G povezan bločno-kaktus graf. Tedaj so naslednje trditve ekvivalentne:

1. G je 1-popolno usmerljiv.

2. Kvečjemu en blok grafa G ni poln.
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3. G nima induciranega minorja, izomorfnega grafu F2 (glej sliko 9.1).

Razred 2-dreves je definiran na sledeč način: (i) graf K2 je 2-drevo, (ii) graf, ki ga dobimo
tako, da 2-drevesu dodamo simplicialno točko stopnje 2, je 2-drevo in (iii) drugih 2-dreves ni.
Uvedli bomo razred netetivnih grafov, ki ga lahko dobimo s podobno induktivno konstrukcijo
kot 2-drevesa. Votlo 2-drevo je definirano na sledeči način: (i) vsak cikel dolžine vsaj 4 je votlo
2-drevo, (ii) graf, ki ga dobimo tako, da votlemu 2-drevesu dodamo simplicialno točko stopnje
2, je votlo 2-drevo in (iii) drugih votlih 2-dreves ni.

V naslednjih rezultatih so uporabljene sledeče operacije:

• (A1): dodajanje simplicialne točke stopnje 1.

• (A2): dodajanje simplicialne točke stopnje 2 (tj. dodajanje točke, ki je povezana z natanko
dvema sosednima točkama).

• (A′2): dodajanje simplicialne točke stopnje 2 s sosednima točkama v in w, pri čemer je
povezava vw vsebovana v največ enem induciranem ciklu.

Izrek 9.5. Naj bo G povezan graf brez K4 minorja. Potem so naslednje trditve ekvivalentne:

1. Graf G je 1-popolno usmerljiv.

2. Graf G je brez induciranih minorjev, izomorfnih K2,3, F1 ali F2.

3. Vsak blok grafa G je 2-drevo, razen morda enega, ki je bodisi K1 bodisi votlo 2-drevo.

4. Graf G lahko konstruiramo bodisi iz grafa K1 bodisi iz cikla z nekim zaporedjem operacij
(A1) in (A2).

Graf G je zunanje ravninski, če ga lahko v ravnini narǐsemo brez presečǐsč povezav tako,
da vse točke mejijo na zunanje lice. Zunanje ravninski grafi so natanko grafi brez minorjev,
izomorfnih K4 ali K2,3 [13].

Izrek 9.6. Naj bo G povezan zunanje ravninski graf. Potem so naslednje trditve ekvivalentne:

1. Graf G je 1-popolno usmerljiv.

2. Graf G je brez induciranih minorjev, izomorfnih K2,3, F1 ali F2.

3. Vsak blok grafa G je 2-drevo, razen morda enega, ki je bodisi K1 bodisi votlo 2-drevo.

4. Graf G lahko konstruiramo bodisi iz grafa K1 bodisi iz cikla z nekim zaporedjem operacij
(A1) in (A′2).

9.2 Karakterizacija glede na štiri standardne grafovske pro-
dukte

Druga tema, obravnavana v disertaciji, so produktni grafi. Produktni grafi znotraj raznih
razredov grafov so bili obravnavani v številnih člankih; popolna karakterizacija dane grafovske
lastnosti z vidika vseh štirih standardnih produktov (kartezični, direktni, krepki in leksikograf-
ski) je pogosto zahtevna. Ravindra in Parthasarathy [74] sta karakterizirala popolne kartezične,
direktne in leksikografske produkte. Kartezični produkt sta nadalje proučevala tudi de Werra
and Hertz [20]. Trenutno ni nobene poznane karakterizacije popolnih netrivialnih krepkih pro-
duktov; delno karakterizacijo in zadostne pogoje je opisal Ravindra [73] (glej tudi [1]). Karak-
terizacijo povezavnih grafov in totalnih grafov glede na razne produkte sta podala Rao [71] ter
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Rao in Vartak [72], karalterizacijo modulo m dobro pokritih leksikografskih produktov je po-
dal Orlovich [69], karakterizacijo enolično parnih kartezičnih produktov pa Che [14]. Rezultati
te disertacije prispevajo k poznavanju karakterizacij razredov grafov znotraj grafov, ki jih je
mogoče razstaviti glede na enega od štirih standardnih produktov grafov, ter na seznam dodajo
1-popolno usmerljive grafe, tetivne grafe, intervalne grafe ter grafe krožnih lokov.

9.2.1 1-popolno usmerljivi produkti grafov

V tem delu podamo karakterizacijo, kdaj je netrivialen produkt dveh grafov 1-p.u. graf za
vsakega izmed štirih standardnih grafovskih produktov: za kartezični produkt, leksikografski
produkt, direktni produkt in krepki produkt. Za poljubnega izmed štirih omenjenih produktov
pravimo, da je netrivialen, če oba faktorja vsebujeta vsaj 2 točki. Za več informacij o grafovskih
produktih in njihovih lastnostih bralca napotujemo na [45,52].

Izrek 9.7. Naj bosta G in H povezana grafa. Potem je netrivialen kartezični produkt G�H
1-p.u. graf če in samo če je G ∼= H ∼= K2.

Izrek 9.8. Naj bosta G in H grafa in naj bo graf G povezan. Potem je netrivialen leksikografski
produkt G[H] 1-p.u. graf če in samo če je izpolnjen vsaj eden od naslednjih pogojev:

(i) Graf G je 1-p.u. in je graf H poln graf.

(ii) Graf G je poln graf in je graf H ko-dvodelen 1-p.u. graf.

Psevdodrevo je povezan graf, ki vsebuje kvečjemu en cikel.

Izrek 9.9. Naj bosta G in H povezana grafa. Potem je netrivialen direktni produkt G × H
1-p.u. graf če in samo če velja ena od naslednjih trditev:

(i) Eden izmed faktorjev je izomorfen grafu K2, drugi pa je psevdodrevo.

(ii) Eden izmed faktorjev je izomorfen grafu P3, drugi pa grafu P4.

(iii) Oba faktorja sta izomorfna grafu P3.

Graf G je ko-veriga, če lahko njegovo množico točk razdelimo v taki dve kliki, recimo X in
Y , da lahko točke v X uredimo tako, X = {x1, . . . , x|X|}, da za vsak 1 ≤ i < j ≤ |X| velja
N [xi] ⊆ N [xj ] (ali, ekvivalentno, da je N(xi) ∩ Y ⊆ N(xj) ∩ Y ). Pravimo, da je graf 2-poln, če
je unija dveh (ne nujno različnih) polnih grafov, ki imata skupno vsaj eno točko. Ekvivalentno
je graf 2-poln če in samo če ga lahko dobimo bodisi iz grafa K1 bodisi iz grafa P3 z zaporednim
dodajanjem pravih dvojčkov.

Izrek 9.10. Naj bosta G in H povezana grafa. Potem je netrivialen krepki produkt G � H
1-p.u. graf če in samo če velja ena od naslednjih trditev:

(i) Eden izmed faktorjev je 1-p.u. graf in drugi faktor je poln graf.

(ii) Eden izmed faktorjev je ko-veriga in drugi faktor je 2-poln.

9.2.2 Tetivni in intervalni produktni grafi ter produktni grafi krožnih lokov

V tem poglavju karakteriziramo netrivialne produktne grafe, ki so tetivni grafi, intervalni grafi
in grafi krožnih lokov, za vsakega od štirih standardnih grafovskih produktov.

Izrek 9.11. Netrivialen kartezični produkt G�H grafov G in H je:
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• tetiven graf, če in samo če je G graf brez povezav in je H tetiven graf ali obratno,

• intervalen graf, če in samo če je G graf brez povezav in je H intervalen graf ali obratno,

• graf krožnih lokov, če in samo če velja vsaj ena od naslednjih trditev:

(i) je G graf brez povezav in je H graf krožnih lokov ali obratno,

(ii) G ∼= H ∼= K2.

Izrek 9.12. Netrivialen leksikografski produkt G[H] grafov G in H je:

• tetiven graf, če in samo če velja vsaj en od naslednjih pogojev:

(i) G je graf brez povezav in H je tetiven graf,

(ii) G je tetiven graf in H je poln graf,

• intervalen graf, če in samo če velja vsaj en od naslednjih pogojev:

(i) G je graf brez povezav in H je intervalen graf,

(ii) G je intervalen graf in H je poln graf,

• graf krožnih lokov, če in samo če velja vsaj en od naslednjih pogojev:

(i) G je graf brez povezav in H je intervalen graf,

(ii) G je graf krožnih lokov in H je poln graf,

(iii) G je poln graf in H je ko-dvodelen graf krožnih lokov.

2-linearen gozd je graf, ki sestoji samo iz izoliranih točk in izoliranih povezav. Gosenica
je drevo, pri katerem z odstranitvijo vseh listov (točk stopnje 1) dobimo pot. Gozd gosenic je
disjunktna unija gosenic. Liha ciklična gosenica je povezan graf, pri katerem z odstranitvijo
vseh listov (točk stopnje 1) dobimo lih cikel.

Izrek 9.13. Netrivialen direktni produkt G×H grafov G in H je:

• tetiven graf, če in samo če velja vsaj en od naslednjih pogojev:

(i) vsaj en izmed faktorjev ne vsebuje povezave,

(ii) graf G je 2-linearen gozd in graf H je gozd, ali obratno,

• intervalen graf, če in samo če velja vsaj en od naslednjih pogojev:

(i) vsaj en izmed faktorjev ne vsebuje povezave,

(ii) graf G je 2-linearen gozd in graf H je gozd gosenic, ali obratno,

• graf krožnih lokov, če in samo če velja vsaj en od naslednjih pogojev:

(i) vsaj en izmed faktorjev ne vsebuje povezave,

(ii) graf G je 2-linearen gozd in graf H je gozd gosenic, ali obratno,

(iii) G ∼= K2 in H je liha ciklična gosenica, ali obratno.

Izrek 9.14. Netrivialen krepki produkt G�H grafov G in H je:

• tetiven graf, če in samo če je vsaka komponenta grafa G poln graf in je H tetiven graf, ali
obratno,
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• intervalen graf, če in samo če je vsaka komponenta grafa G poln graf in je H intervalen
graf, ali obratno,

• graf krožnih lokov, če in samo če velja vsaj en od naslednjih pogojev:

(i) G je poln graf in H je graf krožnih lokov, ali obratno,

(ii) G je 2-poln graf in graf H je povezana ko-veriga, ali obratno,

(iii) vsaka komponenta grafa G je poln graf in H je intervalen graf, ali obratno.

9.3 Cena povezanosti za transverzale ciklov

Tretja obravnavana tema v disertaciji je cena povezanosti. Za družino grafov F je F-transverzala
grafa G taka podmnožica S ⊆ V (G), ki ima presek z vsako podmnožico množice V (G), ki
inducira podgraf, izomorfen grafu F . Naj bo tF (G) minimalna velikost F-transverzale grafa
G in naj bo ctF (G) minimalna velikost F-transverzale grafa G, ki inducira povezan graf. Za
razred povezanih grafov G rečemo, da je cena povezanosti F-transverzal multiplikativna, če je za
vse grafe G ∈ G, ctF (G)/tF (G) omejena s konstanto, in aditivna, če je ctF (G)− tF (G) omejena
s konstanto. Cena povezanosti je ničelno aditivna, če sta vrednosti tF (G) in ctF (G) vedno
enaki, in neomejena, če je vrednost ctF (G) neomejena glede na tF (G). Za nekatere premere
so F-transverzale dobro proučene. Na primer, točkovno pokritje je {P2}-transverzala, množica
povratnih točk pa je F-transverzala za neskončno družino F = {C3, C4, C5, . . .}. Kot narekujeta
ta dva primera, je smiselno proučevati F-transverzale najmanǰse velikosti.

Na F-transverzale S povezanega grafa G lahko damo dodatno omejitev in zahtevamo, da je
podgraf, ki ga inducira množica S, povezan. Povezane F-transverzale minimalne velikosti grafa
so bile v literaturi že študirane; raziskovalci so se med drugim posvetili najmanǐsim povezanim
točkovnim pokritjem (glej npr. [8, 11, 12, 21, 27, 33, 79, 89]) in najmanǐsim povezanim množicam
povratnih točk (glej npr. [6, 19,42,62,80]).

V disertaciji obravnavamo sledeče vprašanje: Kakšen vpliv ima omejitev povezanosti na
minimalno velikosti F-transverzal za družino grafov F?

Natančneje, proučujemo razrede grafov, karakterizirane z enim prepovedanim induciranim
podgrafom H, in F-transverzale, kjer F vsebuje neskončno število ciklov in morda enega ali
več anticiklov ali kratkih poti. Cilj je določiti natanko tiste razrede povezanih grafov brez in-
duciranega podgrafa H, kjer je cena povezanosti teh F-transverzal neomejena, multiplikativna,
aditivna ali ničelno aditivna. Naša tetrahotomija med drugim razširi do sedaj znane rezultate
za primer, ko je F družina vseh ciklov.

Tabela, predstavljena v nadaljevanju, povzema rezultate tega dela in nekatere do sedaj znane
rezultate v zvezi s ceno povezanosti. Rezultate je mogoče interpretirati tako glede na družino
F kot glede na ustrezno lastnost grafa G−S, kjer je S neka F-transverzala grafa G. Tabela 9.1
predstavlja pogoje za graf H, pod katerimi je cena povezanosti F-transverzal za H-proste grafe
multiplikativna, aditivna ali ničelno aditivna, v tem vrstnem redu, ko je F množica grafov, ki
vsebuje podano neskončno družino ciklov in morda še nekaj drugih majhnih grafov.

Rezultati za cikle, podani v prvi vrsti tabele, so delo Belmonteja idr. [6]. Rezultat, podan
v deveti vrsti tabele, v zvezi z multiplikativnostjo za cikle in P2, je delo Cambyjeve idr. [11].
Vsi ostali rezultati, ki jih predstavimo v disertaciji, so novi. Vsi podani pogoji so tako potrebni
kot zadostni, z izjemo rezultatov za sode cikle in luknje, v teh primerih namreč ne vemo, ali
so H-prosti grafi F-aditivni za H ⊆i P3 + P2 + sP1. V vseh ostalih primerih so podani pogoji
v tabeli 9.1 tako potrebni kot zadostni za F-multiplikativnost (F-omejenost), F-aditivnost in
F-ničelno aditivnost, v tem vrstnem redu, v razredu povezanih H-prostih grafov.
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Luknja je cikel dolžine vsaj štiri; dolga luknja je cikel dolžine vsaj pet. (Dolga) antiluknja
je komplement (dolge) luknje. Disjunktno unijo dveh kopij grafa G označimo z 2G.

Lastnost Pogoj za Pogoj za Pogoj za
F grafa G− S F-multiplikativnost F-aditivnost F-ničelna adi-

tivnost
(za F-omejenost)

cikli gozd H je linearen H ⊆i P5 + sP1 ali H ⊆i P3 [6]
gozd [6] H ⊆i sP3 [6]

lihi cikli dvodelen graf H je linearen gozd H ⊆i P5 + sP1 ali H ⊆i P3

H ⊆i sP3

sodi cikli graf brez H je linearen gozd H ⊆i P4 + sP1 H ⊆i P3

(ekviv.: sode luknje) sodih lukenj

liknje tetiven H je linearen gozd H ⊆i P4 + sP1 H ⊆i P3

lihe luknje graf brez H je linearen gozd H ⊆i P4 + sP1 H ⊆i P4

lihih lukenj

lihe luknje in popoln graf H je linearen gozd H ⊆i P4 + sP1 H ⊆i P4

lihe antiluknje

dolge luknje graf brez H je linearen gozd H ⊆i P4 + sP1 H ⊆i P4

dolgih lukenj

dolge luknje in šibko tetiven H je linearen gozd H ⊆i P4 + sP1 H ⊆i P4

dolge antiluknje graf

cikli in P2 graf brez ni omejitev [11] H ⊆i P5 + sP1 ali H ⊆i P3

(ekviv.: {P2}) povezav H ⊆i sP3

luknje in 2P2 razcepljen graf ni omejitev H ⊆i P4 + sP1 ali H ⊆i P3

(ekviv.: {C4, C5, 2P2}) H ⊆i P3 + sP2

luknje in 2P2, P4 pragoven graf ni omejitev H ⊆i P4 + sP1 H ⊆i P3

(ekviv.: {C4, 2P2, P4})
luknje in P4 trivialno popoln ni omejitev H ⊆i P4 + sP1 H ⊆i P3

(ekviv.: {C4, P4}) graf

dolge luknje in 2P2 (C5, 2P2)-prost ni omejitev H ⊆i P4 + sP1 H ⊆i P3

(ekviv.: {C5, 2P2}) graf H ⊆i P2 + P1

dolge luknje in 2P2, P4 ko-trivialno ni omejitev H ⊆i P4 + sP1 H ⊆i P3 ali
(ekviv.: {2P2, P4}) popoln graf H ⊆i P2 + P1

dolge luknje in P4 kograf ni omejitev H ⊆i P4 + sP1 H ⊆i P4

(ekviv.: {P4})

Tabela 9.1: V tabeli so povzeti pogoji na graf H, glede na katere je cena povezanosti
F-transverzal v razredu H-prostih grafov multiplikativna, aditivna oz. ničelno aditivna, za
različne družine grafov F .
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4.1.1 Grafi mrežnih sprehodov . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 1-popolno usmerljivi kografi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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kartezični, 12

krepki, 14

leksikografski, 13

netrivialen, 12

psevdodrevo, 49

psevdogozd, 49

razdalja v grafu, 5

simplicialna točka, 8
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