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Ciklična Hamiltonska dekompozicija popolnih k -uniformnih hipergrafov . . . . . . 65
Avtomorfizmi in strukturne lastnosti dvojno posplošenih Petersenovih grafov . . . 65
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Abstract
Some Classes of (Hyper)graphs via Algebraic Properties

This thesis contains a number of di↵erent topics from graph theory with special emphasis
given to algebraic graph theory, gives solutions for some open problems like decomposition of
complete hypergraphs into Hamilton cycles and extend results from graph theory to signed
graph theory. More precisely, the following open problems are considered in this thesis:

(i) Which hypergraphs can be decomposed into Hamiltonian cycles?

(ii) Determine the full automorphism groups of double generalized Petersen graphs.

(iii) Can sign lollipop graphs be characterized by their Laplacian eigenvalues?

(iv) Is it possible to characterize all sign graphs with small second Laplacian eigenvalue?

Problem (i) is solved for a special decomposition, called cyclic Hamiltonian decomposi-
tion. Necessary and su�cient conditions are given for such a decomposition. Problem (ii)
is completely solved. It is proven that question (iii) has a positive answer. Problem (iv) is
solved for graphs of order greater than 7. All signed graphs whose second largest Laplacian
eigenvalue does not exceed 3 are characterized and identified. In particular, it is shown that
almost all signed friendship graphs are determined by the spectrum of the Laplacian matrix.

Math. Subj. Class (2010): 05C22, 05C45, 05C50, 05C51, 05C65.

Key words: hypergraph, hamiltonian cycle, decomposition, double generalized Petersen
graph, automorphism group, vertex-transitive, sign graph, L-eigenvalue, lollipop graph.
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Izvleček
Določeni razredi (hiper)grafov in njihove algebraične lastnosti

Disertacija povezuje različna področja teorije grafov, s posebnim poudarkom na alge-
braični teoriji grafov, predstavi rešitve določenih odprtih problemov, kot so dekompozi-
cija polnih hipergrafov na hamiltonske cikle, in razširi rezultate teorije grafov na teorijo
predznačnih grafov. V disertaciji se še posebej posvetimo sledečim odprtim problemom:

(i) Kateri hipergrafi premorejo dekompozicijo na hamiltonske cikle?

(ii) Kako najti celotno grupo avtomorfizmov dvojno posplošenega Petersenovega grafa?

(iii) Kaj lahko karakteriziramo predznačne lizika grafe glede na njihove L lastne vrednosti?

(iv) Je mogoče karakterizirati vse predznačne grafe z majhno drugo L lastno vrednostjo?

Problem (i) je rešen s posebno dekompozicijo, imenovano ciklična hamiltonska dekom-
pozicija. Podani so potrebi in zadostni pogoji za takšno dekompozicijo. Problem (ii) je
popolnoma rešen. Dokazano je, da ima vprašanje (iii) pozitiven odgovor. Problem (iv) je
rešen za grafe z redom večjim od 7. Vsi grafi, katerih druga največja Laplaceova lastna
vrednost ne presega 3, so karakterizirani in identificirani. Pokazano je, da so skoraj vsi
predznačni prijateljski grafi določeni s spektrom pripadajoče Laplaceove matrike.

Math. Subj. Class (2010): 05C22, 05C45, 05C50, 05C51, 05C65.

Ključne besede: hipergraf, hamiltonski cikli, dekompozicija, dvojno posplošeni Petersenov
graf, grupa avtomorfizmov, točkovna tranzitivnost, predznačni graf, L lastne vrednosti, lizika
graf.
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Chapter 1

Introduction

The PhD Thesis deals with graph theory from the algebraic point of view. Two aspects of
algebraic graph theory are considered: group theoretic aspect and spectral one. First, it uses
the group theory in Hamiltonian decomposition problem and determines full automorphism
groups of the so-called double generalized Petersen graphs. Next we study some spectral
properties of lollipop graphs and characterize and identify all signed graphs whose second
largest Laplacian eigenvalue does not exceed 3.

In 1884 Walecki proved that for odd integers n the complete graphs Kn admit a Hamil-
tonian decomposition whereas for even integers n the complete graphs Kn admit a decom-
position into a perfect matching and Hamiltonian cycles (see [15]). For k = 3 Bermond
[11] has shown a Hamiltonian decomposition of a complete 3-uniform hypergraph K3

n for
n ⌘ 2 (mod 3) and n ⌘ 4 (mod 6). Verrall [46] later completed the solution for the case
n ⌘ 1 (mod 6), and has proved that for n ⌘ 0 (mod 3) K3

n � I has a Hamiltonian decom-
position, where I is a perfect matching. Kühn and Osthus [38] showed the existence of
Berge-type Hamiltonian decompositions for arbitrary n and k. A similar problem was con-
sidered for complete graphs by Buratti and Del Fra in [16]. In Chapter 3 we will show
su�cient and necessary conditions for the existence of a cyclic Hamiltonian decomposition
of Kk

n for arbitrary k and n.
The generalized Petersen graphs GP(n, k), first introduced by Coxeter in [18], are a

natural generalization of the well-known Petersen graph. Next step in generalizations of
the generalized Petersen graphs are the double generalized Petersen graphs DP(n, t), first
introduced in [57] as examples of vertex-transitive non-Cayley graphs. Chapter 4 aims at
obtaining information about how structural properties of double generalized Petersen graphs
are linked with the structural properties of generalized Petersen graphs [4, 17]. Hamiltonicity
properties, vertex-coloring and edge-coloring of double generalized Petersen graphs will be
also considered. In particular, we will show that any DP(2n, t) has a Hamilton cycle whereas
for DP(2n+1, t) the existence of a Hamilton cycle will be shown only for t being a generator
of Z2n+1. Since any DP(2n, t) is bipartite, two colors su�ces for proper vertex-coloring
whereas for DP(2n + 1, t) three colors are needed. Finally, we will show that there are no
snarks amongst double generalized Petersen graphs.

In Chapter 5 we consider the spectral characterization problem extended to the adjacency
matrix and the Laplacian matrix of signed graphs. We study the spectral determination
of signed lollipop graphs, and we show that any signed lollipop graphs is determined by
the spectrum of its Laplacian matrix. The second problem from spectral graph theory
considered in Chapter 6 is the Laplacian theory of signed graphs, and we focus our attention
to the signed graphs whose second largest Laplacian eigenvalue is fairly small. Similar
investigations have been considered in the literature, sometimes motivated from applications
[35], and several researchers have investigated the structure of (unsigned) graphs with small
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2

second largest eigenvalue of some prescribed graph matrix [25, 30, 40, 44]. Recently [9], the
authors have put more light on the observation that the spectral theory of signed graphs is
a natural generalization of the spectral theory of simple graphs, especially when considering
the Laplacian theory of signed graphs. The Laplacian theory of signed graphs generalizes
both the spectral theory of Laplacian and signless Laplacian of graphs, and it can give
some explanation to phenomena which seem to have an unpredictable behavior, e.g., in [9]
the extremal graphs with respect to the magnitude of Laplacian polynomial coe�cients.
On the other hand, the graphs with small second largest eigenvalue of the Laplacian and
signless Laplacian eigenvalues not exceeding 3 have been studied for both Laplacian and
signless Laplacian graphs [3, 39, 48], so it is a natural question to revise such results in
the wider setting of the Laplacian of signed graphs. It is worth mentioning that, among
others, we obtain the (signed) friendship graphs, where the triangles can now be balanced
or unbalanced. Finally, we will consider the spectral determination problem in setting of
signed graphs (see also [7]). This is usually more complicated for the signed case than it is
for the unsigned case. In fact, the Laplacian spectrum of signed graphs cannot distinguish
connected signed graphs from disconnected ones. In this PhD Thesis we will characterize
and identify all signed graphs whose second largest Laplacian eigenvalue does not exceed 3
and study the spectral determination problem for the signed firefly graphs. In particular,
we will show that almost all signed friendship graphs are determined by the spectrum of the
Laplacian matrix.

The results of this PhD Thesis are published in the following articles:

• F. Belardo, P. Petecki, Spectral characterizations of signed lollipop graphs, Linear
Algebra Appl. 480 (2015) 144–167.

• F. Belardo, P. Petecki, J.F. Wang, On signed graphs whose second largest L-eigenvalue
does not exceed 3, accepted in Linear and Multilinear Algebra.

• K. Kutnar, P. Petecki, On automorphisms and structural properties of double gener-
alized Petersen graphs, submitted.

• P. Petecki, On cyclic Hamiltonian decompositions of complete k-uniform hypergraphs,
Discrete Math. 325 (2014) 74–76.



Chapter 2

Notations, Definitions and
Preliminary Results

Throughout this thesis we are using notion, concepts, definitions, theorems from
a wide vary of theories, such as linear algebra, group theory, permutation group theory,
combinatorics and group theory (see [26], [42], [45]).

2.1 Graphs

A graph G = (V,E) is a pair of two sets, the set of vertices V (G) and the set of edges
E(G) ⇢

�
V (G)

2

�
. On a drawing vertices are represented by dots and edges by lines connecting

dots (see Figure 2.1).

Figure 2.1: An example of a graph.

A vertex v is called incident with an edge e when v 2 e. Two vertices incident with the
same edge e are said to be adjacent. Two edges are adjacent if they are incident with the same
vertex. For a vertex v we defineN(v) as the set of the neighbors of v, that is, set of all vertices
adjacent to v. The degree d(v) of a vertex v is number of edges incident to it. By �(G) we will
denote maximal vertex degree in G. If each vertex of a graph has the same degree d then we
call such a graph a d-regular graph. If a graph G is 3-regular we call it cubic (see Figure 2.2).
For a graph G the bijection � : V (G) ! V (G) such that xy 2 E(G) , �(x)�(y) 2 E(G) is
called an automorphism of G. The set of all automorphisms of G together with composition
of mappings forms a group called the automorphism group Aut(G) of G. A graph G is said to
be vertex-transitive and edge-transitive if its automorphism group Aut(G) acts transitively
on V (G) and E(G), respectively. A path in a graph is a sequence of distinct vertices, where
consecutive vertices are adjacent in G. A cycle in a graph is a closed path, that is, a path
in which the first and the last vertex are adjacent in G. A Hamilton cycle in a graph is a

3



4 2.2 Hypergraphs

Figure 2.2: The smallest cubic graph.

cycle containing all the vertices of the graph. A subgraph G0 of graph G is a graph with
V (G0) ⇢ V (G) and E(G0) ⇢ E(G). Proper coloring of the vertices (edges) of a graph is a
labeling of the vertices of the graph (edges) with colors in such way that any two adjacent
vertices (edges) have di↵erent colors. As through this thesis no other types of coloring are
considered for short we will write coloring instead of proper coloring.

2.2 Hypergraphs

A hypergraph H = (V,E) is a pair of two sets, set of vertices V = V (H) and set of
hyperedges E = E(H) = {e0, e1, . . . , em}, where ei ✓ V . If |ei| = k, for all i 2 {0, 1, . . . ,m},
then H is said to be a k-uniform hypergraph. The complete k-uniform hypergraph on n
vertices V = V (H) = Zn = {0, 1, . . . , n � 1} has all k-subsets of {0, 1, . . . , n � 1} as edges;
we denote this hypergraph by Kk

n.
There exist several di↵erent notions of Hamilton cycles in hypergraphs, each of which is

a valid generalization of the standard notion for ordinary graphs. However, this thesis con-
siders Berge’s [10] notion which we recall next. A Hamilton cycle in a k-uniform hypergraph
H is a sequence

(x0, e0, x1, e1, . . . , xn�1, en�1, x0)

where x0, x1, . . . , xn�1 is a list of vertices of H, and e0, e1, . . . , en�1 are hyperedges of H
such that

(i) xi, xi+1 2 ei, 0  i  n� 1, where indices of the vertices are considered modulo n,

(ii) ei 6= ej for i 6= j.

Example 2.2.1 Observe that in K3
5 the sequence

(0, {0, 1, 2}, 1, {1, 2, 3}, 2, {2, 3, 4}, 3, {3, 4, 0}, 4, {4, 0, 1}, 0)

is a Hamilton cycle.

A hypergraph H = (V,E) is said to be decomposable into Hamilton cycles if there exists a
family of Hamilton cycles C = {C1, C2, . . . , Ch} such that

(i) E(Ci) \ E(Cj) = ; for i 6= j

(ii)
h[

i=1

E(Ci) = E(H).

Example 2.2.2 For K3
5 the cycles

C1 = (0, {0, 1, 2}, 1, {1, 2, 3}, 2, {2, 3, 4}, 3, {3, 4, 0}, 4, {4, 0, 1}, 0)

and
C2 = (0, {0, 2, 3}, 2, {2, 4, 0}, 4, {4, 1, 2}, 1, {1, 3, 4}, 3, {3, 0, 1}, 0)

give its Hamiltonian decomposition.
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2.3 Signed graphs

Let G = (V (G), E(G)) be a graph of order n = |V (G)| and size m = |E(G)|, and let
� : E(G) ! {+,�} be a mapping defined on the edge set of G. Then � = (G,�) is a signed
graph (sometimes called also sigraph). The graph G is its underlying graph, while � its sign
function (or signature). It is common to interpret the signs as the integers {1,�1}. An edge
e is positive (negative) if �(e) = 1 (respectively �(e) = �1). If �(e) = 1 (resp. �(e) = �1)
for all edges in E(G) then we write (G,+) (respectively (G,�)). A cycle of � is said to be
balanced, or positive, if it contains an even number of negative edges, otherwise the cycle is
unbalanced, or negative. A signed graph is said to be balanced if all its cycles are balanced;
otherwise, it is unbalanced. By �(�) we denote the product of signs of all cycles in �. Most
of the concepts defined for graphs are directly extended to signed graphs. For example, the
degree of a vertex v in G (denoted by deg(v)) is also its degree in �. So �(G), the maximum
(vertex) degree in G, also stands for �(�), interchangeably.

If some subgraph of the underlying graph is observed, then the sign function for the
subgraph is the restriction of the previous one. Thus, if v 2 V (G), then � � v denotes the
signed subgraph having G� v as the underlying graph, while its signature is the restriction
from E(G) to E(G � v) (note, all edges incident to v are deleted). Similar considerations
hold for the disjoint union of signed graphs. If U ⇢ V (G) then �[U ] denotes the signed
induced subgraph of U , while � � U = �[V (G) \ U ]. For � = (G,�) and U ⇢ V (G),
let �U be the signed graph obtained from � by reversing the signature of the edges in
the cut [U, V (G) \ U ], namely ��U (e) = ���(e) for any edge e between U and V (G) \ U ,
and ��U (e) = ��(e) otherwise. The signed graph �U is said to be (signature) switching
equivalent to �. In fact, switching equivalent signed graphs can be considered as (switching)
isomorphic graphs and their signatures are said to be equivalent. Observe that switching
equivalent graphs have the same set of positive cycles (see Figure 2.3).

t

t
t t

t

t

t

t
t t

t

t

�
��
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��

@
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��
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@@
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qqq
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qqq

qqqq
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Figure 2.3: A pair of switching equivalent sign graphs.

In the literature, simple graphs are studied by means of the eigenvalues of several ma-
trices associated to graphs. The adjacency matrix A(G) = (aij), where aij = 1 when-
ever vertices i and j are adjacent and aij = 0 otherwise, is one of the most studied to-
gether with the Laplacian, or Kirchho↵, matrix L(G) = D(G) � A(G), where D(G) =
diag(deg(v1), deg(v2), . . . , deg(vn)) is the diagonal matrix of vertex degrees. In the last
years another graph matrix has attracted the attention of many researchers, the so-called
signless Laplacian matrix defined as Q(G) = A(G) +D(G). Matrices can be associated to
signed graphs, as well. The adjacency matrix A(�) = (a�ij) with a�ij = �(ij)aij is called the
(signed) adjacency matrix and L(�) = D(G)�A(�) is the corresponding Laplacian matrix.
Both the adjacency and Laplacian matrices are real symmetric matrices, so the eigenvalues
are real.

In this thesis we shall consider both the characteristic polynomial of the adjacency matrix



6 2.3 Signed graphs

and of the Laplacian matrix of a signed graph �. Hence to avoid confusion we denote by

�(�, x) = xn + a1x
n�1 + · · ·+ an�1x+ an,

the adjacency characteristic polynomial (or A-polynomial) whose roots, namely the adja-
cency eigenvalues (A-eigenvalues), are denoted by �1(�) � �2(�) � · · · � �n(�). Similarly,
for the Laplacian matrix, we denote by

 (�, x) = xn + b1x
n�1 + · · ·+ bn�1x+ bn,

the Laplacian polynomial (or L-polynomial), and µ1(�) � µ2(�) � · · · � µn(�) � 0 are
the Laplacian eigenvalues (L-eigenvalues). Su�x and variables will be omitted if it is clear
from the context (so �(�, x) = �(�)). A connected signed graph is balanced if and only if
µn = 0 (see [51]). If � is disconnected, then its polynomial is the product of the components
polynomials.

Finally, it is important to observe that switching equivalent signed graphs will have
similar adjacency and Laplacian matrices. In fact, any switching on U can be interpreted
as a diagonal matrix SU = diag(si) having si = 1 for any i 2 U and si = �1 otherwise.
SU is usually called the state matrix. Hence, A(�) = SUA(�U )SU and L(�) = SUL(�U )SU .
Similar e↵ect features with eigenvectors. When we consider a signed graph �, from a spectral
viewpoint, we are considering its switching isomorphism class [�].



Chapter 3

Cyclic Hamiltonian
Decompositions of Complete
k-uniform Hypergraphs

Results of this chapter are published in [43].

3.1 Cyclic Hamiltonian decompositions of Kk
n

Let k and n be positive integers, and let H be a complete k-uniform hypergraph on
n vertices Kk

n. Since all k-subsets of {0, 1, . . . , n � 1} are edges of H one can easily see
that the automorphism group of H is the full symmetric group Sym(n), and thus o1 =
(0 1 2 . . . n� 1) 2 Aut(H). In particular, the group (of rotations) O = ho1i generated by o1
acts on the set of k-edges of H by the rule

oi(e) := oi1(e) = oi({v0, v1, . . . , vk�1}) = {v0 + i, v1 + i, . . . , vk�1 + i},

where the sums are considered modulo n. A Hamiltonian decomposition C of H is called
cyclic if for every Hamilton cycle C 2 C there exists a k-edge e of H, and a rotation oi 2 G
such that

C = (v0, e, v1, oi(e), v2, o
2
i (e), . . . , vn�1, o

n�1
i (e), v0).

Example 3.1.1 For K3
5 the cycles

C1 = (0, {0, 1, 2}, 1, {1, 2, 3}, 2, {2, 3, 4}, 3, {3, 4, 0}, 4, {4, 0, 1}, 0)

and
C2 = (0, {0, 2, 3}, 2, {2, 4, 0}, 4, {4, 1, 2}, 1, {1, 3, 4}, 3, {3, 0, 1}, 0)

give its cyclic Hamiltonian decomposition.

We can now state the main theorem of this chapter, which gives a necessary and su�cient
conditions for the existence of a cyclic Hamiltonian decomposition of Kk

n for arbitrary k and
n.

Theorem 3.1.1 Let k and n be positive integers, and let � be the smallest non-trivial divisor
of n. Then the k-uniform hypergraph Kk

n admits a cyclic Hamiltonian decomposition if and
only if n is relatively prime to k and �k > n.

7



8 3.2 Su�cient condition

The theorem is proved in the following section. We first prove that for any k-edge e of
H its orbit Orb(e) = {oi(e) : i = 0, 1, . . . , n � 1} with respect to the action of O contains
exactly n-elements, and then we prove that for every k-edge e the elements of Orb(e) form
a Hamilton cycle.

Definition 3.1.2 The orbit of an element x under action of the group G is the set

OrbG(x) = {g(x) | g 2 G}

If the group is clear from the context we will write Orb(x) instead of OrbG(x).

3.2 Su�cient condition

The proof of Theorem 3.1.1 follows from the following two lemmas. In the proof of the
first lemma we use orbit counting lemma which says that the number of orbits N of a finite
group G acting on a set X is given by the following formula

N =
1

|G|
X

g2G

|Fix g|, (3.1)

where Fix g = {x 2 X : g(x) = x} is the set of points fixed by g 2 G.

Lemma 3.2.1 Let k and n be positive integers such that k is relative prime to n and �k > n,
where � is the smallest non-trivial divisor of n. Then the k-uniform hypergraph Kk

n admits
a cyclic Hamiltonian decomposition.

Proof. Let H = Kk
n, X = E(H), o1 = (0 1 2 . . . n � 1) 2 Aut(H), and O = ho1i. Let

i be the smallest positive integer such that Fix oi 6= ; and let e 2 Fix oi. Suppose that
e = {v0, v1, . . . , vk�1}. Then, without loss of generality, we may assume that 0  v0 < v1 <
. . . < vk�1  n� 1. Since e 2 Fix oi there exists j such that

v0 + i = vj
v1 + i = vj+1

. . .
vk�1 + i = vj+k�1.

It follows that Pk�1
l=0 vl + i · k =

Pk�1
l=0 vl,

and consequently i · k ⌘ 0 (mod n). Since, by assumption n and k are relatively prime, we
have i = 0, implying that Fix g 6= ; only when g = Id. Therefore, by (3.1), we can conclude
that

N =
1

|G|

✓✓
n

k

◆
+ 0 · (n� 1)

◆
, implying that n ·N =

✓
n

k

◆
. (3.2)

Since O = {oi1 : i = 0, 1, . . . , n�1} is of order n, by the Orbit-Stabilizer theorem, every orbit
Orb(e) with respect to the action of O on the set of k-edges X contains at most n elements.
Hence (3.2) implies that any orbit Orb(e) is of length n.

To complete the proof we need to indicate an ordering of the k-edges in Orb(e) forming
a Hamilton cycle. Let e = {v0, v1, . . . , vk�1}, 0  v0 < v1 < . . . < vk�1  n � 1, and
let d = min{vi � vi�1 (mod n) : i = 0, 1, . . . , k � 1} (where v�1 = vk�1). Then clearly
d < n

k < �, and hence d is relatively prime to n. Let i0 be such an index that vi0 �vi0�1 = d
(mod n). Observe that vi0 2 e \ od(e), and thus

(vi0�1, e, vi0 , od(e), od(vi0), o
2
d(e), o

2
d(vi0), . . . , o

n�1
d (e), on�1

d (vi0))

is a Hamilton cycle, as required (on�1
d (vi0) = vi0�1).
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3.3 Necessary condition

Lemma 3.3.1 Let k and n be positive integers such that the k-uniform hypergraph Kk
n

admits a cyclic Hamiltonian decomposition. Then k is relative prime to n and �k > n,
where � is the smallest non-trivial divisor of n.

Proof. Assume that there is a cyclic Hamiltonian decomposition C = {C1, C2, . . . , CN}
of Kk

n. We will show that if n is not relatively prime to k then the number of orbits of
O = ho1i = {oi1 : i = 0, 1, . . . , n� 1} in its action on the set of k-edges of Kk

n exceeds N .
Suppose that ↵ = gcd(n, k) > 1, and write

e = {0, 1, . . . , k
↵ � 1,

n
↵ ,

n
↵ + 1, . . . , n

↵ + k
↵ � 1,

...
...

...
n
↵ (↵� 1), n

↵ (↵� 1) + 1, . . . , n
↵ (↵� 1) + k

↵ � 1}.

Then one can easily see that e 2 Fix on
↵
, and thus, by (3.1), the number of orbits of the

group O with respect to the action on the set of k-edges of Kk
n is equal to

N =
1

|O|

n�1X

i=0

|Fix oi| =
1

|O|

 ✓
n

k

◆
+

n�1X

i=1

|Fix oi|
!

>
1

|O|

✓
n

k

◆
=

�
n
k

�

n
. (3.3)

But on the other hand, since each orbit is supposed to be a Hamilton cycle, we have nN =�
n
k

�
, contradicting (3.3). This shows that gcd(n, k) = 1.
Since by assumption Kk

n admits its cyclic Hamiltonian decomposition C, each k-edge of
Kk

n lies on some Hamilton cycle from C. Suppose that �k  n, where � is the smallest non-
trivial divisor of n, and consider the k-edge {0,�, 2�, 3�, . . . , (k � 1)�}. Since the di↵erence
of any two vertices from this edge is divisible by �, there is no pair of vertices on this edge
at distance d relatively prime to n, implying that this edge does not lie on a Hamilton cycle
from C, a contradiction.
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Chapter 4

On automorphisms and
structural properties of double
generalized Petersen graphs

Results of this chapter are published in [37].

4.1 Definition of DP(n, t)

The generalized Petersen graphs GP(n, k), first introduced by Coxeter in [18], are a
natural generalization of the well-known Petersen graph (see Figure 4.1).

Definition 4.1.1 Given an integer n � 3 and k 2 Zn \ {0}, 2  2k < n, the generalized
Petersen graph GP(n, k) is defined to have vertex set {ui, vi| i 2 Zn} and edge set the union
⌦ [ ⌃ [ I, where

⌦ = {{ui, ui+1}, | i 2 Zn} (the outer edges),

⌃ = {{ui, vi}, | i 2 Zn} (the spokes), and

I = {{vi, vi+k}, | i 2 Zn} (the inner edges).

Figure 4.1: The generalized Petersen graph GP(5, 2) (the Petersen graph).

A natural generalization of the generalized Petersen graphs are the double generalized
Petersen graphs DP(n, t), first introduced in [57] as examples of vertex-transitive non-Cayley
graphs. They are defined as follows (two examples are given in Figure 4.2).

11
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Definition 4.1.2 Given an integer n � 3 and t 2 Zn \ {0}, 2  2t < n, the double
generalized Petersen graph DP(n, t) is defined to have vertex set {xi, yi, ui, vi| i 2 Zn} and
edge set the union ⌦ [ ⌃ [ I, where

⌦ = {{xi, xi+1}, {yi, yi+1} | i 2 Zn} (the outer edges),

⌃ = {{xi, ui}, {yi, vi} | i 2 Zn} (the spokes), and

I = {{ui, vi+t}, {vi, ui+t} | i 2 Zn} (the inner edges).

Figure 4.2: The double generalized Petersen graph DP(5, 2), which is isomorphic to the generalized Pe-
tersen graph GP(10, 2) (the dodecahedron), on the left hand-side picture, and the double generalized Petersen
graph DP(8, 3) on the right hand-side picture.

The motivation for the research in this chapter, resulting in a complete character-
ized of automorphism groups of double generalized Petersen graphs (see Propositions 4.2.5
and 4.2.6, , Remark 4.2.11 and Corollary 4.2.12), comes from questions post in [57]. The
characterization is obtained with a generalization of the method that was used in [28] to
obtain a characterization of automorphisms of generalized Petersen graphs.

Aiming at obtaining the information how structural properties of double generalized
Petersen graphs are linked with the structural properties of generalized Petersen graphs [4,
17] hamiltonicity properties, vertex-coloring and edge-coloring of double generalized Petersen
graphs are also considered. In particular, it is shown that any DP(2n, t) has a Hamilton
cycles (see Lemma 4.3.1) while for DP(2n+1, t) the existence of a Hamilton cycles is proven
only for t being a generator of Z2n+1 (see Proposition 4.3.2). Any DP(2n, t) is bipartite,
thus two colors su�ces for proper vertex-coloring while for DP(2n + 1, t) three colors are
needed (see Lemmas 4.4.1 and 4.4.2). Finally, it is shown that there are no snarks amongst
double generalized Petersen graphs (see Lemma 4.4.3).

4.2 Automorphisms of DP(n, t)

In this section, with a generalization of the methods used in [28] to characterize
automorphisms of generalized Petersen graphs, we give a complete characterization of au-
tomorphism groups of double generalized Petersen graphs, implying the characterization of
vertex-transitive double generalized Petersen graphs and a complete classification of edge-
transitive double generalized Petersen graphs. Throughout this section let the automorphism
group of the double generalized Petersen graph DP(n, t) be denoted by A(n, t), and let its
subgroup preserving ⌃ set-wise be denoted by B(n, t). Define permutations ↵, � and � on
V (DP(n, t)) by

↵ : xi 7! xi+1, yi 7! yi+1, ui 7! ui+1, vi 7! vi+1 (rotation);
� : xi 7! yi, yi 7! xi, ui 7! vi, vi 7! ui (flip symmetry);
� : xi 7! x�i, yi 7! y�i, ui 7! u�i, vi 7! v�i (reflection);
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and mappings �, ⌘, ,� : V (DP(n, t)) ! V (DP(n, t)) by

� : x2i 7! u2it, x2i+1 7! v(2i+1)t, y2i 7! v2it, y2i+1 7! u(2i+1)t,
u2i 7! x2it, u2i+1 7! y(2i+1)t, v2i 7! y2it, v2i+1 7! x(2i+1)t;

⌘ : x2i 7! x2i+k, x2i+1 7! x2i+1+k, y2i 7! y2i, y2i+1 7! y2i+1,
u2i 7! u2i+k, u2i+1 7! u2i+1+k, v2i 7! v2i, v2i+1 7! v2i+1,where n = 2k;

 : x2i 7! u2it, x2i+1 7! v(2i+1)t, y2i 7! u2it+k, y2i+1 7! v(2i+1)t+k,
u2i 7! x2it, u2i+1 7! y(2i+1)t, v2i 7! x2it+k, v2i+1 7! y(2i+1)t+k,where n = 2k;

� : x2i 7! u2it, x2i+1 7! v(2i+1)t, y2i 7! v2it+k, y2i+1 7! u(2i+1)t+k,
u2i 7! x2it, u2i+1 7! y(2i+1)t, v2i 7! y2it+k, v2i+1 7! x(2i+1)t+k,where n = 2k.

Observe that the mappings �, ⌘, � and  are not always permutations of V (DP(n, t)).
However they are permutations of V (DP(n, t)) as well as automorphisms of DP (n, t) under
certain conditions on (n, t), see Proposition 4.2.5 and the following equalities:

• If n ⌘ 0 (mod 2) and t2 ⌘ ±1 (mod n) (note that t is odd), then

�({x2i, u2i}) = {u2it, x2it},
�({x2i+1, u2i+1}) = {y(2i+1)t, v(2i+1)t},
�({y2i, v2i}) = {v2it, y2it},
�({y2i+1, v2i+1}) = {u(2i+1)t, x(2i+1)t},
�({x2i, x2i+1}) = {u2it, v2it+t},
�({x2i+1, x2i+2}) = {v2it+t, u2it+2t},
�({y2i, y2i+1}) = {v2it, u2it+t},
�({y2i+1, y2i+2}) = {u2it+t, v2it+2t},
�({u2i, v2i+t}) = {x2it, x(2i+t)t} = {x2it, x2it+t2} = {x2it, x2it±1},
�({v2i, u2i+t}) = {y2it, y(2i+t)t} = {y2it, y2it+t2} = {y2it, y2it±1},
�({u2i+1, v2i+1+t}) = {y2it+t, y(2i+t+1)t} = {y2it+t, y2it+t+t2} = {y2it+t, y2it+t±1},
�({v2i+1, u2i+1+t}) = {x2it+t, x(2i+t+1)t} = {x2it+t, x2it+t+t2} = {x2it+t, x2it+t±1}.

• If n ⌘ 0 (mod 2) and 4t = n, then

⌘({x2i, u2i}) = {x2i+2t, u2i+2t},
⌘({x2i+1, u2i+1}) = {x2i+1+2t, u2i+1+2t},
⌘({y2i, v2i}) = {y2i, v2i},
⌘({y2i+1, v2i+1}) = {y2i+1, v2i+1},
⌘({x2i, x2i+1}) = {x2i+2t, x2i+2t},
⌘({x2i+1, x2i+2}) = {x2i+1+2t, x2i+2+2t},
⌘({y2i, y2i+1}) = {y2i, y2i+1},
⌘({y2i+1, y2i+2}) = {y2i+1+2t, y2i+2+2t},
⌘({u2i, v2i+t}) = {u2i+2t, x2i+t},
⌘({v2i, u2i+t}) = {v2i, u2i+t+2t} = {v2i, u2i+3t},
⌘({u2i+1, v2i+1+t}) = {u2i+1+2t, v2i+1+t},
⌘({v2i+1, u2i+1+t}) = {v2i+1, u2i+t+2t} = {v2i+1, u2i+3t}.
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• If n ⌘ 2 (mod 4) and t2 = k ± 1 (mod n) where 2k = n (k is odd and t is even), then

 ({x2i, u2i}) = {u2it, x2it},
 ({x2i+1, u2i+1}) = {v(2i+1)t, y(2i+1)t},
 ({y2i, v2i}) = {u2it+k, x2it+k},
 ({y2i+1, v2i+1}) = {v(2i+1)t+k, y(2i+1)t+k},
 ({x2i, x2i+1}) = {u2it, v2it+t},
 ({x2i+1, x2i+2}) = {v2it+t, u2it+2t},
 ({y2i, y2i+1}) = {u2it+k, v2it+k+t},
 ({y2i+1, y2i+2}) = {v2it+t+k, u2it+2t+k},
 ({u2i, v2i+t}) = {x2it, x(2i+t)t+k} = {x2it, x2it+t2+k} = {x2it, x2it+k+k±1} = {x2it, x2it±1},
 ({v2i, u2i+t}) = {x2it+k, x(2i+t)t} = {x2it+k, x2it+t2} = {x2it+k, x2it+k±1},
 ({u2i+1, v2i+1+t}) = {y2it+t, y(2i+t+1)t+k} = {y2it+t, y2it+t+t2+k} = {y2it+t, y2it+t±1},
 ({v2i+1, u2i+1+t}) = {y2it+t+k, y(2i+t+1)t} = {y2it+t+k, y2it+t+t2} = {y2it+t+k, y2it+t+k±1}.

• If n ⌘ 0 (mod 4) and t2 = k ± 1 (mod n) where 2k = n (note that in this case k is
even and t is odd), then

�({x2i, u2i}) = {u2it, x2it},
�({x2i+1, u2i+1}) = {v(2i+1)t, y(2i+1)t},
�({y2i, v2i}) = {v2it+k, y2it+k},
�({y2i+1, v2i+1}) = {u(2i+1)t+k, x(2i+1)t+k},
�({x2i, x2i+1}) = {u2it, v2it+t},
�({x2i+1, x2i+2}) = {v2it+t, u2it+2t},
�({y2i, y2i+1}) = {v2it+k, u2it+k+t},
�({y2i+1, y2i+2}) = {u2it+t+k, v2it+2t+k},
�({u2i, v2i+t}) = {x2it, x(2i+t)t+k} = {x2it, x2it+t2+k} = {x2it, x2it+k+k±1} = {x2it, x2it±1},
�({v2i, u2i+t}) = {x2it+k, x(2i+t)t} = {x2it+k, x2it+t2} = {x2it+k, x2it+k±1},
�({u2i+1, v2i+1+t}) = {y2it+t, y(2i+t+1)t+k} = {y2it+t, y2it+t+t2+k} = {y2it+t, y2it+t±1},
�({v2i+1, u2i+1+t}) = {y2it+t+k, y(2i+t+1)t} = {y2it+t+k, y2it+t+t2} = {y2it+t+k, y2it+t+k±1}.

Following simple computation we can easily see that the following proposition is straight-
forward.

Proposition 4.2.1 For all n, t, for which DP(n, t) exists, we have �↵ = ↵�, ↵n�1� = �↵,
�� = ��, |h↵,�, �i| = 4n and h↵,�, �i  B(n, t).

Lemma 4.2.2 If ⇡ 2 A(n, t) fixes set-wise any of the sets ⌦, ⌃ or I then it either fixes all
three of these sets or fixes ⌃ set-wise and interchanges ⌦ and I.

Proof. Since each spoke is incident with two outer edges on one side and two inner edges
on the other, it follows that if any outer (inner) edge is mapped onto a spoke, the pair of
outer (inner) edges incident to it must be mapped onto one outer and one inner edge. Thus if
an automorphism does not preserve the spokes, it cannot preserve any of the sets ⌦, ⌃ or I.

In the next proposition the following characterization of vertex-transitive double gener-
alized Petersen graphs given by Feng and Zhou in [58] will be needed.

Proposition 4.2.3 The graph DP(n, t) is vertex-transitive if and only if either (n, t) =
(5, 2) or n = 2k and t2 ⌘ ±1 (mod k).

Definition 4.2.4 The set of all elements of the group G acting on a set X fixing an element
x is called a stabilizer of x in G and it is denoted StabG(x).
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Proposition 4.2.5 If (n, t) 6= (4, 1) then B(n, t) can be characterize as follows:

(i) If n ⌘ 0 (mod 2) and 4t = n, then B(n, t) = h↵,�, �, ⌘i.
(ii) If n ⌘ 0 (mod 2) and t2 ⌘ ±1 (mod n), then B(n, t) = h↵,�, �, �i.
(iii) If n ⌘ 2 (mod 4) and t2 ⌘ k ± 1 (mod n), where n = 2k, then B(n, t) = h↵,�, �, i.
(iv) If n ⌘ 0 (mod 4) and t2 ⌘ k ± 1 (mod n), where n = 2k, then B(n, t) = h↵,�, �,�i.
(v) In all other cases (that is, for (n, t) not satisfying any of the conditions in (i) – (iv)

above) we have B(n, t) = h↵,�, �i.

Proof. Considerations of vertex stabilizers, with the use of Proposition 4.2.3 and the
well-known Orbit-Stabilizer Lemma, will enable us to determine the order of B(n, t). The
proposition will then follow from the facts that the groups indicated in the statement of the
proposition are indeed subgroups of A(n, t) of such orders. Throughout the proof the action
of B(n, t) on V (D(n, t)) is considered, unless specified otherwise.

Suppose first that DP(n, t) is not vertex-transitive. Then, by Proposition 4.2.3, n is
odd and (n, t) 6= (5, 2) or n is even and t2 6⌘ ±1 (mod k), where n = 2k. Observe that
B(n, t) has two orbits on V (D(n, t)), each of which is of length 2n (see Proposition 4.2.1).
Let us now consider possibilities for the order of the vertex stabilizer StabB(n,t)(x0) of the
vertex x0 under the action of B(n, t). Let ✓ 2 StabB(n,t)(x0). Then ✓(x0) = x0, and
✓(N(x0)) = N(x0) = {x1, xn�1, u0}. Since u0 is the only neighbor of x0, adjacent to x0 via
a spoke edge, we have ✓(u0) = u0, and the other two neighbors of x0 are either both fixed
or they are interchanged by ✓. Observe that for ✓ 2 StabB(n,t)(x0) also �✓ 2 StabB(n,t)(x0),
where � is as defined on page 12. Hence, it su�ces to consider the case in which ✓ fixes N(x0)
point-wise, and consequently also {xi, ui | i 2 Zn}. Now let us consider the possibilities for
the action of ✓ on the vertices vi. Since ✓(u0) = u0 the neighbors vt and vn�t of u0 are
either interchanged by ✓ or they are both fixed. In the first case, vn�t = ✓(vt) is adjacent
to u2t = ✓(u2t), and thus 2t + t = n � t, implying that 4t = n. If, however, ✓ fixes both vt
and vn�t it also fixes yt and yn�t, and consequently for 4t 6= n all of yi and vi are fixed, and
thus ✓ is the identity, implying that for n 6= 4t we have |StabB(n,t)(x0)| = 2, and thus, by
Proposition 4.2.1, we have B(n, t) = h↵,�, �i. On the other hand, if n = 4t then there are
two numerical possibilities for the action of ✓ on the vertices yi, but one can easily see that
only one of them gives rise to an automorphism of the graph, except when (n, t) = (4, 1), in
which case both enumerations give rise to automorphisms. Hence, |Stab(x0)| = 2 for 4t 6= n
and |Stab(x0)| = 4 for 4t = n, n � 8. It therefore follows that for 4t 6= n we have |B(n, t)| =
4n, h↵,�, �i  B(n, t), and so, by Proposition 4.2.1, we have B(n, t) = h↵,�, �i. Similarly,
for 4t = n we have |B(n, t)| = 8n, h↵,�, �, ⌘i  B(n, t), ⌘↵ = ↵⌘, ⌘� = ↵

n
2 �⌘, ⌘� = �⌘,

which implies that |h↵,�, �, ⌘i| = 8n, and thus B(n, t) = h↵,�, �, ⌘i.
Suppose now that DP(n, t) is vertex-transitive. Then, by Proposition 4.2.3, either (n, t) =

(5, 2) or n = 2k and t2 ⌘ ±1 (mod k). For (n, t) = (5, 2) we have B(5, 2) = h↵,�, �i. As for
the second possibility three subcases need to be considered.

Assume first that n ⌘ 0 (mod 2) and t2 ⌘ ±1 (mod n). Then the mapping �, defined
on page 12, is an automorphism of DP(n, t) preserving spokes and interchanging the sets
⌦ and I, that is, � 2 B(n, t). As the graph is vertex-transitive the orbit of any vertex
is of length 4n. Using the same arguments as in the none vertex-transitive case one can
conclude that the vertex stabilizer in the action of B(n, t) is of size 2 (it is of the size 8
only for DP(4, 1)). Hence, by the Orbit-Stabilizer Lemma, we get |B(n, t)| = 4n · 2 = 8n.
Furthermore, observe that �↵ = ↵t��, �� = ��, �� = �� and when t2 ⌘ �1 (mod n) also
�2 = �. Hence, |h↵,�, �, �i| = 8n, and thus B(n, t) = h↵,�, �, �i.

Assume now that n ⌘ 2 (mod 4) and t2 ⌘ k ± 1 (mod n), where n = 2k. Then the
mapping  , defined on page 12, is an automorphism of DP(n, t) such that  2 B(n, t). The
orbit of any vertex is of length 4n. Using the same arguments as in the none vertex-transitive



16 4.2 Automorphisms of DP(n, t)

case one can conclude that the vertex stabilizer in the action of B(n, t) is of size 2. Moreover,
observe that  ↵ = ↵t� ,  � = ↵k ,  � = � and when t2 ⌘ k � 1 (mod n) also  2 = �.
Hence, |h↵,�, �, i| = 8n, implying that B(n, t) = h↵,�, �, i.

Finally, assume that n ⌘ 0 (mod 4) and t2 ⌘ k ± 1 (mod n), where n = 2k. Then
the mapping �, defined on page 12, is an automorphism of DP(n, t) such that � 2 B(n, t).
The orbit of any vertex is of length 4n. Again, using the same arguments as in the none
vertex-transitive case one can conclude that the vertex stabilizer in the action of B(n, t) is
of size 2. Observe that �↵ = ↵t��, �� = ↵

n
2 ��, and �� = ��, and for t2 ⌘ k � 1 (mod n)

also �2 = �. It follows that |h↵,�, �,�i| = 8n, and thus B(n, t) = h↵,�, �,�i.

Proposition 4.2.6 B(4, 1) = h↵,�, �, �, ⌘i.

Proof. Using the same arguments as in the proof of Proposition 4.2.5 one can see that
|Stab(x0)| = 8, and thus |B(4, 1)| = 128. The mapping ⌘, defined on page 12, is an auto-
morphism of DP(4, 1) belonging to B(4, 1). Since ⌘↵ = ↵⌘, ⌘� = ↵2�⌘, ⌘� = �⌘, ⌘� = ��⌘,
we have |h↵,�, �, �, ⌘i| = 128, and therefore B(4, 1) = h↵,�, �, �, ⌘i.

Lemma 4.2.7 The following three statements are equivalent:

(i) DP(n, t) is edge-transitive.

(ii) There exists ⇡ 2 A(n, t) which maps some spoke onto an edge which is not a spoke.

(iii) B(n, t) is a proper subgroup of A(n, t).

Proof. By definition of edge-transitivity statement (i) clearly implies statement (ii). Since
B(n, t) consists of automorphisms fixing the set of spoke edges the automorphism ⇡ from
the statement (ii) cannot be in B(n, t), and therefore (ii) implies (iii).

To complete the proof we need to proof that (iii) implies (i). In order to do this suppose
that DP(n, t) is not edge-transitive. Then A(n, t) has at least two orbits on the set of edges
of the graph. Since orbits of B(n, t) on the edge set of the graph are subsets of the orbits
of A(n, t) on the edge set of the graph, and since B(n, t) has either 2 or 3 orbits on the
edge set it follows that B(n, t) and A(n, t) have at least one edge-orbit in common. But
then A(n, t) must fix ⌦, ⌃ or I, and therefore, by Lemma 4.2.2, it must fix ⌃. But then
A(n, t) = B(n, t), and thus B(n, t) is not a proper subgroup of A(n, t), which completes the
proof.

Following the notation in [28], for a cycle Z in DP(n, t) we let r(Z) be the number of
outer edges on Z, s(Z) be the number of spokes on Z, and t(Z) be the number of inner
edges on Z. Let Zj be the set of j-cycles in DP(n, t), and let

Rj =
X

Z2Zj

r(Z), Sj =
X

Z2Zj

s(Z), and Tj =
X

Z2Zj

t(Z).

Lemma 4.2.8 If B(n, t) 6= A(n, t), then Rj = Sj = Tj for every j � 3.

Proof. Let c, c0 and c00 be the number of di↵erent j-cycles containing a particular spoke,
outer edge and inner edge, respectively. The automorphisms ↵,� 2 A(n, t) ensure that c, c0

and c00 do not depend, respectively, on the choice of a spoke, outer edge and inner edge.
It follows that Rj = 2nc0, Sj = 2nc and Tj = 2nc00. Since B(n, t) 6= A(n, t), Lemma 4.2.7
implies that DP(n, t) is edge-transitive, and hence c = c0 = c00, implying that Rj = Sj = Tj .
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Proposition 4.2.9 B(n, t) = A(n, t) if the ordered pair (n, t) is not one of the following
three pairs (5, 2), (10, 2), and (10, 3).

Proof. Let us consider 8-cycles in DP(n, t). By Lemma 4.2.8 it su�ces to show that for
(n, t) 62 {(5, 2), (10, 2), (10, 3)} the parameters R8, S8 and T8 are not all equal.

In any double generalized Petersen graph DP(n, t) there exist 8-cycles

(xi, ui, vi+t, yi+t, yi+t+1, vi+t+1, ui+1, xi+1, xi) and

(xi, ui, vi�t, yi�t, yi�t+1, vi�t+1, ui+1, xi+1, xi).

If these generic 8-cycles are the only 8-cycles in DP(n, t) the parameters are

R8 = 2 · 2 · n = 4n, S8 = 2 · 4 · n = 8n, T8 = 2 · 2 · n = 4n,

and hence Lemma 4.2.8 implies that B(n, t) = A(n, t). Therefore we only need to consider
those double generalized Petersen graphs in which there exist additional 8-cycles. Observe
that additional 8-cycles exist in DP(n, t) only if the parameter t satisfies one of the following
conditions:

t = 1, 2t+ 2 ⌘ 0 (mod n), 4t� 2 ⌘ 0 (mod n),
t = 2, 2t+ 4 ⌘ 0 (mod n), 4t+ 2 ⌘ 0 (mod n).

In DP(n, 1), n 62 {3, 4, 6, 8}, there exist three types of 8-cycles, the two generic types and

(xi, ui, vi+1, yi+1, yi, vi, ui+1, xi+1, xi),

implying that the parameters are:

R8 = 3 · 2 · n = 6n,
S8 = 3 · 4 · n = 12n,
T8 = 3 · 2 · n = 6n.

In DP(3, 1) there are two additional types of 8-cycles (xi, xi+1, ui+1, vi+2, ui, vi+1, ui+2, xi+2, xi)
and (yi, yi+1, vi+1, ui+2, vi, ui+1, vi+2, yi+2, yi), and thus the parameters are

R8 = 3 · 2 · 3 + 2 · 2 · 3 = 10 · 3,
S8 = 3 · 4 · 3 + 2 · 2 · 3 = 16 · 3,
T8 = 3 · 2 · 3 + 2 · 4 · 3 = 14 · 3.

In DP(4, 1) there are two additional types of 8-cycles (xi, ui, vi�1, yi�1, yi�2, vi�2, ui+1, xi+1, xi)
and (yi, vi, ui�1, xi�1, xi�2, ui�2, vi+1, yi+1, yi), and thus the parameters are

R8 = 3 · 2 · 4 + 2 · 2 · 4 = 10 · 4,
S8 = 3 · 4 · 4 + 2 · 4 · 4 = 20 · 4,
T8 = 3 · 2 · 4 + 2 · 2 · 4 = 16 · 4.

In DP(6, 1) there are four additional types of 8-cycles

(xi, xi+1, ui+1, vi+2, ui+3, vi+4, ui+5, xi+5, xi), (yi, yi+1, vi+1, ui+2, vi+3, ui+4, vi+5, yi+5, yi),
(xi, ui, vi+1, ui+2, xi+2, xi+3, xi+4, xi+5, xi), (yi, vi, ui+1, vi+2, yi+2, yi+3, yi+4, yi+5, yi),

and thus the parameters are

R8 = 3 · 2 · 6 + 2 · 2 · 6 + 2 · 4 · 6 = 18 · 6,
S8 = 3 · 4 · 6 + 2 · 2 · 6 + 2 · 2 · 6 = 20 · 6,
T8 = 3 · 2 · 6 + 2 · 4 · 6 + 2 · 2 · 6 = 18 · 6.
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In DP(8, 1) there exist four additional types of 8-cycles

(x0, x1, x2, x3, x4, x5, x6, x7, x0), (y0, y1, y2, y3, y4, y5, y6, y7, y0),
(u0, v1, u2, v3, u4, v5, u6, v7, u0), (v0, u1, v2, u3, v4, u5, v6, u7, v0),

and thus the parameters are

R8 = 3 · 2 · 8 + 2 · 8 = 8 · 8,
S8 = 3 · 4 · 8 = 12 · 8,
T8 = 3 · 2 · 8 + 2 · 8 = 8 · 8.

In DP(n, 2), n 62 {5, 6, 8, 10}, there exist four types of 8-cycles, the two generic types and

(xi, ui, vi+2, ui+4, xi+4, xi+3, xi+2, xi+1, xi),
(yi, vi, ui+2, vi+4, yi+4, yi+3, yi+2, yi+1, yi),

and thus the parameters are

R8 = 2 · 4 · n+ 2 · 2 · n = 12n,
S8 = 2 · 2 · n+ 2 · 4 · n = 12n,
T8 = 2 · 2 · n+ 2 · 2 · n = 8n.

In DP(5, 2) there are two additional types of 8-cycles
(xi, ui, vi+2, ui+4, vi+1, ui+3, xi+3, xi+4, xi) and (yi, vi, ui+2, vi+4, ui+1, vi+3, yi+3, yi+4, yi), thus
the parameters are

R8 = 2 · 4 · 5 + 2 · 2 · 5 + 2 · 2 · 5 = 16 · 5,
S8 = 2 · 2 · 5 + 2 · 4 · 5 + 2 · 2 · 5 = 16 · 5,
T8 = 2 · 2 · 5 + 2 · 2 · 5 + 2 · 4 · 5 = 16 · 5.

In DP(6, 2) there are four additional types of 8-cycles

(xi, ui, vi+2, ui+4, vi, ui+2, xi+2, xi+1, xi), (yi, vi, ui+2, vi+4, ui, vi+2, yi+2, yi+1, yi),
(xi, ui, vi�2, yi�2, yi�3, vi�3, ui+1, xi+1, xi), (yi, vi, ui�2, xi�2, xi�3, ui�3, vi+1, yi+1, yi),

and thus the parameters are

R8 = 2 · 4 · 6 + 2 · 2 · 6 + 2 · 2 · 6 + 2 · 2 · 6 = 20 · 6,
S8 = 2 · 2 · 6 + 2 · 4 · 6 + 2 · 2 · 6 + 2 · 4 · 6 = 24 · 6,
T8 = 2 · 2 · 6 + 2 · 2 · 6 + 2 · 4 · 6 + 2 · 2 · 6 = 20 · 6.

In DP(8, 2) there are two additional types of 8-cycles
(xi, ui, vi+2, ui+4, xi+4, xi+5, xi+6, xi+7, xi) and (yi, vi, ui+2, vi+4, yi+4, yi+5, yi+6, yi+7, yi), thus
the parameters are

R8 = 2 · 4 · 8 + 2 · 2 · 8 + 2 · 4 · 8 = 20 · 8,
S8 = 2 · 2 · 8 + 2 · 4 · 8 + 2 · 2 · 8 = 16 · 8,
T8 = 2 · 2 · 8 + 2 · 2 · 8 + 2 · 2 · 8 = 12 · 8.

In DP(10, 2) there are two additional types of 8-cycles
(xi, ui, vi+2, ui+4, vi+6, ui+8, xi+8, xi+9, xi) and (yi, vi, ui+2, vi+4, ui+6, vi+8, yi+8, yi+9, yi), thus
the parameters are

R8 = 2 · 4 · 10 + 2 · 2 · 10 + 2 · 2 · 10 = 16 · 10,
S8 = 2 · 2 · 10 + 2 · 4 · 10 + 2 · 2 · 10 = 16 · 10,
T8 = 2 · 2 · 10 + 2 · 2 · 10 + 2 · 4 · 10 = 16 · 10.

In DP(n, t), where 2t + 2 ⌘ 0 (mod n) and n � 10, there exist four types of 8-cycles, the
two generic types, and

(xi, ui, vi�t, yi�t, yi�t�1, vi�t�1, ui+1, xi+1, xi) and (yi, vi, ui�t, xi�t, xi�t�1, ui�t�1, vi+1, yi+1, yi),
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implying that the parameters are

R8 = 4 · 2 · n = 8n, S8 = 4 · 4 · n = 16n, T8 = 4 · 2 · n = 8n.

In DP(8, 3) there are four additional 8-cycles

(x0, x1, x2, x3, x4, x5, x6, x7, x0), (y0, y1, y2, y3, y4, y5, y6, y7, y0),
(u0, v1, u2, v3, u4, v5, u6, v7, u0), (v0, u1, v2, u3, v4, u5, v6, u7, v0),

and thus the parameters are

R8 = 4 · 2 · 8 + 2 · 8 = 10 · 8, S8 = 4 · 4 · 8 = 16 · 8, T8 = 4 · 2 · 8 + 2 · 8 = 10 · 8.

In DP(n, t), where 2t + 4 ⌘ 0 (mod n) and n 6= 10, there exist four types of 8-cycles, the
two generic types, and

(xi, ui, vi+t, ui+2t, xi+2t, xi+2t+1, xi+2t+2, xi+2t+3, xi),
(yi, vi, ui+t, vi+2t, yi+2t, yi+2t+1, yi+2t+2, yi+2t+3, yi),

giving parameters

R8 = 2 · 2 · n+ 2 · 2 · n = 12n, S8 = 2 · 4 · n+ 2 · 2 · n = 12n, T8 = 2 · 2 · n+ 2 · 4 · n = 8n.

In DP(n, t), where 4t � 2 ⌘ 0 (mod n) and n 6= 10, there exist four types of 8-cycles, the
two generic types, and

(xi, ui, vi+t, ui+2t, vi+3t, ui+4t, xi+4t, xi+1, xi),
(yi, vi, ui+t, vi+2t, ui+3t, vi+4t, yi+4t, yi+1, yi),

giving parameters
R8 = 2 · 2 · n+ 2 · 4 · n = 8n,
S8 = 2 · 4 · n+ 2 · 2 · n = 12n,
T8 = 2 · 2 · n+ 2 · 2 · n = 12n.

In DP(10, 3) there exist six types of 8-cycles (note that for t = 3 we have 2t+ 4 = 4t� 2),
the two generic types, and

(xi, ui, vi+3, ui+6, xi+6, xi+7, xi+8, xi+9, xi), (yi, vi, ui+3, vi+6, yi+6, yi+7, yi+8, yi+9, yi),
(xi, ui, vi+3, ui+6, vi+9, ui+2, xi+2, xi+1, xi), (yi, vi, ui+3, vi+6, ui+9, vi+2, yi+2, yi+1, yi),

and thus the parameters are

R8 = 2 · 2 · 10 + 2 · 4 · 10 + 2 · 2 · 10 = 16 · 10,
S8 = 2 · 4 · 10 + 2 · 2 · 10 + 2 · 2 · 10 = 16 · 10,
T8 = 2 · 2 · 10 + 2 · 2 · 10 + 2 · 4 · 10 = 16 · 10.

In DP(n, t), where 4t+2 ⌘ 0 (mod n) and n /2 {3, 5, 6, 10}, there exist four types of 8-cycles,
the two generic types,

(xi, ui, vi+t, ui+2t, vi+3t, ui+4t, xi+4t, xi+4t+1, xi) and
(yi, vi, ui+t, vi+2t, ui+3t, vi+4t, yi+4t, yi+4t+1, yi),

and thus the parameters are

R8 = 2 · 2 · n+ 2 · 2 · n = 8n,
S8 = 2 · 4 · n+ 2 · 2 · n = 12n,
T8 = 2 · 2 · n+ 2 · 4 · n = 12n.
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We can now conclude that in DP(n, t) for (n, t) 62 {(5, 2), (10, 2), (10, 3)} either R8 6= S8

or S8 6= T8 or T8 6= R8, and therefore, by Lemma 4.2.8, B(n, t) = A(n, t).

Lemma 4.2.7 and Proposition 4.2.9 combined together give a classification of edge-
transitive double generalized Petersen graphs. (In fact this also follows from complete
classification of cubic symmetric tetracirculants given in [19].)

Theorem 4.2.10 The double generalized Petersen graph DP(n, t) is edge-transitive if and
only if the ordered pair (n, t) is one of the following three pairs (5, 2), (10, 2), or (10, 3).

Proof. By Lemma 4.2.7 a necessary condition for DP(n, t) being edge-transitive is that
B(n, t) is a proper subgroup of A(n, t). Therefore, by Proposition 4.2.9, the only candidates
for edge-transitive double generalized Petersen graphs are those with

(n, t) 2 {(5, 2), (10, 2), (10, 3)}.

If (n, t) = (5, 2) then DP(n, t) is isomorphic to the dodecahedron, which is clearly vertex-
transitive and edge-transitive (its full automorphism group is of order 120). Since DP(10, 3)
is isomorphic to DP(10, 2) (an isomorphism can be obtained in a natural way by first mapping
the 10-cycle on inner edges (u0, v2, u4, . . . , v8, u0) in DP(10, 2) onto the 10-cycle on outer
edges (x0, x1, x2, . . . , x9, x0) in DP(10, 3)) we only need to consider the graph DP(10, 2).
Since

µ = (x1, u0)(x2, v8)(x3, y8)(x4, y9)(x5, y0)(x6, v0)(x7, u8)(u1, v2)

(u2, u6)(u3, y7)(u4, v9)(u5, y1)(u7, v6)(v1, v7)(v3, y2)(v5, y6)

is an automorphism of DP(10, 2), which maps the outer edge {x0, x1} into the spoke {x0, u0},
Lemma 4.2.2 implies that DP(10, 2) is edge-transitive (its automorphism group is of order
|A(10, 2)| = 480 and A(10, 2) = h↵, , µi, this result was found out with the help of MAGMA
[13]).

Remark 4.2.11 Theorem 4.2.10 implies that in Proposition 4.2.9 also implication in the
opposite direction holds. In particular, for DP(n, t) we have B(n, t) = A(n, t) if and only if
the ordered pair (n, t) is not one of the following three pairs (5, 2), (10, 2), and (10, 3).

Corollary 4.2.12 The automorphism group A(n, t) of the double generalized Petersen graph
DP(n, t) is characterized as follows:

(i) If n ⌘ 0 (mod 2), 4t = n and (n, t) 6= (4, 1), then A(n, t) = h↵,�, �, ⌘i.
(ii) A(4, 1) = h↵,�, �, �, ⌘i.
(iii) If n ⌘ 0 (mod 2), t2 ⌘ ±1 (mod n) and (n, t) 6= (10, 3), then A(n, t) = h↵,�, �, �i.
(iv) A(10, 3) = h↵, �,�i, where

� = (x1, u0)(x2, v3)(x3, y3)(x4, y4)(x5, y5)(x6, v5)(x7, u8)(u1, v7)

(u2, u6)(u3, y2)(u4, v4)(u5, y6)(u7, v1)(v0, y1)(v2, v6)(v8, y7).

(v) If n ⌘ 2 (mod 4), t2 ⌘ k ± 1 (mod n), where n = 2k and (n, t) 6= (10, 2), then
A(n, t) = h↵,�, �, i.

(vi) A(10, 2) = h↵, , µi.
(vii) If n ⌘ 0 (mod 4) and t2 ⌘ k ± 1 (mod n), where n = 2k, then A(n, t) = h↵,�, �,�i.
(viii) A(5, 2) is the automorphism group of the dodecahedron.

(ix) In all cases di↵erent from the eight mentioned above we have A(n, t) = h↵,�, �i.
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4.3 Hamilton cycles in DP(n, t)

In this section Hamilton cycles in double generalized Petersen graphs are considered.
The first proposition shows the existence of a Hamilton cycle in any double generalized
Petersen graph of order 0 (mod 8) whereas the second proposition shows the existence of a
Hamilton cycle only in a particular subclass of double generalized Petersen graphs of order
4 (mod 8). (Observe that any double generalized Petersen graph is either of order 0 (mod 8)
or 4 (mod 8).)

Proposition 4.3.1 Every double generalized Petersen graph DP(2n, t) admits a Hamilton
cycle.

Proof. Observe that for di↵erent i 2 Zn the 8-paths

u2i ! x2i ! x2i+1 ! u2i+1 ! v2i+1�t ! y2i+1�t ! y2i+2�t ! v2i+2�t

have di↵erent vertex sets. Joining all n of them in a natural way therefore gives a Hamilton
cycle in DP(2n, t).

Proposition 4.3.2 Every double generalized Petersen graph DP(2n+ 1, t), where Z2n+1 =
hti, admits a Hamilton cycle.

Proof. The inner edges form a Hamilton cycle in the subgraph of DP (2n + 1, t) induced
on the set V 0 = {ui, vi | i 2 Z2n+1}. This cycle can be extended to a Hamilton cycle in
DP(2n+1, t) in the following way: first remove the two edges {u2n, vt�1} and {u0, vt} from
this Hamilton cycle on V 0, and then replace these two edges with the following two paths

u0 ! x0 ! x1 ! . . . ! x2n ! u2n, and vt ! yt ! yt+1 ! . . . ! yt�1 ! vt�1.

A detailed computer-assisted search shows that the double generalized Petersen graphs
DP(2n + 1, t) for n  15 admit Hamilton cycles also for t not being a generator of Z2n+1.
Based on Propositions 4.3.1 and 4.3.2 and these computer-assisted results we post the fol-
lowing conjecture.

Conjecture 4.3.3 All DP(n, t) are admit Hamilton cycle.

4.4 Colorings of DP(n, t)

A snark is a connected, cyclically 4-edge-connected cubic graph with girth at least 5
which is not 3-edge-colorable. While examples of snarks were initially scarce - the Petersen
graph being the first known example - infinite families of snarks are now known to exist (see
for instance [34]). As double generalized Petersen graphs are cubic graphs it is interesting to
consider whether there exist snarks amongst them. However, we first consider their vertex
coloring properties. The first lemma shows that for double generalized Petersen graphs of
order 0 (mod 8) two colors su�ces, and the second lemma shows that for graphs of order
4 (mod 8) three colors are needed.

Lemma 4.4.1 � (DP(2n, t)) = 2.
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Proof. One can easily see that c : V (DP(2n, t)) ! N defined by

c(x2i) = c(u2i+1) = c(v2i) = c(y2i+1) = 1, c(x2i+1) = c(u2i) = c(v2i+1) = c(y2i) = 2,

where i 2 {0, 1, . . . , n� 1}, if t is even, and by

c(x2i) = c(u2i+1) = c(v2i+1) = c(y2i) = 1, c(x2i+1) = c(u2i) = c(v2i) = c(y2i+1) = 2,

where i 2 {0, 1, . . . , n�1}, if t is odd, is a well defined coloring function on V (DP(2n, t)).

Lemma 4.4.2 � (DP(2n+ 1, t)) = 3.

Proof. Observe that c : V (DP(2n, t)) ! N defined by

c(x0) = c(u±i) = c(y2i) = 1, c(x2i) = c(u0) = c(y2i�1) = 2, c(x2i�1) = c(v±i) = c(y0) = 3,

where i 2 {1, 2, . . . , n}, is a well defined coloring function on V (DP(2n+ 1, t)).

The next lemma shows that there are no snarks amongst the double generalized Petersen
graphs.

Lemma 4.4.3 �0 (DP(n, t)) = 3.

Proof. Since DP(n, t) is a cubic graph it is clear that at least 3 colors are needed for its
proper edge-coloring. However, it will be shown that three colors su�ce. To do so four cases
depending on the parity and divisibility by 3 need to be considered.

Case 1. n = 2k.

Then we can use colors 1 and 2 to color outer edges, color 3 for spokes and colors 1 and 2
for inner edges (since all cycles have even length).

Case 2. n = 2k + 1, 3 | n, 3 | t.

It can be easily checked that function c : E(DP(n, t)) ! N defined by

c({x3i, u3i}) = c({v3i, y3i}) = c({x3i+1, x3i+2}) = c({y3i+1, y3i+2}) = 1,
c({x3i+1, u3i+1}) = c({v3i+1, y3i+1}) = c({x3i+2, x3i+3}) = c({y3i+2, y3i+3}) = 2,
c({x3i+2, u3i+2}) = c({v3i+2, y3i+2}) = c({x3i, x3i+1}) = c({y3i, y3i+1}) = 3

is a proper coloring of edges (not all of them). Remaining inner edges form even cycles each
adjacent with spokes only in one color, so they can be colored using two colors di↵erent from
adjacent spokes, which gives us a proper 3-edge-coloring of DP(n, t).

Case 3. n = 2k + 1, 3 | n, 3 6 | t.

In this case the same function can be used as in Case 2. The only di↵erence is that in this
case the colors of inner edges are uniquely determined.

Case 4. n = 2k + 1, 3 6 | n.

First color the spoke {x0, u0} with color 1, the spoke {x1, u1} with color 2, and all other
spokes {xi, ui} with color 3. These induce 3-coloring of outer edges {xi, xi+1}. On inner
edges there are two cycles needing special attention, one containing the vertex u0 and one
containing the vertex u1. For the first one use temporary colors c⇤({u2ti, v(2i+1)t}) = 2 and
c⇤({v(2i+1)t, u(2i+2)t}) = 1. Next, change the color of the edge {u0, v�t} from 1 to 3, and give
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color 1 to the lower spoke {v�t, y�t}. Then give temporary colors c⇤({u2ti+1, v(2i+1)t+1}) = 1
and c⇤({v(2i+1)t+1, u(2i+2)t+1}) = 2 to the second special cycle on inner edges. Change the
color of the edge {u1, v�t+1} from 2 to 3, and give color 2 to the lower spoke {v�t+1, y�t+1}.
All other cycles on inner edges are of even length, therefore you can use colors 1 and 2
to color them. Finally, color with color 3 all spokes {vi, yi} except the two mention above.
Now, the outer edges {yi, yi+1} can be colored with one of the three colors, which is uniquely
determined for each of them. This shows that there are no snarks amongst double general-
ized Petersen graphs.
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Chapter 5

Spectral Characterizations of
Signed Lollipop Graphs

Results of this chapter are published in [7].

5.1 Signed graphs - basic properties and known results

In this section we recall some basic results which will be useful for the study of signed
graphs from a spectral viewpoint. More details on these results can be found in [9].

We first recall a formula useful to compute the coe�cients of Laplacian polynomial of
signed graphs. We need first to introduce some additional notation. A signed TU-subgraph
H of a signed graph � is a subgraph whose components are trees or unbalanced unicyclic
graphs. If H is a signed TU-subgraph, then H =

St
i=1 Ti

Sc
j=1 Uj , where, if any, the Ti’s are

trees and the Uj ’s are unbalanced unicyclic graphs. The weight of the signed TU-subgraph
H is defined as w(H) = 4c

Qt
i=1 |Ti|. For the special case � = (G,�), we get the formula for

the signless Laplacian of simple graphs, where instead of signed TU-subgraphs we have the
TU-subgraphs, namely subgraphs whose components are trees or odd unicyclic graphs [24].

Theorem 5.1.1 [9, 20] Let � be a signed graph and  (�, x) = xn+b1xn�1+· · ·+bn�1x+bn
be the Laplacian polynomial of �. Then we have

bi = (�1)i
X

H2Hi

w(H), i = 1, 2, . . . , n, (5.1)

where Hi denotes the set of the signed TU-subgraphs of � built on i edges.

From the above formula it is (again) evident that the L-polynomial is invariant under switch-
ing isomorphisms, since switching preserves the sign of the cycles. Furthermore, it is impor-
tant to observe that the signature is relevant only on the edges that are not bridges, hence
we will always consider the all-positive signature for trees. In the sequel signed trees and
unsigned trees will be considered as the same object. For the same reason, the edges which
do not lie on some cycle are not relevant for the signature and they will be always considered
as positive. Another straight consequence of the above formula is described in the following
corollary.

Corollary 5.1.2 Let (G,�) and (G,�0) be two signed graphs, on the same underlying graph
G. Let  (G,�) =

Pn
i=1 bix

n�i and  (G,�0) =
Pn

i=1 b
0
ix

n�i. If the girth of G is g then
bi = b0i for i = 0, 1, . . . , g � 1.
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Now, we recall some useful formulas, given in [9], which relate the Laplacian polynomial
of a signed graph to the adjacency polynomials of its opportunely defined signed subdivision
graph and signed line graph. In order to do so, we need to introduce a special oriented
vertex-edge incidence matrix B⌘ of a signed graph � = (G,�) with n vertices and m edges.
Assign any random orientation ⌘ on the positive edges of �. Then, the n ⇥ m matrix
B⌘ = (b⌘ij) is defined as

b⌘ij =

8
>>><

>>>:

+1 if vi is incident ej and �(ej) = �1,

+1 if vi is the head of ej and �(ej) = 1,

�1 if vi is the tail of ej and �(ej) = 1,

0 if ej is not incident vi.

It is not di�cult to see that L(�) = B⌘B>
⌘ , which implies that L(�) is a positive semidefinite

matrix. From the above matrix we define two signed graphs, one of order n + m and the
other of order m, corresponding to the signed subdivision graph and the signed line graph,
respectively. Recall that the subdivision of a simple graph G is the graph S(G) obtained
from G by inserting in each edge a vertex of degree 2. In fact, S(G) is a graph whose vertex
set is V (G)[E(G) and two vertices are adjacent if and only if they are incident in G. Now,
let us assign an orientation ⌘ to the positive edges and consider the corresponding incidence
matrix B⌘ = (bij). The signed subdivision graph, associated to B⌘, is the signed graph
S(�⌘) = (S(G),�S

⌘ ), where

�S
⌘ (viej) = b⌘ij

It is worth to observe that a signed subdivision graph is balanced if and only if each cycle
in the signed root graph contains an even number of positive edges.

Next we define the signed line graph associated to B⌘. The signed line graph of � = (G,�)
is the signed graph (L(G),�L

⌘ ), where L(G) is the (usual) line graph and

�L
⌘ (eiej) =

(
b⌘kib

⌘
kj if ei is incident ej at vk;

0 otherwise.

Note that both S(�⌘) and L(�⌘) depends on the chosen edge orientation ⌘, but it is not
di�cult to see that a di↵erent orientation ⌘0 gives rise to a, respectively, switching equivalent
signed subdivision graph and signed line graph. For example, reverting the orientation of
some (positive) edge corresponds to having the value �1 in the state matrix entry related
to the vertex subdividing the edge. Hence, S(�⌘) and L(�⌘) are uniquely defined up to
switching isomorphisms, and for this reason the index ⌘ will be not anymore specified. For
further details, the interested reader is referred to [9]. The following result holds

Theorem 5.1.3 ([9]) Let � be a signed graph of order n and size m, and �(�) and  (�)
its adjacency and Laplacian polynomials, respectively. Then

(i) �(L(�), x) = (x+ 2)m�n (�, x+ 2),

(ii) �(S(�), x) = xm�n (�, x2).

Remark 5.1.4 In [9] the authors gave an interpretation of the oriented incidence matrix B⌘

in terms of bi-oriented graphs, here we have considered a slightly di↵erent (but equivalent)
interpretation that is analogous to the Laplacian theory of mixed graphs, for which the edges
can be either oriented or unoriented. It is clear that the Laplacian theory of mixed graphs is
the same as that of signed graphs, e.g., [27, 56]. Finally, it is necessary to observe that in
the literature we have also di↵erent definitions of signed line graphs for a signed graph (see,
for example, [2, 52]).
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Figure 5.1: A signed graph and the corresponding signed subdivision and line graphs.

An example of subdivision and line graphs of a signed graph are depicted in Fig 5.1,
where positive edges are bold lines, while negative edges are dotted lines.

The following result is the interlacing theorem in the edge variant. It can be deduced
from the ordinary vertex variant interlacing theorem for the adjacency matrix combined
with Theorem 5.1.3 (ii).

Theorem 5.1.5 Let � = (G,�) be a signed graph and � � e be the signed graph obtained
from � by deleting the edge e. Then

µ1(�) � µ1(� � e) � µ2(�) � µ2(� � e) � · · · � µn(�) � µn(� � e).

From the above theorem, we can characterize the signed graphs whose Laplacian spectral
radius does not exceed 4. Recall that the signatures of trees are omitted. Also, for the
sake of readability, for signed unicyclic graphs, the signature denoted by �̄ means that the
unique cycle is unbalanced. Note that signed unicyclic graphs have just two non-switching
equivalent signatures: the all-positive edges, denoted by � = +, and the unique cycle is
unbalanced, denoted by �̄. Under the above notation we have the following results (cf. also
[27]).

Lemma 5.1.6 Let � = (C2n, �̄) be the unbalanced cycle on 2n vertices.
Then µ1(C2n, �̄) < 4.

Proof. In view of Corollary 5.1.2,  (C2n,+) and  (C2n, �̄) have all coe�cients but one
equal. In fact, it is not di�cult to see that  ((C2n,+), x) �  ((C2n, �̄), x) = �4 < 0 for
every x 2 R. Since the spectral radius of  (C2n,+) is 4, then  ((C2n, �̄), x) > 0 for all
x � 4. The latter implies that the corresponding spectral radius is less than 4.

Theorem 5.1.7 Let µ be the largest eigenvalue, or spectral radius, of the Laplacian of a
connected signed graph � = (G,�). The following statements hold:
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(i) µ(�) = 0 i↵ � = K1;

(ii) µ(�) = 2 i↵ � = K2;

iii) µ(�) = 3 i↵ � 2 {P3, (K3,+)};

(iv) 3 < µ(�) < 4 i↵ � 2 {Pn (n � 4), (C2n, �̄), (C2n+1,+) (n � 2)};

(v) µ(�) = 4 i↵ � 2 {(C2n,+), (C2n+1, �̄) (n � 2),K1,3, (K
+
1,3,+), (K�

4 ,+), (K4,+)}.

where K+
1,3 (K�

4 ) is obtained from K1,3 (resp., K4) by adding (resp., deleting) an edge.

Proof. Most of the above values of the Laplacian spectral radii of signed graphs can be
deduced from the ordinary (signless) Laplacian theory of simple graphs (e.g., [49]). Let us
denote by '(G) the characteristic polynomial of the signless Laplacian D(G) + A(G), and
by (G) the corresponding spectral radius.

Clearly, �(�) < 4, otherwise K1,4 appears and µ(�) � 5 by Theorem 5.1.5. Items (i),
(ii) and (iii) are trivial and they can be easily verified.

Regarding the graphs in Items (iv) and (v), we have the following considerations. From
the Laplacian theory of unsigned graph we get that µ(Pn) < 4, µ(C2n+1,+) < 4, µ(K1,3) =
µ(K+

1,3,+) = µ(K�
4 ,+) = µ(K4,+) = 4. From the signless Laplacian theory of graphs we get

that  (C2n,+�) = '(C2n) with (C2n) = 4,  (C2n+1, �̄) = '(C2n+1) with (C2n+1) = 4,
and  (K+

1,3, �̄) = '(K+
1,3) with (K

+
1,3) > 4.

t t t
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◆
◆
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q q q q q q t t t t
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t t t
t t

�
�
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A
A
A

(K+
1,3, �̄) (T1,1,2,+) (K1,4,+)

Figure 5.2: Forbidden subgraphs for µ1  4.

We now consider those spectra which cannot be deduced from the theory of unsigned
graphs. One graph is (C2n, �̄), for which we have that µ(C2n, �̄) < 4 by Lemma 5.1.6. Any
other (connected) graph di↵erent from the previous ones will contain a vertex of degree 3,
and at least one of the two following graphs: (K+

1,3, �̄) or the tree T1,1,2 (see Fig 5.2) which,
according to Theorem 5.1.5, lead to signed graphs with spectral radius greater than 4.

In general, we can give the following upper bound for the largest Laplacian eigenvalue
of a signed graph. Other similar bounds can be found in [36].

Lemma 5.1.8 Let � = (G,�) be a signed graph with �1 and �2 being the first and second
largest vertex degrees in G, and let µ(�) be it s Laplacian spectral radius. Then µ(�) 
�1 + �2, with equality if and only if � = K1,n or � = (Kn,�).

Proof. For any given matrix A, let |A| be the absolute value matrix whose entries are
obtained from A by replacing each entry with the corresponding absolute value. Recall that
the largest eigenvalue of a square matrix A is less than or equal to the largest eigenvalue
of |A| (due to the Perron-Frobenius theorem). Hence, we have that µ(�) = µ(BB>) 
µ(|BB>|) = µ(G,�), namely the largest L-eigenvalue of a signed graph is bounded by the
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largest L-eigenvalue of the corresponding all-negative edges signed graph. On the other
hand, L(G,�) is the signless Laplacian of the underlying simple graph G, for which the
inequality µ(G,�)  �1 + �2 holds (e.g., Theorem 4.2 in [23]). The equality holds if and
only if G is either the n-star K1,n or the complete graph Kn. This completes the proof.

We conclude this section with two formulas (see Theorems 3.2 and 3.4 in [6]) useful for
the computation of the A-polynomial of any weighted non oriented graph.

Theorem 5.1.9 Let A = (aij) be the adjacency matrix of a weighted graph G. Let v 2 G
be any vertex. Then we have

�(G, x) = (x� avv)�(G� v, x)�
X

u⇠v

a2uv�(G� u� v, x)� 2
X

C2Cv

!(C)�(G \ V (C), x),

�(G, x) = �(G� uv, x)� a2uv�(G� u� v, x)� 2
X

C2Cuv

!(C)�(G \ V (C), x),

where Ca is the set of cycles passing through a and !(C) =
Q

uw2C auw.

The formulas in Theorem 5.1.9 have a natural use in the context of the adjacency matrix.
However, they can be used for the Laplacian of signed graphs by mapping the Laplacian
matrix of a signed graph as the adjacency matrix of a weighted multigraph. In fact, by doing
so, any positive edge becomes a negative edge and viceversa, while the vertices degrees are
expressed as weighted loops. The weight of a n-cycle C will be +1 if the cycle contains an
even number of positive edges, and �1 if it contains an odd number of positive edges, that
is (�1)n�(C).

5.2 Spectral determination of signed graphs

In this section we give some results which will be useful for the study of spectral deter-
mination of signed graphs. This problem was, possibly, first introduced by Acharya in [1] in
the context of the adjacency matrix.

Definition 5.2.1 We say that a signed graph � = (G,�) is determined by the spectrum,
or the eigenvalues, of its matrix M(�) if and only if any other signed graph ⇤ = (H,�0)
such that M(⇤) has the same spectrum of M(�) implies that � and ⇤ are two switching
isomorphic graphs. In the latter case, we say that � is determined by the spectrum of the
matrix M , or a DMS graph for short. If ⇤ is not switching isomorphic to �, we say that
the two graphs are M -cospectral, or, equivalently, ⇤ is a M -cospectral mate of �.
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Figure 5.3: A pair of A-cospectral signed graphs.

As shown in Fig 5.3, there are pairs of cospectral signed graphs. However, cospectral
mates share the spectral invariants. Let us first consider some spectral invariants which



30 5.2 Spectral determination of signed graphs

can be deduced from the powers of the matrices of signed graphs. For this purpose, we
need to introduce some additional notation. A walk of length k in a signed graph � is a
sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk+1 and edges e1, e2, . . . , ek such
that vi 6= vi+1 for each i = 1, 2, . . . , k; a walk is said to be positive if it contains an even
number of positive edges, otherwise it is said to be negative. Let w+

vivj (k) (resp. w�
vivj (k))

denote the number of positive (resp., negative) walks of length k from the vertex vi to the
vertex vj . Finally let t+� (resp., t�� ) denote the number of balanced (resp., unbalanced)
triangles in � (the su�x is omitted if clear from the context). The following fact is well
known (see, for example, [52]):

Lemma 5.2.2 Let � be a signed graph and A its adjacency matrix. Then the (i, j)-entry of
the matrix Ak is w+

vivj (k)� w�
vivj (k).

From the above lemma we immediately deduce the following corollary.

Corollary 5.2.3 Let � be a signed graph, A its adjacency matrix, D the diagonal matrix of
vertex degrees and t+ (resp., t�) the number of balanced (resp., unbalanced) triangles.

Then tr (A2) = tr(D), and tr (A3) = 6(t+ � t�).

Let Tk =
Pn

i=1 µ
k
i (k = 0, 1, 2, . . .) be the k-th spectral moment for the Laplacian

spectrum of a signed graph �.

Theorem 5.2.4 Let � = (G,�) be a signed graph with n vertices, m edges, t+ balanced
triangles, t� unbalanced triangles, and degree sequence (d1, d2, . . . , dn). We have

T0 = n, T1 =
nX

i=1

di = 2m, T2 = 2m+
nX

i=1

d2i , T3 = 6 ( t� � t+) + 3
nX

i=1

d2i +
nX

i=1

d3i .

Proof. Recall that trMN = trNM for any two feasible matrices M and N . The formulas
for T0 and T1 are obvious. The formula for T2 follows from trL2 = tr (D�A)2 = trD2+trA2,
since trAD = trDA = 0 and, by Corollary 5.2.3, we have trA2 = trD = 2m. Finally,
T3 = tr (D�A)3 = trD3 +3trA2D� 3trAD2 � trA3. Since trAD2 = 0, and, by Corollary
5.2.3, tr (A3) = 6(t+ � t�) we get the assertion.

It is well-known that the multiplicity of the eigenvalue 0 counts the number of balanced
components (see, for example, [51]). The below result synthesizes the considerations so far
made.

Theorem 5.2.5 Let � = (G,�) and ⇤ = (H,�0) be two L-cospectral signed graphs. Then,

(i) � and ⇤ have the same number of vertices and edges;

(ii) � and ⇤ have the same number of balanced components;

(iii) � and ⇤ have the same Laplacian spectral moments;

(iv) � and ⇤ have the same sum of squares of degrees,
Pn

i=1 dG(vi)
2 =

Pn
i=1 dH(vi)2;

(v) 6(t�� � t+� ) +
Pn

i=1 dG(vi)
3 = 6(t�⇤ � t+⇤ ) +

Pn
i=1 dH(vi)3.

The following theorem can be useful in those situations in which a signed graph � and
its signed subdivision graph S(�) maintain the same structure (e.g., lollipop graphs).

Theorem 5.2.6 Let � = (G,�) be a signed graph of order n and size m, and S(�) the
subdivision graph of �.
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(i) The signed graphs � and ⇤ are L-cospectral i↵ S(�) and S(⇤) are A-cospectral;

(ii) Let � be a signed graph and S(�) a DAS-graph. Then � is a DLS-graph;

(iii) Let � be a DLS-graph. If any graph A-cospectral to S(�) is a subdividion of some
graph, then S(�) is a DAS-graph.

Proof. (i) Since � and ⇤ are L-cospectral, then  (�, x) =  (⇤, x), and � and ⇤ have the
same order and size which implies that m(�)� n(�) = m(⇤)� n(⇤). Thus,

xm(�)�n(�) (�, x2) = xm(⇤)�n(⇤) (⇤, x2),

which implies by Lemma 5.1.3 (i) that �(S(�), x) = �(S(⇤), x). This ends the necessity.

Conversely, since S(�) and S(⇤) are A-cospectral, then

�(S(�), x) = �(S(⇤), x), n(S(�)) = n(S(⇤)), m(S(�)) = m(S(⇤)).

Note that

m(S(�)) = 2m(�), m(S(⇤)) = 2m(⇤), n(S(�)) = m(�) + n(�), n(S(⇤)) = m(⇤) + n(⇤).

From the above equalities, we obtain that m(�) = m(⇤) and n(�) = n(⇤), and so

(
p
x)n(�)�m(�)�(S(�),

p
x) = (

p
x)n(⇤)�m(⇤)�(S(⇤),

p
x),

which shows from that  (�, x) =  (⇤, x).

(ii) Assume that  (⇤, x) =  (�, x). Then by (i) we get �(S(⇤), x) = �(S(�), x). Since
S(�) is a DAS-graph, then S(⇤) is switching isomorphic to S(�), that implies ⇤ being
switching isomorphic to �.

(iii) Assume that ⇤ and ⇤0 are two signed graphs such that ⇤ = S(⇤0) and �(�, x) =
�(S(⇤0), x) = �(S(�), x), which implies from (i) that  (⇤0, x) =  (�, x). Since � is a DLS-
graph, then ⇤0 is switching isomorphic to �, and so ⇤ = S(⇤0) is switching isomorphic to
S(�) which shows that S(�) is indeed a DAS-graph.

In view of Theorem 5.2.6 the following problem naturally arises: under which conditions
a signed graph � = (G,�) can be seen as a signed subdivision graph. The answer is the
same as that for unsigned graphs, and the signature can be easily deduced.

Theorem 5.2.7 A signed graph � = (G,�) is the signed subdivision graph of ⇤ if and only
if the following items hold:

(i) G is bipartite;

(ii) One of the two color classes, say S2, consists of exactly m(G)/2 vertices of degree 2;

(iii) G does not contain C4 as its subgraph.

Then ⇤ is obtained from � by replacing each vertex from S2 with an edge. The signature of
the edge will be: a) positive, if the two deleted edges were of di↵erent sign; b) negative, if
both deleted edges had the same sign.
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5.3 Spectral determination of signed lollipop graphs

In this section we study the Laplacian spectral determination of signed lollipop graphs.
Another spectral determination problem is considered in [8] for the signed graphs whose
second largest L-eigenvalue does not exceed 3, in which signed friendship graphs are included.
A lollipop graph is the coalescence between a cycle and a path for which the end vertex of
the path is identified with a vertex from the cycle. By Lg,n we denote the lollipop graph
whose girth is g and the order is n. Since the lollipop is a unicyclic graph, then it admits
only two di↵erent non-equivalent signatures: the all positive edges � = +, and �̄ for which
the unique cycle is unbalanced. In Fig 5.4 we depicted an example of signed lollipop graph.
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Figure 5.4: The signed lollipop graph (L6,9, �̄).

In the literature, the spectral determination of (unsigned) lollipop graphs, and related
graphs, has been already considered in the papers [14, 32, 31, 55]. Here we continue such
investigations by extending the problem to the wider settings of signed graphs. Clearly,
the main results from the above cited papers must be taken into account. We restate such
results in terms of signed graphs.

Theorem 5.3.1 Let (Lg,n,�) be a signed lollipop graph of order n and girth g. We have:

• (Lg,n,+) has no A-cospectral mates with only positive edges [14];

• (Lg,n,+) has no L-cospectral mates with only positive edges [32];

• (Lg,n,�) has no L-cospectral mates with only negative edges [33, 55].

Now we spectrally characterize the signed lollipop graphs and extend the result of The-
orem 5.3.1 to all signed lollipop graphs. The following lemma gives two bounds on the first
and second largest eigenvalue of any signed lollipop graph.

Lemma 5.3.2 Let (Lg,n,�) be a lollipop graph. Then we have 4 < µ1(Lg,n,�) < 5 and
µ2(Lg,n,�) < 4.

Proof. The upper bound for µ1(Lg,n,�) comes from the fact that largest and second largest
vertex degrees of (Lg,n,�) are 3 and 2, and from Lemma 5.1.8 we obtain µ1(Lg,n,�) < 5.
The lower bound for for µ1(Lg,n,�) comes from K1,3 being a subgraph (interlacing theo-
rem). Finally, from the interlacing theorem applied to the edge in the cycle incident with
the vertex of degree 3, we obtain the path Pn. Hence, in view of Theorem 5.1.7 (iii), we
have µ1(Lg,n,�) � 4 > µ1(Pn) � µ2(Lg,n,�). Finally, it is also easy to see that 4 cannot be
an eigenvalue of (Lg,n,�) (see for example, Lemma 5.3.15).
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Lemma 5.3.3 Let � = (G,�) be L-cospectral with (Lg,n,�), then � has the same degree
sequence of (Lg,n,�).

Proof. Let � = (G,�) be L-cospectral with (Lg,n,�). Since µ1(Lg,n,�) < 5, then � cannot
have vertices whose degree is greater than 3, otherwise K1,4 appears as a subgraph of � and
µ1(�) � 5. Let ni be the number of vertices whose degree is i, where 0  i  3. From
Theorem 5.2.4 (i) and (iv) we deduce the following linear system of equations:

8
<

:

n0 + n1 + n2 + n3 = n,
n1 + 2n2 + 3n3 = 2n,
n1 + 4n2 + 9n3 = 4n+ 2.

whose unique (acceptable) solution is indeed n0 = 0, n1 = 1, n2 = n� 2 and n3 = 1. Hence
the underlying graph of � consists of a lollipop graph with possibly one or more cycles as
connected components.

Now we have restricted the structure of a tentative L-cospectral mate of a signed lollipop
graph. Let us denote by � a signed graph cospectral with (Lg,n,�). We have proved that
� is a signed lollipop graph with possibly one or more cycles as components. However, �
can not have any kind of cycles as a component. In fact, (C2r+1, �̄) and (C2r,+) are not
acceptable since 4 would appear as an eigenvalue. Also, the eigenvalue 0 appears at most
once, so � can have no more than one balanced cycle as a component.

The following lemma lists the spectra of signed cycles and paths (see [22] for the balanced
ones, those unbalanced can be deduced from the balanced by Theorem 5.1.3), and it will be
useful to the reader. For the sake of readability, the su�ces and the polynomials variables
will be omitted if clear from the context.

Lemma 5.3.4 Let Pn and Cn be the path and the cycle on n vertices, respectively. Let
SpecM (�) denote the multiset of eigenvalues of M(�).

SpecA (Cn,+) = {2 cos 2k
n
⇡, k = 0, 1, . . . , n� 1};

SpecA (Cn, �̄) = {2 cos 2k + 1

n
⇡, k = 0, 1, . . . , n� 1};

SpecA (Pn) = {2 cos k

n+ 1
⇡, k = 1, 2, . . . , n};

SpecL (C2n,+) = {2 + 2 cos
2k

2n
⇡, k = 0, 1, . . . , 2n� 1};

SpecL (C2n+1,+) = {2 + 2 cos
2k + 1

2n+ 1
⇡, k = 0, 1, . . . , 2n};

SpecL (C2n, �̄) = {2 + 2 cos
2k + 1

2n
⇡, k = 0, 1, . . . , 2n� 1};

SpecL (C2n+1, �̄) = {2 + 2 cos
2k

2n+ 1
⇡, k = 0, 1, . . . , 2n};

SpecL (Pn) = {2 + 2 cos
k

n
⇡, k = 1, 2, . . . , n}.

Remark 5.3.5 In view of the above lemma we get that (C2n,+) is L-cospectral with (Cn,+)[
(Cn, �̄), and in view of Lemma 5.1.3 (i) the same applies w.r.t. the adjacency spectra. More-
over, the L-spectrum of (C2n+1,+) (resp., (C2n+1, �̄)) contains the L-spectrum of (Cd,+)
(resp., (Cd, �̄)) for any d divisor of 2n + 1. The L-spectrum of (C2n, �̄) contains the L-
spectrum of (Cd, �̄) provided that 2n

d is an odd number. For example, the L-spectrum
(C120, �̄) contains the L-spectrum of (Cd, �̄) only for d 2 {8, 24, 40}. Similarly, the L-
spectrum of (C2n,+) contains the L-spectrum of (Cd,+) for all divisors d of 2n, while it also
contains the L-spectrum of (Cd, �̄) when

2n
d is an even number.
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The lemma below stems from the above observations.

Lemma 5.3.6 Let (C2n,+) be a even balanced cycle and let 2n = 2t+1r, where t and r are
positive integer and r is odd. If r � 3, then (C2t+1r,+) is L-cospectral with
(C2sr,+)

St
i=s(C2ir, �̄), with 0  s  t. If r = 1 then (C2t+1 ,+) is L-cospectral with

(C2s ,+)
St

i=s(C2i , �̄), with 2  s  t.

Let µ(d) = 2 + 2 cos ⇡
d ; for d odd µ(d) is µ1(Cd,+), while for d even it is µ1(Cd, �̄). The

observations of Remark 5.3.5 play a crucial role in the following theorem. Let GCD(a, b) be
the greatest common divisor between the integers a and b. Also, let [c(n),�] be the set of
the L-eigenvalues of multiplicity two of the cycle (Cn,�).

Theorem 5.3.7 The signed lollipop graph (Lg,n,�) = ⇤ has simple L-eigenvalues
if GCD(g, n) = 1. If GCD(g, n) = d � 2, then we have the following possibilities

• if g is odd, then the eigenvalues of ⇤ of multiplicity two are those of [c(d),�];

• if g is even, d
g odd (resp., even), and � = +, then the eigenvalues of ⇤ of multiplicity

two are those of [c(d),+] (resp., [c(2d),+]);

• if g is even and � = �̄, then for g
d odd the eigenvalues of ⇤ of multiplicity two are

those of [c(d), �̄], while for g
d even, ⇤ has just simple eigenvalues.

Proof. Recall that the L-eigenvalues of signed cycles, other than 0 and 4, have multiplicity
two.

First, note that Pn is an edge-deleted subgraph of (Lg,n,�), hence in view of fact the
Pn has only simple eigenvalues, by interlacing theorem each L-eigenvalue has at most mul-
tiplicity two (and it must be an L-eigenvalue for Pn). Similarly, for (Cg,�) [ Pn�g we
have:

µ1(Lg,n,�) � µ1((Cg,�) [ Pn�g) � µ2(Lg,n,�) � µ2((Cg,�) [ Pn�g)

� · · · � µn(Lg,n,�) � µn((Cg,�) [ Pn�g).

Let µ be, if any, an L-eigenvalue of multiplicity two, then µ is an L-eigenvalue of (Cg,�) [
Pn�g. Let us consider the subdivision graph S(Lg,n,�) = (L2g,2n,�0). By applying Theorem
5.1.9 at the hanging path edge that is incident to the vertex of degree 3, we have:

�(L2g,2n,�
0) = �(C2g,�

0)�(P2n�2g)� �(P2g�1)�(P2n�2g�1). (5.2)

Let � =
p
µ, in view of Theorem 5.1.3, � is an A-eigenvalue of multiplicity two, as well.

From µ being a L-eigenvalue of (Cg,�) [ Pn�g, we deduce that � is an A-eigenvalue of
(C2g,�0) [ P2n�2g�1. Since � is a root of �(C2g,�0) or a root of �(P2n�2g�1), then in
(5.2) we have that � is of multiplicity two if and only if � is a root of both �(C2g,�0) and
�(P2n�2g�1) (note, if � 6= 4 is an A-eigenvalue of (C2g,�0), then it is an A-eigenvalue of
P2g�1). The latter implies that µ is an L-eigenvalue of both (Cg,�) and Pn�g. Clearly,
if d = GCD(g, n � g) = 1, then such a µ cannot exist and the L-eigenvalues of ⇤ have
multiplicity 1. So let d � 2 in the sequel.

Assume first that g is odd, then also d is odd. Since d divides both g and n� g, we have
that [c(g),�] \ SpecL(Pn�g) = [c(d),�].

Assume next that g is even and � = +. Since g is even then also the L-eigenvalues of
(Cr, �̄) appear in SpecL(Cg,n,+) for any divisor r of g such that g

r is even (note, r is a proper
divisor). Hence, if g

d is even, then d divides both g and n� g, and we have that [c(g),+] \
SpecL(Pn�g) = [c(2d),+]. If instead we have g

d odd, then we get [c(g),+] \ SpecL(Pn�g) =
[c(d),+]. In particular, if g = d or g = 2d, then the eigenvalues of multiplicity two are those
of [c(g),+].
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Finally, assume that g is even and � = �̄, then [c(g), �̄] \ SpecL(Pn�g) is non-empty if
and only if g

d is odd, and in the latter case we get [c(d), �̄]; if g
d is even, then g

r is even for
all the divisors r of d, hence [c(g), �̄] \ SpecL(Pn�g) = ;.

This completes the proof.

Corollary 5.3.8 Let � be a signed graph L-cospectral with (Lg,n,�),
with GCD(g, n) = d � 3. If (Cr,�) is a component of �, then r divides d.

Proof. Since (Cr,�) is a component of �, then µ(r) is in the spectrum of ⇤ with multi-
plicity two. Hence, according to Theorem 5.3.7, µ(r) is in the spectrum of (Cg,�) and of
Pn�g. Consequently, r divides both g and n�g. The latter implies that r divides d as well.

Corollary 5.3.9 Let � be a signed graph L-cospectral with (Lg,n,�). If GCD(g, n) = d  2,
then � is connected.

Proof. Recall that in view of Lemma 5.3.3, any L-cospectral mate of a signed lollipop graph
consists of a lollipop graph with possibly one or more cycles as components. From Theorem
5.3.7, we deduce that (Lg,n,�) has simple eigenvalues when GCD(g, n) = 1, consequently
any L-cospectral mate � cannot have cycles as components, as cycles carry eigenvalues of
multiplicity two. If GCD(g, n) = 2 there could be eigenvalues of multiplicity two but they be-
longs to, say, degenerate cycle (C2,�), which are not allowed. Hence, when GCD(g, n)  2,
� must be connected.

Lemma 5.3.10 Let  (�, x) =
Pn

i=0(�1)n bi(�)xn�1. Then we have:

bn(Cn,+) = 0, bn(Cn, �̄) = 4, bn(Ln,g,+) = 0, bn(Ln,g, �̄) = 4,

bn�1(Cn,�) = n2, bn�1(Ln,g,+) = gn, bn�1(Ln,g, �̄) = gn+ 2(n� g)(n� g + 1).

Proof. The proof is a straightforward application of Theorem 5.1.1.

Theorem 5.3.11 Let � be a L-cospectral mate of (Lg,n, �̄). Then � is connected.

Proof. By Lemma 5.3.3, � is a disjoint union of a signed lollipop graph with possibly one
or more signed cycles. In view of Theorem 5.2.5, since (Lg,n, �̄) is unbalanced then � can-
not have any balanced component, which implies that � can possibly have just unbalanced
cycles as components. However if � consists of t � 2 components, all of them unicyclic
and unbalanced, then bn(�) = 4t > 4 = bn(Lg,n, �̄), that is a contradiction. Hence, � is a
connected graph.

Theorem 5.3.12 Let � be a L-cospectral mate of ⇤ = (Lg,n,+), with d = GCD(g, n) an
odd number. If g 6= d and n 6= 4d, then � is connected.

Proof. If GCD(g, n) = d  2 the assertion is obviously true, so let GCD(g, n) = d � 3 for
the remainder of the proof. If � is disconnected then � has one or more cycle as components.
Let ⇤0 be the lollipop component of �

Assume first that � has an unbalanced cycle component, say, (Cs, �̄) with s even. If
so, µ(s) is in the spectrum of ⇤ with multiplicity two, and s divides g and n � g, and
consequently also d. But d is odd, so s cannot divide d, and � cannot have unbalanced
cycles as component. So � has a positive cycle and ⇤0 is an unbalanced component. Assume
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next that (Cr,+) is the positive cycle of �, then µ(r) is an eigenvalue of � with multiplicity
two and the same applies to ⇤. Similarly to above, r must divide d, so the only possibility
is that d = kr with k odd.

Let k > 1. Hence, ⇤ contains the eigenvalue µ(kr), which cannot belong to the compo-
nent (Cr,+). The latter implies that µ(kr) is in ⇤0, but ⇤0 has an unbalanced cycle (Cg0 , �̄)
as subgraph and µ(kr) cannot be an eigenvalue of (Cg0 , �̄). So it is k = 1 and r = d.

By Lemma 5.3.10, we have that bn�1(�) = 4d2 = gn = bn�1(⇤). Since d divides both g
and n, the latter equality implies that either g = d and n = 4d, or g = 2d and n = 2d, or
g = 4d and n = d. Clearly, it is g < n and the only acceptable values are g = d and n = 4d.
Also, ⇤0 has order n0 = n� r = 3d. The latter special case requires additional investigation,
so we will consider it separately in a subsequent lemma. In all other cases, � must be a
connected signed graph, hence it reduces to the lollipop component ⇤0.

This completes the proof.

For the case d even, we need a more involved analysis due to the fact that (C2n,+) is
not a DLS graphs. Hence we need more lemmas and results to show that � cannot be a
disconnected graph.

Let Bn be the matrix of order n obtained from L(Pn+1) by deleting the row and column
corresponding to some end-vertex of Pn+1. Let Hn be the matrix of order n obtained from
L(Pn+2) by deleting the rows and columns corresponding to both the end vertices of Pn+2

respectively. Both matrices represents augmented paths so their spectrum is not depending
on the signature of the edges. The first two of the following equalities were given by Guo in
[29], the third is proved in [50].

Lemma 5.3.13 Let Pn be the path of order n and Hn, Bn defined as above. Then

(i) x (Bn) =  (Pn+1) +  (Pn),

(ii)  (Pn) = x (Hn�1),

(iii)  (Pn) = (x� 2) (Pn�1)�  (Pn�2).

We now express the L-polynomial of signed cycles and signed lollipop graphs in terms of
the polynomials of paths. For a signed unicyclic graph � of girth g, let &(�) = (�1)g+1�(�).

Lemma 5.3.14 We have the following equalities

 (Cn,�) =
 (Pn+1)

x
�  (Pn�1)

x
+ 2&(Cn,�),

and

 (Lg,n�̄) =
1

x
( (Pn�g+1) +  (Pn�g))

hx� 3

x
 (Pg)�

2

x
 (Pg�1) + 2&(⇤)

i

� 1

x2
( (Pn�g) +  (Pn�g�1)) (Pg).

Proof. The results can be easily obtained by iterated use of Theorem 5.1.9, combined with
Lemma 5.3.13

In fact, for  (Cn,�), in view of Theorem 5.1.9, we have the following decomposition
whose result depends on the parity of n and the value �(Cn,�):

 (Cn,�) =  (Hn)�  (Hn�2)� 2(�1)n�(Cn,�)

=
Pn+1

x
� Pn�1

x
+ 2&(Cn,�).
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A similar computation holds for ⇤ = (Lg,n,�):

 (⇤) = (x� 3) (Hg�1) (Bn�g)� 2 (Hg�2) (Bn�g)�  (Hg�1) (Bn�g�1)

�2(�1)g�(⇤) (Bn�g)

=  (Bn�g)
hx� 3

x
 (Pg)�

2

x
 (Pg�1) + 2&(⇤)

i
� 1

x
 (Bn�g�1) (Pg)

=
1

x
( (Pn�g+1) +  (Pn�g))

hx� 3

x
 (Pg)�

2

x
 (Pg�1) + 2&(⇤)

i

� 1

x2
( (Pn�g) +  (Pn�g�1)) (Pg).

This completes the proof.

Lemma 5.3.15 We have

 (Pn, 4) = 4n;  ((C2n,+), 4) =  ((C2n+1, �̄), 4) = 0;  ((C2n+1,+), 4) =  ((C2n, �̄), 4) = 4;

 ((Lg,n,+), 4) =

⇢
�4g(n� g), g is even,
�4[g(n� g)� (2n� 2g + 1)], g is odd;

 ((Lg,n�̄), 4) =

⇢
�4[g(n� g)� (2n� 2g + 1)], g is even,
�4g(n� g), g is odd.

Proof.

The results can be easily obtained by Lemma 5.3.14. In fact,  (P1, 4) = 4 and by
induction  (Pn, 4) = (4� 2) (Pn�1, 4)�  (Pn�2, 4) = 2(4n� 4)� (4n� 8) = 4n.

 ((Cn,�), 4) =
 (Pn+1, 4)

4
�  (Pn�1, 4)

4
+ 2&(Cn,�)

= n+ 1� n+ 1 + 2&(Cn,�) = 2 + 2&(Cn,�).

A similar computation holds for ⇤ = (Lg,n,�):

 (⇤, 4) =
1

4
( (Pn�g+1, 4) +  (Pn�g, 4))

h4� 3

4
 (Pg, 4)�

2

4
 (Pg�1, 4) + 2&(⇤)

i

� 1

42
( (Pn�g, 4) +  (Pn�g�1, 4)) (Pg, 4)

= �4[g(n� g) + (2 + 2&(⇤))(2n� 2g + 1)].

This completes the proof.

Lemma 5.3.16 Let (Lg,n,�) = ⇤ and (Lg0,n0 ,�0) = ⇤0 be two signed lollipop graphs such
that 2n0  n. Then µ2(⇤) > µ2(⇤0).

Proof. Since the L-eigenvalues of ⇤ are interlaced by those of Pn, we have that µ2(⇤) �
µ2(Pn) � µ1(Pn0) � µ2(⇤0). We next prove that it is µ1(Pn) 6= µ2(⇤), so that the last
inequality is strict.

Assume first that either g odd and � = +, or g even and � = �̄, then by (5.2) it is
µ(Pn) > µ1((Cg,�) [ Pn�g) � µ2(⇤), that is true for n > g (in the latter settings).

Consider next the case when either g is even and � = +, or g odd and � = �̄; in
both cases the subdivision graph of (Lg,n,�) is (L2g,2n,+), since they both contain an even
number of positive edges in the cycle. We show that (L2g,2n,+) does not have �1(P2n�1) =
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p
µ1(Pn) = � as an A-eigenvalue, which implies that (Lg,n,�) can not have µ1(Pn) as an

L-eigenvalue. Apply Theorem 5.1.9 to one vertex in the cycle of degree 2 adjacent to the
vertex of degree 3. We have:

�((L2g,2n,+), x) = x�(P2n�1)� �(P2n�2, x)� �(P2g�2, x)[2 + �(P2n�2g, x)],

from which we deduce that

�((L2g,2n,+),�) = ��(P2n�2,�)� �(P2g�2,�)[2 + �(P2n�2g,�)] < 0.

Consequently, µ2(⇤) � µ1(Pn0) > µ2(⇤0). This completes the proof.

Lemma 5.3.17 Let � be a disconnected L-cospectral mate of ⇤ = (Lg,n,+). If either
n 6= 2g, or n = 2g with g even, then µ2(�) is not an eigenvalue of the cycle components of
�.

Proof. Since � is disconnected than � has at least one cycle as component. LetGCD(g, n) =
d, if d  2, � must be connected, so we consider d � 3. Recall that d divides both g and
n� g, hence n = kd with k � 2. According to Corollary 5.3.8, if (Cr,�) is a cycle of �, then
r divides d; recall that µ1(Cr,�) < 4. So r is at most n

2 , and the latter equality is possible if
and only if g = n� g = d, that is n = 2g. Assume that n 6= 2g, then r < n

2 . Consequently,
by interlacing, we have µ2(�) = µ2(⇤) � µ2(Pn) > µ1(Cr,�).

To complete the proof we need to consider the case n = 2g and g even. So assume that
� has one cycle of order g. Clearly, µ1(Cg,+) = 4, so we need to consider only (Cg, �̄).
Observe that µ1(Cg, �̄) = µ1Pg = µ2(Pn). We will use a similar strategy to the one used
in Lemma 5.3.16, in fact we will show that µ1(Pg) is not an L-eigenvalue of (Lg,2g,+) by
showing that �1(P2g�1) is not an A-eigenvalue of (L2g,4g,+). Let us use Theorem 5.1.9 at
the vertex of degree 3, we then obtain

�(L2g,4g,+) = x�(P2g)�(P2g�1)� 2�(P2g)�(P2g�2)� �2(P2g�1)� 2�(P2g).

By computing the polynomials in �1(P2g�1) = � we have

�((L2g,4g,+),�) = �2�(P2g,�)[�(P2g�2,�) + 1] > 0,

since �2(P2g) < � < �1(P2g) and �1(P2g�2) < �. The latter shows that indeed �2(Lg,2g,+) >
µ2(Pn) = µ1(Pg) = µ1(Cg, �̄). This completes the proof.

We can finally prove the result below.

Theorem 5.3.18 Let � be a L-cospectral mate of ⇤ = (Lg,n,+), with d = GCD(g, n) an
even number. Then � is connected.

Proof. Since ⇤ is a balanced lollipop whose GCD(g, n) = d is even, then by Theorem 5.3.7
the eigenvalues of multiplicity two for ⇤ are those of [c(2k),+], for some number k equal to
either d or 2d. The even number 2k can be written in the form 2t+1r, where r is a positive
odd number. We give the proof for r � 3, the case r = 1 can be solved similarly. By Lemma
5.3.6 we have that (C2t+1r,+) is cospectral with (C2sr,+)

St
i=s(C2ir, �̄) for any 0  s  t.

Let � be a disconnected tentative cospectral mate of ⇤, and denote by ⇤0 = (Lg0,n0 ,�)
the lollipop component of �. In the sequel we show that � should be one of the two following
signed graphs:

(i) � = ⇤0 [ (Cr,+)
St

i=0(C2ir, �̄);

(ii) � = ⇤0St
i=s(C2ir, �̄).
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From � being disconnected, we have that � has at least one cycle.
Assume that there is a balanced cycle (Cq,+) among its components, then ⇤0 is unbal-

anced. The value q divides g and n � g (see Corollary 5.3.8), but then it divides r as well,
due to r being the greatest odd factor of GCD(g, n�g). Evidently, q = r otherwise if q < r,
µ(r) cannot be an eigenvalue of (Cq,+) or of ⇤0, and thus of �, while it appears in ⇤. Also,
⇤0 must contain the eigenvalues of [c(r), �̄] with the same multiplicity, since these eigenval-
ues cannot appear in some cycle component, and the latter implies that GCD(g0, n0) = kr,
with k odd. However it is k = 1, otherwise ⇤0 contains the eigenvalues of multiplicity two
of a longer odd unbalanced cycle whose eigenvalues do not appear in ⇤. In addition g0 is
odd, otherwise g0 is even, g0

r is also even, and the eigenvalues of [c(r), �̄] cannot appear in
⇤0 with multiplicity two. Now, since GCD(g0, n0) is odd, then ⇤0 can not have the eigenval-
ues of unbalanced even cycles, necessary to complete the spectrum of (C2tr,+), the latter
implies that � must have an unbalanced even cycle for each necessary even multiple of r.
Consequently, � is of type (i).

Assume next that � has not any balanced cycle as a component. In this case ⇤0 is
balanced and it contains the eigenvalues of both [c(r),+] and [c(r), �̄] with multiplicity two,
which implies ⇤0 has the eigenvalues of [c(2r),+] with multiplicity two. The latter implies
that 2r divides g0, and g0 must be even. Let (Cq0 , �̄) the shortest unbalanced even cycle
component of �. Clearly, q0 must divide 2tr, but it must be of the form 2sr, where s � 1.
In fact, let q0 = 2s for some 2  s  t. If so, for any s0 � s, neither � can have some
cycle component C(2s

0
r, �̄), as it would lead to common eigenvalues of multiplicity two

among the cycle components, nor ⇤0 can have as eigenvalues of multiplicity two those of
[c(2s

0
r), �̄], because then those of [c(2s

0+1r),+] are in ⇤0 with multiplicity two and, due to
2s

0+1r
2s0

= 2r being even, we get that also the eigenvalues of [c(2s
0
), �̄] are eigenvalues for ⇤0

with multiplicity two, leading again to eigenvalues of multiplicity greater than two. Hence,
q0 must be of the form 2sr. If s > 1, the eigenvalue µ(2s

0
r), with 0  s0  s� 1 is in ⇤ and

it must appear in � as well. Since (C2sr, �̄) does not contain the eigenvalues of (C2s0r, �̄)
for s0 < s, it implies that µ(2s

0
r) cannot appear in some cycle component (C2s0r, �̄) (due

to the minimality of s), so it must appear in ⇤0. The latter implies that the eigenvalues of
[c(2sr),+] appears with multiplicity two for ⇤0. Now, for every s  s0  t we have the cycle
(C2s0r, �̄) is a component of �. If not, then some µ(2s

0
r), with s0 > s, appears in ⇤0 with

multiplicity two, together with the eigenvalues [c(2s
0+1r),+]. Then µ(2sr) appears in both

⇤0 and (C2sr, �̄), and the multiplicity of µ(2sr) jumps to four, a contradiction. Hence, � is
of the form (ii).

The next step is to show that both forms (i) and (ii) are not admissible for �, by
comparing the spectral invariants bn�1 (cf. Lemma 5.3.10) and the polynomial computed
at 4 (cf. Lemma 5.3.15). For ⇤ we have that bn�1(⇤) = gn and  (⇤, 4) = �4g(n� g).

Assume first that � is of type (i). Recall that ⇤0 is unbalanced and g0 is odd. In this
case, we have that bn�1(�) = 4t+1r2 and  (�, 4) = �4t+2(g0(n0 � g0). So we get the system

⇢
gn = 4t+1r2;
�4g(n� g) = �4t+2g0(n0 � g0).

from which we get that g2 = 4t+1(r2�g0(n0�g0)) (recall that n0 > g0). Clearly, the quantity
r2 � g0(n0 � g0) must be positive, that is r2 > g0(n0 � g0) but the latter inequality has no
solutions since r divides both g0 and n0 � g0. Hence � is not of type (i).

Assume now that � is of type (ii). Recall that ⇤0 is balanced and g0 is even. In this case
we have that bn�1(�) = 4t�s+1g0n0 and  (�, 4) = �4t�s+2g0(n0 � g0). Now we obtain the
system ⇢

gn = 4t�s+1g0n0;
�4g(n� g) = �4t�s+2g0(n0 � g0).



40 5.3 Spectral determination of signed lollipop graphs

whose solutions are g = 2t�s+1g0 and n = 2t�s+1n0. The latter equality implies that n � 2n0

and by Lemmas 5.3.16 and 5.3.17, we obtain that µ2(⇤) > µ2(�). Hence, � is not of type
(ii).

If r = 1, an analogous proof holds, in which � = (Lg0,n0 ,+)
St

i=s(C2i , �̄), with s � 2
being the shortest length of the unbalanced cycle component of �. We leave the details to
the reader.

This completes the proof.

Theorem 5.3.19 No two non switching isomorphic signed lollipop graphs are L-cospectral.

Proof. Let ⇤ = (Lg,n,�) be a signed lollipop graph. In Lemma 5.3.15 we have decomposed
the L-polynomial of ⇤ in the combination of paths polynomials.

 (⇤, x) =
1

x
( (Pn�g+1) +  (Pn�g))

hx� 3

x
 (Pg)�

2

x
 (Pg�1) + 2&

i

� 1

x2
 (Pg)( (Pn�g) +  (Pn�g�1)). (5.3)

Consider Lemma 5.3.13 (iii), the formula  (Pn) = (x � 2) (Pn�1) �  (Pn�2) can be seen
as a homogeneous second order recurrence equation

pn = (x� 2)pn�1 � pn�2,

with p0 = 0 and p1 = x as boundary conditions. It is a matter of computation (cf. [50] for
the details) to check that the solution is

pn =
(y2n � 1)(y + 1)

yn(y � 1)
,

where y is the solution of the characteristic equation y2 � (x� 2)y + 1 = 0.
For any signed graph �, let

�(�) = yn (y � 1)2  (�, y)� (y2n+2 � 2y2n+1 � 2y + 1),

then, by applying the above described transformation to (5.3), we get

�(Lg,n,�) = 2&y2n�g+2 � 2&y2n�g+1 + y2n�2g+2 + y2g � 2&yg+1 + 2&yg. (5.4)

From the above polynomial, it is evident that two signed lollipop are L-cospectral if
and only if both g and �(⇤) are the same, namely, the two signed lollipop graphs are also
switching equivalent. This completes the proof.
By using the comparison technique of the above theorem, we now deal with the last case,
left by Theorem 5.3.12.

Lemma 5.3.20 The signed graphs (Ld,4d,+) and (Lg0,3d, �̄) [ (Cd,+), with d odd, are not
L-cospectral.

Proof. We shall compare the polynomials and check whether we obtain compatible values
for g0.

From Lemma 5.3.15, we can take the polynomial of the odd balanced cycle (Cd,+), that
is

 (Cd,+) =
 (Pd+1)

x
�  (Pd�1)

x
+ 2.
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Let & 0 = &(Lg0,3d). After some computations we get for � = (Lg0,3d, �̄) [ (Cd,+) the
below polynomial

�(�) = 2& 0y8d�g0+2 � 2& 0y8d�g0+1 + y8d�2g+2 + 4& 0y7d�g0+2 � 4& 0y7d�2g0+2

+2& 0y6d�g0+2 � 2& 0y6d�g0+1 + y6d�2g0+2 + y6d+2 � 2y6d+1 + y2d+2g

�2& 0y2d+g0+1 + 2& 0y2d+g0
� 2y2d+1 + y2d + 2yd+2g � 4& 0yd+g0+1

+4& 0yd+g0+1 + 4& 0yd+g0
+ y2g

0
� 2& 0yg

0+1 + 2& 0yg � 4yd+1 + 2yd.

For the ease of comparison, we also write the polynomial corresponding to ⇤ = (Ld,4d,+).
Recall that d is odd and � = +, hence & = 1.

�(Ld,4d,+) = 2y7d+2 � 2y7d+1 + y6d+2 + y2d � 2yd+1 + 2yd.

We are going to compare the lowest degree monomials of both the above polynomials.
For �(⇤) it is 2yd, while for �(�) we have three candidates, namely y6d�2g0+2, 2&yg

0
and

2yd. Since the polynomial must be the same, we deduce that g0 > d and g0 < 1
2 (5d+ 2). If

we look at the monomials of degree d+1, we have for �(⇤) that it is 2yd+1. So �(�) should
have the same monomial, and the only possibility is that g0 = d + 1 and & 0 = 1. But with
the latter substitution the two polynomials do not coincide. Hence, � can not be cospectral
with ⇤.

This completes the proof.

We can finally state the main result of this section.

Theorem 5.3.21 The signed lollipop graph (Lg,n,�) is determined by the spectrum of its
Laplacian matrix.

Proof. Let � be a tentative L-cospectral mate of (Lg,n,�) = ⇤. According to Theorem
5.3.3, � is a signed lollipop graph with possibly one or more signed cycles. If �(⇤) = �̄, by
Theorem 5.3.11 we get that � is connected, and it reduces to a signed lollipop graph. If
�(⇤) = + by Theorems 5.3.12 and 5.3.18, we get that, excluding the special case n = 4g
and � = +, the tentative cospectral mate � is connected, and it reduces to a signed lollipop
graph. By Theorem 5.3.19, if � is a signed lollipop graph, then it is switching isomorphic
to (Lg,n,�). The remaining special case is considered in Lemma 5.3.20 and it leads to non
cospectral graphs.

This completes the proof.

From Theorem 5.2.6 (iii), we deduce that the (signed) subdivisions of signed lollipop
graphs that A-cospectral mates cannot be subdivision graphs. Since the subdivision of
lollipop graph is a lollipop graph with even order and even girth not less than 6, the following
corollary holds:

Corollary 5.3.22 Let � be A-cospectral with a signed lollipop graph (L2g,2n,�), where g �
3. If � is a subdivision graph, then � is switching isomorphic to (Lg,2n,�).



42 5.3 Spectral determination of signed lollipop graphs



Chapter 6

Signed graphs whose second
largest Laplacian eigenvalue
does not exceed 3

Results of this chapter are published in [8].

6.1 Signed graphs whose second largest Laplacian eigen-
value does not exceed 3

In this section we determine the family of connected signed graphs whose second largest
L-eigenvalue does not exceed 3. Observe that in view of Interlacing theorem, the latter
property is hereditary (or, monotone), in fact if µ2(�)  3 then µ2(�0)  3 for any �0

subgraph of �. On the other hand, if a signed graph � has µ2(�) > 3 then the same holds
for any �0 containing �. In order to better deal with this problem, we will consider two
subsections one for n  6 and the other for n � 7.

6.1.1 Signed graphs with µ2  3 and n  6

In this subsection we investigate the signed graphs with the property µ2  3 and n  6. In
Fig 6.1 we depict the connected signed graphs on at most 6 vertices which are forbidden for
the property µ2  3, it is routine to verify that each of them has µ2 > 3.
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Figure 6.1: Forbidden subgraphs for the property µ2  3.
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In Fig 6.2 we depict the maximal signed graphs for the property µ2  3 and order equal
6 (to be proved later in this section). The triangles in the signed graph �5 can be balanced
or unbalanced, in fact �5 represents three non-switching equivalent signed graphs on the
same underlying graph. The maximality is easy to check, in fact the addition of an edge
(any sign) leads to some (switching isomorphic) forbidden subgraph given in Fig 6.1.
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Figure 6.2: Maximal signed graphs of order 6 for the property µ2  3.

We are now ready to prove that the graphs depicted in Fig 6.1 are indeed all forbidden
subgraphs for n  6, while those in Fig 6.2 are all maximal graphs for the property µ2  3
and n  6. To prove the latter claims, we proceed by case analysis.

Theorem 6.1.1 Let � be a signed graph such that µ2(�)  3 and n  6. Then � is a
subgraph of one of the graphs �1 � �6.

Proof. Without loss of generality we can restrict to connected signed graphs. It is routine
to check that any tree with at most 6 vertices has µ2  3, and any such a tree is a subgraph
of some signed graph among �1 – �6. Therefore, in the remainder of the proof we will focus
on signed graphs containing at least one cycle. We split the proof by the order and the girth.
The case n  4 is left to the reader.

Assume first that n = 5. Since �4 = (K5,�), any signed graph on 5 vertices whose odd
cycles are unbalanced and even cycles are balanced has a signature equivalent to the all
negative signature, and hence µ2  3. Hence, we just need to consider signed graphs with at
least an unbalanced even cycle or a balanced odd cycle. But (C4, �̄) = ⇤1 and (C5,+) = ⇤4

are forbidden, so the only possibility is that the signed graph contains at least one odd
balanced triangle. In the latter case, (a) if the signed graph contains just a (balanced)
triangle then it is a subgraph of either �1 or �5, any other configuration leads to ⇤3, (b) if
the signed graphs contains two triangles (one being balanced), then it is a subgraph of �5,
otherwise one between ⇤1 and ⇤2 appears as a subgraph.

Assume next that n = 6. Recall that ⇤1, ⇤4, ⇤5 and ⇤6 are forbidden, so we do not have
unbalanced cycles of length � 4 or positive pentagons. The latter means that balanced or
unbalanced triangles, balanced quadrangles or balanced hexagons are allowed.

Let the girth be 3. Consider first that an unbalanced triangle appears, then (C4,+),
(C6,+) and (C5,�) cannot appear in the signed graph since they lead to forbidden config-
urations ⇤6 and ⇤8–⇤11. Possibly, another triangle is in the signed graph, but they have to
share one vertex otherwise ⇤9 arises, hence the signed graph is a subgraph of �5. Finally, if
exactly one unbalanced triangle appears, then in view of ⇤8–⇤11, then the signed graph is a
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subgraph of �5 or �6. Consider next that a balanced triangle appears, due to the previous
case, we can assume that no unbalanced triangles appear in the graph. If there is a balanced
quadrangle, then they only share a vertex, otherwise ⇤2 or ⇤3 appear, hence we arrive to
�2. If there is a balanced hexagon, then ⇤3 again arises. To conclude this subcase, if only
positive triangles are allowed, then, in order to avoid ⇤3, only subgraphs of �1 or �5 are
allowed.

Now, let the girth be 4. If so, since ⇤7 is forbidden then the signed graph must be a
subgraph of �2 or �3. If the girth is 5 then ⇤6 appears and we are done. Finally, if the girth
is 6, then the unique possible signed graph is (C6,+) that is subgraph of �3.

This completes the proof.

6.1.2 Signed graphs with µ2  3 and n � 7

In this subsection we consider the connected signed graphs with the property µ2  3 and
n � 7. Aouchiche et al. in [3] proved that the trees depicted in Fig 6.3 have their second
largest (signless) Laplacian eigenvalue greater than 3. On the other hand, for trees the
spectral theory of signed and unsigned graphs is just the same, so these trees are also
forbidden for the property µ2  3 and n � 7.
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Figure 6.3: Forbidden trees for the property µ2  3.

In the same paper, it is also proved that the trees of Fig 6.3 are all the minimal forbidden
graphs against the property µ2  3 and n � 7. The family of (unsigned) graphs which does
not contain some tree from Fig 6.3 consists of triangles and paths of length at most 2 all
sharing a common vertex. Alternatively, we can say that the diameter is less than 5, at most
one vertex of degree greater than 2 is allowed and its eccentricity is at most 2. Aouchiche et
al. in [3] called the above family firefly graphs. Clearly, the latter result can be interpreted
in the context of signed graphs as valid for firefly graphs, whose triangles are all unbalanced.
However, we will later show that also balanced triangles are allowed, and we arrive to the
class of signed firefly graphs, whose triangles can be balanced or unbalanced.

For this purpose, let us define a notation for signed firefly graphs. A signed firefly
graph F (s, t, p, q) is the signed graph consisting of s balanced triangles and t unbalanced
triangles (possibly, s = t = 0) all of them sharing exactly a vertex v, and at v we have
p pendant vertices and q pendant paths of length 2. If q = 0, then the signed graph
F (s, t, p, 0) = B(s, t, p) will be called a signed butterfly graph. If both p = q = 0, then
F (s, t, 0, 0) = F(s, t) will be called a signed friendship graph. Finally, if s = t = 0, then
F (0, 0, p, q) = S(p, q) is a stretched star, or simply a star when q = 0. Observe that the
cycles are edge-disjoint, hence the signature is univocally determined by the number of



46 6.1 Signed graphs whose second largest Laplacian eigenvalue does not exceed 3

balanced and unbalanced triangles. In Fig 6.4 we depict examples of signed firefly, butterfly
and friendship graphs.
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Figure 6.4: Signed firefly graphs.

In the following lemma we discuss the connected signed graphs with maximum degree
�  2. The proof is omitted.

Lemma 6.1.2 For the path Pn and the cycle (Cn,�) we have: (a) µ2(Pn)  3 if and only
if n  6, (b) µ2(Cn,�)  3 only for (C3,±), (C4,+), (C5,�) and (C6,+).

In view of the above lemma, in the sequel we will restrict to graphs with � � 3. We now
give the analogous result of Aouchiche et al. in terms of signed graphs (cf. Theorem 2.5 in
[3] and Theorem 3.5 in [39]).

Theorem 6.1.3 Let � be a connected signed graph on n � 7 vertices with µ2(�) = µ2  3.
Then � = F (s, t, p, q), and in particular

(1) µ2 = 1 if and only if � = F (0, 0, p, 0);

(2)
3 +

p
5

2
� 1

n
< µ2 <

3 +
p
5

2
if and only if � = F (0, 0, p, 1);

(3) µ2 =
3 +

p
5

2
if and only if � = F (0, 0, p, q) and q > 1;

(4) 3� 5

2n
< µ2 < 3 if and only if � = F (0, 1, p, q);

(5) µ2 = 3 if and only if � = F (s, t, p, q), with s 6= 0 or t � 2.

Proof. Recall that the Laplacian of trees is switching similar to the Laplacian of signed
trees, hence the proof of items regarding trees can be taken from [3]; the same applies also
when s = 0, since the Laplacian of F (0, t, p, q) is switching similar to the signless Laplacian
of the unsigned graphs. Hence, we need to check the items in the statement in the other
cases. It can be done by computing the Laplacian polynomial of signed firefly graphs. For
this purpose, we will make use of Theorem 5.1.9. Recall, from L = D�A, the Laplacian of
a signed graph can be interpreted as the adjacency matrix of a signed graph with signature
reversed and loops (which represent the degrees). Since the signature is reversed, then
balanced triangles will give negative contribution and unbalanced triangles will give positive
contributions.
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To show the procedure, we first compute the characteristic polynomial of the signed
friendship graph F(s, t). The graph corresponding to the Laplacian of L(F(s, t)) = D(F(s, t))�
A(F(s, t)) will have loops of “weight” deg(vi), positive edges become negative edges and
viceversa, balanced triangles and unbalanced triangles will have weight �1 and +1, respec-
tively. By keeping the latter in mind, we have that the L-polynomial of F(s, t) can be
decomposed by the use of (5.1.9) at the vertex v (of degree 2s+ 2t).

 (F(s, t), x) = (x3 � 2x2(s+ t+ 2) + 3x(2s+ 2t+ 1)� 4t)((x� 1)(x� 3))s+t�1. (6.1)

In view of the above polynomial we can say that 1 and 3 are eigenvalues of multiplicity
at least s + t � 1. Let fs,t(x) = f(x) be the polynomial of third degree in (6.1). It is easy
to check that:

f(0) = �4t, f(1) = 4s, f(3) = �4t.

Hence, when s, t > 0 the polynomial  (F(s, t), x) has one eigenvalue in the real interval
(0, 1), 1 is an eigenvalue of multiplicity s+ t� 1, there is an eigenvalue in the real interval
(1, 3), 3 is an eigenvalue of multiplicity s+ t� 1, and there is an eigenvalue above 3. So the
spectrum of F(s, t) is the following (the eigenvalues are listed in a non-decreasing order):

Spec(F(s, t)) = {x1, 1
(s+t�1), x2, 3

(s+t�1), x3},

where the xi’s are the roots of the polynomial fs,t. We still have to consider the cases in
which either s = 0 or t = 0. It is worth mentioning that for t = 0, the signed friendship
graph F(s, 0) is switching equivalent to the unsigned friendship graph; while for s = 0, the
the Laplacian matrix of F(0, t) is switching similar to the signless Laplacian of F(t, 0).

Their L-spectra are:

Spec(F(s, 0)) = {0, 1(s�1), 3(s), 2s+ 1},

Spec(F(0, t)) = {1(t), 1
2
(2t+ 3�

p
4t2 � 4t+ 9), 3(t�1),

1

2
(2t+ 3 +

p
4t2 � 4t+ 9)}.

Note that Spec(F(s, t)) has at most 5 distinct eigenvalues.

Similarly for the signed butterfly graph F (s, t, p, 0) = B(s, t, p) we have

 (B(s, t, p), x) = (x� 1)s+t+p�1(x� 3)s+t�1gp,s,t(x), (6.2)

where gs,t,p(x) = g(x) = x3 � x2(p+ 2(s+ t+ 2)) + 3x(p+ 2s+ 2t+ 1)� 4t). Let y1, y2, y3
be the three roots of g(x). Since

g(0) = �4t, g(1) = 2p+ 4s, g(3) = �4t,

we deduce that the spectrum of the signed butterfly graph is the following:

Spec(B(s, t, p)) = {y1, 1(p+s+t�1), y2, 3
(s+t�1), y3}.

Note that for t = 0, we obtain an integral signed graph

Spec(B(s, 0, p)) = {0, 1(p+s+t�1), 3(s), 2s+ p+ 1}.

Consider next F (s, t, p, q), with (s, t) 6= (0, 0), t > 0 and q � 1. By applying Theorem 5.1.9
at the vertex v, we get

 (F (s, t, p, q), x) = (x� 1)p+s+t�1(x� 3)s+t�1(x2 � 3x+ 1)q�1 hp,s,t,q(x), (6.3)
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where hs,t,p,q(x) = h(x) = x5 � x4(p + q + 2s + 2t + 7) + 2x3(3p + 3q + 2(3s + 3t + 4)) �
x2(10p+11q+20s+24t+13)+ 3x(p+2q+2s+6t+1)� 4t. Let z1, z2 . . . , z5 be the roots
of h(x). Since

h(0) = �4t, h
⇣3�

p
5

2

⌘
= q, h(1) = �2p� 4s, h

⇣3 +
p
5

2

⌘
= q, h(3) = �4t,

we deduce that the spectrum of the signed firefly graph is the following:

Spec(Fs,t,p,q) = {z1,
⇣3�

p
5

2

⌘(q�1)
, z2, 1

(p+s+t�1), z3,
⇣3 +

p
5

2

⌘(q�1)
, z4, 3

(s+t�1), z5}.

Also in this case, for t = 0 we have a slightly di↵erent spectrum:

Spec(Fs,0,p,q) = {0,
⇣3�

p
5

2

⌘(q�1)
, u1, 1

(s+p�1), u2,
⇣3 +

p
5

2

⌘(q�1)
, 3(s), u3},

where u1, u2 and u3 are the roots of x3 � x2(p+ q+2(s+2))+ x(3p+3q+2(3s+2))� p�
2q � 2s� 1.

Finally, we have to consider the firefly with no triangles F0,0,p,q. Using the same proce-
dure, we get the following spectrum for q � 1

Spec(F0,0,p,q) = {0, 3�
p
5

2

(q�1)

, w1, 1
(p�1), w2,

3 +
p
5

2

(q�1)

, w3},

where the wi’s are the roots of x3 � x2(p+ q + 4) + x(3p+ 3q + 4)� p� 2q � 1.

To complete the proof, we just need to show that any signed graph whose underlying
graph is not a firefly graph, then it contains as a subgraph one of the forbidden trees given
in Fig 6.2. Let � be a connected signed graph of order n � 7 with µ2(�)  3 and � � 3. If
the diameter of � is at least 5, then one among T1, T2 and T3 appear as a subgraph. Hence
the diameter of � is 4 or less. If � has two vertices of degree at least 3, then one among
T4, T5 and T7 appear as a subgraph. Hence, there is only one vertex of degree at least 3
and the diameter is at most 4. Cycles of length � 4 can be discarded since they lead to T3,
hence only triangles are allowed. Finally, the unique vertex of degree greater than 2 must
have eccentricity 2 otherwise T6 appears as a subgraph.

Therefore, � is a signed firefly graph. This completes the proof.

From the polynomials computed in the previous proof we can deduce the multiplicities
of the eigenvalues 3 and 1.

Lemma 6.1.4 Let F (s, t, p, q) be a signed firefly graph. Then

a) 3 is an eigenvalue of multiplicity either s for t = 0, or s+ t� 1 for t > 0;

b) 1 is an eigenvalue of multiplicity s+ t+ p� 1.

Now we have a complete characterization of signed graphs whose second largest L-
eigenvalue does not exceed 3. Of course, this characterization includes and extends those
given in [3, 39, 48].

Theorem 6.1.5 Let � be a connected signed graph such that µ2(�)  3. Then � is a
subgraph of �1–�6 or � is a signed firefly graph. The minimal forbidden graphs against the
property µ2  3 are the signed graphs ⇤1–⇤11 and the trees T1–T7.
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6.2 Spectral determination of signed firefly graphs

In the previous section we have identified the (connected) signed graphs whose second
largest L-eigenvalue does not exceed 3, and by excluding the exceptions on at most 6 vertices,
we find that such signed graphs are indeed signed firefly graphs. In this final section we study
their spectral determination with respect to the Laplacian matrix. For this purpose, we need
some additional notation and preliminary results.

Definition 6.2.1 A signed graph � = (G,�) is determined by the spectrum, or the eigen-
values, of its matrix M(�) if and only if any other signed graph ⇤ = (H,�0) such that M(⇤)
has the same spectrum of M(�) implies that � and ⇤ are two switching isomorphic graphs.
If so, we say that � is determined by the spectrum of the matrix M , or � is a DMS graph.

If ⇤ is not switching isomorphic to �, we say that the two graphs are M -cospectral, or,
equivalently, ⇤ is a M -cospectral mate of �. The matrix su�x M - will be omitted if clear
from the context.

The following theorem is proved in [7] and it provides some basic results for L-cospectral
signed graphs. Note that the second item is the well-known fact that for connected signed
graphs the least eigenvalues is 0 if and only if the graph is balanced (see [51]); a study on
the least eigenvalue can be found in [5].

Theorem 6.2.2 Let � = (G,�) and ⇤ = (H,�0) be two Laplacian cospectral signed graphs,
and let t+� (t�� ) be the number of balanced (resp., unbalanced) triangles in �. Then

(i) � and ⇤ have the same number of vertices and edges;

(ii) � and ⇤ have the same number of balanced components;

(iii) � and ⇤ have the same Laplacian spectral moments;

(iv) � and ⇤ have the same sum of squares of degrees,
Pn

i=1 dG(vi)
2 =

Pn
i=1 dH(vi)2;

(v) 6(t�� � t+� ) +
Pn

i=1 dG(vi)
3 = 6(t�⇤ � t+⇤ ) +

Pn
i=1 dH(vi)3.

Friendship graphs have been very studied in the literature. So far it has been proved
that friendship graphs are determined by the spectrum of the Laplacian and of the signless
Laplacian [41, 48]. For the adjacency matrix we have that the friendship is determined by
its spectrum unless the number of triangles equals sixteen [21]. Here, we show that, for n
enough large, signed friendship graphs and, in general, signed firefly graphs are determined
by the spectrum of their Laplacian matrix, which extends the results given in [3, 39, 48].

Lemma 6.2.3 Let � be a cospectral mate of F (s, t, p, q), with maximum degree � = 2s +
2t+ p+ q � 9. Then � is connected.

Proof. Assume that � is disconnected, so � = ⌃1[⌃2[ · · ·[⌃k where ⌃i is connected and
µ1(⌃i) � µ1(⌃j) for 1  i < j  k. Since 2s+ 2t+ p+ q � 9, then K1,9 is a subgraph and
µ1(F (s, t, p, q)) � 9. So ⌃1 can not be a subgraph of �1–�6, since their maximum spectral
radius is 8 = µ1(K5,�). Hence in the remainder of the proof, ⌃1 = F (s0, t0, p0, q0). From
µ2(F (s, t, p, q))  3 we have µ1(⌃i)  3 for all i � 2. In view of Theorem 5.1.7, we know
that µ1(⌃i)  3 if and only if ⌃i 2 {K1, P2, P3, (C3,+)}, consequently ⌃i is a balanced
signed graphs for any i � 2. On the other hand F (s, t, p, q) and � share the same number of
balanced components (cf. Theorem 6.2.2 (ii)), which implies that for t 6= 0 the signed firefly
F (s, t, p, q) is unbalanced. Therefore � has no balanced components it must be connected.

Hence, it remains to consider F (s, 0, p, q). The latter is balanced, so � = ⌃1 [ ⌃2, with
⌃1 = F (s0, t0, p0, q0) unbalanced (t0 > 0) and ⌃2 2 {K1, P2, P3, (C3,+)}.
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Case 1. s > 0.
To discard the remaining cases, we consider the multiplicity of 1’s and 3’s in the spectrum

of F (s, 0, p, q). In view of Lemma 6.1.4, we get that the multiplicity of 1 is p+ s� 1 and the
multiplicity of 3 is s (note, t = 0). We consider several subcases based on ⌃2.

Assume that ⌃2 = (C3,+), then � = F (s0, t0, p0, q0) [ (C3,+) for some t0 > 0. In view of
Theorem 6.2.2 (i), both signed graphs share the same order and the size. So we deduce that
s = s0 + t0 (cf. the cyclomatic number), but the latter implies that � has 3 as an eigenvalue
of multiplicity s+ 1, namely s� 1 from ⌃1 and 2 from ⌃2. So (C3,+) is discarded.

Similarly to the previous case, by letting ⌃2 = P3, we obtain that for � the multiplicity
of 3 is s+ 1, and P3 is discarded as well.

Assume that ⌃2 = P2, now � contains 2 as an eigenvalue. However  (F (s, 0, p, q), 2) =
�2(2s+ p� 1), which implies that 2 does not belong to the spectrum of F (s, 0, p, q).

Finally, let ⌃2 = K1, so � = F (s0, t0, p0, q0). By Theorem 6.2.2 (i), and by equating the
multiplicity of 1, we obtain that s0 + t0 = s + 1, p0 = p � 1 and q0 = q � 1. Now, we have
the degree sequence of �, that is {2s+ p+ q, 2(2s+q+1), 1(p+q�2), 0}. By Theorem 6.2.2 (iv),
the sum of squares of degrees of vertices from F (s, 0, p, q) and � di↵ers by 2, and we deduce
that the two signed graphs cannot be cospectral.

Case 2. s = 0.
In this case F (0, 0, p, q) is a tree. In view of Theorem 6.1.3 (1) and (2), µ2(F (0, 0, p, q)) 

3+
p
5

2 < 3, so ⌃2 can be neither P3 nor (C3,+), since their spectral radius is 3. Hence ⌃2

is a tree, and consequently ⌃1 = F (s0, t0, p0, q0) is an unbalanced unicyclic graph. The only
possibility is that ⌃1 = F (0, 1, p0, q0), but, in view of Theorem 6.1.3 (4), we get µ2(�) >

3� 5
2n > 3+

p
5

2 � µ2(F (0, 0, p, q)), and again they can not be cospectral.

Hence � is a connected signed graph. This completes the proof.

In the next theorem we discuss the spectral determination of signed friendship graphs.

Theorem 6.2.4 Let F(s, t) be a signed friendship graph of order n � 9. Then F(s, t) is
determined by the spectrum of its Laplacian matrix.

Proof. Let � be a tentative cospectral mate of F(s, t). In view of Lemma 6.2.3, � is
a connected signed graph. Furthermore, µ1(F(s, t)) � 9 and µ2(F(s, t))  3, hence, by
Theorem 6.1.5, � is a signed firefly graph F (s0, t0, p0, q0). From Theorem 6.2.2 (i) � has the
same cyclomatic number of F(s, t), that is p0 = q0 = 0 and � = F(s0, t0) with s0 + t0 = s+ t.

Assume first that t = 0 and s � 4. If so, F(s, 0) is a balanced graph with just 4 di↵erent
integral eigenvalues and µ2 = 3 with multiplicity s. If t0 > 0 then µ2(�) = 3 with multiplicity
s + t � 1, and they cannot be cospectral. Hence, t0 = 0 and s0 = s, and they are switching
equivalent.

Assume finally, that t 6= 0 and s+ t � 4. If F(s, t) and � = F(s0, t0) are cospectral, then
the polynomials fs0,t0 and fs,t(x) must be the same. By equating the least coe�cient we get
t0 = t. Hence, also s0 = s, which implies � being switching equivalent to F(s, t).

This completes the proof.

Theorem 6.2.5 Let B(s, t, p) = F (s, t, p, 0) be a signed butterfly graph with s+t > 0, p > 0
of order n � 9. Then B(s, t, p) is determined by the spectrum of its Laplacian matrix.

Proof. Let � be a tentative cospectral mate of B(s, t, p). In view of Lemma 6.2.3, � is a
connected signed graph. Furthermore, µ1(B(s, t, p)) � 9 and µ2(B(s, t, p)) � 3� 5

2n , hence,
by Theorem 6.1.5, � is a signed firefly graph F (s0, t0, p0, q0) with s0 + t0 > 0.
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From Theorem 6.2.2 (i) and Lemma 6.1.4, we get the following equalities:

8
<

:

2s0 + 2t0 + p0 + 2q0 = 2s+ 2t+ p
s0 + t0 = s+ t
s0 + t0 + p0 � 1 = s+ t+ p� 1

whose solution is s0 + t0 = s + t, p0 = p and q0 = 0. Hence, � = B(s0, t0, p). By comparing
their cubic polynomials gs,t,p and gs0,t0,p we see that t0 = t (cf. the free term), and then
s0 = s. So � is switching equivalent to B(s, t, p).

Theorem 6.2.6 Let F (s, t, p, q) be the signed firefly graph with s + t > 0, q > 0 and
s+ t+ p+ q � 9. Then F (s, t, p, q) is determined by the spectrum of its Laplacian matrix.

Proof. Let � be a tentative cospectral mate of F (s, t, p, q). By Lemma 6.2.3 and by the
restrictions on the order, we get � = F (s0, t0, p0, q0). We again consider the system coming

from equating their orders, sizes, and multiplicities of the eigenvalues 1 and 3+
p
5

2 :

8
>><

>>:

2s0 + 2t0 + p0 + 2q0 = 2s+ 2t+ p+ 2q
s0 + t0 = s+ t
s0 + t0 + p0 � 1 = s+ t+ p� 1
q0 � 1 = q � 1

Hence, s0 + t0 = s + t p0 = p and q0 = q. To get that t0 = t and s0 = s, it is enough to
compare the free term of the polynomials hs,t,p,q in Theorem 6.1.3. And we conclude that
� is switching equivalent to F (s, t, p, q).

It remains to show that signed fireflies F (s, t, p, q) with s = t = 0 are also determined by
their Laplacian spectra. However, in view of Lemma 6.2.3, a cospectral mate of F (0, 0, p, q)
must be connected, which implies that we are reducing to both the L-theory or Q-theory of
unsigned graphs. So, the spectral determination of F (0, 0, p, q) can be taken from [3], and
we will not prove it again. Finally, by collecting the the above results, we can state the main
result of this section.

Theorem 6.2.7 Let F (s, t, p, q) be a signed firefly graph with 2s + 2t + p + q � 9. Then
F (s, t, p, q) is determined by the spectrum of its Laplacian matrix.

The above theorem can be extended to the remaining cases. Unfortunately, we were not
able to compare the spectra of signed graphs with µ2  3 and order at most 6. It is worth
mentioning that some pair of cospectral non switching isomorphic graphs (in fact, with the
all negative signature) has been already found (cf. H9 and H10 in [48]), so it would not be
surprising that some further pair arises from the more general settings of signed graphs.
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Chapter 7

Conclusions

In the thesis a special case of a long standing conjecture saying that the necessary
conditions are also su�cient ones for Hamiltonian decomposition of complete uniform hy-
pergraphs has been solved. Recently D. Kühn and D. Osthus in [38] solved this problem
completely. The next step in the research of Hamiltonian decompositions should be checking
other families of hypergraphs.

Classifying the full automorphism groups of a family of double generalized Petersen
graphs increased our knowledge about non-Cayley-vertex transitive graphs. There are at
least two ways how these results might be extended. We can consider a triple, quadro, penta,
etc. generalized Petersen graphs define as follows.

Definition 7.0.8 Given an integer n � 3 and ti 2 Zn \ {0}, 2  2ti < n, where 1  i 
s, the multi generalized Petersen graph MP(n, t1, . . . , ts) is defined to have the vertex set
{xj

i , | i 2 Zn j 2 Z2s+2} and the edge set the union ⌦ [ ⌃ [ I, where

⌦ = {{x0
i , x

0
i+1}, {x

2s+1
i , x2s+1

i+1 } | i 2 Zn} (the outer edges),

⌃ = {{x2j
i , x2j+1

i }, | i 2 Zn, j 2 Zs+1} (the spokes), and

I = {{x2k+1
i , x2k+2

i±t }, | i 2 Zn, k 2 Zs} (the inner edges).

Based on computer-assisted checks we are posting the following three conjectures which
stimulate further research on the topic.

Conjecture 7.0.9 Let � = MP(n, t1, . . . , ts). If n and s are even and tk 2 {1, n
2 � 1} for

any k 2 {1, . . . , s} then � is vertex-transitive.

Conjecture 7.0.10 Let � = MP(n, t1, . . . , ts). If n is even, s is odd, and t2k = ±1 (mod n)
and tk = ±tk0 (mod n

2 ) for odd k, k0 22 {1, . . . , s} and tk 2 {1, n
2 � 1} for even k 22

{1, . . . , s} then � is vertex-transitive.

The main idea in proving these conjectures is to find an automorphism of the graph in
question fixing spokes (as a set) and interchanging cycles on the set ⌦ [ I. First, one can
see that ↵ : xj

i 7! xj
i+1 is an automorphism of the graph MP(n, t1, . . . , ts). Second, observe

that MP(n, t1, . . . , tk, . . . , ts) ⇠= MP(n, t1, . . . ,
n
2 � tk, . . . , ts). Third, one should prove that

a mapping � defined by

� : x0
2i 7! x1

2it, x0
2i+1 7! x2

(2i+1)t, x2
2i 7! x3

2it, x2
2i+1 7! x0

(2i+1)t,

x1
2i 7! x0

2it, x1
2i+1 7! x3

(2i+1)t, x3
2i 7! x2

2it, x3
2i+1 7! x4

(2i+1)t,

. . . .

is an automorphism interchanging cycles. And finally, it needs to be proven that the group
h↵, �i is acting transitively on MP(n, t1, . . . , ts).
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Conjecture 7.0.11 The su�cient conditions for MP(n, t1, . . . , ts) being vertex-transitive
are the same as necessary ones.

One the other hand, we can treat the double generalized Petersen graphs as a special
case of the so-called split rose window graphs (see Figure 7.1). First steps in this research
direction is already in consideration in collaboration with B. Frelih, K. Kutnar, T. Pisanski.

Figure 7.1: The split rose window graph SW1(8, 1, 2, 3).

Definition 7.0.12 Given an integer n � 3 and a, k, b 2 Zn \ {0}, the split rose window
graph of type 1 SW1(n, a, k, b) is defined to have vertex set {xi, ui, vi, yi| i 2 Zn} and edge
set the union ⌦ [ ⌃ [ I, where

⌦ = {{xi, xi+a}, | i 2 Zn} [ {{yi, yi+b}, | i 2 Zn} (the outer edges),

⌃ = {{xi, ui}, | i 2 Zn} [ {{yi, vi}, | i 2 Zn} (the spokes), and

I = {{ui, vi}, | i 2 Zn} [ {{ui, vi+k}, | i 2 Zn} (the inner edges).

The theorems that are proven in the signed spectral part of the thesis are generalization
of an analogues theorems for standard graphs. Further attempts to generalized result to
signed graph theory and creating new theorems are being already made.
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[9] F. Belardo, S.K. Simić, On the Laplacian coe�cients of signed graphs, Linear Algebra Appl. 475 (2015)
94–113.

[10] C. Berge, “Graphs and hypergraphs”, North Holland, Amsterdam, 1979.

[11] J.C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete
Math. 3 (1978) 21–28.

[12] J.C. Bermond, A. Germa, M.C. Heydemann, D. Sotteau, Hypergraphes hamiltoniens, in Problemes
combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), vol 260 of
Colloq. Internat. CNRS, Paris (1973), 39-43.

[13] Bosma, W., Cannon, J. Playoust, C.: The Magma Algebra System I: The User Language, J. Symbolic
Comput. 24 (1997), 235-265.

[14] R. Boulet, B. Jouve, The lollipop graph is determined by its spectrum, Electron. J. Combin. 15 (2008),
research paper R#74.

[15] D.Bryant, Cycle decompositions of complete graphs, Surveys in Combinatorics 2007, Cambridge Uni-
versity Press.

[16] M. Buratti, A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Mathematics,
Volume 279, Issues 1-3, 28 March 2004, Pages 107-119

[17] F. Castagna, G. Prins, Every generalized Petersen graph has a Tait coloring, Pacific J. Math 40 (1972),
53–58.

[18] H. S. M. Coxeter, Self-dual configurations and regular graphs, Bulletin Amer. Math. Soc. 56 (1950),
413–455.

[19] B. Frelih, K. Kutnar, Classification of cubic symmetric tetracirculants and pentacirculants, European
J. Combin. 34 (2013), 169–194.

57



58 BIBLIOGRAPHY

[20] S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Alg. Disc. Meth.,
Vol. 3 n. 3 (1982) 319–329.
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Povzetek v slovenskem jeziku

DOLOČENI RAZREDI (HIPER)GRAFOV IN
NJIHOVE ALGEBRIČNE LASTNOSTI

Disertacija povezuje različna področja teorije grafov, s posebnim poudarkom na alge-
braični teoriji grafov, predstavi rešitve določenih odprtih problemov, kot so dekompozi-
cija polnih hipergrafov na hamiltonske cikle, in razširi rezultate teorije grafov na teorijo
predznačnih grafov. V disertaciji se še posebej posvetimo sledečim odprtim problemom:

(i) Kateri hipergrafi premorejo dekompozicijo na hamiltonske cikle?

(ii) Kako najti celotno grupo avtomorfizmov dvojno posplošenega Petersenovega grafa?

(iii) Kaj lahko karakteriziramo predznačne lizika grafe glede na njihove Laplaceove lastne
vrednosti?

(iv) Je mogoče karakterizirati vse predznačne grafe z majhno drugo Laplaceovo lastno vred-
nostjo?

Teoretična izhodǐsča

Hipergraf H = (V,E) je urejeni par dveh množic, množice točk V = V (H) = Zn =
{0, 1, . . . , n� 1} in množice hiperpovezav E = E(H) = {e0, e1, . . . , em}, kjer je ei ✓ V . Če
velja |ei| = k za vse ei 2 E, rečemo, da je H k-uniformen hipergraf. Popoln k-uniformen
hipergraf na n točkah vsebuje kot povezave vse k-podmnožice množice {0, 1, . . . , n � 1}.
Takšen hipergraf označujem s Kk

n. Obstajajo različna pojmovanja Hamiltonskih ciklov v
hipergrafih; vsa so veljavne posplošitve standardnega pojma v običajnih grafih. V tem
delu smo se osredotočili na Bergevo pojmovanje [10]. Hamiltonski cikel v k-uniformnem
hipergrafu H je zaporedje (x0, e0, x1, e1, . . . , xn�1, en�1, x0), kjer so x0, x1, . . . , xn�1 točke
hipergrafa H in e0, e1, . . . , en�1 takšne hiperpovezave hipergrafa H, da velja xi, xi+1 2 ei,
0  i  n� 1, kjer operiramo z indeksi točk modulo n in kjer je ei 6= ej za i 6= j. Rečemo,
da premore hipergraf H = (V,E) dekompozicijo na Hamiltonske cikle, če obstaja takšna
družina Hamiltonskih ciklov C = {C1, C2, . . . , Ch}, da je E(Ci) \ E(Cj) = ; za i 6= j in[

E(Ci) = E(H).

Leta 1884 je Walecki dokazal, da za liha cela števila n popoln graf K2
n premore Hamil-

tonsko dekompozicijo, torej particijo povezav grafa na Hamiltonske cikle, medtem ko za
soda števila n premore popoln graf K2

n dekompozicijo na popolno prirejanje in Hamiltonske
cikle (glej [15]). Za k = 3 je Bermond [11] prikazal Hamiltonsko dekompozicijo popolnega
3-uniformnega hipergrafa K3

n za n ⌘ 2 (mod 3) in n ⌘ 4 (mod 6). Verrall [46] je kasneje
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dopolnil rešitev za primer n ⌘ 1 (mod 6) in dokazal, da v primeru n ⌘ 0 (mod 3) hipergraf
K3

n � I, kjer je I popolno prirejanje, premore Hamiltonsko dekompozicijo. Kühn in Os-
thus [38] sta dokazala obstoj Hamiltonske dekompozicije Bergovega tipa za poljubna n in k.
Podoben problem na popolnih grafih sta obravnavala Buratti in Del Fra [16]. V disertaciji
smo predstavili potrebne in zadostne pogoje za obstoj ciklične Hamiltonske dekompozicije
hipergrafa Kk

n za poljubna k in n, torej dekompozicije C = {C1, C2, ..., Ch}, kjer je vsak cikel
Ci 2 C, i 2 {1, 2, . . . , h} Hamiltonski in obstaja permutacija � točk grafa Kk

n, ki premore
natanko eno takšno ciklično dekompozicijo, da se množica točk vsakega cikla Ci 2 C ujema
z neko orbito h�i, ki deluje na množici točk grafa Kk

n.

Posplošeni Petersenovi grafi GP(n, k), ki jih je prvi predstavil Coxeter v [18], so naravna
posplošitev dobro znanega Petersenovega grafa. Naj bosta n � 3 in k 2 Zn\{0}, 2  2k < n.
Potem je posplošeni Petersenov graf GP(n, k) definiran z množico točk {ui, vi| i 2 Zn}
in množico povezav ⌦ [ ⌃ [ I, kjer je ⌦ = {{ui, ui+1}, | i 2 Zn} (zunanje povezave),
⌃ = {{ui, vi}, | i 2 Zn} (špice) in I = {{vi, vi+k}, | i 2 Zn} (notranje povezave). Naravna
posplošitev posplošenih Petersenovih grafov so dvojni posplošeni Petersenovi grafi DP(n, t),
ki so bili prvič predstavljeni v [57] kot primeri točkovno tranzitivnih ne-Cayleyjevih grafov.
Naj bosta n � 3 in t 2 Zn \ {0}, 2  2t < n. Potem je dvojni posplošeni Petersenov graf
DP(n, t) definiran z množico točk {xi, yi, ui, vi| i 2 Zn} in množico povezav ⌦ [ ⌃ [ I, kjer
je ⌦ = {{xi, xi+1}, {yi, yi+1} | i 2 Zn} (zunanje povezave), ⌃ = {{xi, ui}, {yi, vi} | i 2 Zn}
(špice) in I = {{ui, vi+t}, {vi, ui+t} | i 2 Zn} (notranje povezave).

Ta disertacija predstavi podatke o povezavi med strukturnimi lastnostmi dvojnih pos-
plošenih Petersenovih grafov in strukturnimi lastnostmi posplošenih Petersenovih grafov
[4, 17]. Ogledali smo si tudi Hamiltonskost, barvanje točk ter barvanje povezav dvojnih
posplošenih Petersenovih grafov. Dokazali smo, da vsak graf DP(2n, t) premore Hamilton-
ski cikel, medtem ko je za grafe DP(2n+ 1, t) obstoj Hamiltonskih ciklov dokazan samo za
primer, ko je t generator grupe Z2n+1. Vsak graf DP(2n, t) je dvodelen, torej za barvanje
točk zadostujeta dve barvi, medtem ko so za graf DP(2n+1, t) potrebne tri barve. Za konec
poglavja pokažemo —še še, da med dvojnimi posplošenimi Petersenovimi grafi ni snarkov,
to je povezan kubični graf brez mostov, katerega kromati čno število povezav je enako 4.

Naj bo graf � = (G,�) predznačen graf, kjer je G vpeti enostavni graf in preslikava
� : E(G) ! {+,�} predznačna preslikava na povezavah grafa G. V literaturi so enos-
tavni grafi proučevani preko lastnih vrednosti številnih matrik, povezanih z grafi. Ena
najbolj proučevanih matrik je sosednostna matrika A(G) = (aij), kjer je aij = 1, ko
sta točki i in j sosedni, in aij = 0 sicer, poleg Laplaceove oziroma Kircho↵ove matrike
L(G) = D(G) � A(G), kjer je matrika D(G) = diag(deg(v1), deg(v2), . . . , deg(vn)) diag-
onalna matrika s stopnjami točk. V zadnjih letih je še ena matrika pritegnila dosti po-
zornosti raziskovalcev; tako imenovana Laplaceove matrika brez predznakov, definirana kot
Q(G) = A(G) + D(G). Matrike lahko priredimo tudi predznačnim grafom. Sosednostno
matriko A(�) = (a�ij), kjer je a�ij = �(ij)aij , imenujemo (predznačna) sosednostna matrika
in matrika L(�) = D(G) � A(�) je pripadajoča Laplaceova matrika. Tako sosednostna
kot Laplaceova matrika sta realni, simetrični matriki, torej so njune lastne vrednosti re-
alne. V disertaciji smo si ogledali problem spektralne karakterizacije, ki ga razširimo na
sosednostno in Laplaceovo matriko predznačnih grafov. Preučimo spektralno determinira-
nost predznačnih lizika grafov in dokažemo, da je vsak predznačni lizika graf determiniran
s spektrom svoje Laplaceove matrike. Drugi problem spektralne teorije grafov, kateremu
se posvetimo v disertaciji, je Laplaceova teorija predznačnih grafov. Osredotočimo se na
predznačne grafe, katerih druga največja Laplaceova lastna vrednost je relativno majhna.
V literaturi se najde podobne raziskave. Včasih je motivacija za raziskavo aplikativna [35]
in številni raziskovalci so proučevali strukturo (ne-predznačnih) grafov z majhno drugo na-
jvečjo lastno vrednostjo neke predpisane matrike grafa [25, 30, 40, 44]. Nedavno [9] so
avtorji posvetili več luči na opazko, da je spektralna teorija predznačnih grafov naravna pos-
plošitev spektralne teorije enostavnih grafov, še posebej, če upoštevamo Laplaceovo teorijo
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predznačnih grafov. Laplaceova teorija predznačnih grafov posplošuje tako spektralno teorijo
Laplaceovih, kot ne-predznačnih Laplaceovih matrik grafov in lahko ponudi kakšno razlago
za pojave z nepredvidljivim vzorcem vedenja (na primer, v [9] za ekstremne grafe glede
na magnitudo koeficientov Laplaceovega polinoma). Po drugi strani so bili grafi z majhno
drugo največjo Laplaceovo in ne-predznačno Laplaceoavo lastno vrednostjo, ki ne presega
3, proučevani tako za Laplaceove kot ne-predznačne Laplaceove grafe [3, 39, 48]. Torej se
je naravno vprašati, kako bi se lahko naredilo revizijo teh rezultatov v širšem kontekstu
Laplaceovih matrik predznačnih grafov. Omembe vredno je tudi, da med drugim srečamo
(predznačne) grafe prijateljstva, kjer so trikotniki lahko uravnoteženi ali neuravnoteženi.
Obravnavamo tudi problem spektralne determiniranosti pri predznačnih grafih (glej tudi [7]).
Ta problem je običajno težji za predznačen kot ne-predznačen primer. Laplaceov spekter
predznačnih grafov pravzaprav sploh ne loči med povezanimi in nepovezanimi predznačnimi
grafi. V disertaciji karakteriziramo in identificiramo vse predznačne grafe, katerih druga
največja Laplaceova lastna vrednost ni večja od 3, in proučimo problem spektralne deter-
miniranosti za primer predznačnih kresnica grafov. Natančneje, dokažemo, da so skoraj vsi
predznačni kresnica grafi določeni s spektrom Laplaceove matrike.

Ciklična Hamiltonska dekompozicija popolnih k-uniformnih hipergrafov

Posvetimo se določanju zadostnih in potrebnih pogojev za obstoj ciklične Hamiltonske
dekompozicije hipergrafa Kk

n za poljubni celi števili k in n. V disertaciji dokažemo sledeča
izreka.

Theorem 7.0.13 Naj bosta k in n takšni pozitivni celi števili, da je k tuje številu n in da
je �k > n, kjer je � najmanǰsi ne-trivialni delitelj števila n. Potem k-uniformni hipergraf
Kk

n premore ciklično Hamiltonsko dekompozicijo.

Theorem 7.0.14 Naj bosta k in n takšni pozitivni celi števili, da k-uniformni hipergraf Kk
n

premore ciklično Hamiltonsko dekompozicijo. Potem je k tuje številu n in �k > n, kjer je �
najmanǰsi ne-trivialni delitelj števila n.

Avtomorfizmi in strukturne lastnosti dvojno posplošenih Petersenovih grafov

Rešujemo problem karakterizacije celotnih grup avtomorfizmov dvojno posplošenih Pe-
tersenovhi grafov DP(n, t). Preverjamo, kateri so hamiltonski, ǐsčemo vrednosti kromatičnega
števila � (DP(n, t)), barvni indeks �0 (DP(n, t)) in odkrivamo, če med grafi DP(n, t) obsta-
jajo snarki. V disertaciji so dokazani sledeči izreki (definicije permutacij alpha,�, �,�, �, ⌘i
se nahajajo na straneh 12, 13).

Theorem 7.0.15 Grupa avtomorfizmov A(n, t) dvojno posplošenega Petersenovega grafa
DP(n, t) je določena na sledeči način:

(i) Če sta n ⌘ 0 (mod 2), 4t = n in (n, t) 6= (4, 1), potem je A(n, t) = h↵,�, �, ⌘i.
(ii) A(4, 1) = h↵,�, �, �, ⌘i.
(iii) Če sta n ⌘ 0 (mod 2), t2 ⌘ ±1 (mod n) in (n, t) 6= (10, 3), potem je A(n, t) =

h↵,�, �, �i.
(iv) A(10, 3) = h↵, �,�i, kjer je

� = (x1, u0)(x2, v3)(x3, y3)(x4, y4)(x5, y5)(x6, v5)(x7, u8)(u1, v7)

(u2, u6)(u3, y2)(u4, v4)(u5, y6)(u7, v1)(v0, y1)(v2, v6)(v8, y7).
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(v) Če sta n ⌘ 2 (mod 4), t2 ⌘ k ± 1 (mod n), kjer je n = 2k in (n, t) 6= (10, 2), potem je
A(n, t) = h↵,�, �, i.

(vi) A(10, 2) = h↵, , µi.
(vii) Če sta n ⌘ 0 (mod 4) in t2 ⌘ k ± 1 (mod n), kjer je n = 2k, potem je A(n, t) =

h↵,�, �,�i.
(viii) A(5, 2) ⇠= S5.

(ix) V vseh primerih, različnih od zgoraj naštetih osmih, velja, da je A(n, t) = h↵,�, �i.

Theorem 7.0.16 Vsak dvojno posplošeni Petersenov graf DP(2n, t) premore hamiltonski
cikel. Vsak dvojno posplošeni Petersenov graf DP(2n+1, t), kjer velja Z2n+1 = hti, premore
hamiltonski cikel.

Theorem 7.0.17 Kromatično število dvojno posplošenega Petersenovega grafa DP(n, t) je
enako 2, če je n sodo število, oziroma enako 3, če je n liho število. Barvni indeks dvojno
posplošenega Petersenovega grafa DP(n, t) je enak 3.

Spektralna karakterizacija predznačnih lizika grafov

Ugotavljamo, katere lastnosti lahko razberemo iz koeficientov Laplaceovega polinoma
predznačnega grafa. Predstavimo določene dokaze, uporabne za problem spektralne karak-
terizacije. Proučujemo tudi Laplaceovo spektralno karakterizacije predznačnih lizika grafov.
V disertacije dokažemo sledeče izreke, pri čemer so definicije pojmov podane v poglavjih 2.3
in 5.3.

Theorem 7.0.18 Naj bo graf � Laplaceov kospekterski par grafa (Lg,n, �̄). Potem je graf �
povezan.

Theorem 7.0.19 Naj bo graf � Laplaceov kospekterski par grafa ⇤ = (Lg,n,+), kjer je
d = gcd(g, n) sodo število. Potem je graf � povezan.

Theorem 7.0.20 Noben par ne-izmenljivih izomorfnih lizika grafov ni Laplaceov kospekter-
ski.

Theorem 7.0.21 Predznačni lizika graf (Lg,n,�) je determiniran s spektrom svoje Laplaceove
matrike.

Predznačni grafi, katerih druga največja Laplaceova lastna vrednost ne
presega 3

Karakteriziramo in identificiramo vse predznačne grafe, katerih druga največja Laplaceova
lastna vrednost ne presega 3. Proučujemo problem spektralne determinacije za predznačne
kresnica grafe. Pokažemo, da so skoraj vsi predznačni grafi prijateljstva določeni s spektrom
Laplaceove matrike. Vseh definicij tu ne bomo ponavljali, nahajajo pa se v angleškem jeziku
v poglavju 2.3 in na straneh 45� 47.

Theorem 7.0.22 Naj bo graf � povezan predznačen graf na n � 7 točkah in naj bo µ2(�) =
µ2  3. Potem je � = F (s, t, p, q) in velja sledeče:

(1) µ2 = 1, če in samo če � = F (0, 0, p, 0);
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(2)
3 +

p
5

2
� 1

n
< µ2 <

3 +
p
5

2
, če in samo če � = F (0, 0, p, 1);

(3) µ2 =
3 +

p
5

2
, če in samo če � = F (0, 0, p, q) in q > 1;

(4) 3� 5

2n
< µ2 < 3, če in samo če � = F (0, 1, p, q);

(5) µ2 = 3, če in samo če � = F (s, t, p, q), kjer s 6= 0 ali t � 2.

Theorem 7.0.23 Naj bo graf F(s, t) predznačen graf prijateljstva reda n � 9. Potem je
graf F(s, t) določen s spektrom svoje Laplaceove matrike.

Theorem 7.0.24 Naj bo graf F (s, t, p, q) predznačen kresnica graf, kjer je s+ t > 0, q > 0
in s+ t+ p+ q � 9. Potem je graf F (s, t, p, q) določen s spektrom svoje Laplaceove matrike.

Metodologija

Osnovna orodja, uporabljena v raziskovanju, segajo od kombinatoričnih in algebraičnih
metod v teoriji grafov do povsem abstraktnih premislekov v sklopu abstraktne in permutaci-
jske teorije grafov. Skozi celoten potek raziskovanja smo za testiranje rezultatov uporabljali
računalnǐski program Magma [13].

Pri problemu ciklične Hamiltonske dekompozicije popolnih k -uniformnih hipergrafov smo
uporabili metode iz [11], [15], [46] v povezavi z grupnimi delovanji, kar nam je omogočilo
rešitev problema ciklične dekompozicije.

Za dvojno posplošene Petersenove grafe smo uporabili posplošeno verzijo Fruchtove
metode [28] za karakterizacijo celotne grupe avtomorfizmov, medtem ko so kombinatorične
konstrukcije dale odgovor glede obstoja hamiltonskih ciklov, kromatičnega števila in kro-
matičnega indeksa.

Pred kratkim so se avtorji [9] posvetili izražanju koeficientov L-polinoma predznačnih
grafov in podali izraz, ki prikaže L-polinom preko A-polinoma določenih drugih predznačnih
grafov. Na te rezultate smo gledali s stalǐsča, da določajo nekatere spektralne invariante, in
nadalje proučevali njihov vpliv na kombinatorično strukturo predznačnih grafov. Proučevali
smo problem Laplaceove spektralne determinacije za skupino predznačnih grafov, poznanih
kot predznačni lizika grafi, in dokazali, da je vsak predznačen lizika graf določen z lastnimi
vrednostmi svoje Laplaceove matrike. Pozornost smo posvetili tudi predznačnim grafom,
katerih druga največja Laplaceova lastna vrednost je dokaj majhna. Podobne raziskave so
bile obravnavane v literaturi, pri čemer je bila včasih motivacija aplikativna [35], in mnogi
raziskovalci so raziskovali strukturo (ne-predznačnih) grafov z majhno drugo največjo lastno
vrednostjo katere od pripadajočih matrik grafa [25, 30, 40, 44].
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