
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

(Final project paper)

Submodularne funkcije

(Submodular functions)

Ime in priimek: Edin Husić

Študijski program: Matematika

Mentor: izr. prof. dr. Martin Milanič

Koper, september 2015

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Edin HUSIĆ

Naslov zaključne naloge: Submodularne funkcije

Kraj: Koper

Leto: 2015

Število listov: 35 Število slik: 1 Število tabel: 2

Število referenc: 34

Mentor: izr. prof. dr. Martin Milanič

Ključne besede: kombinatorična optimizacija, submodularna funkcija, maksimizacija

submodularne funkcije, aproksimacijski algoritem.

Math. Subj. Class. (2010): 68W25, 90C27, 05C65

Izvleček:

V zaključni nalogi je opisan pojem submodularne funkcije in z njim povezani opti-

mizacijski problemi, vključno s problemi minimizacije submodularnih funkcij, mak-

simizacije submodularnih funkcij in submodularnega pokritja. Opisani in analizirani

so izbrani aproksimacijski algoritmi za maksimizacijo submodularnih funkcij, in sicer

požrešna metoda za maksimizacijo monotonih submodularnih funkcij ter trije aproksi-

macijski algoritmi za maksimizacijo submodularnih funkcij v splošnem s faktorji

aproksimacije 1/4, 1/3 in 1/2. Dva izmed teh treh algoritmov sta verjetnostna, tretji je

determinističen. V nalogi je podan tudi nov dokaz izreka, da za vsak hipergraf obstaja

eksakten polimatroidni separator.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 III

Key words documentation

Name and SURNAME: Edin HUSIĆ

Title of final project paper: Submodular functions

Place: Koper

Year: 2015

Number of pages: 35 Number of figures: 1 Number of tables: 2

Number of references: 34

Mentor: Assoc. Prof. Martin Milanič, PhD

Keywords: combinatorial optimization, submodular function, submodular function

maximization, approximation algorithm.

Math. Subj. Class. (2010): 68W25, 90C27, 05C65

Abstract:

In the final project paper the notion of submodular functions is described. Several

examples of optimization problems with submodular objective functions are given, to-

gether with the problem of minimization and maximization of submodular functions

and the submodular set cover problem. Description and analysis of approximation

algorithms for the problem of maximizing a given submodular function under a car-

dinality constraint and for the unconstrained submodular maximization problem are

given. More precisely, we present a greedy algorithm for maximizing a submodular

function under a cardinality constraint, one deterministic algorithm and two random-

ized algorithms with approximation factors 1/3, 1/4 and 1/2, respectively, for solving

the uncostrained submodular maximization problem. A new proof of the theorem

stating that every hypergraph has an exact polymatroid separator is also given.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 IV

Acknowledgement

Most of all I would like to thank my mentor Prof. Martin Milanič who guided me

with his advices through the final project paper. I would like to express my sincere

gratitude for his patience, motivation, knowledge and time devoted to help me. I am

also thankful to him for encouraging the use of correct grammar and consistent notation

in my writings. I was very fortunate to have Him as an advisor.

I would like to acknowledge Prof. Vladimir Gurvich for pointing out useful references

that gave me insight in polymatroid functions. I am also thankful to Prof. Endre Boros

for remarks related to Theorem 2.11 and for commenting on my views.

I express my gratitude to UP FAMNIT for giving me so many opportunities to

learn, study, and explore everything and everywhere.

Special thank goes to my family for supporting me in every possible way and always

being there for me when I need them. Thank you mom, dad, and brother.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 V

Contents

1 Introduction 1

1.1 Probability preliminaries . 3

2 Examples 5

2.1 Modular functions and generalizations 5

2.2 Diameter of edge-induced subforest . 6

2.3 Facility location . 6

2.4 k-dimensional volume of parallelepiped 7

2.5 Cuts . 7

2.6 Coverage functions . 9

2.7 Maximizing the spread of influence through a social network 9

2.8 The rank function of a matroid . 9

2.9 Polymatroid functions . 10

3 Operations preserving submodularity 13

4 Submodular functions optimization 16

4.1 Minimization . 16

4.2 Submodular maximization under constraints 17

4.3 Unconstrained submodular maximization 21

4.3.1 Random set . 21

4.3.2 A deterministic (1/3)-approximation algorithm 23

4.3.3 A randomized (1/2)-approximation algorithm 25

5 Conclusion 29

6 Povzetek naloge v slovenskem jeziku 30

7 Bibliography 32

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 VI

List of Tables

1 Functions f1, f2, and fmin. 14

2 Functions g1, g2, and gmax. 14

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 VII

List of Figures

1 Example for k = 2. 7

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 VIII

List of Abbreviations

i.e. that is

e.g. for example

SFM submodular function minimization

USM unconstrained submodular maximization

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 1

1 Introduction

Submodularity is a property of set functions, that is, functions f : 2V → R that

assign to each subset S ⊆ V a real value f(S). They arise in many different ares like

economy and game theory as utility functions on indivisible goods – discrete items

that can be traded only as a whole. Submodularity appears in machine learning and

generalizes many important problems in optimization such as maximum cut in directed

and undirected graphs and hypergraphs, see Section 2.5. Maximization of submodular

function also generalizes the problem of maximum facility location and other constraint

satisfaction problems, as we will see in Section 2. The biggest part of this final project

paper is devoted to the problem of maximizing sumbodular functions [7,9,21]. Several

different maximization problems and approximation algorithms for solving them are

analysed in Section 4.2. Section 3 offers a short overview of operations that preserve

modularity.

Two Fulkerson prizes were awarded for results concerning submodular functions

minimization, see [22]. In 1982, the Fulkerson prize was awarded to D.B. Judin, Arkadi

Nemirovski, Leonid Khachiyan, Martin Grötschel, Lászlo Lovász and Alexander Schri-

jver for their work on the ellipsoid method. As will be stated in Section 4.1, this proved

that submodular minimization is possible in polynomial time. In 2003, Satoru Iwata,

Lisa Fleischer, Satoru Fujishige, and Alexander Schrijver recived the Fulkerson prize

for showing that submodular minimization is strongly polynomial. Besides that, in Sec-

tion 2.9 special subclass of submodular functions, namely polymatroid functions, will

be presented, which have many applications in graph theory [3]. I observed that poly-

matroid functions can be used to capture the notion of independence in hypergraphs,

see Theorem 2.11 and the remarks following it.

Submodularity can be viewed as discrete analogue of concavity considering deriva-

tives, and has some properties similar to convexity such as allowing the possibility for

efficiently finding the minimum function value.

Definition 1.1. A set function on a finite set V ,1 f : 2V → R, is submodular if for

every A,B ⊆ V we have

1Usually we will denote the power set of a set V with 2V .

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 2

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B) .

Further on we will always assume that V , also called ground set, is finite. A more

intuitive definition of submodularity can be stated using discrete derivatives.

Definition 1.2. Let f : 2V → R be a set function. For a subset S ⊆ V and v ∈ V , we

define

4f (v | S) = f(S ∪ {v})− f(S)

and we say that 4f (v | S) is the discrete derivative of f at S with respect to v.

Discrete derivative is sometimes called marginal gain and exhibits a natural dimin-

ishing return property. A diminishing discrete derivative reminds us of a decreasing

first derivative of differentiable functions. It is well known that a differentiable function

f is concave on an interval if its derivative function f ′ is monotonically non-increasing.

The following two results make it clear why we call submodularity a discrete analogue

of concavity.

Proposition 1.3. A set function f : 2V → R is submodular if and only if

f(S ∪ {s}) + f(S ∪ {t}) ≥ f(S) + f(S ∪ {s, t}) (1.1)

for each S ⊆ V and distinct s, t ∈ V \ S.

Proof. Necessity is trivial by applying the definition of submodularity with A = S∪{s}
and B = S ∪ {t}. We will prove sufficiency by induction on |A4B|, where A4B :=

(A \ B) ∪ (B \ A). Let A,B ⊆ V . First, suppose |A4B| ≤ 2. Then we have either

A ⊆ B, B ⊆ A or A \ B = {s} and B \ A = {t} in which case the statement is true

by (1.1). We set the inductive hypothesis: if n ≥ 3 and we have two sets X, Y ⊆ V

such that |X4Y | < n, then they satisfy: f(X∪Y)+f(X∩Y) ≤ f(X)+f(Y). Suppose

|A4B| = n, we may assume by symmetry that |A \B| ≥ 2. Choose t ∈ A \B. Notice

that |((A \ {t}) ∪B)4A| < n and |(A \ {t})4B| < n. Then, from the inductive

hypothesis applied to (X, Y) = ((A \ {t}) ∪ B,A) and to (X, Y) = (A \ {t}, B),

respectively, we derive

f(A ∪B) + f(A \ {t}) ≤ f((A \ {t}) ∪B) + f(A) ,

f((A \ {t}) ∪B) + f(A ∩B) ≤ f(B) + f(A \ {t}) .

The submodularity condition for (A,B) follows immediately by summing up the above

two inequalities.

Rewriting the same condition with discrete derivatives, we can state that f is sub-

modular if and only if 4f (s | S) ≥ 4f (s | S ∪ {t}). We can easily extend this to

following theorem.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 3

Theorem 1.4. A function f : 2V → R is submodular if and only if for every A ⊆ B ⊆
V and v ∈ V \B it holds that 4f (v | A) ≥ 4f (v | B).

Necessity is again trivial, while sufficiency is easily proved with Proposition 1.3.

Similarly we can define the notion of supermodular functions, just turning the in-

equality in (1.1). It is clear that if a function g is supermodular, then function −g
is submodular, and vice versa. A corresponding equivalence with discrete derivatives

also holds. This way all properties of submodular functions can be translated to su-

permodular functions, and vice versa.

Definition 1.5. A function f : 2V → R is monotone increasing or just monotone, if

for every A ⊆ B ⊆ V , f(A) ≤ f(B).

We say that a function f is monotone decreasing if −f is monotone increasing. A

simple example of a monotone submodular function f can be seen on a two-element

set {a, b}, defined by f({a, b}) = 3, f({a}) = f({b}) = 2 and f(∅) = 0.

Monotonicity as one of very simple and elementary properties of set functions also

has its interpretation in terms of discrete derivatives.

Proposition 1.6. A function f is monotone if and only if all its discrete derivatives

are nonnegative.

Proof. Suppose f is monotone. Then for A ⊆ V and v ∈ V \ A it holds 4f (v | A) =

f(A ∪ {v}) − f(A) ≥ 0 by monotonicity. This proves one implication. For the other

implication, suppose all discrete derivatives are nonnegative. Let A ⊆ B ⊆ V and

v ∈ V \ A, then by assumption we have 4f (v | A) ≥ 0 ⇒ f(A ∪ {v}) ≥ f(A). Let

B \ A = {v1, v2, . . . vk}. Applying the inequality f(A ∪ {v}) ≥ f(A) k times, we get

f(B) = f(A ∪ {v1, v2, . . . , vk}) ≥ f(A ∪ {v1, v2, . . . , vk−1}) ≥ · · · ≥ f(A). (A formal

proof would proceed by induction on k.)

1.1 Probability preliminaries

For analysing randomized algorithms, Algorithm 2 and Algorithm 4 in Section 4 we

need a few preliminaries about expected value. A precise definition of a random variable

will not be needed. Let us just mention that a random variable is a variable whose

value is subject to variations due to chance. A random variable is discrete if it can take

only a finitely or countably many different values. For our purpose we need just the

case where a discrete random variable can take finitely many values. Precise definitions

and proofs of propositions can be found in [14].

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 4

Definition 1.7. LetX be a discrete random variable which can take values {x1, . . . , xn} ⊆
R. We define the expected value of X as

E[X] =
n∑
i=1

xiP (X = xi)

where P (X = xi) denotes the probability that random variable X takes value xi.

Proposition 1.8. The expected value is linear, i.e., if X, Y are random variables taking

values in R and α, β ∈ R then

E[αX + βY] = αE[X] + βE[Y] .

Proposition 1.9. Let X, Y be a random variables such that X takes values in R. Then

the tower property holds, i.e.,

E[X] = E[E[X|Y]] .

Proposition 1.10. The formula for total expected value holds, i.e., given random

variables X, Y which take values in a subset of R and in {y1, . . . , yk}, respectively, we

have

E[X] =
k∑
i=1

P (Y = yi)E[X|Y = yi] .

Suppose we given two random variables A and B. The last proposition allows us to

prove E[A] ∗ E[B] where ∗ ∈ {=, <,>,≤,≥} by proving E[A|Y = yi] ∗ E[B|Y = yi] for

some arbitrary yi and a discrete random variable Y . This will be used in Lemma 4.9

under the term unconditioning.

2 Examples

In this section we will see several examples of submodular functions and optimization

problems with submodular objective functions.

2.1 Modular functions and generalizations

If we replace inequality in the definition of submodular functions by equality we get

the so-called modular functions, i.e., functions f : 2V → R such that for all A,B ⊆ V

it holds f(A) + f(B) = f(A ∪ B) + f(A ∩ B). Equivalently 4f (v | A) = 4f (v | B)

for all A,B and v ∈ V \ (A ∪ B). Modular functions are a discrete analogue of linear

functions, since their discrete derivatives are constant.

Assume f(∅) = 0. Then 4f (v | A) = 4f (v | ∅) = f({v}) or f(A ∪ {v}) =

f(A) + f({v}) for all A ⊂ V and v ∈ V \A. This gives us a representation of modular

functions in the form f(S) =
∑

v∈S w(v) for some weight function w : V → R.

Another source of examples of submodular functions is given by the composition

of any monotone modular function and any concave function. Recall that a function

h : [a, b]→ R is concave if for every two points x, y ∈ [a, b] and any λ ∈ [0, 1], it holds

h(λx+ (1− λ)y) ≥ λh(x) + (1− λ)h(y) .

If h has a second derivative on the interval [a, b], then the equivalent condition for

concavity is that the second derivative is non-positive, i.e., h
′′
(x) ≤ 0 ∀x ∈ [a, b]. This

means that the function h
′

is monotonically non-increasing on the interval [a, b].

Proposition 2.1. The composition g = h ◦ f of a monotone modular function f :

2V → R and a concave function h : R→ R is submodular.

Proof. Let A ⊆ B ⊆ V and v ∈ V \B. Then

4g(v | A) = h(f(A ∪ {v}))− h(f(A))

= h(f(A) + f({v}))− h(f(A)) (by modularity)

≥ h(f(B) + f({v}))− h(f(B)) (since f is monotone and h is concave)

= h(f(B ∪ {v}))− h(f(B)) = 4g(v | B) .

5

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 6

2.2 Diameter of edge-induced subforest

We denote the distance between two vertices u and v in a connected graph G, i.e., the

minimum length of a path connecting them, with d(u, v). Furthermore, we define the

diameter of a graph G = (V,E) to be the length of a longest shortest path. Formally,

diam(G) := maxu,v∈V d(u, v).

Let G = (V,E) be a forest (a graph without cycles). Then, the function f defined

for each subset of edges X ⊆ E as

f(X) :=
∑
K

diam(K) ,

where K ranges over all components of the graph (V,X), is submodular [30].

2.3 Facility location

Suppose we are given n locations where we can open a few facilities in order to serve

a set of m customers. If we open a facility at some location j, among all locations

V = {1, 2, . . . , n}, then we say it provides a service of value Mi,j to customer i. This

way we obtain a matrix M ∈ Rm×n. If all customers are rational and each of them

chooses a facility that provides her/him the highest value, then the total value of

services provided by non-empty set S ⊆ V is

f(S) =
m∑
i=1

max
j∈S

Mi,j .

We also set f(∅) = 0. If ∀i, j it holds that Mi,j is non-negative, then f(S) is monotone

submodular [11].

We now state one similar problem. Suppose that a function c : V → R+ represents

the cost of opening a facility at certain location. The function g : 2V → R, defined as

the sum of total value of services provided by a set S ⊆ V plus the cost of facilities we

did not open, i.e.,

g(S) = f(S) + c(V \ S)

is non-negative submodular.1 The function g represents the gain obtained by opening

facilities at locations S plus the remainder of budget that could be spent compared

to the case if we would open facilities on every location. The difference between f

and g arises when we want to maximize them. Since f is monotone, maximizing it

without any constraint is obvious maxS⊆V f(S) = f(V). Usually we want to maximize

f , demanding some cardinality constraint, and we try to maximize g without any

constraint. (See Section 4.) Facility location models are general and can be used for

other problems as well.

1c(V \ S) :=
∑

i∈V \S c(i).

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 7

2.4 k-dimensional volume of parallelepiped

Let A = {a1, a2, . . . , an} ⊂ Rn be a set of linearly independent vectors, and let for

X ⊆ A, X = {ai1 , ai2 , . . . , aik},

f(X) = log volk(ai1 , ai2 , . . . , aik)

where volk denotes the volume of the parallelepiped spanned by vectors in X. Then

4f (a | X) = log volk+1(ai1 , ai2 , . . . , aik , a)− log volk(ai1 , ai2 , . . . , aik)

= log
volk+1(ai1 , ai2 , . . . , aik , a)

volk(ai1 , ai2 , . . . , aik)

is the logarithm of the height of a on the plane spanned by X, so the discrete derivative

definiton of submodularity holds.

Figure 1: Example for k = 2.

Example for k = 2 can be seen in Figure 1. Following the definition of f , it is clear

that h = 4f (a3 | {a1}) and H = 4f (a3 | {a1, a2}). Intuitively we can see how one can

verify submodularity using the discrete derivatives (H ≤ h).

2.5 Cuts

The very important problems of finding a minimum and a maximum cut in a given

directed or undirected graph or even hypergraph can be translated to problems of

optimizing a derived submodular function [8, 33]. Let G = (V,E) be a directed graph

with a non-negative capacity function c : E → R+ and with two distinguished vertices,

source s and sink t. For a subset S ⊆ V containing the source s but not containing

the sink t we define δ+(S) to be the set of edges leaving set S, δ+(S) := {(v, x) ∈ E :

v ∈ S, x /∈ S}. The cut capacity of S, denoted by f(S), is simply the sum of capacities

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 8

of all edges that leave S, i.e.,

f(S) :=
∑

e∈δ+(S)

c(e), ∀S, s ∈ S ⊆ V \ {t} .

Cuts in directed graphs provide very natural upper bounds on the values of flows.

The well known Max-Flow Min-Cut Theorem tells us that the minimum value of f(S)

is equal to the maximum value of a flow in G going from s to t [10]. The problem of

finding a minimum cut can be solved efficiently using the Ford-Fulkerson algorithm,

some of its specializations such as the improvement by Edmonds and Karp, or by solving

corresponding linear program. We can look at this problem differently, knowing that

function f defined above is submodular.

Proposition 2.2. The cut capacity function is submodular.

Proof. Let A ⊆ B ⊆ V \ {t} and v ∈ V \ (B ∪ {t}). Then

f(A ∪ {v}) =
∑
a∈A

∑
x∈V \(A∪{v})

c(a, x) +
∑

x∈V \(A∪{v})

c(v, x)

f(A) =
∑
a∈A

∑
x∈V \(A∪{v})

c(a, x) +
∑
a∈A

c(a, v)

4f (v | A) = f(A ∪ {v})− f(A) =
∑

x∈V \(A∪{v})

c(v, x)−
∑
a∈A

c(a, v) .

Similarly we get

4f (v | B) =
∑

x∈V \(B∪{v})

c(v, x)−
∑
b∈B

c(b, v).

Inequality 4f (v | A) ≥ 4f (v | B) holds since c(u, v) ≥ 0 for all(u, v) ∈ E, V \ (B ∪
{v}) ⊆ V \ (A ∪ {v}) and A ⊆ B.

So we can also find a minimum cut if we minimize the function f , since minizmiza-

tion of submodular function can be done in polynomial time, see Section 4.1. The

problem of maximizing function f as defined above is know as Max DiCut problem.

Maximizing a non-negative submodular function is an NP-hard problem. For an ar-

bitrary submodular function given by an oracle, even checking whether there exists

a set S such that f(S) > 0 is NP-hard. Usually, when we want to maximize such a

function, we consider the cut capacity of an undirected graph G = (V,E) without sink

and source. We refer to it as the Max Cut problem. Then what we want to maximize

is :

f(S) :=
∑
e∈δ(S)

c(e), ∀S, S ⊆ V

where c : E → R+ and δ(S) := {{u, v} ∈ E : u ∈ S, v /∈ S} denotes set of all edges

with one end in S and the other one in V \S. Using the same proof as for the directed

case, we can prove that f is again submodular. Such a function is an example of a

symmetric submodular function (that is, f(S) = f(V \ S) for all S ⊆ V).

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 9

2.6 Coverage functions

One more important example of a submodular function is a coverage function. Let U

be a finite universal set and let V be a collection of subsets of U . Then the function

f : 2V → R+ defined, for all subcollections S ⊆ V , as

f(S) =

∣∣∣∣∣⋃
A∈S

A

∣∣∣∣∣
is monotone submodular [30]. A typical goal in aplications of maximizing such a func-

tion is to maximize the number of elements covered, subject to a cardinality constraint,

|S| ≤ k for some k ∈ N. The problem of maximizing f(S) in that case is well-known

max-cover problem [34].

2.7 Maximizing the spread of influence through a

social network

A social network can be represented by a graph of relationships and interactions be-

tween members of a group. A social network is a fundamental tool for describing

the spread of information and influence among members of certain group. We can

represent a social network as a weighted directed graph whose vertices represent peo-

ple, and weights of edges represent probability that the starting vertex of the edge

will influence its end vertex. In such a setting we want to explore the influence of a

subset of people on the entire social netwok, in order to find a group of people that

influence the network the most. This way we could supply the most influential people

with some information, and the probability that the information would spread across

the complete network would be the highest possible. For various models of spreading

the information, the resulting influence function is submodular. The greedy algorithm

proposed by Nemhauser et al. [25] can be used for finding a most influential group in

a social network. More details about precise formulation of the problem can be found

in [18,20].

2.8 The rank function of a matroid

Definition 2.3. A pair (V, I) is matroid if V is a finite set and I is a nonempty

collection of subsets of V satisfying

� Y ⊆ X ∈ I ⇒ Y ∈ I

� X, Y ∈ I, |X| < |Y | ⇒ ∃v ∈ Y \X such that X ∪ {v} ∈ I.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 10

We call V ground set and we say that sets in I are independent and set not in I are

dependent.

Given a matroid M = (V, I), we define the rank function r of M for all S ⊆ V as

r(S) := max{|X| : X ⊆ S,X ∈ I} .

Theorem 2.4. Let M = (V, I) be a matroid and r the rank function of M . Then r is

submodular.

A proof of this theorem can be found in, e.g., [8, 30].

Canonical examples of matroids are the so-called linear matroids . Let A ∈ Rm×n

and V = {1, . . . , n} . Let I be the collection of all subsets X ⊆ V for which the

submatrix of A consisting of the columns indexed by X has rank |X|. That is, the

collection of all subsets X ⊆ V for which the columns of A indexed by X are linearly

independent. In this case the value of rank function of subset X ⊆ V is equal to the

rank of the matrix formed by the columns indexed by X.

2.9 Polymatroid functions

A special subclass of submodular functions is represented by the so-called polymatroid

functions. They are a very useful tool for bounding the number of maximal independent

sets in hypergraphs and lattices [4] as well as enumerating all maximal independent

sets in hypergraph [3] and data mining [19]. We call a function f : 2V → R polymatroid

if the following is satisfied:

� f(∅) = 0,

� f is monotone submodular,

� f is integer-valued.

It is obvious that the rank function of a matroid and coverage function are polyma-

troid (Sections 2.6 and 2.8). For better understanding we need to recall the definitions

of a hypergraph and of an independent set in a hypergraph.

Definition 2.5. A hypergraph is a pair H = (V, E) where V is a finite set of vertices

and E is a set of non-empty subsets of V called hyperedges (or simply just edges).

Definition 2.6. Given a hypergraphH = (V, E), we say that a set I ⊆ V is independent

in H if it contains no hyperedge of H.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 11

If it is clear from context to which hypergraph we refer to, we will say just a set I

is independent. For the definition of an exact polymatroid separator we first need the

definition of a polymatroid separator.

Definition 2.7. [3] Given a non-empty hypergraph H = (V, E), a polymatroid func-

tion f : 2V → Z+, and a number t ∈ Z+, the pair (f, t) is called polymatroid separator

for H if f(E) ≥ t holds for every hyperedge E ∈ E .

It is obvious from the above definition that if (f, t) is a polymatroid separator of

H, then f(S) ≥ t for every set S ⊆ V that is not independent in H.

Definition 2.8. A polymatroid separator for H = (V, E) is called exact if f(I) < t for

every I ⊆ V independent set in H.

Notice that using truncation (see Section 3), if we have an exact polymatroid sep-

arator (f, t) for H = (V, E), then also (g, t) is an exact polymatroid separator for

H = (V, E), where g(S) := min{f(S), t} ∀S ⊆ V . Then, for every set A that is not

independent it holds g(A) = t.

We say a hypergraph is Sperner if no hyperedge contains another hyperedge.

Definition 2.9. The dual Hd of a hypergraph H = (V, E) is the hypergraph with the

same vertex set V and hyperedge set that contains all inclusion-wise minimal sets that

intersect all hyperedges in H, i.e., Hd = (V, Ed) where

Ed = Inclusion-wise minimal elements in {X ⊆ V | ∀E ∈ E , X ∩ E 6= ∅}

It is known that the dual of every hypergraph is Sperner. The following propostion

was proved by Boros et. al [3].

Proposition 2.10. Every non-empty Sperner hypergraph H = (V, E) has an exact

polymatroid separator defined ∀S ⊆ V as

f(S) := |{X ∈ Ed : S ∩X 6= ∅}|

and t = |Ed|.

Note that Proposition 2.10 implies that every non-empty hypergraph has an ex-

act polymatroid separator. Indeed, every non-empty hypergraph H = (V, E) can be

reduced to a non-empty Sperner hypergraph H′ on the same vertex set simply by keep-

ing only those hyperedges of H that do not contain any other hyperedge (that is, the

minimal elements of E with respect to inclusion relation). It follows directly from the

definitions that every exact polymatroid separator of H′ is also an exact polymatroid

separator of H.

We will now give an alternative proof of the fact that every hypergraph has an

exact polymatroid separator. For convenience, let us first show the following theorem.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 12

Theorem 2.11. Let H = (V, E) be a hypergraph. Then there exists a nonnegative

monotone submodular function f : 2V → R+ such that for all S ⊆ V :

f(S) < 1 ⇐⇒ S is an independent set in H .

Proof. For all S ⊆ V , let us define f : 2V → R+ as follows:

f(S) =

{ ∑|S|
i=1

1
2i

if S is independent in H
1 otherwise

It is clear from the definition that f(S) < 1 if and only if S is independent, since∑|S|
i=1

1
2i

= 1 − 1
2|S|

< 1. What we need to prove is that f is monotone submodular.

Monotonicity is obvious. Let A ⊆ B ⊂ V and let v ∈ V \ B. We will show that

4f (v | A) ≥ 4f (v | B). If B is not independent then 4f (v | B) = 0 and that case is

done. Suppose B is independent, then A is also independent. If A = B, then clearly

4f (v | A) = 4f (v | b). So let A ⊂ B and denote |A| = n and |B| = m. Then m > n.

We consider two possibilities for A ∪ {v}, and B ∪ {v}.
If A ∪ {v} is independent then

4f (v | A) =
n+1∑
i=1

1

2i
−

n∑
i=1

1

2i
=

1

2n+1
.

If A ∪ {v} is not independent then

4f (v | A) = 1−
n∑
i=1

1

2i
=

1

2n

In the same way we get :

4f (v | B) = f(B ∪ {v})− f(B) =

{
1

2m+1 if B ∪ {v} is independent
1
2m

if B ∪ {v} is not independent

Hence, in all cases we have:

4f (v | B) ≤ max

{
1

2m+1
,

1

2m

}
=

1

2m
≤ 1

2n+1
= min

{
1

2n+1
,

1

2n

}
≤ 4f (v | A) .

So if we combine those two parts, we have 4f (v | B) ≤ 4f (v | A).

The function f given by Theorem 2.11 is easily transformed to an exact polymatroid

separator for H = (V, E). The function obtained by multiplying f with 2α where α is

the maximum cardinality of an independent set in H, is polymatroid. Such a function

together with t = 2α is an exact polymatroid separator for H. Note also that the

advantage of this approach over the one given by Proposition 2.10 is that we do not

need to calculate the dual of H (whose size can be exponential in terms of the size of

H). Instead, the corresponding function values f(S) can be computed directly using

a single call to the membership oracle for H. The membership oracle is a procedure

that, given a set S ⊆ V , correctly asserts whether S is independent or not.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 13

3 Operations preserving

submodularity

László Lovász was the first to show a similarity between submodularity and convexity

in [24]. He also proved many nice properties of submodular functions. Proposition

2.1 gives a way of obtaining submodular functions using modular ones. We will now

discuss some other operations which can be used to build new submodular functions

from existing ones [21]. For example we can check that submodularity is preserved

under taking nonnegative liner combinations.

Proposition 3.1. If g1, . . . , gn : 2V → R are submodular and α1, . . . , αn ≥ 0, then the

function f : sV → R, given by f(S) :=
∑n

i=1 αigi(S), for all S ⊆ V , is submodular.

The proposition is readily proved using the definition based on discrete derivatives

(Theorem 1.4).

Proposition 3.2. Let a function g : 2V → R be submodular and B ⊆ V . Then, the

function

f(S) := g(S ∪B)

is submodular as well.

Proof. Let X, Y ⊆ V , then

f(X ∪ Y) + f(X ∩ Y) = g(X ∪ Y ∪B) + g((X ∩ Y) ∪B)

= g((X ∪B) ∪ (Y ∪B)) + g((X ∪B) ∩ (Y ∪B))

≤ g(X ∪B) + g(Y ∪B) = f(X) + f(Y) .

Submodularity is also preserved under taking the residual.

Proposition 3.3. Given a submodular function g : 2V → R and two disjoint sets

A,B ⊂ V , the residual r : 2A → R defined ∀S ⊆ A, as

r(S) := g(S ∪B)− g(B)

is submodular.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 14

Proof. The function r is the sum of the function f defined in Proposition 3.2 and

function −g(B), which can be seen as a constant function over 2V , and thus modular.

By Proposition 3.1, the function r is submodular.

One more interesting property is that monotone submodular functions retain this

property under truncation, i.e., if g : 2V → R is monotone submodular, then so is

f(S) := min{g(S), c} defined for all S ⊆ V and for a constant c ∈ R. This fact can

be proved using Definition 1.1 and checking all possible cases for values of f(A ∩ B),

f(A) and f(B).

If we consider a similar aproach for the minimum or maximum of two submod-

ular functions, we see that it does not work. In other words, given two submod-

ular functions f1, f2 : 2V → R, the functions fmin(S) := min{f1(S), f2(S)} and

fmax(S) := max{f1(S), f2(S)}, defined for all S ⊆ V , are not necessarily submodu-

lar.

Example 3.4. Consider two submodular functions f1, f2 defined on set V = {a, b} as

in Table 1. Notice that then fmin({a, b}) − fmin({b}) = 1 > 0 = fmin({a}) − fmin(∅),

∅ {a} {b} {a, b}
f1(·) 0 1 0 1

f2(·) 0 0 1 1

fmin(·) 0 0 0 1

Table 1: Functions f1, f2, and fmin.

and fmin is not submodular.

Example 3.5. Suppose we are given two submodular functions g1, g2 defined on set

V = {x, y} as in Table 2. Notice that g1 and g2 are modular. Define gmax analogously

as fmax. Then

4gmax(y | {x}) = gmax({x, y})−gmax({x}) = 1 > 0 = gmax({y})−gmax(∅) = 4gmax(y | ∅) .

Hence gmax is not submodular.

∅ {x} {y} {x, y}
g1(·) 0 1 1 2

g2(·) 1 1 1 1

gmax(·) 1 1 1 2

Table 2: Functions g1, g2, and gmax.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 15

Note that all four functions f1, f2, g1, and g2 are modular. This shows that the

minimum (resp., maximum) of two modular functions is not necessarily modular (in

fact, not even submodular).

Although neither the minimum nor the maximum of two submodular functions

is submodular in general, it is proved in [24] that with additional assumptions the

minimum of two submodular functions will be again submodular.

Proposition 3.6. If f1 and f2 are submodular set functions such that f1− f2 is either

monotone increasing or monotone decreasing, then fmin is also submodular.

Using Definition 1.1, it is easy to see that given a submodular function f : 2V → R
we can define a new submodular function g, defined as g(S) := f(V \S) for all S ⊆ V .

Given two sets X, Y ⊆ V , we have

g(X ∪ Y) + g(X ∩ Y) = f(V \ (X ∪ Y)) + f(V \ (X ∩ Y))

= f((V \X) ∩ (V \ Y)) + f((V \X) ∪ (V \ Y))

≤ f(V \X) + f(V \ Y) = g(X) + g(Y)

Building new submodular functions from old ones allows us to extend the effective

range of certain theorems. Using the properties of submodular functions, we can prove

submodularity easily in many other cases.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 16

4 Submodular functions

optimization

Lovász showed that algorithmically, submodular functions behave similarly to convex

functions [24]. Minimization of submodular set function can be done in polynomial

time, just like a convex function can be minimized efficiently [1, 28]. This way sub-

modularity represents a discrete analogue of convex functions. While convex functions

play essential role in continuous optimization, submodular functions are very impor-

tant in the development of techniques for discrete optimization. Direct applications of

submodular functions in many different practical areas like electrical networks, airline

crew scheduling, biodiversity conservation, sensors placing, statics, machine learning,

enviromental monitoring as well as their application to mathematical areas like game

theory, graph theory and combinatorics make them very interesting to explore and

optimize [2, 5, 12, 20–22, 27]. Submodular functions also generalize many different op-

timization problems as we have seen in Section 2. Besides maximum facility location,

Max Cut, Max DiCut there are many more submodular problems, see, e.g., [8, 24].

4.1 Minimization

Suppose we are given a submodular function f : 2V → R. The problem of submodular

function minimization (SFM) is to find a set S ⊆ V minimizing f(S). The first

polynomial and strongly polynomial algorithm for solving the SFM problem was given

by Grötschel, Lovász, and Schrijver [15,16]. The algorithms that they constructed rely

on the ellipsoid method. Suppose f : 2V → R is a set function. We can enumarate

elements of V as V = {1, 2, . . . , n}. Then we can assing to each subset S ⊆ V a

binary vector eS where the i–th component of eS is 1 if i ∈ S, and 0 otherwise.

We can look at our function f as a function defined over the corners of the unit

cube: f̃ : {0, 1}n → R defined as f̃(eS) := f(S) for all S ⊆ V . Now it is natural

that we extend f̃ to the entire unit cube [0, 1]n. The Lovaśz extension extends f̃

to a convex function. This way we can minimize the function f̃ using the ellipsod

method, which is an iterative method for minimizing convex functions. The idea behind

this approach is used to prove that SFM is possible in polynomial time. A different

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 17

extension, namely multilinear extension proposed by Vondrák, has proven to useful for

constrained submodular function maximization [31].

In 2000, Schrijver developed a combinatorial algorithm that solves SFM.1 He proved

that his algorithm runs in O(n8EO+n9) time [29].2 Later, in 2003, Vygen proved that

the algorithm proposed by Schrijver runs in fact in O(n7EO + n8) [32].

In 2009 James B. Orlin improved at that time the best strongly polynomial time

combinatorial algorithm for SFM proposed by Iwata, which runs inO((n6EO+n7) log n)

time, by more than a factor of n [17, 26]. Orlin proved that SFM can be done in

O(n5EO + n6).

Recently, a further improvement was announced by Lee et al. [23].

4.2 Submodular maximization under constraints

Unlike minimization, maximization of a submodular function is an NP-hard problem

for many classes of submodular functions, such as weighted coverage or maximization

of a monotone submodular function under a cardinality constraint [13,21]. This means

we are interested in finding a subset of V which solves a problem of the form

max
S⊆V

f(S) subject to some constraints on S. (4.1)

Most often we require a cardinality constraint, that is, |S| ≤ k for some k ∈ N.

Since these problems are NP-hard, we can approach them with different heuristics,

approximations algorithms or practical exact methods for solving the problem to opti-

mality on small instances.

We will start with analysing a very simple algorithm for finding approximate solu-

tions to the problem of maximizing a monotone submodular function under a cardinal-

ity constraint, (4.1). As we mentioned in Section 2.3, maximizing a monotone function

without any constraints is solved by taking the entire set V . Given a monotone sub-

modular function f : 2V → R and an integer k, we want to solve

max
|S|≤k

f(S) .

Nemhauser et al. proved that the greedy algorithm provides a very good constant

approximation to the optimal solution of our problem [25].

1The term “combinatorial algorithm” is not precisely defined, and it is used to emphasize that the

algorithm does not rely on the ellipsoid method.
2EO represents the maximum amount of time it takes to evaluate f(S) for a subset S ⊆ V . EO

stands for evaluation oracle.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 18

The algorithm starts with the empty set S0, and at each iteration i ≥ 1 adds an

element maximizing the discrete derivative 4(v | Si−1)}, i.e., adds the element from

arg maxv4(v | Si−1). In problems of maximizing a submodular function we assume

that we are given a function by a value oracle, i.e., we can query a black box which

calculates f(S) in certain unit of time.

Algorithm 1: The greedy algorithm for maximizing a submodular function sub-

ject to a cardinality constraint |S| ≤ `.

Input: A monotone submodular function f given by a value oracle and a

number `.

Output: A subset S` ⊆ V .

1 S0 := ∅;
2 for i = 1, . . . , ` do

3 v∗ ∈ arg maxv4(v | Si−1);
4 Si = Si−1 ∪ {v∗};

5 return S`;

It makes no sense to look at cases where k > |V | or ` > |V |. Nemhauser et al. proved

that f(Sk) ≥ (1 − 1/e) max|S|≤k f(S), but this can be slightly generalised, as in the

following theorem from [21].

Theorem 4.1. For a non-negative monotone submodular function f : 2V → R+ and

numbers k, ` ∈ {1, . . . , |V |}, let {Si}|V |i=0 be the sequence of sets selected by Algorithm 1.

Then the following holds

f(S`) ≥
(
1− e−`/k

)
max
S:|S|≤k

f(S) .

Proof. Let k, ` ∈ N, and let S∗ be an optimal set of size k. We can assume that S∗ is

of size k, since f is monotone. Order the elements of S∗ as {v1, . . . , vk}. Then for all

i < `, the following inequalities hold.

f(S∗) ≤ f(S∗ ∪ Si) (4.2)

= f(Si)− f(Si) + f(Si ∪ {v1})∓ · · · − f(Si ∪ {v1, . . . , vk−1}) + f(Si ∪ S∗)
(4.3)

= f(Si) +
k∑
j=1

4f (vj | Si ∪ {v1, . . . , vj−1}) (4.4)

≤ f(Si) +
k∑
j=1

4f (v | Si) (4.5)

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 19

= f(Si) +
∑
v∈S∗
4f (v | Si)

≤ f(Si) +
∑
v∈S∗

(f(Si+1)− f(Si)) (4.6)

≤ f(Si) + k(f(Si+1)− f(Si)) (4.7)

Inequality (4.2) is due to monotonicity of f . Equalities (4.3) and (4.4) are used to

tranform a telescopic sum. Next inequality (4.5) follows from the diminishing return

proprety of submodularity of f . Inequality (4.6) follows from fact that Si+1 is a set

chosen greedily at the (i+1)st iteration, and it maximizes4(v | Si). The last inequality,

(4.7), holds because |S∗| ≤ k.

Define di := f(S∗) − f(Si), which represents how far we are from the optimal value

f(S∗) at the ith iteration. Then we have di = f(S∗)− f(Si) ≤ k(f(Si+1)− f(Si)). We

can rewrite it as di ≤ k(di − di+1), which gives us

di+1 ≤
(

1− 1

k

)
di (4.8)

Inequality (4.8) holds for all i < `, hence d` ≤ (1− 1
k
)` d0. Since f is non-negative

we have d0 = f(S∗)− f(∅) ≤ f(S∗). Together with the known inequality 1− x ≤ e−x,

which holds for all x ∈ R, we have

d` ≤
(

1− 1

k

)`
d0 ≤ e−`/kf(S∗).

Substituing back d`, we get

f(S∗)− f(S`) ≤ e−`/kf(S∗)

f(S`) ≥
(
1− e−`/k

)
f(S∗) .

Generalization with ` 6= k can be used to check how close to the optimum is

the solution produced by greedy algorithm. We can run the greedy algorithm up

to 5k iterations. We will then produce an approximation of ≈ 0.99 to the optimal

solution. We can compare 5k approximation to our usual solution, allowing k elements

under the cardinality constraint. This way we can see how far the solution is from

the approximation of ≈ 0.99 to the optimal solution. When k = `, Theorem 4.1

guarantees us ≈ 0.63 approximation to the optimal solution. Nemhauser also proved

that we cannot obtain a better approximation guarante than (1−1/e) for many classes

of submodular functions.

The Max-k-cover problem, where we want to choose k sets whose union is as large as

possible, is one of the problems where the greedy algorithm is optimal, unless P = NP

[25]. That is, there exist no polynomial time algorithm that guarantees a better worst-

case approximation bound than the greedy algorithm, unless P = NP .

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 20

In contrast to maximizing a monotone submodular function subject to constraints,

we can also ask for a minimum cardinality set that would achieve a given amount

q under a monotone submodular function f : 2V → R. That is, we want to find a

minimum size set S ⊆ V subject to f(S) ≥ q. We demand that f is monotone, so

it is natural to bound q to the interval [0, f(V)]. The greedy algorithm provides an

approximation to the solution of this problem, although it is not a constant factor

approximation.

Theorem 4.2. Suppose f : 2V → N is a monotone submodular function, and let

q ∈ [0, f(V)]. Denote by {Si}i≥0 the sequence of sets picked by the greedy algorithm,

Algorithm 1. If ` is the smallest index such that f(S`) ≥ q, then

` ≤
(

1 + ln max
v∈V

f({v})
)
OPT

where OPT is the cardinality of a smallest set S for which f(S) ≥ q.

Theorem 4.2 was proved by Wolsey in [34].

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 21

4.3 Unconstrained submodular maximization

The problem of unconstrained submodular maximization (USM) is perhaps the most

basic submodular maximization problem. We consider the problem of maximizing a

non-negative submodular function f : 2V → R, i.e., we want to find a subset S ⊆ V

maximizing f(S). We are interested in the general case where f is not necessarily

monotone. As mentioned before, the cut function in a directed or an undirected graph

represents a canonical example. The cut function in an undirected graph is a symmetic

submodular function, and we will see that symmetry allows us to prove better and

simpler approximation bounds. In general, given a submodular function without any

restrictions, even verifying whether there exists a set S such that f(S) > 0 in an

NP-hard problem [9]. Here we only assume that the function is non-negative.

We will see that a random set gives an approximation factor of 1/4 for USM, and

an approximation factor of 1/2 for USM in expected value, if we maximize a symmetric

function.

4.3.1 Random set

Given a finite non-empty set S and real number p ∈ [0, 1], we define S(p) to be a

random subset of S, where each element is chosen independently with probability p.

Define ∅(p) = ∅, ∀p ∈ [0, 1].

Algorithm 2: Random set algorithm

Input: A non-negative submodular function f : 2V → R+, given by a value

oracle.

Output: A subset S ⊆ V .

1 S = V (1/2);

2 return S;

To prove approximation factors for Algorithm 2, we will need some preliminaries

concerning submodularity and probability.

Lemma 4.3. Let g : 2V → R+ be a submodular function and S ⊆ V . Then

E[g(S(p))] ≥ (1− p)g(∅) + pg(S). (4.9)

Proof. The proof goes by induction on |S|. For S = ∅, we have

E[g(∅)] = g(∅) = (1− p)g(∅) + pg(∅).

So suppose that S = S ′ ∪ {v}, v /∈ S ′. The inductive hypothesis yields E[g(S ′(p))] ≥
(1− p)g(∅) + pg(S ′). Then S(p) ∩ S ′ is a subset of S ′, where each element is sampled

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 22

with probability p, so S ′(p) = S(p) ∩ S ′. Using submodularity, we get

g(S(p)) + g(S ′) ≥ g(S(p) ∪ S ′) + g(S(p) ∩ S) ,

which implies g(S(p)) ≥ g(S(p) ∪ S ′) + g(S ′(p))− g(S ′) .

Therefore E[g(S(p))] ≥ E[g(S(p) ∪ S ′) + g(S ′(p))− g(S ′)]

= E[g(S ′(p))] + E[g(S(p) ∪ S ′)− g(S ′)] (4.10)

= E[g(S ′(p))] + p(g(S)− g(S ′)) + (1− p)(g(S ′)− g(S ′)) (4.11)

≥ (1− p)g(∅) + pg(S ′) + pg(S)− pg(S ′)

= (1− p)g(∅) + pg(S) .

Equation (4.10) is due to linearity of expected value (Proposition 1.8). Equality (4.11)

holds since S = S ′ ∪ {v} and v /∈ S ′, it follows that S(p) ∪ S ′ equals either S with

probability p or S ′ with probability 1− p.

Lemma 4.4. Let f be a submodular function on a finite set V , and let A,B ⊆ V . Let

A(p), B(q) be their independently sampled subsets, where p, q ∈ [0, 1]. Then

E[f(A(p) ∪B(q))] ≥ (1− p)(1− q)f(∅) + p(1− q)f(A) + (1− p)qf(B) + pqf(A ∪B) .

Proof. Fix R ⊆ A, and define g(T) = f(R ∪ T) for all T ⊆ B. The function g is

submodular, see Proposition 3.2. Lemma 4.3 implies E[g(B(q))] ≥ (1 − q)f(R) +

qf(R ∪ B). We know that E[g(B(q))] = E[f(A(p) ∪ B(q))|A(p) = R]. Combining the

last two facts with Proposition 1.9 we get

E[f(A(p) ∪B(q))] = E[E[f(A(p) ∪B(q))|A(p)]]

≥ E[(1− q)f(A(p)) + qf(A(p) ∪B)] .

Again by applying Lemma 4.3 to functions f and h(S) := f(S ∪B) for S ⊆ A, we get

E[f(A(p))] ≥ (1− p)g(∅) + pg(A)

E[f(A(p) ∪B)] ≥ (1− p)f(B) + pf(A ∪B).

Together with the linearity of expected value this implies the claim.

Lemma 4.3 and Lemma 4.4 will immediately show the performance of Algorithm 2.

Theorem 4.5. Let f : 2V → R be a non-negative submodular function. Let OPT be

a set maximizing the function f , i.e., OPT ∈ arg maxS⊆V f(S). If R denotes a set

produced by the random set algorithm, then

E[f(R)] ≥ 1

4
f(OPT) .

In addition, if f is symmetric, then E[f(R)] ≥ 1
2
f(OPT).

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 23

Proof. Suppose that S is a set that achieves f(OPT). Then we can write R = S(1/2)∪
(V \ S)(1/2). Then by Lemma 4.4

E[f(R)] ≥ 1

4
f(∅) +

1

4
f(S) +

1

4
f(V \ S) +

1

4
f(V) ≥ 1

4
f(S) =

1

4
fOPT) .

Inequality follows from the non-negativity of f .

If f is symmetric, then also f(V \ S) = f(OPT) (since f(S) = f(V \ S)). Therefore if

f is symmetric then E[f(R)] ≥ 1
2
f(OPT).

4.3.2 A deterministic (1/3)-approximation algorithm

We will see one more simple (1/3)-approximation algorithm for USM proposed by

Buchbinder et. al [7]. The algorithm is deterministic and runs in linear time. First,

we order our ground set V arbitrarily, V = {v1, . . . , vn}. We start with two solutions

X0 and Y0. For each element vi, the algorithm makes one corresponding iteration

modifying current solutions Xi−1 and Yi−1. The idea is that, in the ith iteration, based

on discrete derivative of the two options we either add vi to Xi−1 or we remove vi from

Yi−1. This means that at each iteration Xi ⊂ Yi for all i < n , and after nth iteration

we have Xn = Yn.

Algorithm 3: A deterministic algorithm for USM

Input: A non-negative submodular function f : 2V → R+, given by a value

oracle.

Output: A subset Xn ⊆ V which approximates maxS⊆V f(S).

1 X0 = ∅, Y0 = V ;

2 for i = 1, . . . , n do

3 ai = f(Xi−1 ∪ {vi})− f(Xi−1);

4 bi = f(Yi−1 \ {vi})− f(Yi−1);

5 if ai ≥ bi then

6 Xi = Xi−1 ∪ {vi};
7 Yi = Yi−1;

8 else

9 Xi = Xi−1;

10 Yi = Yi−1 \ {vi};

11 return Xn, or equivalently Yn;

We need two lemmas to prove that the approximation guarantee of Algorithm 3 is

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 24

1/3. Like in the algorithm, for all i denote

ai := f(Xi−1 ∪ {vi})− f(Xi−1) ,

bi := f(Yi−1 \ {vi})− f(Yi−1) .

Lemma 4.6. For every 1 ≤ i ≤ n, it holds ai + bi ≥ 0.

Proof. Since Xi−1 ⊆ Yi−1 and we know that vi /∈ Xi−1 and vi ∈ Yi−1 , we have that

(Xi−1 ∪ {vi}) ∪ (Yi−1 \ {vi}) = Xi−1 ∪ Yi−1 ∪ {vi} = Yi−1 ,

(Xi−1 ∪ {vi}) ∩ (Yi−1 \ {vi}) = (Xi−1 ∩ Yi−1) \ {vi} = Xi−1 .

Then by submodularity we have

ai + bi = f(Xi−1 ∪ {vi})− f(Xi−1) + f(Yi−1 \ {vi})− f(Yi−1)

= [f(Xi−1 ∪ {vi}) + f(Yi−1 \ vi)]− [f(Xi−1) + f(Yi−1)] ≥ 0 .

Let OPT denotes a set that achieves the maximum of f . Define OPTi :=

(OPT ∪ Xi) ∩ Yi = Xi ∪ (OPT ∩ Yi). Notice that OPT0 = OPT and OPTn =

Xn = Yn. The idea of the proof is to bound the loss in each set along the sequence

f(OPT0), f(OPT1), . . . , f(OPTn). The next lemma will bound the loss in value in each

cosecutive step, i.e., we will bound f(OPTi−1)− f(OPTi).

Lemma 4.7. For every 1 ≤ i ≤ n, following holds

f(OPTi−1)− f(OPTi) ≤ f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)

Proof. Let us first assume that ai ≥ bi. Then Xi = Xi−1 ∪ {vi} and Yi = Yi−1. Notice

that also OPTi = (OPT ∪Xi) ∩ Yi = (OPT ∪Xi−1 ∪ {vi}) ∩ Yi−1 = ((OPT ∪Xi−1) ∩
Yi−1) ∪ ({vi} ∩ Yi−1) = OPTi−1 ∪ {vi}. Now the inequality that we need to prove

becomes:

f(OPTi−1)− f(OPTi−1 ∪ {vi}) ≤ f(Xi)− f(Xi−1) = ai .

By Lemma 4.6 ai + bi ≥ 0, and we assumed that ai ≥ bi, so ai ≥ 0. Now we consider

two cases. If vi ∈ OPT then f(OPTi−1) − f(OPTi−1 ∪ {vi}) = 0 and the inequality

holds. Suppose vi /∈ OPT . Then since vi /∈ Xi−1, we have vi /∈ OPTi−1. Also since

OPTi−1 ⊂ Yi and vi ∈ Yi, we can use submodularity to derive

f(OPTi−1)− f(OPTi−1 ∪ {vi}) ≤ f(Yi \ vi)− f(Yi−1) = bi ≤ ai .

The case where bi ≥ ai is analogous.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 25

Theorem 4.8. Let f : 2V → R be a non-negative submodular function. Let OPT

be a set maximizing the function f , i.e., OPT ∈ arg maxS⊆V f(S). Then the solution

produced by Algorithm 3 is a (1/3)-approximation,

f(Xn) = f(Yn) ≥ 1

3
f(OPT) .

Proof. Consider the following sum:

n∑
i=1

[f(OPTi−1)− f(OPTi−1)] ≤
n∑
i=1

[f(Xi)− f(Xi−1)] +
n∑
i=1

[f(Yi)− f(Yi−1)] .

Summing up the above telescopic sum and using fact that f is non-negative we get

f(OPT0)− f(OPTn) ≤ [f(Xn)− f(X0)] + [f(Yn)− f(Y0)] ≤ f(Xn) + f(Yn) .

Recall that f(OPT0) = f(OPT), f(OPTn) = f(Xn), we obtain,

f(Xn) = f(Yn) ≥ f(OPT)/3 .

4.3.3 A randomized (1/2)-approximation algorithm

The algorithm from the previous section can be improved to a (1/2)-approximation

by allowing randomness in it. In Algorithm 3 we had a deterministic way of choosing

whether we include or exclude some element vi in our solution. Making this decision

random based on values ai and bi, we will improve our approximation to 1/2 under

expected value. The algorithm follows an arbitrary order of the ground set, V =

{v1, v2, . . . , vn}.
It can be readily checked that Algorithm 2, Algorithm 3, Algorithm 4 are very

efficient since they run in linear time.

We will keep the notation as above, OPTi := (OPT ∪Xi)∩Yi, and also as above it

holds that OPT0 = OPT and OPTn = Xn = Yn. Again we will use a lemma in which

we will consider the sequence E[f(OPT0)],E[f(OPT1)], . . . ,E[f(OPTn)] and the loss

in averege value in two consecutive elements, i.e., E[f(OPTi) − f(OPTi−1)]. Notice

that E[f(OPT0)] = E[f(OPT)] = f(OPT).

Lemma 4.9. For every 1 ≤ i ≤ n, it holds

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] .

Proof. It is enough to prove the inequality conditioned on an event of the form Xi−1 =

Si−1, where Si−1 ⊆ {v1, . . . , vi−1} and the probability that Xi−1 = Si−1 is bigger than

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 26

Algorithm 4: A ranodomized algorithm for USM

Input: A non-negative submodular function f : 2V → R+, given by a value

oracle.

Output: A subset Xn ⊆ V which approximates maxS⊆V f(S).

1 X0 = ∅, Y0 = V ;

2 for i = 1, . . . , n do

3 ai = f(Xi−1 ∪ {vi})− f(Xi−1);

4 bi = f(Yi−1 \ {vi})− f(Yi−1);

5 a′i = max{ai, 0};
6 b′i = max{bi, 0};
7 with probability a′i/(a

′
i + b′i) (if a′i + b′i = 0, then with probability 1) do:

8 Xi = Xi−1 ∪ {vi};
9 Yi = Yi−1;

10 otherwise (with probability b′i/(a
′
i + b′i)) do:

11 Xi = Xi−1;

12 Yi = Yi−1 \ {vi};

13 return Xn, or equivalently Yn;

zero. So let Xi−1 = Si−1 be such an event. The conditional inequality that we need to

prove is:

E[f(OPTi−1)− f(OPTi)|Xi−1 = Si−1]

≤ 1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)|Xi−1 = Si−1] (4.12)

By the algorithm we know that Yi−1 = Xi−1 ∪ {vi, . . . , vn} = Si−1 ∪ {vi, . . . , vn} hence

if we fix Xi−1 = Si−1, then Yi−1 is fixed as well. Notice that same holds for ai,

bi and OPTi−1 = (OPT ∪ Xi−1) ∩ Yi−1 = (OPT ∪ Si−1) ∩ (Si−1 ∪ {vi, . . . , vn}) =

Si−1 ∪ (OPT ∩ {vi, . . . , vn}). By Lemma 4.6, ai + bi ≥ 0, so it cannot be that both ai

and bi are less than zero. Because of that we consider following three cases:

Case 1: ai ≥ 0 and bi ≤ 0. Here a′i/(a
′
i + b′i) = 1 and the following happens: Xi =

Si−1 ∪ {vi} and Yi = Yi−1 = Si−1 ∪ {vi, . . . , vn}. Also OPTi = (OPT ∪ Xi) ∩ Yi =

(OPT ∪ Si−1 ∪ {vi}) ∩ (Si−1 ∪ {vi, . . . , vn}) = OPTi−1 ∪ {vi}. This way all random

events conditioned on Xi−1 = Si−1 in Inequality (4.12) become fixed. Notice that

f(Yi)− f(Yi−1) = 0. Thus, we need to prove:

f(OPTi−1)− f(OPTi−1 ∪ {vi}) ≤
1

2
[f(Xi)− f(Xi−1)] =

ai
2

(4.13)

If vi ∈ OPT , then by the definition of OPTi we get that the left hand side of (4.13) is

0, and we know that ai ≥ 0.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 27

If vi /∈ OPT , then since vi /∈ Xi−1 it holds vi /∈ OPTi−1. Hence OPTi−1 = (OPT ∪
Xi−1) ∩ Yi−1 ⊆ Yi−1 \ {vi}. This allows us to use the discrete derivative definition of

submodularity:

f(OPTi−1)− f(OPTi−1 ∪ {vi}) ≤ f(Yi \ {vi})− f(Yi−1) = bi ≤ 0 ≤ ai
2
.

Case 2: ai < 0 and bi ≥ 0. This case is analogous to Case 1.

Case 3: ai ≥ 0 and bi > 0. Assumption implies a′i = ai and b′i = bi. Then with proba-

bility ai/(ai + bi) it happens that Xi = Xi−1 ∪ {vi} and Yi = Yi−1 or, complementarily,

with probability bi/(ai + bi) it happens that Xi = Xi−1 and Yi = Yi−1 \ {vi}. Since we

fixed Xi−1 = Si−1, we have:

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)|Xi−1 = Si−1] =

=
ai

ai + bi
[f(Xi−1 ∪ {vi})− f(Xi−1)] +

bi
ai + bi

[f(Yi−1 \ {vi})− f(Yi−1)]

=
a2i + b2i
ai + bi

. (4.14)

Since Xi−1 = Si−1 we get OPTi = OPTi−1∪{vi} if Xi = Xi−1∪{vi} and Yi = Yi−1, i.e.,

with probability ai
ai+bi

. Otherwise, it happens that Xi = Xi−1, Yi = Yi−1 \ {vi} which

gives OPTi = OPTi−1 \ {vi}. Then by definition of the expected value we derive:

E[f(OPTi−1)− f(OPTi)|Xi−1 = Si−1] =

=
ai

ai + bi
[f(OPTi−1)− f(OPTi−1 ∪ {vi})] +

bi
ai + bi

[f(OPTi−1)− f(OPTi−1 \ {vi})]

≤ aibi
ai + bi

. (4.15)

Note that, by the algorithm, vi ∈ Yi−1, and vi /∈ Xi−1. To prove the last inequality in

(4.15) we consider two cases depending on whether vi belongs to OPT .

If vi ∈ OPT , then vi ∈ OPTi−1 and f(OPTi−1) − f(OPTi−1 ∪ {vi}) = 0. Also

Xi−1 ⊆ ((OPT ∪Xi−1) ∩ Yi−1) \ {vi} = OPTi−1 \ {vi}. So, by submodularity,

f(OPTi−1)− f(OPTi−1 \ {vi}) ≤ f(Xi−1 ∪ {vi})− f(Xi−1) = ai .

If vi /∈ OPT , then also vi /∈ OPTi−1 and f(OPTi−1) − f(OPTi−1 \ {vi}) = 0. Again

we will use submodularity to prove that f(OPTi−1) − f(OPTi−1 ∪ {vi}) ≤ bi. Since

OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1 ⊆ Yi−1 \ {vi},

f(OPTi−1)− f(OPTi−1 ∪ {vi}) ≤ f(Yi−1 \ {vi})− f(Yi−1) = bi .

Recall that applying the inequality of arithmetic and geometric means to x2 and y2 for

x, y ∈ R+ we get that xy ≤ 1
2
(x2 + y2). This way we derive aibi

ai+bi
≤ 1

2

a2i+b
2
i

ai+bi
. Next, by

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 28

(4.14), (4.15) we get:

E[f(OPTi−1)− f(OPTi)|Xi−1 = Si−1] ≤
aibi
ai + bi

≤ a2i + b2i
ai + bi

=
1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)|Xi−1 = Si−1]

Unconditioning the last inequality, lemma follows.

Theorem 4.10. Let f : 2V → R be a non-negative submodular function. Let OPT

be a set maximizing the function f , i.e., OPT ∈ arg maxS⊆V f(S). Then, the solution

produced by Algorithm 4 is a (1/2)-approximation in expectation, that is,

E[f(Xn)] = E[f(Yn)] ≥ 1

2
f(OPT) .

Proof. Similarly as in proof of Theorem 4.8, let us sum the inequality from Lemma 4.9

for all 1 ≤ i ≤ n.

n∑
i=1

E[f(OPTi−1)− f(OPTi)] ≤
n∑
i=1

1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)]

The above sum is telescopic, and summing it we get:

E[f(OPT0)− f(OPTn)] ≤ 1

2
E[f(Xn)− f(X0) + f(Yn)− f(Y0)]

≤ 1

2
E[f(Xn) + f(Yn)]

Since E[f(OPT0)] = f(OPT) and E[f(Xn)] = E[f(Yn)] = E[f(OPTn)], the claim

follows:

E[f(Xn)] = E[f(Yn)] ≥ 1

2
f(OPT) .

The quality of these results becomes apparent when we look at inapproximability

results for USM. Suppose we are given a submodular function by a value oracle.

For any ε > 0 an algorithm achieving a (1/2 + ε)-approximation would require an

exponential number of queries to the value oracle in terms of cardinality of ground

set [9]. The same holds even if the given function is symmetric. Better approximation

bounds are known for special cases of submodular functions.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 29

5 Conclusion

We defined the notion of submodular functions and presented their characterization

in the terms of discrete derivatives. Several examples of submodular functions were

presented in order to show wide range of their applications. Submodular functions

were presented as generalizations of several concepts in graph theory and as a tool for

more specific areas of discrete mathematics. We presented a new construction of exact

polymatroid separators of hypergraphs.

Motivated by examples, we turned to the problems of minimization and maximiza-

tion of submodular functions. We stated (without proof) the most important results

about minimization of submodular functions. The interested reader is recommended

to find more details about mentioned algorithms in cited papers. Two problems of

maximization of submodular functions were presented, namely an algorithm for maxi-

mization of submodular functions under cardinality constraint and an algorithm for un-

constrained submodular function maximization. We proved that the greedy algorithm

yields ≈ 0.63 approximation factor to the problem of maximization under cardinality

constraint.

The problem of unconstrained submodular maximization was solved by three dif-

ferent algorithms. The random set algorithm has an approximation factor of 1/4 in

expected value. In the other two algorithms, we saw how a slight change from a de-

terministic algorithm, which has an approximation factor of 1/3 can improve to an

approximation factor of 1/2 under expected value. Recently, a paper was submitted by

Buchbinder and Feldman, in which a deterministic algorithm is presented with approx-

imation factor 1/2. This is optimal, unless P = NP [6]. Further work on optimization

of submodular functions includes finding faster algorithms, since both minimization

and maximization problems are solved optimally in terms of approximation.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 30

6 Povzetek naloge v slovenskem

jeziku

Namen naloge je bil definirati pojem submodularne funkcije, predstaviti nekatere opti-

mizacijske probleme, povezane z submodularnimi funkcijami, in obravnavati nekatere

algoritme za maksimizacijo submodularnih funkcij.

V prvem poglavju je predstavljen pojem submodularne funkcije. Podana je karak-

terizacija s pomočjo diskretnih odvodov – marginalnega dobička. V tem smislu je

funkcija f na končni možici V submodularna, če ima nepadajoči diskretni odvod.

Diskretni odvod nam tudi pove, ali je funkcija monotona: funkcija je monotona natanko

tedaj, ko so vsi njeni diskretni odvodi nenegativni.

Preprost primer monotone submodularne funkcije f si lahko ogledamo na množici

V = {a, b}, če definiramo funkcijo kot f(∅) = 0, f({a}) = f({b}) = 2 in f({a, b}) = 3.

Preprost razred submodularnih funkcij so tudi t.i. modularne funkcije, diskretni ana-

log linearnih funkcij. Če za modularno funkcijo f : 2V → R predpostavimo, da je

f(∅) = 0, potem vrednost f(S) lahko predstavimo kot vsoto uteži posameznih elemen-

tov množice S.

Dobro znani problem optimalne postavitve objektov (ang. facility location prob-

lem) smo modelirali kot problem maksimizacije prirejene submodularne funkcije. V

zaključni nalogi je predstavljeno tudi, zakaj so submodularne funkcije posplošitev prob-

lema najmanǰsega in največjega prereza v grafih. Definiran je pojem matroida, ki je

posplošitev pojma linearne neodvisnosti v linearni algebri. Rang vsakega matroida pri-

pada posebnemu razredu submodularnih funkcij, imenovanih polimatroidalne funkcije.

V nalogi so omenjene številne aplikacije polimatroidalnih funkcij. Predstavljen je tudi

nov primer konstrukcije eksaktnih polimatroidalnih separatorjev hipergrafov.

Iz obstoječih submodularnih funkcij lahko konstruiramo nove z uporabo operacij,

omenjenih v Poglavju 3. Pokazali smo, da je vsaka nenegativna linearna kombinacija

submodularnih funkcij tudi submodularna funkcija. Opisane konstrukcije nam poma-

gajo pri dokazovanju submodularnosti bolj zapletenih funkcij.

Motivirani s primeri smo si ogledali optimizacijo submodularnih funkcij. Najprej

smo našteli rezultate in algoritme za minimizacijo. Videli smo, da je minimizacija

submodularnih funkcij možna v polinomskem času.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 31

Problem maksimizacije submodularnih funkcij je obravnavan v dveh različnih delih.

Najprej smo definirali problem maksimizacije monotone submodularne funkcije pod

pogojem, da velikost množice ne presega določenega števila k. Za rešitev tega problema

smo predlagali požrešni algoritem, ki za začetno rešitev vzame prazno množico in ki v

vsaki ponovitvi doda element, ki vrednost trenutne rešitve najbolj poveča. Če označimo

z OPT vrednost optimalne rešitve tako definiranega problema, omenjeni algoritem

(Algoritem 1) vrne rešitev, ki ima vrednost vsaj ≈ 0.63OPT .

Drugi problem, ki smo ga obravnavali v zvezi z maksimizacijo submodularnih

funkcij, je problem maksimizacije poljubne (ne nujno monotone) submodularne funkcije.

V tem primeru želimo za dano submodularno funkcijo f : 2V → R najti množico S ⊆ V ,

ki maksimizira vrednost f(S). Temu problemu smo na kratko rekli USM (ang. Un-

constrained Submodular Maximization). Ogledali smo si tri algoritme za rešitev tega

problema: Algoritem 2 – Naključna množica, Algoritem 3 – 1/3-aproksimacijski de-

terministični algoritem za USM – in Algoritem 4 – 1/2-aproksimacijski verjetnostni

algoritem za USM.

Algoritem 2 deluje tako, da vsak element množice V doda v rešitev z verjetnostjo

1/2 neodvisno od ostalih elementov. Matematično upanje aproksimacijskega faktorja

tako dobljene rešitve je 1/4.

Algoritem 3 je preprost algoritem za problem USM in teče v linearnem času.

Množico V poljubno uredimo, V = {v1, . . . , vn}. Začnemo z dvema množicama X0 = ∅
in Y0 = V . Za vsak element vi algoritem naredi eno iteracijo in izračuna pripadajoči

množici Xi−1 in Yi−1. Ideja algoritma je, da v i-ti iteraciji na podlagi diskretnega

odvoda bodisi doda vi v Xi−1 ali pa odstrani vi iz Yi−1. To pomeni, da imamo Xi ⊂ Yi

za vsak i < n in Xn = Yn, kar algoritem tudi vrne kot rešitev. Algoritem 3 zagotavlja

rešitve s faktorjem aproksimacije 1/3.

Algoritem 4 je podoben Algoritmu 3, s to razliko da pri i-tem koraku, kjer se

odločamo, ali bomo vi dodali v Xi−1 ali odstranili iz Yi−1, dopuščamo naključnost na

naslednji način. Definirajmo

a′i := max{0, f(Xi−1 ∪ {vi})− f(Xi−1)} ,

b′i := max{0, f(Yi−1 \ {vi})− f(Yi−1)} .

Potem v i-tem koraku z verjetnostjo a′i/(a
′
i+ b′i) dodamo element vi v množico Xi−1

ali pa (z verjetnostjo b′i/(a
′
i + b′i)) odstranimo element vi iz množice Yi−1. Matematično

upanje aproksimacijskega faktorja Algoritma 4 je 1/2.

Uporaba naključnosti torej izbolǰsa aproksimacijski faktor iz vrednosti 1/3 na 1/2.

Kvaliteta teh rešitev postane razvidna v luči dejstva, da je za vsak ε > 0 aproksimacija

problema USM z aproksimacijskim faktorjem 1/2 + ε NP-težek problem.

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 32

7 Bibliography

[1] D.P. Bertsekas, A. Nedic, and A.E. Ozdaglar, Convex analysis and opti-

mization, MA, 2003. Athena Scientific, Belmont MR2184037 (2006) . (Cited on

page 16.)

[2] M. Bordewich and C. Semple, Budgeted nature reserve selection with diversity

feature loss and arbitrary split systems. Journal of mathematical biology 64 (2012)

69 – 85. (Cited on page 16.)

[3] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan, An inequality for

polymatroid functions and its applications. Discrete Applied Mathematics 131(2)

(2003) 255–281. (Cited on pages 1, 10, and 11.)

[4] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan, Extending the

Balas-Yu bounds on the number of maximal independent sets in graphs to hy-

pergraphs and lattices. Mathematical programming 98 (2003) 355–368. (Cited on

page 10.)

[5] E. Boros, P. Heggernes, P. van ’t Hof, and M. Milanič, Vector connec-

tivity in garphs. Networks 63.4 (2014) 277–285. (Cited on page 16.)

[6] N. Buchbinder and M. Feldman, Deterministic Algorithms for Submodular

Maximization Problems. 2015, submitted. arXiv preprint arXiv:1508.02157 (Cited

on page 29.)

[7] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz, A tight lin-

ear time (1/2)–approximation for uncostrained submodular maximization. 2012

IEEE 53rd Annual Symposium on Foundations of Computer Science – FOCS 2012

(2012) 649–658. (Cited on pages 1 and 23.)

[8] J. Edmonds, Submodular functions, matroids, and certain polyhedra, Combina-

torial Structures and their Applications, Gordon and Breach, London, 1970, pp.

69 – 87. (Cited on pages 7, 10, and 16.)

[9] U. Feige, V.S. Mirrokni, and J. Vondrák, Maximizing non–monotone sub-

modular functions. SIAM J. Comput. 40(4) (2011) 1133–1153. (Cited on pages 1,

21, and 28.)

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 33

[10] L.R. Ford and D.R. Fulkerson, Maximal flow through a network. Canadian

journal of Mathematics 8.3 (1956) 399–404. (Cited on page 8.)

[11] A.M. Frieze, A cost function property for plant location problems. Mathematical

Programming 7 (1974) 245–248. (Cited on page 6.)

[12] S. Fujishige, Personal reminiscence: combinatorial and discrete optimization

problems in which I have been interested. Jpn. J. Ind. Appl. Math. 29(3) (2012)

357–384. (Cited on page 16.)

[13] B. Goldengorin, Maximization of submodular functions: theory and enumera-

tion algorithms. European J. Oper. Res. 198(1) (2009) 102–112. (Cited on page 17.)

[14] G. Grimmett and D. Welsh, Probability: An Introduction. Oxford University

Press, Oxford, UK, 1986. (Cited on page 3.)

[15] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and

Combinatorial Optimization. Springer-Verlag, Berlin, 1987. (Cited on page 16.)

[16] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid algorithm and

its consequences in combinatorial optimization. Combinatorica 1 (1981) 499 – 513.

(Cited on page 16.)

[17] S. Iwata, A faster scaling algorithm for minimizing submodular functions. SIAM

J. Comput. 32 (2002) 833 – 840. (Cited on page 17.)

[18] D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the Spread of Influence

through a Social Network. KDD ’03 Proceedings of the ninth ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining (2003) 137–146.

(Cited on page 9.)

[19] L. Khachiyan, E. Boros, K. Elbassioni, and V. Gurvich, Generating all

minimal integral solutions to monotone ∨, ∧-systems of linear, transversal and

polymatroid inequalities. Mathematical Foundations of Computer Science 2005

(2005) 556–567. (Cited on page 10.)

[20] A. Krause and C. Guestrin, Beyond Convexity – Submodularity in Machine

Learning, http://submodularity.org/submodularity-slides.pdf. (Viewed

on: 4/7/2015.) (Cited on pages 9 and 16.)

[21] A. Krause and D. Golovin, Submodular Function Maximization. Tractability:

Practical Approaches to Hard Problems 3 (2012) 71–104. (Cited on pages 1, 13,

16, 17, and 18.)

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 34

[22] J. Lee, Techniques for submodular maximization. Discrete Geometry and Opti-

mization, Fields Inst. Commun. 69 (2013) 163–177. (Cited on pages 1 and 16.)

[23] Y.T. Lee, A. Sidford and S.C. Wong, A Faster Cutting Plane Method and its

Implications for Combinatorial and Convex Optimization. 2015, submitted.arXiv

preprint arXiv:1508.04874 (Cited on page 17.)

[24] L. Lovász, Submodular functions and convexity. Mathematical programming: the

state of the art (1982) 235–257. (Cited on pages 13, 15, and 16.)

[25] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher, An analysis of approxi-

mations for maximizing submodular set functions I. Math. Programming 14 (1978)

177–188. (Cited on pages 9, 17, and 19.)

[26] J.B. Orlin, A faster strongly polynomial time algorithm for submodular function

minimization. Mathematical programming 118 (2, Ser. A) (2009) 237–251. (Cited

on page 17.)

[27] A. Recski, Matroid Theroy and its Applications in Electric Network Theory and

in Statics, Algorithms and Combinatorics,vol. 6. Springer, Berlin, 1989. (Cited on

page 16.)

[28] A.P. Ruszczyński, Nonlinear optimization, Princeton university press, vol.13,

2006. (Cited on page 16.)

[29] A. Schrijver, A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. J. Combin. Theory B 80 (2000) 346 – 355. (Cited on

page 17.)

[30] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency. In: Algo-

rithms and Combinatorics , Vol. B, Springer-Verlag, 1995, Chapters 39–69. (Cited

on pages 6, 9, and 10.)

[31] J. Vondrák, Optimal approximation for the submodular welfare problem in the

value oracle model. In Proceedings of the Fortieth Annual ACM Symposium on

Theory of Computing, ACM, 2008.67 – 74 (Cited on page 17.)

[32] J. Vygen, A note on Schrijver's submodular function minimization algorithm. J.

Combin. Theory B 88 (2003) 399 – 402. (Cited on page 17.)

[33] D.B. West, Introduction to Graph Theory, Vol. 2., Upper Saddle River: Prentice

Hall, 2001. (Cited on page 7.)

Husić E. Submodular functions.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2015 35

[34] L.A. Wolsey, An analysis of the greedy algorithm for the submodular set cov-

ering problem. Combinatorica 2(4) (1982) 385–393. (Cited on pages 9 and 20.)

