UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN
INFORMACIJSKE TEHNOLOGIJE

DOCTORAL THESIS
(DOKTORSKA DISERTACIJA)

OPTIMIZATION AND GRAPHS: EFFICIENCY OF SOME
ALGORITHMS IN THEORY AND PRACTICE

(OPTIMIZACIJA IN GRAFT: UCINKOVITOST
NEKATERIH ALGORITMOV V TEORIJI IN PRAKSI)

MARKO GRGUROVIC

KOPER, 2025

UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN
INFORMACIJSKE TEHNOLOGIJE

DOCTORAL THESIS
(DOKTORSKA DISERTACIJA)

OPTIMIZATION AND GRAPHS: EFFICIENCY OF SOME
ALGORITHMS IN THEORY AND PRACTICE

(OPTIMIZACIJA IN GRAFT: UCINKOVITOST
NEKATERIH ALGORITMOV V TEORIJI IN PRAKSI)

MARKO GRGUROVIC

KOPER, 2025 MENTOR: PROF. ANDREJ BRODNIK, PHD
CO-MENTOR: ASSIST. PROF. ROK POZAR, PHD

Acknowledgement

I’d like to thank my advisor Prof. Andrej Brodnik for the countless hours of discussion
and advice during my graduate (and undergraduate) studies. Likewise I'd like to
express my gratitude to my co-advisor Prof. Rok Pozar, who has contributed a lot
to the discussions and to the papers published during the formation of this thesis. I
would also like to express gratitude to members of the thesis committee: Gerth Stglting
Brodal, Sergio Cabello, and Martin Milani¢ who have meticulously combed through
this thesis, pointing out issues and suggesting improvements. Thanks to the former
and current guys at DIST — Tine, Jernej, Aleksandar, and others for all the discussions
and beers (especially the beers). I'd like to thank my mother Janja for the support
during the initial years of my studies, and later for the constant reminders that I still
have a thesis to write (to be fair, it took me a while!). Last but not least, I'd like to
thank my girlfriend Simona, who has been very supportive of this whole ordeal and
who has helped push me to the finish line.

Abstract

OPTIMIZATION AND GRAPHS: EFFICIENCY OF SOME ALGORITHMS IN
THEORY AND PRACTICE

This dissertation focuses on algorithms and data structures used to solve combinatorial
optimization problems. The results presented are considered both from the point of
view of theory, as well as that of practical significance.

The first combinatorial optimization problem we consider involves finding shortest
paths between all vertex pairs in a graph. We give an algorithm that efficiently solves
the all-pairs shortest path problem on non-negatively weighted graphs using a single-
source shortest path algorithm v as a black box. Its running time is O(mlgn +
nTy(m* 4+ n,n + 1)) where T,(m,n) is the time required by algorithm ¢ on a graph
with m arcs and n vertices, and m™* is the number of arcs belonging to shortest paths in
the graph. Furthermore, we provide another algorithm based on the well known Floyd-
Warshall algorithm, which solves the same problem and runs in O(n?log®n) expected
time for the class of complete directed graphs on n vertices with arc weights selected
independently at random from the uniform distribution on [0, 1]. In both cases, the
experimental evaluation confirms the theoretical results.

The original Floyd-Warshall solution to the shortest path problem is formulated as a
dynamic programming algorithm. We briefly study the minimum equation which comes
up frequently in the dynamic programming formulation of problems in bioinformatics,
geology, and speech recognition. We obtain an algorithm that extends the previous
special-case results to a wider family of inputs, resulting in a general-case solution
with running time that is adaptive to the input.

The last group of combinatorial optimization problems we study includes problems
that are intractable. To get a good enough solution in this case, we study a paralleli-
zed ant system algorithm solving the traveling salesman problem on n cities. Following
prior results for the graphics processing unit model, we show that they translate to
the parallel random access machine model and introduce further improvements. These
lead us to new asymptotic bounds for the parallel ant system with step complexities
O(nlglgn) on CRCW PRAM and O(nlgn) on CREW PRAM, using n? processors in
both cases. As before, we conclude with an experimental evaluation of our solution.

Math. Subj. Class (2020): 05C85, 68Q25, 68W10, 90C27, 90C39
Key words: dynamic programming, combinatorial optimization, ant colony optimi-

zation, shortest path problem, bottleneck path problem, traveling salesman problem,
parallel algorithms, asymptotic analysis, expected-case analysis.

VI

Izvlecek

OPTIMIZACIJA IN GRAFI: UCINKOVITOST NEKATERIH ALGORITMOV V
TEORIJI IN PRAKSI

Disertacija se osredotoca na podrocje algoritmov in podatkovnih struktur, ki jih upo-
rabljamo pri resevanju problemov kombinatori¢ne optimizacije. Predstavljeni rezul-
tati so analizirani tako iz zornega kota teoreticne analize kot tudi iz zornega kota
prakti¢nega ovrednotenja.

Prvi problem kombinatori¢ne optimizacije, s katerim se soocCimo, je iskanje naj-
krajsih poti med vsemi pari vozlis¢ v grafu. Predstavimo algoritem, ki uc¢inkovito
poisce najkrajse poti med vsemi pari vozliS¢ na nenegativno utezenih grafih z upo-
rabo algoritma @ kot ¢rne skatle. Pri tem je 1 algoritem, ki najde najkrajse poti iz
enega izvora do vseh ostalih vozlis¢. Asimptoticna ¢asovna zahtevnost algoritma je
O(mlgn + nTy(m* 4+ n,n + 1)), kjer je Ty(m,n) Casovna zahtevnost algoritma ¢ na
grafu z m povezavami in n vozlis¢i, m* pa predstavlja stevilo povezav, ki so vsebo-
vane v najkrajsih poteh v grafu. Poleg tega predstavimo Se algoritem, zasnovan na
osnovi Floyd-Warshallovega algoritma. Predstavljeni algoritem resuje isti problem in
ima pri¢akovano ¢asovno zahtevnost O(n? log? n) za razred polnih usmerjenih grafov
na n vozlis¢ih z naklju¢no in neodvisno izbranimi utezmi povezav, porazdeljenimi ena-
komerno na intervalu [0, 1]. Teoreti¢ne rezultate potrdimo s prakti¢nim ovrednotenjem
pri obeh predstavljenih algoritmih.

Floyd-Warshallov algoritem uporablja metodo dinami¢nega programiranja, zato se
posvetimo preucevanju minimizacijske kriterijske funkcije, ki je sestavni del tehnike.
Pogosto se pojavlja pri resitvah problemov, ki jih srecamo v bioinformatiki, geologiji
in razpoznavanju govora. Pri tem pristop, ki je definiran za posebno obliko vhodnih
podatkov, razsirimo na vecjo druzino le-teh, kar nam da splosno resitev s ¢asovno
zahtevnostjo, odvisno od oblike vhodnih podatkov.

Zadnji razred problemov, s katerimi se spopademo, vkljucuje probleme, ki v praksi
niso resljivi. Tokrat is¢emo le dovolj dobro resitev, in v ta namen preuc¢imo vzporedno
izvedbo sistema mravelj, ki resuje problem trgovskega potnika na n mestih. Pri tem
obstojece resitve za graficno procesorsko enoto (GPE) najprej prevedemo na model
stroja z naklju¢nim dostopom PRAM, kjer jih izboljsamo in nadgrajene uporabimo ne-
posredno v kodiranju resitve za GPE. Tako dobljene resitve imajo kora¢no zahtevnost
O(nlglgn) na CRCW PRAM in O(nlgn) na CREW PRAM, z uporabo n? procesor-
jev v obeh modelih ra¢unanja. Ponovno zaklju¢imo s prakticnim ovrednotenjem nase
resitve.

Math. Subj. Class (2020): 05C85, 68Q25, 68W10, 90C27, 90C39

VII

Kljuéne besede: dinamic¢no programiranje, kombinatoricna optimizacija, optimi-
trgovskega potnika, vzporedni algoritmi, asimptoti¢na analiza, analiza pricakovanega
casa.

Contents

I__Introductionl
2_Basics|

2.2 Graphs|.
[2.3 Combinatorial optimization|
2.4 Metaheuristic optimization| L.

Dynamic programming|

[3.1 Computing the minimum|.
[3.1.1 The convex and concave casel
B.1.2 Generalcasel.

Shortest paths in graphs|

[4.1 The Propagation algorithm|.
[4.1.1 'Time and space complexity|
[4.1.2 Implications|
[4.1.3 Improving the time bound|
[4.1.4 Directed acyclic graphs with arbitrary weights|
[4.1.5 Practical optimizations|

[4.2 Properties of shortest k-paths in complete graphs|
M2T1 Distanced
[4.2.2 Lengths|
[4.2.3 Maximum outdegree|

[4.3 Speeding up the Floyd-Warshall algorithm|
[4.3.1 The Tree algorithm|
[4.3.2 'The Hourglass algorithm|
[4.3.3 Expected-case analysig|00
[4.3.4 Empirical comparison of paths examined|

[4.4 Empirical evaluationl 000000
[4.4.1 Graphs|.
[4.4.2 Algorithms|
[4.4.3 First round of experiments|
[4.4.4 Second round of experiments|.

[4.5 All-pairs bottleneck paths|
[4.5.1 Connection to the dynamic transitive closure problem|

IX

[\

[lNe N BEN I e eI

[Ant system|
[>.1 Background|
[>.1.1 The traveling salesman problem|
[b.1.2 Ant system for the TSP|
(5.2 Parallel Ant system|. 0.

[5.2.2 Pheromone update] oL
[5.2.3 Improvements|
[5.2.4 Empirical comparison|.o

6 Conclusion|
[6.1 Dynamic programming|
[6.2 Shortest paths|.o
[6.2.1 Propagation|
[6.2.2 Speeding up the Floyd-Warshall algorithm|
[6.2.3 Bottleneck paths| o000
6.3 Ant system|

[Bibliography|

[Povzetek v slovenskem jeziku|

49
50
50
50
53
53
54
54
25

59
29
59
59
60
61
61

62

69

List of Figures

[4.1 'The Propagation algorithm at phase 2 just after reloading and betore

propagation on graph GG, which contains vertices u, v, x, and y connected

according to the arcs and their weights in the figure. Underneath each

vertex is the sorted shortest distance list S belonging to that vertex.

Bold pairs represent currently best pairs forv.| 19

[4.2 The graph G’ for the Propagation algorithm at phase 2 after the reload- |

| ing step, tor the graph G illustrated in Figure|d. 1} 19
[4.3 Illustration of paths for Lemmal4.24] The squiggly lines between vertices |

| in the figure are (k — 1)-paths.|. 31
[£.4 Tlustration of paths for Lemma4.26] The squiggly lines between vertices |

| in the figure are (k — 1)-paths.|. L. 34
[4.5 Complete digraphs of various sizes with the number of relaxations of |

| algorithms divided by n°. | L. 38
[4.6 Digraphs with n = 1024 vertices and various arc densities with the |

| number of relaxations of algorithms divided by Rpw . |. 39
[4.7 Uniform digraphs, first round| 42
[4.8 Unweighted digraphs, first round| 43
[4.9 Uniform digraphs, second round| 44
[4.10 Unweighted digraphs, second round| 45
[>.1 Running times of pheromone update methods on TSPLIB instances.|. . 58

Chapter 1

Introduction

This dissertation focuses on algorithms and data structures used to solve combinato-
rial optimization problems. The results presented are studied both from the point of
view of theory, as well as that of practical significance. Combinatorial optimization,
an area of applied mathematics and theoretical computer science, deals with finding
the best solutions to certain discrete problems. In contrast to continuous optimization
problems, where the parameters that define the solution are continuous in nature, the
problems of combinatorial optimization have parameters that are discrete. The vari-
ous methods and approaches to solving combinatorial optimization problems include,
among others, the greedy method and dynamic programming, both of which are fea-
tured prominently in this work. Problem solutions are often in the form of a subset,
graph, integer, or other similar discrete structures. The practical utility of combina-
torial optimization is evident in the wide array of real-world problems that it tackles:
optimizing schedules, finding the most economical paths, computing minimal spanning
trees, knapsack problems, etc.

Our focus will be primarily on graph-related combinatorial optimization problems.
Indeed, graphs are one of the most common structures used to model the complex
nature of the world. Therefore it is not surprising that a wide range of problems have
been defined on them. Although these problems have been around since even before the
inception of the computer science field, obtaining faster algorithms or nontrivial lower
bounds has proven challenging for many of them. This thesis is primarily concerned
with classical problems, but likewise concedes to some degree that performance might
not necessarily be best described in the worst-case scenario.

Path optimization problems. The graphs considered in this thesis are directed.
The length (also weight) of a path in a weighted graph is the sum of all weights of
the arcs along the path. A shortest path from a vertex u to a vertex v is any path
between u and v having minimal length. The length of a shortest path from u to v
is called the distance from u to v. The problem of finding shortest paths in graphs
typically has two variants. In the single source shortest path variant, we are looking
for the shortest paths from a given source vertex to all other vertices in the graph. In
the all-pairs shortest path variant, we are looking for the shortest paths between all
vertex pairs. Finding shortest paths in graphs is one of the most iconic problems and
the study of all-pairs shortest path algorithms comprises the bulk of the thesis, and
concerns itself with two entirely different approaches: the Dijkstra approach [22] and
the Floyd-Warshall approach [26,83]. Both of these methods date into the 1960’s, with

Introduction 3

Dijkstra’s approach seeing some improvements over the years such as the introduction
of Fibonacci heaps [30] and derivations such as the Hidden Paths |48] and Uniform
Paths [21] algorithms. On the other hand, there has been virtually no progress on the
Floyd-Warshall algorithm.

In the case of Dijkstra’s approach, we show that the all-pairs shortest path prob-
lem can be solved by an algorithm that uses a black-box single-source shortest path
solver. This allows us to effectively attain average-case speedups on any single-source
algorithm when used in this setting, and even lays bare some interesting connections
between sorting and Dijkstra’s approach to all-pairs shortest path. Given a graph
with n vertices and m arcs, it is trivially known due to its reliance on priority queues,
that Dijkstra’s approach to single-source shortest path is necessarily lower-bounded by
sorting, and thus no o(m+nlgn) algorithm is possible under the comparison-addition
model. However, the single-source problem might not require sorting at all, so that
bound does not say much about the problem itself. Interestingly, the connection we
uncover is between a sorted version of the all-pairs problem and the single-source prob-
lem itself, indicating that a sorting bound on the sorted all-pairs problem can directly
translate to a lower-bound on the (unsorted) single-source problem.

On the other hand, we have the Floyd-Warshall approach [26,83], a completely
different way of tackling the all-pairs problem that runs in time O(n?). Formulated as
a dynamic programming algorithm and immediately recognizable due to its simplicity,
it consists of a mere three nested for loops and a single relaxation operation. Our
improvement has been motivated by observing the relaxation operation and consid-
ering how many times this operation fails to decrease the value already stored. As
it turns out, the answer is that it fails most of the time. By extending the algo-
rithm with a few more steps instead of a straightforward for loop and exploiting the
structure of shortest paths, we have devised some improvements that have resulted
in excellent performance in practice. Motivated by empirical results and preliminary
calculations, we set out to rigorously prove the expected-case time complexity. The
obtained O(n?log®n) expected-case bound is still worse than the O(n?logn) expected
case bound achieved by the Hidden Paths algorithm [4§], an algorithm that would fall
under Dijkstra’s approach. However, it is nonetheless surprising for such a small mod-
ification of Floyd-Warshall, an algorithm that has resisted improvement for so long.
Due to its simplicity, it performs remarkably well in practice.

The bottleneck paths problem [43]/68] is closely related to the shortest path problem,
except that instead of the distance of a path, we define the width of a path as the
minimum weight arc on the path. In other words, we change the aggregation operation
from sum to minimum. The bottleneck path (also called the widest path) from wu to v
is then any path between v and v with maximum width. The bottleneck paths problem
also comes in both single-source and all-pairs variety: in the case of single-source, we
are looking for bottleneck paths from a given source vertex to all other vertices in the
graph; and in the case of the all-pairs variant, we are asked to find bottleneck paths for
all vertex pairs. In this work we investigate how to solve the all-pairs variant of this
problem efficiently, and also point out a connection to the dynamic transitive closure
problem on graphs.

As mentioned above, the original Floyd-Warshall solution to the shortest path prob-
lem is formulated as a dynamic programming algorithm. Many dynamic programming
formulations contain a subproblem of finding the minimal sum of two elements drawn
from one or more sets of such elements. We study this subproblem on its own, which

can be found in solutions to a wide variety of problems in bioinformatics [62], geol-
ogy [77] and speech recognition |71]. We study this subproblem and show how a certain
special-case approach can be generalized to achieve a solution that works in all cases
and improves the performance of some dynamic programming algorithms.

Intractable problems. Although the problems we have mentioned thus far can be
solved in polynomial time, there are many NP-hard problems on graphs which take
prohibitively long to solve optimally. One such problem is the traveling salesman
problem [49], where we are given a graph with vertices representing cities and arcs
representing connections between cities. In the usual formulation each city is connected
to every other city and the arcs are weighted so that the weight represents the distance
between the cities it connects. The traveling salesman problem asks for the shortest
Hamiltonian cycle.

Metaheuristic optimization algorithms are often used when solving NP-hard prob-
lems such as the traveling salesman problem, eschewing optimal solutions in favor of
solutions that are good enough. Another unrelated approach is to run parts of the al-
gorithm in parallel on several processors simultaneously. Combining these approaches
together brings us to the idea of parallel metaheuristics. It is interesting that many
metaheuristic algorithms are inspired by nature in one way or another, leading to algo-
rithms such as genetic algorithms, differential evolution, simulated annealing, harmony
search, particle swarm optimization, ant colony optimization, and many more. Since
this is such a wide and varied field, we focus on the Ant system algorithm and study
its behavior in a parallel environment solving the traveling salesman problem. The
ant system algorithm works by placing artificial ants on a graph, and then tasks the
ants with the goal to find the shortest Hamiltonian cycle. The algorithm mimics the
techniques used by real ants to find paths from their nest to a source of food and
back. Ants progressively build a solution by moving around on the graph. Movement
is done probabilistically, based on the pheromone model, which is simply a set of pa-
rameters tied to graph arcs, that the ants can change during execution. Most studies
on metaheuristic optimization are primarily empirical both in terms of running time as
well as solution quality. Since our interest is both theoretical and empirical, we apply
theoretical analysis when it comes to running time and analyze the algorithms in the
well-understood parallel random access machine model.

Structure of the thesis. The rest of this thesis is structured in the following way.
Chapter [2 introduces common notation, concepts and terminology used throughout
the thesis. In Chapter |3| we study a subproblem that commonly occurs in the dynamic
programming formulation of a wide variety of problems in bioinformatics, geology and
in speech recognition.

Chapter 4| focuses on shortest path problems on graphs. It includes improvements to
both the Dijkstra and Floyd-Warshall approach to solving the classic all-pairs shortest
path problem. It presents a new algorithm for the all-pairs bottleneck path problem, a
study of properties of certain paths in random graphs and finally, empirical comparisons
of actual implementations of both novel and existing algorithms.

In Chapter 5| we take a different direction and study the parallel Ant system algo-
rithm. We investigate how existing implementations for the graphics processing unit
might be analyzed more rigorously on the parallel random access machine with the
goal of finding areas where further improvement could be made. In addition, we also

Introduction 5

compare existing and novel implementations empirically.

We conclude the thesis with Chapter [6] which offers an overview of the results and
presents some open problems.

Some of the results of this thesis are published in the following articles:

[8] A. Brodnik and M. Grgurovi¢. Speeding up shortest path algorithms. In
K. Chao, T. Hsu, and D. Lee, editors, Algorithms and Computation - 23rd In-
ternational Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012.
Proceedings, volume 7676 of Lecture Notes in Computer Science, pages 156—165.
Springer, 2012. (Presented in Section [4.1])

[9] A. Brodnik and M. Grgurovi¢. Solving all-pairs shortest path by single-source
computations: Theory and practice. Discrete Applied Mathematics, 231(Supple-
ment C):119 — 130, 2017. Algorithmic Graph Theory on the Adriatic Coast.

(Presented in Sections [4.1] and [4.4])

[7] A. Brodnik and M. Grgurovi¢. Practical algorithms for the all-pairs shortest
path problem. In A. Adamatzky, editor, Shortest Path Solvers. From Software to
Wetware, pages 163-180. Springer International Publishing, Cham, 2018. (Pre-

sented in Sections (.4 and [4.5])

[10] A. Brodnik and M. Grgurovi¢. Parallelization of ant system for GPU under
the PRAM model. Comput. Informatics, 37(1):229-243, 2018. (Presented in

Chapter o])

[6] A. Brodnik, M. Grgurovi¢, and R. Pozar. Modifications of the Floyd-Warshall
algorithm with nearly quadratic expected-time. Ars Math. Contemp., 22(1):1-22,

2022. (Presented in Sections [4.2] [.3] and [£.4])

Chapter 2

Basics

Throughout the thesis we will use consistent concepts, terminology and notation which
we establish in this chapter. Consequently, the reader is instructed to refer back to this
chapter while reading the thesis. All logarithms written as log z are base e unless ex-
plicitly stated otherwise, and all logarithms written as lg z are base 2. For convenience,
we define [n] ={1,2,...,n}.

2.1 Models of computation

Algorithms are analyzed based on idealized theoretical models. Two such models are
outlined in Sections [2.1.1)and [2.1.2, However, in spite of an optimistic theoretical anal-
ysis of an algorithm, it is important to keep in mind that such models, and therefore
results, do not always translate well into practice. Through implementation and sub-
sequent empirical testing, we can determine how such algorithms perform in practice
and compare them with other existing solutions.

Proving the correctness of an algorithm is a key step in its analysis, as it guarantees
that the obtained result is a valid solution to the problem. More in-depth formal
analysis of an algorithm also includes the asymptotic time and space complexities. On
the basis of asymptotic complexity, we can determine the efficiency of an algorithm,
and compare two algorithms with each other on a completely theoretical level. There
are several types of asymptotic analyses, but for the purposes of the thesis, we focus
on analyses of worst-case and expected-case asymptotic complexity.

2.1.1 Random access machine

The RAM |[16] (random access machine) model is a classical model of computation in
theoretical computer science. It is used in the analysis of sequential algorithms, and
consists of a memory that contains an unbounded number of registers, which can store
integers. Access to the registers is through direct access in constant time. Often, we
are faced with a more powerful model called word RAM [31] which allows the execution
of certain arithmetic and logical operations on registers in constant time. However, the
word RAM also puts a limit to the size of a register, usually to O(lgn) where n is the
problem size, which ensures we are able to fit the numerical representation of the size
of the problem into a single register.

Basics 7

2.1.2 Parallel random access machine

The PRAM |28] (parallel random access machine) model is an extension of the RAM
model that permits analysis of parallel algorithms. It consists of an unbounded num-
ber of processors and memory that is shared across all processors, which is a type of
memory architecture that is often called UMA [44] (unified memory access). Proces-
sors in a PRAM execute instructions in parallel and synchronously. During analysis of
time complexity, for a problem of size n, we distinguish between step complexity S(n),
which represents the maximum classical time complexity over all processors, and work
complexity W (n), which represents the sum of classical time complexity over all pro-
cessors. Under the Flynn taxonomy [27] we would place the PRAM model somewhere
between the SIMD (single instruction, multiple data) and MIMD (multiple instruction,
multiple data) models, since under PRAM in the case of a branch, different processors
can execute different instructions.

We denote the number of processors by p. In this thesis, we deal with two types
of synchronous PRAM: concurrent-read exclusive-write (CREW) and concurrent-read
concurrent-write (CRCW). The CREW variant allows processors to read from any
memory location at any time, but does not allow two processors to write to the same
memory location at the same time. In contrast, the CRCW variant has no such write
restriction. Since under CRCW all processors can write to the same location at once, it
is typical to parametrize the CRCW variant by how the competing writes are handled.
In this thesis we consider two standard ways of doing that:

e COMMON: All processors must write the same value.

e COMBINING: All values being concurrently written are combined using some
operator (e.g., addition, maximum, etc).

We focus on CREW, CRCW, and COMBINING CRCW algorithms, where by CRCW
we mean algorithms that run under the COMMON variant. An important parallel
operation which we will make extensive use of is finding the largest element in an array
of n elements. It is important to note that finding the maximum among n numbers can
be performed in S(n) = O(lglgn) steps under CRCW |73| with p = ——. However,

Iglgn
it is only possible in S(n) = O(lgn) steps under CREW with p = . The work
complexity is W(n) = O(n) in both cases. Under COMBINING CRCW, finding the
maximum can be performed in S(n) = O(1) and W(n) = O(n) by making use of the

combining mechanism in a trivial way (i.e., setting it to be the maximum operation).

2.2 Graphs

A digraph (or directed graph) G is a pair (V, A), where V' is a non-empty finite set of
elements called vertices and A C V x V a set of ordered pairs called arcs. We assume
V ={vy,vq,...,v,} for some n, and define m = |A| for convenience. The two vertices
joined by an arc are the arc’s endvertices. The outdegree of v € V', is the number of
arcs in A that have origin v. The maximum outdegree in G is denoted by A(G).

A digraph G' = (V', A') is a subdigraph of the digraph G = (V, A) if V/ C V and
A" C A. The (vertex-)induced subdigraph with the vertex set S C V', denoted by G[S5],
is the subgraph (S, C') of G, where C contains all arcs a € A that have both endvertices
in S, that is, C' = AN (S x §). The (arc-)induced subdigraph with the arc set B C A,

8 2.3 Combinatorial optimization

denoted by G[B], is the subgraph (U, B) of G, where U is the set of all those vertices
in V that are endvertices of at least one arc in B.

A path P in G from vpy to vp, is a finite sequence P = vpg, vpy, ..., vp, of pairwise
distinct vertices such that (vp;, vp;41) is an arc of G, for i = 0,1,...,7—1. The length
of a path P, denoted by |P|, is the number of vertices occurring on P. Any vertex of
P other than vpy or vp, is an intermediate vertex. Given a graph G' with vertex set
V ={v1,...,v,} and an integer k € {0,1,...,n}, a k-path in G (with respect to the
vertex ordering vy, ...,v,) is a path in G such that all internal vertices belong to the
set {v1,...,vx}. Obviously, a O-path has no internal vertices.

A weighted digraph is a digraph G = (V, A) together with a weight function w: A —
R that assigns each arc a € A a weight w(a). A weight function w can be extended
to path P by w(P) = ¥i—d w(vp,, vpit1). A shortest path from u to v, denoted by
u ~» v, is a path in G whose weight is minimum among all paths from u to v. The
distance from vertex u to vertex v, denoted by Dg(u,v), is the weight of a shortest
path u ~» v in GG. Given a subset S C V, the distance between S and a vertex v in G,
denoted by D¢g(S,v), is Dg(S,v) = minges Dg(u,v). A shortest k-path from w to v is
denoted by s, Further, we denote the set of all arcs that are part of some shortest
k-path in G by A® and the subdigraph G[A®)] by G®). Note that the digraph G
is known as the essential subdigraph [58] of G.

2.3 Combinatorial optimization

Combinatorial optimization is a branch of mathematics and computer science that fo-
cuses on finding the optimal solution from a finite set of possible solutions. It involves
exploring all possible combinations of a set of objects or variables to determine the best
combination that satisfies a set of constraints or minimizes a specific objective func-
tion. Combinatorial optimization is used to solve a wide range of real-world problems,
including logistics, scheduling, resource allocation, network design, and many others.
The key challenge in combinatorial optimization is to efficiently search through the
large space of possible solutions to find the optimal one. This field has developed var-
ious techniques and algorithms, such as linear programming, dynamic programming,
and branch and bound, to efficiently solve combinatorial optimization problems. For a
comprehensive overview of the field we refer the reader to [72].

2.4 Metaheuristic optimization

Metaheuristic optimization algorithms are optimization algorithms or general strate-
gies that can be used to solve optimization problems, but without guaranteeing the
optimality (or even an approximation) of the obtained solutions. For simple problems,
where we might find the optimal solution relatively quickly, metaheuristics are a poor
choice. However, the metaheuristic algorithms prove to be useful in practice in cases
when the time required to find an optimal solution is prohibitively long. Among such
problems are, for example, NP-hard problems.

Many metaheuristics mimic or are inspired by the behavior of natural systems,
such as genetic algorithms, differential evolution, simulated annealing, harmony search,
particle swarm optimization, ant colony optimization, and many more [5].

Chapter 3
Dynamic programming

In contrast to the divide and conquer approach, where we split a problem into subprob-
lems and solve them independently, dynamic programming solves problems that are
broken into subproblems which overlap and are not entirely independent. Dynamic pro-
gramming 18] is thus a method which splits a problem into smaller subproblems, solves
them once, and to improve performance memorizes the solutions in order to reuse them
whenever the same subproblems resurface. This avoids redundantly solving the same
subproblem multiple times. Furthermore, the solution to the problem is constructed
from solutions to subproblems, usually by computing the minimum or maximum over
a set of values. Algorithms that leverage techniques of dynamic programming are used
in solving optimization problems such as finding shortest paths [26,83|, finding the
shortest edit distance [71], etc.

3.1 Computing the minimum

We consider the following problem: given a vector X = [Xj, ..., X,,_1] of real values
and a function ¢(i) for 1 < i < n, compute for all 1 <1i < n:
Y, = min {X; + g(i — k)}. (3.1)

It can be shown that certain dynamic programming algorithms used in bioinformat-
ics [62], geology [77], and in speech recognition |71], can be reduced to this problem.
The naive algorithm for solving Eq. takes O(n) time for each ¢, which amounts
to a total of O(n?) time over all .

Focusing on specific cases of the function ¢ (usually referred to as the gap function)
allows us to solve this problem faster. We will focus on the algorithm from [34] for the
case when ¢ is nondecreasing and convez, that is, a function that grows at an increasing
rate; more formally, given a < b the following holds:

glb+c)—gla+c)<glb+d)—glat+) for 0<c<{, (3.2)

but the same result can also be obtained with minor modifications when g is concave,
as shown in [34].

Previous algorithms for this problem focused on either the concave case [34}/41}84]
or the convex case [34]. In this section, we develop an algorithm that is a combination
of the special-case algorithms described in [34] but works for all inputs, and its running
time depends on the number of inflection points of the function ¢, which are points
where convexity changes into concavity or vice-versa.

10 3.1 Computing the minimum

3.1.1 The convex and concave case

We first describe the algorithm from [34] for the case when g is convex. Consider the
sequence of integers S = [1,2,...,n]. We will assign to each element ¢ in S the value
Y;, i.e., the combination that achieves the minimum for a given i in Eq. (3.1)). For each
7, we would like to find a k that achieves the minimum for that .

Lemma 3.1. Let g be a convex function and let k achieve the minimum for i. Then,
there exists an index j achieving the minimum for ¢ + 1 such that j > k.

Proof. Note that it is enough to prove that for all 0 < j’ < k we have
Xi+g(i+1—7)>Xp+9(i+1—k).

Let 5/ be an arbitrary index such that 0 < j' < k. Since k achieves the minimum for
7, we have

Xy +g(i—35') > Xi + g(i — k).
Rearranging the last inequality we get
X — Xy <g(i—j")—gli—k).

Takea=i—k,b=i—j,c=0and ¢ = 1. Since a < b, 0 < ¢ < and g is convex,
we can plug a, b, ¢ and ¢ into Eq. (3.2) and obtain

gli—j") —gli—k)<g(i+1—-3)—gli+1—-k).

Hence,
Xe—Xy<gli—j)—gli—k)<gli+1-j)—gli+1—k),

as desired. n

Lemma 3.2. Let g be a convex function and let k achieve the minimum for i, but not
for i+ 1. Then, k does not achieve the minimum for any v > i.

Proof. By Lemma [3.0] there exists an index j achieving the minimum for ¢ + 1 such
that 7 > k. Since k does not achieve the minimum for ¢ + 1, we have j > k and

Xe+g(i+1—-Fk)>X;+g(i+1-7),

or equivalently,
X;—Xp<gli+1—k)—g(i+1-j),

We now prove that, for any d > 1 we have
X;—Xp<gli+d—Fk)—gli+d—j).

Let d > 1 be an arbitrary index. Take a =i —j,b=1i—k, c=1, and ¢ = d. Since
a<b,0<c¢<c and g is convex, we can plug a, b, ¢ and ¢’ into Eq. (3.2) and obtain

gli+1—k) —gli+1—j) <gli+d—k) —g(i+d—j).
Hence,
X;—Xp<gli+1—k)—g(i+1—y5)<gli+d—k)—g(i+d—3j),

which completes the proof. O]

Dynamic programming 11

What follows from Lemma [3.2]is that each element k will achieve the minimum for
precisely a contiguous (possibly empty) subsequence of S.

In order to find the subsequence for each k, we would like to know, given two
elements j and k£ with j < k, for which ¢ > k£ we have

Xe+9(—k) < X;+g(i—j).

The latter translates to the following: find the maximal index ¢ in {k,k 4+ 1,...,n}
such that
Xy —X;<glc—j)—glc—k)

holds, which can be done in O(lgn) using binary search.

Now we are ready to describe the ConvexCaseMin algorithm from [34]. We will
assign to each 0 < k < n a contiguous subsequence of S for which it achieves the min-
imum, and these subsequences will not overlap with each other. We start by assigning
0 the subsequence consisting of the entire sequence S. Then, the algorithm works by
traversing the list of candidates 1,...,n — 1. Let us denote the current candidate by
u. We compare u with whichever element v is assigned to the rightmost subsequence
of S. One can now determine for which values of k£ the new candidate achieves a lower
value according to Eq. , and the subsequence can be updated by being split into
two if necessary. In the case that the new candidate is better than the previous one
for the entire subsequence, we repeat the process on the subsequence to the left of the
current subsequence. Once we are done, we merge and/or update the boundaries of
any neighboring subsequences that we updated.

Lemma 3.3. When g is a convex function, the ConvexCaseMin algorithm correctly
computes the solution to Eq. (3.1]).

Proof. The correctness of the algorithm follows from Lemma [3.2] and the discussion
above. O

Lemma 3.4. The ConvezCaseMin algorithm has a time complezity of O(nlgn).

Proof. In order to analyze the time required by the algorithm, we go through each
candidate 0 < u < n and count how many binary searches are performed, each taking
O(lgn) time. Assume that there are currently 0 < d < n subsequences, and u proves to
be the better candidate than the candidate assigned to 0 < ¢ < d of those subsequences.
This means ¢ + 1 binary searches will be performed. If ¢ = 0, this will cost us O(lgn).
Otherwise if ¢ > 0, note that after we are done with u and move onto the next candidate
from S, the number of subsequences will be d = d — ¢ + 1 since we will reduce the
number of subsequences due to concatenating the ¢ subsequences into a single one.
Thus, the number of such additional searches is O(n). Therefore, the algorithm takes
O(nlgn) time. O

We do not explicitly describe the algorithm in the concave case from [34], since it
is similar to the convex case.

3.1.2 General case

We are now ready to state our contribution. Observe that the function g only takes
on integral inputs. Therefore, we can consider the sequence of values:

9(2) —9(1),9(3) = 9(2),...,9(n) — g(n — 1).

12 3.1 Computing the minimum

In a preprocessing step, we can traverse this sequence to discover non-overlapping,
contiguous subsequences (which we will call blocks) that contain elements in ascending
(resp. descending) order. These are precisely the regions of the function which are
convex (resp. concave). We build a list L which, for each block, contains an element
(start, end, asc) that stores information about the block boundary (start, end) and
whether the block is in ascending (asc = 1) or descending (asc = 0) order. Let us
denote the number of such blocks by,bs,...,bp by B, and let |b;| denote the number
of elements in block b;. Observe that 1 < B < n/2, since two elements form either an
ascending or descending block, and in the case B = 1 the function is either convex or
concave. This step takes O(n) time, and allows us to partition ¢ into disjoint intervals
where the property of sorted residues holds.

The algorithm works by going through the list L and for each block (start, end, asc),
it finds the minimum combinations of Y; = X + g(i — k) for all Y; whenever ¢ — k is
inside the interval (start, end). Once these combinations have been found, they are
stored as Y; if they are lower than the current value and the algorithm moves onto
the next block, where the same process is repeated. Observe that these subproblems
can be solved by a slight modification of the algorithms from Subsection [3.1.1 we use
the convex algorithm if asc = 1 and the concave algorithm otherwise. Once we solve
the subproblem in a block, we will not revisit it and so the space can be reused. The
algorithm requires only O(n) extra space.

Lemma 3.5. The general-case algorithm correctly computes the solution to Eq. (3.1)).

Proof. From Lemma [3.2) and Lemma [3.3] we already know that inside a sorted contigu-
ous interval of g, we can use binary search to find the combinations that achieve the
minimum Y;. However, since g does not consist of a single sorted contiguous interval
and may indeed be broken up into several such intervals, it remains to show that the
algorithm finds the combinations that achieve the minimum over all such intervals.
This is accomplished by the algorithm by exhaustively computing the solutions for
each interval separately and maintaining the minimal values Y; at all times. O

Lemma 3.6. The general-case algorithm has a time complexity of O(Bnlg(%)).

Proof. The time required to solve the subproblem on block b; comes from the algorithm
described in Section [3.1.1] In our case, the binary search is performed on b;, so the
time is O(nlg|b;|). Over all subproblems the time becomes:

B
i=1
Turning the sum of logarithms into the logarithm of the product we get:

o(s(1Tw)

Assume B is fixed. Since the logarithm is a monotonically increasing function, the
time is maximized when [JZ, |b;| is maximized. Recall that the geometric mean is less
than or equal to the arithmetic mean. Hence, we have:

(H W)”B <n/B

1:[1 b < (n/B)".

Dynamic programming 13

Thus, we can upper bound the time by O(Bnlg(3)). O

Regardless of g, the time is never worse than the straightforward O(n?) algorithm,
and achieves the O(nlgn) bound when B = O(1). Furthermore, B can be upper
bounded by the number of inflection points of g. Recall for example, that a polynomial
of degree d has at most d — 2 inflection points. Therefore, if g is a polynomial, we can
upper bound the running time by O(dnlgn).

Chapter 4

Shortest paths in graphs

Finding shortest paths in graphs is a classical problem in algorithmic graph theory.
The problem pops up frequently also in practice in areas like bioinformatics, logistics,
and VLSI design (for a more comprehensive list of applications see, e.g., |2]). Two of
the most common variants of the problem are the single-source shortest path (SSSP)
problem and the all-pairs shortest path problem (APSP). In the SSSP variant, we are
searching for paths with the least total weight from a fixed source vertex to every other
vertex in the graph. Similarly, the APSP problem asks for a shortest path between
every pair of vertices. In this chapter we focus on the all-pairs variant of the problem.

The asymptotically fastest APSP algorithm for dense graphs to date has a running
time of n?/2%V16™) [14]. For non-negative arc weights and for sparse graphs, there
exist asymptotically fast algorithms for worst case inputs [64,66,79], and algorithms
which are efficient expected-case modifications of Dijkstra’s algorithm [21},48,63].

For the analysis of the expected-case running-time of shortest-path algorithms,
input instances are generated according to a probability model on the set of complete
directed graphs with arc weights. In the uniform model, arc weights are drawn at
random, independently of each other, according to a common probability distribution.
A more general model is the endpoint-independent model [4,74], where, for each vertex
v, a sequence of n — 1 non-negative arc weights is generated by a deterministic or
stochastic process and then randomly permuted and assigned to the outgoing arcs of v.
In the vertex potential model [15/17], arc weights can be both positive and negative.
This is a probability model with arbitrary real arc weights, but without negative cycles.

In the uniform model with arc weights drawn from the uniform distribution on [0, 1],
Hassin and Zemel [40] and Frieze and Grimmett [32] presented algorithms that solve
the APSP problem in O(n*logn) expected-case time. Peres et al. [63] improved the
expected-case running time to O(n?), which is optimal. In the endpoint-independent
model, Spira [74] proved an expected-case time bound of O(n?log®n), which was im-
proved by several authors. Takaoka and Moffat 78] improved the running time to
O(n*lognloglogn). Bloniarz [4] described an algorithm with expected-case running
time O(n?lognlog” n). Finally, Moffat and Takaoka [60] and Mehlhorn and Priebe [59)
improved the running time to O(n*logn). In the vertex potential model, Cooper et
al. [17] gave an algorithm with an expected-case running time O(n?logn). All the
above algorithms use a Dijkstra-like approach which inherently requires the use of a
priority queue. Table lists the state of the art algorithms along with their bounds.

In Section we deal with the non-negative arc weights and consider the following
problem: what is the best way to make use of an SSSP algorithm when solving APSP?

Shortest paths in graphs 15

Table 4.1: State of the art all-pairs shortest path algorithms

Worst Case

Weights Directed | Bound
Chan-Williams [14] Real Yes ns3 /29Viogn)
Pettie [64] Real Yes O(mn + n*loglogn)
Pettie-Ramachandran [66] | Real No O(mnloga(m,n))
Thorup [79] Integer No O(mn + n?)

Expected Case

Model Bound
Peres et al. [63] Uniform O(n?)
Mehlhorn-Priebe [59) End-point ind. | O(n*logn)
Cooper et al. [17] Vertex potential | O(n?logn)

There exists some prior work on a very similar subject in the form of an algorithm
named the Hidden Paths Algorithm [48]. The Hidden Paths Algorithm is essentially a
modification of Dijkstra’s algorithm [22] to make it more efficient when solving APSP.
Solving the APSP problem by repeated calls to Dijkstra’s algorithm requires O(mn +
n?1gn) time using Fibonacci heaps [30], with a single run requiring O(m+mnlgn) time.
The Hidden Paths Algorithm then reduces the running time to O(m*n +n?1gn). The
quantity m* represents the number of arcs (u, v) such that (u,v) is included in at least
one shortest path. In the Hidden Paths Algorithm this is accomplished by modifying
Dijkstra’s algorithm, so that it essentially runs in parallel from all vertex sources in
a graph, and then reusing the computations performed by other vertices. The idea is
simple: we can delay the inclusion of an arc (u,v) as a candidate for forming shortest
paths until vertex u has found (u,v) to be the shortest path to v.

As pointed out in [48]: it is known [32,40,55| that m* = O(nlogn) with high
probability when the input graph is the complete graph with edge weights chosen
independently from any of a large class of probability distributions, including the uni-
form distribution on the real interval [0, 1] or the uniform distribution on the range
{1,...,n?}. Tt should be also noted that, in unit weight graphs, m* = m since every arc
forms a shortest path.

However, the speedup technique employed by the Hidden Paths Algorithm is only
applicable to Dijkstra’s algorithm, since it explicitly sorts the shortest path lists by path
weights, through the use of a priority queue. As a related algorithm, we also point out
that a different measure related to the number of so-called uniform paths (also called
locally shortest paths), has also been exploited to yield faster algorithms [21]. The main
result of Section is a speedup technique similar to the Hidden Paths Algorithm,
but without relying explicitly on Dijkstra’s algorithm, thus effectively bringing this
speedup to any SSSP algorithm when it is used to solve APSP.

In Section we analyze certain properties of shortest k-paths in complete graphs,
which will be later used to prove expected-case time complexity bounds. In Section
we remove the condition of non-negative arc weights and study Floyd-Warshall |26}83],
a simple dynamic programming algorithm that is frequently used to solve APSP. There
exist many optimizations for the Floyd-Warshall algorithm, ranging from better cache
performance [82], optimized program-generated code [38], to parallel variants for the
GPU [39,/50]. One can also approach APSP through Min-plus matrix multiplica-
tion, and practical improvements have been devised to this end through the use of

16 4.1 The Propagation algorithm

sorting [57]. In spite of intensive research on efficient implementations of the Floyd-
Warshall algorithm, there has not been much focus devoted to improvement of the
number of path combinations examined by the algorithm.

In Section we perform an empirical evaluation of all mentioned shortest path
algorithms, both existing and novel. Finally, in Section we study the case of a
closely related problem called the all-pairs bottleneck paths problem and propose an
algorithm as well as point out a connection to the dynamic transitive closure problem.

Throughout this chapter, the model of computation used in algorithm design and
analysis is the comparison-addition model, where the only allowed operations on arc
weights are comparisons and additions. Beside operations on weights, we assume a

RAM model.

4.1 The Propagation algorithm

It is obvious that the APSP problem can be solved by n calls to an SSSP algorithm. Let
us denote the SSSP algorithm as v. We can quantify the asymptotic time bound of such
an APSP algorithm as O(nTy(m,n)) and the asymptotic space bound as O(Sy(m,n)),
where T, (m,n) is the time required by algorithm ¢ on graphs with n vertices and m
arcs and Sy(m,n) is the space requirement of the same algorithm. We assume that
the time and space bounds can be written as functions of m and n only. Note that if
we are required to store the computed distance matrix, then we need at least ©(n?)
additional space. If we account for this, then the space bound becomes O(Sy(m,n) +
n?). Throughout this section, we assume that the shortest path weights are unique,
although in practice we can break ties by making sure the path with fewer vertices
on it is deemed shorter, and in case even that is the same, falling back to some other
arbitrary criterion such as the index of the last vertex.

Let G = (V, A) denote a weighted digraph with a non-negative arc weight function
w: A — RT and V = {vy,v9,...,v,}. Without loss of generality, we assume that
G is strongly connected. Similar to how shortest paths are discovered in Dijkstra’s
algorithm, we rank shortest paths in nondecreasing order of their weights. We call a
path 7 the k-th shortest path if it is at position &k in the length-sorted shortest path
list. The list of paths is typically taken to be from a single source to variable target
vertices. In contrast, we output paths from variable sources to a single target. (Note
that if the desired output were lists of shortest paths out of a vertex, this could be
easily accomplished by a preprocessing step where we flip all the arc directions in the
graph before running the algorithm.)

Suppose we have an SSSP algorithm . We denote a call of this algorithm by
»(V, A w, s) where V and A correspond to the vertex and arc sets, respectively, w
is the arc weight function of the graph, and s corresponds to the source vertex. The
method we propose works in the fundamental comparison-addition model and does not
assume a specific kind of arc weight function, except the requirement that it is non-
negative. However, the algorithm 1) that is invoked can be arbitrary, so if ¥ requires a
different model or a specific weight function, then implicitly by using ¢, our algorithm
does as well.

First we give a simpler variant of the algorithm, resulting in bounds O(mn +
nTy(m* +n,n+1)). We limit our interaction with ¢ only to execution and reading its
output. In Section we show how to improve the running time by constructing a
weighted digraph G’ = (V’/, A") with weight function w’ on which we run . There are

Shortest paths in graphs 17

two processes involved: the method for solving APSP which runs on G, and the SSSP
algorithm 1 which runs on G’. There are n — 1 phases of the main algorithm, each
composed of three steps: (1) prepare the graph G’; (2) run ¥ on G’; and (3) interpret
the results of 1. The goal of each phase is to discover exactly one new shortest path
per vertex, for a total of n new shortest paths.

Although the proposed algorithm effectively works on m — 1 new graphs, these
graphs are similar to one another. Thus, we can consider the algorithm to work only
on a single graph G’ with a representation that allows modification of arc weights and
introduction of new arcs into G’ in O(1) time. The vertex set V' =V U {x}, where %
is a new vertex unrelated to the graph G, remains fixed throughout the execution of
the algorithm. At phase k the set A’ consists of all the arcs that are contained in some
i-th shortest path for ¢ < k, and n new arcs (%,v;) for j € [n]. The weights of the
new arcs are assigned by the algorithm. We proceed with four definitions which will
be motivated later.

Definition 4.1. The sorted shortest distance list S; is a list of 2 < k < n+ 1 pair-
wise distinct elements, where the first element is always (v;,0) and the last element is
always (null,00). The remaining elements are of the form (v,,d) where v, € V and
0 = D¢ (vq,v5), and are sorted by § in non-decreasing order.

Definition 4.2. Given sorted shortest distance lists Sy,...,S,, a verter v, € V is a
viable vertex for vertex v; € V' if for each (vy,d') € Sj we have v, # vy

Definition 4.3. Given sorted shortest distance lists Sy, ..., Sy, a pair (v,,9) € S; is a
viable pair for vertex v; € V if (v;,v;) € A and if either v, = null, or if v, is a viable
vertex for v;.

Definition 4.4. Given sorted shortest distance lists Sy, ..., Sp, a viable pair (v,,0) € S;
for vertex v; is the currently best pair for vertex v; if for every other viable pair
(vgr,6") €Sy forv; the following holds 6’ 4+ w(vy,v;) > § + w(vs, vj).

Next we describe the data structures. Each vertex v; € V' keeps its sorted shortest
distance list .S;, which initially contains only two pairs (v, 0) and (null, co). It is worth
pointing out that the algorithm will never change or remove pairs from Sj, it will only
insert new pairs in front of the element (null, o). Vertex v; keeps a pointer p|i, j] for
each incoming neighbor v; € V' in G, which points to an element in the sorted shortest
distance list .S;. Initially, each such pointer p[i, j] is set to point to the first element of
S;. In order to traverse these lists, we use p[i, j].next() in pseudocode, to get the next
element in S;.

The first step in each phase of the algorithm is preparation of the graph G’. In
this step, each vertex v; finds a currently best pair (v,,d). To do this, vertex v; for
each v; € V such that (v;,v;) € A inspects S; starting at position p[i, j] until it finds
a viable pair. Finally, it selects the minimum (as per Definition among the found
viable pairs. We call this process reloading.

Once reloaded we modify the arcs in the graph G'. Let (vg, d,) € S; be the currently
best pair for vertex v;. Then we set w'(x,v;) <= 0, + w(v;, v;) and call (V' A", w', %).
We assume 1 returns an array II of length n such that each element II[j] is a pair
(ve, 6) where 0 (in pseudocode II[j].6) is the weight of a shortest path from * to v;,
and v, is the second (the first being %) vertex of this path (in pseudocode II[j].c). The
inclusion of the second encountered vertex is merely a convenience, and can otherwise

18 4.1 The Propagation algorithm

easily be obtained by examining the shortest path tree returned by the algorithm. For
each vertex v; € V, let v, = II[j].c and let (v,/, §,») be the currently best pair for vertex
v, found in the reloading step. We append the pair (v,/, I1[j].6) to S;. Note that the
arcs (x,v;) € A’ are essentially shorthands for paths in G. Thus, v,» represents the
source of a path in G. We call this process propagation.

After propagation, we modify the graph G’ as follows. For each vertex v; € V
such that II[j].c = v;, we check whether the currently best pair (v,,0,) € S; that
was selected during the reloading phase is the first element of the list S;. If it is
the first element, then we add the arc (v;,v;) into the set A’. This last step simply
grows the arc set A’ over time to contain all arcs in A that take part in the shortest
path computations (which number m* in total). This concludes the description of the
algorithm. Figure[4.1]shows an example of the execution of the algorithm during phase
2 just before the propagation step, and Figure[4.2]shows the graph G’ at the same point
in time.

We formalize the procedure in pseudocode and obtain Algorithm For a pair
p = (v, 0x) we use the notation p.v to access the vertex and p.d to access the distance.
Besides the described variables, the algorithm maintains the matrix viable which allows
to quickly check if a pair is viable. Algorithm [I| produces as output the array of sorted
shortest distance lists containing S; for every vertex v;. To see why the algorithm
correctly computes the shortest paths, we prove the following two lemmata.

Lemma 4.5. Let 0 < k < n be a phase of the algorithm and let the k-th shortest path
of vertex v; € V' consist of the concatenation of the edge (v;,v;) and a path from the
sorted shortest distance list S; contained at position b < k. Then this path was found
during the reloading step of phase k of the algorithm and (V' A’ w', %) finds the arc
(%,v;) to be the shortest path into v;.

Proof. The weight of the arc (x,v,) is set to the § component of the best viable pair
found during the reloading step. However, the best viable pair in this case is exactly
the k-th shortest path, so the edge (x,v;) has the same weight as the k-th shortest
path. Now consider the case that some path, other than the arc (x,v;) itself, would be
found to be a shorter path to v; by 1. Since each of the outgoing arcs of x represent a
path in G, this would mean that taking this path and adding the remaining arcs used
to reach v; would constitute a shorter path than the k-th shortest path of v;. Let us
denote the path obtained by this construction as P’. Clearly this is a contradiction
unless P’ is not the k-th shortest path, i.e., a shorter path connecting the two vertices
is already known.

Without loss of generality, assume that P’ = {(*,v;), (v;, v;)}. However, w'(P’) can
only be smaller than w'(*, v;) if v; could not find a viable (non-null) pair in the list S,
since otherwise a shorter path would have been chosen in the reloading phase. This
means that all vertex sources (the first component of a pair) contained in the list .S;
are also contained in the list S;. Therefore a viable vertex for v; must also be a viable
vertex for v;. This concludes the proof by contradiction, since the path obtained is
indeed the shortest path between the two vertices. O

Lemma 4.6. For 0 < k < n, the main for loop of Algom'thm (line 10 of pseudocode)
at iteration k correctly computes the k-th shortest paths to v; for all vertices v; € V.

Proof. Lemma covers the case when the k-th shortest path to vertex v; consists of
the concatenation of a d-th shortest path for d < k of a neighbor vertex v; of v; and

Shortest paths in graphs 19

| (y,0) | (v,2) | (null, o) |
3 v)€ 5)
| (0 | (23 [(mulo) | | (o) | 1) | (nul,co) |
@D
| (z,0) | (u, 1) | (null, o) |

Figure 4.1: The Propagation algorithm at phase 2 just after reloading and before
propagation on graph G, which contains vertices u, v, x, and y connected according to
the arcs and their weights in the figure. Underneath each vertex is the sorted shortest
distance list S belonging to that vertex. Bold pairs represent currently best pairs for
v.

w
—
é‘

o T

[\

Figure 4.2: The graph G’ for the Propagation algorithm at phase 2 after the reloading
step, for the graph G illustrated in Figure [4.1]

20

4.1 The Propagation algorithm

Algorithm 1 Propagation Algorithm

10:
11:
12:
13:
14:
15:

16:
17:
18:

19:

20:
21:
22:
23:
24:
25:
26:

27:

1:
2:
3
4:
o:
6
7
8
9

function APSP(V, A,)

V=V U{x}
A= A{(xv;) v, €V}
for all v; € V do
S; = [(v;,0), (null, 00)]
Initialize n X n boolean matrix viable as true for each entry
for all v; € V do
for all incoming neighbors v; of v; do
Set pli, 7] to point to first element of S;
for k:=1ton—1do
for all v; € V do > Reloading
best[j] := (null, c0)
for all incoming neighbors v; of v; do
while —wiable[j, pli, j].v] and pl[i, j].next().v # null do
pli, j] == pli, j].next()
if viable[j, p[i, j].v] and p[i, 7].0 + w(v;, v;) < best[j].0 then
best[j].v := pli, j].v
best[j].0 == pl[i, j].0 + w(v;, v))
w'(*,v;) = best[j].0
II:=y(V' A w, *) > Run SSSP algorithm
for all v; € V do > Propagation
Sj.add((best[lI[j].c].v, I1[j].6))
viable[], best[I1]j].c|l.v] := false
if I1[j].c = j and (best[j].v,v;) € A and w(best[j].v,v;) = best[j].0 then
A= AU {(best[j].v,v;)}
w'(best[j].v,v;) == w(best[j].v, v;)
return [S7, S, ..., Sy

Shortest paths in graphs 21

the edge (v;,v;). This leaves two remaining cases, either the k-th path depends on a
neighbor’s k-th path, or it somehow depends on some neighbor’s path at position e > k.
The latter case is impossible by a straightforward counting argument: a neighbor v; of
v; contains k shortest paths into v; with different starting vertices that we can combine
with the edge (v;, v;) to obtain paths into v;. Any additional paths, e.g., a (k + 1)-th
path, would be longer because the paths are sorted by their weight. We now consider
the case when the k-th path depends on a neighbor’s k-th path.

If the k-th path of vertex v; consists of the concatenation of the arc (v;,v;) and
the k-th path from the list of v;, then we can recursively apply the same argument
regarding the dependency of the k-th path of vertex v; on its neighbor’s sorted shortest
path list. Thus, the path becomes shorter after each such dependency, eventually
becoming dependent on a path included at position 0 < b < k in a neighbor’s sorted
shortest path list or simply an empty path designated by the special element at the
first position in the list. This path has already been found during the reloading step
and is preserved as the shortest path due to Lemma thus concluding the proof. [J

The following corollary follows directly from a successive application of Lemma |4.6|

Corollary 4.7. At the conclusion of Algom'thm for each vertex v; € V, the it" entry
in the sorted shortest distance list S; corresponds to the it" shortest path into v;.

4.1.1 Time and space complexity

First, we look at the time complexity. The main loop of Algorithm (1| (lines 10-26)
performs n— 1 iterations. The reloading loop (lines 11-19) considers each arc (v;, v;) €
A which takes m steps. This amounts to O(mn). Since each sorted shortest distance list
is of length n+ 1, each pointer is moved to the next element n times over the execution
of the algorithm. There are m pointers, so this amounts to O(mn). Algorithm 1)
is executed n — 1 times, and the graph G’ that 1 operates on consists of at most
n + 1 vertices and at most m* + n arcs. In total, the running time of Algorithm [1} is
O(mn + nTy(m* +n,n+ 1)).

To get the space complexity of Algorithm (1| observe that each vertex keeps track
of its sorted shortest distance list, which is of size n + 1 and amounts to ©(n?) space
over all vertices. Since there are exactly m pointers in total, the space needed for
them is simply O(m). On top of the costs mentioned, we require as much space as is
required by algorithm . In total, the combined space complexity for Algorithm [1} is
O(n? + Sy(m* +n,n+1)).

4.1.2 Implications

We will show how to further improve the time complexity of the algorithm in Sec-
tion [£.1.3] but already at its current stage, the algorithm reveals an interesting rela-
tionship between the complexity of non-negative SSSP and a stricter variant of APSP
called sorted all-pairs shortest path (SAPSP). The problem SAPSP(m,n) is that of
finding shortest paths between all pairs of vertices in a graph with m non-negative
weight arcs and n vertices and producing the output in the form of n sorted shortest
distance lists, one for each vertex.

22 4.1 The Propagation algorithm

Theorem 4.8. Let Tsssp denote the complexity of the single-source shortest path prob-
lem on graphs with m non-negative weight arcs and n vertices. Then the complexity of
SAPSP is at most O(nTsssp).

Proof. Given an algorithm 1) which solves SSSP, we can construct a solution to SAPSP
in time O(nTy(m+n,n+1)) by using Algorithm[I We know from Corollary 4.7 that the
lists .S; found by the algorithm are ordered by increasing distance from the source. [l

What Theorem says is that when solving APSP, either we can follow in the
footsteps of Dijkstra and visit vertices in increasing distance from the source without
worrying about a sorting bottleneck, or that if such a sorting bottleneck exists, then it
proves a non-trivial lower bound for the single-source case.

4.1.3 Improving the time bound

The algorithm presented in the previous section has a running time O(mn +nTy(m* +
n,n + 1)). We show how to bring this down to O(mlgn + nTy(m* +n,n +1)). We
sort each set A; of incoming arcs of vertex v; by arc weights in non-decreasing order.
By using any off-the-shelf sorting algorithm, this takes O(mlgn) time.

We only keep pointers pli, j] for the arcs which are shortest paths between v; and
vj, and up to one additional arc per vertex for which we do not know whether it is part
of a shortest path. This means we skip those neighbors in line 13 of Algorithm [1] for
which we do not currently have pointers to. Since arcs are sorted by their weights, a
vertex v; can ignore an arc at position ¢ in the sorted list A; until the arc at position
t — 1 is either found to be the shortest path between the vertices it connects, or found
not to be the shortest path. For some arc (v;,v;) the former case simply corresponds
to using the first element, i.e., v;, provided by p[i, j] as a shortest path. The latter
case on the other hand, is not using the first element offered by pli, j], i.e., finding
it is not viable during the reloading phase. Whenever one of these two conditions is
met, we include the next arc in the sorted list, and either throw away the previous
arc if it was found not to be a shortest path, or keep it otherwise. This means that
the total amount of pointers is at most m* + n at any given time, which is O(m*),
since m* is at least n. The total amount of time spent by the algorithm then becomes
O(mlgn+ nTy(m* +n,n+ 1)).

Theorem 4.9. Let 1) be an algorithm that solves the single-source shortest path problem
on graphs with non-negative arc weights. Then, the all-pairs shortest path problem on
such graphs can be solved in time O(mlgn + nTy(m* + n,n + 1)) and space O(n* +
Sy(m*+mn,n+ 1)) where Ty(m,n) is the time required by algorithm 1 on a graph with
m arcs and n vertices and Sy(m,n) is the space required by algorithm 1 on the same
graph.

Proof. See the discussion above and the initial algorithm and discussion in Section [4.1]
O

4.1.4 Directed acyclic graphs with arbitrary weights

A combination of a few techniques yields an O(m*n + mlgn) APSP algorithm for di-
rected acyclic graphs (DAGs) with arbitrary arc weights. The first step is to transform
the original graph (possibly containing negative-weight arcs) into a graph containing

Shortest paths in graphs 23

only non-negative weight arcs through Johnson’s [47] reweighting technique. Instead
of using Bellman-Ford in the Johnson step, we visit vertices in their topological order,
thus obtaining the reweighted graph in O(m) time. Next, we use the improved time
bound algorithm as presented in Subsection [4.1.3] For the SSSP algorithm, we again
visit vertices according to their topological order. Note that if the graph G is a DAG
then G’ is also a DAG. The reasoning is simple: the only new arcs introduced in G’
are those from to each vertex v; € V. But since x has no incoming arcs, the acyclic-
ity of the graph is preserved. The time bounds become O(m) for Johnson’s step and
O(mlgn+nTy(m*+n,n+1)) for the APSP algorithm where T3, (m*+n, n+1) = O(m*).
Thus, the combined asymptotic running time is O(m*n+mlgn). The asymptotic space
bound is simply O(n?).

Theorem 4.10. All-pairs shortest path on directed acyclic graphs can be solved in time
O(m*n +mlgn) and O(n?) space.

Proof. See the discussion above. O

4.1.5 Practical optimizations

We outline optimizations that can be performed to speed up the algorithm’s running
time, but which are not known to improve the asymptotic bound. First, Algorithm
is modified slightly, by reconstructing the graph G’ at each iteration of the main for
loop. By doing this, we can use the optimizations described below to reduce the size
of G'. This makes sense when 1 has super-linear running time, as the construction
only takes O(m* + n) time per loop iteration. The algorithm’s asymptotic bounds
remain the same. We denote by phase the state of the algorithm just before line 20 in
Algorithm [1} It is easy to see that there are exactly n — 1 phases of the algorithm.

Size reduction

First, we will show how to reduce the number of arcs contained in G'. A key concept
is the concept of a starving arc.

Definition 4.11. (Starving arc) An arc (v;,v;) is said to be starving at phase k if for
each (vq,0) € S; there exists some (v,,6') € S; at phase k.

The following lemma shows that non-starving arcs can be omitted from G'.

Lemma 4.12. If an arc (v;,v;) is not starving at phase k, its omission in G' does not
influence the outcome of the SSSP computation during iteration k.

Proof. Since the arc (v;, v;) is not starving at phase k, then by definition of a starving
arc, S; contains a viable pair (v,,0) for v; contained at position b < k in S;. Recall
that the arc (x,v;) has weight equal to the weight of the best pair for v; at phase k.
Since (vg,d) is a viable pair for v;, it serves as an upper bound to the best pair, i.e.,
let (vy,d") € S, for some incoming neighbor v, of v;, be the best pair for v; at phase
k. Then ¢ + w(vy, v;) < § + w(v;, v;). Let W; be the weight of the shortest path from
* to v; in G’ at iteration k. From Lemma [£.6] we know that W; is also the weight of
the k-th shortest path into v; in G. The viable pair (v,, d) contains the weight of some

24 4.2 Properties of shortest k-paths in complete graphs

b-th shortest path into v; for b < k, and since shortest path weights are monotonically
increasing, 0 < W;. Combining, we have:

8 + w(vg,v5) <0+ w(vy,vy) < W; +w(vy, v;).

Thus, the inclusion of the arc (v;,v;) in G’ at iteration k& does not influence the SSSP
computation, since a shorter or equal-weight path from to v; exists in G'. O

Weight bounding

Even starving arcs can be omitted from G’ under certain conditions.

Lemma 4.13. For a starving arc (v;,v;) at phase k, let (v,,0) be the last pair in S;
before (null,00). Further, let (vy,0") € S, be the currently best pair for vertex v; at
phase k. If § +w(v;,v;) > 8 + w(vy, vj), then the omission of (v;,v;) in G' does not
influence the outcome of the SSSP computation during iteration k.

Proof. From the definition of (%,v;) at phase k and from our lemma condition, we know
that w'(x,v;) < ' + w(vg,v;) < 0+ w(v;,v;). Let W; be the weight of the shortest
path from * to v; in G’ at iteration k. Observe that from the monotonically increasing
property of shortest paths, and from the fact that W, is also the weight of the k-th
shortest path into v; in G we have § < W;. Thus, the weight of the shortest path from
* to v; in G’ does not change if we remove (v;,v;) from G'. O

Further optimizations

It is worth noting that more aggressive strategies could check if the pruned graph con-
forms to a special case, such as a DAG (e.g., by finding strongly connected components
and contracting them), and then use different algorithms to solve the SSSP problem.

4.2 Properties of shortest k-paths in complete graphs

With an aim of proving expected-case time complexity bounds for algorithms discussed
later, we first analyze certain properties of shortest k-paths in complete graphs. Pri-
marily we are interested in path length and distance, as well as the outdegree of a
shortest path tree.

Before delving into specific properties of paths, we first consider the balls-into-bins
process where M balls are thrown uniformly and independently into N bins. The
maximum number of balls in any bin is called the maximum load. Let L; denote the
load of bin 7, ¢ € {1,2,..., N}. The next lemma, used in Subsection 4.2.3] provides an
upper bound on the probability that the maximum load exceeds a certain quantity. It
is a simplified version of a standard result, cf. [69], tailored to our present needs. For
completeness we provide a proof.

Lemma 4.14. If M balls are thrown into N bins where each ball is thrown into a bin
chosen uniformly at random, then P(max;<;<y L; > ¢*(M/N +log N)) = O(1/N).

Proof. First, we have u = E(L;) = M/N, i = 1,2,..., N, and we can write each L;
as a sum L; = X;; + X9 + -+ - + X;u, where X;; is a random variable taking value 1,
if ball j is in bin 7, and 0 otherwise. Next, since L; is a sum of independent random

Shortest paths in graphs 25

variables taking values in {0, 1}, we can apply, for any particular bin ¢ and for every
¢ > 1, the multiplicative Chernoff bound [37], which states that

c—1\ H cH
P(L; > cn) < (e) < <€> .
ce c

We consider two cases, depending on whether y > log N or not. Let p > log N. Take

¢ = e%. Then,
e? e2log N
1\“" 1 & 1 1
P(L; > e*u) < | - g = < .

Consider now p < log N. Take ¢ = ez% log N. Since x7* < (%)m for all x > e, we have

cp =<\ ep
IP’(LZ- > ueQJ\]\glogN> =P(L; > €*log N) < () = <<C>)
e

1\ ¢ eu 1 e?log N 1
< - = | = <
— \\e e — NZ

P(L; > e*(u+1log N)) <P(L; > e | p>log N) +P(L; > e*log N | u < log N)
11 2

St T N
This, by the union bound, implies that

M/ O I®

Putting everything together, we get that

N
2
IP(max L; > 62(u—|—logN)> <D P(L; > e*(u+1logN)) < Nﬁ = O(1/N).

1<i<N —
m

4.2.1 Distances

Let K, denote a complete digraph on the vertex set V = {vy, v9,...,v,}. We assume

that arc weights of K, are exponential random variables with mean 1 and that all
n(n — 1) random arc weights are independent. Due to the memoryless property, it is
easier to deal with exponentially distributed arc weights than directly with uniformly
distributed arc weights. We define the diameter of a digraph G = (V, A) as the largest
shortest path in the digraph, that is, max, ,ev Dg(u, v). The aim of this subsection is
to show that the diameter of K(*), the subdigraph of K, consisting of all (weighted) arcs
that are contained in shortest k-paths in K, is O(k’%”) with very high probability. We
note, however, that by the same argument as given in the beginning of Subsection [£.2.3]
all results derived in this subsection for exponentially distributed arc weights also hold,
asymptotically for [0, 1]-uniformly distributed arc weights as soon as k > log? n.

We start by considering for a fixed u € V, the maximum distance in K*¥) between
u and other vertices in V. To this end, let S = {u,vy,...,v,} CV,andlet S =V\S.

We clearly have

max D) (u,v) < max Dy, 1s(u, v) + max Dy 16,55, v), (4.1)
" v veS

26 4.2 Properties of shortest k-paths in complete graphs

that is, the maximum distance in K* between u and other vertices in V is bounded
above by the sum of the maximum distance in K,[S] between u and other vertices
in S, and by the maximum distance in K,[S x S] between S and vertices in S. We
note that K,[S] is a complete digraph with vertex set S and K,[S x S] is a complete
bipartite digraph with bipartition (.5, S).

To provide an upper bound on maxyes D, s)(u,v), we use the following result,
which follows from the equation (2.8) in the proof of Theorem 1.1 of Janson [46].

Theorem 4.15 (Janson |46, Theorem 1.1]). Let u € V' be a fized vertex of K,,. Then
for every a > 0, we have

alogn

>
P(rgeag Dk, (u,v) > .

) = O(e*n**log? n).

Lemma 4.16. Let 8 < k < n, and let S C V with |S| = k. Then, for a fized u € S
and for any constant ¢ > 0, we have

clogn

P(meagc D, s)(u,v) 2 > = O(n*~*log’n).

Proof. By Theorem [£.15] for any a > 0 we have

alogk
k

P(meag(Dy, 1s1(u,v) > = O(e’k* *log? k).

Setting a = clogn/logk we get
Gak2_a 10g2 Lk — eclogn/logkak—clogn/logk1Og2 k S (GIOgn)C/2/{J2(l€10gk n)—c 10g2 L.

In the last step we used the fact that 1/logk < 1/2 for £ > 8 and that logn/logk =
log;, n. Furthermore,

(elogn)c/2k2(k,logk n)—c 10g2 k= nC/Qan_C 10g2 k= O(n2—c/2 10g2 n)7
and the result follows. m
Next, we provide an upper bound on max, g DKn[ng}(S, v).

Lemma 4.17. Let 1 <k <n, let S CV with |S| =k, and let S =V \ S. Then for
any constant ¢ > 0, we have

1
IP’(IHaxDK 53 (S0) = Ogn) = O(n'"“logn).
veS " k

Proof. Let Z = max, g DKH[ng](S, v). Arguing similarly as in the proof of Theorem
1.1 of Janson [46], Z is distributed as

1

where X are independent exponentially distributed random variables with mean Temt

First, for any constant ¢ > 0, the Chernoff bound [37] states that

clogn

k

IP(Z Z) S e_tCIOgnE(ektZ).

Shortest paths in graphs 27

Further, for —oo < t < 1, we have from Janson [46, Equation 2.7]

E(e’“z):nﬁlE(RS = nHl<1— t,>_1.

j=k j=k =

Using the inequality —log(1 —x) < z + 22 for all 0 < 2 < 1/2, we can bound, for all
0<t<landk <j<n-—2 each term (1 —¢/(n— 7))~ ! as follows

(Lniy‘)1:exp<_log<1_nij>> o (nig +<n:¢>2>'

This gives us
clogn n—2 t t\’
P(Z > <(l1-—t exp(—tclogn—i— (—l—()))
(2> BN < (1-) o e R ey

= (1 —t) " exp(—tclogn + tlog(n — k) + O(1)).

Taking t = 1 — 1/logn, we finally get

1
P(Z > < (;ggn) < (1/logn) texp(—clogn +logn + O(1)) = O(n'“logn).
[

We are now ready to show that the diameter of K* is O(logn/k) with very high
probability.

Theorem 4.18. Let 8 < k < n. Then, for any constant ¢ > 0, we have
) = O(n*“*log®n).

Proof. Let S = {u,vy,...,v0.} CV, let S =V\S, and write a = Cl"%. Then, by
inequality (4.1]), we have

clogn

P(max DK(k) (u,v) >

u, eV n k

P(rgea‘chKék)(u,v) > a) < P(T&X Dg,.1s1(u,)+m€a§<DK (53] (S, 0) = a)

a a
< P(meachK is)(u, v) >) +IP’<I£1§LSX Dy 15x5(S,v) = 2).

\)

By Lemma [4.16, we have
P(maxDKn[S}(u,v) > oz) = O(n*“*log?n),
vES 2
and, by Lemma [4.17]
P(maXD L 15x3 (5 U)Z;é) O(n*~*%logn).
u€esS
Putting everything together, we get
_ 2—c/47. 2
P(Tea@{ D (u,v) > oz) =O0(n log” n),

which, by the union bound, implies

IP’(max DKka)(u, v) > a) < nP(Iql}él&(DKT(Lk)(U,U) > a) = O(n*~*/*log?n).

u, eV

28 4.2 Properties of shortest k-paths in complete graphs

4.2.2 Lengths

Let all arc weights of K, be either independent [0, 1]-uniform random variables or
independent exponential random variables with mean 1. In this subsection, we bound
the length of the longest shortest k-path in K.

The proof of our next lemma follows directly from Theorem 1.1 of Addario-Berry
et al. [1] on the longest shortest path in K.

Theorem 4.19 (Addario-Berry et al. [1, Theorem 1.1]). The following two properties
hold:

(i) For everyt > 0, we have

IP’(max |u~v| > a*logn + t) < ¥t/ logmp—t
u,veV

where o &= 3.5911 is the unique solution of aloga —a = 1.
(77) E(max, ey |u~v]) = O(logn).
Lemma 4.20. The following two properties hold:

(i) For every ¢ > 5 and 8 < k < n, we have P(max, ,cv \uf»v| > clogn) =
O(TLQ_C/Q).
(ii) E(max, ey [ussv]) = O(log k).
Proof. Let S = {vy,vq,...,v5}. Since every shortest k-path in K, is of the form

k
U — w~~z — v or u — v, we have

max |u~k~>v| < max |w«]f->z| + 2. (4.2)
u,veV w,z€S

By (i) of Theorem |4.19} for any t > 0,

IP’(max |w~k~>2] > a*logk + t) < e Ht/ logk =t
w,z€S

where o &~ 3.5911 is the unique solution of alogaa—a = 1. Using t = (c—a*)logn—2
gives us

IP(max |w«f“»z| +2 > a*log(k/n) + clog n) < e log k+2,,(c—a") (5% —logn)
w,zE€

IN

e(3(*—2/ log k+2(€log n)1/2(a*—c)
= O(n?~/?).
By inequality (4.2)), we have

IP’(max lutso| > clogn) < IP(max jwsz| +2 > clogn)
u,ve w,z€

< P(max |w«]f->z| +2>a*log(k/n) + clogn),
w,z€

and (i) follows.

To prove (ii), we note that, by (ii) of Theorem {4.19, E(max, ves |u~k~>v|) = O(log k)
and, by inequality (4.2)), the result follows. n

Shortest paths in graphs 29

4.2.3 Maximum outdegree

Let arc weights of K, be independent [0, 1]-uniform random variables. Our goal in this
subsection is to show that the maximum outdegree of a shortest path tree OUT} in
K® is O(logk + (n — k)/k) with high probability for all & > log®n.

Let now S = {vy,v9,..., v} and S = V' \ S. We can consider OUT}, as consisting
of the subtree OUTy[S] to which each vertex from S is attached as a leaf. To see how
these vertices are attached to OUT}[S], let us assume for the moment that arc weights
are exponentially distributed with mean 1. Then, due to the memoryless property of
the exponential distribution, a vertex v € S is attached with equal probability to any
vertex in S, say a¥. Let (K,[S x S])* be the subdigraph of K,,[S x S| with the set V of
vertices and the set {a’ | v € S} of arcs. By observing that OUTy[S] is a subdigraph
of the graph (K,[S])® consisting of all arcs that are shortest paths in K,[S], we have

A(OUT) < A((K,[S)M) + A((K,[S x S))*). (4.3)

To extend the latter bound to uniform distribution, we use a standard coupling
argument as in |1]. Let U be a random variable uniform on [0, 1]. Then —log(1 — U)
is an exponential random variable with mean 1, and so we can couple the exponential
arc weights W' (u,v) to uniform arc weights W (u,v) by setting W'(u,v) = —log(1 —
W(u,v)). As x < —log(l—z) <+ 222 for all 0 < z < 1/2, we have that, for all arcs
(u,v) of K, [W'(u,v) — W(u,v)| = O(W'(u,v))?), uniformly for all W'(u,v) < 1/2.
In particular, if W'(u,v) < 12logn/k, say, and k > log” n, then |W'(u,v) — W (u,v)| =
O(1/log®n) for n large enough, and so for a path P with O(logn) vertices and with
W'(P) < 12logn/k, we have

(W'(P) = W(P)| = O(1/logn)

for n large enough. By Theorem with very high probability a shortest (k—1)-path
in K,, with the exponential arc weights has weight less than 121logn/k, while by (i) of
Lemma with very high probability it has O(logn) vertices. It then follows easily
that, for all k& > log®n, the bound as in holds for uniform distribution, as well.

The following result on the maximum outdegree in the subgraph (K,[S])*) of the
complete graph K, [S] on k vertices with [0, 1]-uniform arc weights can be found in
Peres et al. [63].

Lemma 4.21 (Peres et al. [63, Lemma 5.1]). Let 1 < k < n and let S C V with
|S| = k. Then, for every ¢ > 6, we have P(A((K,[S])®) > clogk) = O(k'~/%).

The maximum outdegree in (K,[S x S])* is directly related to the maximum load
in the balls-into-bins process, which is used in the proof of the following lemma.

Lemma 4.22. Let 1 <k <mn, let S CV with |S| =k, and let S =V \ S. Then,
P(A((K,[S x S))*) > e*((n — k)/k +logk)) = O(k™1).

Proof. Consider vertices from S as bins and vertices from S as balls. For v € S, each arc
in S'x {v} is equally likely to be the shortest, so v is thrown into a bin chosen uniformly
at random, and the result follows by Lemma for N=Fkand M =n — k. m

We are now ready to prove the main result of this subsection.

30 4.3 Speeding up the Floyd-Warshall algorithm

Theorem 4.23. For every k > log®n, we have

P(A(OUTk) > (e +12) logk + €22 ; k) = O(k™).

Proof. Let S = {vy,v,...,v:} and S =V \ S. Further, let us write o = 12logk and
B =e*((n — k)/klogk). By the inequality (&.3), for every k > log®n, we have

P(A(OUTy) = a+ B) < PA((Ka[S)™) + A((KalS x S))*) > a + 5)

<
< PA(EKAS)Y) 2 @) + PA(ELS x 5)°) 2 B).

By Lemma we have P(A((K,[S])®) > a) < 1/k. Similarly, by Lemma [4.22] we
have P(A((K,[S x S])*) >) < 1/k. Hence, P(A(OUT}) > a+ 8) < 1/k+1/k =
O(1/k). O

4.3 Speeding up the Floyd-Warshall algorithm

In general, the APSP problem can be solved by using the technique of relaxation.
Relaxation consists of testing whether we can improve the weight of a shortest path
from u to v found so far by going via w, and updating it if necessary.

The Floyd-Warshall algorithm [26,83] as presented in Algorithm [2|is a relaxation-
based dynamic programming approach to solve APSP on an n-vertex graph G(V, A)
where the vertex set has a fixed ordering V' = {vy, v9,...,v,}. The arcs are represented
by a weight matrix W, where Wi, j| = w(v;,v;) if (v;,v;) € A and oo otherwise. Its
running time is O(n?) due to three nested for loops. To understand the algorithm, it
is helpful to keep in mind that after the k-th iteration, Wi, j] is the shortest distance
from v; to v; going only through vertices {vy,...,vx}. Unlike Dijkstra’s algorithm and
the algorithm in Section [4.1], Floyd-Warshall can find shortest paths in graphs which
contain negatively-weighted arcs.

Algorithm 2 Floyd-Warshall Algorithm
1: procedure FLOYD-WARSHALL(WW)
2 for k:=1ton do
3: for i :=1ton do

4: for j :=1ton do

5

6

if Wi, k] + Wik, j] < Wi, j] then > Relaxation
Wli, j] == Wi, k] + W[k, j]
return W

4.3.1 The Tree algorithm

Recall that in Section we defined G®) as the subdigraph of G comprised of the set
of all arcs that are part of some shortest k-path in G. Let us consider the algorithm
at iteration k, and let OUT), denote a shortest path tree rooted at vertex vy in G*~1
(see Algorithm [for the exact construction). Intuitively, one might expect that the
relaxation in lines 5-6 would not always succeed in lowering the value of W;; which

currently contains the weight w(vili/_-}vj). This is precisely the observation that we

Shortest paths in graphs 31

exploit to arrive at a more efficient algorithm: instead of simply looping through every
vertex of V' in line 4, we perform a depth-first traversal of OUT). This permits us

to skip iterations which provably cannot lower the current value of Wi, j]. As the

following lemma shows, if w(vij»vj) = w(vik@lvj), then w(vi«lf»vy) = w(vik@lvy) for all

vertices v, in the subtree of v; in OUTj},. Refer to Figure for an illustration of the
paths mentioned.

Lemma 4.24. Let v; € V\{v} be some non-leaf vertex in OUT}, v, # v; an arbitrary

vertex in the subtree of v; in OUTy, and v; € V' \ {v,}. Consider a walk vitlvktlvj.

If w(vik@lvkk@lvj) > w(vik@lvj), then w(vik@lvkk@lvy) > w(vik@lvy).

Proof. Since v; is neither a leaf nor the root of OUTj, that means it is an internal vertex
on a (k — 1)-path, so we have j < k and thus vik@lvjk@lvy is a (k — 1)-path between v;
and v,. Because vik'w_»»lvy is a shortest (k — 1)-path between v; and v,, we have

w(v) < w5 ,) = w55) + wv)
< w(v 0 y) + w(vSy) = w(S S S ,),

where the last inequality follows by the assumption. Finally, since v, is in the subtree

k—1 k-1 k-1 k-1 k-1 .
rooted at v;, we have v;~ v~ v~ v, = v;~ v~ vy, and so the last term is equal to

w(vik@lvkk@lvy). This completes the proof. O

-1

1

k
N
k—
k-1

Figure 4.3: Illustration of paths for Lemma [4.24] The squiggly lines between vertices
in the figure are (k — 1)-paths.

The pseudocode of the modified Floyd-Warshall algorithm augmented with the
tree OUTy, named the Tree algorithm, is given in Algorithm [3| To perform depth-
first search we first construct the tree OUT} in line 4 using CONSTRUCTOUT given
in Algorithm [4 For the construction of tree OUT}, an additional matrix 7 is used,
where 77, j] specifies the penultimate vertex on a shortest k-path from v; to v; (ie.,
the vertex immediately “before” vj)ﬂ. More precisely, the tree OUT}, is obtained from
7 by making v; a child of v. ;) for all i # k. This takes O(n) time. Finally, we replace
the iterations in lines 4-6 in Algorithm [2] with a depth-first tree traversal of OUT} in
lines 6-14 in Algorithm . Note that if, for a given ¢ and a child v;, the condition in
line 11 evaluates to false we do not traverse the subtree of v; in OUT}.

1Ot 7l in [18, Sec. 25.2).

32 4.3 Speeding up the Floyd-Warshall algorithm

Algorithm 3 Tree Algorithm
1: procedure TREE(W)
2 Initialize 7, an n X n matrix, as (i, j] := 1.
3 for k:=1ton do
4 OUT}, := CONSTRUCTOUT(k,)
5: for i :=1ton do
6
7
8
9

Stack := empty
Stack.push(vy,)
while Stack # empty do
: v, := Stack.pop()
10: for all children v; of v, in OUT}, do

11: if Wi, k] + Wik, j] < Wi, j] then > Relaxation
12: Wi, j] :== Wi, k] + Wk, j]
13: (i, j] .= 7[k, j]
14: Stack.push(v;)
return W

Algorithm 4 ConstructOut Algorithm

1. procedure CONSTRUCTOUT(k,)

2 Initialize n empty trees: OUTY,..., OUT,.
3 for s :=1ton do

4: OUT; Vertex := v;

5 if 7 # k then

6 OUT;.Parent := OUTy

return OUT),

Shortest paths in graphs 33

Corollary 4.25. The Tree algorithm correctly computes all-pairs shortest paths.

Proof. The correctness of the algorithm follows directly from Lemma [£.24] O

Time complexity

Let T} denote the running time of the algorithm TREE(W) in lines 4-14 at iteration
k. As already said, line 4 requires O(n) time. To estimate the time complexity of
lines 5-14, we charge the vertex v, in line 9 by the number of its children. This pays
for lines 10-14. Furthermore, this means that on the one hand leaves are charged
nothing, while on the other hand nobody is charged for the root v,. To this end,
let SPkk) be the set of all shortest k-paths that contain v, and end at some vertex
in the set {vy,v,...,vr}. In case there are multiple shortest paths between a pair of
vertices, we assume that the algorithm at the end of iteration & (implicitly) records, for
each pair of vertices, a shortest k-path between them and thus, this path becomes the
representative of a class of all other shortest k-paths between them. Now v, in line 9
is charged at most |SP,(f)| times over all iterations of 7. Since the number of children
of v, is bounded from above by A(OUT}), we can bound T}, from above by

T, < |SPP|- A(OUTy) + O(n). (4.4)

Practical improvement

Observe that in Algorithm |3| vertices of OUT}, are visited in a depth-first search (DFS)
order, which is facilitated by using the stack. However, this requires pushing and
popping of each vertex, as well as reading of all its children in OUT,. We can avoid
this by precomputing two read-only arrays dfs and skip to support the traversal of
OUT}y. The array dfs consists of OUT}, vertices as visited in the DFS order. On the
other hand, the array skip is used to skip OUT} subtree when relaxation in line 11 of
Algorithm [3] does not succeed.

In detail, for a vertex v,, skip|z] contains the index in dfs of the first vertex after
v, in the DFS order that is not a descendant of v, in OUT}. Utilizing the arrays
outlined above, we traverse OUT} by scanning dfs in left-to-right order and using skip
whenever a relaxation is not made. Consequently, we perform only two read operations
per visited vertex. This has led to a roughly 20% faster running time. It should be
pointed out that the asymptotic time remains the same, as this is solely a technical
optimization.

4.3.2 The Hourglass algorithm

We can further improve the Tree algorithm by using another tree. The second tree,
denoted by INj (see Algorithm [7| for the exact construction), is similar to OUTy,

except that it is a shortest path “tree” for paths vik@lvk for each v; € V'\ {vy}. Strictly
speaking, this is not a tree, but if we reverse the directions of the arcs, it turns it into
a tree with v, as the root. Traversal of IN}, is used as a replacement of the for loop on
variable 7 in line 5 of Algorithm [3] (in line 3 of Algorithm [2)). As the following lemma
shows, if w(vpk»vj) = w(vi]i;}vj), then w(vy«ﬁvj) = w(vyk«;lvj) for all vertices v, in the
subtree of v; in IN;. Refer to Figure for an illustration of the paths mentioned.

34 4.3 Speeding up the Floyd-Warshall algorithm

Lemma 4.26. Let v; € V \ {v;} be some non-leaf vertex in INy and let v, # v; be

an arbitrary vertex in the subtree of v; in INy, and v; € V' \ {vy}. Consider a walk

vik@lvkkv_»lvj. If w(vikw_elvkkv_»lvj) > w(vikw_»lvj), then w(vy’tﬁlvkﬁlvj) > w(vykv_»lvj).

. k—1 k—1 k-1
Proof. Due to the choice of v; and v, we have: vy~ v, = v, ~v;~v,. We want to

show that:
w(vyk«;lvj) < w(vyk@lvi) + w(viltﬁlvkk@lvj).
Observe that i < k, since v; is neither a leaf nor the root of IN,. Thus we have:
w(vyk@lvj) < w(vyk@lvi) + w(vz-]i;lvj).
Together with the assumption w(vikv_ﬁlvkkw_»lvj) > w(vikQIUj), we get the desired in-
equality:

w(, ;) < w(v, ;) + w(0S;) < w(v,) + w5 y).

B
|

B
I

Figure 4.4: Tlustration of paths for Lemma The squiggly lines between vertices
in the figure are (k — 1)-paths.

The pseudocode of the modified Floyd-Warshall algorithm augmented with the
trees OUTy, and INj, named the Hourglass algorithmEL is given in Algorithms |5/ and
|§|. To construct INj, efficiently, we need to maintain an additional matrix ¢[é, j] which
stores the second vertex on the path from v; to v; (cf. 7 and =[i, j]). Algorithm
constructs IN, similarly to the construction of OUTy, except that we use the matrix
¢i, k] instead. The only extra space requirement of the Hourglass algorithm that bears
any significance is the matrix ¢, which does not deteriorate the space complexity of
O(n?). The depth-first traversal on IN, is performed by a recursion on each child of
vg, in line 8 of Algorithm [5] In the recursive step, given in Algorithm |6, we can prune
OUT}, as follows: if v; is the parent of v, in INj and vik@lvj < vikw_»lvklif_»lvj, then the
subtree of v; can be removed from OUTj}, while inspecting the subtree of v; in INj.
Before the return from the recursion the tree OUT}, is reconstructed to the form it was
passed as a parameter to the function.

In practice, the recursion can be avoided by using an additional stack, which further
speeds up an implementation of the algorithm.

2The hourglass name comes from placing INj, tree atop the OUT)}, tree, which gives it an hourglass-
like shape, with v, being at the neck.

Shortest paths in graphs

35

Algorithm 5 Hourglass Algorithm

1:
2
3
4
5:
6
7
8

procedure HOURGLASS(WW)

Initialize 7, an n X n matrix, as (i, j] := 1.
Initialize ¢, an n x n matrix, as ¢[i, j| := j.
for k:=1ton do

OUTy, := CONSTRUCTOUT(k,)

IN), := CONSTRUCTIN(E, ¢)

for all children v; of v in IN, do

RECURSEIN(W, 7, ¢, INy,, OUT},, v;)
return W

Algorithm 6 Recurseln Algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

14:
15:

16:

procedure RECURSEIN(W, 7, ¢, IN,, OUTy, v;)

Stack := empty
Stack.push(vg)
while Stack # empty do
v, := Stack.pop()
for all children v; of v, in OUT}, do
if Wi, k] + Wik, j] < Wi, j] then
Wi, j| .= Wi, k] + Wk, j]

wli, j] = m(k, j]

oli, j] = i, k]

Stack.push(v;)
else

Remove the subtree of v; from OUTj.

for all children v; of v; in IN, do
RECURSEIN(W, 7, ¢, INy,, OUTy, vyr)

> Relaxation

> Applies Lemma [4.26]

Restore OUT}, by reverting changes done by all iterations of line 13.

Algorithm 7 ConstructIn Algorithm

1:
2
3
4:
)
6

procedure CONSTRUCTIN(k, &)

Initialize n empty trees: INy, ..., IN,.
for i :=1ton do
IN; Vertex := v;
if i £ k then
IN;. Parent := INyj; i
return IN,

36 4.3 Speeding up the Floyd-Warshall algorithm

Corollary 4.27. The Hourglass algorithm correctly computes all-pairs shortest paths.

Proof. Observe that lines 6-11 of Algorithm [6] are effectively the same as in Algo-
rithm [3] Line 13 of Algorithm [6] does not affect the correctness of the algorithm due to
Lemma |4.26, which states that, for any v; that is a child of v; in INy, these comparisons
can be skipped, as they cannot lead to shorter paths. However, Lemma does not
apply to a sibling v« of v;, arising from line 7 of Algorithm [5] Therefore line 16 restores
the tree OUT}, which maintains the correctness of the algorithm. O

Finally, note that the worst-case time complexity of the Hourglass (and Tree) algo-
rithm remains O(n?). The simplest example of this is when all shortest paths are the
arcs themselves, at which point all leaves are children of the root and the tree structure
never changes.

4.3.3 Expected-case analysis

We perform an expected-case analysis of the Tree algorithm (Algorithm ') for the
complete directed graphs on n vertices with arc weights selected 1ndependently at
random from the uniform distribution on [0,1]. Recall that SP,~C is the set of all
shortest k-paths that contain v and end at some vertex in the set {vy, v, ..., vx}. We

first show that the expected number of paths in SP,gk) is O(nlogk).
Lemma 4.28. For each k =1,2,...,n, we have]E(]SP,(f)]) =O(nlogk).

Proof. For v; € V', let SPZ(k) denote the set of all shortest k-paths that contain v; and
end at some vertex in the set {vy,vs,...,vx}. Note, that

k n k
S ISP < 3TN o,
=1

s=1t=1

To see why the above is true, let P = vg, v;,,v4,, ..., v;,, Vs be the k-shortest path from
vs to vy, where s € {1,2,...,n}and t € {1,2,...,k}. Then this path is counted in sets
SHIk), SPZ(Qk e SPZ-(f), sp (if s < k+1 then also in SP®). Thus all vertices on P
are present in at most | P| sets on the left side.

By symmetry, we have E(|SP™|) = E(]SP|) for arbitrary i,t € {1,2,...,k}, and
hence by linearity of expectation

n k
|SP ZE |SP) <O E(]vswvtl) < knE(max |uwv|)
s=1t=1
By (ii) of Lemma , we get that E(]SP;, k)|) O(nlogk). O

We are now ready to analyse the expected time of the Tree algorithm.

Theorem 4.29. The Tree algorithm has an expected-case running time of O(n?log®n)
for complete directed graphs on n vertices with arc weights selected independently at
random from the uniform distribution on [0, 1].

Shortest paths in graphs 37

Proof. To estimate the number T} of comparisons at iteration k, we consider two cases.
First, for k < log® n we bound T} from above by n?. Second, we estimate E(7}) for
k > log® n. For every ¢ > 0, we have

E(T,) = E(T, | A(OUT}) < ¢) - P(A(OUT}) < c)
+E(T; | A(OUT,) > ¢) - P(A(OUT,) > c).

Using inequality (4.4) we get

E(T}, | A(OUT}) < ¢) < E((|SPY| - A(OUTy) + O(n)) | A(OUT}) < c)
< c-E(|SPP)) + O(n).

As Ty, is always at most n?, we have E(T}, | A(OUT}) > ¢) < n?. Further, taking into
account that P(A(OUTy) < ¢) < 1, we get

E(T,) < c-E(|SPY)) + O(n) +n? - P(A(OUT) > o).

Take ¢ = (e* +12)log k + e*2*. Then, by Theorem we have P(A(OUTy) > ¢) =
O(k™'). Moreover, by Lemma , we have E(!SP,(f |) = O(nlog k), which gives us

E(T}) = O((e* + 12)nlog® k + €*(n — k)nlog k/k) + O(n) + O(n?/k)
= O(nlog®n +n*logn/k).

Putting everything together, we bound the expected time of the algorithm from above
as

E(éTk>:IO§_IE(Tk)+ S E(T)

k=log?n
logZ n—1 n
< Y w’+ > O(nlog’n+n*logn/k) = O(n*log®n),
k=1 k=log?n
as claimed. O

It should be pointed out, that the Hourglass algorithm reduces the number of
comparisons relative to the Tree algorithm, but despite the improvement we were
unable to obtain lower theoretical bounds for it compared to the Tree algorithm.

4.3.4 Empirical comparison of paths examined

Although we have successfully analyzed the expected-case complexity of the Tree algo-
rithm, we do not yet know how it compares to the Hourglass algorithm, since we were
not able to obtain tighter expected-case bounds on the latter. To this end, and to verify
the theoretical results in practice, we empirically examine how many relaxations are
skipped by the Hourglass and Tree algorithms compared to the Floyd-Warshall algo-
rithm. We performed two experiments: one on random complete digraphs, and one on
random digraphs of varying density. We counted the number of relaxations performed
by the algorithms. To make the comparison between Floyd-Warshall and its modified
versions fairer in the second experiment, we augmented the Floyd-Warshall algorithm
with a simple modification that allowed it to skip combinations i, k where Wi, k| = oo,

38 4.4 Empirical evaluation

which reduced the number of relaxations. We denote the number of relaxations after
the improvement as Ry . Note that this improvement brings no savings in the case of
a complete graph. The results of experiments are presented in the plots relative to the
number of relaxations performed by the Floyd-Warshall algorithm; i.e., all numbers
of relaxations are divided by Rpy,, or in the case of complete graphs this is simply
divided by n?.

The experiments were conducted on uniform random digraphs with arc weights
uniformly distributed on the interval [0,1]. The digraphs were constructed by first
setting the desired vertex count and density. Then, a random Hamiltonian cycle was
constructed, ensuring the strong connectivity of the digraph. After the cycle was
constructed, the remaining n(n — 2) arcs were put into a list and randomly permuted,
and then added into the digraph until the desired density was reached.

The first experiment was for the input of random complete digraphs of varying sizes.
The results of the first experiment, in which Rpy, = n? since the digraphs are complete,
are presented in Figure . To relate the theoretical upper bound of O(n?1g®n) of the
Tree algorithm and the experimental results, we added also the plot of the function
60%. We chose the constant 60 so that the plots of the Tree algorithm and the
added function start at the same initial point, namely at 2% vertices.

—a— Tree
—e— Hourglass

0.15

0.12 -

0.09 |-

0.06

relaxations / n?

0.03 |-

0 | | | | |
28 29 210 211 212

number of vertices (n)

Figure 4.5: Complete digraphs of various sizes with the number of relaxations of algo-
rithms divided by n3.

The results of the second experiment for n = 1024 vertices and sizes of the arc set
varying between n?/10 and 8n?/10 are shown in Figure

In Figure [4.5| we see a significant reduction of relaxations which also implies the
decrease of running time of the Tree and Hourglass algorithms. From the plot we can
also see that the experimental results indicate that the theoretical upper bound of the
Tree algorithm is asymptotically tight. The experiments on digraphs of varying density
(see Figure also show a reduction in relaxations as the digraphs become sparser.

4.4 Empirical evaluation

In Section we have used empirical comparisons to measure the number of path
comparisons examined by the algorithms derived from Floyd-Warshall. In this section

Shortest paths in graphs 39

n = 1024 vertices
T T T T T T
0.06 -|—=— Tree
—e— Hourglass

0.03 |-

relaxations / Rpw

0.02 |- 8

0.01 | | | | | | | |
10 20 30 40 50 60 70 &0
density (100% = n? arcs)

Figure 4.6: Digraphs with n = 1024 vertices and various arc densities with the number
of relaxations of algorithms divided by Rpy .

we are interested in comparing the actual execution times of many different shortest
path algorithms, to better determine how they might perform in practice. The results
from this section have been previously published in [6}|9].

4.4.1 Graphs

The experiments were conducted on the following two types of random digraphs. Note
that these graphs differ slightly from those in Subsection [4.3.4}

Uniform random digraphs: the arc weights are distributed independently of each
other and uniformly at random inside the interval [0, 1]. As these digraphs grow denser,
they start to favor the expected-case algorithms, since the number of essential edges
m* = O(nlgn) with high probability in complete digraphs with uniformly distributed
random arc weights [19].

Unweighted random digraphs: arc weights are set to 1. These digraphs can be
viewed as a type of worst-case for the expected-case algorithms, since m* = m always
holds, i.e., every arc is a shortest path between two vertices. It should be pointed out
that breadth-first search (BFS) is extremely efficient in solving these instances given its
simplicity and O(mn) running time (when solving APSP). However, since we consider
these instances only as a worst-case of a more general shortest path problem, we did
not include BFS in the comparisons.

In both cases, the digraphs were constructed by first setting a desired vertex count
and density. Then, a random Hamiltonian cycle is constructed, ensuring that the
digraph is strongly connected. Arcs are added into the digraph at random until the
desired density is reached. Finally, algorithms are executed on the instance, and their
running times recorded. We have explored densities ranging from m = n'! to m = n?,
and vertex counts ranging from n = 512 to n = 8192. Tests on vertex counts up to 4096
(inclusive) were conducted ten times and averaged. For the n = 8192 vertex instances

each test was conducted only once, due to the long execution times involved.

40 4.4 Empirical evaluation

4.4.2 Algorithms

Priority queues are integral to many shortest path algorithms. Pairing heaps [29)
were used in all experiments, since they are known to perform especially well in this
capacity in practice |61,67]. Unlike Fibonacci heaps, which have an O(1) amortized
decrease key operation, the amortized complexity of decrease-key for pairing heaps is
O(22V'ele™) [65]. We compared the following algorithms:

Dijkstra [22]: solves all-pairs by solving multiple independent single-source prob-
lems. Using pairing heaps this algorithm runs in O(n?lgn + mn22‘/m).

Floyd-Warshall [26,83]: classic dynamic programming formulation as described
in Algorithm [2| Does not use priority queues and has a worst-case bound of O(n?®). The
same augmentation from Section that skips combinations i, k where Wi, k] = oo
has been added to it.

Hidden Path [48]: a type of Dijkstra’s algorithm for the all-pairs shortest path
problem. Using pairing heaps this algorithm has a worst-case bound of O(n?lgn +
m*n22Vielen),

Uniform Path [21]: essentially a more refined variant of the Hidden Path al-
gorithm. Using pairing heaps this algorithm has a worst-case bound of O(n?lgn +
|UP|n2*V8%8") wwhere |UP| is the number of uniform paths, i.e., paths where each
proper subpath is a shortest path. Note that |UP| < m*n for any graph if the shortest
paths are unique, and |UP| = O(n?) with high probability in complete digraphs with
uniformly distributed random arc weights [63]. It should be noted that even if the
shortest paths are not unique, the distance metric is easily adjusted to break ties so
that the shortest paths become unique for the purposes of the algorithm.

Propagation: the algorithm from Section with ¢ being Dijkstra’s algorithm.
We included the Size reduction and Weight bounding optimizations outlined in Sub-
section [4.1.5] but not the optimizations mentioned under Further optimizations, since
we found that after the first two optimizations the running time of ¢) did not present a
bottleneck. Using pairing heaps this algorithm has a worst-case bound of O(n?lgn +
m*n22Vielen),

Tree: the algorithm (with the outlined optimizations) from Section [£.3.1 Does
not use priority queues and has a worst-case bound of O(n?).

Hourglass: the algorithm from Section Does not use priority queues and
has a worst-case bound of O(n?).

All the code has been written in C++ and compiled using g++ -march=native -03.
We have used the implementation of pairing heaps from the Boost Library, version
1.55, all other algorithms use our own implementation. All tests ran on an Intel®
Core™ i7-2600@3.40GHz with 8GB RAM running Windows 7 64-bit.

All results are shown as plots with the y axis representing time in milliseconds in

logarithmic scale, and the x axis representing the digraph arc density as m = n”, i.e.,
logm
logn *

Tr =

4.4.3 First round of experiments

In the first round of experiments we measured the performance Dijkstra, Propagation,
Uniform Paths, Hidden Paths, and Floyd-Warshall algorithms. For the final tally in
the second round presented in Subsection [£.4.4] we took the fastest ones among these.

The results for uniform random digraphs are shown in Figure 4.7 Propagation
performs remarkably well in these tests, significantly outperforming other algorithms

Shortest paths in graphs 41

and only being tied with Dijkstra on the 4096 and 8192 vertex digraphs in the 1.1 —1.5
density range. This is expected as the running time of Propagation depends on m*
instead of m, and the ratio - in the uniform random digraphs increases as the graphs
grow denser, so it is expected that Dijkstra would be relatively slower the denser the
graph is.

The results for unweighted random digraphs are shown in Figure |4.8, which show
the opposite picture. Whereas in the previous test Dijkstra and Floyd-Warshall were
dominated by the other algorithms, they are now the dominant ones. Dijkstra is
significantly faster than all of the other algorithms, except in the very dense cases
where it is outperformed by Floyd-Warshall. These results are expected, since the other
algorithms gain their speed by ignoring arcs that are not necessary for the computation.
Since m = m* in these graphs, none of the arcs are ignored. The n? case for unweighted
digraphs is somewhat pathological, as the instance is already solved since every vertex
has a unit weight arc to every other vertex, which can be seen to cause a consistent
dip in the running time in the case of Dijkstra.

4.4.4 Second round of experiments

In the second round of experiments we analyzed the dominant algorithms from the
first round and our two algorithms from Section [4.3] Specifically, the algorithms com-
pared in this round are: Dijkstra, Propagation, Floyd-Warshall, Tree, Hourglass. The
algorithms Hidden Paths and Uniform Paths were omitted in this round, because they
were already shown to underperform in the first round relative to Propagation in the
case of uniformly random digraphs, and Dijkstra in the case of unweighted digraphs.

The results for uniform random digraphs are shown in Figure [4.9) The tests show
that Propagation and Tree together outperform the other algorithms on all densities.
As the size of graphs increases, Hourglass starts catching up to Tree, but the constant
factors still prove to be too large for it to benefit from its more clever exploration
strategy. It is interesting to see the Tree and Hourglass algorithms being so efficient
on the graphs of varying density, outperforming even Dijkstra, which further confirms
that their expected-case time is indeed much lower than their O(n?®) worst-case time.

The results for unweighted random digraphs are shown in Figure What is
interesting is that the Tree and Hourglass algorithms remain competitive with Dijkstra,
and even outperforming it on the smaller graphs in some instances. This is in stark
contrast with the Propagation algorithm, which does not perform as well given that
m = m* in these graphs.

4.5 All-pairs bottleneck paths

The all-pairs bottleneck paths problem [43,/68] (APBP) is closely related to the all-pairs
shortest path problem. The difference is only in the definition of the weight of a path

P =wvpg,vp1,...,vp,, which we now call the width and define as
7‘—_1
w(P) = minw(vp;, vpi).

Analogous to how we denoted the weight of a shortest path from vertex u to vertex v as
D¢ (u,v), we denote the width of a widest path from vertex u to vertex v as Dg(u,v). A
solution to this problem is readily available by simply modifying the relaxation equation

42

4.5 All-pairs bottleneck paths

512 vertices 1024 vertices
211 [|
< 28] 1 2
g g
S) S o910 | |
[O 2
2 97| 13
E z 7| ~
) 261 |)
g g 2 B\M |
+ +
25 [B
1.1 1.33 1.55 1.78 2 1.1 1.33 1.55 1.78 2
density density
2048 vertices 4096 vertices
214 [B 217 L B
))
g 913 | | g 916 | |
Q Q
2 912 | | B 915 | 1
'\% " E 214 [|
o 277))
g W g 213 1 |
+ 10 | | +
2 212 L i
1.1 1.33 1.55 1.78 2 1.1 1.33 1.55 1.78 2
density density
’ 8192 vertices
257 | | | | —o— Dijkstra
—~ 220} : —=— Propagation
g 919 | | —a— Uniform Paths
2 s —a— Hidden Paths
£ 27] —+— Floyd-Warshall
"Té‘ 217 L i
) 216 L i
£
e 215 [B
214 L | | ! [
1.1 1.33 1.55 1.78 2

density

Figure 4.7: Uniform digraphs, first round

Shortest paths in graphs

43

— 2

28
27
26

time (milliseconds

217

time (milliseconds)

time (milliseconds)
[\

512 vertices

time (milliseconds)
[\

1.1

o b

1.33 1.55 1.78
density

2048 vertices

8 221
B 220
219
218
217
216
215
214
213
b 212
B 211

time (milliseconds)

o |

1.33 155 1.78

1.1
density
8192 vertices
1.1 1.33 1.55 1.78 2

density

1024 vertices

1.1 1.33 1.55 1.78 2
density
4096 vertices
1.1 1.33 1.55 1.78 2
density
—o— Dijkstra
—=— Propagation
—&— Uniform Paths
—a— Hidden Paths
—— Floyd-Warshall

Figure 4.8: Unweighted digraphs, first round

44 4.5 All-pairs bottleneck paths
512 vertices 1024 vertices
211 L i
7 2 1z
"g "g 210 L i
S 2| .
g g 2 1
= 26 | i = 8 | |
g g’
o 251 1 o 27 y
g g
- 24 i | - 26 . N
1.1 1.33 1.55 1.78 2 1.1 1.33 1.55 1.78 2
density density
2048 vertices 4096 vertices
o4 1 917 | |
3 213 . B 16| |
g g 2
S g g |
Z =
= oll| | = ol4| |
£ £
g 210 | | QE) 213 L B
E 29 | | 43 212 [|
28 L 1 1 .| 211 L 1 | }

1.1 1.33 155 1.78 2
density

1.1 1.33 155 1.78 2
density

—e— Dijkstra —&— Propagation
- Tree —a— Hourglass

—— Floyd-Warshall

Figure 4.9: Uniform digraphs, second round

Shortest paths in graphs

45

time (milliseconds)

time (milliseconds)

29
28
27
26
25

24

210

512 vertices

time (milliseconds)
[\)
©

1.1 1.33 1.55
density

2048 vertices

1.78 2

T 220
1 219
218
217
216
215
214
213
212

211
I 210

time (milliseconds)

1.1 1.33 1.55
density

1.78 2

1024 vertices

1.1 1.33 1.55
density

1.78

4096 vertices

1.1 1.33 1.55
density

1.78

—o— Dijkstra
—.— Tree

—=— Propagation
—a— Hourglass

—— Floyd-Warshall

Figure 4.10: Unweighted digraphs, second round

46 4.5 All-pairs bottleneck paths

of shortest path algorithms to use maximum instead of minimum and minimum instead
of addition, e.g., lines 5 — 6 in Algorithm [2| Modifying Dijkstra’s algorithm in this way
leads to a solution that runs in time O(mn + n*lgn) using Fibonacci heaps [30]. A
more efficient folklore modification of Dijkstra’s algorithm is known to reduce this time
down to O(mn). This folklore modification sorts the arcs by their weights beforehand
in O(mlgn) time and then maps weights to integers in {1,...,m}. This permits it to
use a bucket instead of a heap and each SSSP computation takes O(m) time in total.
It should be pointed out that in the case of undirected graphs, we can solve APBP on
a maximum spanning tree of G instead of on G itself [43], and still obtain the correct
result. This can be a significant speed-up, since m = n — 1 for any maximum spanning
tree.

In this section, we describe an algorithm that is more efficient, with an asymptotic
running time of O(m*n+mlgn). This algorithm will also allow us to state a connection
between APBP and the dynamic transitive closure problem.

Given a strongly connected weighted digraph G' = (V, A) with a weight function w,
the algorithm works by incrementally building a weighted digraph G* = (V, A*) where
A* C A is the set of essential arcs, i.e., arcs that are part of some widest path. It
accomplishes this by inserting arcs into an initially disconnected set of vertices. The
first step is to sort the set of arcs A with respect to their weights. This can be done
with any off-the-shelf sorting algorithm in O(mlgn) time.

Now we consider each arc in this sorted list from heaviest to lightest. Given an arc
(u,v), check if v is reachable from w in G*. If it is, ignore it and move to the next
arc, and if it is not, add (u,v) to G*, and for every pair of vertices (p, ¢q) such that ¢
becomes reachable from p, we have Dg(p,) = w(u,v). The algorithm finishes when
we have considered every arc.

We summarize the algorithm in pseudocode as Algorithm [§]

Algorithm 8 APBP Algorithm
1. procedure APBP(V, A)
2 Initialize D, an n x n matrix, as D[i, j] := o0.
3 A* =1
4 for all (u,v) € A from heaviest to lightest do
5: if D[u,v] = oo then
6:
7
8

A= AU {(u,v)}
Dlu,v] := w(u,v)
: for all (p, q) where D[p, q] = co and g is reachable from p in G* = (V, A*)
do
9: Dip, q] := w(u,v)
return D

Lemma 4.30. For a weighted digraph G = (V, A) Algorithm @ correctly computes
D¢ (u,v) for all u,v € V.

Proof. Let aq,aq, ..., a, be the arcs in sorted order, i.e., w(a;) > w(ay) > ... > w(ay).
Assume the algorithm is at a stage k, i.e., having examined the first & — 1 arcs. For
the case k = 1, the heaviest arc in the graph clearly forms the widest path between
the two vertices it connects. For some m > k > 1, let a;, = (u,v) and consider first the
case that we can reach vertex v from vertex u in the current version of the graph G*.

Shortest paths in graphs A7

That would imply that Dg(u,v) > w(ag—_1), due to the definition of path width, which
means a wider (or equal) path as a; already exists, thus the arc can be safely omitted
as it is redundant.

In the case that we cannot yet reach vertex v when starting from vertex u, then
(u,v) is the heaviest arc to connect the two vertices, and thus clearly D¢ (u,v) = w(ay).
For any additional vertex pairs (p, ¢) that become reachable after a; is added into the
graph, they clearly contain a; on any path that connects them. Since all the other arcs
in the current graph have a weight greater than or equal to w(ay), by the definition of
path width it holds that Dg(p,) = w(ay), which completes the proof.]

The running time of the algorithm depends heavily on how we check which pre-
viously unreachable vertex pairs have become reachable (line 8 in Algorithm . The
following simple approach works when adding some arc (u,v):

1. Gather all vertices x in G* that can reach u but not v. This takes O(n) time by
using the D matrix from Algorithm |8 and checking for infinity.

2. For each vertex x from Step 1, start a breadth-first exploration of G* from v,
visiting only vertices that were previously not reachable from .

Over the entire course of the algorithm, m* arcs are added to G*, so the time for the
first step is O(m*n). The second step is not more expensive than the cost of each
vertex performing a full breadth-first exploration of G* when it is fully built, thus at
most O(m* +n) per vertex, amounting to O(m*n) in total and yielding an overall cost
of O(m*n).

Combining both times for the arc sorting and reachability checking, we arrive at the
bound of O(m*n+mlgn). It is worth pointing out that in the case of undirected graphs,
G* corresponds to a maximum spanning tree of G. This is interesting, because it means
m* = O(n), so the running time of the algorithm becomes simply O(n* + mlgn) for
undirected graphs. This remains true even if the representation is directed, i.e., each
arc is simply repeated in both directions with the same weight. In some sense, the
algorithm is adaptive to the input graph.

4.5.1 Connection to the dynamic transitive closure problem

We now consider two cases of dynamic transitive closure and point out connections
to APBP. In the incremental version we are given a sequence of arc insertions on
an initially empty graph, and the task is to maintain the ability to efficiently answer
reachability queries. In the decremental version, we are given a graph, and a sequence
of arc deletions and must support the same reachability queries. In both cases, we
are able to use these algorithms to solve APBP if we assume that the algorithms also
provide which pairs of vertices became reachable (or unreachable) after the operation,
by using Algorithm 8 In the case of decremental transitive closure, we have to do some
minor modifications to Algorithm [§| and insert the edges from lightest to heaviest, and
then checking which have become unreachable. The pairs that become reachable (and
unreachable) can usually be provided by algorithms that maintain an explicit repre-
sentation and answer queries in O(1). Relatively recent advancements in decremental
transitive closure have led to an algorithm that has a total running time of O(mn)
under m arc deletions [51], while an algorithm achieving that bound for incremental
transitive closure has been around for much longer [45|. Both of these algorithms

48 4.5 All-pairs bottleneck paths

maintain the transitive closure explicitly, and so can provide the relevant pairs we re-
quire. Since transitive closure can be computed in O(E—Z) time [13], a decremental
algorithm that matches that running time could also lead to an o(mn) combinatorial
algorithm for APBP. While subcubic algebraic algorithms for APBP based on matrix
multiplication exist [81], no o(mn) combinatorial algorithm is known.

Chapter 5

Ant system

We study the parallel variants of the Ant System (AS) algorithm, which is part of the
ant colony optimization (ACO) family of metaheuristics. The ACO family of algo-
rithms simulate the behavior of real ants which find paths using pheromone trails. A
number of variations on the basic idea exist, such as the Ant System [24], Ant Colony
System [23], the MAX—MZN Ant System [76], and many others. We focus on the
canonical Ant System algorithm, which can be adapted to solve a variety of combi-
natorial optimization problems such as vehicle routing [11], quadratic assignment [56],
subset problems [52], and others. We limit ourselves to the traveling salesman problem
(TSP).

The adoption of the graphics processing unit (GPU) as a computing platform in
recent years has triggered a wave of papers discussing the parallelization of known
algorithms. Recent papers [12,53,85] have focused on providing a parallel version of
Ant System for the GPU. In this chapter, we show that these algorithms are more
general and can be studied in absence of GPU specifics. In line with this observation,
we suggest a move towards more well-understood theoretical models such as the PRAM.
This greatly facilitates asymptotic analysis and subsequently allows one to see where
the algorithms could be improved.

Our main goal is to investigate efficient AS algorithms for variants of the PRAM
model of computation and to identify how these might be useful in practice. We break
down the AS algorithm into two separate phases: Tour Construction and Pheromone
Update. We then show that the existing GPU algorithms for AS can be translated to
the PRAM model, which permits us to perform asymptotic analysis. While Tour Con-
struction remains efficient even under PRAM, we identify bottlenecks in the Pheromone
Update phase, which are caused by reliance on atomic instructions that are not readily
available on most variants of PRAM (or older GPUs). We overcome this with a novel
Pheromone Update algorithm that does not require such instructions. Finally, we show
that these results are relevant in practice when atomic instructions are not available.
We do this by implementing the resulting Pheromone Update algorithm on the GPU
and obtain significantly better results in the case of absence of atomic instructions. It
is important to note that throughout this chapter we do not consider the quality of the
obtained solutions, as we are only interested in the running time while staying true to
the original Ant System algorithm.

The chapter is structured as follows. In Section we briefly introduce the Ant
System algorithm in its sequential form. In Section we provide a PRAM imple-
mentation of the Ant System algorithm and show how to improve it, and finally we

50 5.1 Background

provide results of empirical tests on the GPU.

5.1 Background

5.1.1 The traveling salesman problem

In the traveling salesman problem, we are given a complete weighted digraph K, and
a positive arc weight function w: A — R*. The task, then, is to produce a path
P =wvpy,...,vpy—1 which minimizes the following weight:

w(vpn_1,vp0) + w(P).

Such a path joined at the end with the first vertex is also known as a Hamiltonian
cycle. Observe that even though our formulation requires a complete graph, sparse
graphs can be handled by inserting the missing arcs with weight co. Undirected graphs
can also be handled simply by creating two arcs and then assigning equal weights to
both of them with the weight function w.

5.1.2 Ant system for the TSP

We are ready to describe the canonical Ant System for solving the TSP [24] in sequential
form. As in the description of the TSP problem, we assume we are given a complete
weighted digraph K, with weight function w: A — R*. We then define the heuristic
matrix 17 and the pheromone matrix 7, both of dimensions nxn as follows. The heuristic
matrix 77 does not change throughout the algorithm and represents the quality of an

arc (v;,v;) as follows:
" 0 otherwise.

The pheromone matrix 7 initially contains the value 1 everywhere, but changes through-
out the execution of the algorithm. Two parameters a« > 0 and § > 0 regulate the
importance of pheromone and heuristic information, respectively.

In the canonical algorithm, ants build solutions according to:

1 (7i)* - (m15)”
P S) = 5.1
(]|Z;) ZkeN(i,S) (Ti,k)a . (ni,k)ﬁ) ()

where P(j|i,S) is the probability of choosing vertex v; when at vertex v; and according
to the current partial solution &, which is just a sequence of vertices. The feasible
neighborhood of the current incomplete solution is a set of vertices denoted by N (i, S).
In practice, this selection is implemented via the so-called roulette wheel selection
algorithm, which cannot be efficiently parallelized. We instead use the independent
roulette selection method, which selects j according to

P(jli. S)R. 5.2
arg max (jli, S)R; (5.2)

where R; for 1 < j < n are random variables distributed independently of each other
and uniformly at random inside the interval (0, 1]. Although the independent roulette
selection works in a qualitatively different way to the canonical selection, studies show

Ant system 51

it does not affect the quality of the solutions obtained, while allowing a significantly
faster parallel implementation [54].

The algorithm stores the probability from Eq. of choosing certain arcs in the
chance matrix. Since the TSP does not permit returns to previously included vertices
(except for the last vertex), those vertices have probability zero of being included. This
is typically accomplished by having each ant keep track of a tabu list. When considering
AS for TSP, the recommended number of ants equals the number of vertices [25], which
is also a common choice in the case of parallel variants [12,85] of AS. From hereon we
always assume we have n ants, each starting its solution in a different vertex.

Once solutions are constructed, each solution S is evaluated to obtain its quality
f(S), which in most cases is simply the sum of the inverses of the edge weights. Once
all solutions are evaluated, their qualities are used to update the pheromone matrix.
First, each cell of the pheromone matrix is multiplied by a constant factor 0 < p <1
(evaporation) and then increased according to the solution score (pheromone deposit).
Let Z be the set of all solutions produced by the ants, where each ant contributes a
single solution. Then, the pheromone update stage is defined by:

Tij & (1—=p) -7+ Z f(S). (5.3)

S€Z s.t. (viv;)ES

The Ant System algorithm, as we have described it, can be formalized as Algo-
rithm |§] and consists of three stages: initialization (Algorithm , tour construction
(Algorithm [11]), and pheromone update (Algorithm [I2)). The algorithm also uses a
number of matrices, which play the following roles: chanceli, j] stores the visit proba-
bility value (cf. Eq. (5.1)) for edge (v;,v;), [i, j] stores the solutions, specifically the
vertex v; of the ant ¢, and tabuli, j] is used to prevent infeasible solutions by storing
whether ant ¢ had already visited vertex v;. The vector scoreli] holds the computed
score for the solution of ant 7. The function rand() is supposed to return a random
uniformly distributed real number in the range (0, 1]. This is the source of randomness
in the algorithm, and allows the algorithm to implement the probabilistic selection

according to Eq. (5.2).

Algorithm 9 Sequential Ant System

1: procedure ANTSYSTEM(a, 3, p, totallterations)

2 Allocate matrices of size n x n: n, 7, chance, w, tabu

3 Allocate vector of size n: score

4: for i :=1ton do

5: for j:=1ton do

6 Tli,j] =1

7 if i = j then

8 nfi, j] =0

9: else

10 nli, 4] = 1/w(vi, ;)

11: for iter :=1 to totallterations do

12: INITIALIZE(cv, 3, T, 71, score, chance, m, tabu) > Algorithm
13: ToOURCONSTR(n, score, chance, 7, tabu) > Algorithm [11]

14: PHEROMONEUPDATE(T, p, score) > Algorithm [12]

52 5.1 Background

Algorithm 10 Sequential Initialize

1: procedure INITIALIZE(«, (3, T, 1, score, chance, m, tabu)
2 Allocate vector of size n: sum

3 for s :=1ton do

4 sumli] := 0

5: for j :=1ton do

6 sumli] == sumli] + 7[i, 5]* - n[i, 5]°

7 for j:=1ton do

8 chanceli, j| := 7[i, 7]1* - nli, j]° /sumli]

9 tabuli, j] =1

10: mli, 1] =1 > First vertex in ant i’s solution
11: scoreli] := 0

12: tabuli,i] :=0

Algorithm 11 Sequential Tour Construction

1: procedure TOURCONSTR(7, score, chance, m, tabu)
2 for i :=1ton do

3 for k:=2ton do

4: v:=10

ot C: = —

6 for j:=1ton do

7 t := chancelr|i,k — 1], j] - rand() - tabult, j]
8 if ¢t > ¢ then

9: c:=t
10: vi=]
11: wli k] == v

12: tabuli,v] :=0

13: scoreli] := scoreli] + n[n[i, k — 1], v]
14: scoreli] := score[i| + n[w[i, n], (i, 1]]

Algorithm 12 Sequential Pheromone Update
1: procedure PHEROMONEUPDATE(T, p, score)
2 for i :=1ton do
3 for j:=1ton do
4 7[27.]} = (1_[))7-[2,]]

5: for i:=1ton do

6

7

8

for k:=2ton do
Tlrli, k — 1], 7[i, k|| := 7[n[i, k — 1], 7[i, k]] + score]i]

7[w[i, n], 7[i, 1]] := 7[x[i, n], w[i, 1]] + score]i]

Ant system 53

5.2 Parallel Ant system

It is conceptually simpler to consider Ant System as a combination of two algorithms:
tour construction and pheromone update (lines 13 and 14 in Algorithm |§], respectively).
Attempts at parallel AS, e.g., [3,20], are usually not very attractive for the PRAM
model, since they either employ coarse parallelization or neglect certain parts of paral-
lel AS, typically pheromone update. However, it turns out that parallel AS algorithms
for the GPU model [12,53,85] translate almost without effort to the PRAM model. It
is important to note that the unit of parallelism in the GPU is a thread, while on a
PRAM the unit of parallelism is a processor. However since the PRAM is a theoretical
model, the actual meaning of processor in this context is abstract. Compared to the
GPU, the PRAM model is much simpler. While programs under the PRAM execute in
SIMD (Single instruction, multiple data) lock-step fashion, the GPU model of execu-
tion is the significantly more ambiguous SIMT (Single instruction, multiple threads),
where such lock-step guarantees are lost. Together with details like different levels of
memory with different speeds and capacities, writing programs becomes a matter of
mixing theoretical and practical considerations. In this thesis we mainly focus on the
theoretical aspects of such programs by studying them in the cleaner PRAM model,
then transferring them over to the “messier” GPU when doing empirical comparisons.

Due to the decomposition of AS into two algorithms (construction and update), the
complexity of AS becomes the worse of the two. We now explore strategies for each
algorithm.

5.2.1 Tour construction

The simplest method (cf. [53,[85]) delegates each ant to a separate processor. Now,
since each ant stochastically considers each vertex n times (cf. Eq. (5.2))) and has
p = n processors, this amounts to step complexity S(n) = O(n?) and work complexity
W(n) = O(n?).

A remarkable contribution of [12] is their strategy for parallel tour construction.
Their tour construction method uses p = n? processors and associates each ant with
n processors. When each ant can make use of n processors, it can effectively gener-
ate multiple random numbers in parallel. Then, the maximum operation is used to
choose one among n vertices, again in parallel. In total, n maximum operations are
performed per ant. When translating this result to the PRAM model, the step com-
plexity of the algorithm depends on the model of computation. In the case of CREW,
the maximum can be found with a step complexity S(n) = O(lgn) and work com-
plexity W(n) = O(n). Since there are n maximum operations per ant, this brings the
step complexity to S(n) = O(nlgn). There are n ants in total, each performing n
maximum operations, meaning the work complexity remains W (n) = O(n?). However,
under CRCW, maximum can be performed in S(n) = O(lglgn) step complexity (see,
e.g., [73]), thus the step complexity of the algorithm becomes S(n) = O(nlglgn), with
the work complexity remaining the same as in the CREW case. Under COMBIN-
ING CRCW, this is further reduced to S(n) = O(n) by simply taking the combining
operation to be maximum.

It is possible to further reduce the step complexity of the CRCW algorithm to
S(n) = O(n) while keeping W (n) = O(n?®) using p = n® processors and a different
method to find the maximum which takes S(n) = O(1) and W(n) = O(n?): simply

54 5.2 Parallel Ant system

compare all pairs of elements in the array in parallel. However, we will restrict ourselves
to p = n?, since the large amount of additional processors required hardly justifies the
lglgn gain.

5.2.2 Pheromone update

Once the tour is constructed, the pheromone update must be performed. In [53,85]
the latter is performed sequentially rather than in parallel, i.e., one processor performs
the update in S(n) = O(n?) and W(n) = O(n?) while others wait. This method
is appropriate if we use the first tour construction method, which also has a step
complexity of O(n?), but it becomes a bottleneck if we choose the more parallel tour
construction method of [12].

Two pheromone update methods can be found in [12]. The first is straightforward
and is based on atomic instructions for addition (cf. the summation in Eq. (5.3))). This
method corresponds to the use of COMBINING CRCW with the combining operation
set to addition. Thus, we already have one parallel method for pheromone update with
p = n and running with a step complexity of S(n) = O(n) and a work complexity of
W (n) = O(n?). If we allow p = n?, then the update can be performed in S(n) = O(1).

The second method of [12] which they refer to as “scatter to gather” is more com-
putationally intensive, but does not use atomic instructions. In this case each cell of
the pheromone matrix is represented by a distinct processor, so we require p = n?.
Each processor loops through all solutions, summing only the relevant qualities. So-
lutions are of size O(n) and there are n solutions, meaning each processor performs
S(n) = O(n?) operations. Since there are n? processors, this yields a W (n) = O(n?)
work complexity. This method works under both CREW and CRCW models, but in
terms of computational complexity, it is uninteresting. Better bounds are achievable
by performing pheromone update sequentially, i.e., by a single processor while others
wait. Nonetheless, we mention this method since we show how to improve its complex-
ity to S(n) = O(n) and W(n) = O(n?). We summarize the current best bounds for
both tour construction and pheromone update on PRAM in Table [5.1}]

5.2.3 Improvements

We now propose a novel method for pheromone update, which improves the currently
best known bounds under the CREW and CRCW models. Tour construction in our
algorithm is performed as in [12|, which translates effortlessly to the PRAM. How-
ever, instead of using their “scatter to gather” pheromone update, we develop a new
technique which is outlined in the proof of Theorem

Theorem 5.1. Pheromone update (Algorithm [16) can be performed in S(n) = O(n)
and W (n) = O(n?) under a CREW PRAM using p = n processors.

Proof. Each ant already stores a list of n entries, which correspond to vertices in the
order it visited them. In addition to this list, we require that each ant also stores
an array arc of length n, implicitly storing which arc was used to reach a particular
vertex. For example, if the arc (v;,v;) was used to visit vertex v; by ant k, then we
would set arclk, j] := i. During pheromone update, processor x updates 7[arc[k, x|, x|
for all k& € [n]. Without this array, we would have to inspect every element of the

solution. There are n solutions, so the step complexity of pheromone update becomes
S(n) = O(n) and the work complexity becomes W (n) = O(n?). O

Ant system 55

The pseudocode for the parallel algorithm is shown in Algorithms [I3}[16. PRAM
algorithms use a scalar processor identifier. To improve readability we use a two-
dimensional processor identifier (z,y) € [n] X [n] when the algorithm calls for n? pro-
cessors and = € [n] when using n processors. Recall that each ant is using n processors,
so the x component of the identifier denotes an ant and the y component denotes an
ant’s processor. We explicitly denote variables that are local to each processor by pre-
fixing them with a local identifier in their initialization. All matrices in the algorithm
are of size n x n. The matrices 1, 7, chance, 7, tabu and vector score were already
described in Section [5.1} Additional matrices exist for the parallel algorithm which
have the following roles: R holds the results from parallel random number generation
and arc is used as described in the proof of Theorem [5.1}

Theorem 5.2. Algorithms[13{16 exzecute on CREW PRAM.

Proof. 1t is easy to see that writes to R (line 3 in Algorithm and 7 (lines 3 and 5 in
Algorithm |16]) preserve write exclusivity since only processor (z,y) writes to R[z, y| and
only processor z writes to 7[k, z] for all k € [n]. We lump together the proof of write
exclusivity for chance (line 6 in Algorithm [14), tabu (lines 7 and 10 in Algorithm
and line 7 in Algorithm , score (line 9 in Algorithm and lines 8 and 11 in
Algorithm and arc (lines 6 and 10 in Algorithm . Observe that in each case the
processor’s y index is set to one, or is using a one-dimensional index (i.e., p = n) which
is effectively the same thing. For score, which only has one dimension, this avoids
conflicts. The rest are matrices and all writes from processor (x,1) are to cells (z, k)
where k € [n], which does not lead to any conflicts. Note that the proof for the write
exclusivity of 7 (line 8 in Algorithm [14] and line 4 in Algorithm is the same. We
require that the parallel implementation of arg max observes the write exclusivity of
. O

Corollary 5.3. Algorithms execute on CRCW PRAM.

Proof. The CRCW PRAM is a stronger model, so the result follows. In addition, the
parallel implementation of arg max no longer requires write exclusivity of 7, allowing
for a faster implementation (see, e.g., [73]). O

Table summarizes complexity bounds derived from previous work as well as
new bounds resulting from the improvements presented in this chapter. Since a single
iteration of the parallel Ant System algorithm requires both tour construction and
pheromone update, the bound becomes the worse of the two.

5.2.4 Empirical comparison

We implemented different pheromone update methods on the GPU. We used Nvidia
CUDA, which was also used in recent papers [12,53,[85] studying the parallel GPU
implementation of the Ant System algorithm.

The tests were run on an NVIDIA GeForce GTX 560Ti using stock NVIDIA fre-
quencies. Test instances were taken from TSPLIB [70], which are standard test cases.
We included some of the instances that have also been used by [12] to facilitate com-
parisons their solutions and ours. We compared only the pheromone update stage,
since our tour construction step is identical to the one presented in [12], to which we
refer readers interested in comparisons between various tour construction methods or
comparisons between the parallel and sequential code.

26

5.2 Parallel Ant system

Algorithm 13 Parallel Ant System

1:
2
3
4:
5:
6
7
8
9

10:

11:
12:
13:

14:
15:

16:
17:

procedure PANTSYSTEM(«, 3, p, totallterations)

Allocate matrices of size n x n: R, n, 7, chance, mw, tabu, arc
Allocate vector of size n: score
for 7 :=1ton do

for j:=1ton do

Tli,j] =1

if © = j then
nli,j] =0

else

nlé, j] = 1/w(vi, vy)
for i := 1 to totallterations do

for x € [n] in parallel do

PINITIALIZE(z, «, 8, T, n, score, chance, 7, tabu)
for (z,y) € [n| x [n] in parallel do

PTOURCONSTR(z, y, R, 1, score, chance, 7, tabu, arc)
for z € [n] in parallel do

PPHEROMONEUPDATE(z, T, p, arc, score)

Algorithm 14 Parallel Initialize

1:
2
3
4
5:
6
7
8
9

10:

procedure PINITIALIZE(z, «, 5, T, 1, score, chance, m, tabu)

local sum :=0

for 1 :=1ton do
sum = sum + 7(z,i|* - n[z,)’

for 1 :=1ton do
chance|x,i] = 7(z,i]* - n[z,i]’ /sum
tabulz,i] =1

mlz, 1] ==z

score[x] := 0

tabu[z, x] := 0

Algorithm 15 Parallel Tour Construction

1:
2
3
4
5:
6:
7
8
9

10:
11:

procedure PTOURCONSTR(x, y, R, n, score, chance, 7, tabu, arc)

for k:=2ton do
Rz, y] := chance|r|z, k — 1], y] - rand() - tabu|x, y]

mlx, k] := argmaxyecqi. .y R[z,y] > Find max in parallel using n processors
if y =1 then
arcle, wlx, k)] == w[x, k — 1]
tabulz, w[x, k]] := 0
score[z] := score[x] + n[r[z, k — 1], [z, k]]
if y =1 then

arclx, m(x,1]] :== wlz,n]
score[z] = score[x] + n[n[z,n], 7|z, 1]]

Ant system

57

Algorithm 16 Parallel Pheromone Update

procedure PPHEROMONEUPDATE(z, T, p, arc, score)
for £k :=1ton do

for k:=1tondo

1:
2
3: Tk, z] .= (1 — p) - [k, x]
4
)

Tlarclk, x|, x| := T|arclk, x|, x] + score[k]

Table 5.1: Previous and new bounds for the parallel Ant System comprised of two
sub-algorithms: tour construction and pheromone (PH) update. The COMBINING
CRCW model is denoted by CMB. CRCW, the step and work complexities as S(n)
and W (n), respectively, and p denotes the number of processors.

Previous work
CREW | CRCW CMB. CRCW
S(n) | O(nlgn) | O(nlglgn) | O(n)
Tour [12] | W(n) 02(n3) 02(n3) 02(n3)
p n n n
S(n) | O(n?) O(n?) O(1)
PH [12] | W(n) 02(n4) 02(n4) 02(712)
p n n n
S(n) | O(n?) O(n?) O(n)
Total W (n) 02(n3) 02(n3) OQ(n?’)
5 This chapter
CREW | CRCW
S(n) | O(n) O(n)
PH W(n) | O(n?) O(n?)
p n n
S(n) | O(nlgn) | O(nlglgn)
Total W(n) | O(n?) O(n?)
p n? n?

Table 5.2: Running time (milliseconds) of pheromone update methods on TSPLIB
instances.
Method
Instance | Atomic [12] | Scatter-Gather [12] | Non-atomic fast (new)
att48 0.06 1.29 0.19
kroC100 0.11 17.35 0.51
a280 0.47 759.14 3.61
pcb442 0.82 4681 11.5
d657 1.74 22-10° 34.7
pr1002 3.48 118 - 10° 114.8
pr2392 16.39 3800 - 103 1525.4

58 5.2 Parallel Ant system

Figure 5.1: Running times of pheromone update methods on TSPLIB instances.
T T T T T T

T
1085 | | Atomic [12] _—_—
106 | |° Scatter-Gather [12] |
s Non-atomic fast (new)
10° | O |
=) o
< 4| |
o R
£]_03 [O —
\% 102 = A B
Q A
g 10! g N °
) = |
A °
100 ° . * —
A °
0t . l
1072

\ \ \ \ \ \ \
att48 kroC100 a280 pcb442 d657 prl002 pr2392

We tested three methods of pheromone update: atomic, scatter-gather, and non-
atomic fast. The atomic method updates the pheromone matrix using atomic instruc-
tions for addition. The scatter-gather method is the non-atomic method proposed
by [12]. Finally, the non-atomic fast method is the one suggested in this chapter. We
also remark that, in our case, the atomic update method made full use of p = n?
threads, since we found its performance to be significantly better compared to p = n
threads as used in [12]. The results are shown in Table and plotted in Figure [5.1]

It is reassuring to see that the theoretical improvements also translate into practice.
Although atomic instructions are typically slow, the atomic variant is significantly
faster in these experiments. This is because the slow execution of atomic instructions
only comes into play when multiple threads actually attempt simultaneous writes to
the same location. In our scenario this rarely happens, because every ant is unlikely
to have chosen the same edges in its solution. While the atomic variant is significantly
faster, older GPUs do not have access to the appropriate atomic instructions. Thus,

these results can be practically relevant for GPU implementations if code is expected
to work on all GPUs.

Chapter 6

Conclusion

After an extensive study of various aspects related to the topic of this dissertation, it is
time to draw some concluding remarks. In this work, we have explored the fundamental
concepts, theoretical foundations, and practical evaluations of dynamic programming,
shortest path, and ant system algorithms. We have presented novel algorithms, which
have shown significant improvements over existing methods in terms of efficiency. We
have thoroughly evaluated these algorithms in the context of theoretical and practical
performance in different scenarios, which have helped us understand their strengths and
limitations and has highlighted possible avenues for future research. In this concluding
chapter, we summarize the main findings of this work, discuss their significance, and
outline directions for future work.

6.1 Dynamic programming

In Chapter |3| we studied a simple minimum computation arising in Dynamic Pro-
gramming problems described by Eq. (3.1)), and have shown how to compute it in
O(Bnlg()) time where B can be upper bounded by the number of inflection points
of g.

It should be noted that, since the algorithm does not work with functions explicitly,
but rather with sequences, we can also obtain a speedup by working on on the vector
of real values X (cf. Section , in an analogous way. For example, we could traverse
X and find blocks, then decide to use either X or g, whichever has fewer blocks.
In many dynamic programming applications [62,/71,/77], the minimum computation
that we study is used as a subroutine. In these cases, X changes between calls to
the subroutine, whereas g remains static. Consequently, it makes sense to analyze g,
especially since it is a function. However, working on X would have its merits if one
could show that, for a given application, the number of blocks B in X can be bounded
by some value.

6.2 Shortest paths

6.2.1 Propagation

In Section .1}, we showed that an algorithm with a similar time bound to the Hidden
Paths Algorithm can be obtained. Unlike the Hidden Paths Algorithm, the resulting

60 6.2 Shortest paths

method is general in that it works for any SSSP algorithm, effectively providing a speed-
up for arbitrary SSSP algorithms. The proposed method, given an SSSP algorithm 1,
has an asymptotic worst-case running time of O(mlgn+nTy(m*+n,n+1)) and space
complexity of O(Sy(m*+n,n+ 1)+ n?). For the case of ¢ being Dijkstra’s algorithm,
this is asymptotically equivalent to the Hidden Paths Algorithm. However, since the
algorithm) is arbitrary, we show in Section that the combination of our method,
Johnson’s reweighting technique [47], and topological sorting gives an O(m*n+mlgn)
APSP algorithm for directed acyclic graphs with arbitrary arc weights.

However, we should mention that in recent years, asymptotically efficient algorithms
for APSP have been formulated in the so-called component hierarchy framework. These
algorithms can be seen as computing either SSSP or APSP. Our algorithm is only
capable of speeding up SSSP hierarchy algorithms, such as Thorup’s [79], but not
those which reuse the hierarchy, such as Pettie’s [64], Pettie-Ramachandran [66], or
Hagerup’s [36] since our SSSP reduction requires modifications to the graph G’, which
we construct at each iteration. These modifications would require the hierarchy to
be recomputed, making the algorithms prohibitively slow. This raises the following
question: is there a way to avoid recomputing the hierarchy at each step, while keeping
the number of arcs in the hierarchy O(m*)?

If there exists an o(mn) algorithm for the general SSSP problem with arbitrary arc
weights, then by using Johnson’s reweighting technique, our algorithm might become
an attractive solution for that case. For the general case, no such algorithms are known,
but for certain types of graphs, there exist algorithms with an o(mn) asymptotic time
bound [33,35].

Furthermore, we can generalize the approach used on DAGs. Namely, in Algo-
rithm [1| we can use an SSSP algorithm v that works on a specialized graph G, as long
our constructed graph G’ has these properties. Therefore, our algorithm can be applied
to undirected graphs, graphs with integer-weight arcs, etc., but it cannot be applied,
for example, to planar graphs, since G’ is not necessarily planar.

We have also shown a connection between the sorted all-pairs shortest path (SAPSP)
problem and the single-source shortest path problem. If a meaningful lower bound can
be proven for SAPSP, then this would imply a non-trivial lower bound for SSSP. Al-
ternatively, if SAPSP can be solved in O(mn) time, then this implies a Dijkstra-like
algorithm for APSP, which visits vertices in increasing distance from the source.

Additionally, we have studied the practical implementation of five algorithms by
comparing their execution times. The results of the test show that our algorithm
outperforms other algorithms for graphs with uniformly distributed weights, and could
thus be an attractive option for these types of graphs in practice.

6.2.2 Speeding up the Floyd-Warshall algorithm

In Section we have looked at a practical algorithm for solving the all-pairs shortest
path problem. It is typical of the more practically-minded APSP algorithms to rely on
expected-case properties of graphs, and most of them are modifications of Dijkstra’s
algorithm. However, the Floyd-Warshall algorithm is known to perform well in practice
when the graphs are dense. To this end, we have suggested the Tree and Hourglass
algorithms: modifications of the Floyd-Warshall algorithm that combine it with a tree
structure that allows it to avoid checking unnecessary path combinations. Only those
path combinations that provably cannot change the values in the shortest path matrix

Conclusion 61

are omitted. The Tree algorithm is simple to implement, uses no fancy data structures
and in empirical tests is faster than the Floyd-Warshall algorithm for random complete
graphs on 512-4096 vertices by factors ranging from 3-5 as can be seen on Figure [4.9
When we inspect the number of path combinations examined in Figure however,
the Tree modification reduces the number by a staggering factor of 10-38.

Motivated by these results, we have gone on to prove that the Tree algorithm
has an expected-case running time of O(n?log®n) for complete digraphs on n vertices
with arc weights selected independently at random from the uniform distribution on
[0,1]. Since the Tree algorithm allows negative arc weights, it would be interesting
to analyze its expected-case running time with respect to a model that permits such
arcs, for example, the vertex potential model |15,/17]. The Hourglass algorithm even
further decreases the number of comparisons performed, and therefore also improves
the running time of the algorithm. Obviously, the expected-case time complexity of
the Hourglass algorithm is at most O(n?log®n) since it is never worse than the Tree
algorithm, but it remains an open problem whether the Hourglass algorithm has an
o(n*log®n) expected-case time complexity in the uniform model.

To compare practical performance, we have devised empirical tests in Section
using actual implementations. Since, as mentioned, the algorithms studied typically
rely on expected-case properties of graphs, we looked at both uniform random graphs
and unweighted random graphs of varying density. The latter present a hard case
for many of the algorithms and can highlight their worst-case performance, whereas
the former are much more agreeable to the algorithms’ assumptions. For the choice
of algorithms we have included those known from past work, as well as the novel
Hourglass and Tree algorithms. As it turns out, the new algorithms have proven to
be quite efficient in the empirical tests that we have performed. The simpler Tree
algorithm has ranked especially well alongside the Propagation algorithm, while at the
same time it was more resilient when it came to worst-case inputs.

6.2.3 Bottleneck paths

We have also briefly considered the case of all-pairs bottleneck paths, and in Sec-
tion we proposed a simple algorithm, the asymptotic running time of which can
be parametrized with m*. Additionally, we have shown ties to the dynamic transitive
closure problem, which might lead to faster algorithms for all-pairs bottleneck paths if
faster algorithms for the dynamic transitive closure problem can be found.

6.3 Ant system

In Chapter [5| we have shown that recent parallel variants of the Ant System algorithm
for the GPU systems can be easily modeled by the more general PRAM model. This
makes them both simpler to understand and to analyze. The facilitation in theoretical
analysis allowed us to determine which parts of the algorithm needed improvement.
It turned out that in two out of three variants of PRAM models studied, the parallel
Ant System algorithm was dominated by pheromone update. We proposed a new
pheromone update method that improves the asymptotic bound of the parallel Ant
System algorithm to such an extent that the entire algorithm becomes dominated by the
tour construction phase. Empirical tests have also confirmed that these improvements

62 6.3 Ant system

translate back to improved performance on the GPU when atomic instructions are
unavailable.

Future research directs us to study the possibility of application of the proposed
pheromone update method to other algorithms in the ACO family. Moreover, opti-
mization problems other than the TSP could be parallelized in a similar fashion. The
algorithms could be studied under various other parallel computation models. Last
but not least, we are also interested in other algorithms that could be more efficiently
parallelized if they are split into two phases or more phases.

Bibliography

[1]

L. Addario-Berry, N. Broutin, and G. Lugosi. The longest minimum-weight path
in a complete graph. Comb. Probab. Comput., 19(1):1-19, 2010.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., USA, 1993.

B. Bullnheimer, G. Kotsis and C. Strauss. Parallelization strategies for the ant
system. Applied Optimization, 24:87-100, 1998.

P. A. Bloniarz. A shortest-path algorithm with expected time O(n?logn log™n).
SIAM J. Comput., 12(3):588-600, 1983.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput. Surv., 35(3):268-308, 2003.

A. Brodnik, M. Grgurovi¢, and R. Pozar. Modifications of the Floyd-Warshall
algorithm with nearly quadratic expected-time. Ars Math. Contemp., 22(1):1-22,
2022.

A. Brodnik and M. Grgurovi¢c. Practical algorithms for the all-pairs shortest
path problem. In A. Adamatzky, editor, Shortest Path Solvers. From Software to
Wetware, pages 163-180. Springer International Publishing, Cham, 2018.

A. Brodnik and M. Grgurovi¢. Speeding up shortest path algorithms. In K. Chao,
T. Hsu, and D. Lee, editors, Algorithms and Computation - 23rd International
Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings,
volume 7676 of Lecture Notes in Computer Science, pages 156—165. Springer, 2012.

A. Brodnik and M. Grgurovi¢. Solving all-pairs shortest path by single-source com-
putations: Theory and practice. Discrete Applied Mathematics, 231(Supplement
C):119 — 130, 2017. Algorithmic Graph Theory on the Adriatic Coast.

A. Brodnik and M. Grgurovi¢. Parallelization of ant system for GPU under the
PRAM model. Comput. Informatics, 37(1):229-243, 2018.

B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm
for the vehicle routing problem. Annals of Operations Research, 89:319-328, 1997.

J. M. Cecilia, J. M. Garcia, A. Nisbet, M. Amos, and M. Ujaldon. Enhancing
data parallelism for ant colony optimization on GPUs. Journal of Parallel and
Distributed Computing, 73(1):42 — 51, 2013.

64

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[22]

[23]

[24]

T. M. Chan. All-pairs shortest paths with real weights in O(n3/1gn) time. Algo-
rithmica, 50:236—243, 2008.

T. M. Chan and R. R. Williams. Deterministic APSP, orthogonal vectors, and
more: Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms,
17(1), 2021.

B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms:
theory and experimental evaluation. Math. Programming, 73(2, Ser. A):129-174,
1996.

S. A. Cook and R. A. Reckhow. Time bounded random access machines. Journal
of Computer and System Sciences, 7(4):354-375, 1973.

C. Cooper, A. Frieze, K. Mehlhorn, and V. Priebe. Average-case complexity of
shortest-paths problems in the vertex-potential model. Random Structures Algo-
rithms, 16(1):33-46, 2000.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2nd edition, 2001.

R. Davis and A. Prieditis. The expected length of a shortest path. Information
Processing Letters, 46(3):135 — 141, 1993.

P. Delisle, M. Krajecki, M. Gravel, and C. Gagné. Parallel implementation of an
ant colony optimization metaheuristic with OpenMP. [International Conference
of Parallel Architectures and Complication Techniques, Proceedings of the third
FEuropean workshop on OpenMP, pages 8-12, 2001.

C. Demetrescu and G. F. Italiano. Experimental analysis of dynamic all pairs
shortest path algorithms. ACM Transactions on Algorithms, 2(4):578-601, 2006.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning
approach to the traveling salesman problem. FEwvolutionary Computation, IEEE
Transactions on, 1(1):53-66, 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part
B (Cybernetics), 26(1):29-41, 1996.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. MIT Press, Cambridge, MA,
2004.

R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.

M. J. Flynn. Some computer organizations and their effectiveness. IEFE Trans.
Comput., 21(9):948-960, 1972.

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page
114-118, New York, NY, USA, 1978. Association for Computing Machinery.

BIBLIOGRAPHY 65

[29]

[30]

[31]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap:
A new form of self-adjusting heap. Algorithmica, 1(1-4):111-129, 1986.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596-615, 1987.

M. L. Fredman and D. E. Willard. Blasting through the information theoretic
barrier with fusion trees. In Proceedings of the Twenty-Second Annual ACM Sym-
posium on Theory of Computing, STOC ’90, page 1-7, New York, NY, USA, 1990.
Association for Computing Machinery.

A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with
random arc-lengths. Discrete Appl. Math., 10(1):57-77, 1985.

H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems.
SIAM J. Comput., 18(5):1013-1036, 1989.

7. Galil and R. Giancarlo. Speeding up dynamic programming with applications
to molecular biology. Theoretical Computer Science, 64(1):107 — 118, 1989.

A. V. Goldberg. Scaling algorithms for the shortest paths problem. In Proceedings
of the fourth annual ACM-SIAM Symposium on Discrete algorithms, SODA 93,
pages 222-231, Philadelphia, PA, USA, November 1993. Society for Industrial and
Applied Mathematics.

T. Hagerup. Improved shortest paths on the word RAM. In Proceedings of the 27th
International Colloguium on Automata, Languages and Programming, ICALP ’00,
pages 61-72, London, UK, July 2000. Springer-Verlag.

T. Hagerup and C. Riib. A guided tour of Chernoff bounds. Inf. Process. Lett.,
33(6):305-308, 1990.

S.-C. Han, F. Franchetti, and M. Piischel. Program generation for the all-pairs
shortest path problem. In Proceedings of the 15th international conference on
Parallel architectures and compilation techniques, PACT ’06, pages 222232, New
York, NY, USA, 2006. ACM.

P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU
using CUDA. In Proceedings of the 14th international conference on High per-
formance computing, HIPC’07, pages 197-208, Berlin, Heidelberg, 2007. Springer-
Verlag.

R. Hassin and E. Zemel. On shortest paths in graphs with random weights. Math.
Oper. Res., 10(4):557-564, 1985.

D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science,
SEFCS 85, pages 137-143, Washington, DC, USA, 1985. IEEE Computer Society.

C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321-322, 1961.

T. C. Hu. Letter to the editor—the maximum capacity route problem. Operations
Research, 9(6):898-900, 1961.

66

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility. McGraw-Hill Higher Education, 1st edition, 1992.

G. ITtaliano. Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science, 48:273-281, 1986.

S. Janson. One, two and three times logn/n for paths in a complete graph with
random weights. Combinatorics, Probability and Computing, 8(4):347-361, 1999.

D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,
24(1):1-13, 1977.

D. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: time bounds
for all-pairs shortest paths. SIAM Journal on Computing, 22(6):1199-1217, 1993.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger, editors, Complezity of Computer Computations.
The IBM Research Symposia Series., pages 85-103, Boston, MA, 1972. Springer
US.

G. J. Katz and J. T. Kider, Jr. All-pairs shortest-paths for large graphs on the
GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, GH '08, pages 47-55, Aire-la-Ville, Switzerland,
Switzerland, 2008. Eurographics Association.

J. Lacki. Improved deterministic algorithms for decremental reachability and
strongly connected components. ACM Trans. Algorithms, 9(3), 2013.

G. Leguizamon and Z. Michalewicz. A new version of ant system for subset prob-
lems. In P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, ed-
itors, Proceedings of the Congress on FEvolutionary Computation, volume 2, pages
1459-1464, 1999.

J. Li, X. Hu, Z. Pang, and K. Qian. A parallel ant colony optimization algo-
rithm based on fine-grained model with GPU-acceleration. Internation Journal of
Innovative Computing, Information, and Control, 5(11(A)):3707 — 3716, 2009.

H. Lloyd and M. Amos. Analysis of independent roulette selection in parallel ant
colony optimization. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 17, page 1926, New York, NY, USA, 2017. Association for
Computing Machinery.

M. Luby and P. Ragde. A bidirectional shortest-path algorithm with good average-
case behavior. Algorithmica, 4:551-567, 1989.

V. Maniezzo and A. Colorni. The ant system applied to the quadratic assignment
problem. IEEE Trans. on Knowl. and Data Eng., 11(5):769-778, 1999.

J. J. McAuley and T. S. Caetano. An expected-case sub-cubic solution to the
all-pairs shortest path problem in R. CoRR, abs/0912.0975, 2009.

C. C. McGeoch. All-pairs shortest paths and the essential subgraph. Algorithmica,
13:426-441, 1995.

BIBLIOGRAPHY 67

[59]

[60]

[61]

[62]

[63]

[64]

[65]

K. Mehlhorn and V. Priebe. On the all-pairs shortest-path algorithm of Moffat
and Takaoka. Random Structures Algorithms, 10(1-2):205-220, 1997.

A. Moffat and T. Takaoka. An all pairs shortest path algorithm with expected
time O(n*logn). SIAM J. Comput., 16(6):1023-1031, 1987.

B. M. E. Moret and H. D. Shapiro. An empirical assessment of algorithms for
constructing a minimum spanning tree, pages 99-117. DIMACS Monographs. 15.
AMS Press, 1994.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443-453, 1970.

Y. Peres, D. Sotnikov, B. Sudakov, and U. Zwick. All-pairs shortest paths in o(n?)
time with high probability. J. ACM, 60(4), 2013.

S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theor. Comput. Sci., 312(1):47-74, January 2004.

S. Pettie. Towards a final analysis of pairing heaps. In Foundations of Computer
Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 174183,
Washington, DC, USA, Oct 2005. IEEE Computer Society.

S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., 34(6):1398-1431, 2005.

S. Pettie, V. Ramachandran, and S. Sridhar. Experimental evaluation of a new
shortest path algorithm. In D. M. Mount and C. Stein, editors, Algorithm Engi-
neering and Fxperiments, ALENEX ’02, page 126-142, Berlin, Heidelberg, 2002.
Springer-Verlag.

M. Pollack. Letter to the editor — the maximum capacity through a network.
Operations Research, 8(5):733-736, 1960.

M. Raab and A. Steger. “Balls into bins”—a simple and tight analysis. In Ran-
domization and approximation techniques in computer science (Barcelona, 1998),
volume 1518 of Lecture Notes in Comput. Sci., pages 159-170. Springer, Berlin,
1998.

G. Reinelt. TSPLIB - a traveling salesman problem library. INFORMS Journal
on Computing, 3(4):376 — 384, 1991.

D. Sankoff and J. B. Kruskal. Time warps, string edits, and macromolecules.
Cambridge University Press, Cambridge, England, 2000.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and combinatorics. Springer, 2003.

Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a
parallel computation model. Journal of Algorithms, 2(1):88 — 102, 1981.

P. M. Spira. A new algorithm for finding all shortest paths in a graph of positive
arcs in average time O(n?log®n). SIAM J. Comput., 2:28-32, 1973.

68

BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[32]

[33]
[84]

[85]

L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by
circuits. SIAM Journal on Computing, 13(2):409-422, 1984.

T. Stiitzle and H. H. Hoos. MAX—MZIN Ant system. Future Gener. Comput.
Syst., 16(9):889-914, 2000.

M. S. W. T. F. Smith. New stratigraphic correlation techniques. Journal of
Geology, 88(4):451 — 457, 1980.

T. Takaoka and A. Moffat. An O(n%lognloglogn) expected time algorithm for
the all shortest distance problem. In Mathematical foundations of computer sci-
ence, 1980 (Proc. Ninth Sympos., Rydzyna, 1980), volume 88 of Lecture Notes in
Comput. Sci., pages 643-655. Springer, Berlin-New York, 1980.

M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM, 46(3):362-394, 1999.

P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. A), pages 1-66, Cambridge, MA,
USA, 1990. MIT Press.

V. Vassilevska, R. Williams, and R. Yuster. All-pairs bottleneck paths for general
graphs in truly sub-cubic time. In Proceedings of the Thirty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’07, pages 585-589, New York, NY,
USA, 2007. ACM.

G. Venkataraman, S. Sahni, and S. Mukhopadhyaya. A blocked all-pairs shortest-
paths algorithm. J. Ezp. Algorithmics, 8, 2003.

S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11-12, 1962.

F. F. Yao. Speed-up in dynamic programming. SIAM J. on Alg. Discr. Meth.,
3(4):532 — 540, 1982.

Y.-S. You. Parallel ant system for traveling salesman problem on GPUs. In
Proceedings of GECCO 2009, pages 1 — 2, 2009.

Povzetek v slovenskem jeziku

Disertacija se nanasa na podrocje algoritmov in podatkovnih struktur, ki jih upo-
rabljamo pri resevanju problemov kombinatoricne optimizacije. Prispevki disertacije
so tako teoreticni kot tudi prakticni. Kombinatori¢na optimizacija je veja uporabne
matematike in teoreticnega racunalnistva, ki se ukvarja z iskanjem najboljse resitve
doloc¢enih diskretnih problemov. Osredoticili se bomo predvsem na probleme kom-
binatoricne optimizacije, ki jih definiramo na grafih. Slednji so ena najpogostejsih
diskretnih struktur, ki jih uporabljamo pri modeliranju. Potemtakem ni presenetljivo,
da poznamo raznorazne probleme, ki so podani ravno na grafih. éeprav gre za pro-
bleme, ki kronolosko segajo v sam zacetek podrocja racunalnistva, je iskanje hitrejsih
algoritmov in netrivialnih spodnjih mej teh problemov se dandanes aktualno.

Problemi, ki jih resujejo algoritmi, opisani v disertaciji, so osnovni, klasi¢ni pro-
blemi iz kombinatori¢ne optimizacije, ki so vsesplosno uporabni: iskanje najkrajsih
poti v grafu, optimiranje poti trgovskega potnika, problemi v bioinformatiki [62], geo-
logiji [77], razpoznavi govora [71], itd. Formalna, teoreti¢na analiza zahtevnosti algo-
ritmov je v disertaciji zdruzena z implementacijo in empiri¢cnim ovrednotenjem. Algo-
ritme analiziramo na podlagi idealiziranih teoreticnih modelov. éeprav je teoreti¢na
analiza algoritma lahko zelo optimisti¢na, je pomembno upostevati dejstvo, da tovr-
stni modeli ne odrazajo vedno realnosti v praksi. Z implementacijo in posledicnim
empiri¢nim testiranjem lahko ocenimo, kako bi se tovrstni algoritmi obnesli v praksi,
in jih primerjamo z 7ze obstojec¢imi resitvami.

Dokazovanje pravilnosti algoritmov je kljué¢nega pomena pri njihovi analizi, saj po-
meni zagotovilo, da so dobljeni rezultati tudi to, kar sicer pricakujemo. Bolj podrobna
formalna analiza algoritmov vsebuje tudi asimptoti¢no analizo casovne in prostorske
zahtevnosti. Na osnovi rezultatov casovne in prostorske zahtevnosti pogosto primer-
jamo algoritme na teoreti¢ni ravni. Poznamo veC vrst asimptoti¢nih analiz, za na-
mene disertacije je najbolj aktualna analiza najslabSega primera in analiza povpre¢nega
obnasanja.

Osrednja tema disertacije je iskanje novih algoritmov in moznih izboljsav, kar se-
veda vkljucuje tudi pregled obstojecih algoritmov, ter obstojec¢ih spodnjih mej ¢asovnih
in prostorskih zahtevnosti problemov. Temu sledi iskanje moznih izboljSav in novih
algoritmov, ter morebitno iskanje izboljsanih spodnjih mej problemov. Za dobljene al-
goritme formalno dokazemo pravilnost in analiziramo ¢asovno in prostorsko zahtevnost
ter jih empiri¢no ovrednotimo. Pogosto se zgodi, da novi algoritmi nimajo boljse asimp-
toti¢ne casovne zahtevnosti v najslabsem primeru, a so kljub temu izredno ué¢inkoviti
v praksi. Primer taksnega algoritma nastopi pri urejanju [42], kjer se pa nato uporabi
asimptoti¢na analiza pricakovanega ¢asa izvajanja. Tovrstne analize so pogoste tudi pri
algoritmih, ki reSujejo problem iskanja najkrajsih poti [21,48,63] v grafu. Pri analizi
pricakovanega Casa izvajanja si pomagamo predvsem z matemati¢no analizo strukture
najkrajsih poti v naklju¢nih grafih [19,63].

70 BIBLIOGRAPHY

Algoritme je mo¢ med seboj primerjati tudi empiricno tako, da jih implementi-
ramo v izbranem programskem jeziku ter merimo cas izvajanja in porabo prostora.
V ta namen uporabimo programska jezika C++ in (za implementacije na graficni pro-
cesorski enoti) CUDA C. Poleg konkretnih implementacij so za empiri¢no primerjavo
potrebni tudi vhodni podatki za dani problem. Vhodne podatke pridobimo iz dveh
virov: naklju¢no generirani primeri ter primeri iz uveljavljenih zbirk, kot je na primer
TSPLIB [70].

Nekateri rezultati doktorske disertacije so bili objavljeni v sledecih ¢lankih:

e [§] A. Brodnik in M. Grgurovi¢. Speeding up shortest path algorithms. V: K.
Chao, T. Hsu in D. Lee (ur.). Algorithms and Computation - 23rd International
Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings,
volume 7676 of Lecture Notes in Computer Science, pages 156-165. Springer,
2012.

[9] A. Brodnik in M. Grgurovi¢. Solving all-pairs shortest path by single-source
computations: Theory and practice. Discrete Applied Mathematics, 231(Supple-
ment C):119 — 130, 2017. Algorithmic Graph Theory on the Adriatic Coast.

[7] A. Brodnik in M. Grgurovi¢. Practical algorithms for the all-pairs shortest
path problem. V: A. Adamatzky (ur.). Shortest Path Solvers. From Software to
Wetware, pages 163-180. Springer International Publishing, Cham, 2018.

[10] A. Brodnik in M. Grgurovi¢. Parallelization of ant system for GPU under
the PRAM model. Comput. Informatics, 37(1):229-243, 2018.

[6] A. Brodnik, M. Grgurovi¢ in R. Pozar. Modifications of the Floyd-Warshall
algorithm with nearly quadratic expected-time. Ars Math. Contemp., 22(1):1-22,
2022.

Osnove

Modeli racunanja

Izmed teoreticnih modelov racunanja se osredotocimo predvsem na dva. Model RAM
[80] (angl. random access machine) je klasi¢en model, ki se uporablja pri analizi zapo-
rednih algoritmov. Osnovni gradnik je pomnilnik, ki sestoji iz neomejenega stevila re-
gistrov, v katerih se nahajajo cela stevila. Do registrov dostopamo preko neposrednega
naslavljanja v konstantnem c¢asu. Pogosto imamo opravka z realnejsim modelom, ki se
imenuje besedni RAM (angl. word RAM) in dovoljuje izvedbo nekaterih aritmeti¢nih
in logi¢nih operacij nad registri v konstantnem casu. Pri tem je pomembno poudariti,
da so registri omejeni na velikost besede (angl. word).

Model PRAM [75] (angl. parallel random access machine) je razsiritev modela
RAM, ki omogoca analizo vzporednih algoritmov. Sestoji iz p procesorjev in pomnil-
nika, ki je deljen med vsemi procesorji. Taki arhitekturi pomnilnika pravimo UMA [44]
(angl. uniform memory access). Procesorji izvajajo ukaze vzporedno in sinhrono. Pri
analizi Casovne zahtevnosti lo¢imo med koracno zahtevnostjo (angl. step complezity),
ki predstavlja najvecjo klasi¢no ¢asovno zahtevnost med vsemi procesorji, in delovno
zahtevnostjo (angl. work complezity), ki predstavlja sestevek klasi¢ne ¢asovne zahtev-
nosti po vseh procesorjih. Po Flynnovi taksonomiji [27] se model PRAM pojavlja

BIBLIOGRAPHY 71

nekje med modeloma SIMD (angl. single instruction, multiple data) ter MIMD (ang].
multiple instruction, multiple data), saj lahko v primeru vejitev razli¢ni procesorji iz-
vajajo razlicne ukaze. Znotraj modela PRAM poznamo ve¢ podvrst, v disertaciji se
osredotoc¢imo predvsem na model CREW (angl. concurrent read, exclusive write) in
CRCW (angl. concurrent read, concurrent write). Model CREW predpostavlja, da
lahko istocasno na posamezno pomnilnisko lokacijo piSe samo en procesor. Za raz-
liko model CRCW nima take omejitve, torej lahko na vsako pomnilnisko lokacijo pise
hkrati ve¢ procesorjev. Zaradi moznosti socasnega pisanja v modelu CRCW je po-
trebno definirati, kaj se zgodi v primeru soc¢asnega pisanja. To nas privede do modela
COMMON CRCW, kjer predpostavimo, da vsi procesorji pisejo enako vrednost ter do
modela COMBINING CRCW, kjer se vsa isto¢asna pisanja na lokacijo zdruzijo z upo-
rabo nekega operatorja, npr. sestevanje, mnozenje, maksimum, itd. Pri obeh modelih
velja, da lahko ve¢ procesorjev socasno bere iz posamezne pomnilniske lokacije.

Grafi

Eden izmed kljuénih konceptov, ki se pojavijo v disertaciji, je usmerjen graf ali digraf
G = (V, A), ki je sestavljen iz mnozice vozlis¢ V (angl. vertices) in mnozice usmerjenih
povezav A (angl. arcs). Usmerjenost izrazimo z urejenim parom (u,v), kar pomeni,
da je to usmerjena povezava iz vozlis¢a u v vozlis¢e v. Digrafi, s katerimi se bomo
ukvarjali, bodo uteZeni, kar pomeni, da bo imela vsaka povezava (u,v) € A dolofeno
tezo w(u,v), ki jo bomo podali s funkcijo w : A — R. Pot P v G iz vozlis¢a vpy do
vozlisca vp, je koncno zaporedje P = vpg,vp1,...,vp, paroma razlicnih vozlisc, kjer
je (vps,vpit1) povezava v A, za vse i = 0,1,...,7 — 1. Utez poti je vsota utezi vseh
povezav vzdolz poti. Najkrajsa pot od vozlisca u do vozlis¢a v je vsaka pot med u in
v z minimalno dolzino. Dolzini najkrajse poti od u do v recemo tudi razdalja od u
do v in jo ozna¢imo z Dg(u,v). Zaradi preprostejSega zapisa definiramo n = |V| in

m = |A|.

Kombinatori¢na optimizacija

Za razliko od problemov zvezne optimizacije — kjer je prostor resitev zvezne narave —
se pri kombinatori¢ni optimizaciji ukvarjamo s problemi, kjer je prostor resitev diskre-
ten. Nacini reSevanja problemov kombinatori¢ne optimizacije med drugim vkljucujejo
dinamiéno programiranje in pozresno metodo. Resitve problemov zavzamejo vrednost
mnozic, grafov, celih stevil in podobnih diskretnih struktur. Uporabnost kombina-
toricne optimizacije je razvidna iz Siroke palete prakti¢nih problemov: optimizacija
voznega reda, iskanje najbolj ekonomiénih poti, iskanje minimalnih vpetih dreves, pro-
blem nahrbtnika, itd.

Ena izmed oblik optimizacijskih algoritmov so tako imenovani metahevristicni opti-
mizacijski algoritmi. Metahevristike so naceloma splosni algoritmi oz. strategije za
resevanje problemov optimizacije, ki nam ne zagotavljajo optimalnosti najdenih resitev.
Za preproste probleme, kjer lahko najdemo optimalno resitev razmeroma hitro, je me-
tahevristika slaba izbira. Veliko je takih problemov, kjer je Cas, potreben za iskanje
optimalne resitve, preprosto predolg. To so npr. NP-tezki problemi. Veliko metahevri-
stik posnema naravne pojave, sem spadajo algoritmi kot so npr. sistem kolonije mravelj,
genetski algoritmi, simulirano ohlajanje, in mnogi drugi [5].

72 BIBLIOGRAPHY

Rezultati

Dinamic¢no programiranje

Za razliko od tehnike deli in vladaj, kjer problem razdelimo na podprobleme in jih
neodvisno resimo, imajo problemi, ki jih resujemo z dinami¢nim programiranjem, to
lastnost, da se podproblemi prekrivajo in niso povsem neodvisni. Dinami¢no progra-
miranje [18] je metoda resevanja problemov, kjer problem razdelimo na manjse pod-
probleme, jih resimo enkrat in si resitve zapomnimo. Te resSitve ponovno uporabimo,
kadar naletimo na isti podproblem, da se izognemo ponovnemu racunanju resitve. Al-
goritmi dinamic¢nega programiranja se uporabljajo pri problemih optimizacije, npr. za
iskanje najkrajsih poti [26,83].

Veliko optimizacijskih problemov, ki jih reSujemo z dinami¢nim programiranjem, je
mogoce prevesti na naslednji problem: za vektor X = [X,..., X,,_1] in funkcijo g(x),
inl <z <nter0<k<n, zelimo izracunati za vse 1 < i < n:

Y = min {X; +g(i — k)}. (6.1)

Na ta problem lahko prevedemo algoritme dinamicnega programiranja, ki se upora-
bljajo v bioinformatiki [62], geologiji [77] in razpoznavi govora [71]. Resitev enacbe
lahko izratunamo po naivni metodi v ¢asu O(n?). Obstajajo algoritmi, ki reSitev
poiséejo hitreje, npr. v O(nlgn), kadar je funkcija g konveksna ali konkavna [34].
V disertaciji pokazemo, da lahko obstojece algoritme za posebne primere funkcije g
posplosimo in dobimo nov algoritem za poljubno funkcijo g. Dobljeni algoritem ima
¢asovno zahtevnost odvisno od stevila prevojev funkcije g, ali drugace povedano tock,
kjer se koveksnost spremeni v konkavnost oziroma obratno. Pri tem dokazemo spodnjo
lemo.

Lema 1 (Lemma 3.6). Dobljeni algoritem, ki deluje za poljubno funkcijo g, poisce
resitev v asimptoticnem casu O(Bnlg(%)), kjer je B stevilo prevojev funkcije g.

Najkrajse poti v grafih

Problem iskanja najkrajsih poti v grafu je eden izmed klasi¢nih problemov, ki ga lahko
definiramo na dva nacina [18]. V prvi razli¢ici nas zanimajo najkrajse poti od danega
izvornega vozlis¢a (tudi izvora) do ostalih vozlis¢ v grafu (angl. single source shortest
path, SSSP), medtem ko v drugi razli¢ici iS¢emo najkrajse poti med vsemi pari vozlis¢
(angl. all-pairs shortest path, APSP). Problema APSP in SSSP sta tesno povezana.
V kolikor imamo algoritem, ki resi problem SSSP, ga lahko uporabimo za resevanje
problema APSP. To storimo tako, da izvedemo n poizvedb tipa SSSP, kjer spreminjamo
izvorno vozlis¢e. V povezavi z najkrajsimi potmi pogosto definiramo mnozico A* C A,
ki vsebuje povezave, za katere velja, da so vsebovane v vsaj eni izmed vseh najkrajsih
poti v grafu. Zaradi poenostavitve zapisa definiramo Se m* = |A*|. Dijkstrov in Floyd-
Warshallov algoritem sta dva klasi¢na algoritma, ki resujeta problem najkrajsih poti.
Obe metodi sta znani ze od 1960ih let, s tem da je bil Dijkstrov algoritem delezen
nekaj posodobitev in izboljsav, medtem ko je Floyd-Warshallov algoritem se dandanes
enak prvotnemu opisu.
V disertaciji dokazemo naslednji izrek:

BIBLIOGRAPHY 73

Izrek 2 (Theorem 4.9). Naj bo 1 algoritem, ki resi problem najkrajsih poti iz enega
izvora do vseh ostalih vozlis¢ v grafu z nenegativnimi utezmi. Poleg tega naj bo Tyy(m,n)
cas, ki ga porabi algoritem ¢ na grafu z m povezavami in n vozlisci, ter naj bo Sy(m,n)
prostor, ki ga porabi algoritem na istem grafu. Potem lahko problem najkrajsih poti med
vsemi pari vozlis¢ resimo v éasu O(mlgn + nTy(m* + n,n + 1)) in prostoru O(n* +
Sy(m* +n,n+1)).

Odvisno od izbire algoritma 1 dobimo razli¢ne ¢asovne zahtevnosti. Na primer, ko
za 1) izberemo Dijkstrov algoritem, dobimo algoritem, ki je asimptoti¢no ekvivalenten
algoritmu Hidden Paths [48]. Dobljeni algoritem se izkaze kot ucinkovit tudi v pra-
ksi. Algoritem smo primerjali na grafih z enakomerno porazdeljenimi utezmi, kjer se
je izkazal za hitrejSega v primerjavi z obstojeCimi algoritmi [21}22}26,48]. Nekoliko
drugacen algoritem dobimo, ¢e kot 1) vzamemo zdruzitev metode Johnsonovega nac¢ina
spremembe utezi [47] in topoloske ureditve grafa. V tem primeru dobimo algoritem
z asimptoti¢no ¢asovno zahtevnostjo O(m*n + mlgn), ki resuje problem APSP na
poljubno utezenih usmerjenih acikli¢nih grafih.

Algoritmi dinamicnega programiranja, kot je Floyd-Warshallov, so pogosto izredno
preprosti, velikokrat gre za tri enostavne gnezdene zanke. V disertaciji se sprasujemo,
ali je mozno to enostavnost zamenjati z nekoliko bolj zapleteno izvedbo, ki bi se izognila
nepotrebnim spros¢anjem, ter te spremembe analizirati in ovrednotiti tako teoreti¢no
kot tudi empiriéno. PokaZemo, da Floyd-Warshalllov algoritem [26,[83] lahko preobli-
kujemo v algoritem Tree, ki izkorisca informacije o sami strukturi najkrajsih poti in
se tako izogne nekaterim nepotrebnim sproscanjem. Posledicno pokazemo tudi, da je
algoritem Tree bolj ucinkovit od Floyd-Warshallovega algoritma tako v teoriji kot tudi
v praksi. Dobljeni algoritem ima enostavno implementacijo, ne uporablja posebno zah-
tevnih podatkovnih struktur in je v empiri¢nih testih hitrejsi od Floyd-Warshallovega
algoritma. Na naklju¢nih polnih grafih s 512-4096 vozlis¢i je nov algoritem od Floyd-
Warshallovega algoritma hitrejsi za faktor 3-5. Ce se osredototimo samo na Stevilo
sproscanj, jih novi algoritem za omenjene grafe zmanjsa za faktor 10-38. Ravno zaradi
take pohitritve smo se tudi lotili analize pricakovane ¢asovne zahtevnosti in dokazali
naslednji izrek.

Izrek 3 (Theorem 4.29). Algoritem Tree ima za razred polnih usmerjenih grafov na n
vozliscih z nakljucno izbranimi utezmi povezav, porazdeljenimi enakomerno na intervalu
[0,1], pricakovano casovno zahtevnost O(n?log®n).

Poleg algoritma Tree opisemo tudi algoritem Hourglass, ki je posplositev algoritma
Tree in za katerega obstaja moznost, da je teoreticno Se hitrejsi, vendar te domneve
zaenkrat ne uspemo dokazati.
krajsih poti, le da tu namesto utezi poti definiramo Sirino poti in sicer kot minimalno
utez povezave na poti. Najsirsa pot od vozlisca u do vozlis¢a v pa je vsaka pot med u
poti v grafu z danim izvornim vozlis¢em [68| (angl. widest path problem ali bottleneck
shortest path problem) torej iSCemo najSirse poti od izvora do vseh ostalih vozlis¢ v
grafu. V drugi razli¢ici se sprasujemo po najsirsih poteh med vsemi pari vozlis¢ v

.....

.....

poti v grafu dolo¢ene podobnosti s problemom dinamic¢ne hrambe tranzitivne ovojnice.

74 BIBLIOGRAPHY

Sistem mravelj

Pri problemu trgovskega potnika [18] (angl. traveling salesman problem, TSP) imamo
podan poln graf K, kjer vozlis¢a predstavljajo mesta in povezave predstavljajo po-
vezave med mesti. Povezave so utezene z nenegativno funkcijo w: A — RT tako, da
utez povezave predstavlja razdaljo med mestoma, ki ju povezuje. Zelimo poiskati pot
P =wvpy,...,vp,_1, ki minimizira naslednjo vrednost:

w(vpn—1,vp0) + w(P).

Sistem mravelj [24] deluje tako, da poZene na grafu ve¢ umetnih mravelj z nalogo
iskanja najcenejse poti. Algoritem posnema metodo, ki jo uporabljajo mravlje pri is-
kanju poti od mravljis¢a do nahajaliS¢a hrane ter nazaj. Mravlje postopoma gradijo
resitev s premikanjem po grafu. To pocnejo stohasti¢no na podlagi feromonskega mo-
dela. Feromonski model ni ni¢ drugega kot mnozica parametrov, vezanih na povezave
grafa, ki jih lahko mravlje spreminjajo med izvajanjem algoritma.

Eden izmed ciljev disertacije je iskanje strategij povzporejanja zaporednih meta-
hevristik, ki bodo dobre resitve nasle hitreje, kadar imamo na voljo ve¢ procesorjev.
Osredotoc¢imo se na problem trgovskega potnika, ki je NP-tezek. Posvetimo se po-
vzporejanju sistema mravelj v ¢isto teoreticnem smislu na modelu PRAM in rezultate
tega povzporejanja nato prevedemo tudi v prakso z implementacijo na GPE. Gre za
nekoliko drugacen pristop pri snovanju vzporednih algoritmov na GPE, kjer je pogosto
teoreti¢na analiza uc¢inkovitosti povsem izpuscena.

V disertaciji pokazemo, da je algoritem sistema mravelj za GPE [12,53,[85] mogoce
prevesti na PRAM, kar omogoca natancnejso teoreti¢no analizo. Posledi¢no ugotovimo,
da je postopek posodobitve feromonske matrike tako pocasen, da povecuje asimptoti¢no
kora¢no zahtevnost celotnega algoritma. Podamo nov algoritem za posodobitev fero-
monske matrike na PRAM in tako dokazemo naslednji izrek:

Izrek 4 (Theorem 5.1). Posodobitev feromonske matrike lahko opravimo s koracno
zahtevnostjo O(n) in delovno zahtevnostjo O(n*) na CREW PRAM z uporabo n pro-
cesorjev.

7 novim nacinom posodobitve feromonske matrike pohitrimo celoten algoritem sis-
tema mravelj, in sicer na kora¢no zahtevnost O(nlgn) na CREW in O(nlglgn) na
CRCW ter delovno zahtevnost O(n®) v obeh modelih ratunanja z uporabo n? pro-
cesorjev. Izboljsave sistema mravelj za PRAM, opisane v disertaciji, je mo¢ uspesno
prevesti tudi nazaj na GPE. Po prevedbi na GPE prakti¢no ovrednotimo nov nac¢in po-
sodobitve feromonske matrike v primerjavi z obstojec¢imi ter pri tem za vhodne podatke
uporabimo zbirko TSPLIB [70]. Ugotovimo, da je nova metoda hitrejSa v primerih, ko
nimamo na voljo atomarnih ukazov, kar se zgodi npr. na nekaterih starejsih GPE, ki
jih dejansko modeliramo kot CREW PRAM. Novejse GPE v resnici lahko modeliramo
kot COMBINING CRCW PRAM, kjer je agregatna funkcija sestevanje.

	Introduction
	Basics
	Models of computation
	Random access machine
	Parallel random access machine

	Graphs
	Combinatorial optimization
	Metaheuristic optimization

	Dynamic programming
	Computing the minimum
	The convex and concave case
	General case

	Shortest paths in graphs
	The Propagation algorithm
	Time and space complexity
	Implications
	Improving the time bound
	Directed acyclic graphs with arbitrary weights
	Practical optimizations

	Properties of shortest k-paths in complete graphs
	Distances
	Lengths
	Maximum outdegree

	Speeding up the Floyd-Warshall algorithm
	The Tree algorithm
	The Hourglass algorithm
	Expected-case analysis
	Empirical comparison of paths examined

	Empirical evaluation
	Graphs
	Algorithms
	First round of experiments
	Second round of experiments

	All-pairs bottleneck paths
	Connection to the dynamic transitive closure problem

	Ant system
	Background
	The traveling salesman problem
	Ant system for the TSP

	Parallel Ant system
	Tour construction
	Pheromone update
	Improvements
	Empirical comparison

	Conclusion
	Dynamic programming
	Shortest paths
	Propagation
	Speeding up the Floyd-Warshall algorithm
	Bottleneck paths

	Ant system

	Bibliography
	Povzetek v slovenskem jeziku

