
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN
INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

DOLOČANJE UKRIVLJENIH FUNKCIJ ZUNAJ M#

RAZREDA IN DOLOČENI REZULTATI O

KORELACIJSKI IMUNOSTI FUNKCIJ

(SPECIFYING BENT FUNCTIONS OUTSIDE M#

AND SOME RESULTS ON CORRELATION IMMUNE

FUNCTIONS)
.

SADMIR KUDIN

KOPER, 2023

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN
INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

DOLOČANJE UKRIVLJENIH FUNKCIJ ZUNAJ M#

RAZREDA IN DOLOČENI REZULTATI O

KORELACIJSKI IMUNOSTI FUNKCIJ

(SPECIFYING BENT FUNCTIONS OUTSIDE M#

AND SOME RESULTS ON CORRELATION IMMUNE

FUNCTIONS)
.

SADMIR KUDIN

KOPER, 2023 MENTOR: PROF. DR. ENES PASALIC
SOMENTOR: DOC. DR. SAMIR HODŽIĆ

Acknowledgement

I would like to thank my supervisor Professor Enes Pasalic for his consistent
guidance, patience and support during my PhD studies. I would also like to express
my thanks to my co-supervisor Dr. Samir Hodžić for his support, availability and
constructive suggestions. Furthermore I would like to thank the rest of the crypto
group at University of Primorska for their energy, understanding and help.

I’m also grateful for having the opportunity to collaborate with: Dr. Nastja
Cepak, Dr. Alexandr Polujan, Prof. Alexander Pott, Prof. Yongzhuang Wei and
Prof. Fengrong Zhang in a number of occasions during my PhD studies.

Želio bih da se zahvalim mojim roditeljima i porodici na pomoći, podršci i razu-
mijevanju. Hvala vam.

iii

Abstract

SPECIFYING BENT FUNCTIONS OUTSIDE M# AND SOME RESULTS ON
CORRELATION IMMUNE FUNCTIONS

Cryptographically significant properties of Boolean functions are the main sub-
ject of study in this thesis. Depending on which cryptographically significant prop-
erty is the center of our attention, the thesis is split into three corresponding parts.

In the first part of the thesis we focus on providing a more accurate descrip-
tion (in terms of class membership) of the secondary classes of bent functions D0

and C. C. Carlet in the 1990s considered bent functions in D0 class of the form
f(x, y) = x ·π(y)+ δ0(x), where x, y ∈ Fn

2 , π is a permutation of Fn
2 and δ0(x) is the

indicator (characteristic function) of the subspace {0n} × Fn
2 . He provided a suffi-

cient condition for the functions to be outside the completed Maiorana-McFarland
class of bent functions M#, based on properties of the permutation π. Namely, if
π is not affine on any linear hyperplane of Fn

2 , then f is outside M#. We show
that, when the algebraic degree of a permutation π is greater than 2, the Boolean
function f(x, y) = x · π(y) + δ0(x), with f : Fn

2 × Fn
2 → F2, is always outside M#

(regardless of the fact whether π is affine on some hyperplane or not). On the
other hand, we will prove that the sufficient condition of C. Carlet is also neces-
sary when deg(π) = 2. We then explore the problem of specifying bent functions
in C, f(x, y) = x · π(y) + 1L⊥(x), where x, y ∈ Fn

2 , for a suitably chosen subspace
L ⊆ Fn

2 , which are provably outside M#. F. Zhang, E. Pasalic, N. Cepak, and
Y. Wei recently, in 2017, provided a set of sufficient conditions for functions in C
to be outside M#. These conditions mainly refer to certain properties of the per-
mutation π, including the requirement that the component functions of π do not
admit linear structures. We show that modifications of the identity permutation on
arbitrary subsets of suitably selected subspaces (for the purpose of defining π), are
suitable for constructing bent functions provably in C \M#. Moreover, some com-
ponent functions of such permutations π admit linear structures. The possibility of
selecting an arbitrary subset of a linear subspace for the modification of the identity
permutation will give us infinite classes of bent functions in C which are provably
outside M#. We also pursue the opposite direction, that is, we construct a class
of permutations suitable for specifying bent functions in C, and rely on the set of
sufficient conditions proved by F. Zhang et al., to show that the functions are out-
side M#. To illustrate the hardness of the underlying problem, we first show that
coset-based permutations are not suitable for this purpose, proving that members of
this family of permutations inevitably have component functions that admit linear
structures. Instead, we employ a certain method of non-trivial decomposition of
the vector space Fn

2 into disjoint affine subspaces. The permutations without linear

v

vi

structures are then constructed using the decomposition and suitable permutations
in a smaller number of variables. The possibility of selecting different subspaces
in the decomposition and different permutations in a smaller number of variables
provides us with a large family of bent functions in the C class which are outside
M#. This approach requires that the dimension of the subspace L is less than n/2.
In contrast with this result, we prove that when the dimension of the subspace L
is relatively large and when π−1(a + L) is an affine subspace for all a ∈ Fn

2 , the
permutation π necessarily has component functions with linear structures. Using
ranks of bent functions, we then investigate the intersection of the C class and the
partial spread class PSap and show that the probability that an n-variable function
in PSap is also in C approaches zero as n increases.

In the second part of the thesis, we shift our focus towards vectorial Boolean
functions, and we investigate various properties related to their nonlinearity. In order
to describe the properties of vectorial bent functions more precisely, we introduce
the concept of weakly and strongly outside a class of bent functions. The motivation
for the concept of being weakly or strongly outside M# comes from the fact that
certain infinite classes of bent functions in C and D, but provably outside M#,
will be specified in the first part of the thesis. Then, employing such functions
as initial bent functions, gives vectorial bent functions with certain components in
M# and the remaining ones, belonging to C or D, are provably outside M#. In this
context, the problem of constructing vectorial functions which are strictly outside
the known primary classes is quite delicate, as well as the question whether these
functions can be extended to the maximal output bent dimension. In this direction,
we provide a way to construct vectorial bent functions which are strongly outside
M#, for various output dimensions. Then, we generalize the notion of bent-negabent
functions, introduced by C. Riera and M. Parker in 2006, by introducing the notion
of vectorial bent-negabent functions. We show that in general for a vectorial bent-
negabent function F : F2n

2 → Fk
2 we necessarily have that k ≤ n−1, and we provide a

class of vectorial bent-negabent functions with the maximal output dimension n− 1
by using a set of linear complete mappings of cardinality n− 1. Employing certain
vector spaces of complete mappings we identify several families of vectorial bent-
negabent functions having components outside M#. We also describe a generic
method for specifying vector spaces of complete mappings. The method can be
efficiently used to construct vectorial bent-negabent functions having approximately
half of the component functions outside the completed M class. We then derive an
upper bound on the maximum number of bent-negabent components for mappings
F : F2n

2 → Fk
2, where 2 ≤ k ≤ 2n, and identify some families of the functions

reaching this upper bound.

In the third part of the thesis, we focus on another cryptographically significant
property of Boolean functions called correlation immunity. We show that using
certain weight divisibility results related to restrictions of correlation immune (CI)
functions, a compact proof of Siegenthaler’s bound on the algebraic degree can be
deduced. In addition, we determine precisely the weight of the k-th order CI func-
tions having (all) terms of degree n − k in its algebraic normal form. Using the
same divisibility results, we will also exactly determine the Walsh spectral values at
vectors of weight k+ 1 for k-th order CI Boolean functions. Two efficient construc-

Abstract vii

tions of CI functions are presented which are well-suited for designing a subclass of
these functions having minimum weight, and we use them to prove the conjecture of
C. Carlet and X. Chen about the minimum weight of 3-CI functions for any n of the
form n = 2k − i and n = 3 · 2k − i, for i = 0, 1, 2, 3 and k ≥ 3. Then, we investigate
O’Donnell’s conjecture which, translated to the Boolean setting by Q. Wang, states
that: if g : {0, 1}n → {0, 1} is an (n− d− 1)-resilient Boolean function, then∑

v∈{0,1}n
wt(v)=n−1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d,

where Wg(v) is the Walsh coefficient of g at point v ∈ Fn
2 . We prove that the

conjecture is true for all n when d = 2 and d = 3. However, when d = 4, we identify
a 2-resilient Boolean function in 7 variables violating the conjecture, the existence
of which shows that the conjecture is not true in general.

Math. Subj. Class (2010): 94A60, 11T71

Key words: bent functions, nonlinearity, Marioana-McFarland class, C class, D
class, permutations, finite fields, correlation immunity, resiliency.

Izvleček

DOLOČANJE UKRIVLJENIH FUNKCIJ ZUNAJ M# RAZREDA IN
DOLOČENI REZULTATI O KORELACIJSKI IMUNOSTI FUNKCIJ

Glavni predmet študija doktorske disertacije so kriptografsko pomembne last-
nosti Boolovih funkcij. Odvisno od tega, katera kriptografsko pomembna lastnost
je v sredǐsču naše pozornosti, je disertacija razdeljena na tri ustrezne dele.

Prvi del predlagane doktorske disertacije se bo osredotočil na natančneǰsi opis
(glede na pripadnost razredu) sekundarnega razreda ukrivljenih funkcij D0 in C. C.
Carlet je v devetdesetih letih preteklega stoletja zagotovil zadosten pogoj, da leži
ukrivljena funkcija v razredu D0 oblike f(x, y) = x · π(y) + δ0(x) nad F2n

2 , kjer je
x, y ∈ Fn

2 , π permutacija Fn
2 in δ0(x) indikator (karakteristična funkcija) podpros-

tora {0n} × Fn
2 , zunaj razreda M# na podlagi lastnosti permutacije π. Namreč, če

permutacija π ni afina na nobeni hiperravnini prostora Fn
2 , potem funkcija f leži

zunaj razreda M#. Pokazali bomo, da, ko je stopnja permutacije π večja od 2,
Boolova funkcija f(x, y) = x · π(y) + δ0(x), z f : Fn

2 × Fn
2 → F2, vedno leži zunaj

razreda M# (ne glede na to, ali je permutacija π afina na neki hiperravnini ali
ne). Po drugi strani pa bomo dokazali, da je zadosten pogoj Carleta nujen tudi
pri deg(π) = 2. Potem bomo obravnavali tudi problem pripadnosti sekundarnim
razredom upognjenih funkcij C. Ogledali si bomo problem določanja ukrivljenih
funkcij v razredu C, ki so oblike f(x, y) = x · π(y) + 1L⊥(x), kjer je x, y ∈ Fn

2 , za
ustrezno izbran podprostor L ⊆ Fn

2 , ki so dokazljivo zunaj M#. Pred kratkim, leta
2017, so F. Zhang, E. Pasalic, N. Cepak in Y. Wei določili niz zadostnih pogojev.
Ti pogoji se v glavnem nanašajo na določene lastnosti permutacije π, ki vključujejo
zahtevo, da komponentne funkcije permutacije π ne vsebujejo linearnih struktur.
Pokazali bomo, da modifikacije permutacije identitete na poljubnih podmnožicah
ustrezno izbranih podprostorov (za namen definiranja permutacije π), so primerne
za konstruiranje ukrivljenih funkcij, ki dokazljivo ležijo v C \ M#. Komponentne
funkcije takšnih permutacij π še vedno dopuščajo linearne strukture. Upoštevajmo,
da nam bo možnost izbire poljubne podmnožice linearnega podprostora za modi-
fikacijo permutacije identitete dala veliko neskončnih razredov ukrivljenih funkcij v
C, ki so dokazljivo zunaj M#. Sledili bomo tudi raziskavi, ki se ukvarja z obratnim
problemom. Torej, zgradili bomo razred permutacij, primernih za določanje ukrivl-
jenih funkcij razreda C, ki so dokazljivo zunaj dokončanega M# razred z zadostnimi
rezultati, ki so jih dokazali F. Zhang et al., 2017. Da bi ponazorili kompleksnost os-
novnega problema, bomo najprej pokazali, da permutacije, ki temeljijo na odsekih,
niso primerne za naš namen, saj imajo člani te družine permutacij neizogibno kom-
ponentne funkcije, ki dopuščajo linearne strukture. Namesto tega uporabljamo
določeno metodo netrivialne razdelitve vektorskega prostora Fn

2 v disjunktne afine

viii

Izvleček ix

podprostore. Permutacije brez linearnih struktur bodo konstruirane z uporabo
dekompozicije in ustreznih permutacij v manǰsem številu spremenljivk. Možnost
izbire različnih podprostorov pri razgradnji in različnih permutacij v manǰsem številu
spremenljivk nam omogoča konstrukcijo družine ukrivljenih funkcij v razredu C, ki
so zunaj M#. Ta pristop zahteva, da je dimenzija podprostora L manǰsa od n/2. V
nasprotju s tem rezultatom dokazujemo, da, ko je dimenzija podprostora L relativno
velika in komponente permutacije ne dopuščajo linearnih struktur, π−1(a + L) ne
more biti afin podprostor za vse a ∈ Fn

2 . S pomočjo ranga ukrivljenih funkcij bomo
v prvem delu doktorske naloge raziskali tudi presečǐsče razreda C in razreda delnega
pokritja PSap ter pokazali, da se verjetnost, da je funkcija n spremenljivk, ki je v
razredu PSap, tudi v C, približuje nič, ko se n povečuje.

V drugem delu disertacije se bomo osredotočili na vektorske Boolove funkcije in
raziskali različne lastnosti, povezane z nelinearnostjo vektorskih Boolovih funkcij.
Da bi natančneje opisali lastnosti teh vektorskih ukrivljenih funkcij, uvedemo kon-
cept šibke izločenosti in močne izločenosti zunaj dokončanega vnaprej določenega
primarnega razreda. Glavni interes našega koncepta, da smo šibko ali močno zu-
naj M#, izhaja iz dejstva, da bodo v prvem delu disertacije predstavljeni določeni
neskončni razredi ukrivljenih funkcij v C in D, ki dokazljivo ležijo zunaj M#. Nato
z uporabo takšnih funkcij, kot so začetne ukrivljene funkcije, dobimo vektorske
ukrivljene prostore, katerih določene komponente so v primarnem razredu M, in
preostale pripadajo razredoma C ali D in so dokazljivo zunaj M#. V tem kontek-
stu je problem določanja vektorskih funkcij, ki so strogo izven znanih primarnih
razredov, precej delikaten, kot tudi vprašanje, ali je te funkcije mogoče razširiti na
največjo izhodno ukrivljeno dimenzijo. V tej smeri nudimo način za konstruiranje
vektorskih upognjenih funkcij, ki so močno zunaj M#, za različne izhodne dimen-
zije. Nato posplošimo pojem ukrivljene-negaukrivljene funkcije ki sta ga leta 2006
uvedla C. Riera in M. Parker, z uvedbo pojma vektorske ukrivljene-negaukrivljene
funkcije. Pokazali bomo da mora, v splošnem, za ukrivljeno-negaukrivljeno funkcijo
F : F2m

2 → Fk
2 nujno veljati k ≤ m − 1. Določimo razred vektorskih ukrivljenih-

negaukrivljenih funkcij z največjo izhodno dimenzijo m− 1 z uporabo množice lin-
earnih popolnih preslikav kardinalnosti m−1. Z uporabo določenih vektorskih pros-
torov popolnih preslikav nudimo več družin vektorskih ukrivljenih-negaukrivljenih
funkcij, ki imajo komponente zunaj M#. Z uporabo primerne dekompozicije vek-
torskega prostora (in alternativne identificiranje ustreznih podpolj) nudimo splošno
metodo določanja vektorskih prostorov popolnih preslikav, ki se nato učinkovito
uporabijo za določanje vektorskih ukrivljenih negaukrivljenih funkcij (katerih di-
menzija ni maksimalna), kjer približno polovica komponentnih funkcij leži zunaj
popolnega razredaM. Potem izpeljemo zgornjo mejo za največje število ukrivljenih-
negaukrivljenih komponent za preslikave F : F2m

2 → Fk
2, kjer je 2 ≤ k ≤ 2m, in

identificiramo nekatere družine teh funkcij, ki dosežejo zgornjo mejo.

V tretjem delu disertacije bomo raziskali še eno kriptografsko pomembno last-
nost Boolovih funkcij, imenovano korelacijsko imunost (CI). Pokazali bomo, da je
z uporabo določenih rezultatov, vezanih na deljivosti uteži, povezanih z omejit-
vami funkcij CI, mogoče izpeljati kompakten dokaz Siegenthalerjeve meje algebraične
stopnje. Poleg tega natančno določimo težo CI funkcij k-tega reda, kjer so (vsi) členi
stopnje n−k v svoji algebraični normalni obliki. Z uporabo istih rezultatov deljivosti

x

bomo tudi natančno določili Walsheve spektralne vrednosti vektorjev teže k+1 za CI
Boolove funkcije k-tega reda. Predstavljeni bosta dve učinkoviti konstrukciji funkcij
CI, ki sta primerni za načrtovanje podrazreda z minimalno težo, in jih uporabimo
za dokazovanje domneve C. Carleta in X. Chena o minimalni teži 3-CI funkcij, za
kateri koli n oblike n = 2k− i ali n = 3 ·2k− i, za i = 0, 1, 2, 3 in k ≥ 3. Potem bomo
raziskali O’Donnellovo domnevo o rasti vsote linearnih Fourierovih koeficientov, ki
prevedeno v enakovredno domnevo o razredu odpornih Boolovih funkcij navaja, da,
če je g : {0, 1}n → {0, 1} (n− d− 1)-odporna Boolova funkcija, potem∑

v∈{0,1}n
wt(v)=n−1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d,

kjer je Wg(v) Walshev koeficient g v točki v ∈ Fn
2 . Dokazali bomo, da je domneva

resnična za vse n, ko je d = 2 in d = 3. Ko pa je d = 4, bomo identificirali 2-odporno
Boolovo funkcijo na 7 spremenljivkah, ki krši domnevo. To pomeni, da domneva v
splošnem ne drži.

Math. Subj. Class (2010): 94A60, 11T71

Ključne besede: ukrivljene funkcije, nelinearnost, Marioana-McFarland razred, C
razred, D razred, permutacije, končna polja, korelacijska imunost, odporne funkcije.

Contents

List of Tables xiii

1 Introduction 1

2 Definitions, notation, and preliminary results 9

2.1 Bent Functions . 15

2.2 Classes of Bent functions . 19

2.3 Negabent functions . 21

2.4 Correlation immune and Resilient functions 22

3 Characterization of the intersection of the class D0 and the com-
pleted Maiorana-McFarland class 23

3.1 Permutations with the algebraic degree greater than two 24

3.2 Permutations with the algebraic degree equal to two 25

4 Bent functions in C outside M# 29

4.1 Some known relations between C and M# 30

4.2 A new class of C bent functions outside M# 31

4.3 Ranks of bent functions in the C class 34

4.4 Coset-based permutations and permutations without linear structures 35

4.5 Permutations via non-trivial decompositions of Fn
2 38

4.6 A trade-off between the (C) property and linear structures 44

5 Vectorial bent-negabent functions – their constructions and bounds 46

5.1 Vectorial bent-negabent functions . 47

5.2 Vectorial bent-negabent functions of maximal output dimension . . . 49

5.3 Complete mappings from linear translators 51

5.4 Maximum number of bent-negabent components 52

6 Vectorial bent functions weakly/strongly outside M# 55

6.1 Vectorial bent functions derived from the class D 56

6.1.1 Vectorial bent functions of maximal dimension from D0 . . . 57

6.1.2 Vectorial bent functions from the D class different from D0 . 58

6.1.3 Some explicit classes of vectorial bent functions from D . . . 61

6.2 Vectorial bent functions from D weakly outside M# 62

6.2.1 Vectorial bent functions from complete mappings 62

xi

xii CONTENTS

6.2.2 Vectorial bent functions from subfield permutations 64
6.3 Vectorial bent-negabent functions weakly outside the M# class . . . 65

6.3.1 Vectorial bent-negabent functions from the D0 class 65
6.3.2 Vectorial bent-negabent functions from the C class 67

6.4 Vectorial bent functions from the C class strongly outside M# . . . 72

7 Correlation immune functions with low Hamming weight 75
7.1 On the algebraic degree of correlation immune functions 76
7.2 Construction methods for low–weight correlation immune functions . 79

7.2.1 A nonlinearity analysis . 83

8 Resilient functions and sums of their Walsh coefficients 87
8.1 Maximizers of the sum of linear Fourier coefficients 89
8.2 General results related to O’Donnell’s conjecture 89
8.3 Proving O’Donnell’s conjecture for d ∈ {2, 3} 92

8.3.1 Proving the conjecture for d = 3 94
8.4 O’Donnell’s conjecture is not true when d = 4 96

9 Conclusions 100

Bibliography 102

Index 110

Povzetek v slovenskem jeziku 112

List of Tables

2.1 Truth tables of two Boolean functions 10
2.2 Truth table of a vectorial Boolean function 11
2.3 Walsh and Fourier transforms of f and g from Table 2.1 13
2.4 Walsh transform of h = x1x2x3x4 + x1x4 + x4 14

7.1 Truth table of g - Example 7 . 85
7.2 Walsh transform of g - Example 7 86

8.1 Conjecture 8.0.2 - counterexample 98
8.2 Conjecture 8.0.2 - counterexample (Walsh transform) 99

xiii

Chapter 1

Introduction

The main subject of study in this thesis will be cryptographically significant proper-
ties of Boolean functions. Informally, Boolean functions are the functions which take
as inputs strings of zeroes and ones (of fixed length) and output either zero or one,
or in the even more general case of vectorial Boolean functions, they output strings
of zeroes and ones. We make this intuitive notion formal by saying that Boolean
functions are functions from {0, 1}n (where n is a natural number) to {0, 1}, or in
the vectorial case to {0, 1}k (where k is also some natural number, possibly different
from n).

With the development and the rise of interest in modern computing machines,
starting back in the first half of the 20th century, there was a parallel rise of inter-
est of the scientific community in various properties of Boolean functions, and they
became one of the basic objects of study in theoretical computer science. Quickly,
the importance of secure private communication based on the new technology be-
came apparent. In 1945 (published in 1949 in [66]) C. Shannon identified confusion
and diffusion as two important properties that any secure cipher should possess.
When present, confusion and diffusion hinder the application of statistics and other
methods of cryptanalysis. In turn, confusion and diffusion help us to determine
which properties of the Boolean functions used in a cipher are desirable, and which
are undesirable. We call such properties cryptographically significant properties of
Boolean functions.

Over many years of security analysis of symmetric-key ciphers, it appears that
one of the significant cryptographic properties of Boolean functions is nonlinearity.
For example, here are two quotes about nonlinearity that illustrate its importance:
”a high nonlinearity is surely one of the most important cryptographic criteria”
from [12], and ”linearity is the curse of the cryptographer” from [42]. To avoid linear
attacks, ideally the functions used in a cipher should be as nonlinear as possible, of
course, taking into account the other desirable cryptographic properties. Motivated
by this, in the 1960s (published in 1976 in [62]), O. Rothaus introduced a class
of Boolean functions called bent functions, and defined them to be the Boolean
functions which are as far away from linear and affine functions as possible, the
distance between two functions being the Hamming distance i.e. the number of
input vectors for which the output of the two functions differ (all notions used in
the introduction are defined precisely and with more details in Chapter 2). That is,

1

2

bent functions are maximally nonlinear Boolean functions. This explains, if we recall
the two aforementioned nonlinearity quotes, why bent functions are so important
and ubiquitous in cryptography.

A significant part of research on bent functions is concerned with their construc-
tions, i.e. searching for various ways to construct bent functions. Constructions of
bent functions are split into two groups: primary constructions (constructions which
do not require other bent functions in order to construct new ones, i.e. starting from
scratch) and secondary constructions (constructions utilising other bent functions
to construct new ones). For a detailed survey on bent functions we refer to the
book of S. Mesnager [48], whereas an exhaustive survey on cryptographic (vectorial)
Boolean functions can be found in [12]. Two of the best studied primary classes of
bent functions are the Maiorana-McFarland (M) class and the partial spreads (PS)
class, which were introduced in the 1970s in [43] and [21, 22], respectively. Since it
is not a simple matter to construct elements of the class PS practically, an explicit
subclass of the class, denoted by PSap, is specified in [21] for its ease of construc-
tion. A non-exhaustive list of various secondary constructions can be found in the
following works [11, 14, 28, 47, 75, 85]. The Maiorana-McFarland class M is the set
of 2n-variable Boolean bent functions of the form

f(x, y) = x · π(y) + ρ(y), for all x, y ∈ Fn
2 ,

where ρ is an arbitrary Boolean function on Fn
2 , and π is a permutation of Fn

2 ,
and x · π(y) is the standard dot product of two vectors in Fn

2 (here Fn
2 denotes the

n-dimensional vector space over the field with two elements F2 = {0, 1}). The com-
pleted M class, denoted by M#, is the class of all bent functions affine equivalent
to functions in M. (Two functions in m variables f and g are affine equivalent if
there exist an affine permutation L1 of Fm

2 and an affine function l2 : Fm
2 → F2, such

that f(x) = g(L1(x)) + l2(x), for all x ∈ Fm
2 .)

The exact number of bent functions in m variables is known only when m ≤ 8.
For m ≤ 6, all bent functions are affine equivalent to functions in the class M.
However, already for m = 8 the number of bent functions in the class M# (at
most 281.38) is negligible compared to the number of all bent functions in 8 variables
(approximately 2106.29) [37]. Despite this, the class M is still the widest known
primary class of bent functions. Therefore, in order to bridge the gap, it is important
to investigate new constructions and determine how they intersect with the already
known classes of bent functions, especially the class M.

In the 1990s, C. Carlet [9] provided two new secondary constructions of bent
functions using bent functions from the class M and adding indicators of an ap-
propriately chosen vector subspace. The classes of bent functions obtained by the
constructions are called C and D. A particular subclass of both C and D, called
D0, is singled out in [9] because of a simpler form of the subspaces used and for the
ease of construction. It is established in [9] that there are functions in D0 which are
not affine equivalent to any function in the class M, and also, that there are some
functions in the class D0 which are not affine equivalent to any function in the class
PS. Thus showing that C and D truly are two new classes of bent functions.

In Chapter 3, we will focus on providing a more accurate description (in terms
of class membership) of the secondary class of bent functions D0. C. Carlet in

Chapter 1. Introduction 3

[9] considered bent functions in the D0 class, which are the Boolean functions of
the form f(x, y) = x · π(y) + δ0(x), where x, y ∈ Fn

2 , π is a permutation of Fn
2

and δ0(x) is the indicator (characteristic function) of the subspace {0n} × Fn
2 . [9,

Proposition 2] provides a sufficient condition for the functions in D0 to be outside
M#, based on properties of the permutation π. Namely, if π is not affine on any
linear hyperplane of Fn

2 (i.e. (n− 1)-dimensional subspace of Fn
2), then f is outside

M#. In our characterization, we will use the notion of algebraic degree of a Boolean
function. We can represent a Boolean function f as a polynomial f(x1, . . . , xn) =∑

a=(a1,...,an)∈Fn
2
µax

a1
1 · · ·xann over F2 in a unique way, and we call that representation

the algebraic normal form of f . The algebraic degree of f is then defined as the
degree of the polynomial, that is, the maximal length of any multivariate term
xa11 · · ·xann for which µa is nonzero. For a vectorial Boolean function, we define its
algebraic degree as the maximum algebraic degree of its component functions. We
will show that, when the algebraic degree of a permutation π is greater than 2,
the Boolean function f(x, y) = x · π(y) + δ0(x), with f : Fn

2 × Fn
2 → F2, is always

outside M# (regardless of the fact whether π is affine on some hyperplane or not).
On the other hand, we will prove that the sufficient condition of C. Carlet is also
necessary when deg(π) = 2. Therefore, we provide a complete description of the
relation between the classes D0 and M#.

In Chapter 4, we will investigate the class membership problem for the secondary
class of bent functions C. We will consider the problem of specifying bent functions
in C, which are of the form f(x, y) = x·π(y)+1L⊥(x), where x, y ∈ Fn

2 , for a suitably
chosen subspace L ⊆ Fn

2 , which are provably outside M#. In [83], a set of sufficient
conditions for the functions in C and D to be outside M# is obtained. These
mainly refer to certain properties of the permutation π, including the requirement
that the component functions of π do not admit linear structures (for more details
check Section 4.1). These sufficient conditions are quite useful when specifying bent
functions in C\M# andD\M#, but it was demonstrated that they are not necessary,
see e.g. [84]. In particular, certain modifications of the identity permutation π
(swapping two output values) was shown to provide bent functions in D which
are provably outside M#, even though the component functions of π admit linear
structures. In this context, related to bent functions in C, we will show a stronger
result which enables modifications of the identity permutation on arbitrary subsets
of suitably selected subspaces (for the purpose of defining π), while at the same time
the resulting bent functions will provably be in C \M#. The component functions
of such permutations π still admit linear structures which again indicate that there
is a possibility of relaxing the set of sufficient conditions in [83]. Notice that the
possibility of selecting an arbitrary subset of a linear subspace for the modification
of the identity permutation will give us many infinite classes of bent functions in C
which are provably outside M#.

In Chapter 4, we will also pursue the opposite direction compared to the one in
the previous paragraph, that is, we will construct a class of permutations suitable for
specifying bent functions in C, and rely on the set of sufficient conditions from [83]
to prove that the functions are outside M#. To illustrate the hardness of the under-
lying problem, we will first show that coset-based permutations are not suitable for
the purpose, since the members of this family of permutations inevitably have com-

4

ponent functions that admit linear structures. Instead, we employ a certain method
of non-trivial decomposition of the vector space Fn

2 into disjoint affine subspaces,
originally considered by L.E. Baum and L.P. Neuwirth in [2]. The permutations are
constructed using the decomposition and suitable permutations in a smaller number
of variables. The possibility of selecting different subspaces in the decomposition
and different permutations in a smaller number of variables provides us with a large
family of bent functions in the C class which are outside M#. This approach re-
quires that the dimension of the subspace L is less than n/2. In contrast with this
result, we prove that when the dimension of the subspace L is relatively large and
when π−1(a+ L) is an affine subspace for all a ∈ Fn

2 , the permutation π necessarily
has component functions with linear structures. This result gives a further insight
into what is likely a trade-off of using the sufficient, but not necessary, conditions
from [83] for distinguishing the bent functions in C which are outside M#.

Using ranks of bent functions, in Chapter 4 we will also investigate the inter-
section of the C class and the partial spread class PSap and we will show that the
probability that an n-variable function in PSap is also in C approaches zero as n
increases.

Then, we will shift our focus towards vectorial Boolean functions, and we will
investigate various properties related to nonlinearity of vectorial Boolean functions.
The bent property of Boolean functions has been extended to vectorial Boolean
functions by requesting that all the nonzero linear combinations of its coordinate
functions are bent Boolean functions. Such vectorial functions are called vectorial
bent. In the literature, methods to construct new vectorial bent functions are again
divided into two classes: those building functions from scratch are called primary;
those using known vectorial bent functions are called secondary. For primary con-
structions, K. Nyberg firstly presented the constructions of vectorial bent functions
based on some special classes of bent functions such as the Maiorana-McFarland
class and the partial spreads class.

In Chapter 5, we will define and investigate the class of vectorial bent-negabent
functions. C. Riera and M. Parker [61] introduced the class of negabent functions,
motivated by their applications to quantum computing. A Boolean function is said
to be negabent, if its absolute nega-Hadamard spectrum is flat (or equivalently, f
is negabent if f + s2 is bent, where s2 denotes the elementary symmetric quadratic
Boolean function, i.e., s2(x) =

∑
1≤i<j≤n

xixj , for x = (x1, . . . , xn) ∈ Fn
2). For an

even number of variables, a function is called bent-negabent if it is both bent and
negabent. The problem of constructing Boolean functions, which are simultaneously
bent and negabent, was considered in [53, 65, 69, 71, 82]. M. Parker and A. Pott
[53] considered the problem of determining the number of quadratic bent–negabent
functions in n variables. It was consequently resolved by A. Pott et al. [59], who used
a characterization of quadratic bent–negabent Boolean functions obtained in [53].

There are several design methods of bent-negabent functions given in e.g. [65,
71, 82]. In [71], a set of necessary and sufficient conditions for a Boolean func-
tion to be negabent (regardless the parity of the number of variables) was derived,
which also allowed the design of a broader class of n-variable bent-negabent func-
tions (n even) of the algebraic degree ranging from 2 to n/2. These functions are

Chapter 1. Introduction 5

however contained in the completed Maiorana-McFarland class. In difference to the
standard employment of the Maiorana-McFarland class, it was shown in [82] that
bent-negabent functions outside M# could be constructed using the indirect sum
method and suitable complete mappings. Bent-negabent functions have recently
received renewed attention due to the work in [70], where the connection between
bent-negabent functions and Kerdock codes was established.

Nevertheless, all known methods so far only considered the Boolean case and
the possibility of building vector spaces of bent-negabent functions has not been
addressed in the literature. We will introduce the notion of vectorial bent-negabent
functions and show that in general for a bent-negabent function F : F2n

2 → Fk
2 we

necessarily have that k ≤ n − 1. We provide a class of vectorial bent-negabent
functions with the maximal output dimension n−1 by using a set of linear complete
mappings of cardinality n− 1. However, due to the linearity of these mappings, this
approach only gives functions whose components are contained in the M# class.
We then show that the so-called b-complete mappings on F2n considered in e.g. [18],
which are permutations x + bF (x) for many b ∈ F2n , can be used for the purpose
of designing non-quadratic vectorial bent-negabent functions. In a similar fashion
as for vectorial bent functions [60,85], we investigate and derive an upper bound on
the maximum number of bent-negabent components for mappings F : F2n

2 → Fk
2,

where 2 ≤ k ≤ 2n, and identify some families of the functions reaching this upper
bound.

To describe the properties of vectorial bent functions more precisely, in Chapter
6 we introduce the concept of weakly and strongly outside a pre-specified class of
bent functions. The main reason for this is that for the Maiorana-McFarland class
one can easily deduce that its vectorial bent functions have the property that their
(nonzero) component functions are bent functions in M. This is in general not true
for vectorial functions having its coordinates in C or D. In fact, the motivation
for the concept of being weakly or strongly outside M# comes from the fact that
certain infinite classes of bent functions in C and D, but provably outside M#, will
be specified in the first part of the thesis. Then, employing such functions as initial
bent functions, gives vectorial bent functions with certain components in the primary
class M and the remaining ones, belonging to C or D, are provably outside M#.
This means that for the first time we provide evidence of infinite classes of vectorial
bent functions having such a peculiar feature. On the other hand, the problem of
specifying vectorial functions which are strictly outside the known primary classes
is quite delicate as well as the question whether these functions can be extended to
the maximal output bent dimension (being n for the input space of size 2n). In this
direction, we provide a way to construct vectorial bent functions which are strongly
outside M#, for various output dimensions (but not for the maximal one).

In Chapter 6, we will also combine the notion of weakly outside the M# class
and the notion of vectorial bent-negabent functions introduced in Chapter 5. To
provide families of vectorial bent-negabent functions, additionally having compo-
nents outside M#, we employ vector spaces of complete mappings of the form
F (x) = xd + b1a1x + · · · + btatx, where F is a permutation of F2n for a set of lin-
early independent (over F2) elements a1, . . . , at ∈ F2n and for any choice of binary
coefficients bi ∈ F2. Notice that in the case that 1 ∈ ⟨a1, . . . , at⟩, we have that F is

6

also a standard complete mapping since both F (x) and F (x) + x are permutations
over F2m . Nevertheless, it is not necessary that F is a permutation itself and this
case is considered separately. Namely, using a suitable decomposition of the vector
space (alternatively identifying suitable subfields) we provide a generic method of
specifying vector spaces of complete mappings which are then efficiently used to con-
struct vectorial bent-negabent functions (whose dimension is not maximal) having
approximately half of the component functions outside the completed M class.

In Chapter 7, we will shift our focus from nonlinearity, and we will investigate
another cryptographically significant property of Boolean functions called correla-
tion immunity. An n-variable Boolean function f is called correlation immune of
order d (in brief, d-CI) if the output distribution of f does not change when at most
d input variables are fixed. For cryptographic applications, the notion of correla-
tion immunity is commonly related to the so-called nonlinear combiner model, a
representative of a certain family of stream ciphers [46]. This property is crucial
for this model in order to withstand correlation attacks [30, 31, 45, 68]. A closely
related notion of resiliency is often used as a cryptographic criterion which, apart
from a certain order of correlation immunity of the combining Boolean function,
also requires its balancedness. Apart from this, a subclass of minimum weight CI
functions has received a lot of attention recently due to their use as masking prim-
itives for the purpose of hardware protection of certain encryption algorithms [4],
see also [16]. In addition, CI functions are closely related to secret-sharing schemes
and error-correcting codes [6, 23,26].

A tight bound for the achievable algebraic degree of correlation immune func-
tions was given by T. Siegenthaler in [67]. We will show that using certain weight
divisibility results related to restrictions of CI functions (taken from [73]), a compact
proof of Siegenthaler’s bound on the algebraic degree can be deduced. In addition,
we determine precisely the weight of the d-th order CI functions having (all) terms
of degree n− d in its algebraic normal form. Using the same divisibility results we
will also exactly determine the Walsh spectral values at vectors of weight d+ 1 for
d-th order CI Boolean functions.

Two efficient constructions of correlation immune functions, which are well-
suited for designing a subclass of these functions having minimum weight, will be
presented. Such functions have an immediate application as masking schemes for
protecting ciphers against side-channel cryptanalysis [16]. As remarked in [15], for an
efficient hardware implementation, CI functions need to have low Hamming weight.
However, most of the known constructions (primary constructions like the Maiorana-
McFarland construction and secondary constructions like the indirect sum, etc., see
for example [12], [24]) do not allow us to build functions with such property. This
initiated rather extensive research in this direction. More precisely, for a relatively
low size of the input space (for n ≤ 13) the minimum weight of CI functions has
been determined and tabulated, apart from a few unknown values, see [16] and the
subsequent work of Q. Wang and Y. Li [78]. For example, denoting the minimum
weight of any d-th order CI function in n variables by ωn,d, the values of ω12,4,
ω13,4 and ω13,5 have been determined in [78]. For the special case of 3-CI functions
C. Carlet and X. Chen conjectured in [16] that wn,3 = 8⌈n4 ⌉, for any integer n ≥ 3,
and it was shown by a construction that the conjecture is true for n = 2k. Later

Chapter 1. Introduction 7

it was shown [76] that this conjecture is equivalent to the Hadamard conjecture,
which claims that there exists a Hadamard matrix of order 4k for every positive in-
teger k. Notice that the case when n = 2k then corresponds to Silvester-Hadamard
matrices using this equivalence. We provide further evidence that the conjecture of
C. Carlet and X. Chen is true through our generalization of their design method of
CI functions from [16]. More precisely, it will be shown through the existence of
3-CI functions of minimum weight that the conjecture is true for any n of the form
n = 2k − i and n = 3 · 2k − i, for i = 0, 1, 2, 3 and k ≥ 3.

In a collection of open problems in the field of analysis of Boolean functions [52],
R. O’Donnell stated a conjecture about the growth of the sum of linear Fourier
coefficients, motivated by some problems in social choice. In [52], functions f :
{−1, 1}n → {−1, 1} were investigated, and hence in [52] the conjecture is stated
as a conjecture about functions f : {−1, 1}n → {−1, 1}. In [77], Q. Wang trans-
lated O’Donnell’s Conjecture to an equivalent conjecture about a class of resilient
Boolean functions f : {0, 1}n → {0, 1}, thus giving an alternative interpretation of
O’Donnell’s Conjecture. In this form the conjecture states that if g : {0, 1}n → {0, 1}
is an (n− d− 1)-resilient Boolean function, then∑

v∈{0,1}n
wt(v)=n−1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d,

where Wg(v) is the Walsh coefficient of g at point v ∈ Fn
2 , given by

Wg(v) =
∑
x∈Fn

2

(−1)g(x)+v·x.

This alternative formulation was used by Q. Wang [77] to prove that the conjecture
is true when d = 1 and d = n− 1, which gives a nontrivial relationship between the
Walsh coefficients of weight n− 1 and the order of resilience of a Boolean function.

In Chapter 8, we will further employ Q. Wang’s approach using the standard
Boolean setting. Firstly, we will derive an interesting combinatorial property related
to the conjecture which implies that, for a fixed d, the conjecture only depends on a
finite number of integers n. More precisely, we show that if the conjecture is correct
for all n ≤ 22d−2, then it is true for all n ∈ N. Then we will prove, again for a fixed
d, that if the conjecture fails for some n0, it is incorrect for every n > n0. These
two results will imply that, for a fixed d, if the conjecture is true for n = 22d−2,
then it is true for every n ∈ N. Therefore, an immediate consequence is that the
conjecture is true for d = 2, since it can be easily checked exhaustively for n = 4.
Nevertheless, a direct proof of this fact will be provided using a characterisation of
(n− 3)-resilient functions given in [8]. Then, for d = 3, we will combine the results
on characterisations of (n−4)-resilient functions given in [7] and [13], and show that
it is enough to check the conjecture for n = 6, and in some special cases for n = 7.
For the purpose of proving that the conjecture is true for d = 3, we will employ
integer programming to verify the mentioned cases.

However, when d = 4, we will identify a 2-resilient Boolean function in 7 variables
which violates the conjecture. This means that the conjecture is not true in general.

8

More specifically, the conjecture is not true whenever n ≥ 7 implying that (n− 5)-
resilient Boolean functions do not necessarily satisfy the bound in the conjecture.

Finally, we will conclude the thesis by summarising the most important results
presented in the thesis, and suggesting a couple of possible problems and directions
for future research.

This PhD Thesis is based on the results obtained in the following articles:

• S. Kudin, E. Pasalic. A complete characterization of D0 ∩M# and a general
framework for specifying bent functions in C outside M#. Designs, Codes and
Cryptography, vol. 90(8), pp. 1783–1796, (2022).

• S. Kudin, E. Pasalic, N. Cepak, F. Zhang. Permutations without linear
structures inducing bent functions outside the completed Maiorana-McFarland
class. Cryptography and Communications, vol. 14(1), pp. 101–116, (2022).

• E. Pasalic, S. Kudin, A. Polujan, A. Pott. Vectorial bent-negabent functions
– their constructions and bounds. IEEE Transactions on Information Theory,
doi: 10.1109/TIT.2022.3226571, (2022).

• E. Pasalic, F. Zhang, S. Kudin, Y. Wei. Vectorial bent functions weakly/strongly
outside the completed Maiorana–McFarland class. Discrete Applied Mathe-
matics, vol. 294, pp. 138–151, (2021).

• S. Kudin, E. Pasalic. Efficient design methods of low-weight correlation-
immune functions and revisiting their basic characterization. Discrete Applied
Mathematics, vol. 284, pp. 150–157, (2020).

• S. Kudin, E. Pasalic. Proving the conjecture of O’Donnell in certain cases and
disproving its general validity. Discrete Applied Mathematics, vol. 289, pp.
345–353, (2021).

Chapter 2

Definitions, notation, and
preliminary results

In this section, we introduce the concepts and results related to Boolean functions
which will be used throughout the thesis. The goal is to make the thesis as self-
contained as possible. However, if the reader finds that some details or explanations
are missing, we refer to the following two excellent books on the subject by C. Car-
let [12], and by T. Cusick and P. Stănică [20].

By F2 we denote the finite field with two elements, that is, the set {0, 1} with
the addition + and the multiplication ·, such that 0 is the additive identity, 1 is
the multiplicative identity, and 1 + 1 = 0. We will also use the notation + and ·
to represent operations in various other structures as well, but since it will always
be clear from the context to which structure the elements belong, there will be no
ambiguity. Throughout the thesis, we use the lowercase letters n, m and k to denote
three (not necessarily distinct) natural numbers, usually such that m = 2n. The n-
dimensional vector space over F2 is denoted by Fn

2 , that is, Fn
2 is the set of all binary

vectors of length n viewed as an F2-vectorspace. We denote the all-zero vector in
Fn
2 with 0n, and by Fn

2
∗ we denote the set Fn

2 \ {0n}. We use ei to denote the vector
in Fn

2 whose i-th coordinate is 1 and the rest are 0. By F2n we denote the finite
field with 2n elements. Once a basis for F2n over F2 is fixed, one can isomorphically
identify Fn

2 with F2n .

Any function from Fn
2 to F2 (or, equivalently from F2n to F2) is called Boolean

function in n variables and the set of all Boolean functions in n variables is denoted
by Bn. We can represent every Boolean function with its truth table, where in the
first column we have all the possible vectors in Fn

2 , and in the second column we have
the values of the Boolean function at the vectors in the same row of the first column.
If we fix an ordering of Fn

2 (and we do fix it to be the lexicographic ordering, if not
stated otherwise), then we only need the second column of the truth table, assuming
that the first one is ordered from the smallest to the largest element according to the
ordering. Hence, we can identify an n-variable Boolean functions with an element of
F2n
2 in a unique way (when the ordering is fixed). From this, we deduce that there

are 22
n
Boolean functions in n variables. For example, the following (Table 2.1) are

two Boolean functions in 4 variables with their truth tables.

9

10

x f(x)

(0, 0, 0, 0) 0
(1, 0, 0, 0) 1
(0, 1, 0, 0) 0
(1, 1, 0, 0) 1
(0, 0, 1, 0) 0
(1, 0, 1, 0) 1
(0, 1, 1, 0) 0
(1, 1, 1, 0) 1
(0, 0, 0, 1) 0
(1, 0, 0, 1) 1
(0, 1, 0, 1) 0
(1, 1, 0, 1) 1
(0, 0, 1, 1) 0
(1, 0, 1, 1) 1
(0, 1, 1, 1) 0
(1, 1, 1, 1) 1

x g(x)

(0, 0, 0, 0) 0
(1, 0, 0, 0) 0
(0, 1, 0, 0) 0
(1, 1, 0, 0) 1
(0, 0, 1, 0) 0
(1, 0, 1, 0) 0
(0, 1, 1, 0) 0
(1, 1, 1, 0) 1
(0, 0, 0, 1) 0
(1, 0, 0, 1) 0
(0, 1, 0, 1) 0
(1, 1, 0, 1) 1
(0, 0, 1, 1) 1
(1, 0, 1, 1) 1
(0, 1, 1, 1) 1
(1, 1, 1, 1) 0

Table 2.1: Truth tables of two Boolean functions in 4 variables.

When the ordering is understood, then we can write the truth tables of f and g
(given in Table 2.1) simply as

f = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1); g = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0).

A vectorial Boolean function in n variables is a function from Fn
2 to Fk

2. Through-
out the thesis, we will use uppercase letters for vectorial Boolean functions, and low-
ercase letters for Boolean functions. From the definitions we see that every vectorial
Boolean function F : Fn

2 → Fk
2 can be represented as

F (x) = (f1(x), . . . , fk(x)), for all x ∈ Fn
2 ,

where f1, . . . , fk are Boolean functions in n variables. The functions f1, . . . , fk are
called coordinate functions of F . Linear combinations (over F2) of the coordinate
functions of F are called component functions of F . Similarly, like in the case of
Boolean functions, we can represent vectorial Boolean functions via truth tables.
For instance, the truth table of the vectorial Boolean function F : F4

2 → F2
2 defined

by F = (f, g), where f and g are the Boolean functions defined in Table 2.1 is
given in Table 2.2. The coordinate functions of F are f and g, and the component
functions of F are 0 (the zero function from F4

2 to F2), f , g and

f + g = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1).

Truth tables, although probably the most intuitive, are not the only way to rep-
resent Boolean functions. Another way to represent an n-variable Boolean function
f is to write it as an element of F2[x1, . . . , xn]/⟨x21+x1, . . . , x2n+xn⟩, and we call that
representation the algebraic normal form (in brief the ANF) of f . More precisely,

Chapter 2. Definitions, notation, and preliminary results 11

x F (x)

(0, 0, 0, 0) (0, 0)
(1, 0, 0, 0) (1, 0)
(0, 1, 0, 0) (0, 0)
(1, 1, 0, 0) (1, 1)
(0, 0, 1, 0) (0, 0)
(1, 0, 1, 0) (1, 0)
(0, 1, 1, 0) (0, 0)
(1, 1, 1, 0) (1, 1)
(0, 0, 0, 1) (0, 0)
(1, 0, 0, 1) (1, 0)
(0, 1, 0, 1) (0, 0)
(1, 1, 0, 1) (1, 1)
(0, 0, 1, 1) (0, 1)
(1, 0, 1, 1) (1, 1)
(0, 1, 1, 1) (0, 1)
(1, 1, 1, 1) (1, 0)

Table 2.2: Truth table of a vectorial Boolean function.

any Boolean function f in n variables can be uniquely represented in its algebraic
normal form

f(x1, . . . , xn) =
∑

a=(a1,...,an)∈Fn
2

µax
a1
1 · · ·xann , (2.1)

where µa ∈ F2, for all a = (a1, . . . , an) ∈ Fn
2 . The coefficients µa are given by

µa =
∑
z⪯a
z∈Fn

2

f(z), (2.2)

where ⪯ is the partial order on Fn
2 defined by: z ⪯ a if and only if zi ≤ ai for all

i ∈ {1, 2, . . . , n}; for every a = (a1, . . . , an) and z = (z1, . . . , zn) in Fn
2 . For example,

the algebraic normal forms of the functions f and g from Table 2.1 are

f(x1, x2, x3, x4) = x1 and g(x1, x2, x3, x4) = x1x2 + x3x4.

For any binary vector x ∈ Fn
2 , the Hamming weight of x, denoted by wt(x), is

defined as the number of nonzero entries of x, i.e. for x = (x1, . . . , xn) ∈ Fn
2 we have

wt(x)=|{i ∈ {1, 2, . . . , n} : xi ̸= 0}|. By abuse of notation, we sometimes write wt(d)
for a positive integer d and mean that d is implicitly represented as a binary string.
The algebraic degree of a Boolean function f in n variables with the algebraic normal
form f(x1, . . . , xn) =

∑
a=(a1,...,an)∈Fn

2
µax

a1
1 · · ·xann , denoted by deg(f), is defined as

deg(f) = maxa∈Fn
2
{wt(a) : µa ̸= 0}, that is, the maximum weight of those a ∈ Fn

2 for
which µa is nonzero. For example, the algebraic degrees of f and g from Table 2.1
are 1 and 2 respectively. A Boolean function is called affine if its algebraic degree
is not larger than 1, quadratic if its degree is 2, and cubic if its degree is 3. The
algebraic degree of a vectorial Boolean function F is the maximal algebraic degree
of the coordinate functions of F .

12

The support of a Boolean function f in n variables, denoted by supp(f), is defined
as supp(f) = {x ∈ Fn

2 : f(x) ̸= 0}. The Hamming weight of a Boolean function f ,
denoted by wt(f), is the number of elements in the support of the function. The
Hamming distance between two Boolean functions f and g (in the same number of
variables), is defined as d(f, g) = wt(f + g). For f and g given in Table 2.1, one can
verify that wt(f) = 8, wt(g) = 6 and d(f, g) = 6.

The following theorem relates the Hamming distance with the algebraic degree
of Boolean functions.

Theorem 2.0.1 Any two distinct n-variable Boolean functions f and g of algebraic
degree at most r have mutual distance at least 2n−r.

The theorem can be proved by a double induction over r and n using the equation
(2.2). The theorem is stated as Theorem 7 in [12], where a detailed proof can be
found (although in a slightly different, but equivalent form). For example, for f
and g given in Table 2.1, since they are of algebraic degree at most 2, we have
d(f, g) = 6 ≥ 24−2 = 4.

The standard scalar (dot) product of two vectors u = (u1, . . . , un) and x =
(x1, . . . , xn) from Fn

2 is defined as u · x :=
∑n

i=1 uixi. The finite field equivalent of
the scalar product is the trace function. By Trnk (·) we denote the trace function
from F2n to F2k , where k divides n:

Trnk (β) = β + β2
k
+ · · ·+ β2

(n/k−1)k
.

When k = 1, we denote Trn1 (·) simply by Tr(·) and call it the absolute trace on F2n .

Every vectorial Boolean function in n variables, viewing them as functions from
F2n to F2n , has a unique representation as a polynomial over F2n of degree less than
or equal to 2n − 1:

F (x) =
2n−1∑
i=0

aix
i, for all x ∈ F2n . (2.3)

We call this representation the (univariate) polynomial form of F . Since F2 is a
subfield of F2n , we deduce, as a special case, that every Boolean function has a
unique representation as a polynomial over F2n , and we also call this the polynomial
form of a Boolean function.

Every Boolean function in n variables can be written in the form f(x) = Tr(P (x))
where P is a mapping from F2n into F2n . For example, if we take λ ∈ F2n such that
Tr(λ) = 1 and if Q is the polynomial form of f , then setting P = λQ, we have that
f(x) = Tr(P (x)), for all x ∈ F2n . We call this representation the trace representa-
tion of f . Trace representation of a Boolean function in not necessarily unique.

One of the crucial tools used in the analysis of Boolean functions is the appropri-
ate version of the discrete Fourier transform. The Walsh transform (or sometimes
Walsh-Hadamard transform) of an n-variable Boolean function f is the mapping
Wf : Fn

2 → Z, defined by:

Wf (w) =
∑
x∈Fn

2

(−1)f(x)+x·w, for every w ∈ Fn
2 . (2.4)

Chapter 2. Definitions, notation, and preliminary results 13

The Fourier transform (or sometimes Fourier-Hadamard transform) of an n-
variable Boolean function f is the mapping f̂ : Fn

2 → Z, defined by:

f̂(w) =
∑
x∈Fn

2

f(x)(−1)x·w, for every w ∈ Fn
2 . (2.5)

In the definitions of the Walsh and Fourier transforms of Boolean functions, we need
to be aware of a slight technicality, and that is, in the sums we look at F2 as if it is a
subset of Z and use the addition in the set of integers, so in the end, the values of the
sums are integers. Additionally, the Fourier transform can be defined more generally,
with the same expression, for pseudo-Boolean functions – the functions from Fn

2 into
the set of real numbers R. Consequently, we will sometimes use the Fourier transform
of pseudo-Boolean functions without explicitly stating it. Therefore, we can think
of the Walsh transform of a Boolean function f as if it is the Fourier transform
of the pseudo-Boolean function (−1)f(x). That being the case, from the fact that
(−1)f(x) = 1 − 2f(x), we deduce (using Proposition 2.0.2) the following relation
between the two transforms:

Wf (w) =

{
−2f̂(w), w ̸= 0n

2n − 2f̂(w), w = 0n.
(2.6)

For example, the transforms of the functions f and g given in Table 2.1 are:

w Wf (w) f̂(w)

(0, 0, 0, 0) 0 8
(1, 0, 0, 0) 16 -8
(0, 1, 0, 0) 0 0
(1, 1, 0, 0) 0 0
(0, 0, 1, 0) 0 0
(1, 0, 1, 0) 0 0
(0, 1, 1, 0) 0 0
(1, 1, 1, 0) 0 0
(0, 0, 0, 1) 0 0
(1, 0, 0, 1) 0 0
(0, 1, 0, 1) 0 0
(1, 1, 0, 1) 0 0
(0, 0, 1, 1) 0 0
(1, 0, 1, 1) 0 0
(0, 1, 1, 1) 0 0
(1, 1, 1, 1) 0 0

w Wg(w) ĝ(w)

(0, 0, 0, 0) 4 6
(1, 0, 0, 0) 4 -2
(0, 1, 0, 0) 4 -2
(1, 1, 0, 0) -4 2
(0, 0, 1, 0) 4 -2
(1, 0, 1, 0) 4 -2
(0, 1, 1, 0) 4 -2
(1, 1, 1, 0) -4 2
(0, 0, 0, 1) 4 -2
(1, 0, 0, 1) 4 -2
(0, 1, 0, 1) 4 -2
(1, 1, 0, 1) -4 2
(0, 0, 1, 1) -4 2
(1, 0, 1, 1) -4 2
(0, 1, 1, 1) -4 2
(1, 1, 1, 1) 4 -2

Table 2.3: Walsh and Fourier transforms of f and g from Table 2.1

Notice that there is a degree of uniformity in the Walsh transforms of f and g. For
f , we have only one nonzero Walsh coefficient, and that is because f is an affine
function. We can deduce that from the following, slightly more general proposition
(for example, stated as Proposition 10 in [12]) about the Fourier transforms of the

14

indicators of vector subspaces of Fn
2 . Before we state the proposition, we need some

notation. Let S be a subset of Fn
2 . By 1S we denote the indicator of S, that is,

the Boolean function such that 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x ∈ Fn
2 \ S.

However, when S = {0n}, we denote the indicator 1{0n} by δ0, and when S = Fn
2 ,

we denote 1Fn
2
simply by 1. By S⊥ we denote the orthogonal complement of S,

with respect to the standard scalar product on Fn
2 , that is, the set S⊥ = {x ∈ Fn

2 :
x · y = 0 for all y ∈ S}.

Proposition 2.0.2 Let E be any vector subspace of Fn
2 . Then:

1̂E = |E|1E⊥ . (2.7)

In particular, 1̂ = 2nδ0.

On the other hand, the absolute value of the Walsh coefficients of g is constant
(Table 2.3), and that is because g belongs to a class of Boolean functions called bent
functions. We will define and say more about bent functions in the next section.
However, in general, the Walsh transform of a Boolean function does not have to
be so uniform. For example, the following (Table 2.4) is the Walsh transform of the
Boolean function h(x1, x2, x3, x4) = x1x2x3x4 + x1x4 + x4.

w Wh(w)

(0, 0, 0, 0) 6
(1, 0, 0, 0) -6
(0, 1, 0, 0) 2
(1, 1, 0, 0) -2
(0, 0, 1, 0) 2
(1, 0, 1, 0) -2
(0, 1, 1, 0) -2
(1, 1, 1, 0) 2
(0, 0, 0, 1) 10
(1, 0, 0, 1) 6
(0, 1, 0, 1) -2
(1, 1, 0, 1) 2
(0, 0, 1, 1) -2
(1, 0, 1, 1) 2
(0, 1, 1, 1) 2
(1, 1, 1, 1) -2

Table 2.4: Walsh transform of h = x1x2x3x4 + x1x4 + x4.

Proposition 2.0.2, although simple looking, can be used to reveal some more
subtle connections between the Fourier coefficients. The following, fairly general
version of the Poisson summation formula, can be deduced from Proposition 2.0.2
and the fact that the Fourier transform of a pseudo-Boolean function of the form
f(x) = (−1)a·xφ(x + b), where φ is an arbitrary pseudo-Boolean function, is the
function f̂(w) = (−1)b·(a+w)φ̂(a+ w).

Chapter 2. Definitions, notation, and preliminary results 15

Corollary 2.0.3 (Poisson summation formula) For every pseudo-Boolean func-
tion φ on Fn

2 , for every vector subspace E of Fn
2 , and for every a, b ∈ Fn

2 , we have:∑
u∈a+E

(−1)b·uφ̂(u) = |E|(−1)a·b
∑

x∈b+E⊥

(−1)a·xφ(x). (2.8)

From the Poisson summation formula, setting a = 0n and E = Fn
2 , we deduce the

Fourier inversion formula for the Fourier transform of pseudo-Boolean functions.

Corollary 2.0.4 For every pseudo-Boolean function φ on Fn
2 :̂̂φ = 2nφ.

Proposition 2.0.2 can also be used to prove the following version of Parseval’s relation
for pseudo-Boolean functions.

Corollary 2.0.5 For every pseudo-Boolean function φ on Fn
2 :∑

w∈Fn
2

φ̂2(w) = 2n
∑
x∈Fn

2

φ2(x).

In particular, for every Boolean function f on Fn
2 :∑

w∈Fn
2

W 2
f (w) = 22n.

To illustrate, for f and g in Table 2.1, we have
∑

w∈Fn
2
W 2

f (w) = 162 = 256 = 22·4,

and
∑

w∈Fn
2
W 2

g (w) = 16 · (±4)2 = 256, and similarly for h in Table 2.4 we have∑
w∈Fn

2
W 2

h (w) = 12 · (±2)2 + 3 · (±6)2 + 102 = 48 + 108 + 100 = 256.

2.1 Bent Functions

In this section, we state the definitions and results related to bent functions, which
will be used throughout the thesis. For a much more detailed exposition we refer
to [48].

There are various different, but equivalent, definitions of bent functions. We will
start with the most intuitive definition, which is related to nonlinearity.

The nonlinearity of a Boolean function f (denoted by nl(f)) is the minimum
Hamming distance between f and the set of affine functions (in the same number
of variables). The nonlinearity of a function can be computed from the Walsh
transform of the function. Let f be a Boolean function in n variables. For a =
(a1, . . . , an) ∈ Fn

2 denote by la the linear function la(x) = a · x = a1x1 + · · ·+ anxn,
for all x = (x1, . . . , xn) ∈ Fn

2 . We have:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+x·a = |{x ∈ Fn
2 : f(x) = la(x)}| − |{x ∈ Fn

2 : f(x) ̸= la(x)}|

= 2n − 2|{x ∈ Fn
2 : f(x) ̸= la(x)}| = 2n − 2d(f, la),

16 2.1 Bent Functions

hence d(f, la) = 2n−1 − 1
2Wf (a). Similarly, d(f, la + 1) = 2n−1 + 1

2Wf (a), so we
conclude that the nonlinearity and the Walsh transform of a Boolean function in n
variables are related as follows:

nl(f) = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)|. (2.9)

Parseval’s relation (Corollary 2.0.5) states that for any Boolean function f in n
variables

∑
w∈Fn

2
W 2

f (w) = 22n, therefore there has to be at least one a ∈ Fn
2 such

that |Wf (a)| ≥ 2
n
2 . Combining that with (2.9), we deduce the following bound for

the nonlinearity of an n-variable Boolean function:

nl(f) ≤ 2n−1 − 2
n
2
−1. (2.10)

A Boolean function f in n variables is called bent if its nonlinearity equals
nl(f) = 2n−1 − 2

n
2
−1. In other words, bent functions are the Boolean functions

which are as nonlinear as possible. As mentioned, from Parseval’s relation, we know
that there is at least one a ∈ Fn

2 such that |Wf (a)| ≥ 2
n
2 , so combining that with the

definition of bent functions and (2.9), we deduce the following: f is a bent function
in n variables if and only Wf (w) = ±2

n
2 for all w ∈ Fn

2 .
From the definition of bent functions, we immediately deduce that there are no

bent functions if the number of variables is odd, since in that case 2n−1 − 2
n
2
−1 is

not an integer. On the other hand, for every even n, there are bent functions in n
variables. We will discuss the existence of bent functions in more detail in the next
section.

A different characterization of bent functions can be achieved via derivatives.
The derivative of an n-variable Boolean function f at a ∈ Fn

2 (or in the direction
of a), denoted by Daf , is the Boolean function defined by

Daf(x) = f(x+ a) + f(x), for all x ∈ Fn
2 ,

and the k-th order derivative of f at v1, v2, . . . , vk ∈ Fn
2 , denoted Dv1Dv2 . . . Dvkf ,

is the Boolean function defined recursively by

Dv1Dv2 . . . Dvkf(x) = Dv1(Dv2 . . . Dvkf)(x), for all x ∈ Fn
2 .

For example, the explicit form of the second order derivative of f at a, b ∈ Fn
2 is

DaDbf(x) = f(x) + f(x+ a) + f(x+ b) + f(x+ a+ b), for all x ∈ Fn
2 .

To obtain a connection between the Walsh coefficients of a Boolean function and its
derivatives, we square the Walsh coefficients to get

Wf (a)
2 =

∑
x∈Fn

2

(−1)f(x)+x·a

∑
y∈Fn

2

(−1)f(y)+y·a

 =
∑

x,y∈Fn
2

(−1)f(x)+f(y)+(x+y)·a

=
∑

x,v∈Fn
2

(−1)f(x)+f(x+v)+v·a =
∑
v∈Fn

2

∑
x∈Fn

2

(−1)Dvf(x)

 (−1)v·a.

Chapter 2. Definitions, notation, and preliminary results 17

Denoting by sf the pseudo-Boolean function in n variables defined by

sf (v) =
∑
x∈Fn

2

(−1)Dvf(x) for all v ∈ Fn
2 ,

it follows that

Wf (a)
2 =

∑
v∈Fn

2

sf (v)(−1)v·a = ŝf (a).

Combining Proposition 2.0.2 with the Fourier inversion formula, we deduce that
when f is a bent function, sinceWf (a)

2 is constant, then ŝf (a) is constant, therefore
sf (v) = 0 for all v ̸= 0n. Similarly, if sf (v) = 0 for all v ̸= 0n, then ŝf (a), and hence
Wf (a)

2 is constant, therefore f is bent. Moreover, sf (v) =
∑

x∈Fn
2
(−1)Dvf(x) = 0 if

and only if wt(Dvf) = 2n−1. A Boolean function h in n variables is called balanced if
wt(h) = 2n−1. Therefore, we obtain the following characterization of bent functions:
f is bent if and only if Dvf is balanced for all v ∈ Fn

2 \ {0n}.
An important fact about derivatives, which we will use throughout the thesis,

is the following lemma about the algebraic degrees of the second order derivatives
of δ0.

Lemma 2.1.1 For any two distinct nonzero vectors a, b ∈ Fn
2 , the algebraic degree

of DaDbδ0 is n− 2.

Lemma 2.1.1 follows from Theorem 2.0.1, because the weight of DaDbδ0 is 4 = 22,
hence its algebraic degree is at least n− 2. But it is also at most n− 2, hence it is
exactly n− 2. On the other hand, if a = b, or if one of them is the zero vector, then
DaDbδ0 = 0.

Another important notion related to derivatives is the notion of a linear structure.
A vector a ∈ Fn

2 is a linear structure of a Boolean function f : Fn
2 → F2 if there

exists a constant c ∈ F2, such that Daf(x) = f(x+ a) + f(x) = c for every x ∈ Fn
2 .

The trivial case, a = (0, 0, . . . , 0), the zero vector in Fn
2 , is a linear structure of every

Boolean function. It is easy to see that the set of linear structures of a Boolean
function is always a vector subspace of Fn

2 .

For vectorial Boolean functions, we define their derivatives in the same way (with
the same formulas) as in the Boolean case. A vectorial Boolean function G : Fn

2 → Fk
2

is called balanced if its output distribution is uniformly distributed (for k ≤ n), that
is, if it takes every value of Fk

2 the same number of times (precisely, 2n−k times).
We can use the characterization of bent functions via derivatives to generalize the
notion in the vectorial case.

A vectorial Boolean function F : Fn
2 → Fk

2 is called bent if DvF is balanced for all
v ∈ Fn

2 \ {0n}. Equivalently, F is bent if its component functions v · F are bent for
all v ∈ Fk

2 \ {0k}. The equivalence of the two definitions follows from the fact that
a vectorial Boolean function G : Fn

2 → Fk
2 is balanced if and only if its component

functions v · G are balanced for all v ∈ Fk
2 \ {0k} (for example, this is stated as

Proposition 35 in [12]). Alternatively, we can also define bent functions using the
generalized version of the Walsh transform for vectorial Boolean functions.

18 2.1 Bent Functions

The Walsh transform (or sometimes Walsh-Hadamard transform) of a vectorial
Boolean function F : Fn

2 → Fk
2 is the mapping WF : Fn

2 × Fk
2 → Z, defined by:

WF (w, v) =
∑
x∈Fn

2

(−1)v·F (x)+x·w, for every (w, v) ∈ Fn
2 × Fk

2. (2.11)

Using this definition, we get that a vectorial Boolean function F : Fn
2 → Fk

2 is bent
if and only is WF (w, v) = ±2

n
2 , for every w ∈ Fn

2 and v ∈ Fk
2 \ {0k}.

Using the Walsh coefficients of an arbitrary Boolean bent function, we can define
another Boolean bent function, called its dual, in the following way. For a Boolean
bent function f in n variables, the dual function of f , denoted by f∗ (notation f̃ is
also common) is the Boolean function in n variables defined by

Wf (w) = 2
n
2 (−1)f

∗(w), for all w ∈ Fn
2 . (2.12)

From the Fourier inversion formula (Corollary 2.0.4) we deduce that the dual f∗ of
any bent function f is also bent, and that its own dual is f itself, that is (f∗)∗ = f .

Combining the Poisson summation formula (Corollary 2.0.3) for the pseudo-
Boolean function (−1)f(x) and a = b = 0n, with the notion of dual function, we
get:

2
n
2

∑
u∈E

(−1)f
∗(u) = |E|

∑
x∈E⊥

(−1)f(x) ⇒

2
n
2

|E|
∑
u∈E

(−1)f
∗(u) = |E⊥| − 2

∑
x∈E⊥

f(x).

Now, in combination with the formula for the coefficients of the algebraic normal
form of f (2.2), we get that the algebraic degree of an arbitrary bent function in n
variables is always less than or equal to n

2 . (When dim(E⊥) = n
2 + 1, we use the

fact that
∑

u∈E(−1)f
∗(u) is even, which is deduced in the same manner as (2.9).)

We can use similar ideas with the Walsh transform of vectorial Boolean functions
to prove that vectorial bent functions from Fn

2 into Fk
2 can exist only if k ≤ n/2.

This is known as Nyberg’s bound [50]. We can prove it as follows. Assume that
F : Fn

2 → Fk
2 is a vectorial bent function. Then, for every v ∈ Fk

2 \ {0k}, we have
WF (0n, v) =

∑
x∈Fn

2
(−1)v·F (x) = (−1)(v·F)∗(0n)2

n
2 , because every nonzero component

of F is a bent function. Proposition 2.0.2 implies that∑
x∈Fn

2

∑
v∈Fk

2

(−1)v·F (x) = 2k|F−1(0k)|, and therefore

2k|F−1(0k)| = 2n + 2
n
2

∑
v∈Fk

2\{0k}

(−1)(v·F)∗(0n).

The sum
∑

v∈Fk
2\{0k}

(−1)(v·F)∗(0n) is odd (since |v ∈ Fk
2\{0k}| is an odd integer), and

because 2
n
2
∑

v∈Fk
2\{0k}

(−1)(v·F)∗(0n) needs to be divisible by 2k (assuming k ≤ n,
which we can assume without loss of generality just by discarding a sufficient number
of coordinate functions of F), we conclude that k ≤ n

2 .

Chapter 2. Definitions, notation, and preliminary results 19

2.2 Classes of Bent functions

In this section, we introduce the classes of bent functions which we will use and
study throughout the thesis. The concept of affine equivalence will be an important
part of our investigation. Two Boolean functions in n variables, f and g, are said
to be affine equivalent if there exist a linear isomorphism L : Fn

2 → Fn
2 , a linear

function l : Fn
2 → F2, a ∈ Fn

2 , and b ∈ F2 such that f(x) = g(L(x) + a) + l(x) + b,
for all x ∈ Fn

2 . A lot of the important cryptographic properties remain unchanged
under the affine equivalence. For example, if f is bent and g is affine equivalent
to f , then, since the distance from the set of all affine functions remains unchanged
under the transformation, g is also bent.

A class of Boolean/bent functions is a set of Boolean/bent functions, usually
sharing the the same defining property or form. A class of bent functions is complete
if it is globally invariant under the affine equivalence. More precisely, a class of bent
functions B is complete if for every f ∈ B all the functions affine equivalent to f
are also in B . The completed class of a class of bent functions B , denoted by B#,
is the smallest complete class containing B.

Constructions of bent functions are split into two groups: primary constructions
(constructions which do not require other bent functions in order to construct new
ones), and secondary constructions (constructions utilising other bent functions to
construct new ones).

One of the first primary constructions of bent functions was described in 1973
by J. A. Maiorana and R. L. McFarland (independently). The construction was
actually a construction of a class of difference sets in certain non-cyclic groups, but
it translates to an equivalent construction of bent functions, as described in [21].

The Maiorana-McFarland class M is the set of m-variable (m = 2n) Boolean
functions of the form

f(x, y) = x · π(y) + g(y), for all x, y ∈ Fn
2 ,

where π is a permutation of Fn
2 , and g is an arbitrary Boolean function on Fn

2 .
Alternatively, we can describe the Maiorana-McFarland class in terms of finite

fields as the set of all functions of the form

f(x, y) = Tr(xπ(y)) + g(y), for all x, y ∈ F2n ,

where π is a permutation of F2n , and g is any function from F2n to F2.
Proposition 2.0.2 can be used to show that every function in the Maiorana-

McFarland class is bent, and that the dual of f(x, y) = x · π(y) + g(y) is f∗(x, y) =
y · π−1(x) + g(π−1(x)).

A useful indicator for the purpose of establishing whether a given bent function
belongs to the completed Maiorana-McFarland class M# can be obtained using the
second order derivatives of the function.

Lemma 2.2.1 ([21, p.102], [12, Proposition 54]) An m-variable bent function f ,
m = 2n, belongs to M# if and only if there exists an n-dimensional linear subspace
V of Fm

2 such that, for all α, β ∈ V ,

DαDβf(x) = f(x) + f(x+ α) + f(x+ β) + f(x+ α+ β) = 0, for all x ∈ Fm
2 .

20 2.2 Classes of Bent functions

In [9], C. Carlet derived two new (secondary) classes of bent functions, called C
and D, from the Maiorana-McFarland class.
The class C is the set of all Boolean functions of the form

f(x, y) = x · π(y) + 1L⊥(x), (2.13)

where L is any linear subspace of Fn
2 , 1L⊥ is the indicator function of the space L⊥,

and π is any permutation of Fn
2 such that:

(C) ϕ(a+ L) is an affine subspace, for all a ∈ Fn
2 , where ϕ := π−1.

The permutation ϕ and the subspace L are then said to satisfy the (C) property, or
for short (ϕ,L) has property (C).
The class D, defined similarly as C, is the set of all Boolean functions of the form

f(x, y) = x · π(y) + 1E1(x)1E2(y), (2.14)

where π is a permutation of Fn
2 and E1, E2 two linear subspaces of Fn

2 such that
π(E2) = E⊥

1 . The permutation π and the subspaces E1, E2 are then said to satisfy
the (D) property, or for short (π,E1, E2) has property (D).

A special subclass of the classes C and D is the subclass D0. It contains all
functions of the form

f(x, y) = x · π(y) + δ0(x),

where δ0(x) =
∏n

i=1(xi+1) so that it corresponds to the case E1×E2 = {0n}×Fn
2 .

It is proved in [9], by analyzing the duals of the building functions from M,
that every function in the classes C and D is bent, and additionally, that there are
functions in the class D0 which are not in the completed Maiorana-McFarland class.

In 1974 J. Dillon in his PhD thesis [21] introduced another primary class of bent
functions called Partial Spread class, denoted by PS. The construction uses the
sums (modulo 2) of the indicators of an appropriate number of n/2-dimensional
subspaces of Fn

2 to define the functions in the class. According to the number of the
subspaces used, the class PS is divided into two subclasses called PS− and PS+.
The class PS− is the set of all the sums (modulo 2) of the indicators of 2n/2−1

pairwise ”disjoint” n/2-dimensional subspaces of Fn
2 (”disjoint” meaning that their

intersection is only the zero vector 0n). Similarly, the class PS+ is the set of all the
sums (modulo 2) of the indicators of 2n/2−1+1 pairwise ”disjoint” n/2-dimensional
subspaces of Fn

2 .
Every function in the Partial Spread class is bent. The degree of any n-variable

function f in PS− is always equal to n/2, but this does not have to be the case for
the functions in PS+ whose degree may be less than n/2. The characterization of
the algebraic normal forms of the bent functions in the PS class appears to be hard,
and is still an open problem.

In general, it is not an easy task to construct elements of the Partial Spread
class practically, that is, it is not a simple matter to find the appropriate number
of ”disjoint” n/2-dimensional subspaces effectively. Nevertheless, J. Dillon in [21]
exhibits one explicit subclass of the PS− class, denoted by PSap. The class PSap

is the set of all Boolean functions f : F2n × F2n → F2 of the form

f(x, y) = g(xy2
n−2), for all x, y ∈ F2n ,

Chapter 2. Definitions, notation, and preliminary results 21

where g : F2n → F2 is any balanced Boolean function such that g(0) = 0.

Using Lemma 2.2.1, J. Dillon in [21] proved that there are functions in the class
PSap which do not belong to the completed Maiorana-McFarland class. On the other
hand, C. Carlet in [9] proved that there are functions in the Maiorana-McFarland
class and in the class D0 (hence in C and D as well), which do not belong to the
completed Partial Spread class.

For vectorial bent functions, the question of class membership is a bit more
vague. In order to make it more precise, in Chapter 6 we introduce the notion of
vectorial bent functions weakly and strongly outside of a class of bent functions. For
completeness, we state the definition here as well.

Definition 2.2.2 A vectorial bent function F : F2n
2 → Fk

2, with k ≤ n, is weakly
outside of a class of bent functions if there is at least one (nonzero) component
function of F (linear combination of its coordinate functions) which does not belong
to the considered class. If all component functions of F do not belong to a class of
bent functions then F is strongly outside the considered class.

2.3 Negabent functions

C. Riera and M. Parker in [61] introduced the class of negabent functions, motivated
by applications to quantum computing. A Boolean function f in n variables, is called
negabent if |Nf (u)| = 2n/2 for all u ∈ Fn

2 , where Nf is the complex-valued function
Nf : Fn

2 → C defined by

Nf (u) =
∑
x∈Fn

2

iwt(x)(−1)f(x)+u·x, for all u ∈ Fn
2 , (2.15)

called the nega-Hadamard transform of f . As standard, in the equation (2.15) the
symbol i denotes the imaginary unit, i.e., i2 = −1.

With the following result, one can verify the negabent property of a given
Boolean function f on Fn

2 without the use of the nega-Hadamard transform.

Lemma 2.3.1 [53] Let n be even and f : Fn
2 → F2. Then, f is negabent if and only

if f + s2 is bent, where s2 : Fn
2 → F2 is the elementary symmetric quadratic Boolean

function, i.e.,

s2(x) =
∑

1≤i<j≤n

xixj , for x = (x1, . . . , xn) ∈ Fn
2 .

For an even number of variables, a function is called bent–negabent if it is both
bent and negabent.

An important notion, upon which most of our constructions of vectorial bent-
negabent functions will be based, is the notion of complete mappings. A mapping
F : F2n → F2n is called complete if both x 7→ F (x) and x 7→ F (x) + x permute F2n .

22 2.4 Correlation immune and Resilient functions

2.4 Correlation immune and Resilient functions

Correlation immune functions (CI) were defined by T. Siegenthaler [67] in 1984,
in order to investigate and improve resistance of stream ciphers against correlation
attacks. An n-variable Boolean function f is called correlation immune of order d
(in brief, d-CI) if the output distribution of f does not change when at most d input
variables are fixed. However, throughout the thesis we will use a characterisation
of correlation immunity (see [73]), which is slightly more intuitive and easier to use.
In order to state the characterization, we need the concept of a subfunction. A
subfunction of order d, 0 < d ≤ n, of a Boolean function f in variables x1, . . . , xn
is a Boolean function in n − d variables, denoted by fa1,...,adi1,...,id

, obtained from f by
fixing each variable xij to be some value aij ∈ {0, 1}, for j = 1, . . . , d.

Proposition 2.4.1 A function f(x) in n variables is correlation immune of order
d if and only if the Hamming weight of every subfunction of f of order d equals
wt(f)/2d.

A Boolean function f in n variables is called resilient of order d if it is d-CI and
if it is balanced (i.e. wt(f) = 2n−1). G. Z. Xiao and J. L. Massey in [81] gave the
following characterisation of correlation immune and resilient functions in terms of
their Walsh-Hadamard transform:

Theorem 2.4.2 [81] An n-variable Boolean function f is correlation immune
(resp. resilient) of order d if and only if Wf (w) = 0 for every w ∈ Fn

2 satisfy-
ing 1 ≤ wt(w) ≤ d; (resp. 0 ≤ wt(w) ≤ d).

The bound of Siegenthaler states that the algebraic degree of any n-variable resilient
function of order d is at most n−d−1, and that the algebraic degree of any n-variable
correlation immune function of order d is at most n− d.

Chapter 3

Characterization of the
intersection of the class D0 and
the completed
Maiorana-McFarland class

In the 1990s, C. Carlet (in [9]) provided two new secondary constructions of bent
functions using bent functions from the Maiorana-McFarland class and adding in-
dicators of appropriately chosen vector subspaces. The classes of bent functions
obtained by the constructions are called C and D. A particular subclass of both C
and D, called D0, is singled out in [9] because of a simpler form of the subspaces
used and for the ease of construction. It is established in [9] that there are functions
in the class D0 which are not affine equivalent to any function in the class M, as
well as that there are some functions in D0 which are not affine equivalent to any
function in the class PS.

The main purpose of this chapter is to provide a more accurate description (in
terms of the class membership) of the secondary class D0. Carlet in [9, Proposition
2] provided a sufficient condition for bent functions in the class D0 (which are of
the form f(x, y) = x · π(y) + δ0(x), where x, y ∈ Fn

2 , π is a permutation of Fn
2 and

δ0(x) is the indicator of the subspace {0n}×Fn
2), to be outside M#. Namely, if the

permutation π is not affine on any linear hyperplane of Fn
2 (i.e. (n− 1)-dimensional

subspace of Fn
2), then f is outside M#. We prove that when the degree of a per-

mutation π is greater than 2 the Boolean function f(x, y) = x · π(y) + δ0(x), with
f : Fn

2 × Fn
2 → F2, is always outside M# class (regardless of the fact whether π is

affine on some hyperplane or not). On the other hand, we prove that the sufficient
condition of Carlet is also necessary when deg(π) = 2. Lastly, when the algebraic
degree of the permutation π is equal to 1, the function f is obviously in the com-
pleted Maiorana-McFarland class. This means that we will cover all the possible
cases, and hence completely characterize D0 ∩M#.

The chapter is divided into two sections, depending on the algebraic degree of
the permutation π used to define the bent function f(x, y) = x · π(y) + δ0(x).

23

24 3.1 Permutations with the algebraic degree greater than two

3.1 Permutations with the algebraic degree greater than
two

In order to achieve the characterization of D0 ∩ M#, we first need to study some
properties of the second order derivatives of f . The following lemma provides a con-
nection between the vanishing property of second order derivatives and the algebraic
degree of the function.

Lemma 3.1.1 Let g be a Boolean function in n variables. If there exists an (n−k)
dimensional subspace H of Fn

2 , such that DaDbg = 0 for all a, b ∈ H, then the
algebraic degree of g is at most k + 1.

Proof. First note that, without loss of generality, we can assume that H =
{0k}×Fn−k

2 . Otherwise, we can consider the function h = g ◦A, where A is a linear
permutation of Fn

2 that maps {0k} × Fn−k
2 to H. Then, h has the same degree as

g and DaDbh = 0, for all a, b ∈ {0k} × Fn−k
2 . Hence, for the rest of the proof we

assume that H = {0k} × Fn−k
2 .

Using the algebraic normal form of g, we can write g in the following form:

g(x) =
∑
u∈Fk

2

gu(xk+1, . . . , xn)x
u1
1 · · ·xuk

k , ∀x ∈ Fn
2 ,

where gu’s are functions depending only on xk+1, . . . , xn. If a and b are two vectors
from {0k} × Fn−k

2 , then from DaDbg = 0, we have:

DaDbg(x) =
∑
u∈Fk

2

(DaDbgu(xk+1, . . . , xn))x
u1
1 · · ·xuk

k = 0, ∀x ∈ Fn
2 .

Then, fixing an arbitrary v ∈ Fk
2 and denoting by x̄, ā, b̄ the restriction to the last

(n− k) coordinates of x, a and b respectively, we have:

DaDbg(v1 . . . , vk, xk+1, . . . , xn) =
∑
u∈Fk

2

(DāDb̄gu(x̄))v
u1
1 · · · vuk

k =
∑
u⪯v

DāDb̄gu(x̄) = 0,

for all x̄ = (xk+1, . . . , xn) ∈ Fn−k
2 . Here, for u, v ∈ Fk

2, the notation u ⪯ v means
that ui ≤ vi, for all i = 1, . . . , k. Since v is arbitrary, using mathematical induction
on the weight of v, we deduce that

DāDb̄gu(x̄) = gu(x̄) + gu(x̄+ ā) + gu(x̄+ b̄) + gu(x̄+ ā+ b̄) = 0, ∀x̄ ∈ Fn−k
2 ,

for all u ∈ Fk
2. Setting x̄ = 0n−k, we have

gu(ā+ b̄) = gu(ā) + gu(b̄) + gu(0n−k),

for all ā, b̄ ∈ Fn−k
2 . Hence, gu is affine for all u ∈ Fk

2, but then deg(gu) ≤ 1, and so
the algebraic degree of g is at most k + 1.

As an immediate corollary of Lemma 3.1.1, applying it to the coordinate func-
tions of a vectorial Boolean function, we deduce the following vectorial version of
it.

Chapter 3. Characterization of the intersection of D0 and M# 25

Corollary 3.1.2 Let G : Fn
2 → Ft

2 be a vectorial Boolean function. If there exists
an (n − k)-dimensional subspace H of Fn

2 such that DaDbG = 0 for all a, b ∈ H,
then the algebraic degree of G is at most k + 1.

Combining Corollary 3.1.2 and Lemma 2.2.1, we can prove that when the alge-
braic degree of a permutation π is greater than 2, then the function x · π(y) + δ0(x)
from the class D0 is outside M#.

Theorem 3.1.3 Let n be an integer, n ≥ 4. Let π be a permutation of Fn
2 with

the algebraic degree deg(π) ≥ 3. Then, the function f : Fn
2 × Fn

2 → F2 defined by
f(x, y) = x · π(y) + δ0(x) ∈ D0 is a bent function outside M#.

Proof. Assume that f is in the class M#. Then, there exists an n-dimensional
vector subspace V of Fn

2 × Fn
2 such that DaDbf = 0, for all a, b ∈ V . By Lemma

2.1.1, the degree of DaDbδ0(x) is either n − 2 or alternatively DaDbδ0(x) = 0. If
the degree of DaDbδ0(x) is n− 2 ≥ 4− 2 = 2, then since DaDb(x · π(y)) is at most
linear with respect to x, we have DaDbf ̸= 0. Since DaDbf = 0 for all a, b ∈ V , this
implies that DaDbδ0(x) = 0, for all a, b ∈ V .

Now, denote by a1 and b1 the restriction of a and b to the first n coordinates,
respectively. Again, by Lemma 2.1.1, if there exist a, b ∈ V such that a1, b1 ̸= 0n are
nonzero and a1 ̸= b1, then DaDbδ0(x) = Da1Db1δ0(x) ̸= 0, which is a contradiction.
This means that there is at most one nonzero r ∈ Fn

2 such that a1 = r for some
a ∈ V . Hence, there is at least an (n− 1)-dimensional vector subspace V ′ of V such
that it is also a subspace of {0n}×Fn

2 , i.e. there is an (n− 1)-dimensional subspace
H of Fn

2 such that V ′ = {0n} × H. Since for all a′, b′ ∈ V ′ = {0n} × H, we have
Da′Db′x · π(y) = x · Da′Db′π(y) = 0, we conclude that for all v, w ∈ H we have
DvDwπ(y) = 0. From Corollary 3.1.2, we deduce that the algebraic degree of π is
at most 2.

3.2 Permutations with the algebraic degree equal to two

From Theorem 3.1.3, it follows that, in order to characterize D0∩M#, we only have
to characterize quadratic permutations π such that x · π(y) + δ0(x) is in the M#

class. In order to provide such a characterization, we will use the following lemma.

Lemma 3.2.1 Let π : Fn
2 → Fn

2 be a permutation such that there is a linear hy-
perplane V of Fn

2 , on which π is affine. Let l(x) be the linear Boolean function
that defines V , that is, l(x) = 0 if and only if x ∈ V . Then, l(x) or l(x) + 1 is a
component function of π.

Proof. Let A be a linear permutation of Fn
2 that maps the subspace Fn−1

2 × {0}
to V . Then, l(Ax) = xn for all x = (x1, . . . , xn) ∈ Fn

2 , and hence ρ = π ◦A is affine
on the hyperplane defined by xn = 0 (that is Fn−1

2 × {0}). From this, we deduce
that we can write ρ in the form:

ρ(x) = L(x1, . . . , xn−1) + xnT (x1, . . . , xn−1), ∀x = (x, . . . , xn) ∈ Fn
2 ,

26 3.2 Permutations with the algebraic degree equal to two

where L and T are functions from Fn−1
2 to Fn

2 , and L is affine.

Our goal now is to prove that ρ has xn or xn + 1 as a component function.
Without loss of generality, we can assume that L is linear. Otherwise, we can
consider ρ(x) + ρ(0n) since xn or xn +1 is a component function of ρ(x) if and only
if xn or xn + 1 is a component function of ρ(x) + ρ(0n). Let us express L and T as

L(x1, . . . , xn−1) =

l1(x1, . . . , xn−1)
...

ln(x1, . . . , xn−1)

 , and T (x1, . . . , xn−1) =

t1(x1, . . . , xn−1)
...

tn(x1, . . . , xn−1)

 .
The set {l1(x1, . . . , xn−1), . . . , ln(x1, . . . , xn−1)} is a set of n linear Boolean functions
in (n − 1) variables, hence it is linearly dependent. This means that there is a
linear combination of them, i.e. a component function of L which is the constant 0
function. Without loss of generality, we can assume that ln(x1, . . . , xn−1) = 0, for all
(x1, . . . , xn−1) ∈ Fn−1

2 , otherwise we can consider B ◦ ρ for some linear permutation
B of Fn

2 , because B ◦ ρ and ρ have the same component functions. Since π is a
permutation, L is injective, and since ln = 0, L maps Fn−1

2 onto Fn−1
2 × {0}.

Assume now that tn(a1, . . . , an−1) = 0, for some (a1, . . . , an−1) ∈ Fn−1
2 . Then,

ρ(a1, . . . , an−1, 1) = L(a1, . . . , an−1) + T (a1, . . . , an−1)

is in Fn−1
2 ×{0}. Because Lmaps Fn−1

2 onto Fn−1
2 ×{0}, there is some (b1, . . . , bn−1) ∈

Fn−1
2 such that L(b1, . . . , bn−1) = L(a1, . . . , an−1) + T (a1, . . . , an−1), but this would

imply that ρ(b1, . . . , bn−1, 0) = ρ(a1, . . . , an−1, 1), and this is a contradiction, since ρ
is a permutation. Hence, tn(x1, . . . , xn−1) = 1 for all (x1, . . . , xn−1) ∈ Fn−1

2 , and so
we have that ρn(x1, . . . , xn−1, xn) = xn, for all (x1, . . . , xn−1, xn) ∈ Fn

2 . That is, xn
is a component function of ρ = (ρ1, . . . , ρn). We conclude that ρn ◦A−1(x) = l(x) is
a component function of ρ ◦A−1 = π.

Using Lemma 3.2.1 we can now provide a characterization of the quadratic per-
mutations π for which x · π(y) + δ0(x) is in the M# class.

Theorem 3.2.2 Let π be a quadratic permutation of Fn
2 , n ≥ 4. The function

f : Fn
2 × Fn

2 → F2, defined by f(x, y) = x · π(y) + δ0(x), is in the class M# if and
only if there is a linear hyperplane of Fn

2 on which π is affine.

Proof. First assume that f is in the M# class. Then, there is a subspace V of
F2n
2 , with dim(V) = n, such that DaDbf = 0 for all a, b ∈ V . Similarly as in the

proof of Theorem 3.1.3, we can deduce that there is an (n−1)-dimensional subspace
H of V that is also a subspace of {0n} × Fn

2 . Let A be an invertible n × n matrix

such that the 2n × 2n matrix M =

[
I 0
0 A

]
maps {0n} × Fn−1

2 × {0} to H. Hence,

M−1 maps the space V to an n-dimensional space V ′ so that {0n}×Fn−1
2 ×{0} is a

subspace of V ′. Let v be the nonzero vector in V ′ such that vn+1 = . . . = v2n−1 = 0.
Then V ′ = ⟨v, en+1, . . . , e2n−1⟩. Set ϕ = π ◦ A. The function f ′ = f ◦M is a bent
function, also in M#, such that for all a, b ∈ V ′ we have DaDbf

′ = 0. Moreover, as
in the proof of Theorem 3.1.3, we have that DaDb(x ·ϕ(y)) = 0, for all x, y ∈ Fn

2 and

Chapter 3. Characterization of the intersection of D0 and M# 27

all a, b ∈ V ′. From this, we can deduce, similarly as in the proof of Lemma 3.1.1,
that ϕ(y) is of the form:

ϕ(y) = L(y1, . . . , yn−1) + ynT (y1, . . . , yn−1), ∀y = (y1, . . . , yn) ∈ Fn
2 ,

where L and T are affine function from Fn−1
2 to Fn

2 . From this, we deduce that ϕ is
affine on the subspace yn = 0, and hence π is also affine on a linear hyperplane of
Fn
2 .

Now, assume that π(y) is affine on a linear hyperplane of Fn
2 . After possibly

adding a vector to π (which does not change the class membership of f to M#), by
Lemma 3.2.1, we have that π(y) has a linear component function l(y) such that the
restriction of π to the hyperplane l(y) = 0 is affine. Without loss of generality, after
possibly a linear transformation of variables, we can assume that the component
function is l(y) = yn. Similarly as in Lemma 3.1.1, using the fact that π is affine on
yn = 0 and that π is quadratic, we can write π in the form

π(y) =

π1(y1, . . . , yn−1) + π′1(y1, . . . , yn−1)yn
...

πn(y1, . . . , yn−1) + π′n(y1, . . . , yn−1)yn


where πi and π

′
i are affine functions for all i ∈ {1, 2, . . . , n}.

Since yn is a component function of π, there is a subset S of {1, . . . , n} such
that

∑
i∈S(πi(y1, . . . , yn−1) + π′i(y1, . . . , yn−1)yn) = yn. Define the vector v ∈ F2n

2

as the linear combination v =
∑

i∈S ei and set V = ⟨v, en+1, . . . , e2n−1⟩ ⊂ F2n
2 . If

a, b ∈ ⟨en+1, . . . , e2n−1⟩, we have

DaDbf(x, y) =
n∑

i=1

xi(DaDbπi(y1, . . . , yn−1) + ynDaDbπ
′
i(y1, . . . , yn−1)) = 0,

since πi and π
′
i are affine. On the other hand,

Dv(x · π(y)) =
n∑

i=1

vi(πi(y1, . . . , yn−1) + ynπ
′
i(y1, . . . , yn−1)) = yn,

by the definition of v, and so DaDvf = 0, for all a ∈ V . Consequently, we conclude
that DaDbf = 0 for all a, b ∈ V , hence f belongs to M#.

As already mentioned, C. Carlet [9, Proposition 2] provided a sufficient condition
for f(x, y) = x · π(y) + δ0(x) to be outside the M# class. More precisely, if there is
no linear hyperplane on which π is affine, then f ̸∈ M#. In the case of quadratic
permutation, this actually proves Theorem 3.2.2 in one direction. But Theorem 3.2.2
shows that in the case of quadratic permutations, the condition of Carlet is not only
sufficient, but also necessary for f to be outside M#. On the other hand, if π is not
quadratic, from Theorem 3.1.3, we can deduce that the condition in [9, Proposition
2] is not necessary for f to be outside M#.

28 3.2 Permutations with the algebraic degree equal to two

Corollary 3.2.3 Let L be an arbitrary affine permutation of Fn−1
2 , and let P be

an arbitrary permutation of Fn−1
2 with deg(P) ≥ 2. Let π be a permutation of Fn

2

defined by

π(y1, . . . , yn) = (L(y1, . . . , yn−1), 0) + yn(P (y1, . . . , yn−1) + L(y1, . . . , yn−1), 1),

for all (y1, . . . , yn) ∈ Fn
2 . Then, the function f : F2n

2 → F2 defined by f(x, y) =
x ·π(y)+δ0(x) is a bent function outside the class M#. Furthermore, the restriction
of π to the hyperplane yn = 0 is affine.

Proof. The restriction of π to yn = 0 is (L(y1, . . . , yn−1), 0), hence it is affine
because L is affine. On the other hand, because deg(P) ≥ 2, then deg(π) ≥ 3, and
so it follows from Theorem 3.1.3 that f is outside M#.

The following is an example of an explicit bent function in the D0 class for which
we can use Corollary 3.2.3 to deduce that it is outside the M# class, but for which
we are not able to use [9, Proposition 2] to conclude the same.

Example 1 Let n = 4. We represent F23 as F2 (a), where a3 + a + 1 = 0. Let
B = {1, a, a2} be a basis of F23 over F2. We identify F23 and F3

2 via the isomorphism
sending 1 in F23 to (1, 0, 0) in F3

2, a to (0, 1, 0), and a2 to (0, 0, 1). Set L(t) = t, and
P (t) = t3, for all t ∈ F23, in Corollary 3.2.3. Then, we get that the permutation π
has the following form:

π(y1, y2, y3, y4) =


y1 + y2y3y4 + y2y4 + y3y4
y2 + y1y2y4 + y1y3y4

y3 + y1y2y4
y4

 ,
for all (y1, y2, y3, y4) ∈ F4

2. The algebraic normal form of f : F8
2 → F2 defined by

f(x, y) = x · π(y) + δ0(x) is

f(x0, . . . , x7) = x0x1x2x3+x0x1x2+x0x1x3+x0x1+x0x2x3+x0x2+x0x3+
x0x4+x0x5x6x7+x0x5x7+x0x6x7+x0+x1x2x3+x1x2+x1x3+x1x4x5x7+
x1x4x6x7 + x1x5 + x1 + x2x3 + x2x4x5x7 + x2x6 + x2 + x3x7 + x3 + 1.

Using Corollary 3.2.3, we deduce that f is outside the M# class. This has been
additionally verified using the second order derivatives criterion of J. Dillon [21]
(see also Lemma 2.2.1), implemented in Sage. On the other hand, note that the
restriction of π to the linear hyperplane y4 = 0 is linear, hence we cannot deduce
that f is outside M# from [9, Proposition 2].

Chapter 4

Bent functions in C outside M#

This chapter focuses on the class membership problem for the secondary class of
bent functions C. Predominantly, we consider the problem of specifying bent func-
tions in C outside the completed Maiorana-McFarland class M#. In [83], a set of
sufficient conditions for functions in C to be outside M# was specified. The result
is stated in this chapter as Theorem 4.1.1. For a bent function f ∈ C of the form
f(x, y) = x ·π(y)+1L⊥(x), where x, y ∈ Fn

2 , π is a permutation of Fn
2 and L is a suit-

ably chosen subspace of Fn
2 , the sufficient conditions in Theorem 4.1.1 mainly focus

on properties of the permutation π. For example, one important requirement is that
the component functions of π do not admit linear structures. However, although
sufficient and very useful when specifying bent functions in C and D outside M#,
the conditions from [83] are not necessary, see e.g. [84]. In particular, certain mod-
ifications of the identity permutation (swapping two output values) were shown to
provide bent functions which are provably outside M#, even though the component
functions of those permutations admit linear structures. In this context, for bent
functions in C, in Section 4.2 we show a stronger result which enables modifications
of the identity permutation on arbitrary subsets of suitably selected subspaces (for
the purpose of defining π), while at the same time the resulting bent functions will
provably be in C \M#. The component functions of such permutations π still admit
linear structures which again indicate that there is a possibility of relaxing the set of
sufficient conditions in [83]. Notice that the possibility of selecting arbitrary subsets
of a linear subspace for the modification of the identity permutation will give us
many infinite classes of bent functions in C which are provably outside M#.

Using ranks of bent functions, in Section 4.3 we investigate the intersection of
the class C and the partial spread class PSap. In particular, we show that the
probability that an n-variable function in PSap is also in C approaches zero as n
increases.

We also pursue the opposite direction compared to the one in Section 4.2, that
is, we will construct a class of permutations suitable for specifying bent functions in
C, and rely on the set of sufficient conditions from [83] to prove that the functions
are outside M#. To illustrate the hardness of the underlying problem, we first show
in Section 4.4 that coset-based permutations are not suitable for our purpose since
the members of this family of permutations inevitably have component functions
that admit linear structures. Instead, in Section 4.5, we employ a certain method

29

30 4.1 Some known relations between C and M#

of non-trivial decomposition of the vector space Fn
2 into disjoint affine subspaces,

originally considered by L.E. Baum and L.P. Neuwirth in [2]. The permutations are
constructed using the decomposition and suitable permutations in a smaller number
of variables. The possibility of selecting different subspaces in the decomposition
and different permutations in a smaller number of variables provides us with a large
family of bent functions in the C class which are outsideM#. This approach requires
that the dimension of the subspace L is less than n/2. In contrast with this result, in
Section 4.6, we prove that when the dimension of the subspace L is relatively large
and the component functions of π do not admit linear structures, the pair (π−1, L)
cannot satisfy the property (C). Recall that (π−1, L) satisfies the property (C) if
π−1(a + L) is an affine subspace for all a ∈ Fn

2 , and that the property (C) is the
defining property of the class C. This result gives a further insight into what is
likely a trade-off of using the sufficient (but not necessary) conditions in [83] for
distinguishing bent functions in C which are outside M#.

4.1 Some known relations between C and M#

In [83], the authors provided sufficient conditions for bent functions in the classes C
and D to be outside M#, based on the properties of linear structures of the permu-
tations used in the construction. The following result is the slightly corrected version
of [83, Theorem 1] stated in [84], providing a sufficient conditions for functions in
the class C to be outside M#.

Theorem 4.1.1 [84, Theorem 3] Let m = 2n ≥ 8 be an even integer and let
f(x, y) = x · π(y) + 1L⊥(x), where L is any linear subspace of Fn

2 and π is a permu-
tation on Fn

2 such that (π−1, L) has the property (C). If (π, L) satisfies:

1) dim(L) ≥ 2;

2) u · π has no nonzero linear structure for all u ∈ Fn
2
∗,

then f does not belong to M#.

We would like to point out that Theorem 4.1.1 is the result proved in [83], but
the statement in [83] is slightly imprecise. Here, appropriate corrections were made.
More precisely, (π, L) has the property (C) in [83] is replaced by (π−1, L) has the
property (C). Moreover, the condition that π has no linear structures in [83] is
changed to u · π has no linear structures for all u ∈ Fn

2\{0n}, which is the property
actually used in the proof of the theorem in [83].

A similar result, namely [83, Theorem 2], provides sufficient conditions for bent
functions in the D class to be outside M#. Subsequently, in some recent papers
(for example [84]) several constructions of permutations satisfying the sufficient con-
ditions are presented, hence giving rise to some subclasses of the classes C and D,
provably outside M#. In contrast to these results, our goal in Section 4.2 is to
specify some permutations which fail to satisfy the sufficient conditions in Theorem
4.1.1, but which will nevertheless, together with an appropriately chosen subspace,
produce functions in the class C outside M#.

Chapter 4. Bent functions in C outside M# 31

On the other hand, bent functions in C and D can easily lie in M#. This is
already discussed in [84], where the following theorem is proved, providing some
sufficient conditions for functions in the class C to also be in M#.

Theorem 4.1.2 [84] Let m = 2n ≥ 8 be an even integer and let f(x, y) = x ·
π(y) + 1L⊥(x), where L is any linear subspace of Fn

2 and π is a permutation of Fn
2

such that (π−1, L) has property (C). Let S be a linear subspace of Fn
2 . If

1) S ⊆ L⊥;

2) For any u ∈ S, there exists a linear subspace K0 of Fn
2 such that Dv(u ·π(y)) = 0

for any v ∈ K0;

3) DuDvπ(y) = 0 for u, v ∈ K0;

4) dim(S ×K0) ≥ n,

then f belongs to M#.

As an example of application of Theorem 4.1.2 the following result is proved in [84],
utilizing a particular class of involutions over Fn

2 , for the purpose of identifying some
bent functions that belong to both C and M#.

Theorem 4.1.3 [84] Let n ≥ 3 be an integer, and let a, b ∈ Fn
2 . Let σa,b be an

involution that exchanges elements a and b and fixes all other elements, defined as

σa,b(y) =


y, y ∈ Fn

2 \ {a, b}
a, y = b
b, y = a.

(4.1)

Let f(x, y) = x ·σa,b(y)+1L⊥(x), where L = {0n, a, b, a+ b}. Then f belongs to both
C and M#.

However, in Section 4.2 we will show that, if the subspace L is chosen in a
different way and if the dimension of L is large enough, we can still use involutions
σa,b to construct functions in C outside M#.

4.2 A new class of C bent functions outside M#

As mentioned in Section 4.1, our goal in this section is to find permutations with
linear structures, which will, in contrast to Theorem 4.1.1, give us bent functions
in the class C outside M#. Theorem 4.2.1 is a rather general result which achieves
that. Before we state the theorem, a few remarks are in order.

We define the permutation σel,et as

σel,et(y) =


y, y ̸∈ {el, et};
el, y = et;
et, y = el,

(4.2)

32 4.2 A new class of C bent functions outside M#

for all y ∈ Fn
2 , where l, t ∈ {1, 2, . . . , n} with l ̸= t, and furthermore el, et ∈ Fn

2

denote elements in the canonical basis of Fn
2 . It is an example of a permutation

with components admitting linear structures, but it nevertheless can be efficiently
used (as will be demonstrated by Corollary 4.2.2) for the purpose of generating bent
functions in C outside M#. Note that we can write σe1,e2 in the form

σe1,e2(y) = y +

(
n∏

i=1

(yi + (e1)i + 1) +
n∏

i=1

(yi + (e2)i + 1)

)
(e1 + e2),

and so, not only does σe1,e2 have components with linear structures but when n > 2
it has linear coordinate functions. The cardinality of this family of permutations
swapping only two elements of the identity permutation is quite small and therefore
the derived family of bent functions in C outside M# is consequently also small.
Nevertheless, the same approach that employs σe1,e2 can be generalized to modifica-
tions of the identity permutation performed on more than two elements. Especially,
we address the case when S is chosen to be a linear (affine) subspace of certain
dimension which also implies less tedious computations concerning second order
derivatives of bent functions that use this kind of permutations. We notice that in
general the modification of π(y) = y on a subset S of Fn

2 can be compactly written
in the form

σS(y) = y + 1S(y)(y + g(y)), (4.3)

where g must permute S in order to ensure the bijectivity of σS .
In the special case that S is a subspace of Fn

2 , its algebraic normal form can
be given in terms of the basis of its associated orthogonal complement. Namely, if
S⊥ = {y ∈ Fn

2 : y ·s = 0, for all s ∈ S} then 1S⊥(y) =
∏k

i=1(ai ·y+1) if {a1, . . . , ak}
constitutes a basis of the k-dimensional subspace S. Using a similar argument (S
being the orthogonal complement of S⊥) we have 1S(y) =

∏n−k
i=1 (bi · y + 1), where

{b1, . . . , bn−k} is a basis of S⊥.
In what follows, we show that the modification of the identity permutation on

an arbitrary subset S of a suitably chosen subspace of an appropriate dimension,
still leads to bent functions outside M#.

Theorem 4.2.1 Let n, k and t be three integers such that and n ≥ k ≥ t+3 ≥ 4. Let
S be an arbitrary subset of Et = ⟨e1, e2, . . . , et⟩ ⊂ Fn

2 . Let σS(y) be an arbitrary non-
identity permutation of Fn

2 which fixes elements in Fn
2 \ S, (hence |S| ≥ 2). Define

f(x, y) = x · σS(y) + 1E⊥
k
(x), with x, y ∈ Fn

2 , where Ek = ⟨e1, e2, . . . , ek⟩ ⊆ Fn
2 .

Then, f is a bent function in the class C outside M#.

Proof. First, note that S ⊆ Et ⊂ Ek and therefore σS(a + Ek) = a + Ek, for
every a ∈ Fn

2 . Hence, f is a bent function in the class C.
When S ⊆ Et, the permutations of Fn

2 which fix elements in Fn
2 \ S are special

cases of permutations of Fn
2 which fix elements in Fn

2 \ Et, so it is enough to prove
the theorem for the case S = Et. Hence, for the rest of the proof we assume that
S = Et.

Since σEt fixes elements of Fn
2 \ Et, we can represent σEt in the form

σEt(y) = y + 1Et(y)g(y1, . . . , yt), for all y ∈ Fn
2 ,

Chapter 4. Bent functions in C outside M# 33

where g is a function from Ft
2 to Fn

2 of the form g(y1, . . . , yt) = (g′(y1, . . . , yt), 0n−t),
and g′ is a function from Ft

2 to Ft
2. Note that g is not the zero function, because σEt

is not the identity permutation of Fn
2 . Using this, along with the fact that 1Et(y) =∏n

i=t+1(yi+1) and 1E⊥
k
(x) =

∏k
i=1(xi+1), we get the following representation of f :

f(x, y) = x · y +
n∏

i=t+1

(yi + 1)(x · g(y1, . . . , yt)) +
k∏

i=1

(xi + 1), for all x, y ∈ Fn
2 .

Let V be an arbitrary n-dimensional subspace of F2n
2 . To show that f is not in

M#, we will find v′, v′′ ∈ V such that Dv′Dv′′f ̸= 0. Denote by W the subspace
⟨et+1, e2, . . . , en⟩ ⊂ Fn

2 and by U ⊂ F2n
2 the subspace (Ek × {0n}) ⊕ ({0n} ×W),

thus a direct sum of two disjoint subspaces (intersecting at (0n, 0n)). Since V and
U are subspaces of F2n

2 , we have

dim(V ∩ U) = dimV + dimU − dim(V + U),

where V + U is the subspace V + U = {v + u ∈ F2n
2 : v ∈ V, u ∈ U}. We know

that dimV = n, dimU = k + n − t and dim(V + U) ≤ 2n, so dim(V ∩ U) ≥
n+ n+ k− t− 2n = k− t ≥ 3, since k ≥ t+3. Every v ∈ V ∩U can be represented
in a unique way as (e, 0n) + (0n, w), for some e ∈ Ek and w ∈ W , and so we can
define a mapping L : V ∩ U → Ek by L(v) = L((e, 0n) + (0n, w)) = e. Then, L is a
well-defined linear mapping from V ∩U to Ek. Hence, by the rank-nullity theorem,
we have dim(Im(L)) + dim(Ker(L)) = dim(V ∩ U) ≥ 3.

If dim(Im(L)) ≥ 2, then there are two nonzero e′, e′′ ∈ Ek, e
′ ̸= e′′, and some

w′, w′′ ∈W such that v′ := (e′, 0n) + (0n, w
′) and v′′ := (e′′, 0n) + (0n, w

′′) are in V .
Moreover, we have

Dv′Dv′′f(x, y) = c+Dv′Dv′′

(∏n
i=t+1(yi + 1)(x · g(y1, . . . , yt)) +

k∏
i=1

(xi + 1)

)
= c+Dv′Dv′′

(∏n
i=t+1(yi + 1)(x · g(y1, . . . , yt))

)
+De′De′′

(
k∏

i=1
(xi + 1)

)
,

where c ∈ F2 is a constant. By Lemma 2.1.1, De′De′′

(
k∏

i=1
(xi + 1)

)
is a function of

degree k− 2 ≥ 2, and since
∏n

i=t+1(yi +1)(x · g(y1, . . . , yt)) is of degree at most 1 in
x, we can conclude that Dv′Dv′′f ̸= 0.

If dim(Im(L)) ≤ 1, then dim(Ker(L)) ≥ 2. Thus, there are two nonzero w′, w′′ ∈
W , with w′ ̸= w′′, such that v′ := (0n, w

′) and v′′ := (0n, w
′′) are in V . Then, we

have

Dv′Dv′′f(x, y) = c+ (x · g(y1, . . . , yt))Dw′Dw′′

(
n∏

i=t+1

(yi + 1)

)
+ 0,

since x · g(y1, . . . , yt) and
k∏

i=1
(xi + 1) do not depend on yt+1, . . . , yn. Again, by

Lemma 2.1.1, Dw′Dw′′

(
n∏

i=t+1
(yi + 1)

)
is of degree at least n− t− 2 ≥ 1, and hence

we can deduce that Dv′Dv′′f ̸= 0 in this case as well.

34 4.3 Ranks of bent functions in the C class

We conclude that in any case, there are some v′, v′′ in V such that Dv′Dv′′f ̸= 0.
Since V is an arbitrary n-dimensional subspace of F2n

2 , we can conclude that f is
outside M#.

As an immediate corollary of Theorem 4.2.1, we show that, in contrast to Theo-
rem 4.1.3, we can still modify the identity permutation at exactly two positions and
get bent functions outside M#. We just have to be careful about the dimension of
the subspace L.

Corollary 4.2.2 Let n and k be two integers such that n ≥ k ≥ 5. Let σe1,e2(y)
be the permutation of Fn

2 given by (4.2). Define f(x, y) = x · σe1,e2(y) + 1E⊥
k
(x),

with x, y ∈ Fn
2 , where Ek = ⟨e1, e2, . . . , ek⟩ ⊆ Fn

2 . Then, f is a bent function outside
M#.

Proof. The result follows directly from Theorem 4.2.1 by setting t = 2 and
S = E2 = ⟨e1, e2⟩ ⊂ Fn

2 .

4.3 Ranks of bent functions in the C class

In this section, we will consider ranks of bent functions in the class C. More precisely,
we will give an upper bound for the rank of bent functions in the class C. Then, we
will compare this bound with ranks of PSap functions and use that to prove that
almost all bent functions in the class PSap are outside the class C.

We recall here some basic definitions about ranks of Boolean functions, and for
a more detailed study we refer to [80]. Let f : Fk

2 → F2 be a Boolean function and
let Af be the 2k × 2k matrix, with rows and columns indexed by elements of Fk

2,
whose (x, y)-th entry is Af (x, y) = f(x + y), for x, y ∈ Fk

2. The rank of a Boolean
function f , denoted by rank(f), is defined to be the rank of the matrix Af over the
field F2.

Proposition 4.3.1 Let E be a vector subspace of Fn
2 , and let f : F2n

2 → F2 be a
bent function in the class C given by f(x, y) = x · π(y) + 1E(x), x, y ∈ Fn

2 , for some
permutation π of Fn

2 . Then rank(f) ≤ 3 · 2n.

Proof. The idea for the proof is similar to the one used in [80], when showing
a similar bound for bent functions in the class M#. For (x, y), (a, b) ∈ Fn

2 × Fn
2 we

have

Af ((x, y), (a, b)) = f((x, y) + (a, b)) = (x+ a) · π(y + b) + 1E(x+ a).

To cancel the 1E(x+a) term, we add the row indexed by (x, 0n) to the row indexed
by (x, y) when y ̸= 0n. Thus, the ((x, y), (a, b)) entry of Af becomes

(x+ a) · (π(y + b) + π(b)).

Now, adding the column indexed by (0n, b) to the column (a, b) when a ̸= 0n, we get
that the entry ((x, y), (a, b)), with y, a ̸= 0n, evaluates to (a ·(π(y+b)+π(b)). Notice
that this expression does not depend on x, so we can use this to get a lot of zeroes

Chapter 4. Bent functions in C outside M# 35

in Af in the following way. Add the row indexed by (0n, y) to the row indexed by
(x, y), for all x ̸= 0n and y ̸= 0n. Then, we get that the entry ((x, y), (a, b)), with
a ̸= 0n, x ̸= 0n, and y ̸= 0n equals (a · (π(y + b) + π(b)) + (a · (π(y + b) + π(b)) = 0.
Hence, by possibly rearranging rows of the matrix and using elementary row and
column operations, we can transform the matrix Af to a matrix of the formA A′

B B′

C 0


where A,B are 2n × 2n matrices, A′, B′ are 2n × (22n − 2n) matrices, C is a (22n −
2n+1)× 2n matrix, and 0 is (22n − 2n+1)× (22n − 2n) matrix. From this, we have

rank(f) ≤ rank
(
A A′)+ rank

(
B B′)+ rank

(
C 0

)
≤ 2n + 2n + 2n = 3 · 2n.

Theorem 5.11 in [80] and remarks after it, state that for any given integer c, the
probability that a bent function in PSap has rank less than c · 2n approaches zero
as n increases. Combining this result with Proposition 4.3.1, we get the following
result.

Corollary 4.3.2 The probability that a 2n-variable bent function from the class
PSap is also in the class C approaches zero as n increases.

Proof. From Proposition 4.3.1, we have that when f : F2n
2 → F2 is in the C class,

then rank(f) ≤ 3 ·2n. The corollary then follows from the result in [80], which states
that, for any given integer c, the probability that a bent function in PSap has rank
less than c · 2n approaches zero as n increases.

4.4 Coset-based permutations and permutations with-
out linear structures

In this section, we consider the problem of using Theorem 4.1.1 to construct bent
functions in the C class, which are outside the completed Maiorana-McFarland class.
From Theorem 4.1.1, we deduce that, in order to construct functions in C outside
M#, it is enough to construct permutations of Fn

2 such that (π−1, L) has property
(C) for some subspace L of Fn

2 with dim(L) ≥ 2, and such that u · π has no nonzero
linear structures for all u ∈ Fn

2\{0n}. In other words, non-trivial component func-
tions of π should have no nonzero linear structures. Because of that, for the rest of
this chapter, we will focus on the construction of permutations over Fn

2 satisfying
the mentioned properties.

To satisfy the (C) property, we note that the main condition that π−1(a + L)
is a flat (affine subspace), for a k-dimensional subspace L, can be easily achieved
by decomposing the space Fn

2 into a set of disjoint cosets (flats) of some fixed k-
dimensional subspace L′ of Fn

2 . Indeed, let A denote a set of coset representatives

36 4.4 Coset-based permutations and permutations without linear structures

so that Fn
2 = ∪a∈A(a + L), where clearly |A| = 2n−k. Let us denote [a] := a + L.

Then, for any fixed k-dimensional subspaces L and L′ we can define a mapping

a+ L
ϕ7→ a′ + L′; a ∈ A, a′ ∈ A′, (4.4)

where A and A′ are the sets of coset representatives with respect to L and L′,
respectively. The necessary and sufficient condition that ϕ can be extended to
a permutation on Fn

2 is that ϕ : A → A′ is one-to-one. Then, we can extend
it by deciding which elements of the coset a + L maps to which elements of the
coset ϕ(a + L). More formally, given a permutation ϕ on cosets we can take some
bijection Φ[a] from a+ L to ϕ(a+ L), and then define our permutation Φ′ on Fn

2 to
be Φ′(x) = Φ[a](x), where x ∈ [a], for every x ∈ Fn

2 .

Remark 1 Denoting by Pk the number of k-dimensional subspaces of Fn
2 , one can

show that the number of permutations obtained in this way is at least Pk(2
n−k)!(2k)!.

We will show that every permutation obtained in this way has at least one
component function with nonzero linear structure. Before we state and prove the
result, we need to add a few remarks about coordinate and component functions.

We have defined coordinate and component functions in a way which is standard
in the literature, for example in [12] or [20]. In the proof of the next theorem,
we will use a slight generalization of the definition which we explain now. Let
F : Fn

2 → Fn
2 be a vectorial Boolean function. The Boolean functions f1, . . . , fn

defined, at every x ∈ Fn
2 , by F (x) = (f1(x), . . . , fn(x)), are called the coordinate

functions of F , and linear combinations (over F2) of the coordinate functions of F
are called the component functions of F . If we denote the standard basis vectors
of Fn

2 by ei = (0, . . . , 0, 1, 0, . . . , 0) for i = 1, . . . , n (the i-th coordinate is 1 and the
rest are 0), then, for every x ∈ Fn

2 we can write

F (x) = (f1(x), . . . , fn(x)) = f1(x)e1 + . . .+ fn(x)en.

The product fi(x)ei is well defined when x ∈ Fn
2 is fixed, since it is a product of a

vector, ei ∈ Fn
2 , and a scalar, fi(x) ∈ F2.

If B = {b1, b2, . . . , bn} is any (ordered) basis for Fn
2 , we can use the same idea as

for the standard basis and define the coordinate functions of F with respect to the
basis B as the Boolean functions f ′1, . . . , f

′
n, which are defined, at every x ∈ Fn

2 , by

F (x) = f ′1(x)b1 + f ′2(x)b2 + . . .+ f ′n(x)bn.

As in the standard basis case, the product f ′i(x)bi is well defined when x ∈ Fn
2 is

fixed, as a product of a vector bi ∈ Fn
2 and a scalar f ′(x) ∈ F2. Furthermore, we

know that f ′1, . . . , f
′
n exist and are well defined, because B is a basis for Fn

2 . Linear
combinations (over F2) of f ′1, . . . , f

′
n are called the component functions of F with

respect to the basis B.

Let A = {a1, . . . an} and B = {b1, . . . bn} be two bases of Fn
2 . The set of coordi-

nate functions fA1 , . . . , f
A
n of F with respect to the basis A might be different from

the set of coordinate functions fB1 , . . . , f
B
n of F with respect to B, but the set of all

Chapter 4. Bent functions in C outside M# 37

component functions of F with respect to either A or B is the same. To see this,

represent every ai, for i ∈ {1, . . . , n}, as ai =
∑n

j=1 α
(i)
j bj , where α

(i)
j ∈ F2. Then

from

F (x) =

n∑
i=1

fAi (x)ai =
n∑

i=1

fAi (x)

 n∑
j=1

α
(i)
j bj

 =
n∑

j=1

(
n∑

i=1

α
(i)
j fAi (x)

)
bj ,

we conclude that fBj =
(∑n

i=1 α
(i)
j fAi

)
for every j ∈ {1, 2, . . . n}. Thus, the set of

all component functions of F with respect to the basis B is a subset of the set of all
component functions of F with respect to the basis A, and reversing the roles of A
and B, we get the equality. This means that we can just say the set of component
functions of F without having to refer to a specific basis.

We are now ready to prove the following result, which asserts that the construc-
tion of permutations described at the beginning of this section generates permu-
tations whose component functions admit nonzero linear structures. This shows
that the simple idea of taking two (not necessarily different) subspaces of Fn

2 , and
mapping their cosets in some bijective way to construct a permutation with the
(C) property, will necessarily produce a permutation with components admitting
non-trivial linear structures, hence we will not be able to use Theorem 4.1.1 to show
that the constructed bent function in the C class is outside M#.

Proposition 4.4.1 Let L and P be two k-dimensional subspaces of Fn
2 , and let

π : Fn
2 → Fn

2 be a permutation such that π maps cosets of L to cosets of P , i.e.
π(a+ L) = π(a) + P , for every a ∈ Fn

2 . Then, π has at least 2(n−dim(L)) component
functions such that their space of linear structures contains L.

Proof. Assume that d := dim(L) ̸= 0, n, (if L = {0n}, or L = Fn
2 , the result is

trivially true). Let P ′ be a subspace of Fn
2 such that P ∩P ′ = {0n} and P ⊕P ′ = Fn

2 .
Let B1 = {p1, p2, . . . , pd} be a basis for P and B2 = {p′1, p′2, . . . , p′n−d} be a basis for
P ′. Then, B = B1 ∪ B2 is a basis of Fn

2 . Denote by πi : Fn
2 → F2, i ∈ {1, 2, . . . n},

the coordinate functions of π with respect to the basis B, i.e. π1, . . . , πn are Boolean
functions such that, for every (fixed) x ∈ Fn

2 ,

π(x) = π1(x)p1 + . . .+ πd(x)pd + πd+1(x)p
′
1 + . . .+ πn(x)p

′
n−d.

Now, select an arbitrary v ∈ L and x ∈ Fn
2 and fix these values. Since x and

x + v are in the same coset of L, we have that π(x) and π(x + v) are in the same
coset of P . This means that there exists q ∈ P such that π(x + v) = π(x) + q.
Rewriting this, we have

π(x+ v) + π(x) = q,

and since q ∈ P we have that πd+i(x+v)+πd+i(x) = 0, for every i ∈ {1, 2, . . . , n−d}.
Since x ∈ Fn

2 and v ∈ L were arbitrary, this implies that every component function
of the form

∑n−d
i=1 αiπd+i(x), αi ∈ F2, has L as a subspace of its linear structure

space. So, there are at least 2n−d component functions of π such that their linear
structure space contains L.

38 4.5 Permutations via non-trivial decompositions of Fn
2

Note that when the dimension of L is in {1, 2, . . . , n − 1}, (which are the di-
mensions we are actually interested in) this result implies that for a permutation
constructed as described at the beginning of this section, there will always be at
least one non-trivial component function with a nonzero linear structure.

4.5 Permutations via non-trivial decompositions of Fn2
In this section, we describe a different (compared to the one in Section 4.4), non-
trivial decomposition of Fn

2 into affine subspaces, presented in [2], which is more
suitable for constructing functions in C outside M#. Essentially, this decomposition
is a collection of nonparallel affine subspaces which means that the disjoint subspaces
are not cosets of the same affine subspace of certain dimension. This is the main
reason why such a decomposition is suitable for finding the permutations whose
components do not admit linear structures.

We start by taking an arbitrary subspace of Fn
2 , let us denote it by E, with

1 ≤ d := dim(E) ≤ (n−1)/2. Then, we take another subspace V of Fn
2 such that Fn

2

is the direct sum of E and V , i.e. E∩V = {0n}, and E⊕V = Fn
2 . Moreover, we will

need d + 1 permutations IV , σ1, . . . , σd on V , (here IV is the identity permutation
on V) such that any non-trivial linear combination of them is again a permutation
of V . To achieve this, we interpret V as the finite field F2n−d in the following way.
We define a mapping L between the vector subspace V and the finite field F2n−d .
Let u1, . . . , un−d be the basis of the subspace V and let α be a primitive element of
the finite field F2n−d . Then, we define L : ui 7→ αi−1 whereas the remaining elements
are mapped in such a way as to preserve isomorphism between additive structures.
That is,

L

(
n−d∑
i=1

βiui

)
=

n−d∑
i=1

βiα
i−1, (4.5)

where βi ∈ F2. Using such a mapping we can induce a multiplication operation on
elements of the subspace V by defining

vi ⋆ vj = L−1(L(vi)L(vj)), for any vi, vj ∈ V. (4.6)

With “ ⋆ ” defined in this way (V,+, ⋆) has the structure of a finite field. Moreover,
L becomes a field isomorphism between V and F2n−d .

Now we take d+ 1 linearly independent vectors w0 = 1V , w1, . . . , wd ∈ V , where
d ≤ n − d − 1, and define σi by σi(v) = wi ⋆ v as a permutation of V . Here, 1V
denotes the multiplicative identity in (V,+, ⋆), which by (4.5) and (4.6) corresponds
to u1 ∈ V . Constructed like this, IV , σ1, . . . , σd have the desired property that
any non-trivial linear combination of them is again a permutation of V because
1V , w1, . . . , wd are linearly independent.

Let e1, . . . , ed be a basis for E, and let V = {v1, v2, . . . , v2n−d}. For every i ∈
{1, 2, . . . , 2n−d}, we define the following set

Ai :=

{
vi +

∑
k∈S

(σk(vi) + ek) | S ⊆ {1, 2, . . . , d}

}
.

Chapter 4. Bent functions in C outside M# 39

Then, according to Theorem 2 in [2], Ai are pairwise disjoint affine subspaces of
dimension d and they cover the whole Fn

2 . Moreover, the subspaces A∗
i := vi + Ai

are also pairwise disjoint (i.e. have only 0n in common).
We can use this decomposition to construct permutations with the (C) property

in the following way. Take an arbitrary d-dimensional subspace of Fn
2 , for simplicity

we can take E, and map each Ai to some coset of E in a one-to-one way. Therefore,
we are free to select which Ai maps to which coset of E, and then we can specify
which element of Ai maps to which element of the corresponding coset of E, also in
a one-to-one way. Having specified this, we get a mapping, denote it by ϕ, from Fn

2

to itself. Since Ai are pairwise disjoint, ϕ is a permutation of Fn
2 . Also, it follows

from the construction that the pair (ϕ−1, E) satisfies the property (C).
To ensure that ϕ does not have any component functions admitting linear struc-

tures, we need to further specify the mappings that we use in the construction.
Let φ(v) = L−1(L(v)m) = v ⋆ v ⋆ . . . ⋆ v︸ ︷︷ ︸

m-times

= vm be a monomial permutation of V

whose component functions are without linear structures. From [19], we know that
m needs to be such that gcd(2n−d − 1,m) = 1, and wt2(m) ≥ 3. Also, let ψ be an
arbitrary permutation of E with no component functions admitting linear structures.
(For example, we can again use results from [19], and take ψ to be a monomial
permutation of E with no component functions admitting linear structures, using
the same approach we used for V and φ.) Having specified φ and ψ, we can now
define a function ϕ on Fn

2 in the following way:

• For x = v + e ∈ Fn
2 , v ∈ V and e ∈ E, where v ̸= 0n, represent e as

e =
∑

k∈Se
ek, Se ⊆ {1, 2, . . . d}. We know that IV +

∑
k∈Se

σk is a linear
permutation of V , (since it depends on e, we can denote it by Pe) and so for
each v ∈ V there exists w ∈ V such that v =

(
IV +

∑
k∈Se

σk
)
(w) = Pe(w).

Define
ϕ(v + e) = φ(w) + e. (4.7)

Since v = Pe(w), we can write it as ϕ(v + e) = φ(P−1
e (v)) + e.

• For x = v + e ∈ E ⊂ Fn
2 , thus having v = 0n, we define:

ϕ(x) = ψ(x). (4.8)

Note that we can now express Ai = {Pe(vi) + e | e ∈ E}. It follows that ϕ maps
Ai exactly to φ(vi) + E and is a permutation of Fn

2 . Therefore, (ϕ−1, E) has the
property (C). Since φ(P−1

e (0n)) = 0n, for every e in E, we can write (4.7) and (4.8)
as one equation in the following way:

ϕ(x) = ϕ(v + e) = φ
(
P−1
e (v)

)
+ e+ δ0(v) (e+ ψ(e)) , for all x ∈ Fn

2 . (4.9)

Here, we write x as x = v + e for some v ∈ V , e ∈ E. Also, δ0(v) denotes the Dirac
function, namely δ0 : V → F2 equals 1 when v = 0n ∈ V and 0 otherwise.

The following result shows that the component functions of ϕ do not admit linear
structures. In the theorem below, we will treat V interchangeably as a subspace
(V,+) of Fn

2 , and as a finite field (V,+, ⋆), where the addition is again inherited
from Fn

2 and multiplication ⋆ is defined by (4.6). Moreover, 1V will denote the
multiplicative identity in (V,+, ⋆).

40 4.5 Permutations via non-trivial decompositions of Fn
2

Theorem 4.5.1 Let E and V be two subspaces of Fn
2 such that E ∩ V = {0n},

E ⊕ V = Fn
2 , and 1 ≤ d := dim(E) ≤ (n− 1)/2. Let 1V , w1, . . . , wd ∈ V be linearly

independent vectors and σi be the permutation of V defined by σi(v) = wi ⋆v. Let m
be such that gcd(2n−d − 1,m) = 1, wt2(m) ≥ 3, and let φ(v) = v ⋆ v ⋆ . . . ⋆ v︸ ︷︷ ︸

m-times

= vm,

for all v ∈ V . Let ψ be a permutation of E whose component functions do not admit
linear structures. Then, the function ϕ : Fn

2 → Fn
2 defined by (4.7) and (4.8) is a

permutation of Fn
2 whose (non-trivial) component functions do not admit (nonzero)

linear structures.

Proof. By the discussion preceding the Theorem, we know that ϕ is well
defined and that it is a permutation of Fn

2 , so we just need to prove that ϕ has no
component functions with linear structures.

Let B = {u1, u2, . . . , un−d, e1, e2, . . . , ed} be a basis for Fn
2 , such that ui ∈ V

and ej ∈ E. Let {ϕV1 , . . . , ϕVn−d, ϕ
E
1 , . . . , ϕ

E
d } be the coordinate functions of ϕ with

respect to the basis B, i.e. ϕVi , ϕ
E
j : Fn

2 → F2 are such that

ϕ(x) =
n−d∑
i=1

ϕVi (x)ui +
d∑

j=1

ϕEj (x)ej , ∀x ∈ Fn
2 . (4.10)

Take an arbitrary a ∈ Fn
2
∗, represent it as a = v′ + e′, where v′ ∈ V and e′ ∈ E,

and fix it. Also, represent the variable x as x = v+e with v ∈ V and e ∈ E. Further,
denote IV +

∑
k∈Se

σk by Pe, where Se is the set of indices such that e =
∑

k∈Se
ek.

From (4.9), we deduce that the sum ϕ(x+ a) + ϕ(x) = ϕ(v + e+ v′ + e′) + ϕ(v + e)
is equal to

φ
(
P−1
e+e′(v + v′)

)
+φ

(
P−1
e (v)

)
+e′+δ0(v+v

′)
(
e+ e′ + ψ(e+ e′)

)
+δ0(v) (e+ ψ(e)) .

The coordinate functions of ϕ(x+ a) + ϕ(x) corresponding to the basis elements in
V are the coordinate functions of φ

(
P−1
e+e′(v + v′)

)
+ φ

(
P−1
e (v)

)
, and similarly the

coordinate functions corresponding to the basis of E are the coordinate functions of
e′ + δ0(v+ v′) (e+ e′ + ψ(e+ e′)) + δ0(v) (e+ ψ(e)). According to this, we will split
the proof into three cases.

Case I: The component functions of the form
∑n−d

i=1 ciϕ
V
i (x).

In this part of the proof, we will show that the coordinate functions ϕVi from
(4.10) (corresponding to the basis elements in V), and their (non-trivial) linear
combinations, do not admit linear structures. This will be done by proving that the
component functions of φ

(
P−1
e+e′(v + v′)

)
+ φ

(
P−1
e (v)

)
are non-constant for every

nonzero element v′ + e′.

• If e′ = 0n, implying that v′ ̸= 0n, set r = 1V +
∑

k∈Se
wk ∈ V . Then

φ
(
P−1
e (v + v′)

)
+ φ

(
P−1
e (v)

)
is equal to

φ
(
(v + v′) ⋆ r−1

)
+ φ

(
v ⋆ r−1

)
= r−m ⋆ (vm + (v + v′)m),

where r−1 ∈ V satisfies r ⋆ r−1 = 1V . We know that φ has no component
functions with linear structures since wt2(m) > 2 (this is a direct consequence

Chapter 4. Bent functions in C outside M# 41

of [19], Theorem 5), therefore (vm + (v + v′)m) has no constant component
functions and it only depends on the variable v. This term is multiplied (using

the operation ⋆) with the nonzero r−m =
(
1V +

∑
k∈Se

wk

)−m ∈ V , which
only depends on e. This product cannot be constant.

• If e′ ̸= 0n, then set e = 0n. Let S′ be the set for which e′ =
∑

k∈S′ ek, and
let b = (1V +

∑
k∈S′ wk)

−1 ∈ V . Then P−1
e′ (v) = b ⋆ v, for all v ∈ V . We

know that b ̸= 0, 1V ; since 1V , w1, . . . , wd are linearly independent and S′ ̸= ∅.
Then, φ

(
P−1
e′ (v + v′)

)
+ φ

(
P−1
0n

(v)
)
is equal to

(b ⋆ (v + v′))m + vm = (b ⋆ (v + v′))m + (b ⋆ v)m + (1V + bm) ⋆ vm.

All component functions of (b ⋆ (v+ v′))m + (b ⋆ v)m are of degree strictly less
than wt2(m), while all component functions of (1V + bm) ⋆ vm are of degree
exactly wt2(m). We conclude that the component functions of (b⋆(v+v′))m+
(b ⋆ v)m + (1V + bm) ⋆ vm are of degree wt2(m), and hence not constant.

Case II: The component functions of the form
∑d

i=1 ciϕ
E
i (x).

In this part, we show that the component functions derived from the coordinate
functions of ϕ(x + a) + ϕ(x) corresponding to the basis elements in E, that is the
component functions of e′+δ0(v+v

′) (e+ e′ + ψ(e+ e′))+δ0(v) (e+ ψ(e)), are non-
constant.

Let v = v1u1+ . . .+vn−dun−d, and v
′ = v′1u1+ . . .+v

′
n−dun−d, where vi, v

′
i ∈ F2.

Then, we can write e′ + δ0(v + v′) (e+ e′ + ψ(e+ e′)) + δ0(v) (e+ ψ(e)) as(
n−d∏
i=1

vi

)(
e′ + ψ(e+ e′) + ψ(e)

)
+ fv′(v)

(
e+ e′ + ψ(e+ e′)

)
+ g(v) (e+ ψ(e)) + e′,

where fv′(v) and g(v) are Boolean functions with the algebraic degrees strictly less
than n− d.

• Let e′ ̸= 0n. Since ψ has no component function with linear structure, the com-
ponent functions of (e′ + ψ(e+ e′) + ψ(e)) are non-constant, and we conclude
that component functions of e′+δ0(v+v

′) (e+ e′ + ψ(e+ e′))+δ0(v) (e+ ψ(e))
are non-constant as well, since the algebraic degrees of fv′(v) and g(v) are
strictly less than n− d.

• If e′ = 0n, then fix v = 0n(̸= v′). We have

e′ + δ0(v + v′)
(
e+ e′ + ψ(e+ e′)

)
+ δ0(v) (e+ ψ(e)) = e+ ψ(e),

and component functions of e + ψ(e) are non-constant since ψ has no affine
component functions.

Case III: The component functions of the form
∑n−d

i=1 ciϕ
V
i (x)+

∑d
j=1 c

′
jϕ

E
j (x), such

that there exist i0, j0 such that ci0 = c′j0 = 1.

• If e′ ̸= 0n, the degree of the part
∑n−d

i=1 ci(ϕ
V
i (v+v

′+e+e′)+ϕVi (v+e)), with
respect to the variable v, is wt2(m) ≤ n − d − 1 as shown in Case I, and the

42 4.5 Permutations via non-trivial decompositions of Fn
2

degree of the part
∑d

j=1 c
′
j(ϕ

E
j (v+ v′+ e+ e′)+ϕEj (v+ e)) with respect to the

variable v is n− d (from Case II). Therefore we conclude that the component
function

∑n−d
i=1 ciϕ

V
i (x) +

∑d
j=1 c

′
jϕ

E
j (x) has no linear structures in this case.

• If e′ = 0n, set e = 0n and fix it. As shown in Case I,
∑n−d

i=1 ci(ϕ
V
i (v+v

′)+ϕVi (v))
is a component function of φ(v + v′) + φ(v), and so, it is non-constant. Since
it has degree strictly less than wt2(m) ≤ n− d− 1, we can choose two vectors
in V different from 0n and v′, such that it is equal to 0 for one of the vectors,
and 1 for the other one (follows from Theorem 2.0.1). On the other hand,∑d

i=1 c
′
i(ϕ

E
i (v+v

′)+ϕEi (v)) is a component function of (δ0(v+v
′)+δ0(v))ψ(0),

and so it is 0, when v ̸= 0n, v
′. This proves that the component function∑n−d

i=1 ciϕ
V
i (x)+

∑d
j=1 c

′
jϕ

E
j (x) has no linear structures in this case as well.

Combining Theorem 4.1.1 and Theorem 4.5.1, we have the following corollary.

Corollary 4.5.2 Let ϕ be as in Theorem 4.5.1. Then the function f : F2n
2 → F2

defined by f(x, y) = x · ϕ(y) + 1E⊥(x) is a function in the class C outside M#.

Note that when dim(E) ≥ 4, one possible choice for permutations φ and ψ is the
inverse function, i.e. φ(v) = v−1 and ψ(e) = e−1, since they will not have component
functions with linear structures (see [19]). This proves the following corollary.

Corollary 4.5.3 Let n be an integer, and let E be a subspace of Fn
2 such that

4 ≤ dim(E) ≤ (n − 1)/2. Then there is a permutation ϕ of Fn
2 with no non-trivial

component functions with nonzero linear structures, such that ϕ−1 maps cosets of E
to affine subspaces.

The example below describes in detail the use of Theorem 4.5.1 for the purpose of
constructing permutations that satisfy the property (C), whose component functions
at the same time do not admit linear structures.

Example 2 For n = 9, let E be the subspace of F9
2 generated by:

e1
e2
e3
e4

 =


(1, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 1, 0, 1, 0, 1, 1, 1, 1)
(0, 0, 1, 0, 0, 0, 1, 1, 1)
(0, 0, 0, 0, 1, 1, 0, 0, 1)

 .
Then dim(E) = 4. Now we need to take a subspace V of F9

2 such that E ∩ V = {09}
and E⊕V = F9

2. For example, we can set V to be the subspace generated by vectors
{u1, u2, u3, u4, u5}, where:

u1
u2
u3
u4
u5

 =


(0, 1, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 1, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0, 0)

 .

Chapter 4. Bent functions in C outside M# 43

We can now identify V with the finite field F25 in the following way. Let α
be a root of p(x) = x5 + x2 + 1. The polynomial p(x) is irreducible over F2, so
{1, α, α2, α3, α4} generate F25 over F2. Let L(ui) = αi−1, and extend this map-
ping to V so it remains linear, as described in the beginning of the section. De-
fine multiplication on V , so that L remains an isomorphism of the fields, i.e. set
vi ⋆ vj = L−1(L(vi)L(vj)). Set σk(v) = uk+1 ⋆ v for k ∈ {1, 2, 3, 4}. Furthermore, set
φ(v) = v−1 = v30 for every v ∈ V . Because wt2(30) > 2, we know that φ has no
component functions with linear structure.

In a similar way, we can relate the subspace E to the finite field F24 in order to
define the mapping ψ. We use a root γ of the polynomial x4 + x+ 1. We can then
set ψ(e) = e−1 = e14, for every e ∈ E. Since wt2(14) > 2, we conclude that ψ has
no linear structure. Finally, we use equations (4.7) and (4.8) to get the permutation
ϕ of F9

2. Constructed in this way, ϕ is equal to ϕ = (ϕ1, ϕ2, . . . , ϕ9), where the
coordinate functions, in their hexadecimal form, are given by:

ϕ1 = 00000c00000000300000000000000000fffffffffffffffffffdffffbfffffff

ffdffffff7ffffffffffffffffffffff00000000000000000000000000000000

ϕ2 = a80c9bf1fc26401967ad21f58ae56f47cab4546e11637ae5376df06206d38a3c

43250f29af3158c36fb8b916def5a8618629ee636751ca4b85c0c5dfcf9207ac

ϕ3 = 8f1ac93597315caf981928df582a0be74c71759e72c2b59ecafb4a2c5ca3046d

939368c1f1c680e537eb5b2518e368d9ba927101456e8fb1f492df9cb5233638

ϕ4 = af792b805dca3dd8b54799c312620f99fc5ae1295a0cab771f41266f013b3958

01e862c62fbc9f85fc9a2d5d590c49bb64b856f012dac36a3a97c1f8d5afdc40

ϕ5 = 90fc8634fc09d072f6d64a4d549f8e9edbe986c5a41853ae01d9336c577336f0

df4103c64ac46303425e98af497efae5939d942b4ac617e5090f5b7ccc90f1ea

ϕ6 = aaaaaeaa55555565aaaaaaaa55555555aaaaaaaa55555555aaa8aaaa55555555

55655555a6aaaaaa55555555aaaaaaaa55555555aaaaaaaa55559555aaaaaaaa

ϕ7 = 8c2213a784cd16f4d1ecd6460bbbad64da4a73445d64e20d52be8bd37eb638e1

d938b4cd2c548c2e52a4fb48d5b91ee31efd6d9b7c7b254638210d8988d3ae70

ϕ8 = fffff3ffffffffffffffffffffffffff00000000000000000002000040000000

ffffffffffffffffffffffffffffffff00000000000000000000000000000000

ϕ9 = 55555555555555455555555555555555aaaaaaaaaaaaaaaaaaabaaaa2aaaaaaa

55755555555555555555555555555555aaaaaaaaaaaaaaaaaaaa6aaaaaaaaaaa

To get the truth table of ϕ1, for example, we need to reverse its hexadecimal string
(due to the implementation in the mathematical software Sage) and to convert every
hexadecimal number to its binary representation, 0 to 0000, 1 to 1000, . . . , f to
1111. This finally gives a binary string of length 512 which is the truth table of our
function ϕ1 written in the lexicographic order, i.e. in the form

ϕ1(0, 0, . . . , 0), ϕ1(1, 0, . . . , 0), ϕ1(0, 1, . . . , 0), . . . , ϕ1(1, 1, . . . , 1).

Corollary 4.5.2 implies that the 18-variable function f(x, y) = x · ϕ(y) + 1E⊥(x)
constructed in this way is a bent function in C outside M#.

44 4.6 A trade-off between the (C) property and linear structures

4.6 A trade-off between the (C) property and linear
structures

In this section, we will prove that for a permutation π of Fn
2 there is a trade-off

between the property that no component functions of π admit linear structures,
and the requirement that π−1 satisfies the (C) property for some subspace E. The
dimension of E will play an essential role in this trade-off. Note that Corollary 4.5.3
states that for 4 ≤ dim(E) ≤ (n − 1)/2 there is a permutation whose components
do not have linear structures and such that (π−1, E) satisfies the (C) property. In
contrast, Theorem 4.6.2 below claims that when the dimension of E is relatively
large and (π−1, E) has the (C) property, the permutation π will necessarily have
some component functions with nonzero linear structures.

In order to prove our result, we will use the following result from [2].

Theorem 4.6.1 [[2], Theorem 3] If n > 2d(d − 1) + 1, then every cover of Fn
2 by

affine subspaces of dimension n−d is a cross product with at least one trivial factor
of dimension at least n− 2d(d− 1)− 1.

Let us give a quick overview of the notation used in [2] in the statement of
Theorem 4.6.1. The term cover is used to denote a family {Ai}ti=1 of affine subspaces
of Fn

2 such that Ai ∩ Aj = ∅ when i ̸= j, and such that Fn
2 = ∪t

i=1Ai. Also, a cover

{Ai}ti=1 of Fn
2 is a cross product if it is of the form {Bj×Ck}

(t0,t1)
(j,k)=(1,1) where {Bj}t0j=1

is a cover of Fr
2, {Ck}t1k=1 is a cover of Fn−r

2 , and × is the standard Cartesian product.
The cover {Fn

2} is called the trivial cover of Fn
2 .

We will now combine Theorem 4.6.1 with a method similar to the one used in
Section 4.4, to prove the result mentioned at the beginning of this section.

Theorem 4.6.2 Let n and d be two integers such that d ≥ 1 and n > 2d (d− 1)+1.
Let π : Fn

2 → Fn
2 be a permutation. If there exists a linear subspace E with dimension

dim(E) = n−d, such that
(
π−1, E

)
has the (C) property, i.e. π−1(a+E) is an affine

subspace for every a ∈ Fn
2 , then π has at least one (non-trivial) component function

that admits (nonzero) linear structures.

Proof. For any given permutation π on Fn
2 , assume there exists a subspace E so

that
(
π−1, E

)
satisfies the (C) property. Let {ai}2

d

i=1 be a set of coset representatives
of E, and let Ai = π−1(ai + E). Since π is a permutation and

(
π−1, E

)
has the

(C) property, {π−1(ai + E)}2di=1 = {Ai}2
d

i=1 is a cover of Fn
2 by (n − d)-dimensional

affine subspaces. Now we apply Theorem 4.6.1 to the cover {Ai}2
d

i=1, which implies
that there exist a subspace W ⊂ Fn

2 of dimension at least n− 2d(d− 1)− 1 ≥ 1 and
affine subspaces Bi ⊂ Fn

2 , i ∈ {1, 2, . . . 2d}, of dimension n− d− dim(W), such that
W +Bi = Ai.

Take a basis Q = {e1, e2, . . . en−d, r1, . . . , rd} of Fn
2 such that {e1, e2, . . . , en−d}

is a basis of E. Let {π1, π2, . . . , πn} be the set of coordinate functions of π with
respect to the basis Q, i.e. πi : Fn

2 → F2, for i ∈ {1, 2, . . . , n}, are such that

π(x) = π1(x)e1 + . . .+ πn−d(x)en−d + πn−d+1(x)r1 + . . .+ πn(x)rd, for all x ∈ Fn
2 .

Chapter 4. Bent functions in C outside M# 45

Take a nonzero element from W , and denote it by w. Take an arbitrary x ∈ Fn
2 ,

and fix it. Let i0 ∈ {1, 2, . . . 2d} be such that x ∈ Ai0 = W +Bi0 . Then x+ w is in
W +Bi0 as well, since w ∈W . This means that π(x) and π(x+w) are in the same
coset of E, i.e. they are both in ai0 +E, and so the sum π(x+w)+π(x) is in E. But
π(x+w) + π(x) ∈ E implies πi(x+w) + πi(x) = 0 for i ∈ {n− d+ 1, . . . , n}. Since
x was an arbitrary element of Fn

2 , we conclude that w is a nonzero linear structure
of πi when i ∈ {n− d+ 1, . . . , n}.

Note that from the proof of Theorem 4.6.2, we can actually deduce that there
exist at least 2d component functions whose linear structure spaces have dimension
at least n− 2d(d− 1)− 1.

Chapter 5

Vectorial bent-negabent
functions – their constructions
and bounds

Recall that the nega-Hadamard transform of a Boolean function f in n variables, is
defined by

Nf (u) =
∑
x∈Fn

2

iwt(x)(−1)f(x)+u·x, for all u ∈ Fn
2

where i is the imaginary unit, i.e. i2 = −1. The Boolean bent functions whose
nega-Hadamard transform is flat (i.e. |Nf (u)| = 2n/2 for all u ∈ Fn

2), are called
bent-negabent functions. They were introduced by C. Riera and M. Parker in [61],
motivated by applications to quantum computing. The problem of constructing
Boolean functions, which are simultaneously bent and negabent, was considered
in [53, 65, 69, 71, 82]. There are several design methods of bent-negabent functions
given in e.g. [65, 71, 82]. In [71], a set of necessary and sufficient conditions for a
Boolean function to be negabent (regardless of the parity of the number of variables)
was derived, which also allowed the design of a broader class of n-variable bent-
negabent functions (n even) of algebraic degree ranging from 2 to n/2. M. Parker and
A. Pott in [53] considered the problem of determining the number of quadratic bent-
negabent functions in n variables. It was consequently resolved by A. Pott et al. [59],
who used a characterization of bent-negabent Boolean functions, given by M. Parker
and A. Pott in [53] (see Lemma 2.3.1). Bent-negabent functions have recently got
a renewed attention due to the work in [70], where the connection between bent-
negabent functions and Kerdock codes was established, and additionally recently
in [40], where the (non-)existence of these objects within the Maiorana-McFarland
class of bent functions was investigated.

Whenever a class of single-output Boolean functions had desirable algebraic or
combinatorial properties, it was of a general interest to consider vectorial, i.e., multi-
output versions of these functions (e.g. planar functions from p-ary bent functions
and vectorial bent functions from Boolean bent functions [58]). So far, the bent-
negabent property was only considered in the Boolean case and the possibility of
building vector spaces of bent-negabent functions has not been addressed in the

46

Chapter 5. Vectorial bent-negabent functions – constructions and bounds 47

literature. In this chapter, we introduce the notion of vectorial bent-negabent func-
tions and show that in general for a vectorial bent-negabent function F : F2n

2 → Fk
2

we necessarily have that k ≤ n − 1. We specify a class of vectorial bent-negabent
functions with the maximal output dimension n−1 by using a set of linear complete
mappings of cardinality n−1. We then show that the so-called b-complete mappings
on F2n considered in e.g. [18], which are permutations x + bF (x) for many b ∈ F2n

can be used for the purpose of designing non-quadratic vectorial bent-negabent func-
tions. Finally, in a similar fashion as it was done for the vectorial functions with
the maximum number of bent components [60, 86], we derive an upper bound on
the maximum number of bent-negabent components for mappings F : F2n

2 → Fk
2,

where n ≤ k ≤ 2n, and identify some families of these functions reaching this upper
bound.

5.1 Vectorial bent-negabent functions

Let m = 2n ≥ 4 and ν : Fm
2 → F2 be the (canonical) quadratic bent function defined

as

ν(x) =
n∑

i=1

xixn+i,

for all x = (x1, . . . , xm) ∈ Fm
2 . It is well-known that the elementary symmetric

quadratic Boolean function s2 : Fm
2 → F2, defined by

s2(x) =
∑

1≤i<j≤m

xixj , for all x = (x1, . . . , xm) ∈ Fn
2 ,

is bent and that it is equivalent to the quadratic bent function ν, see [44]. More
precisely, there exist A ∈ GL(m,F2), b, u ∈ Fm

2 , and ϵ ∈ F2 such that

s2(x) = ν(xA+ b) + u · x+ ϵ. (5.1)

Remark 2 Since the bent-negabent property is, in general, not invariant under the
action of GL(m,F2), it is important to specify precisely the transformation of the
input x 7→ xA + b, which maps the dot-product bent function ν : Fm

2 → F2 to the
bent-negabent function s2 : Fm

2 → F2, up to the addition of an affine function. Let
m = 2n and let x = (x1, . . . , xm). Now, starting with

s2(x) =
∑

1≤i<j≤m

xixj = (x1+
∑

1≤i≤m
i ̸=1,n+1

xi)(xn+1+
∑

1≤i≤m
i ̸=1,n+1

xi)+
∑

1≤i≤m
i ̸=1,n+1

xi+
∑

1≤i<j≤m
i,j ̸=1,n+1

xixj ,

setting x′1 = (x1 +
∑

1≤i≤m
i ̸=1,n+1

xi), x
′
n+1 = (xn+1 +

∑
1≤i≤m
i ̸=1,n+1

xi), and repeating this

process recursively, one gets ν(x′) + L(x′), where L : Fm
2 → F2 is a linear function.

In this way, without loss of generality, one can specify b ∈ Fm
2 and A ∈ GL(m,F2)

in (5.1) as follows. From the described above procedure, the matrix A ∈ GL(m,F2)
has the following block-form

A =

(
A≤

n A<
n

A<
n A≤

n

)
, (5.2)

48 5.1 Vectorial bent-negabent functions

where A≤
n = (ai,j)i,j=1,...,n with ai,j = 1 if j ≤ i and ai,j = 0 otherwise; similarly,

we define A<
n = (ai,j)i,j=1,...,n with ai,j = 1 if j < i and ai,j = 0 if j ≥ i. Setting

b = 0m, we observe that ν(xA) = s2(x), up to some linear terms.
Finally, one can also observe that AA = Im, where Im is the identity matrix

of order m. In this way, the transformation x 7→ xA is an involution, and, hence
s2(xA) = ν(x), up to some linear terms. A concrete example of such transformation
will be considered in more detail in Example 3.

A construction of Boolean bent-negabent functions, based on the use of complete
permutations, was addressed in [69].

Lemma 5.1.1 [69] Let m = 2n and s2(x) = ν(xA+ b) + u · x+ ϵ for all x ∈ Fm
2 ,

where A ∈ GL(m,F2), b, u ∈ Fm
2 , ϵ ∈ F2. Suppose that f : Fm

2 → F2 is a bent
function such that f + ν is also a bent function. Then the function g : Fm

2 → F2

defined by g(x) = f(xA+ b) is a bent-negabent function.

The above condition, the requirement that f + ν is also bent, can be satisfied if one
considers a special class of bent functions in the Maiorana-McFarland class, which
uses a complete mapping in its definition, as shown in [69, Theorem 22]. A mapping
F : F2n → F2n is called complete if both x 7→ F (x) and x 7→ F (x)+x permute F2n .

Proposition 5.1.2 [69] Let m = 2n and πF denote the (complete) permutation on
Fn
2 induced by a complete mapping F (X) ∈ F2n [X]. Let fF : Fm

2 → F2 be defined by

fF (x) = πF (x1, . . . , xn) · (xn+1, . . . , xn),

for all x ∈ Fm
2 . Then the function fF + ν on Fm

2 is a Maiorana-McFarland bent
function and the function g : Fm

2 → F2 defined by g(x) = fF (xA+b) is bent-negabent,
for some A ∈ GL(m,F2), b ∈ Fm

2 .

In addition, the use of complete mappings was also considered in [82] for the purpose
of constructing bent-negabent functions outside the completed Maiorana-McFarland
class.

Now we introduce the following formal definition of vectorial bent-negabent func-
tions.

Definition 5.1.3 For even m = 2n, a function F : Fm
2 → Fk

2 is called vectorial bent-
negabent if its component functions λ · F are bent-negabent for all λ ∈ Fk

2 \ {0k}.
Notice that the upper bound on the output dimension k ≤ n comes from Nyberg’s
bound [50], since the nonzero component functions are bent. However, using the ne-
gabent condition, which involves the elementary symmetric quadratic bent function
s2, it is possible to deduce a sharper bound.

Proposition 5.1.4 Let m = 2n. If F : Fm
2 → Fk

2 is a vectorial bent-negabent func-
tion, then k ≤ n− 1.

Proof. Since F is vectorial bent then k ≤ n. On the other hand, assuming that
k = n, the property of being negabent implies that for any λ ∈ Fk

2, the Boolean
functions defined by x ∈ Fm

2 7→ λ · F (x) + s2(x) are also bent. This would imply
the possibility of defining a vectorial bent function G : Fm

2 → Fn+1
2 with coordinate

functions G(x) = (f1(x), . . . , fn(x), s2(x)), which then violates the Nyberg’s bound.
Hence, we have that k ≤ n− 1.

Chapter 5. Vectorial bent-negabent functions – constructions and bounds 49

5.2 Vectorial bent-negabent functions of maximal out-
put dimension

As already mentioned, in [69], the authors used complete mappings to specify bent-
negabent functions. We now show that a set of linear complete mappings can be
used for constructing vectorial bent-negabent functions with the maximal output
dimension. On the other hand, these functions are in the Maiorana-McFarland class
and their component functions are always quadratic. However, similarly to adding
arbitrary ρ(y) in the definition of f(x, y) = π(y) ·x+ρ(y), the degree and cardinality
of this class can be extended significantly.

Theorem 5.2.1 Letm = 2n and let π1, . . . , πk be linearly independent permutations
of Fn

2 such that any nonzero π ∈ ⟨π1, . . . , πk⟩ is a complete permutation of Fn
2 .

Let also ρ1, . . . , ρk be arbitrary Boolean functions on Fn
2 . Define the vectorial bent

function F : Fm
2 → Fk

2 in the following way

F (x) = F (x1, . . . , xm) =

(x1, . . . , xn) · π1(xn+1, . . . , xm) + ρ1(xn+1, . . . , xm)
...

(x1, . . . , xn) · πk(xn+1, . . . , xm) + ρk(xn+1, . . . , xm)

 .
Suppose that s2(x) = ν(xA + b) + u · x + ϵ for all x ∈ Fm

2 , where A ∈ GL(m,F2),
b, u ∈ Fm

2 , ϵ ∈ F2. Then, the function G : Fm
2 → Fk

2 defined by

G(x) = F (xA+ b)

is a vectorial bent-negabent function.

Proof. It is enough to show that any nonzero component function of G is
negabent, since the transformation x 7→ xA + b preserves bentness. Let f be a
nonzero component function of F , i.e.,

f(x1, . . . , xm) = (x1, . . . , xn) · π(xn+1, . . . , xm) + ρ(xn+1, . . . , xm),

where for any nonzero (α1, . . . , αk) ∈ Fk
2 the mapping π :=

∑k
i=1 αiπi is a complete

permutation of Fn
2 and ρ :=

∑k
i=1 αiρi is a Boolean function on Fn

2 . Clearly, the
function g on Fm

2 defined by g(x) := f(xA+ b) is a component function of G.
Consider now the Boolean function f ′ on Fn

2 × Fn
2 defined by

f ′(x1, . . . , xm) = (x1, . . . , xn) · π′(xn+1, . . . , xm) + ρ(xn+1, . . . , xm) = f(x) + ν(x),

where π′(v) = π(v) + v, for all v ∈ Fn
2 . We know that π′ is a permutation, since π

is complete, and hence f ′ is bent. Applying the transformation x 7→ xA + b to the
input of f ′, we get

f ′(xA+ b) = f(xA+ b) + ν(xA+ b) = g(x) + s2(x) + u · x+ ϵ.

By Lemma 2.3.1, we get that g is bent-negabent, since g(x) + s2(x) = f ′(xA+ b) +
u · x + ϵ is a bent function. Since an arbitrary nonzero component function g of G
is bent-negabent, we conclude that G is a vectorial bent-negabent function.

50 5.2 Vectorial bent-negabent functions of maximal output dimension

Remark 3 To preserve the negabent property of the component functions one can
use different subgroups of the general linear group GL(m,F2). For instance, the
use of the subgroup of orthogonal matrices O(m,F2) was first proposed in [65] and
recently a subgroup of GL(m,F2) of the so-called weight preserving transformations
was identified in [70].

In the following theorem, we consider linear permutations πi in order to obtain
vectorial bent-negabent functions whose output dimension is maximal.

Theorem 5.2.2 Let α1, α2, . . . , αn−1 be a set of linearly independent elements in
F2n (over F2), whose span does not contain the element 1 ∈ F2n. Let πi be the
permutations of F2n for i = 1, . . . , n − 1 defined by πi : y ∈ F2n 7→ αiy. Define
the coordinate functions fi : Fn

2 × Fn
2 → F2 as fi(x, y) = x · πi(y) + ρi(y), where

ρi : Fn
2 → F2 are arbitrary. Then, the function F = (f1, . . . , fn−1) is affine equivalent

to a vectorial bent-negabent function whose output dimension is maximal.

Proof. The proof follows immediately from Theorem 5.2.1, since the nonzero
binary linear combinations of πi(y) are complete mappings.

Example 3 Let m = 2n and n = 4. The polynomial x4 + x + 1 is irreducible
over F2, hence we can represent F24 as F2(a) where a4 + a + 1 = 0. Then, the set
B = {1, a, a2, a3} is a basis for F24 over F2, and consequently, the span of {a, a2, a3}
does not contain 1. Set α1 = a, α2 = a2 and α3 = a3 in Theorem 5.2.2 and,
for simplicity, let ρ1(y) = ρ2(y) = ρ3(y) = 0, for all y ∈ F24. From Theorem
5.2.2, we deduce that the function F = (f1, f2, f3) (using the same notation as in
Theorem 5.2.2), is a function affine equivalent to a vectorial bent-negabent function
whose output dimension is maximal. Identifying F24 and F4

2 via the isomorphism (of
vector spaces) sending 1 in F24 to (1, 0, 0, 0) in F4

2, a to (0, 1, 0, 0), a2 to (0, 0, 1, 0),
and a3 to (0, 0, 0, 1), we get the following algebraic normal form of F :

F (x1, . . . , x8) =

 x1x8 + x2x5 + x2x8 + x3x6 + x4x7
x1x7 + x2x7 + x2x8 + x3x5 + x3x8 + x4x6

x1x6 + x2x6 + x2x7 + x3x7 + x3x8 + x4x5 + x4x8

 ,
for all (x1, . . . , x8) ∈ F8

2. More precisely, we get that G : F8
2 → F3

2, defined by

G(x1, . . . , x8) =

g1(x1, . . . , x8)g2(x1, . . . , x8)
g3(x1, . . . , x8)

 = F ((x1, . . . , x8)A)

for all (x1, . . . , x8) ∈ F8
2, where A ∈ GL(8,F2) is defined as in Remark 2, is a

vectorial bent-negabent function whose output dimension is maximal. The algebraic
normal forms of the functions g1, g2 and g3 are given as follows:

g1(x1, . . . , x8) = x1x8 + x2x5 + x2x6 + x2 + x3x5 + x3x7 + x4x5 + x4x8 + x4 + x5x7

+ x5x8 + x6x7 + x6x8 + x7x8 + x7,

g2(x1, . . . , x8) = x1x4 + x1x7 + x1x8 + x2x3 + x2x4 + x3x4 + x3x5 + x3x6 + x3x7

+ x3 + x4x5 + x4x6 + x4x8 + x5x8 + x6x7 + x8,

g3(x1, . . . , x8) = x1x3 + x1x4 + x1x6 + x1x7 + x1x8 + x2x7 + x2x8 + x3x4 + x3x6

+ x3x8 + x4x5 + x4x8 + x4 + x6x7 + x6x8 + x6 + x7x8 + x7 + x8.

Chapter 5. Vectorial bent-negabent functions – constructions and bounds 51

5.3 Complete mappings from linear translators

Several methods of constructing permutations using the notion of linear transla-
tors were considered in the literature, e.g. in [18, 36], whereas a nice survey on
this framework is given by Hou in [29]. This concept was further generalized by Ak-
bary, Ghioca and Wang who unified the Kyureghyan’s construction [36] for arbitrary
subsets S ⊂ Fpn (not only subfields of Fpn) along with proposing a few other con-
structions in [1]. This general criterion is now called AGW criterion [49, Theorem
8.1.39].

For our purpose, we consider the so-called b-complete mappings whose definition
is as follows.

Definition 5.3.1 [18] A mapping h : Fpk → Fpk is called complete with respect to
b ∈ Fpk , or b-complete, when both x 7→ h(x) and x 7→ x+ bh(x) permute Fpk .

In [74, Theorem 4], a class of permutation trinomials, which are 1-complete mappings
over F23r , was proposed. Below we give a slightly reformulated version of [74,
Theorem 4].

Theorem 5.3.2 [74] For any β ∈ F2r \ {0, 1}, the trinomial

h(x) = x2
2r+1 + x2

r+1 + βx

is complete over F23r with respect to any b ∈ F2r \ {0, β−1}. Thus, both x 7→ h(x)
and x 7→ x+ bh(x) are permutations for b ∈ F2r \ {0, β−1}.

Now we can use Theorem 5.3.2 to construct vectorial bent-negabent functions.
Note that permutations in Theorem 5.3.2 are quadratic, hence the following result
is an improvement over Theorem 5.2.2, where the used permutations are linear.

Theorem 5.3.3 Let m = 2n and let n, r be positive integers such that n = 3r. Let β
be an element of F2r \{0, 1}. Let b1, . . . , br−1 ∈ F2r be such that {β−1, b1, . . . , br−1} is
a set of linearly independent elements in F2r over F2. Let h(y) = y2

2r+1+y2
r+1+βy,

for all y ∈ F2n and let also ρ1, . . . , ρr−1 be arbitrary Boolean functions on F2n. Then
the function F : Fn

2 × F2n → Fr−1
2 defined by

F (x, y) =

 x · b1h(y) + ρ1(y)
...

x · br−1h(y) + ρr−1(y)

 ,
for all x ∈ Fn

2 , y ∈ F2n, is affine equivalent to a vectorial bent-negabent function.

Proof. Let S be a non-empty subset of {1, 2, . . . , r− 1}. Since {β−1, b1, . . . , br−1}
is a set of linearly independent elements,

∑
i∈S bi ̸= 0, and since from Theorem 5.3.2

we know that y 7→ h(y) is a permutation, we can conclude that y 7→ (
∑

i∈S bi)h(y)
is a permutation of F2n and so the function (x, y) 7→

∑
i∈S (x · bih(y) + ρi(y)) is a

bent function on F2n × F2n in the M class. We conclude that F is a vectorial bent
function.

52 5.4 Maximum number of bent-negabent components

To prove that F is affine equivalent to a negabent function, we will prove that
the Boolean function (x, y) 7→

∑
i∈S (x · bih(y) + ρi(y)) + x · y on F2n × F2n is also

bent. First, we notice that
∑

i∈S (x · bih(y) + ρi(y)) + x · y = x · ((
∑

i∈S bi)h(y) +
y) +

∑
i∈S ρi(y). Since {β−1, b1, . . . , br−1} is a set of linearly independent elements,

we have that
∑

i∈S bi ∈ F2r \ {0, β−1}, and from Theorem 5.3.2 we deduce that
the mapping y 7→ (

∑
i∈S bi)h(y) + y is a permutation of F2n . Hence, (x, y) 7→∑

i∈S (x · bih(y) + ρi(y)) + x · y is a bent function on Fn
2 × Fn

2 inside the M class.
Denote by g the quadratic Boolean bent function (x, y) 7→ x · y on Fm

2 , which we
identify with Fn

2 ×Fn
2 . Since all quadratic bent functions are affine equivalent, there

exist an invertible m×m matrix A, a vector w ∈ Fm
2 and an affine Boolean function

L : Fm
2 → F2, such that s2(x, y) = g((x, y)A+ w) + L(x, y). Since addition of affine

functions does not affect bent-negabentness, we conclude that F ((x, y)A + w) is a
vectorial bent-negabent function.

Example 4 Set r = 3 and n = 3r = 9. The polynomial x9 + x4 + 1 is irreducible
over F2, hence we can represent F29 as F2(a), where a9 + a4 + 1 = 0. The set
B = {1, a, . . . , a8} is a basis of F29 over F2. Set b1 = 1, b2 = a4 + a3 + a2 and
b3 = β−1 = a8 + a6 + a3 + a2 + 1. Because b2

3

i − bi = 0, for i ∈ {1, 2, 3}, and
because b1, b2, and b3 are linearly independent over F2 we deduce that F23 is given
by ⟨b1, b2, b3⟩. We compute β = b−1

3 = a8 + a6 + a4. Set ρ1(y) = ρ2(y) = 0 and
h(y) = y65 + y9 +

(
a8 + a6 + a4

)
y, for all y ∈ F29. Then, from Theorem 5.3.3, we

deduce that the function defined as

F (x, y) =

[
x · b1h(y)
x · b2h(y)

]
,

for all (x, y) ∈ F18
2 , is a function affine equivalent to a bent-negabent function. More

precisely, we get that G : F18
2 → F2

2, defined by G(x1, . . . , x18) = F ((x1, . . . , x18)A),
for all (x1, . . . , x18) ∈ F18

2 , where A ∈ GL(18,F2) is defined as in Remark 2, is a
bent-negabent function.

All component functions of vectorial bent-negabent functions F : F3r
2 ×F23r → Fr−1

2

constructed in Theorem 5.3.3 belong to the M# class. Moreover, the dimension of
the output space of these vectorial bent-negabent functions, being equal to r − 1,
is quite small compared to the maximal dimension, which is 3r − 1 according to
Proposition 5.1.4.

5.4 Maximum number of bent-negabent components

The problem of specifying functions F : Fm
2 → Fm

2 , for even m = 2n, which contain
the maximum number of bent components (MNBC functions) was originally con-
sidered in [60]. It was shown that this number equals to 2m− 2n and this result was
later generalized to mappings F : Fm

2 → Fk
2 with n + 1 ≤ k ≤ 2n, whose maximal

number of bent components is then 2k − 2k−n, see [86]. Nevertheless, for vectorial
functions with the maximum number of bent-negabent components the situation is
slightly different. First, we recall the following result used in deriving the upper
bound on the maximum number of bent components of functions F : Fm

2 → Fm
2 .

Chapter 5. Vectorial bent-negabent functions – constructions and bounds 53

Lemma 5.4.1 [60, Corollary 1] A set S of elements in Fm
2 \ {0m} meeting all

(m+ 1− k)-dimensional subspaces of Fm
2 has at least 2k − 1 elements with equality

if and only if S ∪ {0m} is a k-dimensional subspace of Fm
2 .

The correspondence to bent-negabent functions is as follows.

Theorem 5.4.2 Let m = 2n, k ≥ n− 1 and let F : Fm
2 → Fk

2 be arbitrary. Define

S := {λ ∈ Fk
2 : Fλ = λ · F is not bent-negabent}.

Then, |S| ≥ 2k−n+1 with equality if and only if S is a linear subspace of dimension
k − n+ 1.

Proof. The case k = n−1 is trivial, since 0k ∈ S. Now, we assume that k > n−1.
If |S| < 2k−n+1, then there are at most 2k−n+1−2 nonzero elements λ ∈ Fk

2 for which
Fλ is not bent-negabent. Due to Lemma 5.4.1, this set cannot meet all subspaces of
dimension k+1− (k− n+1) = n. In this way, there must be at least one subspace
T of dimension n disjoint from S \ {0k}. This shows that there is an n-dimensional
subspace T ⊆ {λ ∈ Fk

2 : Fλ is bent-negabent} ∪ {0k}, that is, there is a vectorial
bent-negabent function from Fm

2 to Fn
2 , which is impossible due to the bound in

Proposition 5.1.4.

Similarly to the MNBC case, there exists a trivial construction of vectorial
Boolean functions with the maximum number of bent-negabent components due
to the invariance of negabent property under addition of affine functions. In the
following theorem and in the sequel, we consider F : Fm

2 → Fk
2, where m = 2n and

k > n−1, since the case k ≤ n−1 corresponds to vectorial bent-negabent functions.

Theorem 5.4.3 Let m = 2n, k > n−1 and Fk
2 = Fn−1

2 ×Fk−n+1
2 . Let F : Fm

2 → Fk
2

be a function defined by F (x, y) = (B(x, y), A(x, y)), where x, y ∈ Fn
2 and A : Fm

2 →
Fk−n+1
2 is an affine function. If B is vectorial bent-negabent, then the component

function defined by (x, y) 7→ u · B(x, y) + v · A(x, y) is bent-negabent function for
all u ∈ Fn−1

2 \ {0n−1}, v ∈ Fk−n+1
2 . Hence, F has 2k − 2k−n+1 component functions

which are bent-negabent.

Proof. For any nonzero u ∈ Fn−1
2 and any v ∈ Fk−n+1

2 , the component function
defined by (x, y) 7→ u ·B(x, y)+v ·A(x, y) is bent-negabent since B is vectorial bent-
negabent, and for a Boolean bent-negabent function f on Fm

2 the function f + l is
again bent-negabent for any affine function l : Fm

2 → F2, see [53, Lemma 2]. Thus,
there are (2n−1−1) ·2k−n+1 = 2k−2k−n+1 bent-negabent component functions of F .

Theorem 5.4.4 Let m = 2n and k > n − 1. Let α1, α2, . . . , αn−1 be a set of
linearly independent elements in F2n (over F2), whose span does not contain the
element 1 ∈ F2n. Let πi(y) = αiy be permutations of F2n for i = 1, . . . , n − 1. Let

54 5.4 Maximum number of bent-negabent components

F : Fm
2 → Fk

2 be a vectorial function defined by

F (x, y) =



f1(x, y)
...

fn−1(x, y)
fn(x, y)

...
fk(x, y)


=



x · π1(y) + ρ1(y)
...

x · πn−1(y) + ρn−1(y)
ρn(y)

...
ρk(y)


, (5.3)

where functions ρi : Fn
2 → F2 for i = 1, . . . , k are arbitrary. Then the function

F : Fm
2 → Fk

2 is affine equivalent to a vectorial function with the maximum number
of bent-negabent components.

Proof. By Theorem 5.2.2, the function F ′ : Fm
2 → Fn−1

2 given by F ′ =
(f1, . . . , fn−1) is equivalent to a vectorial bent-negabent function with the maxi-
mum output dimension, because all nonzero binary linear combinations of πi(y) are
complete mappings. Since any nonzero function f ∈ ⟨f1, . . . , fn−1⟩ is a Maiorana-
McFarland bent function, which is equivalent to a bent-negabent function, we get
that any function from the coset f + ⟨ρn, . . . , ρk⟩ is again a Maiorana-McFarland
bent function, equivalent to a bent-negabent function using the same transforma-
tion x 7→ xA+ b as in Theorem 5.2.1. In total, we have 2k − 2k−n+1 bent-negabent
components, which is the maximum number.

Remark 4 Recently, based on the classification of vectorial bent functions in six
variables [57], all MNBC functions in m = 6 variables have been classified in [3]
as well. Since all MNBC functions F : F6

2 → F6
2 are equivalent to the Maiorana-

McFarland construction [3, Proposition 1], and vectorial functions F : F6
2 → F5

2 with
the maximum number of bent-negabent components are affine equivalent to MNBC
functions with at least one quadratic coordinate function, we deduce that all functions
F : F6

2 → F5
2 with the maximum number of bent-negabent components are described

up to equivalence, by construction (5.3) in Theorem 5.4.4.

Chapter 6

Vectorial bent functions
weakly/strongly outside M#

In order to describe the properties of vectorial bent functions (related to the class in-
clusion/exclusion problem) more precisely, in this chapter we introduce the concept
of weakly and strongly outside a given class of bent functions (which is fixed to be
M# in this chapter). The main reason for establishing this concept is to emphasize
the difference between the standard M class whose vectorial bent functions have
the property that all nonzero linear combinations (components) of its coordinate
functions are bent functions in M (the same applies to vectorial bent functions in
PSap). This is, in general, not true for vectorial functions having its coordinates
in C or D since most of the methods presented in this chapter provide component
bent functions that do not stem from a single bent class. Another reason for being
interested in the property of being weakly or strongly outside M# relates to the fact
that in the previous chapters (also in [84]) certain infinite classes of bent functions
in C and D, but provably outside M#, have been specified. Then, employing such
functions as initial bent functions gives vectorial bent spaces whose certain compo-
nents are in the primary class M, whereas the remaining ones belong to C or D and
are provably outside the M# class.

First, in Section 6.1.1 we show that the subclass D0 can be extended to its
vectorial counterpart, to get vectorial bent functions with the maximal output di-
mension weakly outside the M# class. Then, in Section 6.1.2 we show that similar
extension related to another explicit subclass of D, called D⋆

2, becomes harder un-
less an additional structure on the permutations and corresponding subspaces is
imposed. More precisely, one can specify f1(x, y) = π⋆1(y) · x + 1E1(x)1E2(y) for
x, y ∈ Fn

2 , for a suitable permutation π⋆1 on Fn
2 and a certain 2-dimensional sub-

space E1 of Fn
2 such that π⋆1(E2) = E⊥

1 . This defines a bent function f1 ∈ D⋆
2

which is provably outside M#. Then, defining another bent function in this class,
say f2(x, y) = π⋆2(y) · x + 1E1(x)1E2(y), we must ensure that π⋆2(E2) = E⊥

1 as well
(which is the (D) property) and furthermore π⋆1 +π

⋆
2 must be a permutation so that

f1 + f2 is bent. These conditions become hard and therefore we restrict ourselves
to consider a special relationship between the permutations πi so that all of them
are of the form αiπ, for suitably chosen αi ∈ F2n and a permutation π on Fn

2 . This

55

56 6.1 Vectorial bent functions derived from the class D

will ensure that the linear combinations
∑

i αiπi are permutations as well, and more
importantly the condition that (

∑
i αiπi)(E2) = E⊥

1 is then more easily handled.

Whereas in Section 6.1 we provide design methods which do not intrinsically
ensure the weakly/strongly outside property (though in certain cases this may be
achieved), similar approaches are used in a more refined manner in Section 6.2, to
specify vectorial bent functions weakly outside M# again stemming from class D.
To achieve this, we propose the use of a class of complete mappings and demon-
strate how vectorial bent functions weakly outside M# can be built assuming the
existence of such permutations (at least when the output bent dimension is small).
Alternatively, an explicit class of trinomial permutations given in [27] is utilized for
the same purpose of defining bent functions weakly outside M#. We emphasize that
possibly many other classes of permutations are suitable to be used in the design
(those whose component functions do not admit linear structures and permute a
desired subfield) but we do not investigate this issue further.

In Section 6.3 we combine the notion of weakly outside the M# class and the
notion of vectorial bent-negabent functions introduced in Chapter 5. Namely, using
a suitable decomposition of the vector space (alternatively identifying suitable sub-
fields) we provide a generic method of specifying vector spaces of complete mappings
which are then efficiently used to specify vectorial bent-negabent functions weakly
outside theM# class (having approximately half of the component functions outside
the completed M class) .

The problem of specifying vectorial functions which are strictly outside the com-
pleted class M# is quite delicate, along with the question whether these functions
can be extended to the maximal output bent dimension (being n for the input space
of size 2n). In this direction, in Section 6.4, we provide a construction of vectorial
bent functions F : F2n

2 → Fd
2, derived from the C class, which are strongly outside

M#, for some output dimensions d (though not for the the maximal one).

6.1 Vectorial bent functions derived from the class D

The notion of vectorial bent functions F : F2n
2 → Fk

2 refers to a collection of k ≤ n
Boolean bent functions f1, . . . , fk : F2n

2 → F2 with the property that each nonzero
linear combination (over F2) of these functions is bent. We introduce the concept
of vectorial bent functions which are weakly or strongly outside a given class of bent
functions as follows.

Definition 2.2.2 A vectorial bent function F : F2n
2 → Fk

2, with k ≤ n, is weakly
outside of a class of bent functions if there is at least one (nonzero) component
function of F (linear combination of its coordinate functions) which does not belong
to the considered class. If all component functions of F do not belong to a class of
bent functions then F is strongly outside the considered class.

Notice that the primary class of Boolean bent functions M is easily extendable
to its vectorial counterpart having maximum output dimension. Thus, instead of
considering the Boolean case f(x, y) = π(y)·x+g(y), where x, y ∈ Fn

2 , one can easily
show that F (x, y) = π(y)x+G(y), considered as a mapping from F2k × F2k → F2k ,

Chapter 6. Vectorial bent functions weakly/strongly outside M# 57

is a vectorial bent function. The same reasoning applies to the PSap class, see for
instance [12].

In what follows, we show the existence of vectorial bent functions in D which are
weakly outside M#. The property of being weakly outside is essentially achieved
by selecting a suitable bent function which is outside M# and specifying other
coordinate bent functions so that the components are all bent (but not necessarily
outside M#).

6.1.1 Vectorial bent functions of maximal dimension from D0

We now investigate the existence of vectorial bent functions F : F2n
2 → Fn

2 of max-
imal output dimension stemming from the D0 class. One should remark however
that the problem of extending the secondary classes C and D to a vectorial case
is difficult in general. A straightforward approach, as in the case of the M class
cannot always be applied. In particular, when extension to a full output dimension
is possible then commonly the resulting vectorial bent function contains component
functions which do not belong to the same class.

Theorem 6.1.1 Let f0(x, y) = π(y) · x +
∏n

j=1(xj + 1), with x, y ∈ Fn
2 , be a bent

function in D0 outside M# (or PS#), and let {α0, . . . , αn−1} be a set of linearly
independent elements in F2n (over F2), with α0 = 1. Define n permutations of F2n

as πi(y) = αiπ(y) for i = 0, . . . , n − 1. Then, F = (f0, . . . , fn−1), where fi(x, y) =
αiπ(y) ·x+

∏n
j=1(xj +1), is a vectorial bent function weakly outside M# (or PS#).

Proof. Clearly, each function fi is in D0. Their linear combinations fa =
a0f0 + · · ·+ an−1fn−1, with ai ∈ F2, are of the form

fa(x, y) = (

n−1∑
i=0

aiαi)π(y) · x+ (

n−1∑
i=0

ai)

n∏
j=1

(xj + 1).

Thus, when the Hamming weight of a = (a0, . . . , an−1) is odd, the function fa is a
bent function in D0 since the term

∏n
j=1(xj + 1) is not cancelled. Otherwise, if the

weight of (a0, . . . , an−1) is even fa is in M. Consequently, since f0 is a bent function
outside M# (or PS#), the function F = (f0, . . . , fn−1) is a vectorial bent function
weakly outside M# (or PS#).

For the details of switching between the vector space and finite field representa-
tion, especially when απ(y) is considered, we refer to Example 5. More precisely, one
can use the trace representation and define coordinate functions fi : F2n ×F2n → F2

(components as well) as fi(x, y) = Trn1 (αiπ(y)x)+Tr
n
1 (γ(x

2n−1+1)), where γ ∈ F2n

is such that Trn1 (γ) = 1, hence the last term describes the delta function
∏n

i=1(xi+1).
To provide classes of vectorial bent functions which are weakly or strongly outside

M#, which is treated in Sections 6.2 and 6.4, we will rely on the following set of
sufficient conditions derived in [83].

Theorem 6.1.2 [83] Let m = 2n > 6 be an even integer and let f(x, y) = π(y) ·x+
1E1(x)1E2(y), where π is a permutation of Fn

2 , and E1, E2 are two linear subspaces
of Fn

2 such that π(E2) = E⊥
1 . If (E1, E2, π) satisfies:

58 6.1 Vectorial bent functions derived from the class D

1. dim(E1) ≥ 2 and dim(E2) ≥ 2;

2. u · π has no nonzero linear structure for all u ∈ Fn
2\{0n};

3. deg(π) ≤ n− dim(E2),

then f is a bent function in D and it does not belong to M#.

Notice that the above conditions are not necessary which is justified by noting that
the class D0 contains functions provably outside M#.

6.1.2 Vectorial bent functions from the D class different from D0

Whereas vectorial bent functions of maximal dimension stemming from D0 class
were relatively easy to deduce, the problem becomes substantially harder in the
case E1 × E2 ̸= {0n} × Fn

2 . In the recent article [84], a simple modification of the
identity permutation was considered, specified as

π⋆(y) =


y, y ̸∈ {el, et};
el, y = et;
et, y = el,

(6.1)

where l, t ∈ {1, 2, . . . , n} with l ̸= t, and furthermore el, et ∈ Fn
2 denote elements

in the canonical basis of Fn
2 . More precisely, (el)i = 1 if i = l, otherwise (el)i = 0.

Based on this, the following result characterizes the properties of bent functions in
the so-called class D⋆

2 (defined as the subclass of D that employs the 2-dimensional
subspaces E1 = ⟨el, et⟩). According to the definition of the D⋆

2 class of bent func-
tions, it is obvious that f(x, y) = π⋆(y)·x+1E1(x)1E2(y) is a bent function whenever
we select E2 = E⊥

1 since then π⋆(E2) = E⊥
1 .

Theorem 6.1.3 [84] Let n ≥ 5 be a positive integer and let l, t be two positive
integers such that 1 ≤ l < t ≤ n. Let π⋆ be the permutation of Fn

2 defined by (6.1).
Let l, t be two integers such that 1 ≤ l < t ≤ n. Define the function f : Fn

2 → F2 by
f(x, y) = π⋆(y) ·x+1E1(x)1E2(y), with x, y ∈ Fn

2 , where E1 = ⟨el, et⟩ and E2 = E⊥
1

(implying that dim(E2) = n− 2). Then f is a bent function outside M#.

A straightforward extension of the bent functions in the D⋆
2 class to their vecto-

rial counterparts with the maximal output dimension appears to be difficult. The
main reason is that having dim(E2) < n implies certain restrictions due to the
condition π(E2) = E⊥

1 . To define a vectorial bent function stemming from D⋆
2,

using a similar approach as for the D0 class, we need to ensure that the permuta-
tions π⋆i (y) = αiπ

⋆(y), for i = 1, . . . , k, where k ≤ n, preserve the property that
π⋆i (E2) = E⊥

1 . Notice that, assuming the linear independence of α1, . . . , αk, for any

such αiπ
⋆(y) one can associate different 2-dimensional subspaces E

(k)
1 = ⟨eik , elk⟩

and the corresponding subspaces E
(k)
2 but then the indicators of

∑
k E

(k)
1 do not (in

general) correspond to linear subspaces.

Chapter 6. Vectorial bent functions weakly/strongly outside M# 59

Theorem 6.1.4 Let f⋆0 (x, y) = π⋆(y) · x+ 1E1(x)1E2(y), with x, y ∈ Fn
2 , be a bent

function in D⋆
2, where π⋆ is defined by (6.1) and E1 = ⟨el, et⟩ ⊂ Fn

2 , E2 = E⊥
1 .

Assume {α0, α1, . . . , αk−1}, with α0 = 1 and k ≤ n, is a set of linearly independent
elements in F2n (over F2), such that

π⋆a(y) :=

(
k−1∑
i=0

aiαi

)
π⋆(y) satisfies π⋆a(E2) = E⊥

1 ,

for any a = (a0, . . . , ak−1) ∈ Fk
2 \ {0k}. Then, F = (f0, . . . , fk−1), where fi(x, y) =

αiπ
⋆(y) · x+ 1E1(x)1E2(y), is a vectorial bent function weakly outside M#.

Proof. Clearly, by definition, f⋆0 is a bent function in D⋆
2 and it is outside

M# by Theorem 6.1.3. Also, π⋆a(y) =
(∑k−1

i=0 aiαi

)
π⋆(y) is a permutation for any

a = (a0, . . . , ak−1) ∈ Fk
2 \ {0k} and by assumption it preserves the property that

π⋆a(E2) = E⊥
1 = E2. Any component function a0f0 + · · ·+ ak−1fk−1 is either of the

form π⋆a(y) · x (when (a0, . . . , ak−1) is of even weight), or alternatively of the form
π⋆a(y) · x + 1E1(x)1E2(y) when the weight of a is odd. The former case gives bent
functions in the M class and the latter bent functions in the D class. Thus, F is a
vectorial bent function weakly outside M#.

The following example illustrates the whole approach and also indicates design
difficulties when no further structure on the subspace E2 is imposed.

Example 5 Let π⋆ over F3
2 be defined by (6.1), where l = 1, t = 2 so that E1 =

⟨(1, 0, 0), (0, 1, 0)⟩ and E2 = ⟨(0, 0, 1)⟩. Then π⋆(E2) = E⊥
1 . Indeed, we have

y π⋆(y)

(0, 0, 0) (0, 0, 0)
(0, 0, 1) (0, 0, 1)
(0,1,0) (1,0,0)
(0, 1, 1) (0, 1, 1)
(1,0,0) (0,1,0)
(1, 0, 1) (1, 0, 1)
(1, 1, 0) (1, 1, 0)
(1, 1, 1) (1, 1, 1)

To define the permutations αiπ
⋆(y) over F23, for i = 0, 1 we can use the elements

of a polynomial basis {1, β, β2} of F23 where β is a root of the primitive polynomial
p(x) = x3 + x + 1 over F2. These elements are clearly independent and we can
define f⋆1 (x, y) = βπ⋆(y) · x + 1E1(x)1E2(y). However, the permutation βπ⋆(y) is
defined over F23 so we need to give its isomorphic representation over F3

2. Using
the isomorphism (a0, a1, a2) ∈ F3

2 7→ a0 + a1β + a2β
2 ∈ F23 we can use π⋆(y) =

(π⋆0(y), π
⋆
1(y), π

⋆
2(y)) and write π⋆(y) = π⋆0(y) + βπ⋆1(y) + β2π⋆1(y), where the latter

π⋆(y) representation refers to F23. Then, the multiplication by β in the field F23 is
well defined and we obtain:

β(π⋆0(y) + βπ⋆1(y) + β2π⋆2(y)) = π⋆2(y) + β(π⋆0(y) + π⋆2(y)) + β2π⋆1(y).

60 6.1 Vectorial bent functions derived from the class D

Therefore, the permutation απ⋆(y) (using α = β) is given as:

y απ⋆(y)

(0, 0, 0) (0, 0, 0)
(0, 0, 1) (1, 1, 0)
(0, 1, 0) (0, 1, 0)
(0, 1, 1) (1, 1, 1)
(1, 0, 0) (0, 0, 1)
(1, 0, 1) (1, 0, 0)
(1, 1, 0) (0, 1, 1)
(1, 1, 1) (1, 0, 1)

Then, for the permutation απ⋆(y) we have απ⋆(E2) ̸= E2 and then the function
απ⋆(y) · x+ 1E1(x)1E2(y) is not necessarily bent.

The above example indicates that this design approach requires a careful selection
of the permutation π(y) and the corresponding subspaces E1 and E2 in order to
construct vectorial bent functions stemming from the D class.

Remark 5 Notice that specifying a vectorial bent function F = (f0, . . . , fn−1) of
the maximal dimension, when dim(E2) < n and fi(x, y) = αiπ(y) + 1E1(x)1E2(y)
is not possible if π(E2) = E2. This is due to the fact that α0, . . . , αn−1 must
be linearly independent over F2 to ensure that (

∑n−1
i=0 aiαi)π(y) is a permutation

for any nonzero (a0, . . . , an−1) ∈ Fn
2 which cannot be satisfied simultaneously with

(
∑n−1

i=0 aiαi)π(E2) = E2 because dim(E2) < n.

A natural solution to the problem discussed in Example 5 is to ensure that the
elements of E2 form a subfield, say F2k < F2n , with k | n. Then, by selecting a
set of linearly independent elements α0, . . . , αk−1 ∈ F2k one can easily ensure that
(
∑n−1

i=0 aiαi)π(E2) = E2 provided that π(E2) = E2. This however, excludes (for
n > 4) the use of the permutation π⋆ and E1 in the setup of Theorem 6.1.4, since
there dim(E1) = 2, so dim(E2) = n− 2, and hence it cannot be a subfield of F2n .

Theorem 6.1.5 Let π be a permutation of Fn
2 and let E2 be a k-dimensional sub-

space of Fn
2 corresponding to the subfield F2k of F2n, where k | n and 1 < k ≤ n/2.

If π satisfies that π(E2) = E⊥
1 = E2, then F = (f0, . . . , fk−1), where fi(x, y) =

αiπ(y) · x + 1E1(x)1E2(y) and α0, . . . , αk−1 form a basis of F2k , is a vectorial bent
function with components in M and D.

Proof. The proof follows the same reasoning as the proofs of Theorem 6.1.4 or
Theorem 6.1.1 and the details are omitted. The fact that (

∑k−1
i=0 aiαi)π(E2) = E2,

for any nonzero (a0, . . . , ak−1) ∈ Fk
2, follows from the fact that E2 = F2k and αi ∈ F2k

along with the assumption that π(E2) = E⊥
1 = E2.

For example, one can set E2 = F2k and π(x) = x−1 if x ∈ E2 = F2k , oth-
erwise π(x) = x. Such a permutation π(x) satisfies the condition of Theorem
6.1.5 when α0, . . . , αk−1 are selected as a basis of E2 = F2k . More precisely,
(
∑

i aiαi)π(y) := πa(y) is a permutation and furthermore πa(E2) = E2 for all

Chapter 6. Vectorial bent functions weakly/strongly outside M# 61

nonzero a = (a0, . . . , ak−1) ∈ Fk
2. In general, when ϕ(x) is a permutation of E2,

we can set π(x) = ϕ(x) if x ∈ E2, otherwise π(x) = x. Then, such π(x) satisfies the
condition of Theorem 6.1.5 if α0, . . . , αk−1 form a basis of E = F2k (since πa(x) ∈ E2

when x ∈ E2).
The case of special interest, allowing an easier treatment of the condition that

π(E2) = E⊥
1 = E2, arises when n is even and dim(E1) = dim(E2) = n/2 which is

treated in the next section. This also allows us to specify many permutations such
that πa(E2) = E2, where (

∑
i aiαi)π(y) := πa(y) as before, though not in an explicit

univariate form.

6.1.3 Some explicit classes of vectorial bent functions from D

As already discussed, the main problem of providing generic methods for construct-
ing functions F : F2n

2 → Fk
2, derived from the D class using the ideas from Section

6.1.2, is related to the property that any permutation πa(y) = (
∑k−1

i=0 aiαi)π(y) over
F2n needs to have the property that π(E2) = E2.

Based on the works of G. Kyureghyan [36] and A. Akbary et al. [1], the authors
in [18] proposed several explicit classes of permutations using the notion of linear
translators. For our purpose we recall the following results which can be found
in [18].

Theorem 6.1.6 [18] Let n = 2k and π : F2n 7→ F2n with π(x) = x+(x+x2
k
+ δ)s,

where δ ∈ F2n and s is any integer in the range [0, 2n− 2]. Then π is a permutation
over F2n if and only if the function

y 7→ y + (y + δ)s + (y + δ)2
ks from F2k to F2k

is bijective. In particular, if s satisfies 2ks ≡ s (mod 2n−1) then π is a permutation.

As a corollary of this general result an explicit class of permutations was deduced.

Corollary 6.1.7 [18] Using the same notation as in Theorem 6.1.6, if δ ∈ F2k

then π(x) = x+ (x+ x2
k
+ δ)s is a permutation for any s ∈ [0, 2k − 2].

The result of Corollary 6.1.7 is important for two reasons. Firstly, this result is
generic and compared to Theorem 6.1.6 it does not impose any conditions on the
choice of s. Secondly, the assumption that δ ∈ F2k ensures that π permutes the
subfield F2k , which is important for keeping the subspace E2 = F2k fixed so that

π(F2k) = F2k . Indeed, for any element x ∈ F2k we obviously have that x+x2
k
+ δ ∈

F2k since δ ∈ F2k , and therefore π permutes the subfield F2k . Notice that the
selection of exponent s is directly related to the degree of such permutations. This
immediately leads us to a result similar to that of Theorem 6.2.1.

Theorem 6.1.8 Let n = 2k and π(y) = y+(y+y2
k
+δ)s be a permutation over F2n,

where δ ∈ F2k and s ∈ [0, 2k−2]. Let E2 be a k-dimensional subspace of Fn
2 such that

it can be regarded as the subfield F2k of F2n. Then, π satisfies π(E2) = E⊥
1 = E2,

and F = (f0, . . . , fk−1), where fi(x, y) = αiπ(y) · x + 1E1(x)1E2(y) for x, y ∈ Fn
2 ,

and α0, . . . , αk−1 form a basis of F2k , is a vectorial bent function.

62 6.2 Vectorial bent functions from D weakly outside M#

Notice that we do not claim the property of being weakly outside M# since the
permutation π(y) = y + (y + y2

k
+ δ)s over F2n does not satisfy the sufficient

conditions given in Theorem 6.1.2, as we explain now. The requirement deg(π) ≤
n− dimE2 = k is automatically achieved for any s ∈ [0, 2k − 2] since its Hamming
weight, which is essentially the degree of π, is always less or equal than k. The main
problem is therefore to ensure that Trn1 (uπ(y)) = Trn1 (u(y + (y + y2

k
+ δ)s) has no

linear structures for any nonzero u ∈ F2n , see Theorem 6.1.2. To investigate the
existence of linear structures of π(y) = y + (y + y2

k
+ δ)s it is enough to consider

π′(y) = (y + y2
k
+ δ)s. However, regardless of the choice of s the permutation π′

admits linear structures. More precisely, any a ∈ F2k is a linear structure of π′ since

π′(y) + π′(y+ a) = (y+ y2
k
+ δ)s + (y+ a+ (y+ a)2

k
+ δ)s = 0, using that a2

k
= a.

Therefore, we cannot use the sufficient conditions of Theorem 6.1.2 and it might
be the case that F defined in Theorem 6.1.8 (possibly all its component functions)
belongs to M.

6.2 Vectorial bent functions from D weakly outside M#

So far, apart from employing D0 to obtain vectorial bent functions (weakly) outside
M#, the explicit methods given in Section 6.1 only ensure that the component
functions of the vectorial bent functions come from different classes. To derive
vectorial bent functions, from D, that are provably (at least) weakly outside M#

one needs to ensure, based on the sufficient conditions given in Theorem 6.1.2, that
the permutation π does not admit linear structures.

A class of Boolean bent functions for even n, satisfying the conditions in The-
orem 6.1.2, was specified in [84, Proposition 2] using a monomial permutation
π(y) = yd (with wt(d) ≥ 3) which satisfies π(E2) = E2 = E⊥

1 for the 2-dimensional

vector subspace (subfield isomorphic to F22) E2 = ⟨ζ
2n−1

3 , ζ
2(2n−1)

3 ⟩, where ζ is a
primitive element of F2n . Then, specifying f(x, y) = π(y) · x + 1E1(x)1E2(y) gives
a bent function in D and outside M#. The extension to the vectorial case using a
basis {α0, . . . , αk−1} of the subfield F2k < F2n is again possible. From this, we can
immediately deduce the following theorem.

Theorem 6.2.1 Let π(y) = yd , where 3 ≤ wt(d) ≤ n− 2, be a permutation of Fn
2 .

Let E2 be a k-dimensional subspace of Fn
2 , where k|n, corresponding to the subfield

F2k of F2n and 1 < k ≤ n/2. Then, π satisfies π(E2) = E2 = E⊥
1 , and F =

(f0, . . . , fk−1), where fi(x, y) = αiπ(y) · x + 1E1(x)1E2(y), and α0, . . . , αk−1 ∈ F2k

are linearly independent over F2, is a vectorial bent function weakly outside M#.

6.2.1 Vectorial bent functions from complete mappings

To obtain a greater design variety and to possibly specify functions affine inequiv-
alent to those derived using a set of permutations which are affine equivalent (thus
related through πi(y) = αiπ(y)), one may employ a class of complete mappings.
We recall that a permutation π(y) over F2n is called complete if π(y) + y is also a
permutation. More generally, like in Chapter 5, one can consider a set of permuta-
tions {π(y) + αiy} for a set of linearly independent elements αi ∈ F2n over F2. For

Chapter 6. Vectorial bent functions weakly/strongly outside M# 63

instance, for the special case when dim(E2) = 2, we may use a bent function of the
form f(x, y) = π(y) · x + 1E1(x)1E2(y), where π(y) = yd (like in Theorem 6.2.1),
and specify another bent function using π(y) + αy, assuming that the latter is a
permutation.

Proposition 6.2.2 Assume that π(y) = yd, with 3 ≤ wt(d) ≤ n−2, as well as that
π(y) + αy is a permutation over F2n, for some α ∈ F2n and even n. Let f0(x, y) =

π(y) · x + 1E1(x)1E2(y), x, y ∈ Fn
2 , be a bent function for E2 = ⟨ζ

2n−1
3 , ζ

2(2n−1)
3 ⟩

and E1 = E⊥
2 , where ζ is a primitive element of F2n so that π(E2) = E2. Define

f1(x, y) = (αy+a) ·x to be a bent function in the M class, where a ∈ E2. If α ∈ E2,
then

f(x, y) = (f0 + f1)(x, y) = (π(y) + αy + a) · x+ 1E1(x)1E2(y)

is again a bent function, which lies outside the M# class.

Proof. We first show that f is a bent function. The mapping ϕ(y) = π(y)+αy+a
is clearly a permutation. Furthermore, since a, α ∈ E2 and E2 is a subfield of F2n it
still holds that ϕ(E2) = E2 = E⊥

1 . Therefore, f belongs to the D class and is bent.
Also, since wt(d) ≥ 3, ϕ has no linear structures [19]. It follows, by Theorem 6.1.2,
that f lies outside the M# class.

Remark 6 The existence of vectorial bent functions weakly outside the M# class
generated by Proposition 6.2.2 relies on the existence of permutations π(y) = yd

such that π(y) + αy is also a permutation for some α ∈ E2. This class of per-
mutations was analyzed in [17] and the main result is that for sufficiently large
q, assuming d | q − 1, there exists at least one u ∈ Fq such that yd+1 + uy is a
permutation over Fq. For instance, when n = 6 the mappings π(y) = y10 and
π(y) + ζiy on F26, for a primitive element ζ ∈ F26, are both permutations for
i = 3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, 51, 57, 60 (for a primitive polynomial p(x) =
x6 + x+ 1).

The above approach can be easily extended provided the existence of complete
mappings such that π(y) + αiy is a permutation for some linearly independent
α1, . . . , αk ∈ Fn

2 over F2, additionally satisfying the image preservation of E2.
Since f1 ∈ M whereas f0 ̸∈ M# in Proposition 6.2.2, it is clear that these

bent functions cannot lie in the same affine equivalence class. Nevertheless, the
question of possible affine inequivalence of bent functions derived from complete
mappings is quite interesting. More precisely, comparing the function f0(x, y) =
π(y)·x+1E1(x)1E2(y) in Proposition 6.2.2, when π(y) = yd (which is not necessary),
to the function f ′(x, y) = (π(y) +αy) · x+1E1(x)1E2(y) for α ∈ E2 we remark that

f0(x, y) + f ′(x, y) = αy · x; x, y ∈ Fn
2 , (6.2)

which is again bent and belongs to M. Now if f0 and f ′ given above are affine
equivalent, having (6.2) necessarily satisfied, then there exists an invertible binary
matrix A of size 2n×2n, an element (a, b) ∈ Fn

2 ×Fn
2 , and an affine l : Fn

2 ×Fn
2 → F2,

so that expressing f ′(x, y) = f0((x, y)A+ (a, b)) + l(x, y) we have

f0(x, y) + f ′(x, y) = f0(x, y) + f0((x, y)A+ (a, b)) + l(x, y) = αy · x.

64 6.2 Vectorial bent functions from D weakly outside M#

Nevertheless, even in the simple case of π(y) = yd so that f0(x, y) = yd · x +
1E1(x)1E2(y) this analysis becomes difficult.

An alternative approach to this problem of establishing affine (in)equivalence
between f0 and f ′, is to consider the weight distribution of the second order deriva-
tives. More precisely, one can collect the Hamming weights of DaDbf0(x, y) and
DaDbf

′(x, y) for all (a, b) ∈ Fn
2
∗×Fn

2
∗ (with a ̸= b) and compare their distributions.

It was shown by J. Dillon [22] that f0 and f ′ are affine inequivalent if these weight
distributions differ form each other.

6.2.2 Vectorial bent functions from subfield permutations

In difference to the subfield permutations used in Section 6.1.3, there are other
explicit classes of permutation polynomials that permute subfields but do not admit
linear structures. Notice that any permutation polynomial π(y) =

∑2n−1
i=0 aiy

i over
F2n has the desired property that π(F2k) = F2k whenever the coefficients ai ∈ F2k ,
for a subfield F2k of F2n . In a recent article [27], the authors proposed four different
classes of permutation trinomials over F2n with binary coefficients, for n even.

Theorem 6.2.3 [27] The polynomial f1(x) = x4 + x2
k+3 + x3·2

k+1 ∈ F22k [x] is a
permutation polynomial over F22k if and only if gcd(k, 3) = 1.

As a corollary of this result, a permutation polynomial of the form π(y) = y +

y2
k
+ y2

2k−1−2k−1+1 (with gcd(k, 3) = 1) can be deduced, originally found in [39].
This permutation polynomial can be employed for deriving vectorial bent functions
weakly outside M#.

Theorem 6.2.4 Let n = 2k and π(y) = y+y2
k
+y2

2k−1−2k−1+1, with gcd(k, 3) = 1,
be a permutation over F2n. Let E2 be a k-dimensional subspace of Fn

2 regarded as
the subfield F2k of F2n. Then, π satisfies π(E2) = E2 = E⊥

1 and F = (f0, . . . , fk−1),
where fi(x, y) = αiπ(y) · x + 1E1(x)1E2(y) for linearly independent αi ∈ F2k over
F2, is a vectorial bent function weakly outside M#.

Proof. We notice that π(F2k) = F2k since the coefficients of π are binary (the
same would be true for the coefficients from F2k), due to the closedness of F2k .
It can be easily verified that wt(22k−1 − 2k−1 + 1) ≥ 3 for any k ≥ 2 hence the

term g(y) = y2
2k−1−2k−1+1 does not admit linear structures (see [19, Theorem 5]).

Then, as the remaining two terms y + y2
k
are linear and do not affect derivatives

we conclude that π(y) satisfies the conditions of Theorem 6.1.2. Therefore, F is a
vectorial bent function weakly outside M# with components in D and M.

The particular instances of permutations mentioned above all belong to a broader
class of permutation polynomials of the form xrh(xs) which contains many explicit
classes specified in the literature. We believe that most of these permutations even-
tually satisfy the condition related to the absence of linear structures and can be
used in Theorem 6.2.4, but we do not investigate this issue further.

Chapter 6. Vectorial bent functions weakly/strongly outside M# 65

6.3 Vectorial bent-negabent functions weakly outside
the M# class

In this section we combine the notion of vectorial bent-negabent functions intro-
duced in Chapter 5 and the notion of vectorial bent functions weakly outside M#

introduced in this chapter. We propose several different methods of constructing
vectorial bent-negabent functions provably weakly outside the completed M class.
For this purpose, we first consider a class of complete mappings over F2n of the form
x 7→ F (x)+ax, which remain permutations for “many” values a ∈ F2n and combine
it with bent functions in the D0 class to construct vectorial bent-negabent functions
weakly outside M. Then, we propose a generic method of constructing complete
mappings from a suitable vector space decomposition. The complete mappings are
then utilised to construct vectorial bent-negabent functions (whose dimension is not
maximal) with approximately half of the component functions in C \M#.

6.3.1 Vectorial bent-negabent functions from the D0 class

Firstly we focus on constructions of vectorial bent-negabent functions outside M#,
using bent functions from D0 class together with some known results about complete
monomial permutations.

Consider the following characterization of the permutation binomials of the form

F (x) = x
2n−1

2k−1
+1

+ax on F2n , where n = 2rk, which we will use to construct Boolean
and vectorial bent-negabent functions outside M#.

Theorem 6.3.1 [5] Let r, k be positive integers with k odd and n = 2rk. Then the

polynomial F (x) = x
2n−1

2k−1
+1

+ax, a ∈ F∗
2n is a permutation polynomial of F2n if and

only if (i) r = 1, 2 and (ii) a ∈ ωF∗
2k
∪ω2F∗

2k
, where ω ∈ F22 is a root of the equation

ω2 + ω + 1 = 0.

Using this result, we now show that D0 class contains members, which are not only
equivalent to bent-negabent functions, but also do not belong to the completed
Maiorana-McFarland class M#.

Theorem 6.3.2 Let m = 2n = 4t, where t ≥ 3 is an odd positive integer. Let
π : F2n → F2n be a permutation defined by π(y) = y2

t+2, for y ∈ F2n. Then, the
function f(x, y) = x · π(y) + δ0(x), where x, y ∈ Fn

2 , is a bent function outside M#

and it is affine equivalent to a negabent function.

Proof. Notice that since all components of π are quadratic, using results from
Chapter 3, we can immediately deduce that f is a bent function outside M#. How-
ever, for completeness, we present another proof here, based on [9, Proposition 2].
To prove that f is outside M#, it is enough to show that the restriction of π to
any linear hyperplane is not affine, see [9, Proposition 2]. Similarly to the proof
of [9, Corollary 2], since π(by) = b2

t+2π(y) for b ∈ F2n , the restriction of π to the
linear hyperplane Hb = {y ∈ F2n | Tr(by) = 0} is affine if and only if the restriction
of π to the linear hyperplane H0 = {y ∈ F2n | Tr(y) = 0} is affine. Since H0 is
the image of the linear mapping y 7→ y2 + y, if the mapping π restricted to H0 is

66 6.3 Vectorial bent-negabent functions weakly outside the M# class

affine, then π(y2 + y) = (y2 + y)2
t+2 would also be affine, but it is a polynomial of

degree 2t+1+4 defined on F22t , and so it is not affine. Hence, the restriction of π to
any linear hyperplane is not affine, and we conclude that f is a bent function in D0

outside M#.

Now, let a ∈ ωF∗
2t∪ω

2F∗
2t , where ω ∈ F22 is a root of the equation ω2+ω+1 = 0.

From Theorem 6.3.1, we have that y 7→ π(y)+ay is again a permutation, and hence
the Boolean function (x, y) 7→ f(x, y) + x · (ay) is a bent function in the D0 class,
where ay is the product of a and y in F22t . Denote by g the quadratic Boolean bent
function (x, y) 7→ x·(ay) on Fm

2 , which we identify with Fn
2×Fn

2 . Since g is a quadratic
bent function on Fm

2 , there exists an invertiblem×m matrixM , a vector v ∈ Fm
2 and

an affine Boolean function l : Fm
2 → F2, such that s2(x, y) = g((x, y)M+v)+ l(x, y).

Since addition of affine functions does not affect bent-negabentness, we conclude that
f((x, y)M + v) is a negabent function. In this way, we conclude that f((x, y)M + v)
is a bent-negabent function outside the M# class.

Using Theorem 6.3.1 and Theorem 6.3.2, we derive the following construction of
vectorial bent-negabent functions weakly outside the M# class.

Theorem 6.3.3 Let m = 2n = 4t, where t ≥ 3 is an odd positive integer. Let
π : F2n → F2n be a permutation defined by π(y) = y2

t+2, for y ∈ F2n, and let
f : F2n × F2n → F2 be defined by f(x, y) = x · π(y) + δ0(x) for x, y ∈ F2n. Let
{a1, . . . , at} be a basis of ωF2t over F2, where ω ∈ F22 is a root of the equation
ω2 + ω + 1 = 0. Then, the function F : F2n × F2n → Ft

2 defined by

F (x, y) =


f(x, y)
x · a1y

...
x · at−1y


is affine equivalent to a vectorial bent-negabent function and is weakly outside the
M# class.

Proof. From Theorem 6.3.2, we know that f is a bent function outside the M#

class. Let S be a non-empty subset of {1, . . . , t − 1}. Then, by Theorem 6.3.1, the
function (x, y) 7→ f(x, y) + x · (

∑
i∈S ai)y is bent and belongs to the D0 class. The

function (x, y) 7→ x · (
∑

i∈S ai)y is also bent and is in M#. Hence, F is a vectorial
bent function.

Since the function g(x, y) = x · (aty) is a quadratic bent function on Fm
2 , which

is identified with F2n × F2n , there exists an invertible m ×m binary matrix M , a
vector v ∈ Fm

2 and an affine Boolean function l : Fm
2 → F2, such that s2(x, y) =

g((x, y)M + v) + l(x, y). Now, f(x, y) + x · (
∑

i∈S ai)y + x · aty is a bent function
by Theorem 6.3.1, and x · (

∑
i∈S ai)y+ x · aty is a bent function in M#. Hence, we

conclude that F ((x, y)M + v) is a vectorial bent-negabent function weakly outside
M#.

Chapter 6. Vectorial bent functions weakly/strongly outside M# 67

6.3.2 Vectorial bent-negabent functions from the C class

Apart from the permutations specified in [5], one can identify other classes of per-
mutations which can be viewed as vector spaces of complete mappings in the sense
discussed above. In the sequel, we propose a generic method of constructing such
mappings.

6.3.2.1 A generic construction method of vector spaces of nonlinear
complete mappings

L.E. Baum and L.P. Neuwirth [2] introduced a method of decomposing vector spaces
in a non-trivial manner. This method was used in Chapter 4 for the purpose of
specifying permutations without linear structures, and another approach to generate
this type of vector space decomposition was suggested in [38]. In the following
theorem, instead of using suitable permutations x 7→ F (x) such that x 7→ F (x)+ bx
remains a permutation for many b’s (alternatively using b-complete permutations),
one can provide a generic method of building such mappings using a suitable vector
space decomposition. The benefits of such an approach are: a larger variation of
the constructed objects and a higher algebraic degree of such mappings.

Lemma 6.3.4 Let E be a subspace of Fn
2 , and let ϕ : Fn

2 → Fn
2 be a function such

that ϕ is constant on cosets of E (i.e., ϕ(a) = ϕ(a + e), ∀a ∈ Fn
2 , and ∀e ∈ E),

and such that it has values in only one additive coset of E (i.e., ϕ(a) + ϕ(b) ∈ E,
∀a, b ∈ Fn

2). Then, the mapping x ∈ Fn
2 7→ L ◦ ϕ(x) + x is a permutation for every

invertible linear mapping L : Fn
2 → Fn

2 such that L(E) = E.

Proof. For every invertible linear mapping L, the function F defined by
F (x) = L◦ϕ(x)+x is a permutation if and only if the function G = L−1◦F = ϕ+L−1

is a permutation. Hence, in order to prove that L ◦ ϕ(x) + x is a permutation for
every invertible linear mapping L : Fn

2 → Fn
2 such that L(E) = E, we will prove the

equivalent statement that ϕ + L is a permutation of Fn
2 for every invertible linear

mapping L : Fn
2 → Fn

2 such that L(E) = E (note that L(E) = E is equivalent to
L−1(E) = E, and consequently the statement is true for every L−1 if and only if it
is true for every L).

Let L : Fn
2 → Fn

2 be an invertible linear mapping such that L(E) = E. Assume
that for some v, w ∈ Fn

2 we have ϕ(v) + L(v) = ϕ(w) + L(w). Then ϕ(v) + ϕ(w) =
L(v) + L(w) = L(v + w), and since ϕ(v) + ϕ(w) ∈ E and L(E) = E, we have
v + w ∈ E. Thus, v and w are in the same coset of E. But since v and w are in
the same coset of E, we have ϕ(v) = ϕ(w), so L(v + w) = 0, and hence v = w. We
conclude that ϕ+ L is a permutation of Fn

2 .

We can now use similar ideas as in Section 6.3.1 and combine these with Lemma
6.3.4 to construct vectorial bent-negabent functions. In order to find vector spaces
of linear permutations that fix E, we will set E to be a subfield of F2n and use the
multiplication in F2n with elements from E. By doing this, we will be able to get
higher degree of the permutations compared to the construction in Section 6.3.1.
However, since now ϕ itself is not a permutation (it is constant on cosets of E),

68 6.3 Vectorial bent-negabent functions weakly outside the M# class

we have to reduce the dimension of the vectorial function by one, compared to the
functions in Theorem 6.3.3.

Theorem 6.3.5 Let m = 2n. Let F2t be a subfield of F2n, and let {a1, . . . , at}
be a basis of F2t over F2. Let Li : F2n → F2n be the linear functions defined by
Li(y) = aiy, and let πi : F2n → F2n be the mapping defined by πi(y) = Li(y)+1F2t

(y),
for i = 1, . . . , t − 1. Let also ρ1, . . . , ρt−1 be arbitrary Boolean functions on F2n.
Then, the function F : F2n × F2n → Ft−1

2 defined by

F (x, y) =

 Tr(xπ1(y)) + ρ1(y)
...

Tr(xπt−1(y)) + ρt−1(y)


is affine equivalent to a vectorial bent-negabent function.

Proof. Choose an arbitrary non-empty subset S of {1, . . . , t−1} and fix it. First,
we will show that the component function∑

i∈S
(Tr(xπi(y)) + ρi(y)) = Tr(x

∑
i∈S

πi(y)) +
∑
i∈S

ρi(y)

is a bent function. From the definition of πi’s, we have
∑

i∈S πi(y) =
∑

i∈S(aiy +
1F2t

(y)).
If the number of elements in S is even, then

∑
i∈S πi(y) = (

∑
i∈S ai)y, and since

ai’s are linearly independent
∑

i∈S ai ̸= 0, so
∑

i∈S πi(y) is a permutation. In this
way, the component function

∑
i∈S Tr(xπi(y))+

∑
i∈S ρi(y) is a bent function inside

the M class.
On the other hand, if the number of elements in S is odd, then

∑
i∈S πi(y) =

(
∑

i∈S ai)y + 1F2t
(y). Since b :=

∑
i∈S ai is a nonzero element of F2t , the linear

mapping L(y) = by is invertible, and maps F2t to F2t . The mapping 1F2t
(y) is

constant on cosets of F2t , and it obviously has values only in F2t . Hence, from Lemma
6.3.4, we deduce that

∑
i∈S πi(y) = (

∑
i∈S ai)y+1F2t

(y) is again a permutation, and
therefore

∑
i∈S Tr(xπi(y)) +

∑
i∈S ρi(y) is a bent function in M.

Since the function g′(x, y) = Tr(x(aty)) is a quadratic bent function on Fm
2 ,

which is identified with F2n ×F2n , and all quadratic bent functions are affine equiv-
alent, there is an invertible m×m binary matrix M , a vector r ∈ Fm

2 , and an affine
Boolean function l : Fm

2 → F2, such that s2(x, y) = g′((x, y)M + r) + l(x, y). Simi-
larly to the paragraph above, the function

∑
i∈S πi(y)+aty is a permutation, and so∑

i∈S Tr(xπi(y))+
∑

i∈S ρi(y)+Tr(x(aty)) is a bent function in the M class. Hence,
we conclude that the function F ((x, y)M + r) is a vectorial bent-negabent function
(ignoring the linear terms and constants, since they do not affect the bent-negabent
property).

Remark 7 Notice that the algebraic degree of the permutations πi(y) = Li(y) +
1F2t

(y) in Theorem 6.3.5 is n − t, since we can view 1F2t
(y) as an indicator of

a t-dimensional subspace of Fn
2 , and hence its algebraic degree is n − t. This is

an improvement over the degree of the permutations used in Theorem 6.3.2 and
Theorem 6.3.3, which are quadratic. Also, notice that the parameter t in Theorem
6.3.5 is not required to be odd, which is another improvement over Theorem 6.3.3.

Chapter 6. Vectorial bent functions weakly/strongly outside M# 69

Example 6 Let m = 2n = 4t and t = 3. The polynomial x6 + x4 + x3 + x + 1 is
irreducible over F2, hence we can represent F26 as F2(α), where α

6+α4+α3+α+1 =
0. The set B = {1, α, . . . , α5} is a basis of F26 over F2. Let a1 = α + α5, a2 =
α+α4+α5, and a3 = 1. Because a2

3

i −ai = 0, for i ∈ {1, 2, 3}, and because a1, a2, and
a3 are linearly independent over F2 we deduce that F23 is given by ⟨a1, a2, a3⟩. Then,
the indicator of F23 is given by 1F23

(y) = y56+y49+y42+y35+y28+y21+y14+y7+1,
for all y ∈ F26, and its algebraic degree is n−t = 3. Define πi(y) = aiy+1F23

(y), for

i = 1, 2. We write x = x1+x2α+· · ·+x6α5 ∈ F26 and also y = x7+x8α+· · ·+x12α5 ∈
F26. Define the function F : F12

2 → F2
2 by

F (x, y) = F (x1, . . . , x12) =

[
f1(x1, . . . , x12)
f2(x1, . . . , x12)

]
=

[
(x1, . . . , x6) · π1(x7, . . . , x12)
(x1, . . . , x6) · π2(x7, . . . , x12)

]
,

where the dot product is used instead of trace in Theorem 6.3.5. With the identifi-
cation of F6

2 and F26 above, we can specify algebraic normal forms of the coordinate
functions f1 and f2 of the function F : F12

2 → F2
2 in the following way:

f1(x1, . . . , x12) = x1x8x9x10 + x1x8x9 + x1x8x10x11 + x1x8x10 + x1x8x11 +
x1x9x10x11+x1x9x10x12+x1x9x10+x1x9x11+x1x9x12+x1x9+x1x10x11x12+
x1x10x11 + x1x10x12 + x1x11x12 + x1x12 + x1 + x2x7 + x2x8 + x2x9 + x2x10 +
x2x12 + x3x8 + x3x9 + x3x10 + x3x11 + x4x8 + x4x9 + x4x12 + x5x8 + x5x9 +
x5x11 + x6x7 + x6x9 + x6x10 + x6x12,

f2(x1, . . . , x12) = x1x8x9x10 + x1x8x9 + x1x8x10x11 + x1x8x10 + x1x8x11 +
x1x9x10x11 + x1x9x10x12 + x1x9x10 + x1x9x11 + x1x9x12 + x1x10x11x12 +
x1x10x11 + x1x10x12 + x1x11x12 + x1x12 + x1 + x2x8 + x2x12 + x3x7 + x3x9 +
x4x9 + x4x11 + x5x7 + x5x8 + x5x9 + x5x11 + x5x12 + x6x7 + x6x8 + x6x9 +
x6x10 + x6x12.

Define the matrix A ∈ GL(12,F2), as in Remark 2 (Chapter 5), i.e.,

A =



1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 0
1 1 1 1 0 0 1 1 1 0 0 0
1 1 1 1 1 0 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 0 0
1 1 1 1 0 0 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 1



.

Then, we get that ν((x1, . . . , x12)A) = s2(x1, . . . , x12), up to some linear terms (Re-
mark 2). Again, ignoring the linear terms, since they do not affect the bent-negabent
property, we conclude that F ((x1, . . . , x12)A) is a vectorial bent-negabent function.

70 6.3 Vectorial bent-negabent functions weakly outside the M# class

6.3.2.2 Vectorial bent-negabent functions outside the M# class from
vector spaces of complete mappings

By a slight modification of the construction in Theorem 6.3.5, using functions in the
C class instead, we can also construct vectorial bent-negabent functions which are
weakly outside the M# class.

In the rest of this subsection, we will continue to use dot product instead of trace
in a finite field, but at the same time we will also use the multiplication in the finite
field. The symbol “·” will represent the dot product in Fn

2 between two elements,
even when we have two field elements x, y ∈ F2n ; it is possible, since the finite field
F2n is a vector space over F2, and hence it is isomorphic to the vector space Fn

2 . For
simplicity, we will write x · y for the dot product between x and y instead of the
formally correct L(x) ·L(y), where L is an isomorphism between F2n and Fn

2 , and we
will write xy for the product in the finite field. Furthermore, when we deal with a
tower of finite fields such that F2t is a subfield of F2k , and F2k is a subfield of F2n , we
will use a basis for F2n of the form {1, v1, . . . , vn−1}, such that {1, v1, . . . , vt−1} is a
basis for F2t , and {1, v1, . . . , vk−1} is a basis for F2k . Note that it is always possible
to find such a basis, because, we can start with any basis for F2t over F2 of the form
B1 = {1, v1, . . . , vt−1}, and since F2t is a subfield of F2k (hence also a subspace) we
can extend B1 to a basis B2 = {1, v1, . . . , vk−1} for F2k over F2, and similarly, we
can extend B2 to a basis B3 = {1, v1, . . . , vn−1} for F2n over F2, and B3 is a basis
of the desired form. In order to identify F2n with Fn

2 , we will use the isomorphism,
which maps the basis {1, v1, . . . , vn−1} to the standard basis {e1, e2, . . . , en} of Fn

2 ,
where ei ∈ Fn

2 is the i-th unit vector.

In the following theorem, using bent functions from the C class, we derive another
construction of Boolean bent-negabent functions weakly outside the M# class.

Theorem 6.3.6 Let E = F2k be a subfield of F2n, k ≥ 6, W = F2t be a proper
subfield of F2k , and let a ∈ F2t \ {0}. Then the function f defined by f(x, y) =
x · (ay + 1W (y)) + 1E⊥(x), for all x, y ∈ F2n, is a bent function outside the M#

class.

Proof. Since a is a nonzero element of F2t , the linear mapping L(y) = ay is a
permutation of F2n , and it maps F2t to F2t . The mapping 1F2t

(y) is constant on the
cosets of F2t , and it obviously has values in F2t only. Hence, from Lemma 6.3.4, we
deduce that y ∈ F2n 7→ ay + 1F2t

(y) is a permutation, and since F2t is a subfield of
F2k , it maps cosets of F2k to cosets of F2k , and so f is a bent function in the C class.

In order to prove that f is outside of the M# class we could use results from
Chapter 4 (namely Theorem 4.2.1). However, for the sake of completeness and
clarity, we present an explicit proof here.

To show that f is outside the M# class, we need to show that there exists
no n-dimensional subspace V of F2n

2 such that DvDwf = 0, for all v, w ∈ V ,
see Lemma 2.2.1. Since the function (x, y) 7→ DvDw(x · ay) is constant for all
v, w ∈ V , it is enough to show that (x, y) 7→ DvDw(x · 1W (y)) + DvDw1E⊥(x) is
non-constant, for some elements in v, w ∈ V . In order to prove this, we consider the
algebraic normal form of (x, y) 7→ DvDw(x · 1W (y)) +DvDw1E⊥(x), which is given

Chapter 6. Vectorial bent functions weakly/strongly outside M# 71

by

DvDw(x1(

n∏
i=t+1

(yi + 1)) +DvDw

k∏
i=1

(xi + 1). (6.3)

For any two vectors v, w ∈ F2n
2 , the second-order derivative DvDw

∏k
i=1(xi + 1)

is of degree k− 2 if the restrictions of v and w to the first k “x”-coordinates are two
different nonzero vectors; otherwise, it is 0 (follows from Lemma 2.1.1). Similarly
for DvDw

∏n
i=t+1(yi+1), it is of degree n− t−2 if the restrictions of v and w to the

last n− t “y”-coordinates are two different nonzero vectors. Hence, in order to show
that there are two vectors v, w ∈ V such that DvDwf is non-constant, from (6.3),
we deduce that it is enough to show that there are two vectors v, w ∈ V such that
their restrictions to the first k “x”-coordinates are two different nonzero vectors, or
such that their restrictions to the last n−t “y”-coordinates are two different nonzero
vectors.

Consider the following subspaces K,T ⊂ Fn
2 and S ⊂ F2n

2 , which are given by
K = ⟨e1, e2, . . . , ek⟩, T = ⟨et+1, et+2, . . . , en⟩ and S = (K × {0n}) ⊕ ({0n} × T).
Denote by U the subspace V ∩ S.

Assume that there are three linearly independent vectors in U . Denote them by
u1, u2 and u3. If the restriction of u1, u2 and u3 to the the first k “x”-coordinates
is the zero vector, then from the definition of S we have that their restriction to the
last n− t “y”-coordinates are three different nonzero vectors, since they are linearly
independent. Assume now that in the restrictions of u1, u2 and u3 to the the first
k “x”-coordinates there is only one nonzero vector. Without loss of generality, we
can assume that the restriction of u1 to the first k “x”-coordinates is nonzero. By
possibly adding u1 to u2 or u3, we can assume that the restriction of u2 and u3 to
the first k “x”-coordinates is the zero vector. Then, because u2 and u3 are linearly
independent, from the definition of S, we deduce that the restrictions of u2 and u3 to
the last n− t “y”-coordinates are two different nonzero vectors. Hence, we conclude
that, in order to show that there are two vectors in V such that their restrictions
to the first k “x”-coordinates are two different nonzero vectors, or such that their
restrictions to the last n− t “y”-coordinates are two different nonzero vectors, it is
enough to prove that dimU ≥ 3.

Because V and S are subspaces of F2n
2 , we have

dimU = dim(V ∩ S) = dimV + dimS − dim(V + S).

We know that dimV = n, dimS = k+n− t and dim(V +S) ≤ 2n, so dim(V ∩S) ≥
n+n+ k− t− 2n = k− t ≥ k/2 ≥ 3, since k ≥ 6. Thus, we conclude that there are
two vectors v, w ∈ V such that DvDwf is non-constant. In this way, since V was an
arbitrary n-dimensional subspace of F2n

2 , f is a bent function outside M#.

We can use Theorem 6.3.6 along with the ideas used in the proof of Theorem
6.3.5 to construct vectorial bent-negabent functions weakly outside M#.

Theorem 6.3.7 Let E = F2k be a subfield of F2n, n ≥ 6, and let F2t be a proper
subfield of F2k . Set a1 = 1, and let a1, . . . , at be a basis for F2t over F2. Denote by
Li : F2n → F2n the permutation defined by Li(y) = aiy, and denote by πi : F2n → F2n

72 6.4 Vectorial bent functions from the C class strongly outside M#

the function defined by πi(y) = Li(y)+1F2t
(y). Then, the function F : F2n ×F2n →

Ft−1
2 defined by

F (x, y) =

 x · π1(y) + 1E⊥(x)
...

x · πt−1(y) + 1E⊥(x)


is affine equivalent to a vectorial bent-negabent function, and it is weakly outside
M# with 2t−2 bent components in C \M#.

Proof. Choose an arbitrary non-empty subset S of {1, . . . , t − 1} and fix it.
First, we will show that the component function given by (x, y) 7→

∑
i∈S(x · πi(y) +

1E⊥(x)) = x ·
∑

i∈S πi(y) +
∑

i∈S 1E⊥(x) is a bent function. From the definition of
πi’s, we have

∑
i∈S πi(y) =

∑
i∈S(aiy + 1F2t

(y)).

If the number of elements in S is even, then (similarly to Theorem 6.3.5) we
have that (x, y) 7→

∑
i∈S x ·πi(y) is a bent function in M. On the other hand, if the

cardinality of S is odd, then
∑

i∈S πi(y) = (
∑

i∈S ai)y+ 1F2t
(y). Since b :=

∑
i∈S ai

is a nonzero element of F2t , we deduce from Theorem 6.3.6 that (x, y) 7→
∑

i∈S x ·
πi(y) + 1E⊥(x) is a bent function in the C class outside M#. In this way, F is
a vectorial bent function, weakly outside the M# class. Similarly to the proof
of Theorem 6.3.5, we get that F is affine equivalent to a vectorial bent-negabent
function.

Open problem 6.3.1 None of the vectorial bent-negabent functions specified in
Section 6.3 reaches the maximum dimension of the output space given in Theorem
5.2.2, unless the algebraic degree of the permutations used is equal to one (for exam-
ple, setting t = n in Theorem 6.3.5). Is there a vector space of complete permutations
of Fn

2 , some of which have the algebraic degree greater than one, whose dimension is
equal to n−1? In other words, provide new constructions of non-quadratic vectorial
bent-negabent functions with maximum output dimension.

In this context, we recall that it was conjectured by R.J. Evans et al. [25] that if
F (x) + cx is a permutation over Fq for at least q/2 different values c ∈ Fq, then F
is necessarily a linearized polynomial over Fq.

6.4 Vectorial bent functions from the C class strongly
outside M#

In this section, we will present an approach to construct vectorial bent functions
F : F2n

2 → Fk
2, which are strongly outside the M# class, for some dimensions k.

Again, we identify the finite field F2n with the vector space Fn
2 via the natural

isomorphism. However, since the connection between the finite field and the vector
space representation will be a bit more delicate in this section, in order to avoid
any confusion, when x ∈ F2n , we will denote by x the corresponding vector in Fn

2 .
Nevertheless, ”·” will always denote the dot product on Fn

2 . The following theorem
specifies some monomial permutations ϕ(x) = xd which are later employed in our
construction.

Chapter 6. Vectorial bent functions weakly/strongly outside M# 73

Theorem 6.4.1 [41, Theorem 5.8] Suppose ϕ(x) = x2
r+1, for all x ∈ F2n, where

gcd(r, n) = e and n/e is odd (which implies gcd(2n − 1, 2r + 1) = 1).

(i) Then (ϕ,L) (where L is a subspace of dim(L) = 2) satisfies the (C) property
if and only if L = ⟨u, cu⟩ where u ∈ F∗

2n and 1 ̸= c ∈ F∗
2e.

(ii) Assume that e = gcd(n, r) > 1 and L = ⟨u1, c1u1, . . . , cs−1u1⟩, dim(L) = s,
ci ∈ F∗

2e, 1 ≤ i ≤ s − 1, s ≥ 2, and u1 ∈ F∗
2n. Then (ϕ,L) satisfies the (C)

property.

We will now specify a set of 2-dimensional subspaces Li of Fn
2 such that any

function fi(x, y) = πi(y) · x+ 1L⊥
i
(x) is in C but outside M#. Let {1, α1, . . . , αe−1}

be a set of elements in F2e < F2n such that {1, α1, . . . , αe−1} is a set of linearly
independent vectors in Fn

2 . Consider a permutation ϕ : F2n → F2n defined by
ϕ(y) = y2

r+1, where gcd(r, n) = e, n/e is odd and e ≥ 3. Furthermore, we can
specify π(y) = ϕ(y)−1 = yd, and set πi(y) = αiy

d, for i ∈ {1, 2, . . . , e − 1}. Set
Li = ⟨1, αi⟩ ⊂ Fn

2 . This is in accordance with Theorem 6.4.1 (taking u = 1). Since
Li are 2-dimensional subspaces, then dim(L⊥

i) = n− 2. Furthermore, we have:

1L⊥
i
(x) = (1 · x+ 1)(αi · x+ 1).

Define fi(x, y) = πi(y) · x + 1L⊥
i
(x), for all x ∈ Fn

2 , y ∈ F2n . The inverse

permutation of πi is given by π−1
i (y) = ciy

2r+1 = ciϕ(y), where ci = α
−(2r+1)
i . From

Theorem 6.4.1, we deduce that ϕ maps cosets of Li to affine subspaces, and so,
π−1
i = ciϕ maps cosets of Li to affine subspaces as well. This means that fi are bent

functions in the C class. The next result describes how to use functions fi to define
vectorial bent functions strongly outside M#.

Theorem 6.4.2 Let n and r be integers satisfying n ≥ 5, r < n, gcd(n, r) = e,
where e ≥ 3 and n/e is odd. Define a permutation ϕ(y) = y2

r+1 over F2n and
its inverse π(y) = ϕ(y)−1 = yd. Let {1, α1, . . . , αe−1} ⊂ F2e < F2n be a set of
linearly independent elements (over F2). Set Li = ⟨1, αi⟩ ⊂ Fn

2 , πi = αiπ, and
fi(x, y) = πi(y) · x + 1L⊥

i
(x), for i ∈ {1, . . . , e − 1}. Then, F : F2n

2 → Fe−1
2 defined

by

F = (f1, f2, . . . , fe−1)

is a vectorial bent function in C strongly outside M#.

Proof. We need to show that for every non-empty subset S ⊆ {1, 2, . . . , e − 1}
the linear combination

∑
i∈S fi is a bent function outside the M# class. Let S ⊆

{1, 2, . . . , e − 1} be arbitrary and non-empty. From the discussion preceding the
theorem, we know that fi(x, y) = αiπ(y) · x+ (1 · x+ 1)(αi · x+ 1), and so

∑
i∈S

fi(x, y) =

((∑
i∈S

αi

)
π(y)

)
· x+

(
1 · x+ 1

)((∑
i∈S

αi

)
· x+

∑
i∈S

1

)
.

74 6.4 Vectorial bent functions from the C class strongly outside M#

Since {1, α1, . . . , αe−1} is a set of linearly independent vectors, cS :=
∑

i∈S αi is
a nonzero element of F2e < F2n different from 1 and the above equation can be
rewritten as∑

i∈S fi(x, y) = cSπ(y) · x+ (1 · x+ 1)(cS · x+
∑

i∈S 1)

= cSπ(y) · x+ (1 · x+ 1)(cS · x+ 1) + (1 · x+ 1)(1 +
∑

i∈S 1).

Because (1 · x + 1)(1 +
∑

i∈S 1) is an affine function, it is enough to show that

csπ(y) · x+ (1 · x+ 1)(cS · x+ 1) is a bent function in the C class outside M#. We

denote (cSπ)
−1 := bSϕ, where bS = c

−(2r+1)
S , and denote by ES the two dimensional

subspace ⟨1, cS⟩ of Fn
2 . From Theorem 6.4.1 we deduce that ϕ maps cosets of ES

to affine subspaces, and so, bSϕ maps cosets of ES to affine subspaces as well. This
means that csπ(y) · x+ (1 · x+ 1)(cs · x+ 1) is a bent function in the C class.

Since n ≥ 5, we know that wt(d) ≥ 3, see Lemma 10 in [84]. We deduce from
results in [19] that π(y) = yd has no (non-trivial) component functions with nonzero
linear structures, and so the same is true for cSπ as well. From Theorem 4.1.1, we
deduce that cSπ(y) ·x+(1 ·x+1)(cs ·x+1) = cSπ(y) ·x+1E⊥

S
(x) is a bent function

in the C class outside M#, and so,
∑

i∈S fi is a bent function outside the M# class.
Since S was an arbitrary non-empty subset of {1, 2, . . . , e − 1}, the statement is
proved.

Chapter 7

Correlation immune functions
with low Hamming weight

For cryptographic applications, the notion of correlation immunity (CI) is commonly
related to the so-called nonlinear combiner model as a representative of certain fam-
ily of stream ciphers [46]. This property is crucial for this model in order to withstand
correlation attacks [30, 31, 45, 68]. Most often, a closely related notion of resiliency
is used as a cryptographic criterion which, apart from a certain order of correlation
immunity of the combining Boolean function, also requires its balancedness. Apart
from this application, a subclass of minimum weight CI functions has received a lot
of attention recently due to their use as masking primitives for the purpose of hard-
ware protection of certain cipher families [4], see also [16]. In addition, CI functions
are closely related to secret-sharing schemes and error-correcting codes [6, 23,26].

A tight bound for the achievable algebraic degree of correlation immune functions
was given by T. Siegenthaler [67]. G.Z. Xiao and J.L. Massey [81] showed that a
Boolean function is kth-order correlation immune if and only if its Walsh-Hadamard
transform values are equal to zero for all the vectors whose Hamming weight is in
the range {1, . . . , k}. In addition to the Walsh-Hadamard spectral characterization,
CI Boolean functions can be characterized using orthogonal arrays [6], and in terms
of Fourier spectra [79]. The proof of Xiao and Massey [81], regarding the spectral
characterization of CI functions, was later simplified by P. Sarkar [63] and it then
became a standard proof used in the textbooks, see e.g. [20]. Yet another approach
in this direction was taken by C. Carlet [12], where the so-called numerical normal
form (NNF) was used for the purpose of providing the most elegant and concise
proof (though addressing the resiliency).

In the first part of this chapter, in Section 7.1, we show that using certain
weight divisibility results related to restrictions of CI functions (taken from [73],
see Proposition 2.4.1), an elegant and compact proof of Siegenthaler’s bound on the
algebraic degree can be deduced. In addition, we specify precisely the weight of k-th
order CI functions having (all) terms of degree n − k in its algebraic normal form,
cf. Theorem 7.1.2. Using the same divisibility results, we also exactly determine the
Walsh spectral values at vectors of weight k + 1 for k-th order correlation immune
Boolean functions.

75

76 7.1 On the algebraic degree of correlation immune functions

In the second part of this chapter, in Section 7.2, we present two efficient con-
structions of CI functions which are well-suited for designing a subclass of these func-
tions having low Hamming weight. Such functions have an immediate applications
as masking schemes for protecting ciphers against side-channel cryptanalysis [16].
As remarked in [15], for an efficient hardware implementation CI functions need
to have as low weight as possible. Nevertheless, most of the known constructions
(such as for instance the primary Maiorana-McFarland construction and secondary
constructions like the indirect sum, see for example [12], [24]) do not allow to build
functions with such property, which initiated rather extensive research in this di-
rection. More precisely, for a relatively low size of the input space (for n ≤ 13)
the minimum weight of CI functions has been determined and tabulated in [16]
apart from a few unknown values and some of the remaining cases were handled the
subsequent work of Q. Wang and Y. Li [78]. Following the notation introduced by
C. Carlet and X. Chen in [16], thus denoting the minimum weight of any n-variable
k-th order CI function by ωn,k, the values of ω12,4, ω13,4 and ω13,5 have been deter-
mined in [78]. For the special case of 3-CI functions Carlet and Chen conjectured
that wn,3 = 8⌈n4 ⌉, for any integer n ≥ 3, and it was shown by construction that
the conjecture is true for n = 2r, for all r ≥ 3. Later, it was shown [76] that this
conjecture is equivalent to the famous conjecture of J. Hadamard which claims that
there exists a Hadamard matrix of order 4t for every positive integer t. Notice that
the case when n = 2r then corresponds to Silvester-Hadamard matrices using this
equivalency. We provide the further evidence that the conjecture of Carlet and Chen
is true through a generalized design method of CI-functions. More precisely, it is
shown through the existence of 3-CI functions of minimum weight that the conjec-
ture is true for any n of the form n = 2r − i and n = 3 · 2r − i, for i = 0, 1, 2, 3 and
r ≥ 3.

7.1 On the algebraic degree of correlation immune func-
tions

In [67], T. Siegenthaler defined the notion of correlation immunity of Boolean func-
tions and provided a necessary condition to satisfy this property in terms of their
maximum achievable algebraic degree, known as Siegenthaler’s bound. G.Z. Xiao
and J.L. Massey [81] provided a spectral characterization of CI functions and they
slightly extended the result of Siegenthaler by showing certain regularities in the
algebraic normal forms of this class of functions. These proofs were somewhat com-
plicated and in his note [63] P. Sarkar gave simplified proofs of these results which
then became standard versions used in books (see for example [20]). In this section,
using the weight divisibility results from [73], we will further simplify these proofs
and at the same time derive some new results related to the characterization of CI
functions.

The following result considers an alternative method of proving Siegenthaler’s
bound.

Theorem 7.1.1 Let f be an n-variable k-th order correlation immune function.
Then, the algebraic degree of f is at most n− k.

Chapter 7. Correlation immune functions with low Hamming weight 77

Proof. We use the algebraic normal form of f , which is given by:

f(x) =
∑

w=(w1,...,wn)∈Fn
2

(
∑
t⪯w
t∈Fn

2

f(t))xw1
1 xw2

2 · · ·xwn
n .

It is enough to prove that
∑

t⪯w f(t) = 0 mod 2, for wt(w) > n − k. Fix w ∈ Fn
2 ,

with wt(w) = n− i > n− k. Let 1 ≤ d1 < d2 · · · < di ≤ n be the integers for which
wdj = 0, j = 1, . . . , i. Then∑

t⪯w

f(t) = wt(f0,0,...,0d1,d2,...,di
) = wt(f)/2i,

because f is also an i-CI function for i < k. Since f is a k-CI function, wt(f) is
divisible by 2k, so wt(f)/2i = 0 mod 2, for i < k. We conclude that

∑
t⪯w f(t) =

0 mod 2.

Now we will give a simpler proof of the result of G.Z. Xiao and J.L. Massey
from [81], which is the first part of the next theorem. The second part is the
extension of their result and to the best of our knowledge is new.

Theorem 7.1.2 Let f be an n-variable, k-CI function. Then, either f has all terms
of degree n− k, or no terms of degree n− k at all. Furthermore, f has all terms of
degree n− k if and only if wt(f) = 2km, where m is odd.

Proof. Let w ∈ Fn
2 such that wt(w) = n − k, and let d1, . . . , dk be the integers

such that wdj = 0, j = 1, . . . , k. As in the proof of Theorem 7.1.1, we have that∑
t⪯w

f(t) = wt(f0,0,...,0d1,d2,...,dk
) = wt(f)/2k.

So, the sum
∑

t⪯w f(t) does not really depend on the choice of w with weight n− k,
hence we have that either f has all terms of degree n − k, or no terms of degree
n − k at all. Furthermore, wt(f)/2k = 1 mod 2 if and only if wt(f) = 2km, where
m is odd, so f has all terms of degree n− k if and only if wt(f) = 2km, where m is
odd.

As a corollary, we get Siegenthaler’s bound for resilient functions.

Corollary 7.1.3 If f is an n-variable balanced k-CI Boolean function (thus k-
resilient) with k < n− 1, then the degree of f is at most n− k − 1.

Proof. Follows from Theorem 7.1.1 and 7.1.2 and the fact that wt(f) = 2n−1 as
f is balanced.

The following result specifies the Walsh-Hadamard coefficients at vectors of
weight k + 1 for a given k-CI Boolean function.

Theorem 7.1.4 Let f ba an n-variable, k-CI function, k < n, and let w ∈ Fn
2

such that wt(w) = k + 1. Let {i1, . . . , ik, ik+1} ⊂ {1, 2, . . . , n} be the set of nonzero
coordinates of w. Then

Wf (w) = 2k+1
(
wt(f)/2k − 2wt(f0,...,0,0i1,...,ik,ik+1

)
)
.

78 7.1 On the algebraic degree of correlation immune functions

Proof. Without loss of generality, to avoid complicated notation, we assume that
w = (1, . . . , 1, 0, . . . , 0), so that {i1, . . . , ik, ik+1} = {1, . . . , k, k + 1}. The Walsh-
Hadamard coefficient of f at the point w is computed as:

Wf (w) =
∑
x∈Fn

2

(−1)f(x)+x·w =
∑
x∈Fn

2

(−1)f(x)+x·(1,1,...,1,0,...,0)

=
∑
x∈Fn

2

(−1)f(x)+x1+x2+···+xk+1 .

Rewriting the sum, in order to focus on the first k coordinates, we have:∑
x∈Fn

2

(−1)f(x)+x1+···+xk+1 =
∑
v∈Fk

2

(∑
x∈S0(v)

(−1)f(x) −
∑

x∈S1(v)

(−1)f(x)
)
(−1)v1+···+vk ,

where S0(v) = {x ∈ Fn
2 : (x1, . . . , xk) = v and xk+1 = 0}, and S1(v) = {x ∈ Fn

2 :
(x1, . . . , xk) = v and xk+1 = 1}, for all v ∈ Fk

2. Notice that∑
x∈S0(v)

(−1)f(x) = 2n−k−1 − 2wt(fv1,...,vk,01,...,k,k+1), and∑
x∈S1(v)

(−1)f(x) = 2n−k−1 − 2wt(fv1,...,vk,11,...,k,k+1),

so we have

Wf (w) = 2
∑
v∈Fk

2

(wt(fv1,...,vk,11,...,k,k+1)− wt(fv1,...,vk,01,...,k,k+1))(−1)v1+···+vk . (7.1)

Now, select and fix an arbitrary value of d ∈ {1, 2, . . . , k}. Since f is k-th order
correlation immune, we have

wt(fv1,...,vd,...,vk,01,...,d,...,k,k+1) + wt(fv1,...,vd,...,vk,11,...,d,...,k,k+1) = wt(fv1,...,vk1,...,k) = wt(f)/2k, and similarly

wt(fv1,...,vd⊕1,...,vk,1
1,...,d,...,k,k+1) + wt(fv1,...,vd,...,vk,11,...,d,...,k,k+1) = wt(f)/2k.

Subtracting the second equation from the first, we get:

wt(fv1,...,vd,...,vk,01,...,d,...,k,k+1) = wt(fv1,...,vd⊕1,...,vk,1
1,...,d,...,k,k+1).

Similarly
wt(fv1,...,vd,...,vk,11,...,d,...,k,k+1) = wt(fv1,...,vd⊕1,...,vk,0

1,...,d,...,k,k+1).

Hence

wt(fv1,...,vd,...,vk,11,...,d,...,k,k+1)− wt(fv1,...,vd,...,vk,01,...,d,...,k,k+1) =

−
(
wt(fv1,...,vd⊕1,...,vk,1

1,...,k,k+1)− wt(fv1,...,vd⊕1,...,vk,0
1,...,k,k+1)

)
.

Combining this equality with the equation (7.1), since d was arbitrary, we have:

Wf (w) = 2k+1
(
wt(f0,...,0,11,...,k,k+1)− wt(f0,...,0,01,...,k,k+1)

)
.

Chapter 7. Correlation immune functions with low Hamming weight 79

Since f is k-CI, then

Wf (w) = 2k+1(wt(f)/2k − 2wt(f0,...,0,01,...,k,k+1)).

As a corollary, we obtain the same spectral characterization of CI functions as orig-
inally derived by G.Z. Xiao and J.L. Massey in [81].

Corollary 7.1.5 [81] A Boolean function f : Fn
2 → F2 is k-CI if and only if

Wf (w) = 0, for all w ∈ Fn
2 with 1 ≤ wt(w) ≤ k.

Proof. If f is k-CI, then f is also (d+1)-CI for all d < k. Thus, wt(f0,0,...,0i1,i2,...,id+1
) =

wt(f)/2d+1. Theorem 7.1.4 then implies that Wf (w) = 0, for all w ∈ Fn
2 with

1 ≤ wt(w) ≤ k.

Conversely, if f is not k-CI, let d be the largest number such that f is d-CI.
Then, there are indices {i1, i2, . . . , id+1} such that wt(f0,0,...,0i1,i2,...,id+1

) ̸= wt(f)/2d+1.

Consequently Wf (w) ̸= 0, for w ∈ Fn
2 defined by wj = 1 ⇔ j ∈ {i1, . . . , id+1}.

As another corollary we have a result about the Walsh-Hadamard coefficients of
correlation immune functions with the maximal algebraic degree.

Corollary 7.1.6 Let f be an n-variable k-CI function and assume that wt(f) =
2km, where m is an odd number. Then, Wf (w) ̸= 0 for all w ∈ Fn

2 of weight k + 1.

Proof. Follows from Theorem 7.1.4 and the fact that wt(f)/2k = m is an odd
number, while 2wt(f0,0,...,0i1,i2,...,ik+1

) is an even number.

7.2 Construction methods for low–weight correlation
immune functions

In this section, we give some general construction methods for correlation immune
functions, which are quite efficient in the design of their low-weight subclass. One
of the most important construction of such functions was given by C. Carlet and
X. Chen in [16] and is based on the multiplication of suitable functions on smaller
variable spaces. Recall that, following the terminology in [16], Dn,d denotes the set
of all d-CI Boolean functions in n-variables whereas ωn,d stands for the minimal
Hamming weight of n-variable d-CI functions.

Theorem 7.2.1 [16, Corollary 3.2] Let n, d, k be positive integers satisfying d ≤ n
and k ≥ 2. Assume that f1 ∈ Dn,d and fj ∈ Dn,⌊ d

2
⌋ for any 2 ≤ j ≤ k. Define

h
(
x(1), . . . , x(k)

)
= f1

(
x(1)

) k∏
i=2

fi

(
x(i) + x(1)

)
, x(1), . . . , x(k) ∈ Fn

2 .

Then, h belongs to Dnk,d and has the Hamming weight wt(h) =
∏k

i=1wt(fi).

80 7.2 Construction methods for low–weight correlation immune functions

A generalization which gives a larger class of low-weight CI functions, with greater
flexibility with respect to the dimension of subfunctions, is given below.

Theorem 7.2.2 Let n, d, k be positive integers satisfying d ≤ n and k ≥ 2. Assume
that f1 ∈ Dn,d and fi ∈ Dni,⌊ d

2
⌋, where ni ≤ n for i = 2, . . . , k. For every 2 ≤ i ≤ k,

let πi be an injection from {1, . . . , ni} to {1, . . . , n}. Then,

g
(
x(1), . . . , x(k)

)
= f1

(
x(1)

) k∏
i=2

fi

(
x(i) +Φi(x

(1))
)
, x(1) ∈ Fn

2 , x
(i) ∈ Fni

2

is a d-CI function, where Φi(x
(1)) denotes the vector

(
x
(1)
πi(1)

, . . . , x
(1)
πi(ni)

)
∈ Fni

2 .

Furthermore, wt(g) =
∏k

i=1wt(fi).

Proof. First, note that wt(g) =
∏k

i=1wt(fi). Let us fix d variables i1, . . . , id in
(x(1), . . . , x(k)) to be ai1 , . . . , aid . If in each x(i), for i = 2, . . . , k, we have fixed at
most ⌊d2⌋ variables then we have

wt(g
ai1 ,...,aid
i1,...,id

) =

k∏
l=1

wt

(
(fl)

a
i
(l)
1

,...,a
i
(l)
rl

i
(l)
1 ,...,i

(l)
rl

)
=

1

2r1
wt(f1) · · ·

1

2rk
wt(fk) =

1

2d

k∏
i=1

wt(fi),

because each fi is ⌊d2⌋-CI function. Here, ri ≤ ⌊d2⌋ denotes the number of fixed

variables in x(i).
Now, assume that for some j we have more than ⌊d/2⌋ variables fixed in x(j).

Note that it can only happen for one j, because 2(⌊d/2⌋ + 1) > d. Without loss of
generality, we can assume that j = 2. Suppose that we have fixed ⌊d/2⌋+m variables
in x(2), which w.l.o.g. are taken to be the first ⌊d/2⌋ +m variables. Consequently,

we have at least m variables in x(1) among x
(1)

π−1
2 (1)

, . . . , x
(1)

π−1
2 (⌊d/2⌋+m)

that are not

fixed. Again, we can w.l.o.g. assume that these m variables are x
(1)

π−1
2 (1)

, . . . , x
(1)

π−1
2 (m)

.

Let now b = (b1, . . . , bm) ∈ Fm
2 be arbitrary and fixed. In addition to the already

fixed variables, we also fix the variables (x
(1)

π−1
2 (1)

, . . . , x
(1)

π−1
2 (m)

) to be (b1, . . . , bm).

Because f1 is d-CI, the weight of the function g with these variables fixed is:

1

2r1+m
wt(f1)wt

(
(f2)

a1⊕b1,...,am⊕bm,...,ar2

1(2),...,m(2),...,r
(2)
2

)
1

2r3
wt(f3) · · ·

1

2rk
wt(fk).

Obviously, the same is true for every b ∈ Fm
2 . Summing over b ∈ Fm

2 , we get

wt(g
ai1 ,...,aid
i1,...,id

) =∑
b∈Fm

2

1

2r1+m
wt(f1)wt

(
(f2)

a1⊕b1,...,am⊕bm,...ar2

1(2),...,m(2),...,r
(2)
2

)
1

2r3
wt(f3) · · ·

1

2rk
wt(fk).

On the other hand, we have that∑
b∈Fm

2

wt

(
(f2)

a1⊕b1,...,am⊕bm,...,ar2

1(2),...,m(2),...,r
(2)
2

)
= wt

(
(f2)

am+1,...,ar2

m+1(2),...,r
(2)
2

)
=

1

2⌊d/2⌋
wt(f2),

Chapter 7. Correlation immune functions with low Hamming weight 81

because f2 is a ⌊d/2⌋-CI function. Finally, we deduce that

wt(g
ai1 ,...,aid
i1,...,id

) =
1

2r1+m
wt(f1)

1

2⌊d/2⌋
wt(f2)

1

2r3
wt(f3) · · ·

1

2rk
wt(fk) =

1

2d

k∏
i=1

wt(fi),

and since wt(g) =
∏k

i=1wt(fi), we conclude that g is a d-CI function.

Example 7 This example demonstrates how to use Theorem 7.2.2 to construct CI-
functions with low Hamming weight from CI-functions in a smaller number of vari-
ables. For the sake of simplicity, we will keep the number of variables low. Using the
same notation as in Theorem 7.2.2, set n = 3, d = 2 and k = 3. Let n2 = n3 = 2,
and π2, π3 : {1, 2} → {1, 2, 3}, be defined by π2(1) = 1; π2(2) = 2, and π3(1) = 2;
π3(2) = 3. In order to apply Theorem 7.2.2 in this setting, we need to find one 2-CI
function f1 in 3 variables, and two 1-CI functions f2, f3 in 2 variables. Let

f1(x1, x2, x3) = x1 + x2 + x3, f2(x4, x5) = x4 + x5 + 1, and f3(x6, x7) = x6 + x7.

From the characterization of CI-functions via their Walsh transform (Theorem 2.4.2),
it is easy to see that f1 is a 2-CI function and that f2 and f3 are 1-CI functions.
Now, from Theorem 7.2.2, we get that the function g : F7

2 → F2 defined by

g(x1, . . . , x7) = f1(x1, x2, x3)f2(x4 + x1, x5 + x2)f3(x6 + x2, x7 + x3), (7.2)

is a 2-CI function, and that its Hamming weight is wt(g) =
∏3

i=1wt(fi) = 4×2×2 =
16. From (7.2), we get the algebraic normal form of g:

g(x1, . . . , x7) = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x3x6 +
x1x3x7 + x1x3 + x1x4x6 + x1x4x7 + x1x5x6 + x1x5x7 + x2x3x6 + x2x3x7 +
x2x3+x2x4x6+x2x4x7+x2x4+x2x5x6+x2x5x7+x2x5+x3x4x6+x3x4x7+
x3x4 + x3x5x6 + x3x5x7 + x3x5 + x3x6 + x3x7 + x3.

The truth table and the Walsh transform of g (from which we can check that g is
indeed a 2-CI function with wt(g) = 16), can be found in Table 7.1 and Table 7.2 at
the end of the chapter.

The following corollary is a special case of Theorem 7.2.2, assuming that all fi
are CI-functions with the minimal Hamming weight. Furthermore, we select πi in
Theorem 7.2.2 to be identity for all i ∈ {2, . . . k}, i.e. πi(t) = t, for all t ∈ {1, . . . , ni}.

Corollary 7.2.3 Let t, d, n1, n2, . . . , nt be positive integers satisfying n1 ≥ ni for all
i = 2, 3, . . . , t, and d ≤ n1. Then,

ω(n1+n2+···+nt),d ≤ ωn1,dωn2,⌊d/2⌋ · · ·ωnt,⌊d/2⌋.

Corollary 7.2.3 is a generalization of [16, Corollary 3.4], which is a special case of
the result for n1 = n2 = · · · = nt.

In [16], C. Carlet and X. Chen conjectured that the minimum Hamming weight
of 3-CI nonzero Boolean functions in n variables equals 8⌈n4 ⌉, i.e. ωn,3 = 8⌈n4 ⌉. Using

82 7.2 Construction methods for low–weight correlation immune functions

the constructions given in [16], the authors were able to show that, for n = 2k, where
k ≥ 3, there exists a 3-CI function f such that wt(f) = 8⌈n4 ⌉.
To indicate that the construction in Theorem 7.2.2 is indeed more general then the
one given in [16, Corollary 3.2], and at the same time to give another example for
Theorem 7.2.2 we prove the following corollary.

Corollary 7.2.4 There exists a 3-CI function f such that wt(f) = 8⌈n4 ⌉, for every
n of the form 2k − i and 3 · 2k − i, for i = 0, 1, 2, 3 and k ≥ 3.

Proof. Set n1 = n2 = · · · = nt−1 = m and nt = m − i, in Corollary 7.2.3 for
m > 4. Using the fact that ωm,1 = 2, we get ωtm−i,3 ≤ 2t−1ωm,3. Setting t = 2,
we get ω2m−i,3 ≤ 2ωm,3. The result then follows by induction, using the fact that
ω4,3 = 8 for the base case, when n is of the form 2k − i, and that ω12,3 = 24, when
n is of the form 3 · 2k − i (see Table II in [16]).

Using similar arguments one can show, assuming existence of a 4z-variable 3-CI
function with the Hamming weight 8⌈4z4 ⌉ = 8z, that there exists a 3-CI function f
such that wt(f) = 8⌈n4 ⌉, when n = z · 2k − i, and i = 0, 1, 2, 3, for all k ≥ 3.

The design rationale given in Theorem 7.2.2 can be utilised to derive more con-
structions of correlation immune functions of similar type. For instance, the follow-
ing result addresses a particular case of 2-CI functions.

Proposition 7.2.5 Let f1 be an n-variable 2-CI function, and f2 an (n+1)-variable
1-CI function. Let π be a permutation of n+1 elements. For every v ∈ Fn+1

2 , denote
by Φ(v) the vector (vπ(1), . . . , vπ(n+1)) ∈ Fn+1

2 . Then

g
(
x(1), x(2)

)
= f1

(
x(1)

)
f2

(
x(2) +Φ((x(1), 0))

)
and

h
(
x(1), x(2)

)
= f1

(
x(1)

)
f2

(
x(2) +Φ((x(1), 1))

)
,

are 2-correlation immune functions in (2n+1) variables, where x(1) ∈ Fn
2 and x(2) ∈

Fn+1
2 .

Proof. Again, note that wt(g) = wt(f1)wt(f2). Without loss of general-
ity, we can assume that π is the identity permutation. If we fix two variables at
positions i1, i2 in x(1) to be a1, a2, then because f1 is 2-CI we have wt(ga1,a2i1,i2

) =
1
4wt(f1)wt(f2) =

1
4wt(g). Similarly, by fixing one variable in both x(1) and x(2) and

noticing that f1 and f2 are 1-CI functions, we get wt(ga1,a2i1,i2
) = 1

2wt(f1)
1
2wt(f2) =

1
4wt(g). Finally, by fixing two variables in x(2), say x

(2)
i1

and x
(2)
i2

, we obtain

wt

(
ga1,a2
i
(2)
1 ,i

(2)
2

)
= wt

(
(f1)

0

i
(1)
1

)
wt

(
(f2)

a1,a2

i
(2)
1 ,i

(2)
2

)
+wt

(
(f1)

1

i
(1)
1

)
wt

(
(f2)

a1⊕1,a2

i
(2)
1 ,i

(2)
2

)
=

1

2
wt(f1)wt

(
(f2)

a2

i
(2)
2

)
=

1

2
wt(f1)

1

2
wt(f2) =

1

4
wt(g).

So, we conclude that g is indeed 2-CI. The proof for h is identical, thus omitted.

Chapter 7. Correlation immune functions with low Hamming weight 83

7.2.1 A nonlinearity analysis

The primary goal of the design methods given above concerns the possibility of con-
structing CI function with the minimal (generally low) Hamming weight. Therefore,
this class of CI functions generally does not achieve high nonlinearity (even when
the input functions are not chosen to be with the minimal Hamming weight). This
is the consequence of the fact that both Theorem 7.2.2 and Proposition 7.2.5 define
a function g as a product of the initial functions fi, which generally gives a lower
nonlinearity than the highest known, obtained by the methods in [54] and [72].

Nevertheless, we provide an exact specification of the Fourier coefficients of g in
Theorem 7.2.2, similar to the one given by C. Carlet and X. Chen in [16], which can
be used to compute the nonlinearity of the constructed functions. Let the notation
of Theorem 7.2.2 hold. Let n + n2 + · · · + nk = m, and choose arbitrary but fixed
v ∈ Fm

2 . For simplicity, we will assume that πi(t) = t, for all t ∈ {1, . . . , ni}, and
i ∈ {2, . . . k}. To compute ĝ(v), we represent v as (v(1), . . . , v(k)) with v(i) ∈ Fni

2 , for
i ∈ {2, 3, . . . , k}, and v(1) ∈ Fn

2 . We have,

ĝ(v) =
∑
x∈Fm

2

(
f1(x

(1))

k∏
i=2

fi

(
x(i) +Φi(x

(1))
)
(−1)v·x

)

=
∑

x(1)∈Fn
2

f1(x
(1))(−1)v

(1)·x(1)

 k∏
i=2

 ∑
x(i)∈Fni

2

fi

(
x(i) +Φi(x

(1))
)
(−1)v

(i)·x(i)


=

∑
x(1)∈Fn

2

f1(x
(1))(−1)v

(1)·x(1)×

×

 k∏
i=2

 ∑
x(i)∈Fni

2

fi

(
x(i) +Φi(x

(1))
)
(−1)v

(i)·(x(i)+Φi(x
(1)))(−1)v

(i)·Φi(x
(1))


=

k∏
i=2

f̂i(v
(i))

 ∑
x(1)∈Fn

2

f1(x
(1))(−1)v

(1)·x(1)+
∑k

l=2 v
(l)·Φ(x(1))

 .

Now, v(l) · Φ(x(1)) = v
(l)
1 x1 + · · ·+ v

(l)
ni xni . If, for every l ∈ {2, . . . , k}, we denote by

0v(l) ∈ Fn
2 the vector (v

(l)
1 , v

(l)
2 , . . . v

(l)
ni , 0, . . . , 0), then

v(l) · Φ(x(1)) = v
(l)
1 x1 + · · ·+ v(l)nl

xni =
0v(l) · x(1).

Using this, we get:

ĝ(v) =
k∏

i=2

f̂i(v
(i))

 ∑
x(1)∈Fn

2

f1(x
(1))(−1)v

(1)·x(1)+
∑k

l=2 v
(l)·Φ(x(1))


=

k∏
i=2

f̂i(v
(i))

 ∑
x(1)∈Fn

2

(f1(x
(1)) (−1)v

(1)·x(1)+
∑k

l=2
0v(l)·x(1)

 .

84 7.2 Construction methods for low–weight correlation immune functions

For convenience, let 0v(1) denote the vector v(1). Then,

ĝ(v) =
k∏

i=2

f̂i(v
(i))

 ∑
x(1)∈Fn

2

(f1(x
(1))(−1)

∑k
l=1

0v(l)·x(1)


= f̂1

(
k∑

i=1

0v(l)

)
k∏

l=2

f̂i

(
v(i)
)
.

To conclude, from the computations in this section, we get that the Fourier coeffi-
cients of the function g from Theorem 7.2.2 are

ĝ(v) = f̂1

(
k∑

i=1

0v(l)

)
k∏

l=2

f̂i

(
v(i)
)
,

for all v = (v(1), . . . , v(k)) ∈ Fn+n2+···+nk
2 .

Chapter 7. Correlation immune functions with low Hamming weight 85

x g(x)

(0, 0, 0, 0, 0, 0, 0) 0
(1, 0, 0, 0, 0, 0, 0) 0
(0, 1, 0, 0, 0, 0, 0) 0
(1, 1, 0, 0, 0, 0, 0) 0
(0, 0, 1, 0, 0, 0, 0) 1
(1, 0, 1, 0, 0, 0, 0) 0
(0, 1, 1, 0, 0, 0, 0) 0
(1, 1, 1, 0, 0, 0, 0) 0
(0, 0, 0, 1, 0, 0, 0) 0
(1, 0, 0, 1, 0, 0, 0) 0
(0, 1, 0, 1, 0, 0, 0) 1
(1, 1, 0, 1, 0, 0, 0) 0
(0, 0, 1, 1, 0, 0, 0) 0
(1, 0, 1, 1, 0, 0, 0) 0
(0, 1, 1, 1, 0, 0, 0) 0
(1, 1, 1, 1, 0, 0, 0) 0
(0, 0, 0, 0, 1, 0, 0) 0
(1, 0, 0, 0, 1, 0, 0) 0
(0, 1, 0, 0, 1, 0, 0) 1
(1, 1, 0, 0, 1, 0, 0) 0
(0, 0, 1, 0, 1, 0, 0) 0
(1, 0, 1, 0, 1, 0, 0) 0
(0, 1, 1, 0, 1, 0, 0) 0
(1, 1, 1, 0, 1, 0, 0) 0
(0, 0, 0, 1, 1, 0, 0) 0
(1, 0, 0, 1, 1, 0, 0) 0
(0, 1, 0, 1, 1, 0, 0) 0
(1, 1, 0, 1, 1, 0, 0) 0
(0, 0, 1, 1, 1, 0, 0) 1
(1, 0, 1, 1, 1, 0, 0) 0
(0, 1, 1, 1, 1, 0, 0) 0
(1, 1, 1, 1, 1, 0, 0) 0
(0, 0, 0, 0, 0, 1, 0) 0
(1, 0, 0, 0, 0, 1, 0) 0
(0, 1, 0, 0, 0, 1, 0) 0
(1, 1, 0, 0, 0, 1, 0) 0
(0, 0, 1, 0, 0, 1, 0) 0
(1, 0, 1, 0, 0, 1, 0) 0
(0, 1, 1, 0, 0, 1, 0) 0
(1, 1, 1, 0, 0, 1, 0) 1
(0, 0, 0, 1, 0, 1, 0) 0
(1, 0, 0, 1, 0, 1, 0) 1
(0, 1, 0, 1, 0, 1, 0) 0

x g(x)

(1, 1, 0, 1, 0, 1, 0) 0
(0, 0, 1, 1, 0, 1, 0) 0
(1, 0, 1, 1, 0, 1, 0) 0
(0, 1, 1, 1, 0, 1, 0) 0
(1, 1, 1, 1, 0, 1, 0) 0
(0, 0, 0, 0, 1, 1, 0) 0
(1, 0, 0, 0, 1, 1, 0) 1
(0, 1, 0, 0, 1, 1, 0) 0
(1, 1, 0, 0, 1, 1, 0) 0
(0, 0, 1, 0, 1, 1, 0) 0
(1, 0, 1, 0, 1, 1, 0) 0
(0, 1, 1, 0, 1, 1, 0) 0
(1, 1, 1, 0, 1, 1, 0) 0
(0, 0, 0, 1, 1, 1, 0) 0
(1, 0, 0, 1, 1, 1, 0) 0
(0, 1, 0, 1, 1, 1, 0) 0
(1, 1, 0, 1, 1, 1, 0) 0
(0, 0, 1, 1, 1, 1, 0) 0
(1, 0, 1, 1, 1, 1, 0) 0
(0, 1, 1, 1, 1, 1, 0) 0
(1, 1, 1, 1, 1, 1, 0) 1
(0, 0, 0, 0, 0, 0, 1) 0
(1, 0, 0, 0, 0, 0, 1) 0
(0, 1, 0, 0, 0, 0, 1) 0
(1, 1, 0, 0, 0, 0, 1) 0
(0, 0, 1, 0, 0, 0, 1) 0
(1, 0, 1, 0, 0, 0, 1) 0
(0, 1, 1, 0, 0, 0, 1) 0
(1, 1, 1, 0, 0, 0, 1) 1
(0, 0, 0, 1, 0, 0, 1) 0
(1, 0, 0, 1, 0, 0, 1) 1
(0, 1, 0, 1, 0, 0, 1) 0
(1, 1, 0, 1, 0, 0, 1) 0
(0, 0, 1, 1, 0, 0, 1) 0
(1, 0, 1, 1, 0, 0, 1) 0
(0, 1, 1, 1, 0, 0, 1) 0
(1, 1, 1, 1, 0, 0, 1) 0
(0, 0, 0, 0, 1, 0, 1) 0
(1, 0, 0, 0, 1, 0, 1) 1
(0, 1, 0, 0, 1, 0, 1) 0
(1, 1, 0, 0, 1, 0, 1) 0
(0, 0, 1, 0, 1, 0, 1) 0
(1, 0, 1, 0, 1, 0, 1) 0

x g(x)

(0, 1, 1, 0, 1, 0, 1) 0
(1, 1, 1, 0, 1, 0, 1) 0
(0, 0, 0, 1, 1, 0, 1) 0
(1, 0, 0, 1, 1, 0, 1) 0
(0, 1, 0, 1, 1, 0, 1) 0
(1, 1, 0, 1, 1, 0, 1) 0
(0, 0, 1, 1, 1, 0, 1) 0
(1, 0, 1, 1, 1, 0, 1) 0
(0, 1, 1, 1, 1, 0, 1) 0
(1, 1, 1, 1, 1, 0, 1) 1
(0, 0, 0, 0, 0, 1, 1) 0
(1, 0, 0, 0, 0, 1, 1) 0
(0, 1, 0, 0, 0, 1, 1) 0
(1, 1, 0, 0, 0, 1, 1) 0
(0, 0, 1, 0, 0, 1, 1) 1
(1, 0, 1, 0, 0, 1, 1) 0
(0, 1, 1, 0, 0, 1, 1) 0
(1, 1, 1, 0, 0, 1, 1) 0
(0, 0, 0, 1, 0, 1, 1) 0
(1, 0, 0, 1, 0, 1, 1) 0
(0, 1, 0, 1, 0, 1, 1) 1
(1, 1, 0, 1, 0, 1, 1) 0
(0, 0, 1, 1, 0, 1, 1) 0
(1, 0, 1, 1, 0, 1, 1) 0
(0, 1, 1, 1, 0, 1, 1) 0
(1, 1, 1, 1, 0, 1, 1) 0
(0, 0, 0, 0, 1, 1, 1) 0
(1, 0, 0, 0, 1, 1, 1) 0
(0, 1, 0, 0, 1, 1, 1) 1
(1, 1, 0, 0, 1, 1, 1) 0
(0, 0, 1, 0, 1, 1, 1) 0
(1, 0, 1, 0, 1, 1, 1) 0
(0, 1, 1, 0, 1, 1, 1) 0
(1, 1, 1, 0, 1, 1, 1) 0
(0, 0, 0, 1, 1, 1, 1) 0
(1, 0, 0, 1, 1, 1, 1) 0
(0, 1, 0, 1, 1, 1, 1) 0
(1, 1, 0, 1, 1, 1, 1) 0
(0, 0, 1, 1, 1, 1, 1) 1
(1, 0, 1, 1, 1, 1, 1) 0
(0, 1, 1, 1, 1, 1, 1) 0
(1, 1, 1, 1, 1, 1, 1) 0

Table 7.1: Truth table of g from Example 7.

86 7.2 Construction methods for low–weight correlation immune functions

x Wg(x)

(0, 0, 0, 0, 0, 0, 0) 96
(1, 0, 0, 0, 0, 0, 0) 0
(0, 1, 0, 0, 0, 0, 0) 0
(1, 1, 0, 0, 0, 0, 0) 0
(0, 0, 1, 0, 0, 0, 0) 0
(1, 0, 1, 0, 0, 0, 0) 0
(0, 1, 1, 0, 0, 0, 0) 0
(1, 1, 1, 0, 0, 0, 0) 32
(0, 0, 0, 1, 0, 0, 0) 0
(1, 0, 0, 1, 0, 0, 0) 0
(0, 1, 0, 1, 0, 0, 0) 0
(1, 1, 0, 1, 0, 0, 0) 0
(0, 0, 1, 1, 0, 0, 0) 0
(1, 0, 1, 1, 0, 0, 0) 0
(0, 1, 1, 1, 0, 0, 0) 0
(1, 1, 1, 1, 0, 0, 0) 0
(0, 0, 0, 0, 1, 0, 0) 0
(1, 0, 0, 0, 1, 0, 0) 0
(0, 1, 0, 0, 1, 0, 0) 0
(1, 1, 0, 0, 1, 0, 0) 0
(0, 0, 1, 0, 1, 0, 0) 0
(1, 0, 1, 0, 1, 0, 0) 0
(0, 1, 1, 0, 1, 0, 0) 0
(1, 1, 1, 0, 1, 0, 0) 0
(0, 0, 0, 1, 1, 0, 0) 0
(1, 0, 0, 1, 1, 0, 0) 0
(0, 1, 0, 1, 1, 0, 0) 0
(1, 1, 0, 1, 1, 0, 0) -32
(0, 0, 1, 1, 1, 0, 0) 32
(1, 0, 1, 1, 1, 0, 0) 0
(0, 1, 1, 1, 1, 0, 0) 0
(1, 1, 1, 1, 1, 0, 0) 0
(0, 0, 0, 0, 0, 1, 0) 0
(1, 0, 0, 0, 0, 1, 0) 0
(0, 1, 0, 0, 0, 1, 0) 0
(1, 1, 0, 0, 0, 1, 0) 0
(0, 0, 1, 0, 0, 1, 0) 0
(1, 0, 1, 0, 0, 1, 0) 0
(0, 1, 1, 0, 0, 1, 0) 0
(1, 1, 1, 0, 0, 1, 0) 0
(0, 0, 0, 1, 0, 1, 0) 0
(1, 0, 0, 1, 0, 1, 0) 0
(0, 1, 0, 1, 0, 1, 0) 0

x Wg(x)

(1, 1, 0, 1, 0, 1, 0) 0
(0, 0, 1, 1, 0, 1, 0) 0
(1, 0, 1, 1, 0, 1, 0) 0
(0, 1, 1, 1, 0, 1, 0) 0
(1, 1, 1, 1, 0, 1, 0) 0
(0, 0, 0, 0, 1, 1, 0) 0
(1, 0, 0, 0, 1, 1, 0) 0
(0, 1, 0, 0, 1, 1, 0) 0
(1, 1, 0, 0, 1, 1, 0) 0
(0, 0, 1, 0, 1, 1, 0) 0
(1, 0, 1, 0, 1, 1, 0) 0
(0, 1, 1, 0, 1, 1, 0) 0
(1, 1, 1, 0, 1, 1, 0) 0
(0, 0, 0, 1, 1, 1, 0) 0
(1, 0, 0, 1, 1, 1, 0) 0
(0, 1, 0, 1, 1, 1, 0) 0
(1, 1, 0, 1, 1, 1, 0) 0
(0, 0, 1, 1, 1, 1, 0) 0
(1, 0, 1, 1, 1, 1, 0) 0
(0, 1, 1, 1, 1, 1, 0) 0
(1, 1, 1, 1, 1, 1, 0) 0
(0, 0, 0, 0, 0, 0, 1) 0
(1, 0, 0, 0, 0, 0, 1) 0
(0, 1, 0, 0, 0, 0, 1) 0
(1, 1, 0, 0, 0, 0, 1) 0
(0, 0, 1, 0, 0, 0, 1) 0
(1, 0, 1, 0, 0, 0, 1) 0
(0, 1, 1, 0, 0, 0, 1) 0
(1, 1, 1, 0, 0, 0, 1) 0
(0, 0, 0, 1, 0, 0, 1) 0
(1, 0, 0, 1, 0, 0, 1) 0
(0, 1, 0, 1, 0, 0, 1) 0
(1, 1, 0, 1, 0, 0, 1) 0
(0, 0, 1, 1, 0, 0, 1) 0
(1, 0, 1, 1, 0, 0, 1) 0
(0, 1, 1, 1, 0, 0, 1) 0
(1, 1, 1, 1, 0, 0, 1) 0
(0, 0, 0, 0, 1, 0, 1) 0
(1, 0, 0, 0, 1, 0, 1) 0
(0, 1, 0, 0, 1, 0, 1) 0
(1, 1, 0, 0, 1, 0, 1) 0
(0, 0, 1, 0, 1, 0, 1) 0
(1, 0, 1, 0, 1, 0, 1) 0

x Wg(x)

(0, 1, 1, 0, 1, 0, 1) 0
(1, 1, 1, 0, 1, 0, 1) 0
(0, 0, 0, 1, 1, 0, 1) 0
(1, 0, 0, 1, 1, 0, 1) 0
(0, 1, 0, 1, 1, 0, 1) 0
(1, 1, 0, 1, 1, 0, 1) 0
(0, 0, 1, 1, 1, 0, 1) 0
(1, 0, 1, 1, 1, 0, 1) 0
(0, 1, 1, 1, 1, 0, 1) 0
(1, 1, 1, 1, 1, 0, 1) 0
(0, 0, 0, 0, 0, 1, 1) 0
(1, 0, 0, 0, 0, 1, 1) -32
(0, 1, 0, 0, 0, 1, 1) 0
(1, 1, 0, 0, 0, 1, 1) 0
(0, 0, 1, 0, 0, 1, 1) 0
(1, 0, 1, 0, 0, 1, 1) 0
(0, 1, 1, 0, 0, 1, 1) 32
(1, 1, 1, 0, 0, 1, 1) 0
(0, 0, 0, 1, 0, 1, 1) 0
(1, 0, 0, 1, 0, 1, 1) 0
(0, 1, 0, 1, 0, 1, 1) 0
(1, 1, 0, 1, 0, 1, 1) 0
(0, 0, 1, 1, 0, 1, 1) 0
(1, 0, 1, 1, 0, 1, 1) 0
(0, 1, 1, 1, 0, 1, 1) 0
(1, 1, 1, 1, 0, 1, 1) 0
(0, 0, 0, 0, 1, 1, 1) 0
(1, 0, 0, 0, 1, 1, 1) 0
(0, 1, 0, 0, 1, 1, 1) 0
(1, 1, 0, 0, 1, 1, 1) 0
(0, 0, 1, 0, 1, 1, 1) 0
(1, 0, 1, 0, 1, 1, 1) 0
(0, 1, 1, 0, 1, 1, 1) 0
(1, 1, 1, 0, 1, 1, 1) 0
(0, 0, 0, 1, 1, 1, 1) 0
(1, 0, 0, 1, 1, 1, 1) 0
(0, 1, 0, 1, 1, 1, 1) -32
(1, 1, 0, 1, 1, 1, 1) 0
(0, 0, 1, 1, 1, 1, 1) 0
(1, 0, 1, 1, 1, 1, 1) 32
(0, 1, 1, 1, 1, 1, 1) 0
(1, 1, 1, 1, 1, 1, 1) 0

Table 7.2: Walsh transform of g from Example 7.

Chapter 8

Resilient functions and sums of
their Walsh coefficients

In order to motivate and explain the problems we will consider in this chapter, we
have to change our setting from Boolean functions defined on Fn

2 mapping to F2,
and consider instead functions from {−1, 1}n to {−1, 1}. Once we do that, we will
translate the problems back to the standard setting of Boolean functions from Fn

2

to F2 and investigate them there.

When f is a function from {−1, 1}n to {−1, 1}, similarly like in the F2 case, f
can be written as

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi,

where [n] = {1, 2, . . . , n} and f̂(S) are the Fourier coefficients1 of f given by

f̂(S) =
1

2n

∑
x∈{−1,1}n

f(x)
∏
i∈S

xi. (8.1)

The total degree of f (or simply the degree of f), denoted by deg(f), is defined by
deg(f) = max{|S| : f̂(S) ̸= 0}. We use f̂(i) instead of f̂({i}) for a natural number
i ≤ n, and refer to them as linear (weight one) coefficients.

In a collection of open problems in field of the analysis of Boolean functions [52],
R. O’Donnell attributed the following conjecture to P. Gopalan and R. Servedio (ca.
2009): If f is a function from {−1, 1}n to {−1, 1}, and deg(f) = d, then

n∑
i=1

f̂(i) ≤
√
d.

In the same paper [52], O’Donnell stated that one could propose the following,
stronger conjecture.

1Notice that we use the same notation for the Fourier coefficients of the Boolean functions from
Fn
2 to F2, but since it will always be clear whether we are in the F2 or {−1, 1} setting, this will

cause no confusion.

87

88

Conjecture 8.0.1 [52] Let f : {−1, 1}n → {−1, 1} and let d be the degree of f .
Then

n∑
i=1

f̂(i) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
21−d.

Motivation for studying growth of the sum of linear Fourier coefficients of f ,∑n
i=1 f̂(i), comes from social choice. If we consider a function f : {−1, 1}n → {−1, 1}

as a voting rule for a 2-candidate election, then the expected number of votes that
agree with the outcome of the election is equal to n

2 +
1
2

∑n
i=1 f̂(i), see [51, Chapter 2]

for details. It is generally assumed that the larger the expected number of votes that
agree with the outcome of the election, the better. So, it is natural to ask how big
that number can be, and which functions are the maximizers. To answer that, one
approach is to study

∑n
i=1 f̂(i) and try to derive some efficient upper bounds. If we

do not impose any restrictions on the degree of a function, the answer is known. The
unique maximizers of

∑n
i=1 f̂(i) among all f : {−1, 1}n → {−1, 1} are the majority

functions, see Section 8.1 for more details.
Since the statement of the conjecture, there had not been a lot of progress

towards its validity until recently. In [77], Q. Wang translated O’Donnell’s conjecture
(Conjecture 8.0.1) to an equivalent conjecture about a class of resilient Boolean
functions g : Fn

2 → F2, thus giving alternative aspects of O’Donnell’s conjecture.
The notions used here about Boolean functions from Fn

2 to F2 are defined precisely
in the preliminaries, Section 2.4.

Conjecture 8.0.2 [77] Let g : Fn
2 → F2 be an (n−d−1)-resilient Boolean function,

where 1 ≤ d ≤ n− 1. Then∑
v∈Fn

2
wt(v)=n−1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d,

where Wg(v) is the Walsh coefficient of g at point v ∈ Fn
2 .

This alternative formulation was used by Q. Wang [77] to prove that the conjecture
is true when d = 1 and d = n− 1.

In this chapter, we further employ Wang’s approach using the standard Boolean
setting. Firstly, in Section 8.1, we show an interesting combinatorial property related
to Conjecture 8.0.2 which implies that (for a fixed d) the upper bound only depends
on a finite number of integers n. More precisely, we show that if Conjecture 8.0.2
is correct for all n ≤ 22d−2, then it is true for all n ∈ N. Then we prove, again
for a fixed d, that if the conjecture fails for some n0, then it is incorrect for every
n > n0. These two results imply that, for a fixed d, if the conjecture is true for
n = 22d−2 then it is correct for every n ∈ N. Therefore, an immediate consequence
is that the conjecture is true for d = 2, since it can be easily checked exhaustively
for n = 4. Nevertheless, in Section 8.3 a direct proof of this fact is provided using
a characterisation of (n − 3)-resilient functions given in [8]. Then, for d = 3, we
combine the results on characterisations of (n − 4)-resilient functions given in [7]
and [13], and show that it is enough to check the conjecture for n = 6, and in some

Chapter 8. Resilient functions and sums of their Walsh coefficients 89

special cases for n = 7. For the purpose of proving that the conjecture is true for
d = 3, we employ integer programming to deal with the mentioned cases.

However, despite the positive results, in Section 8.4, for d = 4, we have identified
a 2-resilient Boolean function in 7 variables which violates Conjecture 8.0.1. This
means that Conjecture 8.0.1 is not true in general. More specifically, the conjecture
is not true whenever n ≥ 7, implying that the Walsh coefficients of an (n−5)-resilient
Boolean function do not necessarily satisfy the conjectured bound.

8.1 Maximizers of the sum of linear Fourier coefficients

For n odd, the majority function Majn : {−1, 1}n → {−1, 1} is defined by Majn(x) =
sgn(x1 + x2 + · · · + xn), and when n is even we say that f is a majority function
if f(x) equals the sign of x1 + · · · + xn whenever this number is nonzero, and 1
otherwise. Notice that in the Boolean case, as a mapping from {0, 1}n to {0, 1},
the exact formula for computing the output of the majority function is given by⌊
1
2 +

(
∑n

i=1 xi)−1/2
n

⌋
.

As already mentioned, the majority function is a maximizer of the sum
∑n

i=1 f̂(i).
This fact can be demonstrated as follows.

n∑
i=1

f̂(i) =
1

2n

∑
x∈{−1,1}n

f(x)(x1+· · ·+xn) ≤
1

2n

∑
x∈{−1,1}n

|x1+· · ·+xn| =
n∑

i=1

M̂ajn(i)

and equality holds if and only if f(x) = sgn(x1+ · · ·+xn) whenever x1+ · · ·+xn ̸= 0.
Furthermore,

∑
x∈{−1,1}n

|x1+ · · ·+xn| =
n∑

k=0

(
n

k

)
|n−2k| = 2

⌊n
2
⌋∑

k=0

(
n

k

)
(n−2k) = · · · = 2n

(
n− 1

⌊n−1
2 ⌋

)
.

(8.2)
From this, we can conclude that Conjecture 8.0.1 is true for d = n. Equation
(8.2) is also where the motivation for the bound in Conjecture 8.0.1 comes from.
More precisely, because the majority functions are maximizers for d = n, it is
tempting to assume that, even when d < n, the maximizers are again going to be
majority functions, just this time the majority functions on d bits. And indeed, the
bound in Conjecture 8.0.1 is equal to the sum of linear Fourier coefficients of an
n-variable majority function on d bits (replacing n by d in (8.2) and comparing to
Conjecture 8.0.1).

8.2 General results related to O’Donnell’s conjecture

In [77], Conjecture 8.0.1 is shown to be equivalent to Conjecture 8.0.2. For com-
pleteness, we will give here a different and more straightforward way of showing this
equivalence. It is a more or less standard procedure for translating a question about
{−1, 1} functions into the {0, 1} Boolean domain.

Let f be a function from {−1, 1}n to {−1, 1}. To each set S ⊆ [n] we can
associate a vector vS ∈ {0, 1}n by setting (vS)i = 1 if i ∈ S, and (vS)i = 0 if

90 8.2 General results related to O’Donnell’s conjecture

i ∈ [n] \ S. Furthermore, we can also associate to each vector x ∈ {−1, 1}n a vector
yx ∈ {0, 1}n by setting (yx)i = 1 if xi = −1, and (yx)i = 0 if xi = 1. Then we have:

∏
i∈S

xi =
∏
i∈S

(−1)(yx)i = (−1)
∑

i∈S(yx)i = (−1)yx·vS .

Finally, to each function f : {−1, 1}n → {−1, 1} we can associate a function gf :
{0, 1}n → {0, 1} by defining gf (yx) = 0 if f(x) = 1, and gf (yx) = 1 if f(x) = −1.
Then, f(x) = (−1)gf (yx). It is easy to see that all three mappings are bijections, so
everything is well-defined, and we have:

f̂(S) =
1

2n

∑
x∈{−1,1}n

f(x)
∏
i∈S

xi =
1

2n

∑
y∈{0,1}n

(−1)gf (y)+y·vS =
1

2n
Wgf (vS). (8.3)

Note that from the relation (8.3) we have that f : {−1, 1}n → {−1, 1} has degree
at most d if and only if Wgf (v) = 0 for every v ∈ {0, 1}n such that wt(v) ≥ d + 1.
This means that Conjecture 8.0.1 is equivalent to the following conjecture:

Conjecture 8.2.1 Let g : Fn
2 → F2 be a function such that Wg(v) = 0 for every

v ∈ Fn
2 with wt(v) ≥ d+ 1. Then:

∑
v∈Fn

2
wt(v)=1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d.

If we set g′(x) = g(x)+x1+x2+ · · ·+xn, we have the following relation between the
Walsh coefficients: Wg′(v) = Wg(v + 1) (here 1 is the vector with every coordinate
equal to 1). Using this relation and Proposition 2.4.2, we can conclude that Con-
jecture 8.0.2 and 8.2.1 are equivalent and consequently Conjecture 8.0.1 and 8.0.2
are equivalent as well. We notice that the research on resilient functions has been
quite extensive during the last few decades [8,16,54,73,75,76,78]. Apart from their
use in certain encryption schemes (e.g. nonlinear combiners), correlation immune
Boolean functions have applications in secret-sharing schemes and error-correcting
codes [6, 23,26].

Now, using certain well-known (divisibility) results about resilient Boolean func-
tions, we deduce some interesting facts related to Conjecture 8.0.2.

Proposition 8.2.2 For every natural number d ∈ N, there exists a number Nd

depending only on d, such that, if Conjecture 8.0.2 is true for all n ≤ Nd, then it is
true for all n ∈ N. Moreover, we can take Nd = 22d−2.

Proof. Select and fix a d ∈ N, and let n ≥ d + 2. We already know that the
conjecture is true for d = n − 1 and d = n. Now, let g be an (n − d − 1)-resilient
function in n variables. Then, expressing the sum in Conjecture 8.0.2 in terms of

Chapter 8. Resilient functions and sums of their Walsh coefficients 91

similar sums but in a smaller dimension, we have:∑
v∈Fn

2
wt(v)=n−1

Wg(v) =
∑
v∈Fn

2
wt(v)=n−1

∑
z∈Fn

2

(−1)g(z)+z·v

=
∑
v∈Fn

2
wt(v)=n−1

 ∑
x∈Fn−1

2

(−1)g(x,1)+(x,1)·v +
∑

x∈Fn−1
2

(−1)g(x,0)+(x,0)·v


=

∑
u∈Fn−1

2
wt(u)=n−2

∑
x∈Fn−1

2

(−1)g(x,1)+x·u+1 +
∑

u∈Fn−1
2

wt(u)=n−2

∑
x∈Fn−1

2

(−1)g(x,0)+x·u

+
∑
x∈Fn

2

(−1)g(x)+x·(1,0)

Define functions g0, g1 : Fn−1
2 → F2 by g0(x) = g(x, 0) and g1(x) = g(x, 1) + 1, for

all x ∈ Fn−1
2 . Then, we get:∑

v∈Fn
2

wt(v)=n−1

Wg(v) =
∑

u∈Fn−1
2

wt(u)=n−2

Wg1(u) +
∑

u∈Fn−1
2

wt(u)=n−2

Wg0(u) +Wg(1, 0).

Note that the (n− 1)-variable functions g0 and g1 are n−d− 1− 1 = (n− 1)−d− 1
resilient, hence if the conjecture is true for n− 1 we have:

∑
v∈Fn

2
wt(v)=n−1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n−d + d

(
d− 1

⌊d−1
2 ⌋

)
2n−d +Wg(1, 0)

= d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d +Wg(1, 0).

Essentially, the same reasoning applies to arbitrary v ∈ Fn
2 with wt(v) = n− 1, not

just (1, 0). Thus, it is sufficient to show that for large enough n there exists at least
one v ∈ Fn

2 with wt(v) = n− 1 satisfying Wg(v) ≤ 0.

As g is (n−d−1)-resilient, we know from Sarkar-Maitra’s divisibility bound [64]
(improved later by C. Carlet [10, 12]), that its Walsh coefficients are divisible by
2n−d−1+2 = 2n−d+1. Using Parseval’s equality, we have:

22n =
∑
v∈Fn

2

Wg(v)
2 = K22n−2d+2,

for some natural number K ∈ N. Therefore, K ≤ 22d−2. The number of nonzero
Walsh coefficients of g is less than or equal to K. Consequently, if n > K, then we
can find at least one v ∈ Fn

2 with wt(v) = n− 1 such that Wg(v) = 0. So we can set
Nd = 22d−2, and the result will follow by induction on n.

92 8.3 Proving O’Donnell’s conjecture for d ∈ {2, 3}

Remark 8 In the proof of Proposition 8.2.2, it was enough to find one v ∈ Fn
2 with

wt(v) = n − 1 such that Wg(v) ≤ 0, rather than Wg(v) = 0. Thus, it is possible to
get a slightly better bound for Nd with the same approach, but the improvement is
not going to be better than one half of the current bound. It would be interesting to
see whether the bound for Nd can be improved more substantially.

By Proposition 8.2.2, for d = 2, Conjecture 8.0.2 needs to be checked for all n ≤ 4
which can be easily done exhaustively. Its correctness has been confirmed for n ≤ 4
and therefore it is true for all n ∈ N. Nevertheless, we will later provide a direct
proof of this fact using a characterization of (n − 3)-resilient functions. A similar
characterization of (n−4)-resilient functions is then helpful in proving the conjecture
for d = 3, since in this case the values n ≤ Nd = 16 cannot be checked exhaustively.
Nevertheless, using the characterization, later we will show that for d = 3 it is
sufficient check the conjecture exhaustively for n ≤ 7.

For a fixed d, the next result asserts that if the conjecture fails for some n0 then
it fails for every n ≥ n0.

Proposition 8.2.3 Let d ∈ N and g : Fn
2 → F2 be an (n−d−1)-resilient function for

which Conjecture 8.0.2 fails. Then, for every m ≥ n there is an (m−d−1)-resilient
function in m variables for which the conjecture fails.

Proof. Let g be an (n−d−1)-resilient function in n variables for which Conjecture
8.0.2 fails, and let m > n. Define a Boolean function h : Fm

2 → F2 by

h(x, xn+1, . . . , xm) = g(x) + xn+1 + · · ·+ xm,

for all x ∈ Fn
2 and (xn+1, . . . , xm) ∈ Fm−n

2 . The Walsh coefficients of h are given by

Wh(a, b) =Wg(a)Wxn+1+···+xm(b). (8.4)

From Proposition 2.4.2 and (8.4), we conclude that h is (n−d−1)+(m−n−1)+1 =
(m− d− 1) resilient, and∑

w∈Fm
2

wt(w)=m−1

Wh(w) =
∑
v∈Fn

2
wt(v)=n−1

Wg(v)2
m−n > d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d2m−n

= d

(
d− 1

⌊d−1
2 ⌋

)
2m+1−d.

So, h is an (m− d− 1)-resilient function in m variables for which Conjecture 8.0.2
fails.

8.3 Proving O’Donnell’s conjecture for d ∈ {2, 3}
As noted in the previous section, it is possible to prove the conjecture for d = 2,
for every n ∈ N, by checking exhaustively that it is true for n = 4. But, using the
characterisation of quadratic (n−3)-resilient functions from [8], it is possible to give
a direct proof.

Chapter 8. Resilient functions and sums of their Walsh coefficients 93

Proposition 8.3.1 Let g be an (n− 3)-resilient function in n variables. Then,∑
v∈Fn

2
wt(v)=n−1

Wg(v) ≤ 2n.

Proof. For an arbitrary Boolean function f : Fn
2 → F2, using the Poisson

summation formula (Corollary 2.0.3) for the 1-dimensional subspace {0n, ei} we
have:

Wf (0n) +Wf (ei) = 2
∑
x∈Fn

2
xi=0

(−1)f(x),

where ei is the vector with all coordinates 0 except the i-th, which is 1. Summing
over all 1 ≤ i ≤ n we obtain:

n∑
i=1

Wf (ei) = −nWf (0n) + 2

n∑
i=1

∑
x∈Fn

2
xi=0

(−1)f(x)

= −nWf (0n) + 2
∑
x∈Fn

2

(−1)f(x) (n− wt(x)) = 2
∑
x∈Fn

2

(−1)f(x)(
n

2
− wt(x)).

(8.5)

Now, let g be an arbitrary (n− 3)-resilient function in n variables. If the algebraic
degree of g is one, then the theorem is obviously true, so we assume that g is
quadratic. We use the characterization of quadratic (n− 3)-resilient functions in n
variables given in [8]. According to [8, Theorem 4.1] there are 4 types of polynomial
forms of (n− 3)-resilient functions in n variables. We will prove the proposition for
the functions of the first type, since the proof for the remaining types is analogous.
The first type are the functions of the form

g(x) = xixj +
∑

t∈[n]\{i,j}

xt + aixi + ajxj + a, where ai, aj , a ∈ F2.

Adding the function
∑

i∈[n] xi to g we will verify Conjecture 8.2.1, for functions

g′(x) = xixj + aixi + ajxj + a, where ai, aj , a ∈ F2. By looking at the four cases
(xi, xj) = (0, 0), (xi, xj) = (1, 0), (xi, xj) = (0, 1), (xi, xj) = (1, 1), and using the

formula
∑k

t=1 t
(
k
t

)
= k2k−1, we have:

∑
x∈Fn

2
xi,xj=0

(n
2
− wt(x)

)
=
n

2
2n−2 −

n−2∑
t=0

(
n− 2

t

)
t = n2n−3 − (n− 2)2n−3 = 2n−2,

∑
x∈Fn

2
xi=0,xj=1

(n
2
− wt(x)

)
=

∑
x∈Fn

2
xi=1,xj=0

(n
2
− wt(x)

)
=
n

2
2n−2 −

n−2∑
t=0

(
n− 2

t

)
(t+ 1) =

= n2n−3 −
(
(n− 2)2n−3 + 2n−2

)
= 0,

94 8.3 Proving O’Donnell’s conjecture for d ∈ {2, 3}

∑
x∈Fn

2
xi,xj=1

(n
2
− wt(x)

)
=
n

2
2n−2 −

n−2∑
t=0

(
n− 2

t

)
(t+ 2) = 2n−2 − 2n−1 = −2n−2.

Combining these equations with (8.5) (for f = g′), we get:

n∑
i=1

Wg′(ei) = 2
∑
x∈Fn

2

(−1)g
′(x)(

n

2
− wt(x)) ≤ 2(2n−2 + 0 + 0 + 2n−2) = 2n.

Since 2n is the upper bound in Conjecture 8.2.1 for d = 2, we can conclude that the
proposition is true in this case. The proof for the remaining types is analogous, and
therefore omitted.

Since Conjecture 8.0.1 and 8.0.2 are equivalent, an immediate consequence is the
following:

Theorem 8.3.2 When d = 2, Conjecture 8.0.1 and Conjecture 8.0.2 are true for
every n ∈ N.

8.3.1 Proving the conjecture for d = 3

To apply Proposition 8.2.2, when d = 3, would imply checking that the conjecture
is true for all n ≤ 16 which is not possible. By Siegenthaler’s bound, the algebraic
degree of an n-variable (n−4)-resilient function is at most 3, so we will look at three
different cases, depending on the algebraic degree of the function.

In the case of linear functions, Conjecture 8.0.2 is obviously true. To deal with
quadratic and cubic functions, we need the following divisibility result of C. Carlet
(see [12, Proposition 120] or [10]) which states that for any n-variable m-resilient
function f (where m ≤ n − 2), with algebraic degree t, its Walsh coefficients are

divisible by 2m+2+⌊n−m−2
t

⌋. Assume now that g is a quadratic n-variable (n − 4)-
resilient function. By the mentioned divisibility result, its Walsh coefficients are

divisible by 2n−4+2+⌊n−(n−4)−2
2

⌋ = 2n−1. Parseval’s identity implies that

22n =
∑
v∈Fn

2

Wg(v)
2 = 4 · 22n−2,

which implies that the number of nonzero Walsh coefficients of g is less then or equal
to 4. In the same way as in the proof of Proposition 8.2.2, (since for the induction
step there, we only need to know that there is at least one vector vi with weight
n − 1 such that Wg(vi) = 0), we have that, in this case, if Conjecture 8.0.2 is true
for n = 4, then it is true for every n ∈ N. But we already know that Conjecture
8.0.2 is true for d = 3 and n = 4, since this is the already proved case d = n − 1
mentioned in the introduction. So, we can conclude that Conjecture 8.0.2 is true in
this case as well.

Let us now consider the third case. Assume that g is a cubic n-variable (n −
4)-resilient function. In [7] and [13], the authors classified cubic (n − 4)-resilient

Chapter 8. Resilient functions and sums of their Walsh coefficients 95

functions in n-variables with respect to certain properties of their Walsh spectra.
To explain the classification we need the following notion of rank of a subset of Fn

2 .
For a subset E of Fn

2 the rank of E is the dimension of the subspace of Fn
2 generated

by E, and the affine rank of E is the dimension of the smallest affine subspace
containing E. The classification divides (n − 4)-resilient functions in n-variables
into four types. In particular, it was proved in [7] that the functions of the first
three types have the affine rank of the support of their Walsh spectrum which is less
than or equal to five. Similarly, the functions of the fourth type have the affine rank
of the support of their Walsh spectrum which is less than or equal to six.

The affine rank of the set {v ∈ Fn
2 : wt(v) = n−1} is equal to n−1. In our case,

this means that for n ≥ 8 there has to be at least one vi ∈ Fn
2 with weight n − 1

such that Wg(vi) = 0, otherwise, we would have a cubic n-variable (n− 4)-resilient
function with the affine rank of the support of its Walsh spectrum strictly larger
than 6. Nevertheless, from the preceding discussion we know this is impossible.
Moreover, if g is not of the fourth type, then for n ≥ 7 there has to be at least one
vi ∈ Fn

2 with the Hamming weight n− 1 such that Wg(vi) = 0, since the affine rank
of the support of its Walsh spectrum is ≤ 5. This means that, in the same way as
in the proof of Proposition 8.2.2, (again, for the induction step there, we only need
to know that there is at least one vector vi with the Hamming weight n − 1 such
that Wg(vi) = 0), we have that if Conjecture 8.0.2 is true for n = 6, for all cubic
6-variable 2-resilient functions, and if the conjecture is true for n = 7, for all cubic
7-variable 3-resilient functions of the fourth type, then the conjecture is true for all
n ∈ N when d = 3.

From the above discussion, it follows that to finish the proof for d = 3 we only
need to check two things:

(a) Is there a (cubic) 6-variable 2-resilient function violating Conjecture 8.0.2. More
precisely, is there a 6-variable function g : F6

2 → F2 satisfying the following
conditions:

• ĝ(06) = 32;

• ĝ(v) = 0, for all v ∈ F6
2 with 1 ≤ wt(v) ≤ 2;

• ∑
v∈F6

2
wt(v)=5

ĝ(v) < −3

(
3− 1

⌊3−1
2 ⌋

)
26−3 = −48.

(Here ĝ is the standard Fourier transform of a Boolean function from F6
2 to

F2 introduced in the preliminaries. We used the relationship (2.6) between the
Walsh and Fourier coefficients, to get this equivalent (and easier to implement
on a computer) formulation of the problem.)

(b) Is there a (cubic) 7-variable 3-resilient function of the fourth type violating
Conjecture 8.0.2. In general, the Walsh spectrum of an (n − 4)-resilient cubic
function g belongs to the set: {0,±2n−2} (see [7], [13]), hence g is plateaued.
The bound in Conjecture 8.0.2, related to the Walsh coefficients, for n = 7
and d = 3 is: 3

(3−1
⌊ 3−1

2
⌋
)
27+1−3 = 6 · 32. This essentially implies that the only

96 8.4 O’Donnell’s conjecture is not true when d = 4

situation in which a function g in 7 variables of the fourth type can violate
Conjecture 8.0.2 arises whenWg(v) = 32 for all 7 vectors v ∈ F7

2 with wt(v) = 6.
Thus, the correctness of Conjecture 8.0.2 in this case corresponds to answering
the question whether there is a 7-variable function g : F7

2 → F2 satisfying the
following conditions:

• ĝ(07) = 64;

• ĝ(v) = 0, for all v ∈ F7
2 with 1 ≤ wt(v) ≤ 3;

• ĝ(v) = −32
2 = −16, for all v ∈ F7

2 with wt(v) = 6.

We can formulate the two questions as a binary linear programming problems in
64, and in 128 variables, respectively. More precisely, in (a) we represent a function
g via its truth table in the form g := (g0, g1, . . . , g63) and treat g0, g1, . . . , g63 ∈
{0, 1} as unknowns, whereas in (b) we consider g := (g0, g1, . . . , g127) and treat
g0, g1, . . . , g127 ∈ {0, 1} as unknowns. Then our conditions become linear equations
(plus one linear inequality in (a)), and it is exactly the kind of problem suitable for
linear programming solvers.

To solve the above problem instances, we used a free mixed integer linear pro-
gramming solver lp solve, version 5.5.2.5, on a standard desktop PC (Intel Core
i5-8265U processor, with clock frequency 1.60 GHz, 6 MB cache and with 8 GB
RAM). The results are as follows: there does not exist a function satisfying the
conditions in (a), and there does not exist a function satisfying the conditions in
(b). The results were obtained in less than 0.1 seconds in both cases.

With this, we can now conclude that Conjecture 8.0.2 is true for cubic n-variable
(n− 4)-resilient functions for every n ∈ N, and since we already know that it is true
in the quadratic and in the linear case, this completes the proof of Conjecture 8.0.2
when d = 3.

Theorem 8.3.3 For d = 3, Conjecture 8.0.1 and Conjecture 8.0.2 are true for
every n ∈ N. More precisely, for any (n− 4)-resilient function g : Fn

2 → F2 we have∑
v∈Fn

2
wt(v)=n−1

Wg(v) ≤ 6 · 2n−2.

8.4 O’Donnell’s conjecture is not true when d = 4

With a similar approach to the one we used in the preceding section to prove Con-
jecture 8.0.2 when d = 3, we managed to find a counterexample to the conjecture
when d = 4. The idea was to check in the same way if the conjecture is true for
all the cases that we are able to get an answer with a computer within a reason-
able time limit. We got a counterexample for n = 7 and d = 4, in which case the
question related to the Fourier-Hadamard coefficients becomes: Is there a 7-variable
2-resilient function violating Conjecture 8.0.2. More precisely, is there a function
g : F7

2 → F2 satisfying the following conditions:

• ĝ(07) = 64;

Chapter 8. Resilient functions and sums of their Walsh coefficients 97

• ĝ(v) = 0, for all v ∈ F7
2 with 1 ≤ wt(v) ≤ 2;

• ∑
v∈F7

2
wt(v)=6

ĝ(v) < −4

(
4− 1

⌊4−1
2 ⌋

)
27−4 = −96.

The first step is to represent a function in the form g = (g0, g1, . . . , g127), and to
treat g0, g1, . . . , g127 ∈ {0, 1} as unknowns. Then the conditions become a system
of linear equations and inequalities in 128 variables. Again, like in the previous
section, we used lp solve to check if there is a solution to the system, but this time
we got a positive answer. Furthermore, with lp solve we were able to get that for
any 2-resilient function in 7 variables we have the following,∑

v∈{0,1}7
wt(v)=6

ĝ(v) ≥ −112.

Moreover, we could retrieve such a 2-resilient function g : F7
2 → F2, being a coun-

terexample to Conjecture 8.0.2, achieving this minimum value:

g =
(
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,

1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1,

1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1,

0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0
)

where the truth table of g is represented as

g = (g(0, 0, . . . , 0), g(1, 0, . . . , 0), g(0, 1, . . . , 0), . . . , g(1, 1, . . . , 1)).

The algebraic normal form of g is

g(x0, . . . , x6) = x0x1x2x3+x0x1x2x6+x0x1x2+x0x1x3x4+x0x1x3+x0x1x4+
x0x1x6 + x0x1 + x0x2x3 + x0x2x4x6 + x0x2x4 + x0x2x6 + x0x2 + x0x3x4x6 +
x0x3x5x6+x0x3x5+x0x3+x0x4+x0x5x6+x0x5+x0x6+x1x2x3+x1x2x4x5+
x1x2x4x6 + x1x2x5 + x1x2 + x1x3x4x6 + x1x3x4 + x1x3x6 + x1x3 + x1x4x5 +
x1x4 + x1x5 + x1x6 + x2x3 + x2x4x5x6 + x2x4x5 + x2x4x6 + x2x4 + x2x5x6 +
x2x5 + x2x6 + x3x4x5x6 + x3x4x5 + x3x4x6 + x3x4 + x3x5x6 + x3x5 + x3x6 +
x4x5x6 + x4x5 + x4x6 + x5x6 + 1.

In order to be completely precise, the truth table of g is given in Table 8.1 at the
end of the chapter. The Walsh transform of g is given in Table 8.2. From the Walsh
transform of g one can verify that g is in fact 2-resilient and furthermoreWg(v) = 32,
for any v of weight n− 1 = 6. From this we conclude that∑

v∈F7
2

wt(v)=6

Wg(v) = 7 · 32 = 224,

whereas the bound in Conjecture 8.0.2 for n = 7 and d = 4 is 192. Thus, g is indeed
a counterexample to Conjecture 8.0.2. Consequently, we conclude that Conjecture
8.0.1 and Conjecture 8.0.2 are not true in general.

98 8.4 O’Donnell’s conjecture is not true when d = 4

x g(x)

(0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 0, 0, 0, 0, 0) 1
(0, 1, 0, 0, 0, 0, 0) 1
(1, 1, 0, 0, 0, 0, 0) 0
(0, 0, 1, 0, 0, 0, 0) 1
(1, 0, 1, 0, 0, 0, 0) 0
(0, 1, 1, 0, 0, 0, 0) 0
(1, 1, 1, 0, 0, 0, 0) 1
(0, 0, 0, 1, 0, 0, 0) 1
(1, 0, 0, 1, 0, 0, 0) 0
(0, 1, 0, 1, 0, 0, 0) 0
(1, 1, 0, 1, 0, 0, 0) 1
(0, 0, 1, 1, 0, 0, 0) 0
(1, 0, 1, 1, 0, 0, 0) 1
(0, 1, 1, 1, 0, 0, 0) 1
(1, 1, 1, 1, 0, 0, 0) 0
(0, 0, 0, 0, 1, 0, 0) 1
(1, 0, 0, 0, 1, 0, 0) 0
(0, 1, 0, 0, 1, 0, 0) 0
(1, 1, 0, 0, 1, 0, 0) 1
(0, 0, 1, 0, 1, 0, 0) 0
(1, 0, 1, 0, 1, 0, 0) 1
(0, 1, 1, 0, 1, 0, 0) 0
(1, 1, 1, 0, 1, 0, 0) 0
(0, 0, 0, 1, 1, 0, 0) 0
(1, 0, 0, 1, 1, 0, 0) 0
(0, 1, 0, 1, 1, 0, 0) 1
(1, 1, 0, 1, 1, 0, 0) 1
(0, 0, 1, 1, 1, 0, 0) 0
(1, 0, 1, 1, 1, 0, 0) 1
(0, 1, 1, 1, 1, 0, 0) 1
(1, 1, 1, 1, 1, 0, 0) 0
(0, 0, 0, 0, 0, 1, 0) 1
(1, 0, 0, 0, 0, 1, 0) 0
(0, 1, 0, 0, 0, 1, 0) 0
(1, 1, 0, 0, 0, 1, 0) 0
(0, 0, 1, 0, 0, 1, 0) 0
(1, 0, 1, 0, 0, 1, 0) 0
(0, 1, 1, 0, 0, 1, 0) 1
(1, 1, 1, 0, 0, 1, 0) 1
(0, 0, 0, 1, 0, 1, 0) 0
(1, 0, 0, 1, 0, 1, 0) 1
(0, 1, 0, 1, 0, 1, 0) 0

x g(x)

(1, 1, 0, 1, 0, 1, 0) 1
(0, 0, 1, 1, 0, 1, 0) 0
(1, 0, 1, 1, 0, 1, 0) 1
(0, 1, 1, 1, 0, 1, 0) 1
(1, 1, 1, 1, 0, 1, 0) 0
(0, 0, 0, 0, 1, 1, 0) 0
(1, 0, 0, 0, 1, 1, 0) 0
(0, 1, 0, 0, 1, 1, 0) 1
(1, 1, 0, 0, 1, 1, 0) 1
(0, 0, 1, 0, 1, 1, 0) 1
(1, 0, 1, 0, 1, 1, 0) 1
(0, 1, 1, 0, 1, 1, 0) 1
(1, 1, 1, 0, 1, 1, 0) 0
(0, 0, 0, 1, 1, 1, 0) 1
(1, 0, 0, 1, 1, 1, 0) 1
(0, 1, 0, 1, 1, 1, 0) 0
(1, 1, 0, 1, 1, 1, 0) 0
(0, 0, 1, 1, 1, 1, 0) 1
(1, 0, 1, 1, 1, 1, 0) 0
(0, 1, 1, 1, 1, 1, 0) 0
(1, 1, 1, 1, 1, 1, 0) 1
(0, 0, 0, 0, 0, 0, 1) 1
(1, 0, 0, 0, 0, 0, 1) 0
(0, 1, 0, 0, 0, 0, 1) 0
(1, 1, 0, 0, 0, 0, 1) 1
(0, 0, 1, 0, 0, 0, 1) 0
(1, 0, 1, 0, 0, 0, 1) 1
(0, 1, 1, 0, 0, 0, 1) 0
(1, 1, 1, 0, 0, 0, 1) 1
(0, 0, 0, 1, 0, 0, 1) 0
(1, 0, 0, 1, 0, 0, 1) 0
(0, 1, 0, 1, 0, 0, 1) 1
(1, 1, 0, 1, 0, 0, 1) 0
(0, 0, 1, 1, 0, 0, 1) 0
(1, 0, 1, 1, 0, 0, 1) 1
(0, 1, 1, 1, 0, 0, 1) 1
(1, 1, 1, 1, 0, 0, 1) 0
(0, 0, 0, 0, 1, 0, 1) 0
(1, 0, 0, 0, 1, 0, 1) 0
(0, 1, 0, 0, 1, 0, 1) 0
(1, 1, 0, 0, 1, 0, 1) 1
(0, 0, 1, 0, 1, 0, 1) 1
(1, 0, 1, 0, 1, 0, 1) 1

x g(x)

(0, 1, 1, 0, 1, 0, 1) 1
(1, 1, 1, 0, 1, 0, 1) 0
(0, 0, 0, 1, 1, 0, 1) 1
(1, 0, 0, 1, 1, 0, 1) 1
(0, 1, 0, 1, 1, 0, 1) 1
(1, 1, 0, 1, 1, 0, 1) 0
(0, 0, 1, 1, 1, 0, 1) 1
(1, 0, 1, 1, 1, 0, 1) 0
(0, 1, 1, 1, 1, 0, 1) 0
(1, 1, 1, 1, 1, 0, 1) 1
(0, 0, 0, 0, 0, 1, 1) 0
(1, 0, 0, 0, 0, 1, 1) 1
(0, 1, 0, 0, 0, 1, 1) 0
(1, 1, 0, 0, 0, 1, 1) 1
(0, 0, 1, 0, 0, 1, 1) 1
(1, 0, 1, 0, 0, 1, 1) 0
(0, 1, 1, 0, 0, 1, 1) 1
(1, 1, 1, 0, 0, 1, 1) 0
(0, 0, 0, 1, 0, 1, 1) 1
(1, 0, 0, 1, 0, 1, 1) 1
(0, 1, 0, 1, 0, 1, 1) 1
(1, 1, 0, 1, 0, 1, 1) 0
(0, 0, 1, 1, 0, 1, 1) 1
(1, 0, 1, 1, 0, 1, 1) 0
(0, 1, 1, 1, 0, 1, 1) 0
(1, 1, 1, 1, 0, 1, 1) 1
(0, 0, 0, 0, 1, 1, 1) 1
(1, 0, 0, 0, 1, 1, 1) 1
(0, 1, 0, 0, 1, 1, 1) 1
(1, 1, 0, 0, 1, 1, 1) 0
(0, 0, 1, 0, 1, 1, 1) 0
(1, 0, 1, 0, 1, 1, 1) 0
(0, 1, 1, 0, 1, 1, 1) 0
(1, 1, 1, 0, 1, 1, 1) 1
(0, 0, 0, 1, 1, 1, 1) 0
(1, 0, 0, 1, 1, 1, 1) 0
(0, 1, 0, 1, 1, 1, 1) 0
(1, 1, 0, 1, 1, 1, 1) 1
(0, 0, 1, 1, 1, 1, 1) 0
(1, 0, 1, 1, 1, 1, 1) 1
(0, 1, 1, 1, 1, 1, 1) 1
(1, 1, 1, 1, 1, 1, 1) 0

Table 8.1: Truth table of g (Conjecture 8.0.2 counterexample).

Chapter 8. Resilient functions and sums of their Walsh coefficients 99

x Wg(x)

(0, 0, 0, 0, 0, 0, 0) 0
(1, 0, 0, 0, 0, 0, 0) 0
(0, 1, 0, 0, 0, 0, 0) 0
(1, 1, 0, 0, 0, 0, 0) 0
(0, 0, 1, 0, 0, 0, 0) 0
(1, 0, 1, 0, 0, 0, 0) 0
(0, 1, 1, 0, 0, 0, 0) 0
(1, 1, 1, 0, 0, 0, 0) -16
(0, 0, 0, 1, 0, 0, 0) 0
(1, 0, 0, 1, 0, 0, 0) 0
(0, 1, 0, 1, 0, 0, 0) 0
(1, 1, 0, 1, 0, 0, 0) -16
(0, 0, 1, 1, 0, 0, 0) 0
(1, 0, 1, 1, 0, 0, 0) 0
(0, 1, 1, 1, 0, 0, 0) 0
(1, 1, 1, 1, 0, 0, 0) 0
(0, 0, 0, 0, 1, 0, 0) 0
(1, 0, 0, 0, 1, 0, 0) 0
(0, 1, 0, 0, 1, 0, 0) 0
(1, 1, 0, 0, 1, 0, 0) 0
(0, 0, 1, 0, 1, 0, 0) 0
(1, 0, 1, 0, 1, 0, 0) 0
(0, 1, 1, 0, 1, 0, 0) -16
(1, 1, 1, 0, 1, 0, 0) 0
(0, 0, 0, 1, 1, 0, 0) 0
(1, 0, 0, 1, 1, 0, 0) 0
(0, 1, 0, 1, 1, 0, 0) 0
(1, 1, 0, 1, 1, 0, 0) -16
(0, 0, 1, 1, 1, 0, 0) 0
(1, 0, 1, 1, 1, 0, 0) 0
(0, 1, 1, 1, 1, 0, 0) -16
(1, 1, 1, 1, 1, 0, 0) 16
(0, 0, 0, 0, 0, 1, 0) 0
(1, 0, 0, 0, 0, 1, 0) 0
(0, 1, 0, 0, 0, 1, 0) 0
(1, 1, 0, 0, 0, 1, 0) 0
(0, 0, 1, 0, 0, 1, 0) 0
(1, 0, 1, 0, 0, 1, 0) -16
(0, 1, 1, 0, 0, 1, 0) 16
(1, 1, 1, 0, 0, 1, 0) -16
(0, 0, 0, 1, 0, 1, 0) 0
(1, 0, 0, 1, 0, 1, 0) 16
(0, 1, 0, 1, 0, 1, 0) -16

x Wg(x)

(1, 1, 0, 1, 0, 1, 0) -16
(0, 0, 1, 1, 0, 1, 0) 0
(1, 0, 1, 1, 0, 1, 0) 0
(0, 1, 1, 1, 0, 1, 0) 0
(1, 1, 1, 1, 0, 1, 0) 0
(0, 0, 0, 0, 1, 1, 0) 0
(1, 0, 0, 0, 1, 1, 0) 0
(0, 1, 0, 0, 1, 1, 0) 0
(1, 1, 0, 0, 1, 1, 0) 0
(0, 0, 1, 0, 1, 1, 0) 0
(1, 0, 1, 0, 1, 1, 0) -16
(0, 1, 1, 0, 1, 1, 0) 0
(1, 1, 1, 0, 1, 1, 0) 0
(0, 0, 0, 1, 1, 1, 0) -16
(1, 0, 0, 1, 1, 1, 0) 0
(0, 1, 0, 1, 1, 1, 0) 0
(1, 1, 0, 1, 1, 1, 0) 0
(0, 0, 1, 1, 1, 1, 0) -16
(1, 0, 1, 1, 1, 1, 0) -16
(0, 1, 1, 1, 1, 1, 0) 0
(1, 1, 1, 1, 1, 1, 0) 32
(0, 0, 0, 0, 0, 0, 1) 0
(1, 0, 0, 0, 0, 0, 1) 0
(0, 1, 0, 0, 0, 0, 1) 0
(1, 1, 0, 0, 0, 0, 1) 0
(0, 0, 1, 0, 0, 0, 1) 0
(1, 0, 1, 0, 0, 0, 1) 0
(0, 1, 1, 0, 0, 0, 1) 0
(1, 1, 1, 0, 0, 0, 1) -16
(0, 0, 0, 1, 0, 0, 1) 0
(1, 0, 0, 1, 0, 0, 1) -16
(0, 1, 0, 1, 0, 0, 1) 0
(1, 1, 0, 1, 0, 0, 1) 0
(0, 0, 1, 1, 0, 0, 1) 0
(1, 0, 1, 1, 0, 0, 1) -16
(0, 1, 1, 1, 0, 0, 1) 0
(1, 1, 1, 1, 0, 0, 1) 16
(0, 0, 0, 0, 1, 0, 1) 0
(1, 0, 0, 0, 1, 0, 1) 0
(0, 1, 0, 0, 1, 0, 1) 0
(1, 1, 0, 0, 1, 0, 1) 0
(0, 0, 1, 0, 1, 0, 1) 0
(1, 0, 1, 0, 1, 0, 1) 0

x Wg(x)

(0, 1, 1, 0, 1, 0, 1) -16
(1, 1, 1, 0, 1, 0, 1) 0
(0, 0, 0, 1, 1, 0, 1) 0
(1, 0, 0, 1, 1, 0, 1) -16
(0, 1, 0, 1, 1, 0, 1) 0
(1, 1, 0, 1, 1, 0, 1) 0
(0, 0, 1, 1, 1, 0, 1) 0
(1, 0, 1, 1, 1, 0, 1) -16
(0, 1, 1, 1, 1, 0, 1) -16
(1, 1, 1, 1, 1, 0, 1) 32
(0, 0, 0, 0, 0, 1, 1) 0
(1, 0, 0, 0, 0, 1, 1) 0
(0, 1, 0, 0, 0, 1, 1) 0
(1, 1, 0, 0, 0, 1, 1) 0
(0, 0, 1, 0, 0, 1, 1) -16
(1, 0, 1, 0, 0, 1, 1) 0
(0, 1, 1, 0, 0, 1, 1) 0
(1, 1, 1, 0, 0, 1, 1) 0
(0, 0, 0, 1, 0, 1, 1) 0
(1, 0, 0, 1, 0, 1, 1) 0
(0, 1, 0, 1, 0, 1, 1) -16
(1, 1, 0, 1, 0, 1, 1) 0
(0, 0, 1, 1, 0, 1, 1) -16
(1, 0, 1, 1, 0, 1, 1) 0
(0, 1, 1, 1, 0, 1, 1) -16
(1, 1, 1, 1, 0, 1, 1) 32
(0, 0, 0, 0, 1, 1, 1) -16
(1, 0, 0, 0, 1, 1, 1) -16
(0, 1, 0, 0, 1, 1, 1) -16
(1, 1, 0, 0, 1, 1, 1) -16
(0, 0, 1, 0, 1, 1, 1) 0
(1, 0, 1, 0, 1, 1, 1) 16
(0, 1, 1, 0, 1, 1, 1) 0
(1, 1, 1, 0, 1, 1, 1) 32
(0, 0, 0, 1, 1, 1, 1) 0
(1, 0, 0, 1, 1, 1, 1) 0
(0, 1, 0, 1, 1, 1, 1) 16
(1, 1, 0, 1, 1, 1, 1) 32
(0, 0, 1, 1, 1, 1, 1) 16
(1, 0, 1, 1, 1, 1, 1) 32
(0, 1, 1, 1, 1, 1, 1) 32
(1, 1, 1, 1, 1, 1, 1) -16

Table 8.2: Walsh transform g (Conjecture 8.0.2 counterexample).

Chapter 9

Conclusions

The results of the PhD Thesis represent a significant contribution to a number of the
standing open problems in cryptography which have been an active topic of research
in mathematical community in the last decades.

We have provided a complete characterization of bent functions in D0 \ M#

in Chapter 3, which further refines a sufficient condition of Carlet [9, Proposition
2]. Furthermore, in Chapter 4, we have shown that the sufficient conditions in [83]
(related to the absence of linear structures in the component functions of a permu-
tation) are not necessary in a quite general framework of specifying bent functions
in C which are outside M#, by providing a construction of permutations that do not
satisfy the sufficient condition, but still produce bent functions in C outside M#.
On the other hand, in Chapter 4, the problem of specifying suitable permutations
satisfying the sufficient conditions in [83] for generating bent functions which are
outside the M# class is also addressed, and a class of permutation satisfying the
conditions in provided, assuming that the dimension of the subspace L is not too
large. The impossibility of finding such permutations for relatively large dimensions
of the subspace L may again indicate that the sufficient conditions in [83] are too
restrictive. It might be of interest to investigate whether some weaker conditions
can be deduced or alternatively combined with the indicator based on the second
order derivatives for the purpose of proving the exclusion from the class M#. Even
more importantly, a hard problem of showing whether the derived families are also
outside PS# remains open. Nevertheless, we prove that asymptotically, bent func-
tions in PSap are nonintersecting with the class C. This is probably true when the
completed PS class is considered, but it remains to be proved.

In Chapter 5, we have introduced a class of vectorial bent-negabent functions
and specified a tight upper bound for the dimension of their output space, which
can be reached using a set of linear complete mappings. The same goal becomes
harder to achieve when nonlinear mappings are employed, but nevertheless three
different methods, one of which is generic, are provided (some of them in Chapter 6)
for specifying vectorial bent-negabent functions of varying output dimensions. Most
notably, due to a specific choice of underlying permutations, these functions have a
large number of components which are outside M#. Similarly to the case of bent
components, we derived the maximal number of bent-negabent components for map-
pings F : F2m

2 → Fk
2, where k ≥ m, and provided two constructions of such functions.

100

Chapter 9. Conclusions 101

In Chapter 6, in order to describe the properties of vectorial bent functions
(related to the class inclusion/exclusion problem) more precisely, we introduced the
concept of weakly and strongly outside of a given class of bent functions. In this
context, some questions related to vectorial bent functions that stem from the classes
C and D have been addressed. In certain cases, such as the explicit subclass D0,
vectorial bent functions with the maximal bent output dimension could be derived,
though being only weakly outside M#. In other words, due to the cancellation
of the subspace indicators the component bent functions corresponding to linear
combinations of even weight necessarily remain in the class M. Using a suitable
structure of the considered ambient space, mainly subfields of suitable order, we
have also demonstrated the possibility of building vectorial bent functions from the
classes C and D, weakly outside M#, whose output dimension is not maximal. We
also exhibit vectorial bent functions F : F2n

2 → Fk
2, derived from the class C, which

are strictly outside M#, for some output dimensions k. The extendibility issue for
the vectorial classes derived from C and D, thus the possibility of extending these
functions to the maximal output dimensions, remains open and appears to be very
difficult.

In Chapter 7, we have provided compact proofs regarding some basic properties
of correlation immune (CI) functions. In addition, more precision regarding the alge-
braic normal forms and the Walsh coefficients of k-CI functions has been obtained.
Two construction methods of correlation immune functions are presented. They
provide an efficient framework for the design of low weight CI functions and allow
us to extend the range of the known 3-CI functions having the minimum Hamming
weight. It is of interest to further refine these methods to possibly cover other values
of n = 4k, which may give an efficient and alternative design of Hadamard matrices
of the same size.

In Chapter 8, we have shown that O’Donnell’s conjecture (Conjecture 8.0.1)
is correct for d ∈ {2, 3}, apart from the previously confirmed cases d ∈ {1, n −
1, n}. The established cases d ∈ {2, 3} give some interesting combinatorial properties
related to the Walsh coefficients of weight n − 1 for (n − 4) and (n − 3)-resilient
functions. However, we show that the conjecture is not true in general, and more
precisely, that it cannot be applied to (n − 5)-resilient functions. We remark that
the weaker variant of this conjecture, due to P. Gopalan and R. Servedio, remains
open.

Bibliography

[1] A. Akbary, D. Ghioca, Q. Wang. On constructing permutations of finite
fields. Finite Fields Appl. 17, pp. 51–67, (2011).

[2] L.E. Baum, L.P. Neuwirth. Decompositions of vector spaces over GF(2)
into disjoint equidimensional affine spaces. Journal of Combinatorial Theory,
Series A, 18(1), pp. 88–100, (1975).

[3] A. Bapić, E. Pasalic, A. Polujan, A. Pott. Vectorial Boolean functions
with the maximum number of bent components outside the M# class. Pro-
ceedings of the Twelfth International Workshop on Coding and Cryptography,
(2022).

[4] S. Bhasin, C Carlet, S. Guilley. Theory of masking with codewords in
hardware: low weight d-th order correlation-immune functions. IACR ePrint
Archive, available at https://eprint.iacr.org/2013/303.pdf2013, (2014).

[5] S. Bhattacharya, S. Sarkar. On some permutation binomials and trino-
mials over F2n . Designs, Codes and Cryptography, vol. 82(1-2), pp. 149–160,
(2017).

[6] J. Bierbrauer, K. Gopalakrishnan, D. R. Stinson. Orthogonal arrays,
resilient functions, error-correcting codes, and linear programming bounds.
SIAM Journal on Discrete Mathematics 9(3), pp. 424–452, (1996).

[7] A. Braeken, Y. Borissov, S. Nikova, B. Preneel. Classification of cubic
(n− 4)-resilient Boolean functions. IEEE Trans. on Inform. Theory 52(4), pp.
1670–1676, (2006).

[8] P. Camion, C. Carlet, P. Charpin, N. Sendrier. On correlation-immune
functions. Annual International Cryptology Conference, pp. 86–100, (1991).

[9] C. Carlet. Two New Classes of Bent Functions. Eurocrypt ’93 LNCS. vol. 765,
pp. 77–101, (1994).

[10] C. Carlet. On the coset weight divisibility and nonlinearity of resilient and
correlation-immune functions. Proceedings of SETA’01 (Sequences and their
Applications 2001), Discrete Mathematics and Theoretical Computer Science,
pp. 131–144, (2001).

102

BIBLIOGRAPHY 103

[11] C. Carlet. On the secondary constructions of resilient and bent functions. In
Proc. Coding, Cryptograph. Combinat., published by Birkhäuser Verlag, vol. 23,
pp. 3–28, (2004).

[12] C. Carlet. Boolean Functions for Cryptography and Coding Theory. Cam-
bridge University Press, (2020).

[13] C. Carlet, P. Charpin. Cubic Boolean functions with highest resiliency.
IEEE Trans. on Inform. Theory 51(2), pp. 562–571, (2005).

[14] C. Carlet, F. Zhang, Y. Hu. Secondary constructions of bent functions and
their enforcement. Adv. Math. Commun., vol. 6, pp. 305–314, (2012).

[15] C. Carlet, S. Guilley. Side-channel indistinguishability. Proceedings of
HASP ’13, 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, pp. 9:1-9:8. Tel Aviv, Israel, June 2013. ACM, New
York, (2013).

[16] C. Carlet, X. Chen. Constructing low-weight dth-order correlation-immune
Boolean functions through the Fourier-Hadamard transform. IEEE Trans. on
Inform. Theory, 64(4), pp. 2969–2978, (2018).

[17] L. Carlitz, C. Wells. The number of solutions of a special system of equa-
tions in a finite field. Acts. Arith. vol. 12, pp. 77–84, (1966).

[18] N. Cepak, P. Charpin, E. Pasalic. Permutations via linear translators.
Finite Fields and Their Applications, vol. 45, pp. 19–42, (2017).

[19] P. Charpin, G. Kyureghyan. Monomial functions with linear structure and
permutation polynomials. Finite Fields: Theory and Applications FQ9, vol.
518, pp. 99–111, (2010).

[20] T. W. Cusick, P. Stănică. Cryptographic Boolean functions and applica-
tions. Elsevier–Academic Press, (2009).

[21] J. F. Dillon. Elementary Hadamard difference sets. In proceedings of 6th
S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility
Mathematics, Winnipeg, pp. 237–249, (1975).

[22] J. F. Dillon. Elementary Hadamard difference sets, Ph.D. dissertation. Uni-
versity of Maryland, College Park, Md, USA, (1974).

[23] C. Ding, G. Xiao, W. Shan. The stability theory of stream ciphers. Springer
Science & Business Media, (1991).

[24] J. Du, L. Qu, C. Li, X. Liao. Constructing 1-resilient rotation symmetric
functions over Fp with q variables through special orthogonal arrays Advances
in Mathematics of Communications, (2019).

[25] R. J. Evans, J. Greene, H. Niederreiter. Linearized polynomials and
permutation polynomials of finite fields. Michigan Mathematical Journal, vol.
39, pp. 405–413, (1992).

104 BIBLIOGRAPHY

[26] K. Gopalakrishnan, D. R. Stinson. Applications of designs to cryptogra-
phy. The CRC Handbook of Combinatorial Designs pp. 549–557, (1996).

[27] R. Gupta, R.K. Sharma. Some new classes of permutation trinomials over
finite fields with even characteristic. Finite Fields Appl., vol. 41(C), pp. 89–96,
(2016).

[28] S. Hodžić, E. Pasalic, Y. Wei. A general framework for secondary con-
structions of bent and plateaued functions. Des. Codes Cryptogr., vol. 88(10),
pp. 2007–2035, (2020).

[29] X. Hou. Permutation polynomials over finite fields — A survey of recent
advances. Finite Fields and Their Applications, vol. 32, pp. 82–119, (2015).

[30] T. Johansson, F. Jönsson. Improved fast correlation attacks on stream
ciphers via convolutional codes. In Advances in Cryptology—EUROCRYPT’99,
volume LNCS 1592, pp. 347–362, Springer-Verlag, (1999).

[31] T. Johansson, F. Jönsson. Fast correlation attacks based on turbo code tech-
niques. In Advances in Cryptology—CRYPTO’99, LNCS, vol. 1666, pp. 181–
197, Springer-Verlag, (1999).

[32] S. Kudin, E. Pasalic. Efficient design methods of low-weight correlation-
immune functions and revisiting their basic characterization. Discrete Applied
Mathematics, vol. 284, pp. 150–157, (2020).

[33] S. Kudin, E. Pasalic. Proving the conjecture of O’Donnell in certain cases
and disproving its general validity. Discrete Applied Mathematics, vol. 289,
pp. 345–353, (2021).

[34] S. Kudin, E. Pasalic. A complete characterization of D0∩M# and a general
framework for specifying bent functions in C outside M#. Designs, Codes and
Cryptography, vol. 90(8), pp. 1783–1796, (2022).

[35] S. Kudin, E. Pasalic, N. Cepak, F. Zhang. Permutations without linear
structures inducing bent functions outside the completed Maiorana-McFarland
class. Cryptography and Communications, vol. 14(1), pp. 101–116, (2022).

[36] G. M. Kyureghyan. Constructing permutations of finite fields via linear
translators. J. Combinatorial Theory, Ser. A, Vol. 118, pp. 1052–1061, (2011).

[37] P. Langevin, G. Leander. Counting all bent functions in dimension
eight 99270589265934370305785861242880. Designs, Codes and Cryptography,
vol. 59, pp. 193—205, (2011).

[38] S. Li, W. Meidl, A. Polujan, A. Pott, C. Riera, P. Stănică. Vanishing
Flats: A Combinatorial Viewpoint on the Planarity of Functions and Their
Application. IEEE Transactions on Information Theory, vol. 66(11), pp. 7101–
7112, (2020).

BIBLIOGRAPHY 105

[39] K. Li, L. Qu, X. Chen. New classes of permutation binomials and permuta-
tion trinomials over finite fields. Finite Fields Appl., vol. 43, pp. 69–85, (2017).

[40] B. Mandal, S. Maitra, P. Stănică. On the existence and non-existence of
some classes of bent–negabent functions. Appl. Algebra Eng. Commun. Comput.
(2020).

[41] B. Mandal, P. Stanica, S. Gangopadhyay, E. Pasalic. An analysis of
C class of bent functions. Fundamenta Informaticae, vol. 147 (3), pp. 271–292,
(2016).

[42] J.L. Massey, R.A. Rueppel. Linear Ciphers and Random Sequence Gen-
erators with Multiple Clocks. In: Beth, T., Cot, N., Ingemarsson, I. (eds)
Advances in Cryptology. EUROCRYPT 1984. Lecture Notes in Computer Sci-
ence, vol. 209, pp. 74–87, (1985).

[43] R. L. McFarland. A family of noncyclic difference sets. J. Combinatorial
Theory, Ser. A, Vol. 15, pp. 1–10, (1973).

[44] F. J. McWilliams, N. J. A Sloane. The theory of error-correcting codes.
Parts I and II. North-Holland Publishing Company, Amsterdam, (1977).

[45] W. Meier, O. Staffelbach. Fast correlation attacks on certain stream ci-
phers. Journal of Cryptology, Vol. 1, pp. 159–176, (1989).

[46] A. J. Menezes, S. A. Vanstone, P. C. Van Oorschot. Handbook of
Applied Cryptography. 1st ed., CRC Press, Inc., Boca Raton, FL, USA, (1996).

[47] S. Mesnager. Several new infinite families of bent functions and their duals.
IEEE Trans. on Inform. Theory, vol. 60, no. 7, pp. 4397–4407, (2014).

[48] S. Mesnager. Bent functions - Fundamentals and Results. Springer, (2016).

[49] G. L. Mullen, Q. Wang. Permutation polynomials. Chapter 8 in Handbook of
Finite Fields, Chapman and Hall/CRC, Boca Raton, FL, pp. 215–230, (2013).

[50] K. Nyberg. Perfect nonlinear S-Boxes. Advances in Cryptology - EURO-
CRYPT ’91, Lecture Notes in Computer Science, vol. 547, (1991).

[51] R. O’Donnell. Analysis of boolean functions. Cambridge University Press,
(2014).

[52] R. O’Donnell. Open problems in analysis of Boolean functions. arXiv
preprint, arXiv:1204.6447, (2012).

[53] M. G. Parker, A. Pott. On Boolean functions which are bent and negabent.
In Sequences, Subsequences, Consequences, Lecture Notes in Computer Science,
Springer, Berlin, vol. 4893, pp. 9–23, (2007).

106 BIBLIOGRAPHY

[54] E. Pasalic, T. Johansson, S. Maitra, P. Sarkar. New constructions
of resilient and correlation immune Boolean functions achieving upper bound
on nonlinearity. Electronic Notes in Discrete Mathematics vol. 6, pp. 158–167,
(2001).

[55] E. Pasalic, F. Zhang, S. Kudin, Y. Wei. Vectorial bent functions
weakly/strongly outside the completed Maiorana–McFarland class. Discrete
Applied Mathematics, vol. 294, pp. 138–151, (2021).

[56] E. Pasalic, S. Kudin, A. Polujan, A. Pott. Vectorial bent-negabent
functions - their constructions and bounds. IEEE Trans. on Inform. Theory,
doi: 10.1109/TIT.2022.3226571, (2022).

[57] A. Polujan, A. Pott. On design-theoretic aspects of Boolean and vectorial
bent functions. IEEE Trans. on Inform. Theory, vol. 67(2), pp. 1027–1037,
(2021).

[58] A. Pott. Almost perfect and planar functions. Designs, Codes and Cryptog-
raphy, vol. 78(1), pp. 141–195, (2016).

[59] A. Pott, K-U. Schmidt, Y. Zhou. Pairs of quadratic forms over finite fields.
Electron. J. Comb. 23(2), P. 2.8, (2016)

[60] A. Pott, E. Pasalic, A. Muratović-Ribić, S. Bajrić. On the maximum
number of bent components of vectorial functions. IEEE Trans. on Inform.
Theory, vol. 64(1), pp. 403–411, (2018).

[61] C. Riera, M. G. Parker. Generalized bent criteria for Boolean functions.
IEEE Trans. on Inform. Theory, 52(9), pp. 4142–4159, (2006).

[62] O. S. Rothaus. On Bent Functions. J. Combinatorial Theory, Ser. A, vol. 20,
pp. 300–305, (1976).

[63] P. Sarkar. A note on the spectral characterisation of correlation immune
Boolean functions. Information Processing Letters, vol. 74(5-6), pp. 191–195,
(2000).

[64] P. Sarkar, S. Maitra. Nonlinearity Bounds and Constructions of Resilient
Boolean Functions. Proceedings of CRYPTO 2000, Lecture Notes in Computer
Science 1880, pp. 515–532, (2000).

[65] K.-U. Schmidt, M. G. Parker, A. Pott. Negabent functions in Maio-
rana–McFarland class. In: SETA, LNCS vol. 5203, pp. 390–402, (2008).

[66] C. E. Shannon. A mathematical theory of communication, Bell System
Technical Journal, vol. 27:379423 (Part I) and 623656 (Part II), (1948).

[67] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for
cryptographic applications. IEEE Trans. on Inform. Theory, vol. 30(5), pp.
776–780, (1984).

BIBLIOGRAPHY 107

[68] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only.
IEEE Trans. on Computers, C-34, pp. 81–85, (1985).

[69] P. Stănică, S. Gangopadhyay, A. Chaturvedi, A. K. Gangopadhyay,
S. Maitra. Investigations on bent and negabent functions via the nega-
Hadamard transform. IEEE Trans. on Inform. Theory, 58(6), pp. 4064–4072,
(2012).

[70] P. Stănică, B. Mandal, S. Maitra. The connection between quadratic
bent–negabent functions and the Kerdock code. Appl. Algebra Eng. Commun.
Comput., vol. 30(5), pp. 387–401, (2019).

[71] W. Su, A. Pott, X. Tang. Characterization of negabent functions and con-
struction of bent–negabent functions with maximum algebraic degree. IEEE
Trans. Inf. Theory, vol. 59(6), pp. 3387–3395, (2013).

[72] Y. Tarannikov. On resilient Boolean functions with maximal possible nonlin-
earity. Proceeding of INDOCRYPT 2000, Lecture Notes in Computer Science
1977, pp. 19–30, (2000).

[73] N. Tokareva. Bent functions: results and application to cryptography. Aca-
demic Press, (2015).

[74] Z. Tu, X. Zeng, L. Hu. Several classes of complete permutation polynomials.
Finite Fields and Their Applications, vol. 25, pp. 182–193, (2014).

[75] L. Wang, B. Wu, Z. Liu, D. Lin. Three new infinite families of bent func-
tions. Sci. China Inf. Sci., vol. 61, 032104, (2018).

[76] Q. Wang. Hadamard matrices, d-linearly independent sets and correlation-
immune Boolean functions with minimum Hamming weights. Designs Codes
and Cryptography, vol. 87, pp. 2321–2333, (2019).

[77] Q. Wang. On a Conjecture of O’Donnell. IACR Cryptology ePrint Archive,
https://eprint.iacr.org/2020/002, (2020).

[78] Q. Wang, Y. Li. A note on minimum Hamming weights of correlation-immune
Boolean functions. IEEE Trans. Fundamentals vol. E102-A (2), pp. 464–466,
(2019).

[79] Z. Wang, G. Gong. Discrete Fourier transform of Boolean functions over
the complex field and its applications. IEEE Trans. on Inform. Theory, vol.
64(4), pp. 3000–3009, (2018).

[80] G. Weng, R. Feng, W. Qiu. On the ranks of bent functions. Finite Fields
and Their Applications 13(4), pp. 1096–1116, (2007).

[81] G.Z. Xiao, J. L. Massey. A spectral characterization of correlation-immune
combining functions. IEEE Trans. on Inform. Theory, vol. 34(3), pp. 569–571,
(1988).

https://eprint.iacr.org/2020/002

108 BIBLIOGRAPHY

[82] F. Zhang, Y. Wei, E. Pasalic. Constructions of bent-negabent functions
and their relation to the completed Maiorana–McFarland class. IEEE Trans.
on Inform. Theory, vol. 61(3), pp. 1496–1506, (2015)

[83] F. Zhang, E. Pasalic, N. Cepak, Y. Wei. Bent functions in C and D outside
the completed Maiorana-McFarland class. Codes, Cryptology and Information
Security, C2SI, LNCS 10194, Springer-Verlag, pp. 298–313, (2017).

[84] F. Zhang, N. Cepak, E. Pasalic, Y. Wei. Further analysis of bent functions
from C and D which are provably outside or inside MM#. Discret. Appl. Math.
vol. 285, pp. 458–472, (2020).

[85] L. Zheng, J. Peng, H. Kan, Y. Li. Several new infinite families of bent
functions via second order derivatives. Cryptogr. Commun., vol. 12, pp. 1143–
1160, (2020).

[86] L. Zheng, J. Peng, H. Kan, Y. Li, Y. Luo. On constructions and properties
of (n,m)-functions with maximal number of bent components. Designs, Codes
and Cryptography, vol. 88, pp. 2171–2186, (2020).

Index

(C) property, 20
(D) property, 20

affine equivalence, 2, 19
algebraic degree, 11
algebraic normal form, 10

bent classes, 19
C class, 20
D class, 20
D0 class, 20
PS+ class, 20
PS− class, 20
complete, 19
Maiorana-McFarland class M, 19
Partial Spread class PS, 20

Boolean function, 9
affine, 11
balanced, 17
bent, 16
correlation immune, 22
negabent, 21
quadratic, 11

complete mapping, 21
component functions, 10
coordinate functions, 10

derivative of a Boolean function, 16
dual function of a bent function, 18

Fourier transform, 13

Hamming weight, 11, 12

indicator of a subspace, 14

linear structure, 17

nonlinearity, 15

Nyberg’s bound, 18

orthogonal complement, 14

Parseval’s relation, 15

Poisson summation formula, 15

pseudo-Boolean functions, 13

Siegenthaler’s bound, 22

strongly outside, 21, 56

subfunction, 22

trace function, 12

absolute trace, 12

truth table, 9

vectorial bent-negabent, 48

vectorial Boolean function, 10

Walsh transform, 12

weakly outside, 21, 56

110

Povzetek v slovenskem jeziku

Glavni predmet študija doktorske disertacije so kriptografsko pomembne lastnosti
Boolovih funkcij. Neformalno so Boolove funkcije funkcije, ki kot vhodne parametre
sprejmejo nize ničel in enic (fiksne dolžine) in kot izhodni podatek vrnejo ničlo ali
enico, ali v bolj splošnem primeru vektorskih Boolovih funkcij, izpǐsejo tudi nize ničel
in enic. Ta intuitivni pojem formaliziramo tako, da rečemo, da so Boolove funkcije
funkcije, ki slikajo iz {0, 1}n (kjer je n naravno število) v {0, 1}, ali v vektorskem
primeru v {0, 1}k (kjer je k tudi neko naravno število, morda drugačno od n).

Z razvojem in porastom zanimanja za sodobno računalnǐstvo, ki se je začelo v
prvi polovici 20. stoletja, je vzporedno naraščalo zanimanje znanstvene skupnosti
za različne lastnosti Boolovih funkcij, ki so postale ena temeljnih predmetov študija
teoretičnega računalnǐstva. Kmalu je postal pomen varne zasebne komunikacije
očiten in leta 1945 (objavljeno leta 1949 v [66]) je Claude Shannon opredelil dve
lastnosti, zmedo in razpršenost, ki ju mora imeti vsaka varna šifra, da bi preprečila
statistične napade in druge metode kriptoanalize. Po drugi strani pa nam zmeda
in razpršenost pomagata ugotoviti, katere lastnosti Boolovih funkcij, uporabljenih
v varni šifri, so zaželene in katere nezaželene. Te lastnosti imenujemo kriptografsko
pomembne lastnosti Boolovih funkcij.

Ena od kriptografsko pomembnih lastnosti Boolovih funkcij je nelinearnost. Da
bi se izognili linearnim napadom, v splošnem želimo, da so funkcije, ki se uporabl-
jajo v šifri, čim bolj nelinearne, seveda ob upoštevanju drugih zaželenih kriptograf-
skih lastnosti. Motiviran s tem je v šestdesetih letih preǰsnjega stoletja (objavljeno
leta 1976 v [62]) O. Rothaus uvedel razred Boolovih funkcij, imenovanih ukrivljene
funkcije, in jih opredelil kot Boolove funkcije, ki so čim bolj oddaljene od linearnih
in afinih funkcij (razdalja med dvema funkcijama je Hammingova razdalja, torej
število vektorjev, v katerih se funkciji razlikujeta).

Pomemben del raziskav ukrivljenih funkcij se ukvarja z njihovimi konstrukcijami,
torej z iskanjem različnih načinov za konstruiranje ukrivljenih funkcij. Konstruk-
cije ukrivljenih funkcij so razdeljene v dve skupini: primarne konstrukcije (kon-
strukcije, ki ne uporabljajo drugih ukrivljenih funkcij za konstruiranje novih) in
sekundarne konstrukcije (konstrukcije, ki uporabljajo druge ukrivljene funkcije za
konstruiranje novih). Za podrobno raziskavo o ukrivljenih funkcijah se sklicujemo na
knjigo S. Mesnager [48], medtem ko je izčrpno raziskavo o kriptografskih (vektorskih)
Boolovih funkcijah mogoče najti v [12]. Dva najbolje raziskana primarna razreda
ukrivljenih funkcij sta razreda Maiorana-McFarland (M) in razred delni pokritij
(Partial Spread) (PS), ki sta bila predstavljena v sedemdesetih letih preǰsnjega sto-
letja v [43] oziroma [21,22]. Ker je v praksi zahtevno sestaviti elemente razreda PS,

112

Povzetek v slovenskem jeziku 113

je naveden eksplicitni podrazred razreda PS, označen z PSap v [21] zaradi enos-
tavneǰse konstrukcije. Delni seznam različnih sekundarnih konstrukcij je na voljo v
sledečih delih [11,14,28,47,75,85]. (Popoln Maiorana-McFarland razred je množica
vseh Boolovih funkcij na 2n spremenljivkah oblike

f(x, y) = x · π(y) + ρ(y), za vse x, y ∈ Fn
2 ,

kjer je ρ poljubna Boolova funkcija nad prostorom Fn
2 , π pa je permutacija prostora

Fn
2 .)
V devetdesetih letih preǰsnjega stoletja je Carlet ([9]) predstavil dve novi sekun-

darni konstrukciji ukrivljenih funkcij z uporabo ukrivljenih funkcij iz razreda M in
dodal indikatorje ustrezno izbranega vektorskega podprostora. Razreda ukrivljenih
funkcij, ki jih dobimo s to konstrukcija, se imenujeta razred C in D. Določen po-
drazred razreda C in D, imenovan razred D0, je v [9] izpostavljen zaradi enostavneǰse
oblike uporabljenih podprostorov in zaradi enostavne konstrukcije. V [9] je ugotovl-
jeno, da v razredu D0 obstajajo funkcije, ki niso afino ekvivalentne nobeni funkciji
v razredu M, kot tudi, da obstajajo nekatere funkcije v razredu D0, ki niso afino
ekvivalentne nobeni funkciji v razredu PS.

V Poglavju 3 se bomo osredotočil na natančneǰsi opis (glede na pripadnost
razredu) sekundarnega razreda ukrivljenih funkcij D0. Carlet je v [9, Predlogi 2]
zagotovil zadosten pogoj, da leži ukrivljena funkcija v razredu D0 oblike f(x, y) =
x · π(y) + δ0(x) nad F2n

2 , kjer je x, y ∈ Fn
2 , π permutacija Fn

2 in δ0(x) indikator
(karakteristična funkcija) podprostora {0n}×Fn

2 , zunaj razreda M# na podlagi last-
nosti permutacije π. (M# označuje popoln razred M, ki je razred vseh ukrivljenih
funkcij, ki so afino ekvivalentne funkcijam v razredu M.) Namreč, če permutacija
π ni afina na nobeni hiperravnini prostora Fn

2 , potem funkcija f leži zunaj razreda
M#. Pokazali bomo, da, ko je stopnja permutacije π večja od 2, Boolova funkcija
f(x, y) = x ·π(y)+δ0(x), z f : Fn

2 ×Fn
2 → F2, vedno leži zunaj razreda M# (ne glede

na to, ali je permutacija π afina na neki hiperravnini ali ne). Po drugi strani pa
bomo dokazali, da je zadosten pogoj Carleta nujen tudi pri deg(π) = 2. Posledično,
podajamo popoln opis razmerja med razredoma D0 in M#.

V Poglavju 4 bomo obravnavali problem pripadnosti za sekundarni razred ukrivl-
jenih funkcij C. Ogledali si bomo problem določanja ukrivljenih funkcij v razredu C,
ki so oblike f(x, y) = x · π(y) + 1L⊥(x), kjer je x, y ∈ Fn

2 , za ustrezno izbran pod-
prostor L ⊆ Fn

2 , ki so dokazljivo zunaj M#. Nabor zadostnih pogojev je bil prvotno
določen v [83] in ti se v glavnem nanašajo na določene lastnosti permutacije π, ki
vključujejo zahtevo, da komponentne funkcije permutacije π ne vsebujejo linearnih
struktur. Ti zadostni pogoji so zelo uporabni pri določanju ukrivljenih funkcij v
C\M#, vendar je bilo dokazano, da niso potrebni, glej npr. [84]. Zlasti se je pokazalo,
da nekatere modifikacije identične permutacije π (zamenjava dveh izhodnih vred-
nosti) zagotavljajo ukrivljene funkcije v razredu D, ki dokazljivo ležijo zunaj M#,
čeprav komponentne funkcije permutacije π dopuščajo linearne strukture. V tem
kontekstu, povezanem z ukrivljenimi funkcijami v razredu C, bomo pokazali močneǰsi
rezultat, ki omogoča modifikacije permutacije identitete na poljubnih podmnožicah
ustrezno izbranih podprostorov (za namen definiranja permutacije π), hkrati pa
bomo opisali ukrivljene funkcije, ki dokazljivo ležijo v C\M#. Komponentne funkcije
takšnih permutacij π še vedno dopuščajo linearne strukture, ki ponovno kažejo, da

114

obstaja možnost sprostitve niza zadostnih pogojev v [85]. Upoštevajmo, da nam
bo možnost izbire poljubne podmnožice linearnega podprostora za modifikacijo per-
mutacije identitete dala veliko neskončnih razredov ukrivljenih funkcij v C, ki so
dokazljivo zunaj M#.

V Poglavju 4 bomo tudi raziskavi, ki se ukvarja z obratnim problemom. Torej,
zgradili bomo razred permutacij, primernih za določanje ukrivljenih funkcij razreda
C, ki so dokazljivo zunaj dokončanega M# razreda z zadostnimi rezultati, dokaza-
nimi v [83]. Da bi ponazorili kompleksnost osnovnega problema, bomo najprej
pokazali, da permutacije, ki temeljijo na odsekih, niso primerne za naš namen, saj
imajo člani te družine permutacij neizogibno komponentne funkcije, ki dopuščajo lin-
earne strukture. Namesto tega uporabljamo določeno metodo netrivialne razdelitve
vektorskega prostora Fn

2 v disjunktne afine podprostore, ki sta jo prvotno obrav-
navala L.E. Baum in L.P. Neuwirth v [2]. Permutacije so konstruirane z uporabo
dekompozicije in ustreznih permutacij v manǰsem številu spremenljivk. Možnost
izbire različnih podprostorov pri razgradnji in različnih permutacij v manǰsem številu
spremenljivk nam omogoča konstrukcijo družine ukrivljenih funkcij v razredu C, ki
so zunaj M#. Ta pristop zahteva, da je dimenzija podprostora L manǰsa od n/2. V
nasprotju s tem rezultatom dokazujemo, da, ko je dimenzija podprostora L relativno
velika in komponente permutacije ne dopuščajo linearnih struktur, par (π−1, L) ne
more izpolnjevati lastnosti (C). (Pravimo da (π−1, L) izpolnjujeta lastnost (C), če
je π−1(a+ L) afin podprostor za vse a ∈ Fn

2 .) Ta rezultat daje nadaljnji vpogled v
to, kar je verjetno kompromis v uporabi zadostnih (vendar ne potrebnih) pogojev
v [83] za razlikovanje ukrivljenih funkcij v C, ki so zunaj M#.

S pomočjo ranga ukrivljenih funkcij bomo v Poglavju 4 raziskali tudi presečǐsče
razreda C in razreda delnega pokritja PSap ter pokazali, da se verjetnost, da je
funkcija n spremenljivk, ki je v razredu PSap, tudi v C, približuje nič, ko se n
povečuje.

V drugem delu disertacije se bomo osredotočili na vektorske Boolove funkcije in
raziskali različne lastnosti, povezane z nelinearnostjo vektorskih Boolovih funkcij.
Ukrivljena lastnost Boolovih funkcij je bila razširjena na vektorske Boolove funkcije
z zahtevo, da so vse neničelne linearne kombinacije njihovih koordinatnih funkcij
ukrivljene funkcije. Takšne vektorske funkcije se imenujejo vektorske ukrivljene
funkcije. V literaturi so metode za konstruiranje novih vektorskih ukrivljenih funkcij
ponovno razdeljene v dva razreda: konstrukcije brez začetnih ukrivljenih funkcije
se imenujejo primarne; tiste, ki uporabljajo znane vektorske ukrivljene funkcije,
se imenujejo sekundarne. Za primarne konstrukcije je K. Nyberg najprej pred-
stavila konstrukcije vektorskih ukrivljenih funkcij, ki temeljijo na nekaterih posebnih
razredih ukrivljenih funkcij, kot sta razred Maiorana-McFarland in Dillonov razred
delnega pokritja.

V Poglavju 5 bomo definirali in raziskali razred ukrivljenih-negaukrivljenih vek-
torskih Boolovih funkcij. C. Riera in M. Parker v [61] sta predstavila razred ne-
gaukrivljenih funkcij motivirana z aplikacijami za kvantno računalnǐstvo. Za funkcijo
rečemo, da je negaukrivljena, če je njen absolutni nega-Hadamardov spekter plosk
(ali ekvivalentno, f je negaukrivljena, če je f + s2 ukrivljena, kjer s2 označuje ele-
mentarno simetrično kvadratno Boolovo funkcijo, tj. s2(x) =

∑
1≤i<j≤n

xixj , za x =

Povzetek v slovenskem jeziku 115

(x1, . . . , xn) ∈ Fn
2). Za sodo število spremenljivk se funkcija imenuje ukrivljena-

negaukrivljena, če je hkrati ukrivljena in negaukrivljena. Problem konstruiranja
Boolovih funkcij, ki so hkrati ukrivljene in negaukrivljene, je bil obravnavan v
[53, 65, 69, 71, 82]. M. Parker in A. Pott [53] sta obravnavala problem določanja
števila kvadratnih ukrivljenih-negaukrivljenih funkcije v n spremenljivkah. Rešil
so ga A. Pott et al. v [59], ki so uporabil karakterizacijo kvadratnih ukrivljenih-
negaukrivljenih Boolovih funkcij, ki sta jo navedla M. Parker in A. Pott [53].

Obstaja več metod načrtovanja ukrivljenih-negaukrivljenih funkcij, ki so podane
v npr. [65,71,82]. V [71] je bil izpeljan nabor potrebnih in zadostnih pogojev, da je
Boolova funkcija negaukrivljena (ne glede na pariteto števila spremenljivk), kar je
omogočilo tudi načrtovanje širšega razreda negaukrivljenih funkcij v n-spremenljivkah
(n sodo) z algebraično stopnjo v razponu od 2 do n/2. Te funkcije pa so vsebovane
v popolnem razredu Maiorana-McFarland (M). Za razliko od standardne uporabe
razreda Maiorana-McFarland, je bilo v [82] prikazano, da je mogoče ukrivljene-
negaukrivljene funkcije zunaj popolnega razreda M konstruirati z uporabo metode
posredne vsote in ustreznih popolnih preslikav.

Naj omenimo, da so o uporabi popolnih preslikav sprva razmǐsljali Stănică et
al. [69], pozneje pa so te preslikave uporabili (v okviru tako imenovane posredne
vsote) za konstruiranje ukrivljenih-negaukrivljenih funkcij zunaj popolnega razreda
M [82]. Ukrivljene-negaukrivljene funkcije so bile v zadnjem času deležne nove
pozornosti zaradi dela v [70], kjer je bila vzpostavljena povezava med ukrivljenimi-
negaukrivljenimi funkcijami in Kerdock kodami, ter pred kratkim v [40], kjer je bil
raziskan (ne)obstoj teh objektov v razredu ukrivljenih funkcij Maiorana-McFarland.

Kljub temu so vse doslej znane metode obravnavale le primer Boolovih funkcij in
možnost konstrukcije vektorskih prostorov ukrivljenih negaukrivljenih funkcij v lit-
eraturi ni bila obravnavana. Uvedli bomo pojem vektorske ukrivljene-negaukrivljene
funkcije in pokazali, da mora za ukrivljeno-negaukrivljeno funkcijo F : F2n

2 → Fk
2

nujno veljati k ≤ n − 1. Določimo razred vektorskih ukrivljenih-negaukrivljenih
funkcij z največjo izhodno dimenzijo n − 1 z uporabo množice linearnih popolnih
preslikav kardinalnosti n − 1. Vendar pa zaradi linearnosti teh preslikav ta pristop
generira samo funkcije, katerih komponente so vsebovane v razreduM. Potem bomo
pokazali, da so tako imenovane b-popolne preslikave na F2n , obravnavane v npr. [18],
torej permutacije x + bF (x) za mnogo elementov b ∈ F2n , lahko uporabljene za
načrtovanje nekvadratnih vektorskih ukrivljenih-negaukrivljenih funkcij. Na podoben
način, kot je bilo to storjeno za vektorske ukrivljene funkcije [60, 85], izpeljemo
zgornjo mejo za največje število ukrivljenih-negaukrivljenih komponent za preslikave
F : F2n

2 → Fk
2, kjer je 2 ≤ k ≤ 2n, in identificiramo nekatere družine teh funkcij, ki

dosežejo zgornjo mejo.

Da bi natančneje opisali lastnosti teh vektorskih ukrivljenih funkcij, v Poglavju 6
uvedemo koncept šibke izločenosti in močne izločenosti zunaj dokončanega vnaprej
določenega primarnega razreda. Glavni razlog za to je, da je za razred Maiorana-
McFarland enostavno sklepati, da imajo njegove vektorske ukrivljene funkcije last-
nost, da so vse linearne kombinacije (komponente), ki niso ničelne, ukrivljene funkcije
v M. To v splošnem ne velja za vektorske funkcije, ki imajo koordinate v C ali D,
saj večina metod, predstavljenih v disertaciji, zagotavlja komponentne ukrivljene
funkcije, ki ne tvorijo enega samega razreda. Na primer, definicija vektorske ukrivl-

116

jene funkcije F = (f1, . . . , fn), kjer je F : F2n
2 → Fn

2 in vsak fi ∈ D0, implicira, da
vsaka linearna kombinacija fi enake teže daje ukrivljeno funkcijo v M. Glavni in-
teres našega koncepta, da smo šibko ali močno zunaj M#, izhaja iz dejstva, da bodo
v prvem delu disertacije predstavljeni določeni neskončni razredi ukrivljenih funkcij
v C in D, ki dokazljivo ležijo zunaj M#. Nato z uporabo takšnih funkcij, kot so
začetne ukrivljene funkcije, dobimo vektorske ukrivljene prostore, katerih določene
komponente so v primarnem razredu M. Preostale pripadajo razredoma C ali D in
so dokazljivo zunaj M#. To pomeni, da prvič nudimo dokaze o neskončnih razredih
vektorskih ukrivljenih funkcij, ki imajo tako posebno lastnost. V tem kontekstu je
problem določanja vektorskih funkcij, ki so strogo izven znanih primarnih razredov,
precej delikaten, kot tudi vprašanje, ali je te funkcije mogoče razširiti na največjo
izhodno ukrivljeno dimenzijo (ki ima vrednost n za vhodni prostor velikosti 2n). V
tej smeri nudimo način za konstruiranje vektorskih upognjenih funkcij, ki so močno
zunaj M#, za različne izhodne dimenzije.

V Poglavju 6 bomo tudi združili pojem šibko zunaj razreda M# in pojem vek-
torskih ukrivljenih-negaukrivljenih funkcij, predstavljenih v Poglavju 5. Da bi zago-
tovili več družin vektorskih ukrivljenih-negaukrivljenih funkcij, ki imajo kompo-
nente zunaj M, uporabimo vektorske prostore popolnih preslikav oblike F (x) =
xd + b1a1x + · · · + b1atx, kjer je F permutacija nad F2n za množico linearno neod-
visnih elementov a1, . . . , at ∈ Fn

2 in za poljubno izbiro binarnih koeficientov bi ∈ F2.
Upoštevajmo, da, ko je 1 ∈ ⟨a1, . . . , at⟩, je F tudi standardna popolna preslikava, saj
sta tako F (x) kot F (x)+x permutaciji nad F2n . Kljub temu ni nujno, da je funkcija
F permutacija in ta primer je obravnavan ločeno. Namreč, z uporabo primerne
dekompozicije vektorskega prostora (in alternativne identificiranje ustreznih pod-
polj) nudimo splošno metodo določanja vektorskih prostorov popolnih preslikav,
ki se nato učinkovito uporabijo za določanje vektorskih ukrivljenih negaukrivljenih
funkcij (katerih dimenzija ni maksimalna), kjer približno polovica komponentnih
funkcij leži zunaj popolnega razreda M.

V Poglavju 7 bomo raziskali še eno kriptografsko pomembno lastnost Boolovih
funkcij, imenovano korelacijsko imunost. Boolova funkcija na n-spremenljivkah f se
imenuje korelacijsko imuna reda d (na kratko, d-CI), če se izhodna porazdelitev
funkcije f ne spremeni, ko fiksiramo največ d vhodnih spremenljivk. Za krip-
tografske aplikacije je pojem korelacijske imunosti običajno povezan s tako imen-
ovanim modelom nelinearnega združevalnika (linear combiner) kot predstavnikom
določene družine pretočnih šifer [46]. Ta lastnost je ključnega pomena, da lahko
model prenese korelacijske napade [30,31,45,68]. Najpogosteje se kot kriptografsko
merilo uporablja tesno povezan pojem odpornosti (resiliency), ki poleg določenega
vrstnega reda CI kombinirane Boolove funkcije zahteva tudi njeno uravnoteženost.
Poleg tega je podrazred funkcij CI z minimalno težo je v zadnjem času prejel ve-
liko pozornosti tudi zaradi njihove uporabe kot maskirnih primitivov za namen
zaščite strojne opreme nekaterih šifrirnih družin [4], glej tudi [16]. Poleg tega so
funkcije CI tesno povezane s shemami delitve skrivnosti in kodami za odpravljanje
napak [6, 23,26].

Prvo karakterizacijo funkcij CI v smislu njihove še možne algebraične stopnje je
podal T. Siegenthaler [67]. Pokazali bomo, da je z uporabo določenih rezultatov,
vezanih na deljivosti uteži, povezanih z omejitvami funkcij CI (prevzetih iz [73]),

Povzetek v slovenskem jeziku 117

mogoče izpeljati kompakten dokaz Siegenthalerjeve meje algebraične stopnje. Poleg
tega natančno določimo težo CI funkcij d-tega reda, kjer so (vsi) členi stopnje n− d
v svoji algebraični normalni obliki. Z uporabo istih rezultatov deljivosti bomo tudi
natančno določili Walsheve spektralne vrednosti vektorjev teže d+ 1 za CI Boolove
funkcije d-tega reda.

Predstavljeni bosta dve učinkoviti konstrukciji funkcij CI, ki sta primerni za
načrtovanje podrazreda z minimalno težo. Takšne funkcije imajo takoǰsnjo uporabo
kot maskirne sheme za zaščito šifer pred kriptanalizo stranskih kanalov [16]. Kot
je navedeno v [15], morajo za učinkovito strojno implementacijo CI funkcije imeti
čim manǰso težo in večina poznanih konstrukcij (primarne konstrukcije, kot je kon-
strukcija Maiorana-McFarland, in sekundarne konstrukcije, kot je posredna vsota
itd., glejte na primer [12], [24]) ne dovoljujejo gradnje funkcij s tako lastnostjo. To
je sprožilo precej obsežne raziskave v tej smeri. Natančneje, za razmeroma nizko
velikost vhodnega prostora (za n ≤ 13) je bila določena minimalna teža CI funkcij
in z nekaj pomanjkljivostmi podrobno opisana, glej [16] in nadaljnje delo Q. Wang
in Y. Li [78]. Po notaciji, ki sta ga uvedla C. Carlet in X. Chen, označujemo naj-
manǰso težo katere koli funkcije CI d-tega reda z ωn,d. Vrednosti ω12,4, ω13,4 in ω13,5

so bila določene v [78]. Za poseben primer funkcij 3-CI sta C. Carlet in X. Chen
domnevala, da je wn,3 = 8⌈n4 ⌉ za katero koli celo število n ≥ 3. S konstrukcijo
je bilo pokazano, da domneva velja za n = 2k. Kasneje se je pokazalo [76], da
je ta domneva enakovredna Hadamardovi domnevi, ki trdi, da obstaja Hadamar-
dova matrika reda 4k za vsako pozitivno celo število k. Upoštevajmo, da primer,
ko je n = 2k, potem ustreza Silvester-Hadamardovim matrikam, ki uporabljajo to
enakovrednost. Predložimo dodatne dokaze, da je domneva C. Carleta in X. Chena
resnična s posplošeno metodo načrtovanja CI-funkcij. Natančneje, skozi obstoj 3-
CI funkcij minimalne teže se bo pokazalo, da domneva velja za kateri koli n oblike
n = 2k − i ali n = 3 · 2k − i, za i = 0, 1, 2, 3 in k ≥ 3.

R. O’Donnell je v zbirki odprtih problemov na področju analize Boolovih funkcij
[52] navedel domnevo o rasti vsote linearnih Fourierovih koeficientov, ki jo motivirajo
nekateri problemi pri družbeni izbiri. V delu [52] so bile raziskane funkcije f :
{−1, 1}n → {−1, 1}, zato je v [52] domneva navedena kot domneva o funkcijah
f : {−1, 1}n → {−1, 1}. V [77] je Q. Wang prevedel O’Donnellovo domnevo v
enakovredno domnevo o razredu odpornih Boolovih funkcij f : {0, 1}n → {0, 1} in
tako podal alternativni vidik O’Donnellove domneve. V tej obliki domneva navaja,
da, če je g : {0, 1}n → {0, 1} (n− d− 1)-odporna Boolova funkcija, potem∑

v∈{0,1}n
wt(v)=n−1

Wg(v) ≤ d

(
d− 1

⌊d−1
2 ⌋

)
2n+1−d,

kjer je Wg(v) Walshev koeficient g v točki v ∈ Fn
2 , ki je podan kot

Wg(v) =
∑
x∈Fn

2

(−1)g(x)+v·x.

To alternativno formulacijo je uporabil Q. Wang [77], v dokazu, da je domneva
resnična, ko je d = 1 in d = n− 1.

118

V Poglavju 8 bomo uporabili Wangov pristop z uporabo standardnega Boolovega
okolja. Najprej bomo pokazali zanimivo kombinatorično lastnost, povezano z dom-
nevo, ki pomeni, da je (za fiksen d) zgornja meja odvisna le od končno mnogo celih
števil n. Natančneje, pokažemo, da, če je domneva pravilna za vse n ≤ 22d−2, potem
velja za vse n ∈ N. Nato bomo dokazali, ponovno za fiksen d, da, če domneva ne
velja za nekatere n0, potem je napačna za vsak n > n0. Ta dva rezultata pomenita,
da za fiksen d, če je domneva resnična za n = 22d−2, potem je pravilna za vsak
n ∈ N. Zato je takoǰsnja posledica, da domneva velja za d = 2, saj jo je mogoče
enostavno izčrpno preveriti za n = 4. Kljub temu bo neposreden dokaz tega dejstva
zagotovljen z uporabo karakterizacije (n− 3)-odpornih funkcij, podanih v [8]. Nato
bomo za d = 3 združili rezultate o karakterizacijah (n−4)-odpornih funkcij, podanih
v [13] in [7], in pokazali, da je dovolj, da preverimo domnevo za n = 6 in v nekaterih
posebnih primerih za n = 7. Da bi dokazali, da je domneva resnična za d = 3, bomo
pri obravnavanju omenjenih primerov uporabili celoštevilsko programiranje.

Ko pa je d = 4, bomo identificirali 2-odporno Boolovo funkcijo na 7 spre-
menljivkah, ki krši domnevo. To pomeni, da domneva v splošnem ne drži. Natančneje,
domneva ni resnična, ko je n ≥ 7, kar pomeni, da (n− 5)-odporne Boolove funkcije
ne izpolnjujejo nujno omejitve v domnevi.

Na koncu bomo diplomsko nalogo zaključili s povzetkom najpomembneǰsih rezul-
tatov, predstavljenih v diplomski nalogi, ter nakazali nekaj možnih problemov in
usmeritev za prihodnje raziskave.

Rezultati doktorske disertacije so objavljeni v sledečih člankih:

• S. Kudin, E. Pasalic. A complete characterization of D0 ∩M# and a general
framework for specifying bent functions in C outside M#. Designs, Codes and
Cryptography, vol. 90(8), pp. 1783–1796, (2022).

• S. Kudin, E. Pasalic, N. Cepak, F. Zhang. Permutations without linear
structures inducing bent functions outside the completed Maiorana-McFarland
class. Cryptography and Communications, vol. 14(1), pp. 101–116, (2022).

• E. Pasalic, S. Kudin, A. Polujan, A. Pott. Vectorial bent-negabent functions
– their constructions and bounds. IEEE Transactions on Information Theory,
doi: 10.1109/TIT.2022.3226571, (2022).

• E. Pasalic, F. Zhang, S. Kudin, Y. Wei. Vectorial bent functions weakly/strongly
outside the completed Maiorana–McFarland class. Discrete Applied Mathe-
matics, vol. 294, pp. 138–151, (2021).

• S. Kudin, E. Pasalic. Efficient design methods of low-weight correlation-
immune functions and revisiting their basic characterization. Discrete Applied
Mathematics, vol. 284, pp. 150–157, (2020).

• S. Kudin, E. Pasalic. Proving the conjecture of O’Donnell in certain cases and
disproving its general validity. Discrete Applied Mathematics, vol. 289, pp.
345–353, (2021).

Declaration

I declare that this thesis does not contain any materials previously published or
written by another person except where due reference is made in the text.

Sadmir Kudin

	List of Tables
	Introduction
	Definitions, notation, and preliminary results
	Bent Functions
	Classes of Bent functions
	Negabent functions
	Correlation immune and Resilient functions

	Characterization of the intersection of the class D0 and the completed Maiorana-McFarland class
	Permutations with the algebraic degree greater than two
	Permutations with the algebraic degree equal to two

	Bent functions in C outside M#
	Some known relations between C and M#
	A new class of C bent functions outside M#
	Ranks of bent functions in the C class
	Coset-based permutations and permutations without linear structures
	Permutations via non-trivial decompositions of F2n
	A trade-off between the (C) property and linear structures

	Vectorial bent-negabent functions – their constructions and bounds
	Vectorial bent-negabent functions
	Vectorial bent-negabent functions of maximal output dimension
	Complete mappings from linear translators
	Maximum number of bent-negabent components

	Vectorial bent functions weakly/strongly outside M#
	Vectorial bent functions derived from the class D
	Vectorial bent functions of maximal dimension from D0
	Vectorial bent functions from the D class different from D0
	Some explicit classes of vectorial bent functions from D

	Vectorial bent functions from D weakly outside M#
	Vectorial bent functions from complete mappings
	Vectorial bent functions from subfield permutations

	Vectorial bent-negabent functions weakly outside the M# class
	Vectorial bent-negabent functions from the D0 class
	Vectorial bent-negabent functions from the C class

	Vectorial bent functions from the C class strongly outside M#

	Correlation immune functions with low Hamming weight
	On the algebraic degree of correlation immune functions
	Construction methods for low–weight correlation immune functions
	A nonlinearity analysis

	Resilient functions and sums of their Walsh coefficients
	Maximizers of the sum of linear Fourier coefficients
	General results related to O'Donnell's conjecture
	Proving O'Donnell's conjecture for d{2,3}
	Proving the conjecture for d=3

	O'Donnell's conjecture is not true when d=4

	Conclusions
	Bibliography
	Index
	Povzetek v slovenskem jeziku

