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Abstract

On certain problems related with Terwilliger algebras and
distance-blanced graphs
There has been a sizeable amount of research investigating (distance-regular) graphs that
have a Terwilliger algebra T with, up to isomorphism, just a few irreducible T -modules
of a certain endpoint, all of which are (non-)thin (with respect to a certain base vertex).
These studies generally try to show that such algebraic conditions hold if and only if
certain combinatorial conditions are satisfied. A natural follow-up to these results involving
Terwilliger algebras of graphs which are not necessarily distance-regular is presented in
the first part of this Ph.D. thesis.

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and let
T = T (x) denote the Terwilliger algebra of Γ with respect to x. Firstly, we study the
unique irreducible T -module with endpoint 0. We assume that this T -module is thin.
We give a purely combinatorial characterization of this property. This characterization
involves the number of walks of a certain shape between vertex x and vertices at some fixed
distance from x. Secondly, we assume that x is not a leaf and that the unique irreducible
T -module with endpoint 0 is thin. We find a combinatorial characterization of graphs,
which also have, up to isomorphism, a unique irreducible T -module with endpoint 1, and
this T -module is thin. The characterization of such graphs involves the number of some
walks of a particular shape. Moreover, we give precise examples to construct many graphs
which possess these properties from our general solution.

Throughout the second part of this Ph.D. thesis, we study certain problems related to
the so-called distance-balanced graphs. A connected graph Γ is said to be distance-balanced
if for any edge uv of Γ, the number of vertices closer to u than to v is equal to the number
of vertices closer to v than to u. The family of distance-balanced graphs is very rich and its
study is not only interesting from various purely graph-theoretic aspects, but also because
the balancedness property of these graphs makes them very appealing in many research
areas.

The notions of nicely distance-balanced graphs and strongly distance-balanced graphs
appears quite naturally in the context of distance-balanced graphs as well. A connected
graph Γ is called nicely distance–balanced, whenever there exists a positive integer γ = γ(Γ),
such that for any two adjacent vertices u,v of Γ there are exactly γ vertices of Γ which
are closer to u than to v, and exactly γ vertices of Γ which are closer to v than to u. A
graph Γ is said to be strongly distance-balanced if for any edge uv of Γ and any integer k,
the number of vertices at distance k from u and at distance k+ 1 from v is equal to the
number of vertices at distance k+ 1 from u and at distance k from v.
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It is known that nicely distance-balanced graphs with diameter d and γ = d are precisely
complete graphs, complete multipartite graphs with parts of cardinality 2, and cycles of
length 2d or 2d+ 1. In this thesis, we classify regular nicely distance-balanced graphs
with diameter d and γ = d+ 1. Moreover, we solve an open problem posed by Kutnar
and Miklavič [57] by constructing several infinite families of nonbipartite nicely distance-
balanced graphs which are not strongly distance-balanced. We disprove a conjecture
regarding the characterization of strongly distance-balanced graphs posed by Balakrishnan
et al. [3] by providing infinitely many counterexamples, and answer a question posed by
Kutnar et al. in [55] regarding the existence of semisymmetric distance-balanced graphs
which are not strongly distance-balanced by providing an infinite family of such examples.
We also show that for a graph Γ with n vertices and m edges it can be checked in O(mn)
time if Γ is strongly distance-balanced and if Γ is nicely distance-balanced.

Mathematics Subject Classification: 05C12; 05C25; 05C75.
Keywords: distance-regularized vertex; pseudo-distance-regularized vertex; Terwilliger
algebra; irreducible module; distance-balanced graph; nicely distance-balanced graph; strongly
distance-balanced graph.
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Izvleček

O nekaterih problemih, ki so povezani s Terwilligerjevimi algebra
in razdaljno-uravnoteženimi grafi
Mnogo raziskav Terwilligerjevih algeber je bilo do sedaj namenjeno raziskovanju (razdaljno-
regularnih) grafov, katerih Terwilligerjeva algebra (glede na neko njihovo vozlišče) ima
relativno malo nerazcepnih modulov z danim krajiščem, ter so vsi ti moduli (ne)tanki. V
teh raziskavah raziskovalci ponavadi želijo pokazati, da je ta algebraičen pogoj izpolnjen
če in samo če graf premore določene kombinatorične lastnosti. Naravno nadaljevanje teh
raziskav so raziskave Terwilligerjevih algeber grafov, ki niso nujno razdaljno-regularni. Te
raziskave so predstavljene v prvem delu te doktorske disertacije.

Naj bo Γ končen, enostaven in povezan graf. Izberimo si vozlišče x grafa Γ in naj bo T =
T (x) pripadajoča Terwilligerjeva algebra grafa Γ. Najprej bomo študirali enolično določen
nerazcepen T -modul s krajiščem 0. Podali bomo povsem kombinatorično karakterizacijo
lastnosti, da je ta T -modul tanek. V tej karakterizaciji nastopa število sprehodov (ki
imajo določeno v naprej predpisano obliko) v grafu Γ med vozliščem x ter vozlišči na
določeni fiksni razdalji od vozlišča x. V nadaljevanju bomo potem privzeli, da vozlišče x ni
list grafa Γ, ter da je natančno določen nerazcepen T -modul s krajiščem 0 tanek. Podali
bomo kombinatorično karakterizacijo lastnosti, da ima graf Γ do izomorfizma natančno
en sam nerazcepen T -modul s krajiščem 1, ter je ta modul tanek. Tudi v tem primeru v
karakterizaciji nastopa število sprehodov grafa Γ, ki so določene oblike. Podali bomo tudi
konstrukcijo neskončne družine grafov, ki imajo opisano lastnost.

V drugem delu te doktorske disertacije bomo študirali nekatere probleme, ki so povezani
s tako-imenovanimi razdaljno-uravnoteženimi grafi. Za povezan graf Γ rečemo, da je
razdaljno-uravnotežen, če za vsako njegovo povezavo uv velja, da je število vozlišč grafa Γ,
ki so bližja vozlišču u kot vozlišču v, enako številu vozlišč grafa Γ, ki so bližja vozlišču v
kot vozlišču u. Družina razdaljno-uravnoteženih grafov je zelo bogata. Študij razdaljno-
uravnoteženih grafov ni zanimiv samo iz čisto teoretičnega vidika, ampak tudi zato, ker
so zaradi razdaljne-uravnoteženost ti grafi privlačni tudi na mnogih drugih raziskovalnih
področjih.

Definiciji lepo razdaljno-uravnoteženih grafov in krepko razdaljno-uravnoteženih grafov
se v kontekstu razdaljno-uravnoteženih grafov pojavita zelo naravno. Povezan graf Γ je
lepo razdaljno-uravnotežen, če obstaja tako naravno število γ = γ(Γ), da za vsako povezavo
uv grafa Γ obstaja natanko γ vozlišč grafa Γ, ki so bližja vozlišču u kot vozlišču v, ter
natanko γ vozlišč grafa Γ, ki so bližja vozlišču v kot vozlišču u. Graf Γ je krepko razdaljno-
uravnotežen, če za vsako vozlišče uv grafa Γ in za vsako celo število k velja, da je število
vozlišč grafa Γ, ki so na razdalji k od vozlišča u in na razdalji k+ 1 od vozlišča v, enako
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številu vozlišč grafa Γ, ki so na razdalji k od vozlišča v in na razdalji k+ 1 od vozlišča u.
Znano je, da za lepo razdaljno-uravnotežen graf Γ s premerom d velja d≤ γ := γ(Γ),

ter da so lepo razdaljno-uravnoteženi grafi z d = γ natanko polni grafi, polni večdelni
grafi Kt×2 (t≥ 2), in pa cikli dolžine 2d oziroma 2d+ 1. V tej doktorski disertaciji bomo
klasificirali regularne lepo razdaljno-uravnotežene grafe, za katere velja γ = d+ 1. S
konstrukcijo neskončnih družin nedvodelnih lepo razdaljno-uravnoteženih grafov, ki niso
krepko razdaljno-uravnoteženi, bomo razrešili problem, ki sta ga v [57] postavila Kutnar
in Miklavič. Ovrgli bomo domnevo o karakterizaciji krepko razdaljno-uravnoteženih
grafov, ki so jo postavili Balakrishnan in ostali v [3]. Domnevo bomo ovrgli s konstrukcijo
neskončno mnogo protiprimerov. Odgovorili bomo tudi na vprašanje Kutnar in ostalih v
[55] glede obstoja semi-simetričnih razdaljno-uravnoteženih grafov, ki niso krepko razdaljno-
uravnoteženi. Predstavili bomo namreč neskončno družino takih grafov. Pokazali bomo
tudi, da če je Γ povezan graf z n vozlišči in m povezavami, potem lahko v času O(mn)
preverimo, ali je Γ krepko razdaljno-uravnotežen oziroma lepo razdaljno-uravnotežen.

Mathematics Subject Classification: 05C12; 05C25; 05C75.
Ključne besede: razdaljno-regularizirano vozlišče; pseudo-razdaljno-regularizirano vo-
zlišče; Terwilligerjeva algebra; nerazcepen modul; razdaljno-uravnotežen graf; lepo razdaljno-
uravnotežen graf; krepko razdaljno-uravnotežen graf.
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Chapter 1

Introduction

Our research deals with certain combinatorial objects known as graphs. A graph
Γ = (X,R) is a mathematical structure consisting of a vertex set X and a set of

edges R (or nonordered pairs of vertices). Normally, each vertex x ∈X is represented by
a point and each edge e = {x,y} ∈ R by a line joining vertices x and y. Graph theory
belongs to combinatorics, which is the part of mathematics that studies the structure
and enumeration of discrete objects, in contrast to the continuous objects studied in
mathematical analysis. In particular, graph theory is useful for studying any system with a
certain relationship between pairs of elements, which give a binary relation. It is therefore
not surprising that many problems and results can be formulated using these notions.

Throughout this Ph.D. dissertation, the interaction of these combinatorial objects together
with certain algebraic methods is particularly strong and significant. Moreover, the main
subject will have a special focus on the study of Terwilliger algebras of graphs which
are not necessarily distance-regular as well as on some problems related to the so-called
distance-balanced graphs.

The structure and content of this Ph.D. thesis is roughly divided into four parts: the
introduction, parts A and B (where we show the description of the scientific background
and the academic contributions), and the conclusion. The introduction consists of Chapter
1; where the basic concepts of the theory of Terwilliger algebras and distance-balanced
graphs are discussed, and the goals and results of this thesis are explained. Part A,
which includes Chapters 2-7, is called “On the Terwilliger algebra of a graph”. Here, we
present results echoing the surrounding literature on T -algebras of a distance-regular graph.
Indeed, we compare these results and state our contributions in a more general setting.
Throughout Chapters 2-7, our research is concentrated around irreducible T -modules with
endpoint at most 1 of certain graphs, that are not necessarily distance-regular. The reader

1
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may bookmark Chapters 3 and 7 where we give our novel results on some combinatorial
characterizations involving the number of certain walks in a graph, which are of a particular
shape. Part B, which includes Chapters 8-10, is called “On distance-balanced graphs” and is
devoted to the classification and the constructions of certain families of distance-balanced
graphs which seem to be of interest from various purely graph-theoretic aspects. Finally, in
the conclusion, which consists of Chapters 11 and 12, we briefly discuss our contributions
to algebraic combinatorics and make some suggestions for further research.

During this Ph.D dissertation, we assume familiarity with the basic definitions coming
from graph theory and algebraic combinatorics. We refer the reader to [6, 39, 40, 96] for
additional background and notational conventions. We also point out several particular
textbooks and research articles in which the reader can get acquainted with other aspects
of the theory. Numbering of statements (notations, definitions, lemmas, propositions,
theorems) is done in the thesis by sections. For instance, Theorem 7.2.5 denotes the fifth
statement in Section 7.2 of Chapter 7. Moreover, all the original results are contained in
research papers which are/will be published in specialized SCI journals; see [23, 24, 25, 26,
27, 28, 29] for more details.

Additionally, we point out that each chapter introduces the corresponding basic knowledge
which is fundamental to understand the methods and results that are presented in this
Ph.D. thesis. Although reading each chapter requires, of course, familiarity with basic
concepts of abstract and linear algebra, and graph theory, we do not assume knowledge
of any specific preliminary information, meaning that any experienced reader may read
a chapter independently of the contents shown in the other ones. This method, in my
opinion, allows a simple and clear approach to understand both classical and new results.
Undoubtedly, specialists will notice the multiple presence of some definitions and results.
Nevertheless, we hope that the style of presenting information will enable the reader to
learn and understand our contributions and to acquire sufficient background to follow and
be able to get familiar with contemporary investigations on algebraic combinatorics.

1.1 On the Terwilliger algebra of a graph

Let Γ be a graph and let G be a certain algebraic object, associated with Γ. In this case,
one of the main motivations in our research is the following question: What could we say
about the combinatorial properties of Γ, if we know that G has certain algebraic properties?
And vice-versa: What could we say about the algebraic properties of G, if we know that
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Γ has certain combinatorial properties? Perhaps the most well-known example of this
interplay between combinatorics and algebra is obtained if G is the automorphism group
of Γ. In this case there are many relations between combinatorial properties in Γ and
algebraic properties of G. For example, if G acts transitively on the set of vertices of Γ,
then Γ is regular, in the sense that every vertex of Γ has the same number of neighbours.
Notice there are many more examples of this interplay available in the literature.

In this Ph.D. dissertation the algebraic object, associated with Γ, will not be its
automorphism group, but rather a certain matrix algebra, called a Terwilliger algebra
of graph Γ. The main motivation, however, remains the same: What could we say about
the combinatorial properties of Γ, if we know that the corresponding Terwilliger algebra
has certain algebraic properties? And vice-versa: What could we say about the algebraic
properties of the corresponding Terwilliger algebra of Γ, if we know that Γ has certain
combinatorial properties?

Terwilliger algebras of association schemes were defined by Terwilliger in [89, Definition
3.3], where they were called subconstituent algebras. These noncommutative algebras are
generated by the Bose-Mesner algebra of the scheme, together with matrices containing
local information about the structure with respect to a fixed vertex. Since then, numerous
papers have appeared in which the Terwilliger algebra was successfully used for studying
commutative association schemes and distance-regular graphs; see [43, 44, 60, 65, 68, 78,
79, 81, 84, 86] for the most recent research on the subject.

The algebra T was mainly used to study distance-regular graphs (see, for example, [6]
for the definition of distance-regular graphs). This algebra has also been used to study
the Q-polynomial distance-regular graphs [9, 11, 38, 47, 58, 72, 71] (see [6, page 135]
for the definition of Q-polynomial distance-regular graphs), bipartite distance-regular
graphs, almost-bipartite distance-regular graphs [13], group association schemes [4, 5],
strongly regular graphs [95], Doob schemes [85] (see [6, page 27] for the definition of a
Doob scheme), association schemes over the Galois rings of characteristic four [51], and
has been even used in coding theory [37, 83].

Although the notion of a Terwilliger algebra could be easily generalized to an arbitrary
finite, simple and connected graph, the state of the art regarding Terwilliger algebras of
graphs, which are not distance-regular, is not so intensive. In [54, 61], the Terwilliger
algebra of the incident graph of the so-called Johnson geometry was studied. In [94]
the author studied the Terwilliger algebra of the incident graph of the Hamming graph.
In [93] the relation between the Terwilliger algebra of a graph Γ and another matrix
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algebra associated with Γ, the so-called quantum adjacency algebra of Γ, was investigated.
Moreover, in [59, 97] the authors studied the structure of certain T -algebras of finite trees.
These results are the most recent research on the subject in this direction.

Throughout this section, let Γ denote a finite, simple and connected graph. Fix a vertex x
of Γ which is not a leaf and let T = T (x) denote the Terwilliger algebra of Γ with respect to
x. The algebra T is non-commutative and since it is closed under the conjugate-transpose
map, any T -module is an orthogonal direct sum of irreducible T -modules. Therefore, in
many instances this algebra can best be studied via its irreducible modules.

Assume now for a moment that Γ is distance-regular. It turns out that in this case the
unique irreducible T -module with endpoint 0 is thin. Assume also that Γ is bipartite. It
turns out that T has, up to isomorphism, a unique irreducible T -module with endpoint 1,
and that this module is thin. It is for this reason that in this case irreducible T -modules
with endpoint 2 were intensively studied; see for example [9, 11, 15, 16, 17, 18, 19, 20, 38,
62, 63, 66, 67, 69, 70, 81]. On the other hand, if Γ is nonbipartite, then the structure of
irreducible T -modules of endpoint 1 is far more complicated than that of the bipartite
case. For the relevant literature on this subject see, for example, [21, 47, 71, 72, 92].

Our research will be concentrated around irreducible T -modules with endpoint at most 1
of certain graphs, that are not necessarily distance-regular.

As already mentioned, there has been a sizeable amount of research investigating distance-
regular graphs that have a Terwilliger algebra T with, up to isomorphism, just a few
irreducible T -modules of a certain endpoint, all of which are (non-)thin (with respect to
a certain base vertex); see, for example, [63, 64, 65, 66, 67, 68, 74, 81]. These studies
generally try to show that such algebraic conditions hold if and only if certain combinatorial
conditions are satisfied. A natural follow-up to these results involving Terwilliger algebras
of non-distance-regular graphs is presented here.

It turns out that there exists a unique irreducible T -module with endpoint 0. It was
already proved in [88] that this irreducible T -module is thin if Γ is distance-regular around
x. The converse, however, is not true. Fiol and Garriga [33] later introduced the concept
of pseudo-distance-regularity around vertex x, which is based on assigning weights to the
vertices where the weights correspond to the entries of the (normalized) positive eigenvector.
They showed that the unique irreducible T -module with endpoint 0 is thin if and only if Γ is
pseudo-distance-regular around x (see also [30, Theorem 3.1]). To start our investigations,
in Chapter 3 we give a purely combinatorial characterization of the property, that the
unique irreducible T -module with endpoint 0 is thin. This characterization involves the
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number of walks of a certain shape between vertex x and vertices at some fixed distance
from x.

Assume now that the unique irreducible T -module with endpoint 0 is thin, or equivalently,
that x is pseudo-distance-regularized. The next goal is to find a combinatorial characteri-
zation of graphs, which also have a unique irreducible T -module with endpoint 1 (up to
isomorphism), and this module is thin. If Γ is distance-regular, then this situation occurs
if and only if Γ is bipartite or almost-bipartite [21, Theorem 1.3]. In Chapter 4 we show
that if Γ is distance-biregular, then again Γ has (up to isomorphism) a unique irreducible
T -module with endpoint 1, and this module is thin. The case when Γ is distance-regular
around x but not necessarily distance-regularized (distance-regular or distance-biregular)
is considered in Chapter 5 and in Chapter 6. Moreover, we generalize the above results
to the case when Γ is not necessarily distance-regular around x in Chapter 7. The main
result of this Ph.D. thesis is a combinatorial characterization of such graphs that involves
the number of some walks in Γ of a particular shape. We remark that this result is a
generalization of previous efforts in [13, 16, 21] to understand and classify graphs which are
pseudo-distance-regular around a fixed vertex and also have a unique irreducible T -module
(up to isomorphism) with endpoint 1, and this module is thin. Last but not least, we
give precise examples to construct many graphs which possess these properties from our
general solution.

1.2 On distance-balanced graphs

Let Γ = (X,R) be a finite, simple, undirected, connected graph and let X and R denote
the vertex set and the edge set of Γ, respectively. For u,v ∈X, let ∂(u,v) = ∂Γ(u,v) denote
the minimal path-length distance between u and v. For a pair of adjacent vertices u,v of
Γ we denote

Wu,v = {x ∈X | ∂(x,u)< ∂(x,v)}.

We say that Γ is distance–balanced (DB for short) whenever for an arbitrary pair of adjacent
vertices u and v of Γ we have that

|Wu,v|= |Wv,u|.

The investigation of distance-balanced graphs was initiated in 1999 by Handa [45], who
considered distance-balanced partial cubes. The term itself was introduced by Jerebic,
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Klavžar and Rall in [52], who gave some basic properties and characterized Cartesian
and lexicographic products of distance-balanced graphs. The family of distance-balanced
graphs is very rich and its study is interesting from various purely graph-theoretic aspects
where one focuses on particular properties of such graphs such as symmetry [55, 56, 98],
connectivity [45, 75], or complexity aspects of algorithms related to such graphs [8].
However, the balancedness property of these graphs also makes them very appealing
in areas such as mathematical chemistry and communication networks. For instance,
the investigation of such graphs is highly related to the well-studied Wiener index and
Szeged index (see [2, 52, 50, 87]) and they present very desirable models in various real-
life situations related to (communication) networks [2]. Recently, the relations between
distance-balanced graphs and the traveling salesman problem were studied in [12]. It turns
out that these graphs can be characterized by properties that at first glance do not seem
to have much in common with the original definition from [52]. For example, in [3] it
was shown that the distance-balanced graphs coincide with the self-median graphs, that
is, graphs for which the sum of the distances from a given vertex to all other vertices is
independent of the chosen vertex. Other such examples are equal opportunity graphs (see [2]
for the definition). In [2] it is shown that distance-balanced graphs of even order are also
equal to opportunity graphs. Finally, let us also mention that various generalizations of
the distance-balanced property were defined and studied in the literature; see, for example,
[1, 36, 49, 53, 76].

The notion of nicely distance-balanced graphs appears quite naturally in the context of
DB graphs. We say that Γ is nicely distance–balanced (NDB for short) whenever there
exists a positive integer γ = γ(Γ), such that for an arbitrary pair of adjacent vertices u
and v of Γ,

|Wu,v|= |Wv,u|= γ

holds. Clearly, every NDB graph is also DB, but the opposite is not necessarily true. For
example, if n≥ 3 is an odd positive integer, then the prism graph on 2n vertices is DB,
but not NDB.

Assume now that Γ is NDB. Let us denote the diameter of Γ by d (the diameter of a graph
is the maximum distance between two vertices). In [57], where these graphs were first
defined, it was proved that d≤ γ and NDB graphs with d= γ were classified. It turns out
that Γ is NDB with d = γ if and only if Γ is either isomorphic to a complete graph on
n ≥ 2 vertices, a complete multipartite graph with parts of cardinality 2, or to a cycle
on 2d or 2d+ 1 vertices. In this Ph.D. thesis we study NDB graphs with γ = d+ 1. The
situation in this case is much more complex than in the case γ = d. Therefore, we will
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concentrate our study on the class of regular NDB graphs with γ = d+ 1 in Chapter 9.
The main result is shown in Theorem 9.7.1 where the classification of such graphs is given.

Another concept closely related to the concept of distance-balanced graphs is the one of
strongly distance-balanced graphs. For an arbitrary pair of adjacent vertices u and v of a
given graph Γ, and any two non-negative integers i, j, we let

Di
j(u,v) = {x ∈X | ∂(u,x) = i and ∂(v,x) = j}.

A graph Γ is called strongly distance-balanced (SDB for short) if |Di
i−1(u,v)|= |Di−1

i (u,v)|
holds for every i ≥ 1 and every pair of adjacent vertices u and v of Γ. It is easy to see
that a strongly distance-balanced graph is also distance-balanced, but the converse is not
true in general (see [55]). For more results on this and related concepts see, for example,
[3, 8, 50, 57, 75].

Throughout Chapter 10 we focus our attention on some problems about distance-balanced
graphs, especially on the construction of certain families of DB graphs which seem to be
of interest in this area of research.

Our first construction is related to certain NDB graphs which are not SDB. Nicely distance-
balanced graphs were studied in [57], where it is proved that in the class of bipartite
graphs, the families of DB graphs and NDB graphs coincide, while there are examples of
bipartite NDB graphs that are not SDB given by Handa [45]. Moreover, in [57], examples
of nonbipartite SDB graphs that are not NDB were constructed. In Chapter 10 we solve
[57, Problem 3.3] posed by Kutnar and Miklavič regarding the existence of nonbipartite
NDB graphs which are not SDB by constructing several infinite families of such graphs.

Our second construction is related with a conjecture by Balakrishnan et al. about a
characterization of SDB graphs. Let Γ be a graph, and let S be a subset of its vertex set.
For a vertex v of Γ we define

∂(v,S) =
∑
x∈S

∂(v,x).

Balakrishnan et al. [3] proved that a connected graph Γ is distance-balanced if and only if
∂(v,X) = ∂(u,X) for all u,v ∈X. Moreover, they conjectured that a graph Γ is strongly
distance-balanced if and only if ∂(u,Wu,v) = ∂(v,Wv,u) holds for every pair of adjacent
vertices u,v of Γ. It is clear that strongly distance-balanced graphs satisfy the above
condition, but the question was if the converse also holds. In Chapter 10 we disprove [3,
Conjecture 3.2] by providing infinitely many counterexamples.
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Our third construction deals with the property of being (strongly) distance-balanced in the
context of graphs enjoying certain special symmetry conditions. Kutnar et al. showed that
vertex-transitive graphs are not only distance-balanced, they are also strongly distance-
balanced (see [55]). Furthermore, since being vertex-transitive is not a necessary condition
for a graph to be distance-balanced, it was therefore natural for the authors to explore the
property of being distance-balanced within the class of semisymmetric graphs: a class
of objects which are as close to vertex-transitive graphs as one can possibly get, that is,
regular edge-transitive graphs which are not vertex-transitive. The smallest semisymmetric
graph has 20 vertices and its discovery is due to Folkman [35], the initiator of this topic of
research. A semisymmetric graph is necessarily bipartite, with the two sets of bipartition
coinciding with the two orbits of the automorphism group. Consequently, semisymmetric
graphs have no automorphisms which switch adjacent vertices, and therefore, may arguably
be considered as good candidates for graphs which are not distance-balanced. Indeed,
Kutnar et al. proved there are infinitely many semisymmetric graphs which are not
distance-balanced, but there are also infinitely many semisymmetric graphs which are
distance-balanced. In Chapter 10 we also answer [55, Question 4.6] posed by Kutnar et
al. regarding the existence of semisymmetric DB graphs which are not SDB by providing
infinite families of such graphs.

We conclude Chapter 10 by showing that for a graph Γ with n vertices and m edges
it can be checked in O(mn) time if Γ is strongly distance-balanced and if Γ is nicely
distance-balanced.
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On the Terwilliger algebra of a graph
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Chapter 2

Overview

Terwilliger algebras of association schemes were defined by Terwilliger in [89], where they
were called subconstituent algebras. These noncommutative algebras are generated by

the Bose-Mesner algebra of the scheme, together with matrices containing local information
about the combinatorial structure with respect to a fixed vertex. Numerous papers have
appeared since then in which the Terwilliger algebra has been successfully used to study
commutative association schemes and distance-regular graphs; see [10, 43, 44, 60, 63, 64,
65, 66, 67, 68, 73, 78, 79, 81, 84, 86] for the most recent research on the subject. However,
the notion of a Terwilliger algebra can be easily generalized to an arbitrary finite, simple,
and connected graph; see, for example, [26, 27, 30, 33, 59, 93, 94, 97], where Terwilliger
algebras of non-distance-regular graphs were studied.

Let us first recall the definition of a Terwilliger algebra (see Section 3.1 for further details
and formal definitions). Let Γ denote a finite, simple, connected graph with vertex set
X. Let MatX(C) denote the C-algebra consisting of all matrices whose rows and columns
are indexed by X and whose entries are in C. Pick a vertex x of Γ and let ε(x) denote its
eccentricity. Let A ∈MatX(C) denote the adjacency matrix of Γ and let E∗i (0≤ i≤ ε(x))
denote the diagonal matrix in MatX(C) whose (y,y)-entry is equal to 1 if the distance
between x and y is i, and 0 otherwise (y ∈X). We refer to matrices E∗i (0≤ i≤ ε(x)) as
dual idempotents of Γ with respect to x. The Terwilliger algebra T = T (x) is a matrix
subalgebra of MatX(C) generated by the adjacency matrix of Γ and the dual idempotents
of Γ with respect to x. Algebra T acts on the space of all column vectors with coordinates
indexed by X. Observe that T is closed under the conjugate-transpose map. Moreover, it
follows that each T -module is a direct sum of irreducible T -modules. Therefore, in many
instances the algebra T can best be studied via its irreducible modules. We now recall
an important parameter which is assigned to every irreducible T -module. Let W denote

11
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an irreducible T -module. By the endpoint of W we mean min{i | 0≤ i≤ ε(x), E∗iW 6= 0}.
We say that W is thin if dimE∗iW ≤ 1 for every 0≤ i≤ ε(x).

As previously stated, a substantial amount of research has been conducted on distance-
regular graphs that have a Terwilliger algebra T with, up to isomorphism, just a few
irreducible T -modules of a certain endpoint, all of which are (non)thin (with respect
to a certain base vertex); see for example [63, 64, 65, 66, 67, 68, 74, 81]. These studies
generally try to show that such algebraic conditions hold if and only if certain combinatorial
conditions are satisfied. A natural follow-up to these results is presented here. Our research
will be concentrated around irreducible T -modules with endpoint at most 1 of certain
graphs, that are not necessarily distance-regular.

It turns out that there exists a unique irreducible T -module with endpoint 0. It was
already proved in [88] that this irreducible T -module is thin if Γ is distance-regular around
x. The converse, however, is not true. Fiol and Garriga [33] later introduced the concept
of pseudo-distance-regularity around vertex x, which is based on assigning weights to the
vertices where the weights correspond to the entries of the (normalized) positive eigenvector.
They showed that the unique irreducible T -module with endpoint 0 is thin if and only if Γ is
pseudo-distance-regular around x (see also [30, Theorem 3.1]). To start our investigations,
in Chapter 3 we give a purely combinatorial characterization of the property, that the
unique irreducible T -module with endpoint 0 is thin. This characterization involves the
number of walks of a certain shape between vertex x and vertices at some fixed distance
from x.

Assume now that the unique irreducible T -module with endpoint 0 is thin, or equivalently
that x is pseudo-distance-regularized. The next goal is to find a combinatorial characteri-
zation of graphs, which also have a unique irreducible T -module with endpoint 1 (up to
isomorphism), and this module is thin. If Γ is distance-regular, then this situation occurs
if and only if Γ is bipartite or almost-bipartite [21, Theorem 1.3]. In Chapter 4 we show
that if Γ is distance-biregular, then, again, Γ has (up to isomorphism) a unique irreducible
T -module with endpoint 1, and this module is thin. The case when Γ is distance-regular
around x but not necessarily distance-regularized (distance-regular or distance-biregular)
will be considered in Chapter 5 and in Chapter 6. Moreover, we generalize the above
results to the case when Γ is not necessarily distance-regular around x in Chapter 7. The
main result of this Ph.D. thesis is a combinatorial characterization of such graphs that
involves the number of some walks in Γ of a particular shape. Moreover, we give examples
of graphs that possess the above-mentioned combinatorial properties. We remark that
the main result of this Ph.D. thesis is a generalization of previous efforts in [13, 16, 21] to
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understand and classify graphs which are pseudo-distance-regular around a fixed vertex
and also have a unique irreducible T -module (up to isomorphism) with endpoint 1, and
this module is thin.





Chapter 3

On the trivial T -module of a graph

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. In this chapter we study the

unique irreducible T -module with endpoint 0. We assume that this T -module is thin.
The main result of the chapter is a combinatorial characterization of this property. This
characterization involves the number of walks between vertex x and vertices at some fixed
distance from x, which are of a certain shape.

The chapter is organized as follows. In Sections 3.1, 3.2 and 3.3 we recall basic definitions
and results about Terwilliger algebras, non-negative irreducible matrices, and local (pseudo)-
distance-regularity, respectively. In Section 3.4 we prove that the unique irreducible
T -module with endpoint 0 is thin if and only if Γ is pseudo-distance-regular around the
base vertex x. In Section 3.5 we present our main result, and we prove it in Section 3.6.
We conclude the chapter with a couple of examples in Section 3.7.

The chapter is based on joint work with Štefko Miklavič. Our main results are currently
published in The Electronic Journal of Combinatorics (2022); see [28] for more details.

3.1 Preliminaries

In this section we review some definitions and basic concepts. Here, we also provide proofs
to some well-known results in the literature which will be frequently used throughout this
Ph.D. dissertation. These proofs may serve as examples of ways to use the tools provided
by Terwilliger in [88, 89]. We remark that there may exist more efficient ways to prove
these results under certain particular assumptions such as considering association schemes
or distance-regular graphs.

15
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Throughout this chapter, Γ = (X,R) will denote a finite, undirected, connected graph,
without loops and multiple edges, with vertex set X and edge set R.

Let x,y ∈X. The distance between x and y, denoted by ∂(x,y), is the length of a shortest
xy-path. The eccentricity of x, denoted by ε(x), is the maximum distance between
x and any other vertex of Γ: ε(x) = max{∂(x,z) | z ∈X}. Let D denote the maximum
eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i we define
Γi(x) by

Γi(x) = {y ∈X | ∂(x,y) = i} .

We will abbreviate Γ(x) = Γ1(x). Note that Γ(x) is the set of neighbours of x. Observe
that Γi(x) is empty if and only if i < 0 or i > ε(x).

Let C denote the complex number field. A vector space (V,+, ·) over C with a multiplication
? : V ×V → V is called a C-algebra in case that (V,+,?) is a ring with identity where for
every α ∈ C and for all u,v ∈ V , the following hold:

(α ·u)?v = u? (α ·v) = α · (u?v).

We now recall some definitions and basic results concerning a Terwilliger algebra of Γ.
Let MatX(C) denote the C-algebra consisting of all matrices whose rows and columns
are indexed by X and whose entries are in C. Let V denote the vector space over C
consisting of column vectors whose coordinates are indexed by X and whose entries are
in C. We observe that MatX(C) acts on V by left multiplication: if B ∈MatX(C) and
v ∈ V then Bv ∈ V . We call V the standard module. We endow V with the Hermitian
inner product 〈· , · 〉 that satisfies 〈u,v〉= u>v for u,v ∈ V , where > denotes transpose and
denotes complex conjugation. For y ∈X, let ŷ denote the element of V with a 1 in the

y-coordinate and 0 in all other coordinates. We observe that {ŷ | y ∈X} is an orthonormal
basis for V .

Let A ∈MatX(C) denote the adjacency matrix of Γ. That is, the matrix in MatX(C) with
entries given as follows:

(A)xy =

 1 if ∂(x,y) = 1,

0 if ∂(x,y) 6= 1,
(x,y ∈X).

The adjacency algebra of Γ, also called the Bose-Mesner algebra of Γ, is the
commutative subalgebra M of MatX(C) generated by the adjacency matrix A of Γ.
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We now recall the dual idempotents of Γ. To do this, fix a vertex x ∈X and let d= ε(x).
We view x as a base vertex. For 0≤ i≤ d, let E∗i = E∗i (x) denote the diagonal matrix in
MatX(C) with (y,y)-entry as follows:

(E∗i )yy =

 1 if ∂(x,y) = i,

0 if ∂(x,y) 6= i
(y ∈X).

We call E∗i the i-th dual idempotent of Γ with respect to x [89, p. 378]. We also
observe that (ei) ∑d

i=0E
∗
i = I; (eii) E∗i = E∗i (0≤ i≤ d); (eiii) E∗>i = E∗i (0≤ i≤ d); (eiv)

E∗i E
∗
j = δijE

∗
i (0≤ i, j ≤ d) where I denotes the identity matrix in MatX(C). By these

facts, matrices E∗0 ,E∗1 , . . . ,E∗d form a basis for the commutative subalgebra M∗ =M∗(x)
of MatX(C). We call M∗ the dual Bose-Mesner algebra of Γ with respect to x [89,
p. 378]. For convenience we define E∗−1 and E∗d+1 to be the zero matrix of MatX(C). Note
that for 0≤ i≤ d we have

E∗i V = Span{ŷ | y ∈ Γi(x)},

and that

V = E∗0V +E∗1V + · · ·+E∗dV (orthogonal direct sum).

We call E∗i V the i-th subconstituent of Γ with respect to x.

We recall the definition of a Terwilliger algebra of Γ. Let T = T (x) denote the subalgebra
of MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect
to x. Recall that M is generated by A. So, T is generated by A and the dual idempotents.
We observe that T has finite dimension. In addition, since by construction T is generated
by real-symmetric matrices, it follows that T is closed under the conjugate-transpose map.

We now recall the lowering, the flat and the raising matrix of T .

Definition 3.1.1. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x∈X.
Let d = ε(x) and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Define
L= L(x), F = F (x) and R =R(x) in MatX(C) by

L=
d∑
i=1

E∗i−1AE
∗
i , F =

d∑
i=0

E∗i AE
∗
i , R =

d−1∑
i=0

E∗i+1AE
∗
i .

We refer to L, F and R as the lowering, the flat and the raising matrix with respect
to x, respectively. Note that L,F,R ∈ T . Moreover, F = F>, R = L> and A= L+F +R.
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Observe that for y,z ∈X we have that the (z,y)-entry of L equals 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y)−1, and 0 otherwise. The (z,y)-entry of F is equal to 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y), and 0 otherwise. Similarly, the (z,y)-entry of R equals 1 if ∂(z,y) = 1
and ∂(x,z) = ∂(x,y) + 1, and 0 otherwise. Consequently, for v ∈ E∗i V (0≤ i≤ d) we have

Lv ∈ E∗i−1V, Fv ∈ E∗i V, Rv ∈ E∗i+1V. (3.1)

For a vector subspace W ⊆ V , we denote by TW the subspace {Bw |B ∈ T,w ∈W}. By a
T -module we mean a subspace W of V , such that TW ⊆W . Let W denote a T -module.
Then W is said to be irreducible whenever W is nonzero and W contains no T -modules
other than 0 and W .

Since the algebra T is closed under the conjugated-transpose map, it follows that the
orthogonal complement of a T -module is also a T -module. In other words, if W is a
T -module then the subspace W⊥ = {v ∈ V | 〈v,w〉= 0, for all w ∈W} is a T -module. In
fact, we notice that for every v ∈W⊥, w ∈W and every matrix B ∈ T ,

〈Bv,w〉=
〈
v,B

>
w
〉

= 0

since B>w ∈W for every B ∈ T . This shows that W⊥ is invariant under the action of any
matrix in T and proves our claim.

Proposition 3.1.2. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x∈X
and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Let W1 and W2 denote
T -modules such that W2 ⊆W1. Then, W1∩W⊥2 is a T -module and W1 =W2 +(W1∩W⊥2 )
(orthogonal direct sum).

Proof. We observe that the intersection of T -modules is also a T -module. Therefore,
since W1 and W2 are T -modules, it follows that W1 ∩W⊥2 is a T -module. Now, let
PW2 : V → V be the orthogonal projection onto the subspace W2. Recall that PW2x= y if
and only if y ∈W2 is the only vector such that x−y ∈W⊥2 . Then, for any x ∈W1 we have
that PW2x ∈W2 and x−PW2x ∈W⊥2 . Consequently, since W2 is a subspace of W1 and
x= PW2x+(x−PW2x) it follows that W1 =W2 +(W1∩W⊥2 ) (orthogonal direct sum). �

Since the algebra T is closed under the conjugate-transpose map, it turns out that any
T -module is an orthogonal direct sum of irreducible T -modules.
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Lemma 3.1.3. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x ∈X
and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Every nonzero T -module
is an orthogonal direct sum of irreducibles T -modules.

Proof. Let W denote a nonzero T -module. We proceed by induction on the dimension
dim(W ) of W . If dim(W ) = 1 then W is irreducible and by convention, it is assumed
that W is itself a direct sum of irreducible modules. Assume now that dim(W )≥ 2 and,
by induction hypothesis, that every T -module with dimension strictly less than dim(W )
is an orthogonal direct sum of irreducible T -modules. Now, if W is irreducible then
the claim follows as it is assumed that W is itself a direct sum of irreducible modules.
Otherwise, there exists a nonzero T -submodule W1 with dim(W1)< dim(W ). Then, by
Proposition 3.1.2, there exists a nonzero T -module W2 with dim(W2)< dim(W ) such that
W =W1 +W2 (orthogonal direct sum). Consequently, since by induction hypothesis, W1

and W2 are orthogonal direct sum of irreducible T -modules, the claim follows. �

Proposition 3.1.4. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x ∈X and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Every T -module
W is orthogonal direct sum of the nonvanishing subspaces E∗iW (0≤ i≤ ε(x)).

Proof. Pick x ∈X and let d= ε(x). Let W denote a T -module. Then, for 0≤ i≤ d, we
have E∗iW ⊆W and so E∗0W +E∗1W + · · ·+E∗dW ⊆W. Moreover, for every w ∈W we
observe that

w = Iw = (E∗0 +E∗1 + · · ·+E∗d)w = E∗0w+E∗1w+ · · ·+E∗dw,

where I denotes the identity matrix in MatX(C). Therefore,W ⊆E∗0W +E∗1W + · · ·+E∗dW .
Since E∗i E∗i = E∗i and E∗i E∗j = 0 for 0≤ i, j ≤ d, i 6= j, the subspaces E∗iW are mutually
orthogonal. This finishes the proof. �

Let W be an irreducible T -module. By Proposition 3.1.4, we observe that W is an
orthogonal direct sum of the nonvanishing subspaces E∗iW for 0 ≤ i ≤ ε(x). Therefore,
this fact motivates the next definitions which will be useful throughout this dissertation:
by the endpoint of W we mean r := r(W ) = min{i | 0≤ i≤ ε(x), E∗iW 6= 0} and by the
diameter of W , the scalar d′ := d′(W ) = |{i | 0≤ i≤ ε(x), E∗iW 6= 0}|−1. We also say
that W is thin whenever the dimension of E∗iW is at most 1 for 0≤ i≤ ε(x).

Using the idea from [89, Lemma 3.9(ii)] we can easily determine which of the subspaces
E∗iW (0≤ i≤ ε(x)) are nonzero.
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Proposition 3.1.5. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x ∈X and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Let W be an
irreducible T -module with endpoint r and diameter d′. Then, E∗iW 6= 0 if and only if
r ≤ i≤ r+d′ (0≤ i≤ ε(x)). Moreover,

W = E∗rW +E∗r+1W + · · ·+E∗r+d′W (orthogonal direct sum).

Proof. LetW be an irreducible T -module with endpoint r and diameter d′. Pick an integer
j (0 ≤ j ≤ ε(x)). We first notice that, by the definition of the endpoint of W , we have
E∗jW = 0 for 0≤ j < r−1 and E∗rW 6= 0. We next assume that the subspace E∗jW = 0
and j > r. Now set W [r,j−1] = E∗rW +E∗r+1W + · · ·+E∗j−1W . We observe that, by
construction, W [r,j−1] is a nonzero subspace of W which is invariant under the action of
the dual idempotents E∗i (0≤ i≤ ε(x)). Moreover, we claim that for any k (0≤ i≤ ε(x))
we have that

AE∗kW ⊆ E∗k−1W +E∗kW +E∗k+1W. (3.2)

To prove our assertion (3.2), we recall that E∗0 +E∗1 + · · ·+E∗d = I, where I denotes the
identity matrix in MatX(C), and we observe that, for 0≤ i,k ≤ ε(x), the matrix E∗i AE∗k
is zero if |i−k|> 1. Therefore, from the above comments, it follows that

AE∗kW =
ε(x)∑
i=0

E∗i AE
∗
kW

= E∗k−1AE
∗
kW +E∗kAE

∗
kW +E∗k+1AE

∗
kW

⊆ E∗k−1W +E∗kW +E∗k+1W

since W is a T -module. This proves our claim.

Equation 3.2 shows that the subspace W [r,j−1] is A-invariant. Hence, W [r,j−1] is a
nonzero T -submodule of W which means that W [r,j−1] =W as W is irreducible. We
thus have that

d′+ 1 = |{i | 0≤ i≤ ε(x), E∗iW 6= 0}| ≤ (j−1)− r+ 1 = j− r,

which shows that j > d′+ r. Therefore, either 0≤ j < r or j > d′+ r if the subspace E∗jW
is zero. Equivalently, if r ≤ j ≤ d′+ r then the subspace E∗jW is nonzero. This shows that
the set {i ∈ Z | r≤ i≤ r+d′} of cardinality d′+1 is a subset of {i | 0≤ i≤ ε(x), E∗iW 6= 0},
which also has d′+ 1 elements, by the definition of the diameter d′ of W . Consequently,
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we have that
{i | 0≤ i≤ ε(x), E∗iW 6= 0}= {i ∈ Z | r ≤ i≤ r+d′}.

This concludes the proof. �

Let W and W ′ denote two irreducible T -modules. By a T -isomorphism from W to
W ′ we mean a vector space isomorphism σ :W →W ′ such that (σB−Bσ)W = 0 for all
B ∈ T . The T -modules W and W ′ are said to be T -isomorphic (or simply isomorphic)
whenever there exists a T -isomorphism σ :W →W ′.

We now present some well-known facts about (non-)isomorphic irreducible T -modules.

Proposition 3.1.6. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x ∈ X and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Any two
non-orthogonal irreducible T -modules are T -isomorphic.

Proof. Let U and W denote non-orthogonal irreducible T -modules. In particular, there
exist u ∈ U,w ∈W such that 〈u,w〉 6= 0 and so, both U and W are nonzero T -modules.
We observe that the standard module V = U +U⊥ (orthogonal direct sum). Now let
PU :W → U be the orthogonal projection of W onto the subspace U . That is, for x ∈W ,
PUx = y if and only if y ∈ U is the only vector such that x− y ∈ U⊥. We observe that
PU is well-defined since W ⊆ V and so, for every vector w ∈W we have unique vectors
w1 ∈ U and w2 ∈ U⊥ such that w = w1 +w2. Moreover, for every w ∈W we have that
w = PU (w) + (w−PU (w)) with PU (w) ∈ U and w−PU (w) ∈ U⊥. Then, since U and U⊥

are T -modules, for every matrix B ∈ T , we have that Bw =BPU (w)+B(w−PU (w)) with
BPU (w) ∈ U and B (w−PU (w)) ∈ U⊥. This shows that PU (Bw) = BPU (w) for every
w ∈W and so (BPU −PUB)W = 0 for every B ∈ T . Then, since also PU is a vector space
homomorphism, it follows that PU is a T -module homomorphism. Consequently, it holds
that ker(PU ) = {x ∈W | PU (x) = 0} and im(PU ) = {PU (x) | x ∈W} are T -submodules of
W and U , respectively. Now, recall that there exist u ∈ U,w ∈W such that 〈u,w〉 6= 0.
This implies that

〈u,PU (w)〉= 〈u,PU (w)〉+ 〈u,w−PU (w)〉= 〈u,PU (w) + (w−PU (w))〉= 〈u,w〉 6= 0,

which shows that PU (x) 6= 0 for some x ∈W . Therefore, ker(PU ) 6= W and im(PU ) 6= 0.
Furthermore, since U and W are irreducible T -modules, ker(PU ) = 0 and im(PU ) = U . In
other words, PU is both a monomorphism and an epimorphism. This shows that PU is a
T -isomorphism and concludes the proof. �
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Corollary 3.1.7. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x ∈X
and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Any two non-isomorphic
irreducible T -modules are orthogonal.

Proof. Immediate from Proposition 3.1.6. �

Proposition 3.1.8. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x ∈ X and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Any two
isomorphic irreducible T -modules have the same endpoint and the same diameter.

Proof. Let U and W denote two isomorphic irreducible T -modules. Then, there exists a
T -isomorphism ϕ :W → U . In particular we have ker(ϕ) = 0 and im(ϕ) = U .

For 0 ≤ i ≤ ε(x), we next claim that E∗i U = 0 if and only if E∗iW = 0. To prove our
assertion we notice that E∗i U = E∗i ϕ(W ) = ϕ(E∗iW ). Hence, if E∗iW is zero then E∗i U is
zero. Conversely, if E∗i U = ϕ(E∗iW ) is zero then E∗iW ⊆ ker(ϕ) which implies that E∗iW
is zero.

It follows from the above comments that

{i | 0≤ i≤ ε(x), E∗i U 6= 0}= {i | 0≤ i≤ ε(x), E∗iW 6= 0}. (3.3)

Therefore, from (3.3), it holds that U and W both have the same endpoint and the same
diameter. �

Recall that algebra T is closed under the conjugate-transpose map. So, in many instances,
this algebra can best be studied via its irreducible modules. Since in particular the
standard module decomposes as an orthogonal direct sum of irreducible T -modules, it is
natural to consider certain algebraic properties on T -modules and try to investigate what
these properties tell us about the combinatorial structure of a graph. Moreover, to study
those graphs whose modules take ‘simple’ form could be of interest as well.

To start our investigations, we first consider modules whose algebraic properties and
structure are as simple as possible.

Proposition 3.1.9. LetM be a subalgebra of MatX(C) and let v ∈ V . Then, the subset
Mv := {Bv |B ∈M} is anM-module.

Proof. Clearly, 0 ∈Mv as the zero matrix belongs to the subalgebra M. So, Mv is a
nonempty subset of V . Let λ ∈ C and w,z ∈Mv. So, there exist matrices B1,B2 ∈M
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such that w =B1v and z =B2v. Moreover, sinceM is a subalgebra of MatX(C) it holds
that B1 +λB2 ∈M. Consequently, w+λz = B1v+λB2v = (B1 +λB2)v ∈Mv. This
shows thatMv is a subspace of V . Furthermore, if w ∈Mv then Cw = C(B1v) = CB1v

for every C ∈M. So, Cw ∈Mv since CB1 ∈M. We thus have that Mv is invariant
under the action of any matrix inM. Hence,Mv is anM-module. �

Proposition 3.1.10. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x ∈X and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Let W be an
irreducible T -module with endpoint 0. Then, T x̂ := {Bx̂ |B ∈ T} is a subset of W .

Proof. Since W is an irreducible T -module with endpoint 0, there exists a nonzero vector
w ∈ E∗0W . We know that w =

∑
y∈X

αy ŷ for some scalars αy ∈ C. We thus have that

w = E∗0w = αx x̂ with αx 6= 0. This yields that x̂ = α−1
x E∗0w and so, x̂ ∈ E∗0W ⊆W .

Moreover, we notice that Bx̂ ∈W for every matrix B ∈ T as W is a T -module. Therefore,
the set T x̂ := {Bx̂ |B ∈ T} is a subset of W . �

Theorem 3.1.11. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x ∈X
and let T = T (x) be the Terwilliger algebra of Γ with respect to x. There exists a unique
irreducible T -module with endpoint 0. Namely, the set T x̂= {Bx̂ |B ∈ T}.

Proof. We first observe that algebra T is a subalgebra of MatX(C). Since x̂ ∈ V then, by
Proposition 3.1.9 we have that T x̂= {Bx̂ |B ∈ T} is a T -module. Suppose now that W is
an irreducible T -module with endpoint 0. Then, by Proposition 3.1.10, the set T x̂ is a
subset of W . Since the identity matrix I ∈MatX(C) belongs to T we have that x̂= Ix̂

and so, the nonzero vector x̂ ∈ T x̂. We thus have that T x̂ is a nonzero T -submodule of W .
Consequently, T x̂=W by the irreducibility of W . This finishes the proof. �

With reference to Theorem 3.1.11, the unique irreducible T -module with endpoint 0, the
set T x̂= {Bx̂ |B ∈ T}, is called the trivial T -module.

3.2 Non-negative irreducible matrices

In this section we recall couple of basic definitions and results about non-negative and
irreducible matrices. The reader is refered to the book by Horn and Johnson for a review
of these topics and further information; see [48].
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We say that a matrix is non-negative (positive), if all of its entries are non-negative
(positive) real numbers, respectively. Similarly, a vector is strictly positive if all its
entries are positive real numbers. Moreover, the spectral radius of a square matrix M ,
denoted by ρ(M), is the maximum absolute value of the eigenvalues of M . A matrix is
said to be reducible if it can be placed into block upper-triangular form by simultaneous
row/column permutations. That is, an n-by-n matrix M is reducible if there exists an
n-by-n permutation matrix P such that

P>MP =
 B C

0n−r,r D

 (1≤ r ≤ n−1),

where 0n−r,r denotes the (n− r)-by-r zero matrix. In the preceding definition, we do not
insist that any of the blocks B, C, and D have nonzero entries. We require only that a
lower-left (n− r)-by-r block of zero entries can be created by some sequence of row and
column interchanges. However, we do insist that both of the square matrices B and D
have size at least one, so no 1-by-1 matrix is reducible. We also say that a matrix is
irreducible if it is not reducible.

We next recall a couple of definitions coming from graph theory. A directed graph
−→Γ

consists of a finite set of vertices together with a subset of ordered pairs of vertices called
arcs or simply, directed edges. A directed path in a directed graph −→Γ is a sequence of
directed edges in −→Γ . The length of a directed path is the number of directed edges in the
directed path if this number is finite; otherwise, the directed path is said to have infinite
length. A directed graph −→Γ is strongly connected if between each pair of distinct
vertices u and v there exists a directed path of finite length that begins at u and ends at v.

The notion of an irreducible matrix can be summarized visually by certain paths in a
graph associated with its adjacency matrix.

Given an n-by-n matrix M , we say that −→Γ (M) is the directed graph of M if −→Γ (M) is
the directed graph on n vertices v1,v2, · · · ,vn such that there is a directed edge in −→Γ (M)
from vi to vj if and only if the (i, j)-entry of M is nonzero. By [48, Theorem 6.2.24] we
have that M is irreducible if and only if −→Γ (M) is strongly connected.

The following theorem, known in the literature as Perron-Frobenius theorem, shows how
much of Perron’s theorem (see [48, Theorem 8.2.8]) generalizes to nonnegative irreducible
matrices. The name of Frobenius is associated with generalizations of Perron’s results
about positive matrices to nonnegative matrices.
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Theorem 3.2.1 ([48, Theorem 8.4.4]). Let M be an irreducible and non-negative square
matrix. Then the following (i), (ii) hold.

(i) ρ(M)> 0 and ρ(M) is an algebraically simple eigenvalue of M (i.e., the corresponding
eigenspace is one-dimensional).

(ii) There exists a strictly positive vector υ such that Mυ = ρ(M)υ.

We refer to vector υ as a Perron-Frobenius vector of the matrix M .

Throughout this section, let Γ = (X,R) denote a finite, simple and connected graph, with
vertex set X and edge set R. Let V denote the standard module of Γ and let A∈MatX(C)
denote the adjacency matrix of Γ. We observe that −→Γ (A) is the directed graph obtained
from Γ by replacing each edge uv of Γ by an arc from u to v and an arc from v to u. Since
Γ is connected, there exists a path connecting any two vertices in Γ. Therefore, for each
pair of distinct vertices u and v in −→Γ (A), there exists a directed path of finite length that
begins at u and ends at v and so, −→Γ (A) is strongly connected. By [48, Theorem 6.2.24]
we have that A is irreducible.

We also observe that A is a non-negative matrix and so, Theorem 3.2.1 applies. Throughout
this section, let ρ(A) denote the spectral radius of A and let υ denote a Perron-Frobenius
vector of A.

Fix now a vertex x ∈X and let T = T (x) denote the Terwilliger algebra of Γ with respect
to x. Recall that T x̂ is the unique irreducible T -module with endpoint 0. Next, we show
that T x̂= Tυ, where Tυ = {Bυ |B ∈ T}. This result was already proved by Terwilliger in
[88], but for convenience of the reader we include a proof here. We first need the following
lemma.

Lemma 3.2.2. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x ∈X
and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Let υ denote a Perron-
Frobenius vector of the adjacency matrix A of Γ. Then, Tυ is an irreducible T -module.
Moreover,

Tυ = T x̂.

Proof. Let υ denote a Perron-Frobenius vector of A and, for z ∈X, let υz denote the z-
coordinate of υ. By Theorem 3.2.1, we observe that Aυ = θυ for some θ > 0. Let B = υυ>

||υ||2 .
Note that B is the matrix representing the orthogonal projection onto the eigenspace
belonging to θ. By the Spectral Decomposition Theorem (see e.g. [40, Theorem 5.1]),
there exists a polinomial p with complex coefficients such that p(A) = p(θ)B with p(θ) 6= 0.
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In particular, we have that B belongs to T . Moreover, for x,y ∈X, the (x,y)-entry of B
is equal to υxυy

||υ||2 . Hence, it follows that ||υ||
2Bx̂= υxυ or, alternatively,

υ = ||υ||
2

υx
Bx̂.

Then, υ ∈ T x̂ as B belongs to T . This implies that Tυ ⊆ T x̂. Furthermore, by
Proposition 3.1.9 it holds that Tυ is a T -module, which is nonzero as υ ∈ Tυ. Therefore,
as T x̂ is irreducible, it holds that Tυ = T x̂. The result follows. �

3.3 Local (pseudo-)distance-regularity

Let Γ = (X,R) denote a finite, simple and connected graph. In this section we recall the
notions of (local) distance-regularity and (local) pseudo-distance-regularity of Γ. To do
this, fix x ∈X and let d denote the eccentricity of x.

Assume for a moment that y ∈ Γi(x) (0≤ i≤ d) and let z be a neighbour of y. Then, by
the triangle inequality,

∂(x,z) ∈ {i−1, i, i+ 1} ,

and so z ∈ Γi−1(x)∪Γi(x)∪Γi+1(x). For y ∈ Γi(x) we therefore define the following
numbers:

ai(x,y) = |Γi(x)∩Γ(y)| , bi(x,y) = |Γi+1(x)∩Γ(y)| , ci(x,y) = |Γi−1(x)∩Γ(y)| .

We say that x ∈X is distance-regularized (or that Γ is distance-regular around x) if
the numbers ai(x,y), bi(x,y) and ci(x,y) do not depend on the choice of y ∈Γi(x) (0≤ i≤ d).
In this case, the numbers ai(x) = ai(x,y), bi(x) = bi(x,y) and ci(x) = ci(x,y) are called the
intersection numbers of x.

The concept of pseudo-distance-regularity around a vertex of a graph was introduced in
[34] by Fiol, Garriga and Yebra as a natural generalization of distance-regularity around a
vertex. We now recall this definition.

Let A ∈MatX(C) denote the adjacency matrix of Γ. Let ρ(A) denote the spectral radius
of A and let υ ∈ V denote a Perron-Frobenius vector of A. For z ∈X let υz denote the
z-coordinate of υ. For y ∈ Γi(x) (0≤ i≤ d) we define numbers a∗i (x,y), b∗i (x,y) and c∗i (x,y)
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as follows:

a∗i (x,y) =
∑

z∈Γ(y)∩Γi(x)

υz
υy
, b∗i (x,y) =

∑
z∈Γ(y)∩Γi+1(x)

υz
υy
, c∗i (x,y) =

∑
z∈Γ(y)∩Γi−1(x)

υz
υy
.

Observe that a∗i (x,y) + b∗i (x,y) + c∗i (x,y) = ρ(A).

We say that vertex x∈X is pseudo-distance-regularized (or that Γ is pseudo-distance-
regular around x) if the numbers a∗i (x,y), b∗i (x,y) and c∗i (x,y) do not depend on the
choice of y. In this case, they are denoted by a∗i (x), b∗i (x) and c∗i (x) and they are called
the pseudo-intersection numbers of Γ with respect to x. Moreover, the array


0 c∗1(x) · · · c∗d−1(x) c∗d(x)
0 a∗1(x) · · · a∗d−1(x) a∗d(x)

b∗0(x) b∗1(x) · · · b∗d−1(x) 0


is called the pseudo-intersection array of Γ with respect to x.

Assume now that Γ is distance-regular around x. By [34, Proposition 3.2], Γ is also
pseudo-distance-regular around x. However, the converse of this result is not true. In
particular, it was shown in [34] by Fiol, Garriga and Yebra that the Cartesian product
P3� · · ·�P3 of r paths of length 3 has pseudo-distance-regularized vertices which are not
distance-regularized. For the convenience of the reader we would also like to present
another example.

Example 3.3.1. Let Γ be the connected graph with vertex set X = {1,2,3,4,5,6} and
edge set R= {{1,2} ,{1,3} ,{2,4} ,{2,5} ,{3,5} ,{3,6}}. See Figure 3.1. Let A denote the
adjacency matrix of Γ. It is easy to see that ρ(A) =

√
5 and υ = (2

√
5
√

5 1 2 1)> is
a Perron-Frobenius vector of A. Consider vertex 1 ∈ X and note that ε(1) = 2. It is
straightforward to check that Γ is pseudo-distance-regular around 1 with the following
pseudo-intersection array:


0 2√

5

√
5

0 0 0
√

5 3√
5 0


However, Γ is not distance-regular around 1. Namely, vertex 4 ∈ Γ2(1) has only one
neighbour in Γ(1), while vertex 5 ∈ Γ2(1) has two neighbours in Γ(1).
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4

5

6

1

2

3

Figure 3.1: Graph Γ from Example 3.3.1.

3.4 Local pseudo-distance-regularity and the trivial
module

As already mentioned, it was proved by Terwilliger in [88] that if Γ is distance-regular
around x, then the trivial T -module is thin. Fiol and Garriga [33] later proved the following
result (see also [30, Theorem 3.1]).

Theorem 3.4.1 ([30, Theorem 3.1]). Let Γ = (X,R) denote a finite, simple and connected
graph. Fix x ∈X and let T = T (x) denote the corresponding Terwilliger algebra. Then,
the trivial T -module is thin if and only if Γ is pseudo-distance-regular around x.

Throughtout this section we provide a proof of Theorem 3.4.1 with a slightly different
approach.

3.4.1 Proof of Theorem 3.4.1: part 1

Let Γ = (X,R) denote a finite, simple and connected graph. Fix a vertex x ∈X. Assume
that ε(x) = d and let T = T (x) denote the corresponding Terwilliger algebra. In this
subsection we show that if Γ is pseudo-distance-regular around x, then the trivial T -
module T x̂ is thin. We start with the following comments and results which will be useful
later for the proof of Theorem 3.4.1.

For an integer 0≤ i≤ d, a symmetric matrix Axi ∈MatX(C) is said to be x-local i-distance
matrix, if for any y ∈X the following holds:

(Axi )xy =


υy

υx
if ∂(x,y) = i,

0 if ∂(x,y) 6= i.
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We observe that the above definition gives no constraints on the entries which are not in
the x-row or in the x-column of Axi . Thus, an example of an x-local 0-distance matrix is
the identity matrix of MatX(C). Moreover, if Γ is regular, then the adjacency matrix A is
an example of an x-local 1-distance matrix. An x-local i-distance matrix is called proper,
if it is a polynomial of degree i in the adjacency matrix A of Γ. We remark that any
proper x-local i-distance matrix is, by definition, an element of the Terwilliger algebra T .

The next theorem shows that, in the case of locally pseudo-distance-regularity, the proper
distance matrices exist and satisfy a recurrence relation which is similar to that of the
(standard) distance matrices of distance-regular graphs.

Theorem 3.4.2 ([34, Proposition 3.3]). Let Γ = (X,R) denote a finite, simple and
connected graph. Fix x ∈X and let ε(x) = d. Assume that Γ is pseudo-distance-regular
around x. Let a∗i (x), b∗i (x), c∗i (x) (0≤ i≤ d) denote the corresponding pseudo-intersection
numbers of Γ with respect to x. For convenience set b∗−1(x) = c∗d+1(x) = 0. Then, there
exists a sequence {Axi }di=0 of proper x-local i-distance matrices Ax0 ,Ax1 , · · ·Axd. Moreover,
the following holds for 0≤ i≤ d:

AAxi = b∗i−1(x)Axi−1 +a∗i (x)Axi + c∗i+1(x)Axi+1.

Pick now an integer 0≤ j≤ d and consider a proper x-local j-distance matrixAxj ∈MatX(C).
We observe that

Axj x̂=
∑

y∈Γj(x)

υy
υx
· ŷ = 1

υx
E∗j υ.

Consequently, vector Axj x̂ is non-zero and, for every 0≤ i≤ d, the following also holds:

E∗i A
x
j x̂= 1

υx
E∗i E

∗
j υ = δi,jA

x
j x̂. (3.4)

Proposition 3.4.3. Let Γ = (X,R) denote a finite, simple and connected graph. Assume
that Γ is pseudo-distance-regular around x. Let {Axi }di=0 be a sequence of proper x-local
i-distance matrices. Then the vectors Axi x̂ are pairwise orthogonal for 0≤ i≤ d.

Proof. Pick 0≤ i, j ≤ d. By (3.4) we have that

〈Axi x̂,Axj x̂〉= 〈E∗i Axi x̂,Axj x̂〉= 〈Axi x̂,E∗i Axj x̂〉= δi,j‖Axi x̂‖2.

Hence, the vectors Axi x̂ are pairwise orthogonal for 0≤ i≤ d. �
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We are now ready to prove the main result of this subsection.

Theorem 3.4.4. Let Γ = (X,R) denote a finite, simple and connected graph. Assume
that Γ is pseudo-distance-regular around x. Let {Axi }di=0 be a sequence of proper x-local
i-distance matrices. Then, the following (i), (ii) hold.

(i) The set {Axi x̂ | 0≤ i≤ d} is a basis for the trivial T -module T x̂.

(ii) The trivial T -module T x̂ is thin.

Proof. Consider the non-zero subspace W ⊆ V generated by vectors {Axi x̂ | 0≤ i≤ d}.
Recall that the matrices Axi (0 ≤ i ≤ d) are elements of the algebra T , and so W ⊆ T x̂.
By Theorem 3.4.2 the space W is invariant under the action of the adjacency matrix
A. By (3.4), W is also invariant under the action of matrices E∗i (0≤ i≤ d). It follows
from the above comments that W is a T -module. Note that W is nonzero, and so
W = T x̂ by the irreducibility of T x̂. Recall that vectors Axi x̂ are nonzero and pairwise
othogonal by Proposition 3.4.3 and so, they are linearly independent. Therefore, the
set {Axi x̂ | 0≤ i≤ d} is a basis for the trivial T -module T x̂. Moreover, for 0≤ i≤ d, we
observe from (3.4) that the subspace E∗i (T x̂) is spanned by the vector Axi x̂. The result
follows. �

Corollary 3.4.5. Let Γ = (X,R) denote a finite, simple and connected graph. Assume
that Γ is distance-regular around x. Then, the trivial T -module T x̂ is thin.

Proof. Recall that by [34, Proposition 3.2], Γ is also pseudo-distance-regular around x.
The result now follows from Theorem 3.4.4. �

However, we notice that the converse of Corollary 3.4.5 is not true in general. This is
demonstrated in the following example.

Example 3.4.6. Consider graph Γ from Example 3.3.1 (see also Figure 3.1). Fix vertex
1 ∈X and note that d = 2. Consider the Terwilliger algebra of Γ with respect to vertex
1. Recall that we have shown in Example 3.3.1 that Γ is pseudo-distance-regular around
1. Then, by Theorem 3.4.4, the trivial T -module is thin. However, it also follows from
Example 3.3.1 that Γ is not distance-regular around 1. This shows that the converse of
Corollary 3.4.5 is not true.
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3.4.2 Proof of Theorem 3.4.1: part 2

Let Γ = (X,R) denote a finite, simple and connected graph. Fix a vertex x ∈X. Assume
that ε(x) = d and let T = T (x) denote the corresponding Terwilliger algebra. In this
subsection we show that if the trivial T -module T x̂ is thin, then Γ is pseudo-distance-
regular around x.

Lemma 3.4.7. Let Γ = (X,R) denote a finite, simple and connected graph. Fix a vertex
x ∈X. Assume that ε(x) = d and let T = T (x) denote the Terwilliger algebra of Γ with
respect to x. Assume the trivial T -module T x̂ is thin. Then, the set {E∗i υ | 0≤ i≤ d} is a
basis for T x̂ where υ denotes a Perron-Frobenius vector of the adjacency matrix of Γ.

Proof. Since the identity matrix I ∈ T we have that υ ∈ Tυ. Then, by Lemma 3.2.2 we
observe that υ ∈ T x̂. Moreover, it follows that E∗i υ ∈ T x̂ for 0≤ i≤ d. Observe that

E∗i υ =
∑

y∈Γi(x)
υyŷ,

and so E∗i υ is nonzero for 0≤ i≤ d. Furthermore, for every 0≤ i, j ≤ d, we observe that

〈
E∗i υ,E

∗
j υ
〉

=
〈
υ,E∗i E

∗
j υ
〉

= δi,j ·
∥∥∥E∗j υ∥∥∥2

.

This shows that the vectors E∗i υ (0 ≤ i ≤ d) are pairwise orthogonal and consequently,
they are linearly independent. Since the trivial T -module is thin and for every 0≤ i≤ d
the vector E∗i υ ∈ E∗i (T x̂), it follows that E∗i (T x̂) is spanned by E∗i υ for 0≤ i≤ d. The
claim follows. �

Proposition 3.4.8. Let Γ = (X,R) denote a finite, simple and connected graph. Fix a
vertex x ∈X. Assume that ε(x) = d and let T = T (x) denote the Terwilliger algebra of Γ
with respect to x. Pick y,z ∈X. Then, the (y,z)-entry of E∗jAE∗i ∈MatX(C) equals 1 if
∂(x,y) = j, ∂(y,z) = 1 and ∂(x,z) = i, and 0 otherwise. In particular, if |j− i| ≥ 2 then
E∗jAE

∗
i = 0.

Proof. Immediately from elementary properties of matrix multiplication. �

Lemma 3.4.9. Let Γ = (X,R) denote a finite, simple and connected graph. Fix a vertex
x ∈X. Assume that ε(x) = d and let T = T (x) denote the Terwilliger algebra of Γ with
respect to x. Assume the trivial T -module T x̂ is thin. Then, for every 0≤ i≤ d there exist
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scalars αi(x),βi(x),γi(x) ∈ C such that

AE∗i υ = βi(x)E∗i−1υ+αi(x)E∗i υ+γi(x)E∗i+1υ,

where υ denotes a Perron-Frobenius vector of the adjacency matrix of Γ.

Proof. Note that since T x̂ is a T -module, it is invariant under the action of A. It follows
from Lemma 3.4.7 that for every 0≤ i≤ d, the vector AE∗i υ is a linear combination of the
vectors E∗j υ (0≤ i≤ d). However, it follows from Proposition 3.4.8 that AE∗i υ is a linear
combination of just the vectors E∗i−1υ, E∗i υ and E∗i+1υ. The claim follows. �

Lemma 3.4.10. Let Γ = (X,R) denote a finite, simple and connected graph. Fix a vertex
x ∈X. Assume that ε(x) = d and let T = T (x) denote the Terwilliger algebra of Γ with
respect to x. Let 0≤ i, j ≤ d and pick y ∈ Γj(x). Let υ denote a Perron-Frobenius vector
of the adjacency matrix of Γ. Then, the y-entry of the vector E∗jAE∗i υ equals

∑
z∈Γ(y)∩Γi(x)

vz.

Proof. Elementary matrix multiplication. �

We are now ready to prove the main result of this subsection.

Theorem 3.4.11. Let Γ = (X,R) denote a finite, simple and connected graph. Fix a
vertex x ∈X. Assume that ε(x) = d and let T = T (x) denote the Terwilliger algebra of
Γ with respect to x. If the trivial T -module T x̂ is thin, then Γ is pseudo-distance-regular
around x.

Proof. Let υ denote a Perron-Frobenius vector of the adjacency matrix of Γ. Let 0≤ i≤ d.
By Lemma 3.4.9, there exist scalars αj(x),βj(x),γj(x) for each j ∈ {i−1, i, i+1} such that

AE∗i−1υ = βi−1(x)E∗i−2υ+αi−1(x)E∗i−1υ+γi−1(x)E∗i υ,

AE∗i υ = βi(x)E∗i−1υ+αi(x)E∗i υ+γi(x)E∗i+1υ,

AE∗i+1υ = βi+1(x)E∗i υ+αi+1(x)E∗i+1υ+γi+1(x)E∗i+2υ.
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Multiplying the above equalities with E∗i and using property (eiv) in Section 3.1, we get

E∗i AE
∗
i−1υ = γi−1(x)E∗i υ, (3.5)

E∗i AE
∗
i υ = αi(x)E∗i υ, (3.6)

E∗i AE
∗
i+1υ = βi+1(x)E∗i υ. (3.7)

Pick a vertex y ∈Γi(x). Computing the y-entry of (3.5), (3.6) and (3.7) using Lemma 3.4.10,
we get

∑
z∈Γ(y)∩Γi−1(x)

vz = γi−1(x)υy, (3.8)

∑
z∈Γ(y)∩Γi(x)

vz = αi(x)υy, (3.9)

∑
z∈Γ(y)∩Γi+1(x)

vz = βi+1(x)υy. (3.10)

Recall that the entries of the vector υ are positive. Therefore, it follows from (3.8), (3.9)
and (3.10) that c∗i (x,y) = γi−1(x), a∗i (x,y) = αi(x) and b∗i (x,y) = βi+1(x). This shows that
the pseudo-intersection numbers of Γ with respect to x do not depend on the choice of
y ∈ Γi(x). Hence, Γ is pseudo-distance-regular around x. �

3.5 The main result and some products in T

Let Γ = (X,R) denote a finite, simple and connected graph. In this section we state our
main result. To do this we need the following definition.

Definition 3.5.1. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x,y,z ∈X and let P = [y = x0,x1, . . . ,xj = z] denote a yz-walk. The shape of P with
respect to x is a sequence of symbols t1t2 . . . tj, where ti ∈ {f,`,r}, and such that ti = r if
∂(x,xi) = ∂(x,xi−1) + 1, ti = f if ∂(x,xi) = ∂(x,xi−1) and ti = ` if ∂(x,xi) = ∂(x,xi−1)−
1 (1 ≤ i ≤ j). We use exponential notation for shapes containing several consecutive
identical symbols. For instance, instead of rrrrfff``r we simply write r4f3`2r. For a
positive integer i, let ri`(y), rif(y) and ri(y) respectively denote the number of xy-walks
of the shape ri`, rif and ri with respect to x. We also define r0`(y) = r0f(y) = 0 for every
y ∈X, and r0(y) = 1 if y = x and r0(y) = 0 otherwise. See Figure 3.2 for an example.

For the rest of the chapter we adopt the following notation.
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x · · ·· · · · · ·

Γ0(x) Γi−1(x) Γi(x) Γi+1(x) Γd(x)

y

z

Figure 3.2: A yz-walk in a graph Γ of shape `r2`fr with respect to x.

Notation 3.5.2. Let Γ denote a finite, simple, connected graph with vertex set X. Let
A ∈MatX(C) denote the adjacency matrix of Γ. Fix a vertex x ∈ X and let d denote
the eccentricity of x. Let E∗i ∈MatX(C) (0 ≤ i ≤ d) denote the dual idempotents of Γ
with respect to x. Let V denote the standard module of Γ and let T = T (x) denote the
Terwilliger algebra of Γ with respect to x. Let T x̂ denote the unique irreducible T -module
with endpoint 0. Let L= L(x), F = F (x) and R =R(x) denote the lowering, the flat and
the raising matrix of T , respectively. For y ∈X, let the numbers ri`(y), rif(y) and ri(y)
be as defined in Definition 3.5.1.

We are now ready to state our main result which will be proved in Section 3.6.

Theorem 3.5.3. With reference to Notation 3.5.2, the following (i)–(iii) are equivalent:

(i) T x̂ is thin.

(ii) Γ is pseudo-distance-regular around x.

(iii) For every integer i (0≤ i≤ d) there exist scalars αi,βi, such that for every y ∈ Γi(x)
the following hold:

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y).

Recall that the equivalency of (i) and (ii) of the above theorem was already proved in
Section 3.4. Therefore, we will focus on the equivalency of (i) and (iii) in the rest of this
chapter.
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We first evaluate several products in the Terwilliger algebra T that we will need later for
the proof of Theorem 3.5.3.

Lemma 3.5.4. With reference to Notation 3.5.2, pick y ∈X. Then, the following (i)–(iii)
hold for an integer i≥ 0:

(i) The y-entry of Rix̂ is equal to the number ri(y).

(ii) The y-entry of LRix̂ is equal to the number ri`(y) .

(iii) The y-entry of FRix̂ is equal to the number rif(y).

Proof. It immediately follows by using elementary matrix multiplication, comment below
Definition 3.1.1, and (3.1). �

Proposition 3.5.5. With reference to Notation 3.5.2, the vector Rix̂ is nonzero for
0≤ i≤ d.

Proof. Pick 0≤ i≤ d and y ∈ Γi(x) (note that Γi(x) is nonempty). By Lemma 3.5.4(i),
the y-entry of Rix̂ is equal to the number ri(y). Note that by the definition of ri(y) and
by the choice of y, we have that ri(y)> 0. The result follows. �

3.6 Proof of the main theorem

With reference to Notation 3.5.2, in this section we prove Theorem 3.5.3. We also display
a basis of T x̂ and the matrix representing the action of the adjacency matrix on this basis
in the case when T x̂ is thin.

Lemma 3.6.1. With reference to Notation 3.5.2, the following (i), (ii) are equivalent:

(i) T x̂ is thin.

(ii) The set {Rix̂ : 0≤ i≤ d} is a basis of T x̂.

In particular, if the above equivalent conditions (i), (ii) hold, then E∗i (T x̂) is spanned by
Rix̂ and dim(E∗i (T x̂)) = 1 for 0≤ i≤ d.

Proof. As Ri ∈ T for 0 ≤ i ≤ d, we have that Rix̂ ∈ T x̂ for 0 ≤ i ≤ d. Furthermore,
by Proposition 3.5.5 and (3.1), the vectors Rix̂ are nonzero, pairwise orthogonal and
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Rix̂ ∈ E∗i (T x̂) for 0 ≤ i ≤ d. Assume first that T x̂ is thin. Then E∗i (T x̂) is spanned by
Rix̂ for 0≤ i≤ d. This proves that the set {Rix̂ : 0≤ i≤ d} is a basis of T x̂. Conversely,
assume that {Rix̂ : 0 ≤ i ≤ d} is a basis of T x̂. Then, the subspace E∗i (T x̂) is spanned
by Rix̂, and so dim(E∗i (T x̂)) = 1 for 0≤ i≤ d. This implies that T x̂ is thin. The result
follows. �

Let us give an examble about how to use Lemma 3.6.1 to prove that a trivial module is
thin.

Example 3.6.2. Consider graph Γ from Example 3.3.1 (see also Figure 3.1), and observe
that Γ is bipartite. Fix vertex 1 ∈ X and note that d = 2. Let A denote the adjacency
matrix of Γ. Consider the Terwilliger algebra of Γ with respect to vertex 1. Observe that
Γ is bipartite and so, F = 0. Let W denote the vector subspace of V spanned by the
vectors Ri1̂ (0≤ i≤ 2). Since 1̂ ∈E∗0V , it follows from (3.1) that Ri1̂ ∈E∗i V for 0≤ i≤ 2.
By construction and since R31̂ = 0, it is clear that W is closed under the action of R.
Moreover, by (eiv) from Section 3.1, the subspace W is invariant under the action of the
dual idempotents as well. From Definition 3.1.1, it is easy to see that L1̂ = 0, LR1̂ = 2 · 1̂
and LR21̂ = 3 ·R1̂. This implies thatW is invariant under the action of L. Since A=L+R,
it follows that W is A-invariant as well. Recall that algebra T is generated by A and the
dual idempotents. This shows that W is a T -module. Note that Ri1̂ ∈ T 1̂ for 0 ≤ i ≤ 2.
We thus have W ⊆ T 1̂. Furthermore, by Proposition 3.5.5 and (3.1), the vectors Ri1̂ are
nonzero, pairwise orthogonal and so, they are linearly independent. Consequently, it follows
from the above comments that the set {Ri1̂ : 0 ≤ i ≤ 2} is a basis of T 1̂. Therefore, by
Lemma 3.6.1, the unique irreducible module with endpoint 0 is thin.

Proof of Theorem 3.5.3

As already mentioned, the equivalency of Theorem 3.5.3(i) and Theorem 3.5.3(ii) follows
from Theorem 3.4.1. We proceed by showing the equivalency of Theorem 3.5.3(i) and
Theorem 3.5.3(iii).

(i) implies (iii)

Assume that T x̂ is thin. Recall that by Lemma 3.6.1 the set {Rix̂ : 0≤ i≤ d} is a basis
of T x̂, E∗i (T x̂) is spanned by Rix̂ and dim(E∗i (T x̂)) = 1 for 0≤ i≤ d. Consequently, by
(3.1) and since L,F ∈ T , we have that

LRi+1x̂ ∈ E∗i (T x̂), FRix̂ ∈ E∗i (T x̂)



CHAPTER 3. ON THE TRIVIAL T -MODULE OF A GRAPH 37

for every 0 ≤ i ≤ d. It follows from the above comments that for every 0 ≤ i ≤ d there
exist scalars αi,βi, such that

LRi+1x̂= αiR
ix̂, FRix̂= βiR

ix̂.

The result now follows from Lemma 3.5.4.

(iii) implies (i)

Let W denote the vector subspace of V spanned by the vectors Rix̂ (0 ≤ i ≤ d). Since
x̂ ∈ E∗0V , it follows from (3.1) that Rix̂ ∈ E∗i V for 0≤ i≤ d. By construction and since
Rd+1x̂ = 0, it is clear that W is closed under the action of R. Moreover, by (eiv) from
Section 3.1, the subspace W is invariant under the action of the dual idempotents as well.
From Definition 3.1.1 and (3.1) it is easy to see that Lx̂= Fx̂= 0.

Recall that by the assumption, for every integer 0≤ i≤ d there exist scalars αi,βi, such
that for every y ∈ Γi(x) we have

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y).

It follows from Lemma 3.5.4 that LRi+1x̂ = αiR
ix̂ and FRix̂ = βiR

ix̂. Therefore, W
is invariant under the action of L and F . Since A = L+F +R, it follows that W is
A-invariant as well. Recall that algebra T is generated by A and the dual idempotents.
Hence, W is a T -module. Note that Rix̂ ∈ T x̂ for 0 ≤ i ≤ d, and so W ⊆ T x̂. As W is
nonzero and T x̂ is irreducible, we thus have W = T x̂. It is clear that W is thin, since by
construction and (3.1), the subspace E∗iW is spanned by Rix̂. This finishes the proof. �

Theorem 3.6.3. With reference to Notation 3.5.2, assume that Γ satisfies the equivalent
conditions of Theorem 3.5.3. Then the set

B =
{
Rix̂ | 0≤ i≤ d

}
is a basis of T x̂. Moreover, the matrix representing the action of A on T x̂ with respect to
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the (ordered) basis B is given by


0 α0

1 β1 α1

1 . . . . . .
. . . . . . αd−2

1 βd−1 αd−1

1 βd


.

Proof. By Theorem 3.5.3(iii), for every integer 0≤ i≤ d there exist scalars αi,βi, such
that for every y ∈ Γi(x) we have

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y).

It follows from Lemma 3.5.4 that LRix̂ = αi−1Ri−1x̂ and FRix̂ = βiR
ix̂. Recall that

A= L+F +R, and so the result follows (note also that β0 = 0). �

3.7 Examples

With reference to Notation 3.5.2, in this section we present some examples. We first
consider graphs which are distance-regular around certain vertex x.

3.7.1 Distance-regularized vertices

With reference to Notation 3.5.2, assume that Γ is distance-regular around x, with the
corresponding intersection numbers ai(x), bi(x), ci(x) (0 ≤ i ≤ d). Then it is easy to see
that for every y ∈ Γi(x) (0≤ i≤ d) we have

ri(y) =
i∏

j=1
cj(x), ri+1`(y) = bi(x)

i+1∏
j=1

cj(x), rif(y) = ai(x)
i∏

j=1
cj(x).

Therefore, for every y ∈ Γi(x) we have that ri+1`(y) = αir
i(y) and rif(y) = βir

i(y) with
αi = bi(x)ci+1(x) and βi = ai(x). By Theorem 3.5.3, the trivial T -module T x̂ is thin.
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3.7.2 Distance-regularized graphs

Recall graph Γ = (X,R) from Notation 3.5.2. As we already mentioned, it was proved in
[88] by Terwilliger that the unique irreducible T -module is thin if Γ is distance-regular
around x; see also Subsection 3.7.1. However, as shown in Example 3.4.6, the converse is
not true, i.e. if the trivial module T x̂ is thin then Γ is not neccesarily distance-regular
around x. In spite of that, if for every vertex x ∈X, the trivial module T x̂ is thin then,
for every x ∈X, we have that Γ is distance-regular around x. This condition was studied
by Terwilliger in [88]. For the sake of completeness, we next present a proof of this result
with a slightly different approach.

Theorem 3.7.1. With reference to Notation 3.5.2, the following (i)–(iii) are equivalent:

(i) For every x ∈X, the trivial module T x̂ is thin.

(ii) The vectors si := si(x) =
∑

y∈Γi(x)
ŷ (0≤ i≤ d), form a basis of the trivial module.

(iii) Γ is distance-regularized.

Moreover, if (i)–(iii) hold then Γ is distance-regular or distance-biregular.

Proof. We will show that (i) implies (ii), (ii) implies (iii) and (iii) implies (i).

(i) implies (ii): Pick x ∈X. If the trivial module T x̂ is thin, then, by Lemma 3.6.1, the
subspace E∗1(T x̂) is spanned by Rx̂= s1 and dim(E∗1(T x̂)) = 1. Moreover, by Lemma 3.4.7
we also have that E∗1(T x̂) is spanned by E∗1υ. Therefore, there exists α ∈ C such that
E∗1υ = αs1. This yields that ∑

y∈Γ1(x)
(υy−α)ŷ = 0,

and so, υy = υz for every y,z ∈ Γ1(x). Since by assumption the trivial module T x̂ is thin
for every vertex x ∈X, it follows from the above comments that υy = υz if y,z ∈X are
connected by a path of even length. In particular, for every y,z ∈ Γi(x) (0 ≤ i ≤ d) we
have υy = υz. Therefore, there exists a nonzero scalar αi such that E∗i υ = αisi (0≤ i≤ d).
The claim now immediately follows from Lemma 3.4.7 as the set {E∗i υ | 0≤ i≤ d} is a
basis for T x̂.

(ii) implies (iii): Pick x ∈X. Assume that the vectors si := si(x) (0≤ i≤ d) form a basis
of the trivial module. We observe that E∗j si = δi,jsi (0 ≤ i, j ≤ d). Moreover, note that
since T x̂ is a T -module, it is invariant under the action of A. It follows from Lemma 3.4.7
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that for every 0 ≤ i ≤ d, the vector Asi = AE∗i si is a linear combination of the vectors
sj (0≤ j ≤ d). However, it follows from Proposition 3.4.8 that Asi is a linear combination
of just si−1, si and si+1. Then, for every 0≤ i≤ d there exist scalars αi(x),βi(x),γi(x)∈C
such that

Asi = βi(x)si−1 +αi(x)si+γi(x)si+1,

where we assume that si = 0 whenever i < 0 or i > d. In particular,

AE∗i−1si−1 = βi−1(x)si−2 +αi−1(x)si−1 +γi−1(x)si,

AE∗i si = βi(x)si−1 +αi(x)si+γi(x)si+1,

AE∗i+1si+1 = βi+1(x)si+αi+1(x)si+1 +γi+1(x)si+2.

Multiplying the above equalities with E∗i and using property (eiv) in Section 3.1, we get

E∗i AE
∗
i−1si−1 = γi−1(x)si, (3.11)

E∗i AE
∗
i si = αi(x)E∗i si, (3.12)

E∗i AE
∗
i+1si+1 = βi+1(x)si+1. (3.13)

Pick a vertex y ∈ Γi(x). Computing the y-entry of (3.11), (3.12) and (3.13), we get

∑
z∈Γ(y)∩Γi−1(x)

1 = γi−1(x), (3.14)

∑
z∈Γ(y)∩Γi(x)

1 = αi(x), (3.15)

∑
z∈Γ(y)∩Γi+1(x)

1 = βi+1(x). (3.16)

Therefore, it follows from (3.14), (3.15) and (3.16) that ci(x,y) = γi−1(x), ai(x,y) = αi(x)
and bi(x,y) = βi+1(x). This shows that the intersection numbers of Γ with respect to x do
not depend on the choice of y ∈ Γi(x). Hence, Γ is distance-regular around x. As x ∈X
was arbitrary, it holds that Γ is distance-regularized.

(iii) implies (i): If Γ is distance-regularized then, Γ is distance-regular around every vertex.
Therefore, it immediately follows from Subsection 3.7.1 that the trivial T -module T x̂ is
thin for every vertex x ∈X.

The result now immediately follows from [41] as every distance-regularized graph is either
distance-regular or distance-biregular. �
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3.7.3 Bipartite graphs

With reference to Notation 3.5.2, assume that Γ is bipartite. Observe that in this case
rif(y) = 0 for every 0≤ i≤ d and for every y ∈ Γi(x). Therefore, we have the following
result.

Corollary 3.7.2. With reference to Notation 3.5.2, assume that Γ is bipartite. Then T x̂
is thin if and only if for 0≤ i≤ d there exist scalars αi, such that for every y ∈ Γi(x) we
have ri+1`(y) = αir

i(y).

Proof. Immediately from Theorem 3.5.3 and the above observation. �

Example 3.7.3. Consider graph Γ from Example 3.3.1 (see also Figure 3.1), and observe
that Γ is bipartite. Fix vertex 1 ∈X and note that d= 2. It is easy to see that for every
y ∈ Γi(1) (0≤ i≤ 2) we have ri+1`(y) = αir

i(y), where α0 = 2, α1 = 3 and α2 = 0. As Γ is
bipartite, it follows from Corollary 3.7.2 that the trivial module T 1̂ is thin.

3.7.4 Trees

With reference to Notation 3.5.2, assume that Γ is a tree. Observe that in this case (as
Γ is also bipartite) we have ri(y) = 1 and rif(y) = 0 for every 0 ≤ i ≤ d and for every
y ∈ Γi(x). Therefore, by Theorem 3.5.3, T x̂ is thin if and only if for 0 ≤ i ≤ d there
exist scalars αi, such that for every y ∈ Γi(x) we have ri+1`(y) = αi. Note however that
ri+1`(y) = |Γ(y)∩Γi+1(x)|= bi(x,y). It follows that the trivial module T x̂ is thin if and
only if the intersection numbers bi(x,y) do not depend on the choice of y ∈ Γi(x). As
ai(x,y) = 0 and ci(x,y) = 1 for every y ∈ Γi(x), we have the following corollary of Theorem
3.5.3.

Corollary 3.7.4. With reference to Notation 3.5.2, assume that Γ is a tree. Then T x̂ is
thin if and only if Γ is distance-regular around x.

3.7.5 Cartesian product P3� · · ·�P3

Let us first recall the definition of Cartesian product of graphs. Let Γ1 and Γ2 be finite
simple graphs with vertex set X1 and X2, respectively. Then the Cartesian product of
Γ1 and Γ2, denoted by Γ1�Γ2, has vertex set X1×X2. Vertices (x1,x2) and (y1,y2) are



42 CHAPTER 3. ON THE TRIVIAL T -MODULE OF A GRAPH

adjacent in Γ1�Γ2 if and only if either x1 = y1 and x2,y2 are adjacent in Γ2, or x2 = y2

and x1,y1 are adjacent in Γ1.

With reference to Notation 3.5.2, in this subsection we consider graph Γ = P3� · · ·�P3,
the Cartesian product of n copies of the path P3 on 3 vertices (cf. [34, p. 188]). Assume
that the vertex set and the edge set of P3 are {0,1,2} and {{0,1},{1,2}}, respectively.
Then the vertex set of Γ is

X = {(y1,y2, . . . ,yn) | yi ∈ {0,1,2} for each 1≤ i≤ n}.

Vertices y = (y1,y2, . . . ,yn) and z = (z1, z2, . . . , zn) are adjacent in Γ if and only if y and
z differ in exactly one coordinate (say coordinate i), and |yi− zi| = 1. Note that Γ is
bipartite. We assume that vertex x from Notation 3.5.2 is vertex x= (0,0, . . . ,0). Observe
that d= 2n and that for 0≤ i≤ 2n we have

Γi(x) = {(y1,y2, . . . ,yn) ∈X | y1 +y2 + · · ·+yn = i}.

For 1≤ i≤ n let us denote by ei the vertex of Γ, which has i-th coordinate equal to 1, and all
other coordinates equal to 0. For vertices y= (y1,y2, . . . ,yn), z = (z1, z2, . . . , zn)∈X let y+z
denote the n-tuple (y1 +z1,y2 +z2, . . . ,yn+zn). Note that y+z is not necessarily contained
inX. Furthermore, let us define A(y) = {j | 1≤ j≤n, yj = 0}, B(y) = {j | 1≤ j≤n, yj = 1}
and C(y) = {j | 1≤ j ≤ n, yj = 2}. Note that

|A(y)|+ |B(y)|+ |C(y)|= n, |B(y)|+ 2|C(y)|= ∂(x,y). (3.17)

Assume now that y = (y1,y2, . . . ,yn) ∈ Γi(x). Then ri(y) is equal to the number of walks
between x and y in the n-dimensional integer lattice, where for each step of the walk the
only possible directions are along one of the “vectors” ej (0≤ j ≤ n). This shows that

ri(y) =
(
i

y1

)(
i−y1
y2

)(
i−y1−y2

y3

)
· · ·
(
i−y1−·· ·−yn−1

yn

)

= i!(i−y1)!(i−y1−y2)! · · ·(i−y1−y2−·· ·−yn−1)!
y1!(i−y1)!y2!(i−y1−y2)! · · ·yn−1!(i−y1−y2−·· ·−yn−1)!yn!

= i!
y1!y2! · · ·yn−1!yn! = i!

2|C(y)| .

Observe also that

Γ(y)∩Γi+1(x) = {y+ ej | j ∈ A(y)}∪{y+ ej | j ∈B(y)}.
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Moreover, for j ∈A(y) we have |C(y+ej)|= |C(y)|, and for j ∈B(y) we have |C(y+ej)|=
|C(y)|+ 1. It follows that

ri+1`(y) =
∑

j∈A(y)
ri+1(y+ ej) +

∑
j∈B(y)

ri+1(y+ ej)

= |A(y)|(i+ 1)!
2|C(y)| + |B(y)|(i+ 1)!

2|C(y)|+1 = (i+ 1)!
2|C(y)|

(
|A(y)|+ |B(y)|

2

)
.

Finally, it follows from (3.17) that |A(y)|+ |B(y)|/2 = (2n− i)/2, and so

ri+1`(y) = (i+ 1)!(2n− i)
2|C(y)|+1 .

This shows that for every y ∈ Γi(x) (0≤ i≤ 2n) we have ri+1`(y) = αir
i(y), where αi =

(i+ 1)(2n− i)/2 is independent on the choice of y ∈ Γi(x). As Γ is bipartite, it follows
from Corollary 3.7.2 that the trivial module T x̂ is thin.

3.7.6 A construction

In this subsection we show how to construct new graphs, that satisfy the equivalent
conditions of Theorem 3.5.3 for a certain vertex. To do this, let Γ and Σ denote finite,
simple graphs with vertex set X and Y , respectively. Assume that Γ is connected. Fix a
vertex x ∈X and consider the Cartesian product Γ�Σ. Let H denote a graph obtained
by adding a new vertex w to the graph Γ�Σ, and connecting this new vertex w with all
vertices (x,y), where y is an arbitrary vertex of Σ. See for example Figure 3.3 below.

w

Figure 3.3: Graph H obtained from the Cartesian product Γ�P2 where Γ is the graph from
Example 3.3.1 and P2 denotes the path on 2 vertices.

Note that for an arbitrary vertex (x′,y′) of H different from w, the distance between w
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and (x′,y′) in H is equal to the distance between x and x′ in Γ plus one:

∂H(w,(x′,y′)) = ∂Γ(x,x′) + 1.

It follows that dH = d+ 1, where dH is the eccentricity of w in H and d is the eccentricity
of x in Γ. Moreover, for 1≤ i≤ dH we have

Hi(w) = Γi−1(x)×Y = {(u,y) | u ∈ Γi−1(x),y ∈ Y }.

In what follows, we use subscripts to distinguish the number of walks of a particular shape
in H and in Γ. For example, for x′ ∈ Γi(x), we denote the number of walks from x to x′ of
shape ri+1` with respect to x by ri+1`Γ(x′). For (x′,y′) ∈Hi(w), we denote the number
of walks from w to (x′,y′) of shape ri+1` with respect to w by ri+1`H((x′,y′)). It is easy
to see that for (x′,y′) ∈Hi(w) (1≤ i≤ dH) we have

riH((x′,y′)) = ri−1
Γ (x′), ri+1`H((x′,y′)) = ri`Γ(x′),

rifH((x′,y′)) = ri−1fΓ(x′) + |Σ(y′)|ri−1
Γ (x′), (3.18)

where Σ(y′) is the set of neighbours of y′ in Σ. Assume now that for vertex x of Γ the
equivalent conditions of Theorem 3.5.3 are satisfied, and that Σ is regular with valency k.
It follows from (3.18) that for 1≤ i≤ dH and for every (x′,y′) ∈Hi(w) we have

ri+1`H((x′,y′)) = ri`Γ(x′) = αi−1r
i−1
Γ (x′) = αi−1r

i
H((x′,y′))

and
rifH((x′,y′)) = ri−1fΓ(x′) + |Σ(y′)|ri−1

Γ (x′) = (βi−1 +k)ri−1
Γ (x′).

As we also have r`H(w) = |Y | = |Y |r0
H(w) and fH(w) = 0, we see that vertex w of H

satisfies the condition of Theorem 3.5.3(iii). Therefore, by Theorem 3.5.3, the trivial
T (w)-module is thin.



Chapter 4

On the Terwilliger algebra of
distance-biregular graphs

Let Γ denote a distance-biregular graph with vertex set X. Fix x ∈X and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. In this chapter we consider

irreducible T -modules with endpoint 1. We show that there are no such modules if and
only if Γ is the complete bipartite graph K1,n (n≥ 1) and x is a vertex of Γ with valency
1. If the valency of x is at least 2 then we show that, up to isomorphism, there is a unique
irreducible T -module with endpoint 1, and this module is thin.

The chapter is organized as follows. In Sections 4.1 and 4.2 we recall basic definitions and
results about distance-biregular graphs and Terwilliger algebras. In Section 4.2 we also
prove that T has no irreducible modules with endpoint 1 if and only if x is of valency
1. In Section 4.3 we introduce the so-called intersection diagram of a distance-biregular
graph. In Section 4.4 we evaluate certain products of matrices in algebra T . In Sections
4.5 and 4.6 we prove our main results.

The chapter is based on joint work with Štefko Miklavič. Our main results are currently
published in Linear Algebra and its Applications (2020); see [26] for more details.

4.1 Preliminaries

In this section we review some definitions and basic concepts regarding distance-biregular
graphs. Throughout this chapter, Γ = (X,R) will denote a finite, undirected, connected
graph, without loops and multiple edges, with vertex set X and edge set R.

45
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Let x,y ∈X. The distance between x and y, denoted by ∂(x,y), is the length of a shortest
xy-path. The eccentricity of x, denoted by ε(x), is the maximum distance between
x and any other vertex of Γ: ε(x) = max{∂(x,z) | z ∈X}. Let D denote the maximum
eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i we define
Γi(x) by

Γi(x) = {y ∈X | ∂(x,y) = i} .

We will abbreviate Γ(x) = Γ1(x). Note that Γ(x) is the set of neighbours of x. Observe
that Γi(x) is empty if and only if i < 0 or i > ε(x). Assume for a moment that y ∈ Γi(x)
for some 0≤ i≤ ε(x) and let z be a neighbour of y. Then, by the triangle inequality,

∂(x,z) ∈ {i−1, i, i+ 1} ,

and so z ∈ Γi−1(x)∪Γi(x)∪Γi+1(x). For y ∈ Γi(x) we therefore define the following
numbers:

ai(x,y) = |Γi(x)∩Γ(y)| , bi(x,y) = |Γi+1(x)∩Γ(y)| , ci(x,y) = |Γi−1(x)∩Γ(y)| .

We say that a vertex x ∈ X is distance-regularized (or that Γ is distance-regular
around x) if the numbers ai(x,y), bi(x,y) and ci(x,y) do not depend on the choice of
y ∈ Γi(x) (0≤ i≤ ε(x)). In this case, the numbers ai(x,y), bi(x,y) and ci(x,y) are simply
denoted by ai(x), bi(x) and ci(x) respectively, and are called the intersection numbers
of x. Observe that if x is distance-regularized and ε(x) = d, then a0(x) = c0(x) = bd(x) = 0,
b0(x) = |Γ(x)| and c1(x) = 1. Note also that for every 1≤ i≤ d we have that bi−1(x)> 0
and ci(x)> 0. For convenience we define ci(x) = bi(x) = 0 for i < 0 and i > d.

Graph Γ is said to be distance-regularized if each of its vertices is distance-regularized.
A distance-regularized graph is called distance-regular if all of its vertices have the
same intersection numbers, and is called distance-biregular otherwise. By [41] every
distance-biregular graph is bipartite, and the vertices of the same bipartite class have the
same intersection numbers. See [22, 31, 32, 77, 80] for further research on distance-biregular
graphs.

Assume for the moment that Γ is distance-biregular and pick x ∈X. As Γ is bipartite, we
have ai(x) = 0 for 0≤ i≤ ε(x) (otherwise there would exist a cycle of odd length in Γ).
Furthermore, let Y and Y ′ be the bipartite parts of Γ. Note that all vertices from Y (Y ′,
respectively) have the same eccentricity. We denote this common eccentricity by d (d′,
respectively). Observe that |d−d′| ≤ 1 and that D = max{d,d′}. For x ∈ Y , y ∈ Y ′ and
an integer i we abbreviate ci := ci(x), bi := bi(x), c′i := ci(y) and b′i := bi(y).
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4.2 The Terwilliger algebra

Recall graph Γ = (X,R) from Section 4.1. In this section we recall some definitions and
basic results concerning a Terwilliger algebra of Γ. We refer the reader to Section 3.1 for
further details.

Let C denote the complex number field. Let MatX(C) denote the C-algebra consisting of
all matrices whose rows and columns are indexed by X and whose entries are in C. Let
V = CX denote the vector space over C consisting of column vectors whose coordinates
are indexed by X and whose entries are in C. We observe that MatX(C) acts on V by
left multiplication. We call V the standard module. We endow V with the Hermitian
inner product 〈· , · 〉 that satisfies 〈u,v〉= u>v for u,v ∈ V , where > denotes transpose and
denotes complex conjugation. For y ∈X, let ŷ denote the element of V with a 1 in the

y-coordinate and 0 in all other coordinates. We observe that {ŷ | y ∈X} is an orthonormal
basis for V .

We recall the Bose-Mesner algebra of Γ. For 0≤ i≤D, where D denotes the diameter of
Γ, let Ai ∈MatX(C) denote the matrix with (x,y)-entry defined by

(Ai)xy =

 1 if ∂(x,y) = i,

0 if ∂(x,y) 6= i,
(x,y ∈X).

The matrix A :=A1 is just the usual adjacency matrix of Γ. For notational convenience,
set Ai = 0 for i < 0 and i > D. We observe (ai) A0 = I; (aii) ∑D

i=0Ai = J ; (aiii) Ai = Ai

(0 ≤ i ≤ D); (aiv) A>i = Ai (0 ≤ i ≤ D); where I (resp. J) denotes the identity matrix
(resp. the all 1’s matrix) in MatX(C). The adjacency algebra of Γ, also called the
Bose-Mesner algebra of Γ, is the commutative subalgebra M of MatX(C) generated
by the adjacency matrix A of Γ.

We now recall the dual idempotents of Γ. To do this, fix a vertex x ∈X and let d= ε(x).
We view x as a base vertex. For 0≤ i≤ d, let E∗i = E∗i (x) denote the diagonal matrix in
MatX(C) with (y,y)-entry as follows:

(E∗i )yy =

 1 if ∂(x,y) = i,

0 if ∂(x,y) 6= i
(y ∈X).

We call E∗i the i-th dual idempotent of Γ with respect to x [89, p. 378]. We also
observe (ei) ∑d

i=0E
∗
i = I; (eii) E∗i = E∗i (0 ≤ i ≤ d); (eiii) E∗>i = E∗i (0 ≤ i ≤ d); (eiv)
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E∗i E
∗
j = δijE

∗
i (0≤ i, j ≤ d). By these facts, matrices E∗0 ,E∗1 , . . . ,E∗d form a basis for the

commutative subalgebra M∗ =M∗(x) of MatX(C). We call M∗ the dual Bose-Mesner
algebra of Γ with respect to x [89, p. 378]. For convenience we define E∗−1 and E∗d+1
to be the zero matrix of MatX(C). Note that for 0≤ i≤ d we have

E∗i V = Span{ŷ | y ∈ Γi(x)}. (4.1)

We call E∗i V the i-th subconstituent of Γ with respect to x. Note that

V = E∗0V +E∗1V + · · ·+E∗dV (orthogonal direct sum).

Recall that the set {ŷ | y ∈X} is an orthonormal basis for V . Therefore, for every υ ∈ V
we have that υ =

∑
y∈X

υy ŷ for some υy ∈ C. In addition,

E∗i υ =
∑
y∈X

υy E
∗
i ŷ =

∑
y∈Γi(x)

υy ŷ.

We recall the definition of a Terwilliger algebra of Γ. The Terwilliger algebra was first
defined in [89, Definition 3.3], where it was called the subconstituent algebra. It
was first defined for commutative association schemes, but the definition can be easily
generalized to an arbitrary graph as follows. Let T = T (x) denote the subalgebra of
MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect
to x. Recall that M is generated by A. So, T is generated by A and the dual idempotents.
We observe that T has finite dimension. In addition, since by construction T is generated
by real-symmetric matrices, it follows that T is closed under the conjugate-transpose map.
For a vector subspace W ⊆ V , we denote by TW the subspace {Bw |B ∈ T,w ∈W}.

We now recall the lowering matrix and the raising matrix of the algebra T .

Definition 4.2.1. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x ∈X
and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Define L= L(x) and
R =R(x) in MatX(C) by

L=
d∑
i=1

E∗i−1AE
∗
i , R =

d−1∑
i=0

E∗i+1AE
∗
i .

We refer to L and R as the lowering and the raising matrix with respect to x,
respectively. Note that R,L ∈ T , R = L> and A=R+L.
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Observe also that for y,z ∈X we have that the (z,y)-entry of L equals 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y)−1, and 0 otherwise. Similarly, the (z,y)-entry of R equals 1 if ∂(z,y) = 1
and ∂(x,z) = ∂(x,y) + 1, and 0 otherwise.

By a T -module we mean a subspace of V which is B-invariant for every B ∈ T . Let
W denote a T -module. Then W is said to be irreducible whenever W is nonzero and
W contains no T -modules other than 0 and W . Since the algebra T is closed under the
conjugate-transpose map, it turns out that any T -module is an orthogonal direct sum of
irreducible T -modules. In particular, the standard module V is an orthogonal direct sum
of irreducible T -modules.

Let W be an irreducible T -module. We observe that W is an orthogonal direct sum
of the nonvanishing subspaces E∗iW for 0 ≤ i ≤ d. By the endpoint of W we mean
min{i | 0≤ i≤ d, E∗iW 6= 0}. We say that W is thin whenever the dimension of E∗iW is
at most 1 for 0≤ i≤ d.

Let W and W ′ denote two irreducible T -modules. By a T -isomorphism from W to
W ′ we mean a vector space isomorphism σ :W →W ′ such that (σB−Bσ)W = 0 for all
B ∈ T . The T -modules W and W ′ are said to be T -isomorphic (or simply isomorphic)
whenever there exists a T -isomorphism σ :W →W ′. We note that isomorphic irreducible
T -modules have the same endpoint. It turns out that two non-isomorphic irreducible
T -modules are orthogonal.

It is known that T has a unique irreducible T -module with endpoint 0, namely the subspace
T x̂ = {Bx̂ |B ∈ T}. We refer to T x̂ as the trivial T -module. By Theorem 3.5.3 and
Subsection 3.7.1, it turns out that if x is distance-regularized, the trivial T -module is thin.
In this case vectors si (0≤ i≤ d), where

si =
∑

y∈Γi(x)
ŷ,

form a basis of the trivial T -module. In particular, if Γ is distance-biregular, we observe
that the trivial T -module is thin.

In the rest of this chapter we will study irreducible T -modules with endpoint 1. Therefore,
we will first characterize those distance-regularized vertices x of Γ, for which the
corresponding Terwilliger algebra T = T (x) has no irreducible T -modules with endpoint 1.

Proposition 4.2.2. Let Γ = (X,R) denote a finite, simple and connected graph. Pick
x ∈X which is distance-regularized, and let T = T (x) denote the corresponding Terwilliger
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algebra. Then, there are no irreducible T -modules with endpoint 1 if and only if |Γ(x)|= 1.

Proof. Let V denote the standard module, and let W0 denote the trivial T -module. Recall
that W0 is thin since x is distance-regularized.

Assume first that |Γ(x)|= 1 and let y denote the unique vertex in Γ(x). Recall that by
(4.1) we have that E∗1V is spanned by ŷ. As vectors si (0≤ i≤ ε(x)) form a basis for W0,
we have that E∗1W0 is also spanned by ŷ. Suppose now that W1 is an irreducible T -module
with endpoint 1 and pick a nonzero vector w ∈ E∗1W1. As E∗1W1 ⊆ E∗1V , we have that
w = α ŷ for some scalar α ∈ C. However, W0 and W1 are not isomorphic (they have
different endpoints), and are therefore orthogonal. This implies that α= 0, a contradiction.

Assume next that T has no irreducible modules with endpoint 1. Recall that V is an
orthogonal direct sum of irreducible T -modules. As none of these modules has endpoint 1
and as W0 is the unique irreducible T -module with endpoint 0, we therefore have that
dim(E∗1V ) = dim(E∗1W0) = 1. It follows from (4.1) that |Γ(x)|= 1. �

Observe that the only distance-biregular graphs which have vertices with valency 1, are
the complete bipartite graphs K1,n for n≥ 1.

4.3 The intersection diagrams

Throughout this section let Γ = (X,R) denote a distance-biregular graph. We define
certain partition of X, that we will find useful later.

Definition 4.3.1. Let Γ = (X,R) denote a distance-biregular graph with diameter D. Pick
x,y ∈X, such that y ∈ Γ(x). For integers i, j we define sets Di

j :=Di
j(x,y) as follows:

Di
j = Γi(x)∩Γj(y).

Observe that Di
j = ∅ if i < 0 or j < 0. Similarly, Di

j = ∅ if i > ε(x) or j > ε(y). Furthermore,
by the triangle inequality we have that Di

j = ∅ if |i− j| ≥ 2. Note also that as Γ is bipartite,
the set Di

i is empty for 0 ≤ i ≤D. The collection of all the subsets Di
i−1 (1 ≤ i ≤ ε(x))

and Di−1
i (1≤ i≤ ε(y)) is called the intersection diagram of Γ with respect to the

edge xy. See Figure 4.1 for an example.

For the rest of the chapter we adopt the following notation.
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Notation 4.3.2. Let Γ = (X,R) denote a distance-biregular graph, with vertex set X,
edge set R and diameter D. Let X = Y ∪Y ′ be a bipartition of Γ. Let d (d′, respectively)
denote the eccentricity of vertices from Y (Y ′, respectively). Let ci, bi be the intersection
numbers of the vertices from Y . Similarly, let c′i, b′i be the intersection numbers of the
vertices from Y ′. Let Ai ∈MatX(C) denote the i-th distance matrix of Γ. We abbreviate
A := A1. Fix x ∈ X with |Γ(x)| ≥ 2. Without loss of generality we assume that x ∈ Y .
Let E∗i ∈MatX(C) (0 ≤ i ≤ d) denote the dual idempotents of Γ with respect to x. For
convenience we set E∗d+1 = 0. Let V denote the standard module of Γ and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. Let L= L(x) and R =R(x) denote
the lowering and the raising matrix of T , respectively. Let J denote the all 1’s matrix in
MatX(C). For y ∈ Γ(x) let the sets Di

j =Di
j(x,y) be as defined in Definition 4.3.1.

The proofs of the following lemmas are straightforward and therefore left to the reader.

Lemma 4.3.3. With reference to Notation 4.3.2, pick y ∈ Γ(x) and let Di
j = Di

j(x,y).
Then the following (i)–(iv) hold for 1≤ i≤D.

(i) If w ∈Di
i−1 then Γ(w)⊆Di−1

i−2 ∪D
i−1
i ∪Di+1

i .

(ii) If w ∈Di−1
i then Γ(w)⊆Di−2

i−1 ∪Di
i−1∪Di

i+1.

(iii) Γi(x) =Di
i−1∪Di

i+1 and Γi(y) =Di−1
i ∪Di+1

i .

(iv) If Di
i+1 6= ∅ (Di+1

i 6= ∅, respectively) then Dj
j+1 6= ∅ (Dj+1

j 6= ∅, respectively) for
every 0≤ j ≤ i.

Lemma 4.3.4. With reference to Notation 4.3.2, pick y ∈ Γ(x) and let Di
j = Di

j(x,y).
Assume that z ∈Di

i−1 (1≤ i≤ d). Then, the following (i)–(iii) hold.

(i)
∣∣∣Γ(z)∩Di−1

i−2
∣∣∣= c′i−1.

(ii)
∣∣∣Γ(z)∩Di+1

i

∣∣∣= bi.

(iii)
∣∣∣Γ(z)∩Di−1

i

∣∣∣= ci− c′i−1 = b′i−1− bi.

Lemma 4.3.5. With reference to Notation 4.3.2, pick y ∈ Γ(x) and let Di
j = Di

j(x,y).
Assume that z ∈Di−1

i (1≤ i≤ d′). Then, the following (i)–(iii) hold.

(i)
∣∣∣Γ(z)∩Di−2

i−1
∣∣∣= ci−1.

(ii)
∣∣∣Γ(z)∩Di

i+1
∣∣∣= b′i.
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(iii)
∣∣∣Γ(z)∩Di

i−1
∣∣∣= c′i− ci−1 = bi−1− b′i.

With reference to Notation 4.3.2, recall that d′ ∈ {d−1,d,d+1}. In Figure 4.1, a graphical
representation of an intersection diagram for the case d′ = d+ 1 is presented. A line
between Di

j and Di′
j′ indicates the possibility of existence of edges between these two sets.

The intersection diagrams for the other two cases (that is, for the cases d′ = d− 1 and
d′ = d) are similar and we will not present them here.

Di
i+1 Di+1

i+2Di−1
i

Di+1
i Di+2

i+1Di
i−1

x

y

Dd−1
d Dd

d+1Dd−2
d−1

Dd
d−1Dd−1

d−2· · · · · ·

· · · · · ·

Figure 4.1: The intersection diagram of a distance-biregular graph Γ where d′ = d+ 1.

4.4 Some products in the Terwilliger algebra

With respect to Notation 4.3.2, in this section, we evaluate several products in the
Terwilliger algebra T that we will need later in this chapter.

Proposition 4.4.1. With reference to Notation 4.3.2, pick y,z ∈X. The (z,y)-entry of
E∗i AjE

∗
k equals 1 if ∂(x,z) = i, ∂(y,z) = j and ∂(x,y) = k, and 0 otherwise. In particular,

the following (i), (ii) hold:

(i) if one of i, j,k is greater than the sum of the other two, then E∗i AjE∗k = 0;

(ii) if i+ j+k is odd, then E∗i AjE∗k = 0.

Proof. It suffices to observe that (E∗i AjE∗k)zy = (E∗i )zz (Aj)zy (E∗k)yy. Part (i) now follows
from the definition of matrices E∗i ,Aj ,E∗k and the triangle inequality, and part (ii) holds
since Γ is bipartite. �

Corollary 4.4.2. With reference to Notation 4.3.2, pick y,z ∈X. Then the (z,y)-entry
of E∗i AjE∗1 equals 1 if y ∈ Γ(x) and z ∈ Di

j(x,y), and 0 otherwise. Moreover, if either
|i− j|> 1 or i= j then E∗i AjE∗1 = 0.
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Proof. Immediately from Preposition 4.4.1. �

Proposition 4.4.3. With reference to Notation 4.3.2, pick y,z ∈X. If y ∈ Γ(x) then the
(z,y)-entry of AE∗i AjE∗1 equals

∣∣∣Γ(z)∩Di
j(x,y)

∣∣∣.
Proof. By Corollary 4.4.2 and elementary matrix multiplication. �

Recall that a sequence of vertices [y0,y1, · · · ,yt] of Γ is a walk if yi−1yi is an edge of Γ for
1≤ i≤ t.

Proposition 4.4.4. With reference to Notation 4.3.2, pick y,z ∈X and let m be a positive
integer. Assume that y ∈ Γi(x). Then the (z,y)-entry of the matrix RmL is equal to the
number of walks [y = y0,y1, · · · ,ym+1 = z] such that y1 ∈ Γi−1(x) and yj ∈ Γi+j−2(x) for
every 2≤ j ≤m+ 1.

Proof. Immediate from Definition 4.2.1 and elementary matrix multiplication. �

Proposition 4.4.5. With reference to Notation 4.3.2, pick y,z ∈X. Then the following
holds for 1≤ i≤ d:

(
E∗i A

i−1E∗1
)
zy

=


i−1∏
k=1

c′k if y ∈ Γ(x) and z ∈Di
i−1(x,y),

0 otherwise.

Proof. It is straightforward to check that the (z,y)-entry of E∗i Ai−1E∗1 is zero if either
y 6∈ Γ(x) or z 6∈ Γi(x). Suppose now that y ∈ Γ(x) and z ∈ Γi(x). Then, it follows that(
E∗i A

i−1E∗1
)
zy

=
(
Ai−1

)
zy
, which is further equal to the number of walks of length i−1

between y and z. Observe that by the triangle inequality and since Γ is bipartite we have
that ∂(y,z) ∈ {i+ 1, i−1}. Therefore, if ∂(y,z) = i+ 1, we have that

(
E∗i A

i−1E∗1
)
zy

= 0.
Moreover, if ∂(y,z) = i−1 then by Lemma 4.3.4(i) there are precisely c′i−1 · · ·c′1 walks of
length i−1 between y and z. The result follows. �

Lemma 4.4.6. With reference to Notation 4.3.2, the following holds for 1≤ i≤ d:

E∗i Ai−1E
∗
1 =

 i−1∏
k=1

1
c′k

E∗i Ai−1E∗1 .

In particular, E∗i Ai−1E∗1 ∈ T .

Proof. Straightforward from Corollary 4.4.2 and Proposition 4.4.5. �
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Proposition 4.4.7. With reference to Notation 4.3.2, pick y,z ∈X. Then the following
holds for 1≤ i≤ d:

(AE∗i Ai−1E
∗
1)zy =



bi−1 if y ∈ Γ(x) and z ∈Di−1
i−2(x,y),

bi−1− b′i if y ∈ Γ(x) and z ∈Di−1
i (x,y),

c′i if y ∈ Γ(x) and z ∈Di+1
i (x,y),

0 otherwise.

Proof. Immediately from Preposition 4.4.3 and Lemmas 4.3.4 and 4.3.5. �

Corollary 4.4.8. With reference to Notation 4.3.2, the following (i)–(iii) hold for 1≤ i≤ d:

(i) AE∗i Ai−1E
∗
1 = bi−1E

∗
i−1Ai−2E

∗
1 +

(
bi−1− b′i

)
E∗i−1AiE

∗
1 + c′iE

∗
i+1AiE

∗
1 .

(ii) LE∗i Ai−1E
∗
1 = bi−1E

∗
i−1Ai−2E

∗
1 +

(
bi−1− b′i

)
E∗i−1AiE

∗
1 .

(iii) RE∗i Ai−1E
∗
1 = c′iE

∗
i+1AiE

∗
1 .

Proof. Straightforward from Proposition 4.4.7 and Definition 4.2.1. �

Proposition 4.4.9. With reference to Notation 4.3.2, pick y,z ∈X. Then the following
holds for 0≤ i≤ d:

(
E∗iR

iLE∗1
)
zy

=


i∏

k=1
ck if y ∈ Γ(x) and z ∈ Γi(x),

0 otherwise.

Proof. It is straightforward to check that the (z,y)-entry of E∗iRiLE∗1 is zero if either
y 6∈ Γ(x) or z 6∈ Γi(x). Suppose now that y ∈ Γ(x) and z ∈ Γi(x). Then, it holds that(
E∗iR

iLE∗1
)
zy

=
(
RiL

)
zy
. By Proposition 7.2.3, the (z,y)-entry of RiL is equal to the

number of paths of length i from z to x. Since x is distance-regularized we observe that
there are precisely cici−1 · · ·c1 such paths. The claim follows. �

Corollary 4.4.10. With reference to Notation 4.3.2, the following holds for 0≤ i≤ d:

E∗iR
iLE∗1 =

 i∏
k=1

ck

E∗i JE∗1 .
In particular, E∗i JE∗1 ∈ T .

Proof. Immediately from Proposition 4.4.9. �
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Lemma 4.4.11. With reference to Notation 4.3.2, the following holds for 0≤ i≤ d:

E∗i Ai+1E
∗
1 = E∗i JE

∗
1 −E∗i Ai−1E

∗
1 .

In particular, E∗i Ai+1E∗1 ∈ T .

Proof. By (aii) in Section 4.2 and Corollary 4.4.2 we have that

E∗i JE
∗
1 =

d∑
k=0

E∗i AkE
∗
1 = E∗i Ai−1E

∗
1 +E∗i Ai+1E

∗
1 .

The second part of the claim follows from Lemma 4.4.6 and Corollary 4.4.10. �

4.5 Irreducible T -modules with endpoint 1

With reference to Notation 4.3.2, let W denote an irreducible T -module with endpoint 1.
In this section we show that W is thin and find a basis for W . We start with the following
lemma.

Lemma 4.5.1. With reference to Notation 4.3.2, pick w ∈E∗1V , w 6= 0, which is orthogonal
to s1. Then the following holds for 0≤ i≤ d:

E∗i Ai+1E
∗
1w =−E∗i Ai−1E

∗
1w.

Proof. By Lemma 4.4.11 we have

E∗i Ai+1E
∗
1w = E∗i JE

∗
1w−E∗Ai−1E

∗
1w.

However, as w and s1 are orthogonal and E∗1w =w, we have that E∗i JE∗1w = 0. The result
follows. �

Corollary 4.5.2. With reference to Notation 4.3.2, pick w ∈ E∗1V , w 6= 0, which is
orthogonal to s1. Then the following (i)–(iii) hold for 1≤ i≤ d:

(i) AE∗i Ai−1E
∗
1w = b′iE

∗
i−1Ai−2E

∗
1w+ c′iE

∗
i+1AiE

∗
1w.

(ii) LE∗i Ai−1E
∗
1w = b′iE

∗
i−1Ai−2E

∗
1w.

(iii) RE∗i Ai−1E
∗
1w = c′iE

∗
i+1AiE

∗
1w.
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Proof. Straightforward from Corollary 4.4.8, Lemma 4.5.1 and Definition 4.2.1. �

Proposition 4.5.3. With reference to Notation 4.3.2, pick w ∈ E∗1V , w 6= 0, which
is orthogonal to s1. Let W denote the vector subspace of V spanned by the vectors
{E∗i Ai−1E∗1w | 1≤ i≤ d}. Then W is a thin irreducible T -module with endpoint 1.

Proof. Observe first that by (eiv) in Section 4.2, the subspace W is invariant under the
action of the dual idempotents. By Corollary 4.5.2 it follows that W is A-invariant as well.
Recall that algebra T is generated by A and the dual idempotents. Therefore, W is a
T -module. Let us now show that W is irreducible. Recall that W is an orthogonal direct
sum of irreducible T -modules. Since E∗0W is the zero subspace and E∗1A0E∗1w = w 6= 0,
there exists an irreducible T -module W ′, such that the endpoint of W ′ is 1 and W ′ ⊆W .
Consequently, E∗1W ′ ⊆E∗1W . However, the dimension of E∗1W is 1, and so E∗1W ′ =E∗1W .
But now we have

W = TE∗1W = TE∗1W
′ ⊆W ′,

implying that W =W ′. Hence, W is irreducible and its endpoint equals 1. It is also clear
that W is thin. �

Lemma 4.5.4. With reference to Notation 4.3.2, pick w ∈E∗1V , w 6= 0, which is orthogonal
to s1. Then the following (i), (ii) hold:

(i) c′i
∥∥∥E∗i+1AiE

∗
1w
∥∥∥2

= b′i+1 ‖E∗i Ai−1E∗1w‖
2 (1≤ i≤ d).

(ii)
〈
E∗i Ai−1E∗1w,E

∗
jAj−1E∗1w

〉
= δij

i−1∏
k=1

b′k+1
c′k
‖w‖2 (1≤ i, j ≤ d).

Proof. (i) Pick 1≤ i≤ d. By Corollary 4.5.2 we have

c′i
∥∥∥E∗i+1AiE

∗
1w
∥∥∥2

=
〈
c′iE
∗
i+1AiE

∗
1w, E

∗
i+1AiE

∗
1w
〉

=
〈
RE∗i Ai−1E

∗
1w, E

∗
i+1AiE

∗
1w
〉

=
〈
E∗i Ai−1E

∗
1w, LE

∗
i+1AiE

∗
1w
〉

=
〈
E∗i Ai−1E

∗
1w, b

′
i+1E

∗
i Ai−1E

∗
1w
〉

= b′i+1 ‖E∗i Ai−1E
∗
1w‖

2 .

(ii) If i 6= j, then the result follows by (eii), (eiii) and (eiv) from Section 4.2. Otherwise,
the claim follows from (i) above by a straightforward induction argument. �

Corollary 4.5.5. With reference to Notation 4.3.2, pick w ∈ E∗1V , w 6= 0, which is
orthogonal to s1. Then the following (i)–(iii) hold:
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(i) If d′ = d−1 then E∗i Ai−1E∗1w 6= 0 (1≤ i≤ d−2) and

E∗d−1Ad−2E
∗
1w = E∗dAd−1E

∗
1w = 0.

(ii) If d′ = d then E∗i Ai−1E∗1w 6= 0 for 1≤ i≤ d−1 and E∗dAd−1E
∗
1w = 0.

(iii) If d′ = d+ 1 then E∗i Ai−1E∗1w 6= 0 for 1≤ i≤ d.

Proof. We first recall that b′d′ = b′d′+1 = 0 and b′i−1 6= 0, c′i 6= 0 for 1 ≤ i ≤ d′. The result
now follows immediately from Lemma 4.5.4. �

Theorem 4.5.6. With reference to Notation 4.3.2, pick w ∈ E∗1V , w 6= 0, which is
orthogonal to s1. Let W denote the vector subspace of V spanned by the vectors
E∗i Ai−1E∗1w (1 ≤ i ≤ d). Then W is a thin irreducible T -module with endpoint 1 and
the vectors {E∗i Ai−1E∗1w | 1 ≤ i ≤ d′−1} form an orthogonal basis of W . In particular,
the dimension of W is d′−1.

Proof. The first part of the claim follows from Proposition 4.5.3. We observe that vectors
E∗i Ai−1E∗1w (1≤ i≤ d′−1) are linearly independent since they are nonzero and pairwise
orthogonal by Lemma 4.5.4 and Corollary 4.5.5. The result follows from Corollary 4.5.5. �

Theorem 4.5.7. With reference to Notation 4.3.2, let W denote an irreducible T -module
with endpoint 1. Then W is thin with dimension d′−1. Moreover, for w ∈ E∗1W , w 6= 0,
the vectors {E∗i Ai−1E∗1w | 1≤ i≤ d′−1} form an orthogonal basis of W .

Proof. Let W ′ denote the vector subspace of V spanned by vectors E∗i Ai−1E∗1w (1≤ i≤
d′− 1). Recall that the unique irreducible T -module with endpoint 0 and W are not
isomorphic, and so w is orthogonal to s1. By Theorem 4.5.6, W ′ is a T -module. Note
that W ′ is nonzero and contained in W . As W is irreducible, we have that W =W ′. The
result now follows from Theorem 4.5.6 �

4.6 The isomorphism class and the action of the
adjacency matrix

With reference to Notation 4.3.2, in this section we first show that any two irreducible
T -modules with endpoint 1 are isomorphic. We also display a matrix representing the
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action of matrix A on an irreducible T -module with endpoint 1 with respect to a basis
given in the statement of Theorem 4.5.7.

Theorem 4.6.1. With reference to Notation 4.3.2, there is, up to isomorphism, a unique
irreducible T -module with endpoint 1.

Proof. Let W and W ′ be irreducible T -modules with endpoint 1, and pick any nonzero
vectors w ∈ E∗1W and w′ ∈ E∗1W ′. By Theorem 4.5.7, it follows that the sets

{
E∗i Ai−1E

∗
1w | 1≤ i≤ d′−1

}
and

{
E∗i Ai−1E

∗
1w
′ | 1≤ i≤ d′−1

}
are orthogonal bases of W and W ′, respectively. Hence, the linear map σ : W →W ′,
defined by σ (E∗i Ai−1E∗1w) = E∗i Ai−1E∗1w

′ is a vector space isomorphism. Furthermore,
σ is a T -module isomorphism since by Corollary 4.5.2(i) and (eiv) from Section 4.2, it
commutes with A and E∗i (0≤ i≤ d). Thus W and W ′ are T -isomorphic. �

Theorem 4.6.2. With reference to Notation 4.3.2, let W denote an irreducible T -module
with enpoint 1. Pick w ∈ E∗1W , w 6= 0, and recall that

B =
{
E∗i Ai−1E

∗
1w | 1≤ i≤ d′−1

}
is a basis of W . Then the matrix representing the action of A on W with respect to the
(ordered) basis B is given by



0 b′2
c′1 0 b′3

c′2
. . . . . .
. . . . . . b′d′−2

c′d′−3 0 b′d′−1
c′d′−2 0


.

Proof. Immediately from Corollary 4.5.2(i). �



Chapter 5

On bipartite graphs with exactly one
irreducible T -module with endpoint 1,
which is thin: the case when the base
vertex is distance-regularized

Let Γ denote a finite, simple, connected and bipartite graph. Fix a vertex x of Γ and let
T = T (x) denote the Terwilliger algebra of Γ with respect to x. Assume that x is a

distance-regularized vertex, which is not a leaf. We consider the property that Γ has, up
to isomorphism, a unique irreducible T -module with endpoint 1, and that this T -module
is thin. The main result of the chapter is a combinatorial characterization of this property.

The chapter is organized as follows. In Sections 5.1 and 5.2 we recall basic definitions
and results about distance-regularity around a vertex, about Terwilliger algebras and
about intersection diagrams. In Section 5.3 we then state our main result in Theorem
5.3.4. In Section 5.4, we prove that certain matrices of the Terwilliger algebra are linearly
dependent, and we use this in Sections 5.5 and 5.6 to prove our main result. We present
some examples in Section 5.7.

The chapter is based on joint work with Štefko Miklavič. Our main results are currently
published in European Journal of Combinatorics (2021); see [27] for more details.
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5.1 Preliminaries

In this section we review some definitions and basic concepts. Throughout this chapter,
Γ = (X,R) will denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R.

Let x,y ∈X. The distance between x and y, denoted by ∂(x,y), is the length of a shortest
xy-path. The eccentricity of x, denoted by ε(x), is the maximum distance between
x and any other vertex of Γ: ε(x) = max{∂(x,z) | z ∈X}. Let D denote the maximum
eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i we define
Γi(x) by

Γi(x) = {y ∈X | ∂(x,y) = i} .

We will abbreviate Γ(x) = Γ1(x). Note that Γ(x) is the set of neighbours of x. Observe
that Γi(x) is empty if and only if i < 0 or i > ε(x). Assume for a moment that y ∈ Γi(x)
for some 0≤ i≤ ε(x) and let z be a neighbour of y. Then, by the triangle inequality,

∂(x,z) ∈ {i−1, i, i+ 1} ,

and so z ∈ Γi−1(x)∪Γi(x)∪Γi+1(x). For y ∈ Γi(x) we therefore define the following
numbers:

ai(x,y) = |Γi(x)∩Γ(y)| , bi(x,y) = |Γi+1(x)∩Γ(y)| , ci(x,y) = |Γi−1(x)∩Γ(y)| .

We say that x ∈X is distance-regularized (or that Γ is distance-regular around x)
if the numbers ai(x,y), bi(x,y) and ci(x,y) do not depend on the choice of y ∈ Γi(x) (0≤
i ≤ ε(x)). In this case, the numbers ai(x,y), bi(x,y) and ci(x,y) are simply denoted by
ai(x), bi(x) and ci(x) respectively, and are called the intersection numbers of x. Observe
that if x is distance-regularized and ε(x) = d, then a0(x) = c0(x) = bd(x) = 0, b0(x) = |Γ(x)|
and c1(x) = 1. Note also that for every 1≤ i≤ d we have that bi−1(x)> 0 and ci(x)> 0,
and that ai(x) = 0 if Γ is bipartite. For convenience we define ci(x) = bi(x) = 0 for i < 0
and i > d.

We now recall some definitions and basic results concerning a Terwilliger algebra of Γ.
Let C denote the complex number field. Let MatX(C) denote the C-algebra consisting of
all matrices whose rows and columns are indexed by X and whose entries are in C. Let
V = CX denote the vector space over C consisting of column vectors whose coordinates
are indexed by X and whose entries are in C. We observe that MatX(C) acts on V by
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left multiplication. We call V the standard module. We endow V with the Hermitian
inner product 〈·, ·〉 that satisfies 〈u,v〉= u>v for u,v ∈ V , where > denotes transpose and
denotes complex conjugation. For y ∈X, let ŷ denote the element of V with a 1 in the

y-coordinate and 0 in all other coordinates. We observe that {ŷ | y ∈X} is an orthonormal
basis for V .

Let A ∈MatX(C) denote the adjacency matrix of Γ. That is, the matrix in MatX(C)
whose entries are given as follows:

(A)xy =

 1 if ∂(x,y) = 1,

0 if ∂(x,y) 6= 1,
(x,y ∈X).

The adjacency algebra of Γ, also called the Bose-Mesner algebra of Γ, is the
commutative subalgebra M of MatX(C) generated by the adjacency matrix A of Γ.

We now recall the dual idempotents of Γ. To do this fix a (not necessarily distance-
regularized) vertex x ∈X and let d= ε(x). We view x as a base vertex . For 0≤ i≤ d, let
E∗i = E∗i (x) denote the diagonal matrix in MatX(C) with (y,y)-entry as follows:

(E∗i )yy =

 1 if ∂(x,y) = i,

0 if ∂(x,y) 6= i
(y ∈X).

We call E∗i the i-th dual idempotent of Γ with respect to x [89, p. 378]. We also
observe (ei) ∑d

i=0E
∗
i = I; (eii) E∗i = E∗i (0 ≤ i ≤ d); (eiii) E∗>i = E∗i (0 ≤ i ≤ d); (eiv)

E∗i E
∗
j = δijE

∗
i (0≤ i, j ≤ d). By these facts, matrices E∗0 ,E∗1 , . . . ,E∗d form a basis for the

commutative subalgebra M∗ =M∗(x) of MatX(C). We call M∗ the dual Bose-Mesner
algebra of Γ with respect to x [89, p. 378]. Note that for 0≤ i≤ d we have

E∗i V = Span{ŷ | y ∈ Γi(x)}.

We call E∗i V the i-th subconstituent of Γ with respect to x. Note that

V = E∗0V +E∗1V + · · ·+E∗dV (orthogonal direct sum).

For convenience we define E∗−1 and E∗d+1 to be the zero matrix of MatX(C).

We recall the definition of a Terwilliger algebra of Γ. The Terwilliger algebra was first
defined in [89, Definition 3.3], where it was called the subconstituent algebra. It
was first defined for commutative association schemes, but the definition can be easily
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generalized to an arbitrary graph as follows. Let T = T (x) denote the subalgebra of
MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect
to x. Recall that M is generated by A. So, T is generated by A and the dual idempotents.
We observe that T has finite dimension. In addition, since by construction T is generated
by real-symmetric matrices, it follows that T is closed under the conjugate-transpose map.
For a vector subspace W ⊆ V , we denote by TW the subspace {Bw |B ∈ T,w ∈W}.

We now recall the lowering matrix and the raising matrix of the algebra T .

Definition 5.1.1. Let Γ = (X,R) denote a finite, simple, connected and bipartite graph.
Pick x ∈ X and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Define
L= L(x) and R =R(x) in MatX(C) by

L=
d∑
i=1

E∗i−1AE
∗
i , R =

d−1∑
i=0

E∗i+1AE
∗
i .

We refer to L and R as the lowering and the raising matrix with respect to x,
respectively. Note that R,L ∈ T , R = L> and A=R+L.

Observe also that for y,z ∈X we have that the (z,y)-entry of L equals 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y)−1, and 0 otherwise. Similarly, the (z,y)-entry of R equals 1 if ∂(z,y) = 1
and ∂(x,z) = ∂(x,y) + 1, and 0 otherwise. Consequently, for v ∈ E∗i V (0≤ i≤ d) we have

Lv ∈ E∗i−1V, Rv ∈ E∗i+1V. (5.1)

By a T -module we mean a subspace of V which is B-invariant for every B ∈ T . Let
W denote a T -module. Then W is said to be irreducible whenever W is nonzero and
W contains no T -modules other than 0 and W . Since the algebra T is closed under the
conjugate-transpose map, it turns out that any T -module is an orthogonal direct sum of
irreducible T -modules.

Let W be an irreducible T -module. We observe that W is an orthogonal direct sum
of the nonvanishing subspaces E∗iW for 0 ≤ i ≤ d. By the endpoint of W we mean
min{i | 0≤ i≤ d, E∗iW 6= 0}. We say that W is thin whenever the dimension of E∗iW is
at most 1 for 0≤ i≤ d.

Let W and W ′ denote two irreducible T -modules. By a T -isomorphism from W to
W ′ we mean a vector space isomorphism σ :W →W ′ such that (σB−Bσ)W = 0 for all
B ∈ T . The T -modules W and W ′ are said to be T -isomorphic (or simply isomorphic)
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whenever there exists a T -isomorphism σ :W →W ′. We note that isomorphic irreducible
T -modules have the same endpoint. It turns out that two non-isomorphic irreducible
T -modules are orthogonal.

It is known that T has a unique irreducible T -module with endpoint 0, namely the subspace
T x̂= {Bx̂ |B ∈ T}. We refer to T x̂ as the trivial T -module. It was proved in [88] by
Terwilliger that the trivial T -module is thin if x is distance-regularized (see also Theorem
3.5.3 and Subsection 3.7.1). In this case vectors si (0≤ i≤ d), where

si =
∑

y∈Γi(x)
ŷ,

form a basis of the trivial T -module.

In the rest of this chapter we will study irreducible T -modules with endpoint 1 in the
case when Γ is distance-regular around x. By Proposition 4.2.2, there are no irreducible
T -modules with endpoint 1 if and only if x is a leaf of Γ, that is, if and only if |Γ(x)|= 1
(see also [26, Proposition 3.2]). Therefore, we will assume for the rest of this chapter that
|Γ(x)| ≥ 2.

5.2 The intersection diagrams

Throughout this section let Γ = (X,R) denote a bipartite graph. We define a certain
partition of X that we will find useful later in this chapter.

Definition 5.2.1. Let Γ = (X,R) denote a bipartite graph with diameter D. Pick x,y ∈X,
such that y ∈ Γ(x). For integers i, j we define sets Di

j :=Di
j(x,y) as follows:

Di
j = Γi(x)∩Γj(y).

Observe that Di
j = ∅ if i < 0 or j < 0. Similarly, Di

j = ∅ if i > ε(x) or j > ε(y). Furthermore,
by the triangle inequality we have that Di

j = ∅ if |i− j| ≥ 2. Note also that as Γ is bipartite,
the set Di

i is empty for 0≤ i≤D. The collection of all the subsets Di
i−1 (1≤ i≤ ε(x)) and

Di−1
i (1≤ i≤ ε(y)) is called the distance partition of Γ with respect to the edge
{x,y}. See Figure 5.1 for an example.

The proof of the following lemma is immediate and left to the reader.
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Lemma 5.2.2. Let Γ = (X,R) denote a bipartite graph with diameter D. Pick x,y ∈X,
such that y ∈ Γ(x) and let Di

j =Di
j(x,y). Then the following (i)–(iv) hold for 1≤ i≤D.

(i) If w ∈Di
i−1 then Γ(w)⊆Di−1

i−2 ∪D
i−1
i ∪Di+1

i .

(ii) If w ∈Di−1
i then Γ(w)⊆Di−2

i−1 ∪Di
i−1∪Di

i+1.

(iii) Γi(x) =Di
i−1∪Di

i+1 and Γi(y) =Di−1
i ∪Di+1

i .

(iv) If Di
i+1 6= ∅ (Di+1

i 6= ∅, respectively) then Dj
j+1 6= ∅ (Dj+1

j 6= ∅, respectively) for
every 0≤ j ≤ i.

A graphical representation of a distance partition for the case when the eccentricity of a
vertex y ∈ Γ(x) is equal to ε(x) + 1 is presented in Figure 5.1. A line between Di

j and Di′
j′

indicates the possibility of existence of edges between these two sets. Such a graphical
representation of a distance partition is called the intersection diagram of Γ with
respect to the edge {x,y}.

Di
i+1 Di+1

i+2Di−1
i

Di+1
i Di+2

i+1Di
i−1

x

y

Dd−1
d Dd

d+1Dd−2
d−1

Dd
d−1Dd−1

d−2· · · · · ·

· · · · · ·

Figure 5.1: The intersection diagram of a bipartite graph Γ where ε(y) = ε(x) + 1 = d+ 1.

The proof of the following lemma is straightforward and therefore left to the reader.

Lemma 5.2.3. Let Γ = (X,R) denote a bipartite graph with diameter D. Pick x ∈X
and assume that x is distance-regularized. Pick y ∈ Γ(x) and let Di

j =Di
j(x,y). Then, the

following (i), (ii) hold.

(i) Assume that z ∈Di
i−1 (1≤ i≤D). Then

∣∣∣Γ(z)∩Di−1
i−2
∣∣∣+ ∣∣∣Γ(z)∩Di−1

i

∣∣∣= ci(x) and∣∣∣Γ(z)∩Di+1
i

∣∣∣= bi(x).

(ii) Assume that z ∈Di
i+1 (0≤ i≤D). Then

∣∣∣Γ(z)∩Di+1
i

∣∣∣+ ∣∣∣Γ(z)∩Di+1
i+2
∣∣∣= bi(x) and∣∣∣Γ(z)∩Di−1

i

∣∣∣= ci(x).

Lemma 5.2.4. Let Γ = (X,R) denote a bipartite graph with diameter D. Pick x ∈X and
assume that x is distance-regularized. Pick y ∈ Γ(x) and let Di

j =Di
j(x,y). Assume that

Di
i+1 6= ∅, where 1≤ i≤D. Then Di

i−1 6= ∅. In particular, Di
i−1 6= ∅ for 1≤ i≤ ε(x).
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Proof. If i= 1 then the result holds as D1
0 = {y}. Assume therefore that i≥ 2 and that

Di
i+1 6= ∅. Suppose to the contrary that Di

i−1 = ∅ and let t be the greatest integer such
that Dt

t−1 6= ∅. Observe that bt(x) = 0 by Lemma 5.2.3(i), which is impossible as t < ε(x).
To prove the last part of the lemma observe that Γi(x) =Di

i+1∪Di
i−1 (disjoint union) is

nonempty for 0≤ i≤ ε(x). �

5.3 The main result

Throughout this section let Γ = (X,R) denote a bipartite graph. In this section we state
our main result. To do this we need the following definition.

Definition 5.3.1. Let Γ = (X,R) denote a bipartite graph. Pick x,y,z ∈X and let P =
[y= x0,x1, . . . ,xj = z] denote a yz-walk. The shape of P with respect to x is a sequence
of symbols t1t2 . . . tj, where ti ∈ {`,r}, and such that ti = r if ∂(x,xi) = ∂(x,xi−1) + 1 and
ti = ` if ∂(x,xi) = ∂(x,xi−1)− 1, (1 ≤ i ≤ j). We use exponential notation for shapes
containing several consecutive identical symbols. For instance, instead of rrrr``r we simply
write r4`2r. Analogously, r0`= ` is also conventional. For a non-negative integer m, let
rm`(y,z) and rm(y,z) respectively denote the number of yz-walks of the shape rm` and rm

with respect to x, where r0(y,z) = 1 if y = z and r0(y,z) = 0 otherwise. See Figure 5.2 for
an example.

x

y

Di−2
i−1

Di
i−1

Di
i+1 Di+1

i+2

Di+1
i Di+2

i+1

Dd−1
d

Dd
d−1

Dd
d+1Di−1

i

Di−1
i−2

z

· · ·

· · ·

· · ·

· · ·

Figure 5.2: A yz-walk of the shape ri` for y ∈ Γ(x) and z ∈Di
i+1 in a bipartite graph Γ where

ε(y) = ε(x) + 1 = d+ 1.

The following observation is straightforward to prove (using elementary matrix multiplica-
tion and (5.1)).

Lemma 5.3.2. Let Γ = (X,R) denote a bipartite graph. Pick x ∈X and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. Let L= L(x) and R =R(x) denote
the lowering and the raising matrix of T , respectively. Pick y,z ∈X and let m be a positive
integer. Then the following (i)–(iii) hold:
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(i) The (z,y)-entry of Rm is equal to the number rm(y,z) with respect to x.

(ii) The (z,y)-entry of RmL is equal to the number `rm(y,z) with respect to x.

(iii) The (z,y)-entry of LRm is equal to the number rm`(y,z) with respect to x.

For the rest of the chapter we adopt the following notation.

Notation 5.3.3. Let Γ = (X,R) denote a finite, simple, connected, bipartite graph with
vertex set X, edge set R and diameter D. Let A ∈ MatX(C) denote the adjacency
matrix of Γ. Fix a distance-regularized vertex x ∈ X with |Γ(x)| ≥ 2. Let d denote the
eccentricity of x, and let bi(x), ci(x) (0 ≤ i ≤ d) denote the intersection numbers of x.
Let E∗i ∈MatX(C) (0 ≤ i ≤ d) denote the dual idempotents of Γ with respect to x. For
convenience we set E∗−1 = E∗d+1 = 0. Let V denote the standard module of Γ and let
T = T (x) denote the Terwilliger algebra of Γ with respect to x. Let L= L(x) and R=R(x)
denote the lowering and the raising matrix of T , respectively. Let J denote the all 1’s
matrix in MatX(C). Recall that the unique irreducible T -module with endpoint 0 is thin.
We denote this T -module by V0. For y ∈ Γ(x) and z ∈X let the sets Di

j =Di
j(x,y) be as

defined in Definition 5.2.1, and let the numbers rm`(y,z) and rm(y,z) be as defined in
Definition 5.3.1.

We are now ready to state our main result.

Theorem 5.3.4. With reference to Notation 5.3.3, the following (i), (ii) are equivalent:

(i) Γ has, up to isomorphism, a unique irreducible T -module with endpoint 1, and this
module is thin.

(ii) For every integer 1≤ i≤ d there exist scalars κi,µi, such that for every y ∈ Γ(x)
the following (a), (b) hold:

(a) For every z ∈Di
i+1(x,y) we have that ri`(y,z) = µi. In particular, ri`(y,z)

does not depend on the choice of y,z.

(b) For every z ∈Di
i−1(x,y) we have

ri`(y,z) = κi r
i−1(y,z) +µi.

We finish this section with the following observation.
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Proposition 5.3.5. With reference to Notation 5.3.3, the following holds for 0≤ i≤ d:

(
E∗iR

iLE∗1
)
zy

=


i∏

k=1
ck(x) if y ∈ Γ(x) and z ∈ Γi(x),

0 otherwise.

Proof. It is straightforward to check that the (z,y)-entry of E∗iRiLE∗1 is zero if either
y 6∈ Γ(x) or z 6∈ Γi(x). It is also straightforward to check that the result is true if i = 0.
Suppose now that y ∈ Γ(x) and z ∈ Γi(x) with i≥ 1. Then

(
E∗iR

iLE∗1
)
zy

=
(
RiL

)
zy
. By

Lemma 5.3.2(ii), the (z,y)-entry of RiL is equal to the number of paths of length i from z

to x. Since x is distance-regularized we observe that there are precisely ci(x)ci−1(x) · · ·c1(x)
such paths. The claim follows. �

Corollary 5.3.6. With reference to Notation 5.3.3, the following holds for 0≤ i≤ d:

E∗iR
iLE∗1 =

 i∏
k=1

ck(x)
E∗i JE∗1 .

In particular, E∗i JE∗1 ∈ T .

Proof. Immediately from Proposition 5.3.5. �

5.4 Linear dependency

With reference to Notation 5.3.3, assume that Γ has, up to isomorphism, exactly one
irreducible T -module with endpoint 1, and that this module is thin. In this section we
show that certain matrices of T are linearly dependent.

Lemma 5.4.1. With reference to Notation 5.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Let W
denote an irreducible T -module with endpoint 1. Pick matrices F1,F2,F3 ∈ T and an
integer i (1≤ i≤ d). Then there exist scalars λj (1≤ j ≤ 3), not all zero, such that

λ1E
∗
i F1E

∗
1v+λ2E

∗
i F2E

∗
1v+λ3E

∗
i F3E

∗
1v = 0

for every v ∈ E∗1V0∪E∗1W .
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Proof. Pick nonzero vectors v0 ∈E∗1V0 and v1 ∈E∗1W . Recall that dim(E∗i V0) = 1. Let u0

be an arbitrary nonzero vector of E∗i V0. We define vector u1 as follows: if E∗iW = 0, then
let u1 = 0; otherwise, let u1 be an arbitrary nonzero vector of E∗iW . As modules V0 and
W are thin, there exist scalars r0,j , r1,j (1≤ j ≤ 3) such that

E∗i FjE
∗
1v0 = r0,j u0 and E∗i FjE

∗
1v1 = r1,j u1. (5.2)

Consider now the following homogeneous system of linear equations:

r0,1 r0,2 r0,3

r1,1 r1,2 r1,3

 ·

x1

x2

x3

=
0

0

 .

Observe that the above system has a nontrivial solution, and so there exist scalars λi
(1≤ i≤ 3), not all zero, such that

3∑
j=1

λj r0,j = 0 and
3∑
j=1

λj r1,j = 0. (5.3)

Pick a vector v ∈ E∗1V0∪E∗1W . Since T -modules V0 and W are thin, there exists a scalar
λ such that v = λvk for some k ∈ {0,1}. Therefore, by (5.2) and (5.3) we have

3∑
j=1

λjE
∗
i FjE

∗
1v = λ

3∑
j=1

λjE
∗
i FjE

∗
1vk = λ

3∑
j=1

λjrk,juk = 0.

�

Corollary 5.4.2. With reference to Notation 5.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Let V1

denote the subspace of V spanned by all irreducible T -modules with endpoint 1. Pick
matrices F1,F2,F3 ∈ T and an integer i (1≤ i≤ d). Then there exist scalars λi (1≤ i≤ 3),
not all zero, such that

λ1E
∗
i F1E

∗
1v+λ2E

∗
i F2E

∗
1v+λ3E

∗
i F3E

∗
1v = 0

for every v ∈ E∗1V0∪E∗1V1.

Proof. Let {W t | t ∈ I} be the set of all irreducible T -modules with endpoint 1, where
I is an index set. Pick a T -module W s, s ∈ I. By Lemma 5.4.1, there exist scalars
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λj (1≤ j ≤ 3), not all zero, such that

λ1E
∗
i F1E

∗
1v+λ2E

∗
i F2E

∗
1v+λ3E

∗
i F3E

∗
1v = 0 (5.4)

for every v ∈ E∗1V0∪E∗1W s. We claim that equality (5.4) holds for every v ∈ E∗1V0∪E∗1V1.
Note that we could assume that v ∈ E∗1V1. Observe that v can be written as a sum

v =
∑
t∈I

vt, (5.5)

where vt ∈ E∗1W t for every t ∈ I.

As any two irreducible T -modules with endpoint 1 are isomorphic, for every t ∈ I there
exists a T -isomorphism σt :W s→W t. Let wt ∈W s be such that vt = σt(wt). It is easy to
see that wt ∈E∗1W s as vt ∈E∗1W t. By Lemma 5.4.1, there exist scalars λi (1≤ i≤ 3), not
all zero, such that

3∑
j=1

λjE
∗
i FjE

∗
1w = 0

for every w ∈ E∗1W s. Therefore, for every t ∈ I we have

3∑
j=1

λjE
∗
i FjE

∗
1vt =

3∑
j=1

λjE
∗
i FjE

∗
1σt(wt) = σt

 3∑
j=1

λjE
∗
i FjE

∗
1wt

= 0.

The claim now follows from (5.5). �

Theorem 5.4.3. With reference to Notation 5.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Pick
matrices F1,F2,F3 ∈ T and an integer i (1≤ i≤ d). Then the matrices E∗i F1E∗1 , E∗i F2E∗1
and E∗i F3E∗1 are linearly dependent.

Proof. By Corollary 5.4.2 there exist scalars λi (1≤ i≤ 3), not all zero, such that

3∑
j=1

λjE
∗
i FjE

∗
1v = 0 (5.6)

for every v ∈ E∗1V0∪E∗1V1, where V1 denotes the sum of all irreducible T -modules with
endpoint 1. Pick now an arbitrary vector w ∈ V and observe that E∗1w = w0 +w1 for some
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w0 ∈ V0 and w1 ∈ V1. By (5.6) we have

3∑
j=1

λjE
∗
i FjE

∗
1w =

3∑
j=1

λjE
∗
i FjE

∗
1w0 +

3∑
j=1

λjE
∗
i FjE

∗
1w1 = 0.

As w was arbitrary, the result follows. �

5.5 Algebraic condition implies combinatorial
properties

With reference to Notation 5.3.3, assume that Γ has, up to isomorphism, exactly one
irreducible T -module with endpoint 1, and that this module is thin. In this section we
prove that in this case combinatorial conditions (a), (b) described in part (ii) of Theorem
5.3.4 hold.

Lemma 5.5.1. With reference to Notation 5.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Then for
every i (1≤ i≤ d) there exist scalars κi,µi, such that

E∗i LR
iE∗1 = κiE

∗
iR

i−1E∗1 +µiE
∗
i JE

∗
i . (5.7)

Proof. Pick i (1 ≤ i ≤ d) and observe that by Definition 5.1.1 and Corollary 5.3.6, the
matrices LRi, Ri−1 and E∗i JE∗1 are elements of algebra T . Therefore, by (eiv) from Section
5.1 and Theorem 5.4.3, there exist scalars λj = λ

(i)
j (1≤ j ≤ 3), not all zero, such that

λ1E
∗
i LR

iE∗1 +λ2E
∗
iR

i−1E∗1 +λ3E
∗
i JE

∗
1 = 0.

Assume for the moment that λ1 6= 0. Then (5.7) holds with κi =−λ2/λ1 and µi =−λ3/λ1.
Now, assume that λ1 = 0. We first claim that in this case we have that Di

i+1(x,y) = ∅
for every y ∈ Γ(x). Indeed, suppose to the contrary that there exists y ∈ Γ(x) such
that the set Di

i+1(x,y) 6= ∅. In this case, observe that Di
i−1(x,y) 6= ∅ by Lemma 5.2.4.

Pick z ∈ Di
i+1(x,y) and note that it follows from Lemma 5.3.2(i) that the (z,y)-entry

of E∗iRi−1E∗1 is 0, while the (z,y)-entry of E∗i JE∗1 is 1. This implies that λ3 = 0. Pick
now z ∈ Di

i−1(x,y) and note that it follows from Lemma 5.3.2(i) that the (z,y)-entry
of E∗iRi−1E∗1 is nonzero. This implies λ2 = 0, contradicting the fact that the scalars λj
(1≤ j ≤ 3) are not all zero. This proves our claim.
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We next claim that λ2 6= 0. Suppose to the contrary that λ2 = 0. Pick y ∈ Γ(x) and consider
the sets Dk

j (x,y) for 0≤ k,j ≤D. As Di
i+1(x,y) = ∅, we clearly have that Di

i−1(x,y) 6= ∅.
Pick z ∈Di

i−1(x,y) and observe that the (z,y)-entry of E∗i JE∗1 is equal to 1, which forces
λ3 = 0, again contradicting the fact that the scalars λj (1 ≤ j ≤ 3) are not all zero. It
follows that λ2 6= 0. Therefore, we have that

E∗iR
i−1E∗1 =−λ3

λ2
E∗i JE

∗
1 , (5.8)

and so for any y ∈ Γ(x) and for any z ∈Di
i−1(x,y), the (z,y)-entry of E∗iRi−1E∗1 is equal

to −λ3/λ2. In other words, for any y ∈ Γ(x) and for any z ∈Di
i−1(x,y) there are exactly

−λ3/λ2 walks of the shape ri−1 from y to z.

Pick again any y ∈ Γ(x). Observe that since x is distance-regularized and since the
set Di

i+1(x,y) = ∅, Lemma 5.2.3 implies that every z ∈ Di
i−1(x,y) has exactly bi(x)

neighbours in Di+1
i (x,y), and that every z ∈Di+1

i (x,y) has exactly ci+1(x) neighbours
in Di

i−1(x,y). It follows from the above comments that for any z ∈Di
i−1(x,y) there are

exactly −bi(x)ci+1(x)λ3/λ2 walks of the shape ri` from y to z. We now claim that (5.7)
holds for any κi,µi such that λ3κi−λ2µi = bi(x)ci+1(x)λ3. For example, we may let either
κi = bi(x)ci+1(x) and µi = 0, or κi = 0 and µi = −bi(x)ci+1(x)λ3/λ2. Indeed, pick any
y,z ∈X. If either y 6∈ Γ(x) or z 6∈ Γi(x), then the (z,y)-entry of both sides of (5.7) equals
0. If y ∈ Γ(x) and z ∈ Γi(x), then z ∈ Di

i−1(x,y) as Di
i+1(x,y) = ∅. The (z,y)-entry of

the left-hand side of (5.7) equals the number of yz-walks of the shape ri`, which equals
−bi(x)ci+1(x)λ3/λ2 by the above comments. However, it follows from Lemma 5.3.2 and
(5.8) that also the (z,y)-entry of the right-hand side of (5.7) equals −bi(x)ci+1(x)λ3/λ2,
and the result follows. �

Theorem 5.5.2. With reference to Notation 5.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. For every
integer 1≤ i≤ d there exist scalars κi,µi, such that for every y ∈ Γ(x) the following (a),
(b) hold:

(a) For every z ∈Di
i+1(x,y) we have that ri`(y,z) = µi. In particular, ri`(y,z) does not

depend on the choice of y,z.

(b) For every z ∈Di
i−1(x,y) we have thaz

ri`(y,z) = κi r
i−1(y,z) +µi.

Proof. Pick an integer i (1≤ i≤ d) and recall that by Lemma 5.5.1 equation (5.7) holds.
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Pick y ∈ Γ(x).

(a) Pick z ∈Di
i+1(x,y) and observe that by Lemma 5.3.2 the (z,y)-entry of the left-hand

side of (5.7) equals ri`(y,z). On the other hand, again by Lemma 5.3.2, the (z,y)-
entry of E∗iRi−1E∗1 equals 0, while the (z,y)-entry of E∗i JE∗1 is obviously equal to 1.
Therefore, the (z,y)-entry of the right-hand side of (5.7) equals µi, and so ri`(y,z)
does not depend on the choice of y,z.

(b) Pick now z ∈ Di
i−1(x,y) and observe that by Lemma 5.3.2 the (z,y)-entry of the

left-hand side of (5.7) equals ri`(y,z). On the other hand, again by Lemma 5.3.2,
the (z,y)-entry of E∗iRi−1E∗1 equals ri−1(y,z), while the (z,y)-entry of E∗i JE∗1 is
obviously equal to 1. Therefore, the (z,y)-entry of the right-hand side of (5.7) equals
κi r

i−1(y,z) +µi.

The result follows. �

5.6 Combinatorial properties imply algebraic
condition

With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of Theorem 5.3.4. In
this section we prove that in this case Γ has, up to isomorphism, exactly one irreducible
T -module with endpoint 1, and that this module is thin. We also display a basis of this
module and the matrix representing the action of the adjacency matrix on this basis.

Proposition 5.6.1. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Then for every integer i (1≤ i≤ d), the following equality holds:

E∗i LR
iE∗1 = κiE

∗
iR

i−1E∗1 +µiE
∗
i JE

∗
1 . (5.9)

Proof. Pick an integer i (1 ≤ i ≤ d) and vertices y,z ∈X. We will show that the (z,y)-
entries of both sides of (5.9) agree. Observe first that if either y 6∈ Γ(x) or z 6∈ Γi(x),
then the (z,y)-entry of both sides of (5.9) equals 0. Therefore, assume that y ∈ Γ(x) and
z ∈ Γi(x). Abbreviate Dk

j (x,y) =Dk
j for 0≤ k,j ≤D and observe that Γi(x) =Di

i−1∪Di
i+1.

Assume first that z ∈ Di
i+1 and note that the (z,y)-entry of E∗i LRiE∗1 is equal to the

number ri`(y,z), while the (z,y)-entries of E∗iRi−1E∗1 and E∗i JE∗1 are 0 and 1 respectively.
As ri`(y,z) = µi by the assumption, the (z,y)-entries of both sides of (5.9) agree.
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Assume next that z ∈ Di
i−1 and note that the (z,y)-entry of E∗i LRiE∗1 (E∗iRi−1E∗1 ,

respectively) is equal to the number ri`(y,z) (ri−1(y,z), respectively). The (z,y)-entry of
E∗i JE

∗
1 is of course equal to 1. By the assumption we have that ri`(y,z) = κi r

i−1(y,z)+µi,
and so the (z,y)-entries of both sides of (5.9) agree. This finishes the proof. �

Lemma 5.6.2. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1. Then Lw = 0 and
LRiw = κiR

i−1w for every 1≤ i≤ d.

Proof. As w ∈ E∗1V we have that E∗1w = w and so,

〈jjj,w〉= 〈jjj,E∗1w〉= 〈E∗1jjj,w〉= 〈s1,w〉= 0,

where jjj denotes the all 1’s vector in V . This implies Jw = 0. By elementary matrix
multiplication it is easy to see E∗0AE∗1 = E∗0JE

∗
1 . Therefore, by Definition 5.1.1 and the

above comments we have Lw = E∗0AE
∗
1w = E∗0JE

∗
1w = E∗0Jw = 0. In addition, by (5.1)

and Proposition 5.6.1,

LRiw = E∗i LR
iE∗1w = κiE

∗
iR

i−1E∗1w+µiE
∗
i JE

∗
1w = κiE

∗
iR

i−1E∗1w = κiR
i−1w.

The result follows. �

Lemma 5.6.3. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1. Then the following
(i)–(iii) hold:

(i)
∥∥∥Riw∥∥∥2

= κi
∥∥∥Ri−1w

∥∥∥2
(1≤ i≤ d).

(ii)
〈
Riw,Rjw

〉
= δij

i∏
l=1

κl ‖w‖2 (0≤ i, j ≤ d).

(iii) There exists i (1≤ i≤ d) such that κi = 0.

Proof. (i) Pick 1≤ i≤ d. Then by Lemma 5.6.2 we have
∥∥∥Riw∥∥∥2

=
〈
Riw, Riw

〉
=
〈
LRiw, Ri−1w

〉
= κi

∥∥∥Ri−1w
∥∥∥2
.

(ii) If i 6= j, then the result follows from (eii), (eiii) and (eiv) below the definition of the
dual idempotents in Section 5.1 and from (5.1). If i= j then the result follows from (i)
above by a straightforward induction argument.
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(iii) Immediate from (ii) above since by (5.1) we have Rdw = 0 and w is a nonzero
vector. �

Theorem 5.6.4. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1. Let W denote the vector
subspace of V spanned by the vectors Riw (0≤ i≤ d). Let s (1≤ s≤ d) be the least integer
such that κs = 0. Then W is a thin irreducible T -module with endpoint 1 and the vectors
{Ri−1w | 1≤ i≤ s} form an orthogonal basis of W . In particular, the dimension of W is
s.

Proof. Observe that by (5.1) and since RE∗d = 0, the subspace W is invariant under the
action of the dual idempotents. By construction and since Rdw = 0 by (5.1) it is also clear
that W is closed under the action of R. Moreover, it follows from Lemma 5.6.2 that W is
invariant under the action of L. Since A= L+R, it turns out that W is A-invariant as
well. Recall that algebra T is generated by A and the dual idempotents. Therefore, W is
a T -module. It is clear that W is thin, since by construction, (5.1) and Lemma 5.6.2, the
subspace E∗iW is generated by Ri−1w.

Now, let us show thatW is irreducible. Note that w ∈W and soW is non-zero. Recall that
W is an orthogonal direct sum of irreducible T -modules. Since E∗0W is the zero subspace
and E∗1w = w 6= 0, there exists an irreducible T -module W ′, such that the endpoint of W ′

is 1 and W ′ ⊆W . Consequently, E∗1W ′ ⊆ E∗1W . However, the dimension of E∗1W is 1,
and so E∗1W ′ = E∗1W . But now we have that

W = TE∗1W = TE∗1W
′ ⊆W ′,

implying that W =W ′. Hence, W is irreducible and its endpoint equals 1.

Finally, notice that Rsw = 0 by Lemma 5.6.3(i). Furthermore, it holds that vectors
{Ri−1w | 1 ≤ i ≤ s} are nonzero and pairwise orthogonal by Lemma 5.6.3(ii) and the
definition of number s. The result follows. �

Theorem 5.6.5. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Let W denote an irreducible T -module with endpoint 1. Let s (1≤ s≤ d)
be the least integer such that κs = 0. Pick w ∈ E∗1W , w 6= 0. Then the vectors {Ri−1w |
1≤ i≤ s} form an orthogonal basis of W . In particular, W is thin with dimension s.

Proof. Let W ′ denote the vector subspace of V spanned by the vectors {Ri−1w | 1≤ i≤ d}.
Recall that W and the unique irreducible T -module with endpoint 0 are not isomorphic,
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and so w is orthogonal to s1. By Theorem 5.6.4, W ′ is a T -module. Note that W ′ is
nonzero and contained in W . As W is irreducible, we have that W =W ′. The result now
follows from Theorem 5.6.4. �

Theorem 5.6.6. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Then there is, up to isomorphism, a unique irreducible T -module with
endpoint 1, and this module is thin.

Proof. Let W and W ′ be irreducible T -modules with endpoint 1, and pick any nonzero
vectors w ∈ E∗1W and w′ ∈ E∗1W ′. Let s (1≤ s≤ d) be the least integer such that κs = 0.
By Theorem 5.6.5, the vectors

{
Ri−1w | 1≤ i≤ s

}
and

{
Ri−1w′ | 1≤ i≤ s

}
are orthogonal bases of W and W ′, respectively. Hence, the linear map σ : W →W ′,
defined by σ

(
Ri−1w

)
=Ri−1w′ is a vector space isomorphism. It is clear that σ commutes

with R. By Lemma 5.6.2 it follows that σ also commutes with L. Since A = L+R, it
turns out that σ commutes with A as well. Furthermore, σ is a T -module isomorphism
since by (eiv) from Section 5.1, it commutes also with E∗i (0≤ i≤ d). Thus W and W ′

are T -isomorphic. �

Theorem 5.6.7. With reference to Notation 5.3.3, assume that Γ satisfies part (ii) of
Theorem 5.3.4. Let W denote an irreducible T -module with endpoint 1. Pick w ∈ E∗1W ,
w 6= 0, and recall that

B =
{
Ri−1w | 1≤ i≤ s

}
is a basis of W , where s is the least integer such that κs = 0 (1≤ s≤ d). Then the matrix
representing the action of A on W with respect to the (ordered) basis B is given by



0 κ1

1 0 κ2

1 . . . . . .
. . . . . . κs−2

1 0 κs−1

1 0


.

Proof. Recall that A=R+L. The result now follows from Lemma 5.6.2. �
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5.7 Examples

In this section we present several examples of bipartite graphs for which the equivalent
conditions of Theorem 5.3.4 hold for a certain vertex x. We first focus on the case where
the partition from Definition 5.2.1 is equitable for every y ∈ Γ(x), and the parameters of
this partition do not depend on the choice of y ∈ Γ(x) (see for example [39, Subsection 9.3]
for the definition of equitable partitions). More precisely, we have the following definition.

Definition 5.7.1. With reference to Notation 5.3.3 we say that Γ is 1-homogeneous
with respect to x (in the sense of Curtin and Nomura [21]), whenever for all integers
h,i, j,k (0≤ h,i, j,k ≤D) there is a structure constant γh,ij,k(x) such that for all vertices y
and z of Γ with ∂(x,z) = h, ∂(y,z) = i, ∂(y,x) = 1, the number

|{w ∈X | ∂(x,w) = j,∂(z,w) = 1,∂(y,w) = k}|= γh,ij,k(x).

With reference to Notation 5.3.3, assume for a moment that Γ is a bipartite graph which
is 1-homogeneous with respect to x and pick y ∈ Γ(x). Pick also 1≤ i≤ d and vertices
z1 ∈ Di

i+1(x,y) and z2 ∈ Di
i−1(x,y). It is clear from Definition 5.7.1, that the number

of yz1-walks of the shape ri` with respect to x does not depend on the choice of y and
z1. Similarly, the number of yz2-walks of the shape ri−1 (ri`, respectively) with respect
to x also does not depend on the choice of y and z2. Thus, it is clear that in this case
conditions (a), (b) described in part (ii) of Theorem 5.3.4 are satisfied, and so Γ has,
up to isomorphism, exactly one irreducible T -module with endpoint 1, and this module
is thin. We would like to point out that if Γ is a bipartite distance-regular graph or
distance-biregular graph, then Γ is 1-homogeneous with respect to every vertex (see [6] for
the definition of distance-regular and distance-biregular graphs).

Our next example shows that there exist graphs which admit vertex x, such that there is,
up to isomorphism, a unique irreducible T (x)-module of endpoint 1, and this module is
thin, but the corresponding partitions from Definition 5.2.1 are not equitable.

Let Γ denote the graph in Figure 5.3 and let x= 1. It is easy to check that Γ is bipartite
and distance-regular around vertex 1. Let T = T (1) be the Terwilliger algebra of Γ with
respect to vertex 1.

Consider vertex 2 ∈ Γ(1). The intersection diagram for the distance partition with respect
to the edge {1,2} is presented in Figure 5.4.
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Figure 5.3: Graph Γ which has, up to isomorphism, exactly one irreducible T (1)-module with
endpoint one, and this module is thin.
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Figure 5.4: Distance partition of Γ with respect to the edge {1,2}.

Consider vertex 3 ∈ Γ(1). The intersection diagram for the distance partition with respect
to the edge {1,3} is similar and is presented in Figure 5.5.
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Figure 5.5: Distance partition of Γ with respect to the edge {1,3} .

It is now straightforward to check that properties (a), (b) described in part (ii) of Theorem
5.3.4 hold with the following values of κi,µi (1≤ i≤ 9) as presented in Table 5.1.

Consequently, by Theorem 5.3.4, it holds that Γ has, up to isomorphism, a unique
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i 1 2 3 4 5 6 7 8 9
κi 1 2 2 1 2 2 1 0 0
µi 0 0 1 0 2 0 0 8 0

Table 5.1: Values of scalars κi and µi, (1≤ i≤ 9).

irreducible T -module with endpoint 1, and this module is thin. Moreover, this T -module
has dimension s= 8. Note also that the partitions presented by the intersection diagrams
in Figures 5.4 and 5.5 are not equitable, and so Γ is not 1-homogeneous with respect to
vertex 1.



Chapter 6

Graphs with exactly one irreducible
T -module with endpoint 1, which is
thin: the distance-regularized case

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. Assume that x is a distance-

regularized vertex, which is not a leaf. We consider the property that Γ has, up to
isomorphism, a unique irreducible T -module with endpoint 1, and that this T -module is
thin. The main result of the chapter is a combinatorial characterization of this property.

The chapter is organized as follows. In Sections 6.1 and 6.2 we recall basic definitions and
results about distance-regularity around a vertex, about Terwilliger algebras and about
intersection diagrams. In Section 6.3 we then state our main result in Theorem 6.3.4.
We use the fact that certain matrices of the Terwilliger algebra are linearly dependent in
Sections 6.4 and 6.5 to prove the main result. In Section 6.6, we have some comments
about certain distance partitions of a graph which has, up to isomorphism, exactly one
irreducible T -module with endpoint 1 (with respect to some base vertex), which is thin.
We finish the chapter presenting some examples of such graphs.

The chapter is based on a solo article. The main results are currently published in Journal
of Algebraic Combinatorics (2022); see [23] for more details.

79
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6.1 Preliminaries

In this section we review some definitions and basic concepts. Throughout this chapter,
Γ = (X,R) will denote a finite, undirected, connected graph, without loops and multiple
edges, with vertex set X and edge set R.

Let x,y ∈X. The distance between x and y, denoted by ∂(x,y), is the length of a shortest
xy-path. The eccentricity of x, denoted by ε(x), is the maximum distance between
x and any other vertex of Γ: ε(x) = max{∂(x,z) | z ∈X}. Let D denote the maximum
eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i we define
Γi(x) by

Γi(x) = {y ∈X | ∂(x,y) = i} .

We will abbreviate Γ(x) = Γ1(x). Note that Γ(x) is the set of neighbours of x. Observe
that Γi(x) is empty if and only if i < 0 or i > ε(x). Assume for a moment that y ∈ Γi(x)
for some 0≤ i≤ ε(x) and let z be a neighbour of y. Then, by the triangle inequality,

∂(x,z) ∈ {i−1, i, i+ 1} ,

and so z ∈ Γi−1(x)∪Γi(x)∪Γi+1(x). For y ∈ Γi(x) we therefore define the following
numbers:

ai(x,y) = |Γi(x)∩Γ(y)| , bi(x,y) = |Γi+1(x)∩Γ(y)| , ci(x,y) = |Γi−1(x)∩Γ(y)| .

We say that x ∈X is distance-regularized (or that Γ is distance-regular around x)
if the numbers ai(x,y), bi(x,y) and ci(x,y) do not depend on the choice of y ∈ Γi(x) (0≤
i ≤ ε(x)). In this case, the numbers ai(x,y), bi(x,y) and ci(x,y) are simply denoted by
ai(x), bi(x) and ci(x) respectively, and are called the intersection numbers of x. Observe
that if x is distance-regularized and ε(x) = d, then a0(x) = c0(x) = bd(x) = 0, b0(x) = |Γ(x)|
and c1(x) = 1. Note also that for every 1≤ i≤ d we have that bi−1(x)> 0 and ci(x)> 0,
and that ai(x) = 0 if Γ is bipartite. For convenience we define ci(x) = bi(x) = 0 for i < 0
and i > d.

We now recall some definitions and basic results concerning a Terwilliger algebra of Γ.
Let C denote the complex number field. Let MatX(C) denote the C-algebra consisting of
all matrices whose rows and columns are indexed by X and whose entries are in C. Let
V = CX denote the vector space over C consisting of column vectors whose coordinates
are indexed by X and whose entries are in C. We observe that MatX(C) acts on V by
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left multiplication. We call V the standard module. We endow V with the Hermitian
inner product 〈·, ·〉 that satisfies 〈u,v〉= u>v for u,v ∈ V , where > denotes transpose and
denotes complex conjugation. For y ∈X, let ŷ denote the element of V with a 1 in the

y-coordinate and 0 in all other coordinates. We observe that {ŷ | y ∈X} is an orthonormal
basis for V .

Let A ∈MatX(C) denote the adjacency matrix of Γ. That is, the matrix in MatX(C) with
entries given as follows:

(A)xy =

 1 if ∂(x,y) = 1,

0 if ∂(x,y) 6= 1,
(x,y ∈X).

The adjacency algebra of Γ, also called the Bose-Mesner algebra of Γ, is the
commutative subalgebra M of MatX(C) generated by the adjacency matrix A of Γ.

We now recall the dual idempotents of Γ. To do this fix a (not necessarily distance-
regularized) vertex x ∈X and let d= ε(x). We view x as a base vertex. For 0≤ i≤ d, let
E∗i = E∗i (x) denote the diagonal matrix in MatX(C) with (y,y)-entry as follows:

(E∗i )yy =

 1 if ∂(x,y) = i,

0 if ∂(x,y) 6= i
(y ∈X).

We call E∗i the i-th dual idempotent of Γ with respect to x [89, p. 378]. We also
observe (ei) ∑d

i=0E
∗
i = I; (eii) E∗i = E∗i (0 ≤ i ≤ d); (eiii) E∗>i = E∗i (0 ≤ i ≤ d); (eiv)

E∗i E
∗
j = δijE

∗
i (0≤ i, j ≤ d) where I denotes the identity matrix in MatX(C). By these

facts, matrices E∗0 ,E∗1 , . . . ,E∗d form a basis for the commutative subalgebra M∗ =M∗(x)
of MatX(C). We call M∗ the dual Bose-Mesner algebra of Γ with respect to x [89,
p. 378]. Note that for 0≤ i≤ d we have that

E∗i V = Span{ŷ | y ∈ Γi(x)}.

We call E∗i V the i-th subconstituent of Γ with respect to x. Note that

V = E∗0V +E∗1V + · · ·+E∗dV (orthogonal direct sum).

For convenience we define E∗−1 and E∗d+1 to be the zero matrix of MatX(C).

We recall the definition of a Terwilliger algebra of Γ. The Terwilliger algebra was first
defined in [89, Definition 3.3], where it was called the subconstituent algebra. It
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was first defined for commutative association schemes, but the definition could be easily
generalized to an arbitrary graph as follows. Let T = T (x) denote the subalgebra of
MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect
to x. Recall M is generated by A. So, T is generated by A and the dual idempotents.
We observe T has finite dimension. In addition, since by construction T is generated by
real-symmetric matrices, it follows that T is closed under the conjugate-transpose map.
For a vector subspace W ⊆ V , we denote by TW the subspace {Bw |B ∈ T,w ∈W}.

We now recall the lowering matrix, the flat matrix and the raising matrix of the algebra T .

Definition 6.1.1. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x∈X.
Let d denote the eccentricity of x and let T = T (x) be the Terwilliger algebra of Γ with
respect to x. Define L= L(x), F = F (x) and R =R(x) in MatX(C) by

L=
d∑
i=1

E∗i−1AE
∗
i , F =

d∑
i=0

E∗i AE
∗
i , R =

d−1∑
i=0

E∗i+1AE
∗
i .

We refer to L, F and R as the lowering, the flat and the raising matrix with respect
to x, respectively. Note that L,F,R ∈ T . Moreover, F = F>, R = L> and A= L+F +R.

Observe also that for y,z ∈ X we have the (z,y)-entry of L equals 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y)− 1, and 0 otherwise. In addition, the (z,y)-entry of F is equal to 1 if
∂(z,y) = 1 and ∂(x,z) = ∂(x,y), and 0 otherwise. Similarly, the (z,y)-entry of R equals 1 if
∂(z,y) = 1 and ∂(x,z) = ∂(x,y)+1, and 0 otherwise. Consequently, for v ∈E∗i V (0≤ i≤ d)
we have

Lv ∈ E∗i−1V, Fv ∈ E∗i V, Rv ∈ E∗i+1V. (6.1)

By a T -module we mean a subspace of V which is B-invariant for every B ∈ T . Let
W denote a T -module. Then W is said to be irreducible whenever W is nonzero and
W contains no T -modules other than 0 and W . Since the algebra T is closed under the
conjugate-transposed map, it turns out that any T -module is an orthogonal direct sum of
irreducible T -modules.

Let W be an irreducible T -module. We observe that W is an orthogonal direct sum
of the nonvanishing subspaces E∗iW for 0 ≤ i ≤ d. By the endpoint of W we mean
min{i | 0 ≤ i ≤ d, E∗iW 6= 0}. We say W is thin whenever the dimension of E∗iW is at
most 1 for 0≤ i≤ d.
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Let W and W ′ denote two irreducible T -modules. By a T -isomorphism from W to
W ′ we mean a vector space isomorphism σ :W →W ′ such that (σB−Bσ)W = 0 for all
B ∈ T . The T -modules W and W ′ are said to be T -isomorphic (or simply isomorphic)
whenever there exists a T -isomorphism σ :W →W ′. We note that isomorphic irreducible
T -modules have the same endpoint. It turns out that two non-isomorphic irreducible
T -modules are orthogonal.

It is known that T has a unique irreducible T -module with endpoint 0, namely the subspace
T x̂= {Bx̂ |B ∈ T}. We refer to T x̂ as the trivial T -module. It was proved in [88] by
Terwilliger that the trivial T -module is thin if x is distance-regularized (see also Theorem
3.5.3 and Subsection 3.7.1). In this case vectors si (0≤ i≤ d), where

si =
∑

y∈Γi(x)
ŷ,

form a basis of the trivial T -module.

In the rest of this chapter we will study irreducible T -modules with endpoint 1 in the
case when Γ is distance-regular around x. By Proposition 4.2.2, there are no irreducible
T -modules with endpoint 1 if and only if x is a leaf of Γ, that is, if and only if |Γ(x)|= 1
(see also [26, Proposition 3.2]). Therefore, we will assume for the rest of this chapter that
|Γ(x)| ≥ 2.

We finish this section with a result which will play an important role later in this chapter.
In Theorem 5.4.3 (see also [27, Theorem 5.3]), under the assumption that a graph Γ
is bipartite, we prove that certain matrices of T are linearly dependent. However, the
assumption that Γ is bipartite was never used in the proof of Theorem 5.4.3. Consequently,
the next result is true:

Theorem 6.1.2 ([27, Theorem 5.3]). Let Γ = (X,R) denote a finite, simple, connected
graph with vertex set X and edge set R. Fix a distance-regularized vertex x ∈ X with
|Γ(x)| ≥ 2 and eccentricity d. Let E∗i ∈MatX(C) (0≤ i≤ d) denote the dual idempotents
of Γ with respect to x and let T = T (x) denote the Terwilliger algebra of Γ with respect to
x. Assume that Γ has, up to isomorphism, exactly one irreducible T -module with endpoint
1, and that this module is thin. Pick matrices F1,F2,F3 ∈ T and an integer i (1≤ i≤ d).
Then the matrices E∗i F1E∗1 , E∗i F2E∗1 and E∗i F3E∗1 are linearly dependent.

Observe that the conclusion of Theorem 6.1.2 is equivalent to the fact that the dimension
of E∗i TE∗1 (1≤ i≤ d) is at most 2.



84 CHAPTER 6. THE DISTANCE-REGULARIZED CASE

6.2 The intersection diagrams

Throughout this section let Γ = (X,R) denote a connected graph. We define a certain
partition of X that we will find useful later.

Definition 6.2.1. Let Γ = (X,R) denote a graph with diameter D. Pick x,y ∈X, such
that y ∈ Γ(x). For integers i, j we define sets Di

j :=Di
j(x,y) as follows:

Di
j = Γi(x)∩Γj(y).

Observe that Di
j = ∅ if i < 0 or j < 0. Similarly, Di

j = ∅ if i > ε(x) or j > ε(y). Furthermore,
by the triangle inequality we have that Di

j = ∅ if |i− j| ≥ 2. Note also that if Γ is bipartite,
the set Di

i is empty for 0≤ i≤D. The collection of all the subsets Di
i−1 (1≤ i≤ ε(x)),

Di
i (1≤ i≤min{ε(x), ε(y)}) and Di−1

i (1≤ i≤ ε(y)) is called the distance partition of
Γ with respect to the edge {x,y}.

The proofs of the following lemmas are straightforward and therefore left to the reader.

Lemma 6.2.2. Let Γ = (X,R) denote a connected graph with diameter D. Pick x,y ∈X,
such that y ∈ Γ(x) and let Di

j =Di
j(x,y). Then the following (i)–(v) hold for 1≤ i≤D.

(i) If w ∈Di
i−1 then Γ(w)⊆Di−1

i−2 ∪D
i−1
i−1 ∪D

i−1
i ∪Di

i−1∪Di
i ∪Di+1

i .

(ii) If w ∈Di
i then Γ(w)⊆Di−1

i−1 ∪D
i−1
i ∪Di

i−1∪Di
i ∪Di

i+1∪Di+1
i ∪Di+1

i+1.

(iii) If w ∈Di−1
i then Γ(w)⊆Di−2

i−1 ∪D
i−1
i−1 ∪D

i−1
i ∪Di

i−1∪Di
i ∪Di

i+1.

(iv) Γi(x) =Di
i−1∪Di

i ∪Di
i+1 and Γi(y) =Di−1

i ∪Di
i ∪Di+1

i .

(v) If Di
i+1 6= ∅ (Di+1

i 6= ∅, respectively) then Dj
j+1 6= ∅ (Dj+1

j 6= ∅, respectively) for
every 0≤ j ≤ i.

Lemma 6.2.3. Let Γ = (X,R) denote a connected graph with diameter D. Pick x ∈X
and assume that x is distance-regularized. Pick y ∈ Γ(x) and let Di

j =Di
j(x,y). Then, the

following (i), (ii) hold.

(i) Assume that z ∈Di
i−1 (1≤ i≤D). Then,

(a)
∣∣∣Γ(z)∩Di−1

i−2
∣∣∣+ ∣∣∣Γ(z)∩Di−1

i−1
∣∣∣+ ∣∣∣Γ(z)∩Di−1

i

∣∣∣= ci(x).

(b)
∣∣∣Γ(z)∩Di

i−1
∣∣∣+ ∣∣∣Γ(z)∩Di

i

∣∣∣= ai(x).
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(c)
∣∣∣Γ(z)∩Di+1

i

∣∣∣= bi(x) .

(ii) Assume that z ∈Di
i+1 (0≤ i≤D). Then,

(a)
∣∣∣Γ(z)∩Di+1

i

∣∣∣+ ∣∣∣Γ(z)∩Di+1
i+1
∣∣∣+ ∣∣∣Γ(z)∩Di+1

i+2
∣∣∣= bi(x).

(b)
∣∣∣Γ(z)∩Di

i+1
∣∣∣+ ∣∣∣Γ(z)∩Di

i

∣∣∣= ai(x).

(c)
∣∣∣Γ(z)∩Di−1

i

∣∣∣= ci(x).

Below, a graphical representation of a distance partition for the case when the eccentricity
of a vertex y ∈ Γ(x) is equal to ε(x) is presented in Figure 6.1. A line between Di

j and
Di′
j′ indicates the possibility of existence of edges between these two sets. Such a graphical

representation of a distance partition is called the intersection diagram of Γ with
respect to the edge {x,y}.

x

y

Di−1
i

· · · · · ·

Di−2
i−1

Di−1
i−2

Di−1
i−1 Di

i

Di
i−1

Di
i+1

Di+1
i+1

Di+1
i+2

Di+1
i Di+2

i+1

Dd−1
d

Dd
d−1

Dd
d

Figure 6.1: The intersection diagram of a connected graph Γ where ε(y) = ε(x) = d.

Lemma 6.2.4. Let Γ = (X,R) be a graph with diameter D. Pick a vertex x ∈ X and
assume that x is distance-regularized. Pick y ∈ Γ(x) and let Di

j = Di
j(x,y). Assume

that Di
i+1 6= ∅ or Di

i 6= ∅, where 1 ≤ i ≤D. Then Di
i−1 6= ∅. In particular, Di

i−1 6= ∅ for
1≤ i≤ ε(x).

Proof. If i= 1 then the result holds as D1
0 = {y}. Assume therefore that i≥ 2 and that

Di
i+1 6= ∅ or Di

i 6= ∅. Suppose to the contrary that Di
i−1 = ∅ and let t be the greatest integer

such that Dt
t−1 6= ∅. Observe that bt(x) = 0 by Lemma 6.2.3(i), which is impossible as

t < ε(x). To prove the last part of the lemma note that Γi(x) =Di
i+1∪Di

i ∪Di
i−1 (disjoint

union) is nonempty for 0≤ i≤ ε(x). �

Lemma 6.2.5. Let Γ = (X,R) denote a connected graph with diameter D. Pick x,y ∈X,
such that y ∈ Γ(x) and let Di

j = Di
j(x,y). Assume that Di

i 6= ∅ and Di−1
i−1 = ∅, where

1≤ i≤D. Then every vertex z ∈Di
i has a neighbour in Di

i−1.
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Proof. If i= 1 then the result holds as D1
0 = {y}. Assume therefore that i≥ 2 and that

Di
i 6= ∅ and Di−1

i−1 = ∅. Pick z ∈Di
i. Then, there exists a path [y = y0, · · · ,yi−1,yi = z] such

that ∂(y,yi−1) = i−1 and yi−1 ∈ Γ(z). By Lemma 6.2.2(ii), it follows that Γ(z)∩Γi−1(y)⊆
Di−1
i−1 ∪Di

i−1. Hence, since Di−1
i−1 is empty, we have that yi−1 is a neighbour of z in Di

i−1.
The claim follows. �

6.3 The main result

Throughout this section let Γ = (X,R) denote a connected graph. In this section we state
our main result. To do this we need the following definition.

Definition 6.3.1. Let Γ = (X,R) denote a connected graph. Pick x,y,z ∈X and let P =
[y = x0,x1, . . . ,xj = z] denote a yz-walk. The shape of P with respect to x is a sequence
of symbols t1t2 . . . tj, where ti ∈ {f,`,r}, and such that ti = r if ∂(x,xi) = ∂(x,xi−1) + 1,
ti = f if ∂(x,xi) = ∂(x,xi−1) and ti = ` if ∂(x,xi) = ∂(x,xi−1)− 1 (1 ≤ i ≤ j). We use
exponential notation for shapes containing several consecutive identical symbols. For
instance, instead of rrrrfff``r we simply write r4f3`2r. Analogously, r0f = f and r0`= `

is also conventional. For a non-negative integer m, let rm`(y,z), rmf(y,z) and rm(y,z)
respectively denote the number of yz-walks of the shape rm`, rmf and rm with respect to x
where r0(y,z) = 1 if y = z and r0(y,z) = 0 otherwise. See Figure 6.2 for an example.

x

y

· · · · · ·

Di−2
i−1

Di
i

Di
i−1

Di
i+1

Di+1
i+1

Di+1
i+2

Di+1
i Di+2

i+1

Dd−1
d

Dd
d−1

Dd
d

Di−1
i

Di−1
i−2

Di−1
i−1 z

· · ·

Figure 6.2: A yz-walk of the shape ri−1f for y ∈ Γ(x) and z ∈ Di
i in a graph Γ where

ε(y) = ε(x) = d.

The following observation is straightforward to prove (using elementary matrix multiplica-
tion and (6.1)).

Lemma 6.3.2. Let Γ = (X,R) denote a connected graph. Pick x ∈X and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. Let L=L(x), F = F (x) and R=R(x)
denote the lowering, the flat and the raising matrix of T , respectively. Pick y,z ∈X and
let m be a positive integer. Then the following (i)–(iii) hold:
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(i) The (z,y)-entry of Rm is equal to the number rm(y,z) with respect to x.

(ii) The (z,y)-entry of LRm is equal to the number rm`(y,z) with respect to x.

(iii) The (z,y)-entry of FRm is equal to the number rmf(y,z) with respect to x.

For the rest of the chapter we adopt the following notation.

Notation 6.3.3. Let Γ = (X,R) denote a finite, simple, connected graph with vertex
set X, edge set R and diameter D. Let A ∈MatX(C) denote the adjacency matrix of
Γ. Fix a distance-regularized vertex x ∈X with |Γ(x)| ≥ 2. Let d denote the eccentricity
of x, and let ai(x), bi(x), ci(x) (0 ≤ i ≤ d) denote the intersection numbers of x. Let
E∗i ∈MatX(C) (0≤ i≤ d) denote the dual idempotents of Γ with respect to x. Let V denote
the standard module of Γ and let T = T (x) denote the Terwilliger algebra of Γ with respect
to x. Let L= L(x), F = F (x) and R =R(x) denote the lowering, the flat and the raising
matrix of T , respectively. Let J denote the all 1’s matrix in MatX(C). Recall that the
unique irreducible T -module with endpoint 0 is thin. We denote this T -module by V0. For
y ∈ Γ(x) and z ∈X let the sets Di

j =Di
j(x,y) be as defined in Definition 6.2.1, and let the

numbers rm`(y,z), rmf(y,z) and rm(y,z) be as defined in Definition 6.3.1.

We are now ready to state our main result.

Theorem 6.3.4. With reference to Notation 6.3.3, the following (i), (ii) are equivalent:

(i) Γ has, up to isomorphism, a unique irreducible T -module with endpoint 1, and this
module is thin.

(ii) For every integer i (1≤ i≤ d) there exist scalars κi,µi, θi,ρi, such that for every
y ∈ Γ(x) the following (a), (b) hold:

(a) For every vertex z ∈ Di
i+1(x,y)∪Di

i(x,y) we have that ri`(y,z) = µi and
ri−1f(y,z) = ρi. In particular, ri`(y,z) and ri−1f(y,z) do not depend on the
choice of y,z.

(b) For every z ∈Di
i−1(x,y) we have that

ri`(y,z) = κi r
i−1(y,z) +µi,

ri−1f(y,z) = θi r
i−1(y,z) +ρi.

Moreover, ρi = 0 whenever the set Di
i+1(x,y) is nonempty.
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We finish this section with the following observation.

Proposition 6.3.5. With reference to Notation 6.3.3, the following holds for 0≤ i≤ d:

(
E∗iR

iLE∗1
)
zy

=


i∏

k=1
ck(x) if y ∈ Γ(x) and z ∈ Γi(x),

0 otherwise.

Proof. It is straightforward to check that the (z,y)-entry of E∗iRiLE∗1 is zero if either
y 6∈ Γ(x) or z 6∈ Γi(x). It is also straightforward to check that the result is true if i = 0.
Suppose now that y ∈ Γ(x) and z ∈ Γi(x) with i≥ 1. Then

(
E∗iR

iLE∗1
)
zy

=
(
RiL

)
zy
. By

Lemma 6.3.2(ii), the (z,y)-entry of RiL is equal to the number of paths of length i from z

to x. Since x is distance-regularized we observe that there are precisely ci(x)ci−1(x) · · ·c1(x)
such paths. The claim follows. �

Corollary 6.3.6. With reference to Notation 6.3.3, the following holds for 0≤ i≤ d:

E∗iR
iLE∗1 =

 i∏
k=1

ck(x)
E∗i JE∗1 .

In particular, E∗i JE∗1 ∈ T .

Proof. Immediately from Proposition 6.3.5. �

6.4 Algebraic condition implies combinatorial
properties

With reference to Notation 6.3.3, assume that Γ has, up to isomorphism, exactly one
irreducible T -module with endpoint 1, and that this module is thin. In this section we
prove that in this case combinatorial conditions (a), (b) described in part (ii) of Theorem
6.3.4 hold.

Lemma 6.4.1. With reference to Notation 6.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Then for
every i (1≤ i≤ d) there exist scalars κi,µi, such that

E∗i LR
iE∗1 = κiE

∗
iR

i−1E∗1 +µiE
∗
i JE

∗
1 . (6.2)
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Proof. Pick i (1 ≤ i ≤ d) and observe that by Definition 6.1.1 and Corollary 6.3.6, the
matrices LRi, Ri−1 and E∗i JE∗1 are elements of algebra T . Therefore, by (eiv) from Section
6.1 and Theorem 6.1.2, there exist scalars λj = λ

(i)
j (1≤ j ≤ 3), not all zero, such that

λ1E
∗
i LR

iE∗1 +λ2E
∗
iR

i−1E∗1 +λ3E
∗
i JE

∗
1 = 0.

Assume for the moment that λ1 6= 0. Then (6.2) holds with κi =−λ2/λ1 and µi =−λ3/λ1.
Now, assume that λ1 = 0. We first claim that in this case we have Di

i+1(x,y)∪Di
i(x,y) = ∅

for every y ∈ Γ(x). Indeed, suppose to the contrary that there exists y ∈ Γ(x) such that
the set Di

i+1(x,y)∪Di
i(x,y) 6= ∅. Abbreviate Dk

j =Dk
j (x,y) for 0≤ k,j ≤D, and observe

that Di
i−1 6= ∅ by Lemma 6.2.4. Pick z ∈Di

i+1∪Di
i and note that it follows from Lemma

6.3.2(i) that the (z,y)-entry of E∗iRi−1E∗1 is 0, while the (z,y)-entry of E∗i JE∗1 is 1. This
implies that λ3 = 0. Pick now z ∈Di

i−1 and note that it follows from Lemma 6.3.2(i) that
the (z,y)-entry of E∗iRi−1E∗1 is nonzero. This implies λ2 = 0, contradicting the fact that
the scalars λj (1≤ j ≤ 3) are not all zero. This proves our claim.

We next claim that λ2 6= 0. Suppose to the contrary that λ2 = 0. Pick y ∈ Γ(x) and
abbreviate Dk

j =Dk
j (x,y) for 0≤ k,j ≤D. As Di

i+1∪Di
i = ∅, we clearly have that Di

i−1 6= ∅.
Pick z ∈Di

i−1 and observe that the (z,y)-entry of E∗i JE∗1 is equal to 1, which forces λ3 = 0,
again contradicting the fact that the scalars λj (1≤ j ≤ 3) are not all zero. It follows that
λ2 6= 0. Therefore, we have that

E∗iR
i−1E∗1 =−λ3

λ2
E∗i JE

∗
1 , (6.3)

and so for any y ∈ Γ(x) and for any z ∈Di
i−1(x,y), the (z,y)-entry of E∗iRi−1E∗1 is equal

to −λ3/λ2. In other words, for any y ∈ Γ(x) and for any z ∈Di
i−1(x,y) there are exactly

−λ3/λ2 walks of the shape ri−1 from y to z. Since the set Di
i−1 6= ∅, this also implies that

λ3 6= 0.

Pick again any y ∈ Γ(x). Observe that since x is distance-regularized and since Di
i+1(x,y)∪

Di
i(x,y) = ∅, Lemma 6.2.3 implies that every z ∈Di

i−1(x,y) has exactly bi(x) neighbours
in Di+1

i (x,y), and that every z ∈Di+1
i (x,y) has exactly ci+1(x) neighbours in Di

i−1(x,y).
It follows from the above comments that for any vertex z ∈Di

i−1(x,y) there are exactly
−bi(x)ci+1(x)λ3/λ2 walks of the shape ri` from y to z. We now claim that (6.2) holds
for any κi,µi such that λ3κi−λ2µi = bi(x)ci+1(x)λ3. For example, we may let either
κi = bi(x)ci+1(x) and µi = 0, or κi = 0 and µi = −bi(x)ci+1(x)λ3/λ2. Indeed, pick any
y,z ∈X. If either y 6∈ Γ(x) or z 6∈ Γi(x), then the (z,y)-entry of both sides of (6.2) equals 0.
If y ∈ Γ(x) and z ∈ Γi(x), then z ∈Di

i−1(x,y) as Di
i+1(x,y)∪Di

i(x,y) = ∅. The (z,y)-entry
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of the left-hand side of (6.2) equals the number of yz-walks of the shape ri`, which equals
−bi(x)ci+1(x)λ3/λ2 by the above comments. However, it follows from Lemma 6.3.2 and
(6.3) that also the (z,y)-entry of the right-hand side of (6.2) equals −bi(x)ci+1(x)λ3/λ2,
and the result follows. �

The proof of the next lemma can be carried out using the same arguments as in the proof
of Lemma 6.4.1.

Lemma 6.4.2. With reference to Notation 6.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Then for
every i (1≤ i≤ d) there exist scalars θi,ρi, such that

E∗i FR
i−1E∗1 = θiE

∗
iR

i−1E∗1 +ρiE
∗
i JE

∗
1 . (6.4)

Proof. Pick i (1 ≤ i ≤ d) and observe that by Definition 6.1.1 and Corollary 6.3.6, the
matrices FRi−1, Ri−1 and E∗i JE∗1 are elements of algebra T . Therefore, by (eiv) from
Section 6.1 and Theorem 6.1.2, there exist scalars λj = λ

(i)
j (1≤ j ≤ 3), not all zero, such

that
λ1E

∗
i FR

i−1E∗1 +λ2E
∗
iR

i−1E∗1 +λ3E
∗
i JE

∗
1 = 0.

Assume for the momment that λ1 6= 0. Then (6.4) holds with θi =−λ2/λ1 and ρi =−λ3/λ1.
Now, assume that λ1 = 0. We first claim that in this case we have Di

i+1(x,y)∪Di
i(x,y) = ∅

for every y ∈ Γ(x). Indeed, suppose to the contrary that there exist y ∈ Γ(x) such that
the set Di

i+1(x,y)∪Di
i(x,y) 6= ∅. Abbreviate Dk

j =Dk
j (x,y) for 0≤ k,j ≤D, and observe

that Di
i−1 6= ∅ by Lemma 6.2.4. Pick z ∈Di

i+1∪Di
i and note that it follows from Lemma

6.3.2(i) that the (z,y)-entry of E∗iRi−1E∗1 is 0, while the (z,y)-entry of E∗i JE∗1 is 1. This
implies that λ3 = 0. Pick now z ∈Di

i−1 and note that it follows from Lemma 6.3.2(i) that
the (z,y)-entry of E∗iRi−1E∗1 is nonzero. This implies λ2 = 0, contradicting the fact that
the scalars λj (1≤ j ≤ 3) are not all zero. This proves our claim.

We next claim that λ2 6= 0. Suppose to the contrary that λ2 = 0. Pick y ∈ Γ(x) and
abbreviate Dk

j =Dk
j (x,y) for 0≤ k,j ≤D. As Di

i+1∪Di
i = ∅, we clearly have that Di

i−1 6= ∅.
Pick z ∈Di

i−1 and observe that the (z,y)-entry of E∗i JE∗1 is equal to 1, which forces λ3 = 0,
again contradicting the fact that the scalars λj (1≤ j ≤ 3) are not all zero. It follows that
λ2 6= 0. Therefore, we have that

E∗iR
i−1E∗1 =−λ3

λ2
E∗i JE

∗
1 , (6.5)
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and so for any y ∈ Γ(x) and for any z ∈Di
i−1(x,y), the (z,y)-entry of E∗iRi−1E∗1 is equal

to −λ3/λ2. In other words, for any y ∈ Γ(x) and for any z ∈Di
i−1(x,y) there are exactly

−λ3/λ2 walks of the shape ri−1 from y to z. Since the set Di
i−1 6= ∅, this also implies that

λ3 6= 0.

Pick again any y ∈ Γ(x). Observe that since x is distance-regularized and since we also
have that Di

i+1(x,y) ∪ Di
i(x,y) = ∅, Lemma 6.2.3(i) implies that every z ∈Di

i−1(x,y) has
exactly ai(x) neighbours in Di

i−1(x,y). Hence, it follows from the above comments that
for any z ∈Di

i−1(x,y) there are exactly −ai(x)λ3/λ2 walks of the shape ri−1f from y to z.
We now claim that (6.4) holds for any θi,ρi such that λ3θi−λ2ρi = ai(x)λ3. For example,
we may let either θi = ai(x) and ρi = 0, or θi = 0 and ρi = −ai(x)λ3/λ2. Indeed, pick
any y,z ∈X. If either y 6∈ Γ(x) or z 6∈ Γi(x), then the (z,y)-entry of both sides of (6.4)
equals 0. If y ∈ Γ(x) and z ∈ Γi(x), then z ∈Di

i−1(x,y) as Di
i+1(x,y)∪Di

i(x,y) = ∅. The
(z,y)-entry of the left-hand side of (6.4) equals the number of yz-walks of the shape ri−1f ,
which equals −ai(x)λ3/λ2 by the above comments. However, it follows from Lemma 6.3.2
and (6.5) that also the (z,y)-entry of the right-hand side of (6.4) equals −ai(x)λ3/λ2, and
the result follows. �

We are now ready to prove the main result of this section.

Theorem 6.4.3. With reference to Notation 6.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. For every
integer i (1 ≤ i ≤ d) there exist scalars κi,µi, θi,ρi, such that for every y ∈ Γ(x) the
following (a), (b) hold:

(a) For every z ∈Di
i+1(x,y)∪Di

i(x,y) we have that ri`(y,z) = µi and ri−1f(y,z) = ρi.
In particular, ri`(y,z) and ri−1f(y,z) do not depend on the choice of y,z.

(b) For every z ∈Di
i−1(x,y) we have that

ri`(y,z) = κi r
i−1(y,z) +µi,

ri−1f(y,z) = θi r
i−1(y,z) +ρi.

Moreover, ρi = 0 if the set Di
i+1(x,y) is nonempty for some y ∈ Γ(x).

Proof. Pick an integer i (1 ≤ i ≤ d) and recall that by Lemma 6.4.1 and Lemma 6.4.2,
equations (6.2) and (6.4) hold. Pick y ∈ Γ(x).
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(a) Pick z ∈ Di
i+1(x,y)∪Di

i(x,y) and observe that by Lemma 6.3.2 the (z,y)-entry of
the left-hand side of (6.2) equals ri`(y,z) while the (z,y)-entry of the left-hand side of
(6.4) equals ri−1f(y,z). On the other hand, again by Lemma 6.3.2, the (z,y)-entry of
E∗iR

i−1E∗1 equals 0, while the (z,y)-entry of E∗i JE∗1 is obviously equal to 1. Therefore, the
(z,y)-entry of the right-hand side of (6.2) equals µi and the (z,y)-entry of the right-hand
side of (6.4) equals ρi. In particular, ri`(y,z) and ri−1f(y,z) do not depend on the choice
of y,z.

(b) Pick now z ∈ Di
i−1(x,y) and observe that by Lemma 6.3.2 the (z,y)-entry of the

left-hand side of (6.2) equals ri`(y,z). Similarly, the (z,y)-entry of the left-hand side
of (6.4) equals ri−1f(y,z). On the other hand, again by Lemma 6.3.2, the (z,y)-entry
of E∗iRi−1E∗1 equals ri−1(y,z), while the (z,y)-entry of E∗i JE∗1 is obviously equal to 1.
Therefore, the (z,y)-entry of the right-hand side of (6.2) equals κi ri−1(y,z) +µi and the
(z,y)-entry of the right-hand side of (6.4) equals θi ri−1(y,z) +ρi.

Moreover, for z ∈ Di
i+1(x,y) we observe there is no yz-walk of the shape ri−1f and so

ρi = 0 if the set Di
i+1(x,y) is nonempty for some y ∈ Γ(x). The result follows. �

6.5 Combinatorial properties imply algebraic
condition

With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of Theorem 6.3.4. In
this section we prove that in this case Γ has, up to isomorphism, exactly one irreducible
T -module with endpoint 1, and that this module is thin. We also display a basis of this
module and the matrix representing the action of the adjacency matrix on this basis.

Proposition 6.5.1. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. For every integer i (1≤ i≤ d), the following equalities hold:

E∗i LR
iE∗1 = κiE

∗
iR

i−1E∗1 +µiE
∗
i JE

∗
1 , (6.6)

E∗i FR
i−1E∗1 = θiE

∗
iR

i−1E∗1 +ρiE
∗
i JE

∗
1 . (6.7)

Proof. Pick an integer i (1 ≤ i ≤ d) and vertices y,z ∈X. We will show that the (z,y)-
entries of both sides of (6.6) and (6.7) agree. Observe first that if either y 6∈ Γ(x) or
z 6∈ Γi(x), then the (z,y)-entry of both sides of (6.6) and (6.7) equals 0. Therefore, assume
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that y ∈ Γ(x) and z ∈ Γi(x). Abbreviate Dk
j (x,y) = Dk

j for 0 ≤ k,j ≤D and recall that
Γi(x) =Di

i−1∪Di
i ∪Di

i+1.

Assume first that z ∈Di
i+1∪Di

i, and note that the (z,y)-entry of E∗i LRiE∗1 is equal to the
number ri`(y,z), while the (z,y)-entries of E∗iRi−1E∗1 and E∗i JE∗1 are 0 and 1 respectively.
In addition, the (z,y)-entry of E∗i FRi−1E∗1 is equal to ri−1f(y,z). As ri`(y,z) = µi and
ri−1f(y,z) = ρi by the assumption, the (z,y)-entries of both sides of (6.6) and (6.7) agree.

Assume next that z ∈ Di
i−1 and note the (z,y)-entry of E∗i LRiE∗1 , E∗i FRi−1E∗1 and

E∗iR
i−1E∗1 are equal to the numbers ri`(y,z), ri−1f(y,z) and ri−1(y,z) respectively. In

addition, the (z,y)-entry of E∗i JE∗1 is of course equal to 1. By the assumption we have
that ri`(y,z) = κi r

i−1(y,z) +µi and rif(y,z) = θi r
i−1(y,z) +ρi. So, the (z,y)-entries of

both sides of (6.6) and (6.7) agree. This finishes the proof. �

Lemma 6.5.2. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1. Then the following (a),
(b) hold:

(i) Lw = 0 and LRiw = κiR
i−1w (1≤ i≤ d).

(ii) FRi−1w = θiR
i−1w (1≤ i≤ d) and FRdw = 0.

Proof. As w ∈ E∗1V we have that E∗1w = w and so,

〈jjj,w〉= 〈jjj,E∗1w〉= 〈E∗1jjj,w〉= 〈s1,w〉= 0,

where jjj denotes the all 1’s vector in V . This shows Jw = 0. By elementary matrix
multiplication it is easy to see E∗0AE∗1 = E∗0JE

∗
1 . Therefore, by Definition 6.1.1 and the

above comments we have that Lw = E∗0AE
∗
1w = E∗0JE

∗
1w = E∗0Jw = 0. Observe also that

RdE∗1 is the zero matrix and so FRdw = 0. In addition, by (6.1) and Proposition 6.5.1,
for 1≤ i≤ d we have

LRiw = E∗i LR
iE∗1w = κiE

∗
iR

i−1E∗1w = κiR
i−1w.

FRi−1w = E∗i FR
i−1E∗1w = θiE

∗
iR

i−1E∗1w = θiR
i−1w.

The result follows. �

Lemma 6.5.3. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1. Then the following
(i)–(iii) hold:
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(i)
∥∥∥Riw∥∥∥2

= κi
∥∥∥Ri−1w

∥∥∥2
(1≤ i≤ d).

(ii)
〈
Riw,Rjw

〉
= δij

i∏
l=1

κl ‖w‖2 (0≤ i, j ≤ d).

(iii) There exists i (1≤ i≤ d) such that κi = 0.

Proof. (i) Pick 1≤ i≤ d. Then by Lemma 6.5.2(i) we have
∥∥∥Riw∥∥∥2

=
〈
Riw, Riw

〉
=
〈
LRiw, Ri−1w

〉
= κi

∥∥∥Ri−1w
∥∥∥2
.

(ii) If i 6= j, then the result follows from (eii), (eiii) and (eiv) below the definition of the
dual idempotents in Section 6.1 and from (6.1). If i= j then the result follows from (i)
above by a straightforward induction argument.

(iii) Immediate from (ii) above since by (6.1) we have Rdw = 0 and w is a nonzero
vector. �

Theorem 6.5.4. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1. Let W denote the vector
subspace of V spanned by the vectors Riw (0≤ i≤ d). Let s (1≤ s≤ d) be the least integer
such that κs = 0. Then W is a thin irreducible T -module with endpoint 1 and the vectors
{Ri−1w | 1≤ i≤ s} form an orthogonal basis of W . In particular, the dimension of W is
s.

Proof. Observe that by (6.1) and since RE∗d = 0, the subspace W is invariant under the
action of the dual idempotents. By construction and since Rdw = 0 by (6.1) it is also clear
that W is closed under the action of R. Moreover, it follows from Lemma 6.5.2 that W
is invariant under the action of L and F . Since A = L+F +R, it turns out that W is
A-invariant as well. Recall that algebra T is generated by A and the dual idempotents.
Therefore, W is a T -module. It is clear that W is thin, since by construction, (6.1) and
Lemma 6.5.2, the subspace E∗iW is generated by Ri−1w.

Now, let us show thatW is irreducible. Note that w ∈W and soW is non-zero. Recall that
W is an orthogonal direct sum of irreducible T -modules. Since E∗0W is the zero subspace
and E∗1w = w 6= 0, there exists an irreducible T -module W ′, such that the endpoint of W ′

is 1 and W ′ ⊆W . Consequently, E∗1W ′ ⊆ E∗1W . However, the dimension of E∗1W is 1,
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and so E∗1W ′ = E∗1W . But now we have

W = TE∗1W = TE∗1W
′ ⊆W ′,

implying that W =W ′. Hence, W is irreducible and its endpoint equals 1.

Finally, notice that Rsw = 0 by Lemma 6.5.3(i). Furthermore, it holds that vectors
{Ri−1w | 1 ≤ i ≤ s} are nonzero and pairwise orthogonal by Lemma 6.5.3(ii) and the
definition of number s. The result follows. �

Theorem 6.5.5. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. Let W denote an irreducible T -module with endpoint 1. Let s (1≤ s≤ d)
be the least integer such that κs = 0. Pick a vector w ∈ E∗1W , w 6= 0. Then the vectors
{Ri−1w | 1≤ i≤ s} form an orthogonal basis of W . In particular, W is a thin irreducible
module with dimension s.

Proof. Let W ′ denote the vector subspace of V spanned by the vectors {Ri−1w | 1≤ i≤ d}.
Recall that W and the unique irreducible T -module with endpoint 0 are not isomorphic,
and so w is orthogonal to s1. By Theorem 6.5.4, W ′ is a T -module. Note that W ′ is
nonzero and contained in W . As W is irreducible, we have that W =W ′. The result now
follows from Theorem 6.5.4. �

Theorem 6.5.6. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. Then there is, up to isomorphism, a unique irreducible T -module with
endpoint 1, and this module is thin.

Proof. Let W and W ′ be irreducible T -modules with endpoint 1, and pick any nonzero
vectors w ∈ E∗1W and w′ ∈ E∗1W ′. Let s (1≤ s≤ d) be the least integer such that κs = 0.
By Theorem 6.5.5, the vectors

{
Ri−1w | 1≤ i≤ s

}
and

{
Ri−1w′ | 1≤ i≤ s

}
are orthogonal bases ofW andW ′, respectively. Hence, the linear map σ :W →W ′, defined
by σ

(
Ri−1w

)
=Ri−1w′ is a vector space isomorphism. It is clear that σ commutes with

R. By Lemma 6.5.2 it follows that σ also commutes with L and F . Since A= L+F +R,
it turns out that σ commutes with A as well. Furthermore, σ is a T -module isomorphism
since by (eiv) from Section 6.1, it commutes also with E∗i (0≤ i≤ d). Thus W and W ′

are T -isomorphic. �



96 CHAPTER 6. THE DISTANCE-REGULARIZED CASE

Theorem 6.5.7. With reference to Notation 6.3.3, assume that Γ satisfies part (ii) of
Theorem 6.3.4. Let W denote an irreducible T -module with endpoint 1. Pick w ∈ E∗1W ,
w 6= 0, and recall that

B =
{
Ri−1w | 1≤ i≤ s

}
is a basis of W , where s is the least integer such that κs = 0 (1≤ s≤ d). Then the matrix
representing the action of A on W with respect to the (ordered) basis B is given by



θ1 κ1

1 θ2 κ2

1 . . . . . .
. . . . . . κs−2

1 θs−2 κs−1

1 θs−1


.

Proof. Recall that A= L+F +R. The result now follows from Lemma 6.5.2. �

6.6 Comments on the distance partition

Throughout this section let Γ = (X,R) denote a connected graph. Let x ∈ X and let
T = T (x). Suppose that Γ is distance-regular around x so that the unique irreducible
T -module with endpoint 0 is thin. Assume that Γ has, up to isomorphism, exactly
one irreducible T -module with endpoint 1, which is thin. In this section we have some
comments about the combinatorial structure of the intersection diagrams of Γ with respect
to the edge {x,y}, for every y ∈ Γ(x). In particular, we will discuss which of the sets
Di
j(x,y) are (non)empty.

Lemma 6.6.1. With reference to Notation 6.3.3, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Pick an
integer i (1≤ i≤ d) and assume for some y ∈ Γ(x), the set Di

i+1(x,y) 6= ∅. Then, the set
Dj
j(x,y) is empty for every j (1≤ j ≤ i) and for all y ∈ Γ(x).

Proof. Suppose there exists j (1≤ j ≤ i) and w ∈ Γ(x) such that Dj
j(x,w) is nonempty.

Without loss of generality, we may pick j as the least integer such that the setDj−1
j−1(x,w) = ∅

but the set Dj
j(x,w) is nonempty. By Definition 6.1.1 and Corollary 6.3.6, the matrices

Rj−1, FRj−1 and E∗j JE∗1 are elements of algebra T . Therefore, by (eiv) from Section 6.1
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and Theorem 6.1.2, there exist scalars λk = λ
(j)
k (1≤ k ≤ 3), not all zero, such that

λ1E
∗
jR

j−1E∗1 +λ2E
∗
jFR

j−1E∗1 +λ3E
∗
j JE

∗
1 = 0. (6.8)

By Lemma 6.2.2(v), notice that the set Dj
j+1(x,y) is nonempty. Pick z ∈Dj

j+1(x,y) and
note that it follows from Lemma 6.3.2(i),(iv) that the (z,y)-entry of E∗jRj−1E∗1 and
E∗jFR

j−1E∗1 are both 0, respectively. This implies that λ3 = 0 since the (z,y)-entry of
E∗j JE

∗
1 equals 1. Pick now z ∈ Dj

j(x,w). We observe from Lemma 6.3.2(i) that the
(z,w)-entry of E∗jRj−1E∗1 is 0. In addition, as the set Dj−1

j−1(x,w) is empty, it follows from
Lemma 6.2.2(v) and Lemma 6.2.5 that there exists a wz-walk of the shape rj−1f with
respect to x. So, by Lemma 6.3.2(iv), the (z,w)-entry of E∗jFRj−1E∗1 is nonzero. This
implies that λ2 = 0. So, from equation (6.8) we have that λ1E∗jR

j−1E∗1 is the zero matrix.
Observe that Dj

j−1(x,w) is nonempty by Lemma 6.2.4. We now pick z ∈Dj
j−1(x,w) and

note that it follows from Lemma 6.3.2(i) that the (z,w)-entry of E∗jRj−1E∗1 is nonzero.
This implies λ1 = 0, contradicting the fact that the scalars λk (1≤ k ≤ 3) are not all zero.
The claim follows. �

The above lemma together with the fact that the set D0
1(x,y) is nonempty for every

y ∈ Γ(x) motivate the next result.

Proposition 6.6.2. With reference to Notation 6.3.3, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module is
thin. Pick y ∈ Γ(x) and let Di

j =Di
j(x,y). Then, there exists an integer t := t(y) (0≤ t≤ d)

such that the following (i),(ii) hold:

(i) For every i (0≤ i≤ t) the set Di
i+1 is nonempty and the set Di

i(x,z) is empty for every
z ∈ Γ(x).

(ii) For every i (t < i≤ d) the set Di
i+1 is empty.

Moreover, Γi(x) =Di
i+1∪Di

i−1 for every 0≤ i≤ t.

Proof. For y ∈ Γ(x), since the set D0
1(x,y) is nonempty, let us define t := t(y) as the

greatest integer i (1≤ i≤ d) such that the set Di
i+1(x,y) is nonempty. Then, it is clear

that the set Di
i+1 is empty for i > t and, by Lemma 6.2.2(v), the set Di

i+1 is nonempty for
every 0≤ i≤ t. Moreover, by Lemma 6.6.1 the set Di

i(x,z) is empty for every z ∈ Γ(x)
and for every 0≤ i≤ t. The result follows. �
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Proposition 6.6.3. With reference to Notation 6.3.3, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. Pick y ∈ Γ(x) and let Di

j =Di
j(x,y). If there exists j (1≤ j ≤ d) such that Dj

j is
nonempty then Di

i is nonempty for every t(y)< i≤ j.

Proof. Suppose the set Dj
j is nonempty for some j (1 ≤ j ≤ d). Then, by Proposition

6.6.2 we have t(y)< j. Assume now there exists an integer i (t(y)< i < j) such that Di
i is

empty. Notice that in this case Γi(x) =Di
i−1 which is nonempty by Lemma 6.2.4. Pick

now w ∈ Dj
j . We observe every shortest xw-path must pass through a vertex in Di

i−1.
This clearly shows ∂(x,w)≥ i+ (j− i+ 1) = j+ 1, a contradiction. The result follows. �

Propositions 6.6.2 and 6.6.3 help us to understand the combinatorial structure of graphs
which have, up to isomorphism, exactly one irreducible T -module with endpoint 1, which
is thin.

We now consider the possible intersection diagrams of Γ with respect to the edge {x,y}, for
every y ∈ Γ(x). Let d denote the eccentricity of x. Then, we observe ε(y) ∈ {d−1,d,d+1}.
We have two cases.

If ε(y)> d then the set Dd
d+1(x,y) is not empty and so the scalar t(y) = d. By Proposition

6.6.2, the set Di
i(x,y) is empty for every y ∈ Γ(x) and for every i (0≤ i ≤ d). Moreover,

notice the sets Di
i+1(x,y) (0 ≤ i ≤ d) and Di

i−1(x,y) (1 ≤ i ≤ d) are all nonempty. See
Figure 6.3 for a graphical representation of the intersection diagram of Γ with respect to
the edge {x,y} when ε(y)> ε(x).

Di
i+1 Di+1

i+2Di−1
i

Di+1
i Di+2

i+1Di
i−1

x

y

Dd−1
d Dd

d+1Dd−2
d−1

Dd
d−1Dd−1

d−2· · · · · ·

· · · · · ·

Figure 6.3: Intersection diagram of graph Γ which has, up to isomorphism, exactly one
irreducible T (x)-module with endpoint 1, and this module is thin: case ε(y)> ε(x).

If ε(y)≤ d then the set Dd
d+1(x,y) is empty and so, t := t(y)< d. Furthermore, in this case

the sets Di
i+1(x,y) (0≤ i≤ t) and Di

i−1(x,y) (1≤ i ≤ d) are all nonempty. Moreover, if
Dt+1
t+1(x,y) 6= ∅, then let u (1≤ u≤ d−1− t) denote the greatest positive integer such that

Dt+u
t+u(x,y) 6= ∅. See Figure 6.4 for a graphical representation of the intersection diagram

of Γ with respect to the edge {x,y} when ε(y)≤ ε(x).
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x

y

· · ·

Dt−1
t

Dt+1
t+1

Dt+1
tDt

t−1

Dt
t+1

· · ·

· · · · · · Dd
d−1

Dt+u
t+u

Figure 6.4: Intersection diagram of graph Γ which has, up to isomorphism, exactly one
irreducible T (x)-module with endpoint 1, and this module is thin: case ε(y)≤ ε(x).

It is easy to see that the integer t := t(y), which Proposition 6.6.2 refers to, is independent
of the choice of y ∈ Γ(x) if and only if the next statement is true for each i (1≤ i≤ d):

if for some y ∈ Γ(x) the setDi
i+1(x,y) 6= ∅, then Di

i+1(x,y) 6= ∅ for every y ∈ Γ(x). (6.9)

For i= 1, we observe (6.9) immediately follows. However, the proof of the general case
seems to need a nontrivial approach. At this point, the next question naturally arises.

Question 6.6.4. With reference to Notation 6.3.3 and Proposition 6.6.2, assume that Γ
has, up to isomorphism, exactly one irreducible T -module with endpoint 1, and that this
module is thin. Does the integer t := t(y) depend on the choice of y ∈ Γ(x)?

6.7 Examples

In this section we present several examples of graphs for which the equivalent conditions
of Theorem 6.3.4 hold for a certain vertex x. Some examples of bipartite graphs where the
equivalent conditions of Theorem 6.3.4 hold for a certain vertex x are presented throughout
Section 5.7 in Chapter 5. We therefore turn our attention to nonbipartite ones.

A distance-regular graph with diameter D is said to be almost-bipartite if the intersection
numbers satisfy ai = 0 (1≤ i≤D−1) and aD 6= 0 (see [6] for the definition of distance-
regular graphs). In this case it is easy to see, that for any vertex x ∈X, the partition from
Definition 6.2.1 is equitable for every y ∈ Γ(x), and the parameters of this partition do not
depend on the choice of y ∈ Γ(x) (see for example [39, Subsection 9.3] for the definition
of equitable partitions). Moreover, the set Di

i(x,y) is empty for every y ∈ Γ(x) and for
every integer i (1 ≤ i ≤D−1) and the set DD

D(x,y) is nonempty for every y ∈ Γ(x). It
is thus clear that in this case the conditions (a), (b) described in part (ii) of Theorem
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6.3.4 are satisfied, and so Γ has, up to isomorphism, exactly one irreducible T -module
with endpoint 1, and this module is thin. So, almost-bipartite distance-regular graphs are
examples of nonbipartite graphs for which the equivalent conditions of Theorem 6.3.4 hold
for any given vertex x.

Our next example shows that there exist graphs which admit vertex x, such that there is,
up to isomorphism, a unique irreducible T (x)-module of endpoint 1, and this module is
thin, but the corresponding partitions from Definition 6.2.1 are not equitable.
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22

23

24
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261

Figure 6.5: Graph Γ which has, up to isomorphism, exactly one irreducible T (1)-module with
endpoint one, and this module is thin.

Let Γ denote the graph in Figure 6.5 and let x = 1. It is easy to check that Γ is non-
bipartite and distance-regular around vertex 1. Let T = T (1) be the Terwilliger algebra of
Γ with respect to vertex 1.

The intersection diagram for the distance partition with respect to the edge {1,2} is
presented in Figure 6.6. Given the symmetry fixing vertex 1 and swapping vertices 2 and
3, the intersection diagram for the distance partition with respect to the edge {1,3} is
similar; see Figure 6.7.

It is now straightforward to check that properties (a), (b) described in part (ii) of Theorem
6.3.4 hold with the values of κi,µi, θi,ρi (1≤ i≤ 9) as presented in Table 6.1.

i 1 2 3 4 5 6 7 8 9
κi 1 2 2 1 2 2 1 0 0
µi 0 0 1 0 2 0 0 8 0
θi 0 -1 0 0 0 0 -1 0 0
ρi 0 1 1 0 0 4 8 0 0

Table 6.1: Values of scalars κi, µi, θi and ρi, (1≤ i≤ 9).
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Figure 6.6: Distance partition of Γ with respect to the edge {1,2}.
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Figure 6.7: Distance partition of Γ with respect to the edge {1,3} .

Consequently, by Theorem 6.3.4, it holds that Γ has, up to isomorphism, a unique
irreducible T -module with endpoint 1, and this module is thin. Moreover, this T -module
has dimension s= 8. Note also that the partitions presented by the intersection diagrams
in Figures 6.6 and 6.7 are not equitable.





Chapter 7

Graphs with exactly one irreducible
T -module with endpoint 1, which is
thin: the pseudo-distance-regularized
case

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ which is not a
leaf and let T = T (x) denote the Terwilliger algebra of Γ with respect to x. Assume

that the unique irreducible T -module with endpoint 0 is thin, or equivalently that Γ is
pseudo-distance-regular around x. We consider the property that Γ has, up to isomorphism,
a unique irreducible T -module with endpoint 1, and that this T -module is thin. The main
result of the chapter is a combinatorial characterization of this property.

The chapter is organized as follows. In Section 7.1 we recall basic definitions and results
about Terwilliger algebras that we will find useful later in the chapter. In Section 7.2
we then state our main result in Theorem 7.2.5. In Section 7.3, we prove that certain
matrices of the Terwilliger algebra are linearly dependent, and we use this in Sections 7.4
and 7.5 to prove the main result. In Section 7.6, we have some comments about certain
distance partitions of graphs which are pseudo-distance-regular around a fixed vertex and
also have a unique irreducible T -module (up to isomorphism) with endpoint 1, and this
module is thin. We finish the chapter presenting some examples in Section 7.7 and giving
some concluding remarks in Section 7.8.

The chapter is based on a solo article which will be submitted for its publication; see [24]
for more details.

103
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7.1 Preliminaries

In this section we review some definitions and basic concepts. Throughout this chapter,
Γ = (X,R) will denote a finite, undirected, connected graph, without loops and multiple
edges, with vertex set X and edge set R.

Let x,y ∈X. The distance between x and y, denoted by ∂(x,y), is the length of a shortest
xy-path. The eccentricity of x, denoted by ε(x), is the maximum distance between
x and any other vertex of Γ: ε(x) = max{∂(x,z) | z ∈X}. Let D denote the maximum
eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i we define
Γi(x) by

Γi(x) = {y ∈X | ∂(x,y) = i} .

We will abbreviate Γ(x) = Γ1(x). Note that Γ(x) is the set of neighbours of x. Observe
that Γi(x) is empty if and only if i < 0 or i > ε(x).

We now recall some definitions and basic results concerning a Terwilliger algebra of Γ.
Let C denote the complex number field. Let MatX(C) denote the C-algebra consisting
of all matrices whose rows and columns are indexed by X and whose entries are in C.
Let V denote the vector space over C consisting of column vectors whose coordinates are
indexed by X and whose entries are in C. We observe that MatX(C) acts on V by left
multiplication. We call V the standard module. We endow V with the Hermitian inner
product 〈·, ·〉 that satisfies 〈u,v〉 = u>v for u,v ∈ V , where > denotes transpose and
denotes complex conjugation. For y ∈X, let ŷ denote the element of V with a 1 in the
y-coordinate and 0 in all other coordinates. We observe that {ŷ | y ∈X} is an orthonormal
basis for V .

Let A ∈MatX(C) denote the adjacency matrix of Γ. That is, the matrix in MatX(C) with
entries given as follows:

(A)xy =

 1 if ∂(x,y) = 1,

0 if ∂(x,y) 6= 1,
(x,y ∈X).

The adjacency algebra of Γ, also called the Bose-Mesner algebra of Γ, is the
commutative subalgebra M of MatX(C) generated by the adjacency matrix A of Γ.

We now recall the dual idempotents of Γ. To do this fix a vertex x ∈X and let d= ε(x).
We view x as a base vertex. For 0≤ i≤ d, let E∗i = E∗i (x) denote the diagonal matrix in
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MatX(C) with (y,y)-entry as follows:

(E∗i )yy =

 1 if ∂(x,y) = i,

0 if ∂(x,y) 6= i
(y ∈X).

We call E∗i the i-th dual idempotent of Γ with respect to x [89, p. 378]. We also
observe (ei) ∑d

i=0E
∗
i = I; (eii) E∗i = E∗i (0 ≤ i ≤ d); (eiii) E∗>i = E∗i (0 ≤ i ≤ d); (eiv)

E∗i E
∗
j = δijE

∗
i (0≤ i, j ≤ d) where I denotes the identity matrix in MatX(C). By these

facts, matrices E∗0 ,E∗1 , . . . ,E∗d form a basis for the commutative subalgebra M∗ =M∗(x)
of MatX(C). Note that for 0≤ i≤ d we have that

E∗i V = Span{ŷ | y ∈ Γi(x)}, (7.1)

and that

V = E∗0V +E∗1V + · · ·+E∗dV (orthogonal direct sum).

We call E∗i V the i-th subconstituent of Γ with respect to x. For convenience we
define E∗−1 and E∗d+1 to be the zero matrix of MatX(C).

We next recall the definition of a Terwilliger algebra of Γ which was first studied in [89].
Let T = T (x) denote the subalgebra of MatX(C) generated by M , M∗. We call T the
Terwilliger algebra of Γ with respect to x. Recall that M is generated by A. So, T
is generated by A and the dual idempotents. We observe that T has finite dimension. In
addition, since by construction T is generated by real-symmetric matrices, it follows that
T is closed under the conjugate-transpose map. For a vector subspace W ⊆ V , we denote
by TW the subspace {Bw |B ∈ T,w ∈W}.

We now recall the lowering, the flat and the raising matrix of T .

Definition 7.1.1. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x∈X.
Let d = ε(x) and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Define
L= L(x), F = F (x) and R =R(x) in MatX(C) by

L=
d∑
i=1

E∗i−1AE
∗
i , F =

d∑
i=0

E∗i AE
∗
i , R =

d−1∑
i=0

E∗i+1AE
∗
i .

We refer to L, F and R as the lowering, the flat and the raising matrix with respect
to x, respectively. Note that L,F,R ∈ T . Moreover, F = F>, R = L> and A= L+F +R.
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Observe that for y,z ∈X we have that the (z,y)-entry of L equals 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y)−1, and 0 otherwise. The (z,y)-entry of F is equal to 1 if ∂(z,y) = 1 and
∂(x,z) = ∂(x,y), and 0 otherwise. Similarly, the (z,y)-entry of R equals 1 if ∂(z,y) = 1
and ∂(x,z) = ∂(x,y) + 1, and 0 otherwise. Consequently, for v ∈ E∗i V (0≤ i≤ d) we have
that

Lv ∈ E∗i−1V, Fv ∈ E∗i V, Rv ∈ E∗i+1V. (7.2)

By a T -module we mean a subspace W of V , such that TW ⊆W . Let W denote a
T -module. Then W is said to be irreducible whenever W is nonzero and W contains
no T -modules other than 0 and W . Since the algebra T is closed under the conjugate-
transposed map, it turns out that any T -module is an orthogonal direct sum of irreducible
T -modules.

Let W be an irreducible T -module. We observe that W is an orthogonal direct sum
of the nonvanishing subspaces E∗iW for 0 ≤ i ≤ d. By the endpoint of W we mean
r := r(W ) = min{i | 0≤ i≤ d, E∗iW 6= 0}. Define the diameter of W by d′ := d′(W ) =
|{i | 0≤ i≤ d, E∗iW 6= 0}|−1. By Proposition 3.1.5, we have that E∗iW 6= 0 if and only if
r ≤ i≤ r+d′ (0≤ i≤ d). We also say that W is thin whenever the dimension of E∗iW is
at most 1 for 0≤ i≤ d.

Let W and W ′ denote two irreducible T -modules. By a T -isomorphism from W to
W ′ we mean a vector space isomorphism σ :W →W ′ such that (σB−Bσ)W = 0 for all
B ∈ T . The T -modules W and W ′ are said to be T -isomorphic (or simply isomorphic)
whenever there exists a T -isomorphism σ :W →W ′. We note that isomorphic irreducible
T -modules have the same endpoint. It turns out that two non-isomorphic irreducible
T -modules are orthogonal.

Observe that the subspace T x̂ = {Bx̂ | B ∈ T} is a T -module. Suppose that W is an
irreducible T -module with endpoint 0. Then, x̂ ∈W , which implies that T x̂⊆W . Since
W is irreducible, we therefore have T x̂=W . Hence, T x̂ is the unique irreducible T -module
with endpoint 0. We refer to T x̂ as the trivial T -module.

Assume now the trivial T -module is thin. In this case, by Lemma 3.6.1, vectors Rix̂ (0≤
i ≤ d) form a basis of the trivial T -module. In the rest of this chapter we will study
irreducible T -modules of endpoint 1. Therefore, we will first characterize those vertices x of
Γ, for which the corresponding Terwilliger algebra T = T (x) has no irreducible T -modules
with endpoint 1.
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Proposition 7.1.2. Let Γ = (X,R) denote a finite, simple, and connected graph. Pick
a vertex x ∈ X and let T = T (x) denote the corresponding Terwilliger algebra. Then,
there are no irreducible T -modules with endpoint 1 if and only if dim(E∗1T x̂) = |Γ(x)|. In
particular, if the trivial module is thin, there are no irreducible T -modules with endpoint 1
if and only if |Γ(x)|= 1.

Proof. Let V denote the standard module, and let T x̂ denote the trivial T -module. We
observe T x̂⊆ V and so, dim(E∗1T x̂)≤ |Γ(x)|.

Assume first that there are no irreducible T -modules with endpoint 1. Since V is orthogonal
direct sum of irreducible T -modules and none of these T -modules has endpoint 1 we have
E∗1V = E∗1T x̂ which implies that dim(E∗1T x̂) = dim(E∗1V ) = |Γ(x)|.

Next, we proceed by contraposition. Suppose there exists an irreducible T -module W
with endpoint 1. Let V1 the sum of all irreducible T -modules with endpoint 1. Note that
E∗1W is nonzero and since E∗1W ⊆ E∗V1, we have that dim(E∗1V1)> 0. We also have that
E∗1V = E∗1T x̂+E∗1V1. This shows that

|Γ(x)|= dim(E∗1V ) = dim(E∗1T x̂) + dim(E∗1V1)> dim(E∗1T x̂).

To prove the second part of our assertion, recall that if T x̂ is thin, by Lemma 3.6.1, the
subspace E∗1T x̂ is spanned by the nonzero vector Rx̂. This concludes the proof. �

In view of Proposition 7.1.2, we will assume that |Γ(x)| ≥ 2 from now on.

7.2 The main result

Throughout this section let Γ = (X,R) denote a connected graph. Here we state our main
result. To do this we need the following definitions.

We first define a certain partition of X that we will find useful later for the proof of our
main result.

Definition 7.2.1. Let Γ = (X,R) denote a graph with diameter D. Pick x,y ∈X, such
that y ∈ Γ(x). For integers i, j we define sets Di

j :=Di
j(x,y) as follows:

Di
j = Γi(x)∩Γj(y).



108 CHAPTER 7. THE PSEUDO-DISTANCE-REGULARIZED CASE

Observe that Di
j = ∅ if i < 0 or j < 0. Similarly, Di

j = ∅ if i > ε(x) or j > ε(y). Furthermore,
by the triangle inequality we have that Di

j = ∅ if |i− j| ≥ 2. Note also that if Γ is bipartite,
the set Di

i is empty for 0≤ i≤D. The collection of all the subsets Di
i−1 (1≤ i≤ ε(x)),

Di
i (1≤ i≤min{ε(x), ε(y)}) and Di−1

i (1≤ i≤ ε(y)) is called the distance partition of
Γ with respect to the edge {x,y}.

A graphical representation of a distance partition for the case when the eccentricity of a
vertex y ∈ Γ(x) is equal to ε(x) is presented below in Figure 7.1. A line between Di

j and
Di′
j′ indicates the possibility of existence of edges between these two sets. Such a graphical

representation of a distance partition is called the intersection diagram of Γ with
respect to the edge {x,y}.

x
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i

· · · · · ·

Di−2
i−1

Di−1
i−2

Di−1
i−1 Di
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Di
i−1
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i+1

Di+1
i+1

Di+1
i+2

Di+1
i Di+2

i+1

Dd−1
d

Dd
d−1

Dd
d

Figure 7.1: The intersection diagram of a connected graph Γ where ε(y) = ε(x) = d.

Next, we consider walks of a certain shape with respect to a given vertex in Γ.

Definition 7.2.2. Let Γ = (X,R) denote a connected graph. Pick x,y,z ∈ X and let
P = [y = x0,x1, . . . ,xj = z] denote a yz-walk. The shape of P with respect to x

is a sequence of symbols t1t2 . . . tj, where ti ∈ {f,`,r}, and such that ti = r if ∂(x,xi) =
∂(x,xi−1)+1, ti = f if ∂(x,xi) = ∂(x,xi−1) and ti = ` if ∂(x,xi) = ∂(x,xi−1)−1 (1≤ i≤ j).
We use exponential notation for shapes containing several consecutive identical symbols.
For instance, instead of rrrrfff``r we simply write r4f3`2r. Analogously, r0f = f and
r0`= `r0 = ` is also conventional. For a non-negative integer m, let `rm(y,z), rm`(y,z),
rmf(y,z) and rm(y,z) respectively denote the number of yz-walks of the shape `rm, rm`,
rmf and rm with respect to x where r0(y,z) = 1 if y = z and r0(y,z) = 0 otherwise. We
abbreviate rm`(z) = rm`(x,z), rmf(z) = rmf(x,z) and rm(z) = rm(x,z).

The following observation is straightforward to prove (using elementary matrix multiplica-
tion and (7.2)).

Lemma 7.2.3. Let Γ = (X,R) denote a connected graph. Pick x ∈X and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. Let L=L(x), F = F (x) and R=R(x)
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denote the lowering, the flat and the raising matrix of T , respectively. Pick y,z ∈X and
let m be a non-negative integer. Then the following (i)–(iv) hold:

(i) The (z,y)-entry of Rm is equal to the number rm(y,z) with respect to x.

(ii) The (z,y)-entry of LRm is equal to the number rm`(y,z) with respect to x.

(iii) The (z,y)-entry of RmL is equal to the number `rm(y,z) with respect to x.

(iv) The (z,y)-entry of FRm is equal to the number rmf(y,z) with respect to x.

For the rest of the paper we adopt the following notation.

Notation 7.2.4. Let Γ = (X,R) denote a finite, simple, connected graph with vertex
set X, edge set R and diameter D. Let A ∈ MatX(C) denote the adjacency matrix
of Γ. Fix a vertex x ∈ X with |Γ(x)| ≥ 2. Let d denote the eccentricity of x. Let
E∗i ∈MatX(C) (0≤ i≤ d) denote the dual idempotents of Γ with respect to x. Let V denote
the standard module of Γ and let T = T (x) denote the Terwilliger algebra of Γ with respect
to x. Let L= L(x), F = F (x) and R =R(x) denote the lowering, the flat and the raising
matrix of T , respectively. Assume that the unique irreducible T -module with endpoint 0 is
thin. We denote this T -module by T x̂. For y ∈ Γ(x) let the sets Di

j =Di
j(x,y) be as defined

in Definition 7.2.1. For w,z ∈X let the numbers rm`(w,z), rmf(w,z) and rm(w,z) be as
defined in Definition 7.2.2.

We are now ready to state our main result.

Theorem 7.2.5. With reference to Notation 7.2.4, the following (i), (ii) are equivalent:

(i) Γ has, up to isomorphism, a unique irreducible T -module with endpoint 1, and this
module is thin.

(ii) For every integer i (1≤ i≤ d) there exist scalars κi,µi, θi,ρi, such that for every
y ∈ Γ(x) the following (a), (b) hold:

(a) For every z ∈Di
i+1(x,y)∪Di

i(x,y) we have that

ri`(y,z) = µi `r
i(y,z),

ri−1f(y,z) = ρi `r
i(y,z).
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(b) For every z ∈Di
i−1(x,y) we have that

ri`(y,z) = κi r
i−1(y,z) +µi `r

i(y,z),

ri−1f(y,z) = θi r
i−1(y,z) +ρi `r

i(y,z).

Moreover, ρi = 0 whenever the set Di
i+1(x,y) is nonempty for some y ∈ Γ(x).

We will prove Theorem 7.2.5 in Sections 7.4 and 7.5. We next give a direct consequence of
this result under the assumption that Γ is bipartite.

Corollary 7.2.6. With reference to Notation 7.2.4, assume that Γ is bipartite. The
following (i), (ii) are equivalent:

(i) Γ has, up to isomorphism, a unique irreducible T -module with endpoint 1, and this
module is thin.

(ii) For every integer i (1≤ i≤ d) there exist scalars κi,µi such that for every y ∈ Γ(x)
the following (a), (b) hold:

(a) For every z ∈Di
i+1(x,y) we have that ri`(y,z) = µi `r

i(y,z).

(b) For every z ∈Di
i−1(x,y) we have that ri`(y,z) = κi r

i−1(y,z) +µi `r
i(y,z).

Proof. Since Γ is bipartite, we observe the matrix F = 0 and the sets Di
i(x,y) are empty

for every y ∈ Γ(x) and for every integer i (1≤ i≤ d). Now, the result immediately follows
from Theorem 7.2.5. �

With reference to Notation 7.2.4, assume that Γ is distance-regular around x and let
T = T (x) denote the Terwilliger algebra of Γ with respect to x. In this case, it was proved
in Chapter 3 (see also [28, 88]) that the unique irreducible T -module with endpoint 0 is
thin. In addition, for an integer i (1≤ i≤ d) and vertices y ∈ Γ(x), z ∈ Γi(x), we observe
the number of yz-walks of the shape `ri with respect to x is equal to the number of paths of
length i from z to x. Since x is distance-regularized, there are precisely ci(x)ci−1(x) · · ·c1(x)
such paths. Consequently, `ri(y,z) = ci(x)ci−1(x) · · ·c1(x) and so, `ri(y,z) is independent
of the choice of y and z. Therefore, Theorem 5.3.4 and Theorem 6.3.4 immediately follow
from Theorem 7.2.5 and the above comments.

We finish this section with the following observations which will be needed later for the
proof of Theorem 7.2.5.
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Proposition 7.2.7. With reference to Notation 7.2.4, the following holds for 0≤ i≤ d:

(
E∗iR

iLE∗1
)
zy

=

 `ri(y,z) if y ∈ Γ(x) and z ∈ Γi(x),
0 otherwise.

In particular, E∗iRiLE∗1 is nonzero.

Proof. It is straightforward to check that the (z,y)-entry of E∗iRiLE∗1 is zero if either
y 6∈ Γ(x) or z 6∈ Γi(x). It is also straightforward to check that the result is true if i = 0.
Suppose now that y ∈ Γ(x) and z ∈ Γi(x) with i≥ 1. Then

(
E∗iR

iLE∗1
)
zy

=
(
RiL

)
zy

and
the result follows from Lemma 7.2.3. Note also that in this case we have that `ri(y,z)> 0
and so, E∗iRiLE∗1 is nonzero. �

Proposition 7.2.8. With reference to Notation 7.2.4, the following holds for 1≤ i≤ d:

(
E∗iR

i−1E∗1
)
zy

=

 ri−1(y,z) if y ∈ Γ(x) and z ∈ Γi(x),
0 otherwise.

In particular, E∗iRi−1E∗1 is nonzero.

Proof. It is easy to see that the (z,y)-entry of E∗iRi−1E∗1 is zero if either y 6∈ Γ(x) or
z 6∈ Γi(x). It is also straightforward to check that the result is true if i= 1. Suppose now
that y ∈ Γ(x) and z ∈ Γi(x) with i > 1. Then

(
E∗iR

i−1E∗1
)
zy

=
(
Ri−1

)
zy

and the result
follows from Lemma 7.2.3. Note also that in this case we have that ri−1(y,z)> 0 for some
y ∈ Γ(x) and so, E∗iRi−1E∗1 is nonzero. �

7.3 Linear dependency

With reference to Notation 7.2.4, assume that Γ has, up to isomorphism, exactly one
irreducible T -module with endpoint 1, and that this module is thin. In this section we
show that certain matrices in T are linearly dependent.

Theorem 7.3.1. With reference to Notation 7.2.4, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin with diameter
d′. Pick matrices F1,F2,F3 ∈ T and an integer i (1≤ i≤ d). Then the following (i), (ii)
hold:
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(i) For every integer i (1≤ i≤ d′+ 1) the matrices E∗i F1E∗1 , E∗i F2E∗1 and E∗i F3E∗1 are
linearly dependent.

(ii) For every integer i (d′+ 1< i≤ d) the matrices E∗i F1E∗1 and E∗i F2E∗1 are linearly
dependent.

Proof. Recall that T x̂ is thin and by Lemma 3.6.1, the subspace E∗1T x̂ is spanned by the
nonzero vector Rx̂ and so, dim(E∗1T x̂) = 1.

Let W be a thin irreducible T -module with endpoint 1 and diameter d′. Firstly, we observe
that d′+ 1 ≤ d and so, (i) immediately follows from Theorem 5.4.3. We would like to
point out that the same conclusions of Theorem 5.4.3 are true without assuming that Γ
is bipartite and distance-regular around x. Namely, in the proof of Theorem 5.4.3, the
hypothesis that Γ is bipartite was never applied and local distance-regularity around x
was used to conclude that dim(E∗1T x̂) = 1, which is also true in our case.

We now proceed to prove the second assertion. To do that, pick an integer i (d′+ 1 <
i ≤ d). We claim that there exist scalars λ1,λ2, not both zero, such that λ1E∗i F1E∗1v+
λ2E∗i F2E∗1v = 0 for every v ∈ E∗1T x̂. To see this, pick nonzero vectors v0 ∈ E∗1T x̂ and
v1 ∈ E∗1W . Let u0 be an arbitrary nonzero vector of E∗i T x̂. As the trivial module is thin,
there exist scalars r0,1, r0,2 such that

E∗i F1E
∗
1v0 = r0,1u0 and E∗i F2E

∗
1v0 = r0,2u0. (7.3)

It is clear that the linear equation r0,1 x1 +r0,2 x2 = 0 with unknowns x1,x2 has a nontrivial
solution, and so there exist scalars λ1,λ2, not both zero, such that

r0,1 λ1 + r0,2 λ2 = 0. (7.4)

Pick a vector v ∈ E∗1T x̂. Since the trivial T -module is thin, there exists a scalar λ such
that v = λv0. Therefore, by (7.3) and (7.4) we have that

λ1E
∗
i F1E

∗
1v+λ2E

∗
i F2E

∗
1v = λ(λ1E

∗
i F1E

∗
1v0 +λ2E

∗
i F2E

∗
1v0)

= λ(λ1 r0,1u0 +λ2 r0,2u0)

= λ(r0,1 λ1 + r0,2 λ2)u0 = 0.

This proves our claim. Let V1 denote the sum of all irreducible T -modules with endpoint 1
and let {W t | t ∈ I} be the set of all irreducible T -modules with endpoint 1, where I is an
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index set. Pick a vector v ∈ E∗1V1. Observe that v can be written as a sum

v =
∑
t∈I

vt, (7.5)

where vt ∈E∗1W t for every t ∈ I. Pick now a T -module W s, s ∈ I. As any two irreducible
T -modules with endpoint 1 are isomorphic, it follows that d′ (W s) = d′ (W ) = d′. So,
we observe that in this case E∗iW s is zero. In addition, for every t ∈ I there exists a
T -isomorphism σt : W s→W t. Let wt ∈W s be such that vt = σt(wt). Then, we notice
that for every t ∈ I,

E∗i FjE
∗
1vt = E∗i FjE

∗
1σt(wt) = σt (E∗i FjE∗1wt) = 0.

Hence, by (7.5) we have that E∗i FjE∗1v = 0 for every v ∈ E∗1V1.

To conclude the proof, pick now an arbitrary vector w ∈ V and observe that E∗1w=w0 +w1

for some w0 ∈ T x̂ and w1 ∈ V1. It follows from the above comments that there exist scalars
λ1,λ2, not both zero, such that

λ1E
∗
i F1E

∗
1w+λ2E

∗
i F2E

∗
1w = λ1E

∗
i F1E

∗
1(w0 +w1) +λ2E

∗
i F2E

∗
1(w0 +w1) = 0.

As w was arbitrary, the result follows. �

Observe that the conclusion of Theorem 7.3.1 is equivalent to the fact that the dimension
of E∗i TE∗1 (1≤ i≤ d′+1) is at most 2 and that the dimension of E∗i TE∗1 (d′+1< i≤ d) is
at most 1.

7.4 Algebraic condition implies combinatorial
properties

With reference to Notation 7.2.4, assume that Γ has, up to isomorphism, exactly one
irreducible T -module with endpoint 1, and that this module is thin. In this section we
prove that in this case combinatorial conditions (a),(b) described in part (ii) of Theorem
7.2.5 hold.

Lemma 7.4.1. With reference to Notation 7.2.4, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Then for
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every i (1≤ i≤ d) there exist scalars κi,µi, θi,ρi, such that

E∗i LR
iE∗1 = κiE

∗
iR

i−1E∗1 +µiE
∗
iR

iLE∗1 , (7.6)

E∗i FR
i−1E∗1 = θiE

∗
iR

i−1E∗1 +ρiE
∗
iR

iLE∗1 . (7.7)

Proof. Pick i (1 ≤ i ≤ d) and observe that by Definition 7.1.1, the matrices LRi, Ri−1,
FRi−1 and RiL are elements of algebra T . Consequently, by Theorem 7.3.1, there exist
scalars α(i)

j (1≤ j ≤ 3), not all zero, and β(i)
j (1≤ j ≤ 3), not all zero, such that

α
(i)
1 E∗i LR

iE∗1 +α
(i)
2 E∗iR

i−1E∗1 +α
(i)
3 E∗iR

iLE∗1 = 0, (7.8)

β
(i)
1 E∗i FR

i−1E∗1 +β
(i)
2 E∗iR

i−1E∗1 +β
(i)
3 E∗iR

iLE∗1 = 0. (7.9)

Assume for the moment that α(i)
1 β

(i)
1 6= 0. Then (7.6) and (7.7) hold with κi =−α(i)

2 /α
(i)
1 ,

µi =−α(i)
3 /α

(i)
1 , θi =−β(i)

2 /β
(i)
1 , and ρi =−β(i)

3 /β
(i)
1 .

Now, assume that α(i)
1 β

(i)
1 = 0. Let W denote an irreducible T -module with endpoint 1.

Let k denote the least integer such that α(k)
1 β

(k)
1 = 0. We observe that k ≤ i. Assume for

a moment that k = 1. Without loss of generality assume that α(1)
1 = 0. Pick y,z ∈ Γ(x),

y 6= z. As the (z,y)-entries of E∗1 and E∗1RLE
∗
1 are 0 and 1 respectively, (7.8) implies

that α(1)
3 = 0. As E∗1 is nonzero, we get that α(1)

2 = 0 as well, a contradiction. Therefore,
k ≥ 2. Pick a nonzero vector w ∈ E∗1W and let W ′ denote the vector subspace of V
spanned by the vectors Riw (0≤ i≤ d). Note that W ′ is nonzero and W ′ ⊆W . Observe
also that by (7.2) and by (eiv) from Section 7.1, the subspace W ′ is invariant under the
action of the dual idempotents. Since α(k)

1 β
(k)
1 = 0 and by Proposition 7.2.7 the matrix

E∗kR
kLE∗1 is nonzero, it follows from (7.8) and (7.9) that there exists γ ∈ C such that

E∗iR
k−1E∗1 = γE∗kR

kLE∗1 . Now, from (7.2) we notice that Lw = 0 and so, Rk−1w = 0.
This implies FRjw = LRjw = Rjw = 0 for k− 1 ≤ j ≤ d. Therefore, by construction
and by (7.2), it is also clear that W ′ is closed under the action of R. Moreover, for
every 1 ≤ j ≤ k− 1 the scalar α(j)

1 β
(j)
1 is nonzero. Therefore, from (7.8) and (7.9), we

have that (7.6) and (7.7) hold for 1 ≤ j ≤ k− 1 with κj = −α(j)
2 /α

(j)
1 , µj = −α(j)

3 /α
(j)
1 ,

θj =−β(j)
2 /β

(j)
1 , and ρj =−β(j)

3 /β
(j)
1 . So, LRjw = κjR

j−1w and FRj−1w = θjR
j−1w for

1 ≤ j ≤ k− 1. This implies that W ′ is invariant under the action of L and F . Since
A = L+F +R, it turns out that W ′ is A-invariant as well. Recall that algebra T is
generated by A and the dual idempotents. Therefore, W ′ is a T -module and W ′ =W as
W is irreducible. Notice that by construction and (7.2), the subspace E∗iW is generated
by Ri−1w. This shows E∗iW = 0 since k ≤ i. We thus have that d′+ 1 < i≤ d where d′

denotes the diameter of W . Hence, by Theorem 7.3.1(ii), any two matrices in E∗i TE∗1 are
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linearly dependent. Consequently, there exist scalars α,β (not both zero) and α′,β′ (not
both zero), such that

αE∗i LR
iE∗1 +βE∗iR

i−1E∗1 = 0, (7.10)

α′E∗i FR
i−1E∗1 +β′E∗iR

i−1E∗1 = 0. (7.11)

If α (α′, respectively) is zero, then β (β′, respectively) is also zero by Proposition 7.2.8, a con-
tradiction. This shows that E∗i LRiE∗1 =−β

αE
∗
iR

i−1E∗1 and E∗i FRi−1E∗1 =−β′

α′E
∗
iR

i−1E∗1 .
Similarly we show that E∗iRiLE∗1 = λE∗iR

i−1E∗1 for some nonzero scalar λ ∈ C. It is
now clear that (7.6) and (7.7) hold for any κi,µi, θi,ρi satisfying κi+λµi = −β/α and
θi+λρi =−β′/α′. This finishes the proof. �

We are now ready to prove the main result of this section.

Theorem 7.4.2. With reference to Notation 7.2.4, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. For every
integer i (1 ≤ i ≤ d) there exist scalars κi,µi, θi,ρi, such that for every y ∈ Γ(x) the
following (a), (b) hold:

(a) For every z ∈Di
i+1(x,y)∪Di

i(x,y) we have that

ri`(y,z) = µi `r
i(y,z),

ri−1f(y,z) = ρi `r
i(y,z).

(b) For every z ∈Di
i−1(x,y) we have that

ri`(y,z) = κi r
i−1(y,z) +µi `r

i(y,z),

ri−1f(y,z) = θi r
i−1(y,z) +ρi `r

i(y,z).

Moreover, ρi = 0 if the set Di
i+1(x,y) is nonempty for some y ∈ Γ(x).

Proof. Pick an integer i (1≤ i≤ d) and recall that by Lemma 7.4.1 equations (7.6) and
(7.7) hold. Pick y ∈ Γ(x).

(a) Pick z ∈ Di
i+1(x,y)∪Di

i(x,y) and observe that by Lemma 7.2.3 the (z,y)-entry of
the left-hand side of (7.6) ((7.7), respectively) equals ri`(y,z) (ri−1f(y,z), respectively).
On the other hand, again by Lemma 7.2.3, the (z,y)-entry of E∗iRi−1E∗1 (E∗iRiLE∗1 ,
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respectively) equals 0 (`ri(y,z), respectively). Therefore, the (z,y)-entry of the right-hand
side of (7.6) ((7.7), respectively) equals µi `ri(y,z) (ρi `ri(y,z), respectively).

(b) Pick now z ∈Di
i−1(x,y) and observe that by Lemma 7.2.3 the (z,y)-entry of the left-

hand side of (7.6) ((7.7), respectively) equals ri`(y,z) (ri−1f(y,z), respectively). On the
other hand, again by Lemma 7.2.3, the (z,y)-entry of E∗iRi−1E∗1 (E∗iRiLE∗1 , respectively)
equals ri−1(y,z) (`ri(y,z), respectively). Therefore, the (z,y)-entry of the right-hand side
of (7.6) ((7.7), respectively) equals κi ri−1(y,z) +µi `r

i(y,z) (θi ri−1(y,z) + ρi `r
i(y,z),

respectively).

Moreover, for z ∈Di
i+1(x,y) we observe that there is no yz-walk of the shape ri−1f and

so ρi = 0 if the set Di
i+1(x,y) is nonempty for some y ∈ Γ(x) as `ri(y,z)> 0. The result

follows. �

7.5 Combinatorial properties imply algebraic
condition

With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of Theorem 7.2.5. In
this section we prove that in this case Γ has, up to isomorphism, exactly one irreducible
T -module with endpoint 1, and that this module is thin. We also display a basis of this
module and the matrix representing the action of the adjacency matrix on this basis.

Proposition 7.5.1. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. For every integer i (1≤ i≤ d), the following equalities hold:

E∗i LR
iE∗1 = κiE

∗
iR

i−1E∗1 +µiE
∗
iR

iLE∗1 , (7.12)

E∗i FR
i−1E∗1 = θiE

∗
iR

i−1E∗1 +ρiE
∗
iR

iLE∗1 . (7.13)

Proof. Pick an integer i (1 ≤ i ≤ d) and vertices y,z ∈X. We will show that the (z,y)-
entries of both sides of (7.12) and (7.13) agree. Observe first that if either y 6∈ Γ(x) or
z 6∈ Γi(x), then the (z,y)-entry of both sides of (7.12) and (7.13) equals 0. Therefore,
assume that y ∈ Γ(x) and z ∈ Γi(x). Abbreviate Dk

j (x,y) =Dk
j for 0≤ k,j ≤D and recall

that Γi(x) =Di
i−1∪Di

i ∪Di
i+1.

Assume first that z ∈ Di
i+1 ∪Di

i, and note that the (z,y)-entry of E∗i LRiE∗1 is equal
to the number ri`(y,z), while the (z,y)-entries of E∗iRi−1E∗1 and E∗iR

iLE∗1 are 0 and
`ri(y,z) respectively. In addition, the (z,y)-entry of E∗i FRi−1E∗1 is equal to ri−1f(y,z).
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As ri`(y,z) = µi `r
i(y,z) and ri−1f(y,z) = ρi `r

i(y,z) by the assumption, the (z,y)-entries
of both sides of (7.12) and (7.13) agree.

Assume next that z ∈ Di
i−1 and note that the (z,y)-entry of E∗i LRiE∗1 , E∗i FRi−1E∗1 ,

E∗iR
i−1E∗1 and E∗iR

iLE∗1 are equal to the numbers ri`(y,z), ri−1f(y,z), ri−1(y,z) and
`ri(y,z) respectively. By the assumption we have that ri`(y,z) = κi r

i−1(y,z) +µi `r
i(y,z)

and rif(y,z) = θi r
i−1(y,z) +ρi `r

i(y,z). So, the (z,y)-entries of both sides of (7.12) and
(7.13) agree. This finishes the proof. �

Lemma 7.5.2. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1 =Rx̂. Then the following
(i),(ii) hold:

(i) Lw = 0 and LRiw = κiR
i−1w (1≤ i≤ d).

(ii) FRi−1w = θiR
i−1w (1≤ i≤ d) and FRdw = 0.

Proof. Let J denote the all 1’s matrix in MatX(C). As w ∈ E∗1V we have that E∗1w = w

and so,
〈jjj,w〉= 〈jjj,E∗1w〉= 〈E∗1jjj,w〉= 〈s1,w〉= 0,

where jjj denotes the all 1’s vector in V . This shows Jw = 0. By elementary matrix
multiplication it is easy to see E∗0AE∗1 = E∗0JE

∗
1 . Therefore, by Definition 7.1.1 and the

above comments we have that Lw =E∗0AE
∗
1w =E∗0JE

∗
1w = E∗0Jw = 0. Moreover, we also

have that E∗iRiLE∗1w = RiLw = 0 for 1 ≤ i ≤ d. In addition, by (7.2) and Proposition
7.5.1, for 1≤ i≤ d it holds that

LRiw = E∗i LR
iE∗1w = κiE

∗
iR

i−1E∗1w = κiR
i−1w,

FRi−1w = E∗i FR
i−1E∗1w = θiE

∗
iR

i−1E∗1w = θiR
i−1w.

Observe also that RdE∗1 is the zero matrix and so FRdw = 0. The result follows. �

Lemma 7.5.3. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1 =Rx̂. Then the following
(i)–(iii) hold:

(i)
∥∥∥Riw∥∥∥2

= κi
∥∥∥Ri−1w

∥∥∥2
(1≤ i≤ d).

(ii)
〈
Riw,Rjw

〉
= δij

i∏
l=1

κl ‖w‖2 (0≤ i, j ≤ d).
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(iii) There exists i (1≤ i≤ d) such that κi = 0.

Proof. (i) Pick 1≤ i≤ d. Then by Lemma 7.5.2(i) we have that
∥∥∥Riw∥∥∥2

=
〈
Riw, Riw

〉
=
〈
LRiw, Ri−1w

〉
= κi

∥∥∥Ri−1w
∥∥∥2
.

(ii) If i 6= j, then the result follows from (eii), (eiii) and (eiv) below the definition of the
dual idempotents in Section 7.1 and from (7.2). If i= j then the result follows from (i)
above by a straightforward induction argument.

(iii) Immediate from (ii) above since by (7.2) we have that Rdw = 0 and w is a nonzero
vector. �

Theorem 7.5.4. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. Pick w ∈ E∗1V , w 6= 0, which is orthogonal to s1 =Rx̂. Let W denote the
vector subspace of V spanned by the vectors Riw (0≤ i≤ d). Let s (1≤ s≤ d) be the least
integer such that κs = 0. Then W is a thin irreducible T -module with endpoint 1 and the
vectors {Ri−1w | 1≤ i≤ s} form an orthogonal basis of W . In particular, the dimension
of W is s.

Proof. Let W denote the vector subspace of V spanned by the vectors {Riw | 0≤ i≤ d}.
Observe that by (7.2) and by (eiv) from Section 7.1, the subspace W is invariant under
the action of the dual idempotents. By construction and since Rdw = 0 by (7.2), it is also
clear that W is closed under the action of R. Moreover, it follows from Lemma 7.5.2 that
W is invariant under the action of L and F . Since A= L+F +R, it turns out that W is
A-invariant as well. Recall that algebra T is generated by A and the dual idempotents.
Therefore, W is a T -module. It is also clear that W is thin, since by construction, (7.2)
and Lemma 7.5.2, the subspace E∗iW is generated by Ri−1w.

Now, let us show thatW is irreducible. Note that w ∈W and soW is non-zero. Recall that
W is an orthogonal direct sum of irreducible T -modules. Since E∗0W is the zero subspace
and E∗1w = w 6= 0, there exists an irreducible T -module W ′, such that the endpoint of W ′

is 1 and W ′ ⊆W . Consequently, E∗1W ′ ⊆ E∗1W . However, the dimension of E∗1W is 1,
and so E∗1W ′ = E∗1W . But now we have

W = TE∗1W = TE∗1W
′ ⊆W ′,

implying that W =W ′. Hence, W is irreducible and its endpoint equals 1.
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Finally, notice that Rsw = 0 by Lemma 7.5.3(i). Furthermore, it holds that vectors
{Ri−1w | 1 ≤ i ≤ s} are nonzero and pairwise orthogonal by Lemma 7.5.3(ii) and the
definition of number s. The result follows. �

Theorem 7.5.5. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. Let W denote an irreducible T -module with endpoint 1. Let s (1≤ s≤ d)
be the least integer such that κs = 0. Pick w ∈ E∗1W , w 6= 0. Then, it follows that the
vectors {Ri−1w | 1≤ i≤ s} form an orthogonal basis of W . In particular, W is thin with
dimension s.

Proof. Let W ′ denote the vector subspace of V spanned by the vectors {Ri−1w | 1≤ i≤ d}.
Recall that W and the unique irreducible T -module with endpoint 0 are not isomorphic,
and so w is orthogonal to s1. By Theorem 7.5.4, W ′ is a T -module. Note that W ′ is
nonzero and contained in W . As W is irreducible, we have that W =W ′. The result now
follows from Theorem 7.5.4. �

Theorem 7.5.6. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. Then there is, up to isomorphism, a unique irreducible T -module with
endpoint 1, and this module is thin.

Proof. Let W and W ′ be irreducible T -modules with endpoint 1, and pick any nonzero
vectors w ∈ E∗1W and w′ ∈ E∗1W ′. Let s (1≤ s≤ d) be the least integer such that κs = 0.
By Theorem 7.5.5, the vectors

{
Ri−1w | 1≤ i≤ s

}
and

{
Ri−1w′ | 1≤ i≤ s

}
are orthogonal bases ofW andW ′, respectively. Hence, the linear map σ :W →W ′, defined
by σ

(
Ri−1w

)
=Ri−1w′ is a vector space isomorphism. It is clear that σ commutes with

R. By Lemma 7.5.2 it follows that σ also commutes with L and F . Since A= L+F +R,
it turns out that σ commutes with A as well. Furthermore, σ is a T -module isomorphism
since by (eiv) from Section 7.1, it commutes also with E∗i (0≤ i≤ d). Thus W and W ′

are T -isomorphic. �

Theorem 7.5.7. With reference to Notation 7.2.4, assume that Γ satisfies part (ii) of
Theorem 7.2.5. Let W denote an irreducible T -module with endpoint 1. Pick w ∈ E∗1W ,
w 6= 0, and recall that

B =
{
Ri−1w | 1≤ i≤ s

}
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is a basis of W , where s is the least integer such that κs = 0 (1≤ s≤ d). Then the matrix
representing the action of A on W with respect to the (ordered) basis B is given by



θ1 κ1

1 θ2 κ2

1 . . . . . .
. . . . . . κs−2

1 θs−2 κs−1

1 θs−1


.

Proof. Recall that A= L+F +R. The result now follows from Lemma 7.5.2. �

7.6 The distance partition

Throughout this section let Γ = (X,R) denote a connected graph. Let x ∈ X and let
T = T (x). Suppose that the unique irreducible T -module with endpoint 0 is thin. Assume
that Γ has, up to isomorphism, exactly one irreducible T -module with endpoint 1, which
is thin. In this section we have some comments about the combinatorial structure of the
intersection diagrams of Γ with respect to the edge {x,y}, for every y ∈ Γ(x). In particular,
we will discuss which of the sets Di

j(x,y) are (non)empty.

Lemma 7.6.1. With reference to Notation 7.2.4, pick y ∈ Γ(x) and let Di
j = Di

j(x,y).
Then, the set Di

i−1(x,y) is nonempty for every i (1≤ i≤ d) and for all y ∈ Γ(x).

Proof. Suppose there exist i (1≤ i≤ d) and y ∈ Γ(x) such that the set Di
i−1(x,y) is empty.

Since D1
0 = {y} we observe that i≥ 2. Moreover, we notice that Di

i+1 6= ∅ or Di
i 6= ∅, as

otherwise, the set Γi(x) =Di
i+1∪Di

i ∪Di
i−1 is empty, contradicting that the eccentricity

of x equals d. Let k be the greatest integer such that Dk
k−1 6= ∅. Note that 1≤ k ≤ i−1.

Since the set Di
i+1∪Di

i 6= ∅ then it is easy to see that there exists a vertex z ∈Dk
k+1∪Dk

k

and so, that the numbers rk+1`(z)> 0 and rk(z)> 0. Moreover, for w ∈Dk
k−1 we observe

rk+1`(w) = 0 and rk(w)> 0. This contradicts with Theorem 3.5.3(iii) and so, with the
assumption that the trivial module is thin. The result follows. �

Lemma 7.6.2. With reference to Notation 7.2.4, assume that Γ has, up to isomorphism,
exactly one irreducible T -module with endpoint 1, and that this module is thin. Pick an
integer i (1≤ i≤ d) and assume for some y ∈ Γ(x), the set Di

i+1(x,y) 6= ∅. Then, the set
Dj
j(x,y) is empty for every j (1≤ j ≤ i) and for all y ∈ Γ(x).
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Proof. Suppose there exists j (1≤ j ≤ i) and w ∈ Γ(x) such that Dj
j(x,w) is nonempty.

Without loss of generality, we may pick j as the least integer such that the setDj−1
j−1(x,w) = ∅

but the set Dj
j(x,w) is nonempty. By Definition 7.1.1, the matrices Rj−1, FRj−1 and

RjL are elements of algebra T . Therefore, by Theorem 7.3.1, there exist scalars λk = λ
(j)
k

(1≤ k ≤ 3), not all zero, such that

λ1E
∗
jR

j−1E∗1 +λ2E
∗
jFR

j−1E∗1 +λ3E
∗
jR

jLE∗1 = 0. (7.14)

By Lemma 6.2.2(v), notice that the set Dj
j+1(x,y) is nonempty. Pick z ∈ Dj

j+1(x,y)
and note that it follows from Lemma 7.2.3(i),(iv) that the (z,y)-entry of E∗jRj−1E∗1
and E∗jFRj−1E∗1 are both 0, respectively. This implies that λ3 = 0 since the (z,y)-entry
of E∗jRjLE∗1 equals `rj(y,z) > 0 by Lemma 7.2.3(iii) and Proposition 7.2.7. Pick now
z ∈Dj

j(x,w). We observe from Lemma 7.2.3(i) that the (z,w)-entry of E∗jRj−1E∗1 is 0.
In addition, as the set Dj−1

j−1(x,w) is empty, it follows from Lemma 6.2.2(v) and Lemma
6.2.5 that there exists a wz-walk of the shape rj−1f with respect to x. So, by Lemma
7.2.3(iv), the (z,w)-entry of E∗jFRj−1E∗1 is nonzero. This implies that λ2 = 0. So, from
equation (7.14) we have that λ1E∗jR

j−1E∗1 is the zero matrix. By Proposition 7.2.8, we
observe that E∗jRj−1E∗1 is nonzero. This implies λ1 = 0, contradicting the fact that the
scalars λk (1≤ k ≤ 3) are not all zero. The claim follows. �

The above lemma together with the fact that the set D0
1(x,y) is nonempty for every

y ∈ Γ(x) motivate the next result.

Proposition 7.6.3. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module is
thin. Pick y ∈ Γ(x) and let Di

j =Di
j(x,y). Then, there exists an integer t := t(y) (0≤ t≤ d)

such that the following (i),(ii) hold:

(i) For every i (0≤ i≤ t) the set Di
i+1 is nonempty and the set Di

i(x,z) is empty for
every z ∈ Γ(x).

(ii) For every i (t < i≤ d) the set Di
i+1 is empty.

Moreover, Γi(x) =Di
i+1∪Di

i−1 for every 0≤ i≤ t.

Proof. For y ∈ Γ(x), since the set D0
1(x,y) is nonempty, let us define t := t(y) as the

greatest integer i (1≤ i≤ d) such that the set Di
i+1(x,y) is nonempty. Then, it is clear

that the set Di
i+1 is empty for i > t and, by Lemma 6.2.2(v), the set Di

i+1 is nonempty for
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every 0≤ i≤ t. Moreover, by Lemma 7.6.2 the set Di
i(x,z) is empty for every z ∈ Γ(x)

and for every 0≤ i≤ t. The result follows. �

Proposition 7.6.4. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. Pick y ∈ Γ(x). Let the sets Di

j =Di
j(x,y) and let t(y) be as in Proposition 7.6.3.

If there exists j (1 ≤ j ≤ d) such that Dj
j is nonempty then Di

i is nonempty for every
t(y)< i≤ j.

Proof. Suppose the set Dj
j is nonempty for some j (1≤ j ≤ d). Then, by Proposition 7.6.3

we have t(y)< j. Assume now there exists an integer i (t(y)< i < j) such that Di
i is empty.

Notice that in this case Γi(x) =Di
i−1 which is nonempty as i < d. Pick now w ∈Dj

j . We
observe every shorthest xw-path must pass through a vertex in Di

i−1. This clearly shows
∂(x,w)≥ i+ (j− i+ 1) = j+ 1, a contradiction. The result follows. �

Propositions 7.6.3 and 7.6.4 help us to understand the combinatorial structure of graphs
which have, up to isomorphism, exactly one irreducible T -module with endpoint 1, which
is thin.

We now consider the possible intersection diagrams of Γ with respect to the edge {x,y},
for every y ∈ Γ(x). Let d denote the eccentricity of vertex x. Then, we observe that
ε(y) ∈ {d−1,d,d+ 1}. We have two cases.

If ε(y)> d then the set Dd
d+1(x,y) is not empty and so the scalar t(y) = d. By Proposition

7.6.3, the set Di
i(x,y) is empty for every y ∈ Γ(x) and for every i (0≤ i≤ d). Moreover,

notice that the sets Di
i+1(x,y) 6= ∅ (0≤ i≤ d) and by Lemma 7.6.1, the sets Di

i−1(x,y) (1≤
i ≤ d) are all nonempty as well. See Figure 7.2 for a graphical representation of the
intersection diagram of Γ with respect to the edge {x,y} when ε(y)> ε(x).

Di
i+1 Di+1

i+2Di−1
i

Di+1
i Di+2

i+1Di
i−1

x

y

Dd−1
d Dd

d+1Dd−2
d−1

Dd
d−1Dd−1

d−2· · · · · ·

· · · · · ·

Figure 7.2: Intersection diagram of graph Γ which has, up to isomorphism, exactly one
irreducible T (x)-module with endpoint 1, and this module is thin: case ε(y)> ε(x).
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If ε(y)≤ d then the set Dd
d+1(x,y) is empty and so, t := t(y)< d. Furthermore, in this case

the sets Di
i+1(x,y) 6= ∅ (0 ≤ i ≤ t) and, by Lemma 7.6.1, the sets Di

i−1(x,y) (1 ≤ i ≤ d)
are all nonempty as well. Moreover, if Dt+1

t+1(x,y) 6= ∅, then let u (1≤ u≤ d−1− t) denote
the greatest positive integer such that Dt+u

t+u(x,y) 6= ∅. See Figure 7.3 for a graphical
representation of the intersection diagram of Γ with respect to the edge {x,y} when
ε(y)≤ ε(x).

x

y

· · ·

Dt−1
t

Dt+1
t+1

Dt+1
tDt

t−1

Dt
t+1

· · ·

· · · · · · Dd
d−1

Dt+u
t+u

Figure 7.3: Intersection diagram of graph Γ which has, up to isomorphism, exactly one
irreducible T (x)-module with endpoint 1, and this module is thin: case ε(y)≤ ε(x).

With reference to Proposition 7.6.3, it is easy to see the following (i)-(ii) are equivalent:

(i) The integer t := t(y) is independent of the choice of y ∈ Γ(x).

(ii) For each i (1 ≤ i ≤ d), if for some y ∈ Γ(x) the set Di
i+1(x,y) 6= ∅ then for every

y ∈ Γ(x) the set Di
i+1(x,y) 6= ∅.

At this point, the next question naturally arises.

Question 7.6.5. With reference to Notation 7.2.4 and Proposition 7.6.3, assume that Γ
has, up to isomorphism, exactly one irreducible T -module with endpoint 1, and that this
module is thin. Does the integer t := t(y) depend on the choice of y ∈ Γ(x)?

The following results partially answer the above question. However, a proof of the general
case seems to need a nontrivial approach.

Proposition 7.6.6. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. For y ∈ Γ(x), let t(y) be as in Proposition 7.6.3. If for some z ∈ Γ(x) the set
D1

1(x,z) is nonempty then the integer t := t(y) does not depend on the choice of y ∈ Γ(x).

Proof. Suppose for some z ∈ Γ(x) the set D1
1(x,z) is nonempty. Then, by Lemma 7.6.2,

the set D1
2(x,y) is empty for every y ∈ Γ(x). This shows that t(y) = 0 for every y ∈ Γ(x).

The result follows. �
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Proposition 7.6.7. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. For y ∈ Γ(x), let t(y) be as in Proposition 7.6.3. If for every y ∈ Γ(x) there exists
an integer i (1 ≤ i ≤ d) such that the set Di

i(x,y) is nonempty then the integer t := t(y)
does not depend on the choice of y ∈ Γ(x).

Proof. Pick w ∈ Γ(x) such that t(w) = min{t(y) | y ∈ Γ(x)}. Then, by the choice of
w ∈ Γ(x), we have that t(w)≤ t(y) for all y ∈ Γ(x). Let k be the least integer such that
Dk
k(x,w) 6= ∅. We assert that t(w) = k− 1. To prove our claim, we first observe that,

by Lemma 7.6.2, we have that Dk
k+1(x,w) = ∅. This shows that t(w) ≤ k−1. Suppose

now that t(w) < k− 1. Then, t(w) + 1 < k and, by the choice of k, Dt(w)+1
t(w)+1(x,w) = ∅,

contradicting Proposition 7.6.4. Therefore, we have that t(w) = k− 1. Moreover, by
Lemma 7.6.2, the set Dk

k+1(x,y) = ∅ for all y ∈ Γ(x). This yields that t(y)≤ t(w) for all
y ∈ Γ(x). Consequently, t(y) = t(w) for all y ∈ Γ(x). The result follows. �

Proposition 7.6.8. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. For y ∈ Γ(x), let t(y) be as in Proposition 7.6.3. If Γ is a tree then the integer
t := t(y) does not depend on the choice of y ∈ Γ(x).

Proof. Pick y ∈ Γ(x). Suppose there exists an integer i (1 ≤ i ≤ d) such that the set
Di
i+1(x,y) is empty. Let k be the least integer such that Dk

k+1(x,y) is empty. Since Γ is
bipartite and x has valency at least 2, we observe D1

2(x,y) is not empty. This implies that
k ≥ 2. By the choice of k, we have that the set Dk−1

k (x,y) is nonempty. Then, since Γ
has no cycles, for a vertex z ∈Dk−1

k (x,y) we have that bk−1(x,z) = 0. By Lemma 7.6.1,
the set Dj

j−1(x,y) is nonempty for every j (1 ≤ j ≤ d) and so, for w ∈ Dk−1
k−2(x,y), the

scalar bk−1(x,w)> 0. This shows that Γ is not distance-regular around x. Therefore, by
Corollary 3.7.4 the trivial module T x̂ is not thin, a contradiction. Hence, for every integer
i (1≤ i≤ d) the set Di

i+1(x,y) is not empty. This yields t(y) = d. The result follows. �

Proposition 7.6.9. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. For y ∈ Γ(x), let t(y) be as in Proposition 7.6.3. With reference to Definition 5.7.1,
assume also that Γ is 1-homogeneous with respect to x (in the sense of Curtin and Nomura).
Then, the integer t := t(y) does not depend on the choice of y ∈ Γ(x).

Proof. For an integer i, and for vertices y ∈ Γ(x) and z ∈Di
i+1(x,y), let γi,i+1

i+1,i+2(x,y,z)
denote the number of neighbours of z ∈Di

i+1(x,y) in the set Di+1
i+2(x,y). Pick u,v ∈ Γ(x).



CHAPTER 7. THE PSEUDO-DISTANCE-REGULARIZED CASE 125

Assume to the contrary that t(u) 6= t(v). Without loss of generality, we may assume that
t(u)< t(v). We observe that the set Dt(u)

t(u)+1(x,u) is nonempty but the set Dt(u)+1
t(u)+2(x,u) = ∅

by the definition of t(u). This shows that γt(u),t(u)+1
t(u)+1,t(u)+2(x,u,z) = 0 for z ∈Dt(u)

t(u)+1(x,u).
Similarly, by the definition of t(v), the setDt(v)

t(v)+1(x,v) is nonempty and, by Lemma 6.2.2(v),
the set Dt(u)

t(u)+1(x,v) is also nonempty. Furthermore, for a vertex w ∈Dt(v)
t(v)+1(x,v), there

exists an xw-path of length t(v) passing through a vertex z ∈Dt(u)
t(u)+1(x,v). Notice that z

has a neighbour in Dt(u)+1
t(u)+2(x,v) and so, the scalar γt(u),t(u)+1

t(u)+1,t(u)+2(x,v,z)> 0, contradicting
that Γ is 1-homogeneous with respect to x. Consequently, t(u) = t(v) for every u,v ∈ Γ(x).
The result follows. �

Proposition 7.6.10. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. For y ∈ Γ(x), let t(y) be as in Proposition 7.6.3. If Γ is distance-regularized
(distance-regular or distance-biregular) then the integer t := t(y) does not depend on the
choice of y ∈ Γ(x).

Proof. Since Γ is distance-regularized then every vertex is distance-regularized. Therefore,
for x ∈X and y ∈ Γ(x), it is easy to see that for 1≤ i≤ ε(y)−1 we have that

|Di
i+1(x,y)|=

i∏
i=1

bi(y)
ci(x) .

In particular, the sets Di
i+1(x,y) (1 ≤ i ≤ ε(y)− 1) are nonempty and have the same

cardinality for every y ∈ Γ(x). This implies that t(y) = ε(y)−1 for every y ∈ Γ(x). The
claim now immediately follows as Γ is distance-regularized and so, in this case, the
eccentricity ε(y) does not depend on the choice of y ∈ Γ(x). �

Remark 7.6.11. Proposition 7.6.10 is also an immediate consequence of Proposition 7.6.9
since it is not hard to see that every distance-regularized graph (distance-regular or distance-
biregular) is 1-homogeneous (in the sense of Curtin and Nomura) with respect to any of its
vertices.

A graph Γ is called strongly distance-balanced (SDB for short) if |Di
i−1(x,y)|= |Di−1

i (x,y)|
holds for every i≥ 1 and every edge xy in Γ.

Proposition 7.6.12. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
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is thin. For y ∈ Γ(x), let t(y) be as in Proposition 7.6.3. If Γ is strongly distance-balanced
then the integer t := t(y) does not depend on the choice of y ∈ Γ(x).

Proof. By Lemma 7.6.1 the set Di
i−1(x,y) is nonempty for every i (1≤ i≤ d) and for all

y ∈ Γ(x). Since Γ is SDB we have Di−1
i (x,y) is nonempty for every i (1≤ i≤ d) and for

all y ∈ Γ(x). This shows that t(y) = d−1 for all y ∈ Γ(x). The claim follows. �

Remark 7.6.13. We checked, using program package MAGMA, Question 7.6.5 against
the list of all connected graphs of order at most 9 which have a pseudo-distance-regularized
vertex x and T (x) has, up to isomorphism, exactly one irreducible T -module with endpoint
1, which is thin. For all such graphs, the integer t := t(y) which Question 7.6.5 refers to,
does not depend on the choice of y ∈ Γ(x).

With reference to Notation 7.2.4, we let ∆ = ∆(x) denote the subgraph of Γ induced
by the neighbourhood of x. Namely, the graph ∆ = ∆(x) = (X ′,R′), with vertex set
X ′ = {y ∈X | ∂(x,y) = 1} and edges R′ = {yz | y,z ∈X ′,yz ∈ R}. We end this section
presenting some result about the local graph ∆.

Proposition 7.6.14. With reference to Notation 7.2.4, assume that Γ has, up to
isomorphism, exactly one irreducible T -module with endpoint 1, and that this module
is thin. Then, the subgraph ∆ = ∆(x) of Γ induced by the neighbourhood of x is either
isomorphic to an empty graph or a complete graph.

Proof. Pick x ∈X and let k := |Γ(x)|. Assume first that for some z ∈ Γ(x) the set D1
2(x,z)

is not empty. Then, by Lemma 7.6.2, the set D1
1(x,y) is empty for all y ∈ Γ(x). This

shows that x is not contained in any triangle and so, that there are no edges of Γ in
D1

2(x,y) for all y ∈ Γ(x). Therefore, in this case, ∆ is isomorphic to the empty graph Sk
of k vertices. Assume now that for all y ∈ Γ(x) the set D1

2(x,y) is empty. Then, it holds
that |D1

1(x,y)|= k−1 for all y ∈ Γ(x). Since x has valency at least 2, we have that the set
D1

1(x,y) is nonempty for all y ∈ Γ(x). If k = 2 then it is easy to see that ∆ is isomorphic to
the complete graph K2 of 2 vertices. Suppose that k > 2 and pick y ∈ Γ(x). We claim that
any two vertices in D1

1(x,y) are adjacent. To prove this claim, assume that z,w ∈D1
1(x,y)

are not adjacent. Then, we observe w is a neighbour of x which is at distance 2 from z.
That is, w ∈D1

2(x,z), contradicting Lemma 7.6.2. Hence, for any y ∈ Γ(x), we have that
any two vertices in D1

1(x,y) are adjacent. Therefore, it follows that ∆ is isomorphic to the
complete graph Kk of k vertices. This finishes the proof. �
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7.7 Examples

In this section we present some examples of graphs for which the equivalent conditions of
Theorem 7.2.5 hold for a certain vertex x. Several examples of such graphs where x is
distance-regularized, are presented in Sections 5.7 and 6.7; see also [23, 27]. We therefore
turn our attention to the case when x is not necessarily distance-regularized. Recall that
we are still refering to Definition 7.2.2 and Notation 7.2.4 throughout this section.

Example 7.7.1. Let Γ be the connected graph with vertex set X = {1,2,3,4,5,6} and
edge set R = {{1,2} ,{1,3} ,{2,3} ,{2,4} ,{2,5} ,{3,5} ,{3,6}}. See also Figure 10.3 and
observe that Γ is not bipartite. Fix vertex 1 ∈X and note that ε(1) = 2. Notice that Γ is
not distance-regular around 1. Consider the Terwilliger algebra of Γ with respect to vertex
1. It is now easy to verify that for every integer i (0 ≤ i ≤ 2) there exist scalars αi,βi,
such that for every y ∈ Γi(x) the following hold:

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y),

with the values of αi,βi (0≤ i≤ 2) as presented in Table 7.1.

i 0 1 2
αi 2 3 0
βi 0 1 0

Table 7.1: Values of scalars αi and βi, (0≤ i≤ 2).

Therefore, by Theorem 3.5.3 the trivial T -module is thin. Moreover, properties (a),(b)
described in part (ii) of Theorem 7.2.5 are satisfied with the values of κi,µi, θi,ρi (1≤ i≤ 2)
as presented in Table 7.2. Consequently, by Theorem 7.2.5, it holds that Γ has, up to
isomorphism, a unique irreducible T -module with endpoint 1, and this module is thin.
Moreover, since dim(E∗1V ) = |Γ(x)|= 2, it is easy to see that there is actually only one
irreducible T -module with endpoint 1. This T -module has dimension s= 2 and is spanned
by w = 3̂− 2̂ and Rw = 6̂− 4̂. Note also that the partitions given by the intersection
diagrams of Γ with respect to the edges {1,2} and {1,3} are not equitable.

We next give another example of a non-bipartite graph where the equivalent conditions of
Theorem 7.2.5 hold for a non-distance-regularized vertex x.
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i 1 2
κi 1 0
µi 1 0
θi -1 0
ρi 1 0

4

5

6

1

2

3

Table 7.2: Values of scalars κi, µi, θi and
ρi, (1≤ i≤ 2).

Figure 7.4: Graph Γ from Example 7.7.1.

Example 7.7.2. Let Γ be the connected graph with vertex set X = {n ∈ N | 1≤ n≤ 12}
given in Figure 7.5. Observe that Γ is not bipartite. Fix vertex x= 1 ∈X and note that
ε(1) = 5. Notice that Γ is not distance-regular around 1. Consider the Terwilliger algebra
of Γ with respect to vertex 1. It is now easy to check that for every integer i (0≤ i≤ 5)
there exist scalars αi,βi, such that for every y ∈ Γi(x) the following hold:

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y),

with the values of αi,βi (0≤ i≤ 5) as presented in Table 7.3. Therefore, by Theorem 3.5.3

i 0 1 2 3 4 5
αi 2 3 1 3 2 0
βi 0 1 0 0 1 0

Table 7.3: Values of scalars αi and βi, (0≤ i≤ 5).

the trivial T -module is thin. Moreover, properties (a),(b) described in part (ii) of Theorem
7.2.5 hold with the values of κi,µi, θi,ρi (1≤ i≤ 5) as presented in Table 7.4. Consequently,

i 1 2 3 4 5
κi 1 1 1 0 0
µi 1 0 1 1 0
θi -1 0 0 -1 0
ρi 1 0 0 1 0

Table 7.4: Values of scalars κi, µi, θi and ρi, (1≤ i≤ 5).
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by Theorem 7.2.5, it holds that Γ has, up to isomorphism, a unique irreducible T -module
with endpoint 1, and this module is thin. Moreover, since dim(E∗1V ) = |Γ(x)|= 2, it is easy
to see that there is actually only one irreducible T -module with endpoint 1. This T -module
has dimension s = 4 and is spanned by the vectors w = 3̂− 2̂, Rw = 6̂− 4̂, R2w = 9̂− 7̂,
R3w = 1̂1− 1̂0. Note also that the partitions presented by the intersection diagrams of Γ
with respect to the edges {1,2} and {1,3} are not equitable.

1

2

3

4

5

6

7

8

9

10

11

12

Figure 7.5: Graph Γ from Example 7.7.2.

7.7.1 A construction

Our next goal is to focus on the construction of infinitely many new graphs, that satisfy
the equivalent conditions of Theorem 7.2.5 for a certain vertex. To do this, we will need
the folowing notation.

Notation 7.7.3. Let Γ and Σ denote finite, simple graphs with vertex set X and Y ,
respectively. Assume that Γ is a connected graph which is pseudo-distance-regular around a
vertex x ∈X. Assume also that Σ is regular with order at least 2. Consider the Cartesian
product Γ�Σ. Namely, the graph with vertex set X ×Y where two vertices (x,y) and
(x′,y′) are adjacent if and only if x= x′ and y is adjacent to y′, or y = y′ and x is adjacent
to x′. Let H =H(Γ,Σ) denote the graph obtained by adding a new vertex w to the graph
Γ�Σ, and connecting this new vertex w with all vertices (x,y), where y is an arbitrary
vertex of Σ; see for example Figures 7.6 and 7.7.

With reference to Notation 7.7.3, we observe that for an arbitrary vertex (x′,y′) of H
different from w, the distance between w and (x′,y′) satisfies ∂H(w,(x′,y′)) = ∂Γ(x,x′)+1.
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It thus follows that dH = d+ 1, where dH is the eccentricity of w in H and d is the
eccentricity of x in Γ. Moreover, for 1≤ i≤ dH we have that

Hi(w) = Γi−1(x)×Y = {(u,y) | u ∈ Γi−1(x),y ∈ Y }.

In addition, it is easy to see that H is distance-regular around w if and only if Γ is
distance-regular around x.

We are now ready to give some constructions of infinitely many graphs, that satisfy the
equivalent conditions of Theorem 7.2.5 for a certain vertex.

Proposition 7.7.4. With reference to Notation 7.7.3, pick vertex w in H and consider
the Terwilliger algebra T = T (w). Then, the trivial T -module is thin.

Proof. Immediate from Section 3.7.6. �

With reference to Notation 7.7.3, in what follows, we use subscripts to distinguish the
number of walks of a particular shape in H and in Γ. For example, for x′ ∈ Γi(x), we
denote the number of walks from x to x′ of the shape ri+1` with respect to x by ri+1`Γ(x′).
For (x′,y′) ∈Hi(w), we denote the number of walks from w to (x′,y′) of the shape ri+1`

with respect to w by ri+1`H((x′,y′)). We next study the instances when Σ is either an
empty or a complete graph.

Proposition 7.7.5. With reference to Notation 7.7.3, pick vertex w in H and consider
the Terwilliger algebra T = T (w). If Σ is isomorphic to the empty graph Sn (n≥ 2) then
graph H has, up to isomorphism, exactly one irreducible T -module with endpoint 1, which
is thin.

Proof. By Proposition 7.7.4, we first observe that the trivial module is thin. We will
next show that H satisfies the combinatorial conditions of Theorem 7.2.5. Suppose that
Σ is isomorphic to the empty graph Sn (n ≥ 2). Pick (x,y) ∈ H(w) and consider the
sets Di

j = Di
j(w,(x,y)). Since the eccentricity of x equals d it is easy to see that the

sets Dj
j+1 (0 ≤ j ≤ dH) and Dj

j−1 (1 ≤ j ≤ dH) are all nonempty for all (x,y) ∈ H(w).
Consequently, by Lemma 7.6.2, the set Dj

j is empty for every j (1≤ j ≤ dH) and for all
(x,y) ∈H(w). In addition, we also notice

Dj
j+1(w,(x,y)) = Γj−1(x)× (Y \{y}) = {(u,y′) | u ∈ Γj−1(x),y′ ∈ Y,y′ 6= y},

Dj
j−1(w,(x,y)) = Γj−1(x)×{y}= {(u,y) | u ∈ Γj−1(x)}.
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Pick (x′,y′) ∈Hi(w) for 1≤ i≤ dH . We observe that

`riH
(
(x,y),(x′,y′)

)
= ri−1

Γ (x′), (7.15)

which is a positive integer since ∂Γ(x,x′) = i− 1 implies ri−1
Γ (x′) > 0. Moreover, for

(x′,y′) ∈Di
i+1 (1≤ i≤ dH) we have that

ri`H
(
(x,y),(x′,y′)

)
= ri−1fH

(
(x,y),(x′,y′)

)
= 0. (7.16)

Similarly, for (x′,y′) ∈Di
i−1 (1≤ i≤ dH) we have that

ri`H
(
(x,y),(x′,y′)

)
= ri`Γ(x′), (7.17)

ri−1fH
(
(x,y),(x′,y′)

)
= ri−1fΓ(x′), (7.18)

ri−1
H

(
(x,y),(x′,y′)

)
= ri−1

Γ (x′). (7.19)

Since vertex x is pseudo-distance-regularized, by Theorem 3.5.3, we know that for every
integer i (0≤ i≤ d) there exist scalars αi,βi, such that for every z ∈ Γi(x) the following
hold:

ri+1`Γ(z) = αi r
i
Γ(z), rifΓ(z) = βi r

i
Γ(z). (7.20)

It follows from (7.17), (7.18), (7.19) and (7.20) that for 1≤ i≤ dH and for every vertex
(x′,y′) ∈Di

i−1 we have that

ri`H
(
(x,y),(x′,y′)

)
= ri`Γ(x′)

= αi−1r
i−1
Γ (x′)

= αi−1r
i−1
H

(
(x,y),(x′,y′)

)
, (7.21)

ri−1fH
(
(x,y),(x′,y′)

)
= ri−1fΓ(x′)

= βi−1r
i−1
Γ (x′)

= βi−1r
i−1
H

(
(x,y),(x′,y′)

)
. (7.22)

Therefore, from (7.15), (7.16), (7.21) and (7.22), we see that vertex w of H satisfies the
combinatorial conditions of Theorem 7.2.5 with the values of κi = αi−1, µi = 0, θi = βi−1,
ρi = 0 for every integer i (1≤ i≤ dH). Consequently, H has, up to isomorphism, a unique
irreducible T -module with endpoint 1, and this module is thin. �

Example 7.7.6. Let Γ be the connected graph presented in Example 7.7.1 and let Sn
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denote the empty graph of n vertices, for some integer n≥ 2. Let H =H(Γ,Sn); see for
example Figure 7.6 for the case n= 2. Consider the Terwilliger algebra T = T (w) of H with
respect to w. Notice that H is not distance-regular around w since Γ is not distance-regular
around x. However, the trivial module is thin by Proposition 7.7.4. It follows from Table
7.1 and the above comments that the properties (a),(b) described in part (ii) of Theorem
7.2.5 hold with the values of κi,µi, θi,ρi (1≤ i≤ 3) as presented in Table 7.5. Consequently,
by Theorem 7.2.5, it holds that H has, up to isomorphism, a unique irreducible T -module
with endpoint 1, and this module is thin. Moreover, since dim(E∗1V ) = |H(w)|= n, it is
easy to see that there are actually n−1 irreducible T -modules with endpoint 1 and these
isomorphic T -modules have dimension s= 3.

i 1 2 3
κi 2 3 0
µi 0 0 0
θi 0 1 0
ρi 0 0 0

w

Table 7.5: Values of scalars κi, µi, θi and
ρi, (1≤ i≤ 3).

Figure 7.6: Graph H obtained from the
Cartesian product Γ�S2 where Γ is the graph
from Example 7.7.1 and S2 denotes the empty
graph on 2 vertices.

Proposition 7.7.7. With reference to Notation 7.7.3, pick vertex w in H and consider
the Terwilliger algebra T = T (w). If Σ is isomorphic to the complete graph Kn (n ≥ 2)
then graph H has, up to isomorphism, exactly one irreducible T -module with endpoint 1,
which is thin.

Proof. By Proposition 7.7.4, we first observe that the trivial module is thin. We will
next show that H satisfies the combinatorial conditions of Theorem 7.2.5. Suppose that
Σ is isomorphic to the complete graph Kn (n ≥ 2). Pick (x,y) ∈ H(w) and consider
the sets Di

j = Di
j(w,(x,y)). Since the eccentricity of x equals d it is easy to see that

the sets Dj
j (1 ≤ j ≤ dH) and Dj

j−1 (1 ≤ j ≤ dH) are all nonempty for all (x,y) ∈H(w).
Consequently, by Lemma 7.6.2 the set Dj

j+1 is empty for every j (1≤ j ≤ dH) and for all
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(x,y) ∈H(w). In addition, we also notice that

Dj
j(w,(x,y)) = Γj−1(x)× (Y \{y})

= {(u,y′) | u ∈ Γj−1(x),y′ ∈ Y \{y}}, (7.23)

Dj
j−1(w,(x,y)) = Γj−1(x)×{y}

= {(u,y) | u ∈ Γj−1(x)}. (7.24)

Pick (x′,y′) ∈Hi(w) for 1≤ i≤ dH . We observe that

`riH
(
(x,y),(x′,y′)

)
= ri−1

Γ (x′), (7.25)

which is a positive integer since ∂Γ(x,x′) = i−1 implies ri−1
Γ (x′)> 0. Moreover, since every

vertex in Di
i has no neighbours in Di+1

i , for (x′,y′) ∈Di
i (1≤ i≤ dH), it follows that

ri`H
(
(x,y),(x′,y′)

)
= 0. (7.26)

In addition, from the definition of H, (7.23) and (7.24), it is easy to see every vertex
(x′,y′) ∈ Di

i (1 ≤ i ≤ dH) has exactly one neighbour in Di
i−1 which is the vertex (x′,y).

This implies that the number of walks from (x,y) to (x′,y′) of the shape ri−1f with respect
to w is equal to the number of walks from x to x′ of the shape ri−1 with respect to x.
Therefore, from the above comments and (7.25), for (x′,y′) ∈Di

i (1≤ i≤ dH),

ri−1fH
(
(x,y),(x′,y′)

)
= ri−1

Γ (x′) = `riH
(
(x,y),(x′,y′)

)
. (7.27)

Similarly, for (x′,y′) ∈Di
i−1 (1≤ i≤ dH) we have that

ri`H
(
(x,y),(x′,y′)

)
= ri`Γ(x′), (7.28)

ri−1fH
(
(x,y),(x′,y′)

)
= ri−1fΓ(x′), (7.29)

ri−1
H

(
(x,y),(x′,y′)

)
= ri−1

Γ (x′). (7.30)

Since vertex x is pseudo-distance-regularized, by Theorem 3.5.3, we know that for every
integer i (0≤ i≤ d) there exist scalars αi,βi, such that for every z ∈ Γi(x) the following
hold:

ri+1`Γ(z) = αi r
i
Γ(z), rifΓ(z) = βi r

i
Γ(z). (7.31)
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It follows from (7.28), (7.29), (7.30) and (7.31) that for 1≤ i≤ dH and for every vertex
(x′,y′) ∈Di

i−1 we have that

ri`H
(
(x,y),(x′,y′)

)
= ri`Γ(x′)

= αi−1r
i−1
Γ (x′)

= αi−1r
i−1
H

(
(x,y),(x′,y′)

)
, (7.32)

ri−1fH
(
(x,y),(x′,y′)

)
= ri−1fΓ(x′)

= βi−1r
i−1
Γ (x′)

= βi−1r
i−1
H

(
(x,y),(x′,y′)

)
. (7.33)

Therefore, from (7.25), (7.26), (7.27), (7.32) and (7.33), we see that vertex w of H
satisfies the combinatorial conditions of Theorem 7.2.5 with the values of κi = αi−1,
µi = 0, θi = βi−1−1, ρi = 1 for every integer i (1≤ i≤ dH). Consequently, H has, up to
isomorphism, a unique irreducible T -module with endpoint 1, and this module is thin. �

Example 7.7.8. Let Γ be the connected graph presented in Example 7.7.1 and let Kn

denote the complete graph of n vertices, for some integer n≥ 2. Let H =H(Γ,Kn); see for
example Figure 7.7 for the case n= 2. Consider the Terwilliger algebra T = T (w) of H with
respect to w. Notice that H is not distance-regular around w since Γ is not distance-regular
around x. However, the trivial module is thin by Proposition 7.7.4. It follows from Table
7.1 and the above comments that the properties (a),(b) described in part (ii) of Theorem
7.2.5 hold with the values of κi,µi, θi,ρi (1≤ i≤ 3) as presented in Table 7.6. Consequently,
by Theorem 7.2.5, it holds that H has, up to isomorphism, a unique irreducible T -module
with endpoint 1, and this module is thin. Moreover, since dim(E∗1V ) = |H(w)|= n, it is
easy to see that there are actually n−1 irreducible T -modules with endpoint 1 and these
isomorphic T -modules have dimension s= 3.

We are now ready to prove the main result of this subsection.

Theorem 7.7.9. With reference to Notation 7.7.3, pick vertex w in H and consider the
Terwilliger algebra T = T (w). Graph H has, up to isomorphism, exactly one irreducible
T -module with endpoint 1, which is thin if and only if Σ is either isomorphic to the empty
graph Sn (n≥ 2) or to the complete graph Kn (n≥ 2).

Proof. By Proposition 7.7.4, we observe that the trivial module is thin. Assume first that
H has, up to isomorphism, exactly one irreducible T -module with endpoint 1, which is
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i 1 2 3
κi 2 3 0
µi 0 0 0
θi -1 0 -1
ρi 1 1 1

w

Table 7.6: Values of scalars κi, µi, θi and
ρi, (1≤ i≤ 3).

Figure 7.7: Graph H obtained from the
Cartesian product Γ�K2 where Γ is the graph
from Example 7.7.1 and K2 denotes the com-
plete graph on 2 vertices.

thin. We next claim that Σ is either isomorphic to the empty graph Sn (n≥ 2) or to the
complete graph Kn (n≥ 2). Let Y denote the vertex set of Σ. If |Y |= 2 then the statement
trivially follows. So, to prove this assertion, assume that |Y |> 2. Given any three vertices
y,y′,y′′ ∈ Y , suppose there exist both a pair of adjacent vertices and a pair of nonadjacent
vertices in Σ. Without loss of generality we could assume that y is adjacent to y′ but not
to y′′. Since y and y′ are adjacent, we thus have that (x,y′) is a common neighbour of
both w and (x,y) in H. Moreover, note that ∂H(w,(x,y′′)) = 1 and since y and y′′ are not
adjacent, ∂H((x,y),(x,y′′)) = 2. Hence, the sets D1

2(w,(x,y)) and D1
1(w,(x,y)) are both

nonempty, contradicting Lemma 7.6.2. Consequently, any three vertices in Y either form a
stable set or a clique. This clearly implies that Σ is either isomorphic to the empty graph
Sn (n≥ 2) or to the complete graph Kn (n≥ 2), which proves our claim. Notice also that
the second part of the result immediately follows from Proposition 7.7.5 and Proposition
7.7.7. This finishes the proof. �

7.8 Concluding remarks

We conclude this chapter with some remarks about conditions (i), (ii) of Theorem 7.2.5.

In this chapter we study irreducible T -modules with endpoint 1 in the case when the
trivial T -module is thin. We observe, there are no irreducible T -modules with endpoint 1
if and only if x is a leaf of Γ, that is, if and only if |Γ(x)|= dim(E∗1T x̂) = 1. Therefore, we
assume that |Γ(x)| ≥ 2. These arguments were used throughtout Section 7.5 to prove that
certain combinatorial conditions imply some algebraic property. Namely, with reference to
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Notation 7.2.4, if we assume that Γ satisfies part (ii) of Theorem 7.2.5 then it follows that
in this case Γ has, up to isomorphism, exactly one irreducible T -module with endpoint 1,
and that this module is thin. Although it was assumed that the trivial module is thin, this
hypothesis was only used to claim that dim(E∗1T x̂) = 1 and so, to guarantee the existence
of irreducible T -modules with endpoint 1 as |Γ(x)|> 1.

However, by Proposition 7.1.2, there are no irreducible T -modules with endpoint 1 if
and only if dim(E∗1T x̂) = |Γ(x)|. Consequently, if we would like to explore a more
general situation when the trivial T -module is not necessarily thin, we will need that
dim(E∗1T x̂)< |Γ(x)|. Moreover, keeping that in mind and following the same arguments
used in the proofs given in Section 7.5, condition (ii) of Theorem 7.2.5 implies condition
(i). Namely, the next result is true:

Theorem 7.8.1. Let Γ = (X,R) denote a finite, simple, connected graph with vertex set
X and edge set R. Fix a vertex x ∈X and let d denote the eccentricity of x. Let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. Let V0 denote the trivial module
and assume dim(E∗1V0)< |Γ(x)|. For y ∈ Γ(x) and z ∈X let the sets Di

j =Di
j(x,y) be as

defined in Definition 7.2.1, and let the numbers rm`(y,z), rmf(y,z) and rm(y,z) be as
defined in Definition 7.2.2. Assume for every integer i (1≤ i≤ d) there exist scalars κi,µi,
θi,ρi, such that for every y ∈ Γ(x) the following (a), (b) hold:

(a) For every z ∈Di
i+1(x,y)∪Di

i(x,y) we have that

ri`(y,z) = µi `r
i(y,z),

ri−1f(y,z) = ρi `r
i(y,z).

(b) For every z ∈Di
i−1(x,y) we have that

ri`(y,z) = κi r
i−1(y,z) +µi `r

i(y,z),

ri−1f(y,z) = θi r
i−1(y,z) +ρi `r

i(y,z).

Then, Γ has, up to isomorphism, a unique irreducible T -module with endpoint 1, and this
module is thin.

However, the assumption that the trivial T -module is thin is neccesary to prove that
conditions (i), (ii) of Theorem 7.2.5 are equivalent. In particular, if this condition on the
trivial T -module is not assumed, condition (i) of Theorem 7.2.5 does not imply condition
(ii), as we will see below.
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Example 7.8.2. Let Γ be the connected graph with vertex set X = {1,2,3,4,5,6,7} and edge
set R= {{1,2} ,{1,3} ,{2,4} ,{2,5} ,{3,5} ,{3,6} ,{4,7},{5,7},{6,7}}; see also Figure 7.8.
Observe that Γ is bipartite. Fix vertex 1 ∈X and note that ε(1) = 3. Observe that Γ is not
distance-regular around vertex 1. Namely, vertex 4 ∈ Γ2(1) has only one neighbour in Γ(1),
while vertex 5 ∈ Γ2(1) has two neighbours in Γ(1). Let A denote the adjacency matrix of Γ
and let E∗i ∈MatX(C) (0≤ i≤ 3) denote the dual idempotents of Γ with respect to 1. Let V
denote the standard module of Γ and let T = T (1) denote the Terwilliger algebra of Γ with
respect to 1. Let L and R denote the lowering and the raising matrix of T , respectively.
For y ∈ Γ(x) and z ∈X let the sets Di

j =Di
j(x,y) be as defined in Definition 7.2.1, and

let the numbers rm`(y,z) and rm(y,z) be as defined in Definition 7.2.2.

1

2

3

4

5

6

7

Figure 7.8: Graph Γ from Example 7.8.2.

Claim 7.8.3. With reference to Example 7.8.2, the trivial T -module is not thin. Moreover,
the set {1̂,R1̂,R21̂,R31̂,LR31̂} is a basis of the trivial T -module.

Proof. Let V denote the standard module and let T 1̂ denote the unique irreducible module
with endpoint 0. Let S be the subspace of V spanned by the vectors Ri1̂ (0≤ i≤ 3) and
LR31̂. It is straightforward to check that LRi1̂ ∈ S (0≤ i≤ 3). Moreover, it holds that
L2R31̂ = 8 ·R1̂ and RLR31̂ = 3 ·R31̂. This yields that S is invariant under the action of L
and R. Since the adjacency matrix A of Γ can be written as A= L+R, it follows that S is
A-invariant. Observe that by (7.2) and by (eiv) from Section 7.1, the subspace S is invariant
under the action of the dual idempotents. We thus have S is a T -module. Since 1̂ ∈ S and
S ⊆ T 1̂, it must be S = T 1̂ as the trivial module is irreducible. By Proposition 3.5.5 and
(7.2), vectors Ri1̂ (0 ≤ i ≤ 3) are nonzero and orthogonal. Moreover, by (7.2), we have
R21̂ and LR31̂ belong to E∗2(T 1̂). Since R21̂ = 4̂ + 2 · 5̂ + 6̂ and LR31̂ = 4 · (4̂ + 5̂ + 6̂) the
vectors are linearly independent. We therefore have dim(E∗2(T 1̂)) = 2 which implies that
the trivial T -module is not thin. This finishes the proof. �
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Claim 7.8.4. With reference to Example 7.8.2, pick w ∈E∗1V , w 6= 0, which is orthogonal
to s1 =R1̂. Let W denote the vector subspace of V spanned by the vectors Riw (0≤ i≤ 3).
Then W is a thin irreducible T -module with endpoint 1 and the set {w,Rw} forms an
orthogonal basis of W . In particular, the dimension of W is 2.

Proof. Let W denote the vector subspace of V spanned by the vectors {Riw | 0≤ i≤ 3}.
Observe that by (7.2) and by (eiv) from Section 7.1, the subspace W is invariant under
the action of the dual idempotents. By construction and since R3w = 0 by (7.2), it is also
clear that W is closed under the action of R. Let J denote the all 1’s matrix in MatX(C).
As w ∈ E∗1V we have that E∗1w = w and so,

〈jjj,w〉= 〈jjj,E∗1w〉= 〈E∗1jjj,w〉= 〈s1,w〉= 0,

where jjj denotes the all 1’s vector in V . This shows Jw = 0. By elementary matrix
multiplication it is easy to see E∗0AE∗1 = E∗0JE

∗
1 . Therefore, by Definition 7.1.1 and the

above comments we have that Lw = E∗0AE
∗
1w = E∗0JE

∗
1w = E∗0Jw = 0. Moreover, it is

easy to see that the following equations are true:

E∗1LRE
∗
1 = E∗1 +E∗1RLE

∗
1 , (7.34)

E∗2LR
2E∗1 = 2E∗2JE∗1 . (7.35)

It follows from (7.34), (7.35) and the above comments that LRw=w and LR2w= 0. Since
LR3w = 0, this implies that W is invariant under the action of L. Since A = L+R, it
turns out that W is A-invariant as well. Recall that algebra T is generated by A and the
dual idempotents. Therefore, W is a T -module. It is also clear that W is thin, since by
construction and (7.2), the subspace E∗iW is generated by Ri−1w. Next, we show that W
is irreducible. Note that w ∈W and so W is non-zero. Recall that W is an orthogonal
direct sum of irreducible T -modules. Since E∗0W is the zero subspace and E∗1w = w 6= 0,
there exists an irreducible T -module W ′, such that the endpoint of W ′ is 1 and W ′ ⊆W .
Consequently, E∗1W ′ ⊆E∗1W . However, the dimension of E∗1W is 1, and so E∗1W ′ =E∗1W .
But now we have W = TE∗1W = TE∗1W

′ ⊆W ′, implying that W = W ′. Hence, W is
irreducible and its endpoint equals 1. Finally, taking norm, it is easy to see ‖Rw‖= ‖w‖
and

∥∥∥R2w
∥∥∥= 0. Furthermore, it holds that vectors w and Rw are nonzero and orthogonal.

The result follows. �

Claim 7.8.5. With reference to Example 7.8.2, pick w ∈E∗1V , w 6= 0, which is orthogonal
to s1 =R1̂. Let W denote an irreducible T -module with endpoint 1. Pick w ∈E∗1W , w 6= 0.



CHAPTER 7. THE PSEUDO-DISTANCE-REGULARIZED CASE 139

Then the vectors {Ri−1w | 1≤ i≤ 2} form an orthogonal basis of W . In particular, W is
thin with dimension 2.

Proof. Let W ′ denote the vector subspace of V spanned by the vectors {Ri−1w | 1≤ i≤ 3}.
Recall that W and the unique irreducible T -module with endpoint 0 are not isomorphic,
and so w is orthogonal to s1. By Claim 7.8.4, W ′ is a T -module. Note that W ′ is nonzero
and contained in W . As W is irreducible, we have that W =W ′. The result now follows
from Claim 7.8.4. �

Claim 7.8.6. With reference to Example 7.8.2, graph Γ has, up to isomorphism, a unique
irreducible T -module with endpoint 1, and this module is thin.

Proof. Let W and W ′ be irreducible T -modules with endpoint 1, and pick any nonzero
vectors w ∈ E∗1W and w′ ∈ E∗1W ′. By Claim 7.8.5, the vectors

{
Ri−1w | 1≤ i≤ 2

}
and

{
Ri−1w′ | 1≤ i≤ 2

}
are orthogonal bases of W and W ′, respectively. Hence, the linear map σ : W →W ′,
defined by σ

(
Ri−1w

)
=Ri−1w′ is a vector space isomorphism. It is clear that σ commutes

with L and R. Since A=L+R, it turns out that σ commutes with A as well. Furthermore,
σ is a T -module isomorphism since by (eiv) from Section 7.1, it commutes also with
E∗i (0≤ i≤ 3). Thus W and W ′ are T -isomorphic. �

Claim 7.8.7. With reference to Example 7.8.2, condition (ii) of Theorem 7.2.5 does not
hold.

Proof. Pick 1 ∈X and consider the distance partition of Γ with respect to the edge {1,2}.
We observe the sets D2

1(1,2) = {4,5} and D2
3(1,2) = {6}. Suppose to the contrary that

Γ satisfies condition (ii) of Theorem 7.2.5. Then, there exist scalars κ2,µ2 such that for
6∈D2

3(1,2) we have r2`(2,6) = µ2 `r2(2,6). This implies µ2 = 2. Moreover, for z ∈D2
1(1,2)

we have that r2`(2, z) = 2, r(2, z) = 1 and so, κ2 + 2 `r2(2, z) = 2. If z = 4 we get that
κ2 = 0 while if z = 5, we have that κ2 =−2, a contradiction as κ2 does not depend on the
choice of z. The claim follows. �

With reference to Example 7.8.2, we would like to point out that, by Claim 7.8.6, graph Γ
has, up to isomorphism, exactly one irreducible T -module with endpoint 1, which is thin
but, by Claim 7.8.7, condition (ii) of Theorem 7.2.5 does not hold. Notice however that,
by Claim 7.8.3, the unique module with endpoint 0 is not thin.
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Chapter 8

Overview

Let Γ be a finite, undirected, connected graph with diameter d, and let V (Γ) and E(Γ)
denote the vertex set and the edge set of Γ, respectively. For u,v ∈ V (Γ), let Γ(u)

be the set of neighbours of u, and let ∂(u,v) = dΓ(u,v) denote the minimal path-length
distance between u and v. For a pair of adjacent vertices u,v of Γ we denote

Wu,v = {x ∈ V (Γ) | ∂(x,u)< ∂(x,v)}.

We say that Γ is distance–balanced (DB for short) whenever for an arbitrary pair of adjacent
vertices u and v of Γ we have that

|Wu,v|= |Wv,u|.

We refer the reader to Chapters 9 and 10 for further details and formal definitions about
this family of graphs and some of its subclasses.

The investigation of distance-balanced graphs was initiated in 1999 by Handa [45], who
considered distance-balanced partial cubes. The term itself was introduced by Jerebic,
Klavžar and Rall in [52], who gave some basic properties and characterized Cartesian
and lexicographic products of distance-balanced graphs. The family of distance-balanced
graphs is very rich and its study is interesting from various purely graph-theoretic aspects
where one focuses on particular properties of such graphs such as symmetry [55, 56, 98],
connectivity [45, 75], or complexity aspects of algorithms related to such graphs [8].
However, the balancedness property of these graphs also makes them very appealing
in areas such as mathematical chemistry and communication networks. For instance,
the investigation of such graphs is highly related to the well-studied Wiener index and
Szeged index (see [2, 52, 50, 87]) and they present very desirable models in various real-
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life situations related to (communication) networks [2]. Recently, the relations between
distance-balanced graphs and the traveling salesman problem were studied in [12]. It turns
out that these graphs can be characterized by properties that at first glance do not seem
to have much in common with the original definition from [52]. For example, in [3] it
was shown that the distance-balanced graphs coincide with the self-median graphs, that
is, graphs for which the sum of the distances from a given vertex to all other vertices is
independent of the chosen vertex. Other such examples are equal opportunity graphs (see [2]
for the definition). In [2] it is shown that distance-balanced graphs of even order are also
equal to opportunity graphs. Finally, let us also mention that various generalizations of
the distance-balanced property were defined and studied in the literature; see, for example,
[1, 36, 49, 53, 76].

The notion of nicely distance-balanced graphs appears quite naturally in the context of
DB graphs. We say that Γ is nicely distance–balanced (NDB for short) whenever there
exists a positive integer γ = γ(Γ), such that for an arbitrary pair of adjacent vertices u
and v of Γ we have that

|Wu,v|= |Wv,u|= γ

holds. Clearly, every NDB graph is also DB, but the opposite is not necessarily true. For
example, if n≥ 3 is an odd positive integer, then the prism graph on 2n vertices is DB,
but not NDB.

Assume now that Γ is NDB. Let us denote the diameter of Γ by d. In [57], where these
graphs were first defined, it was proved that d ≤ γ and NDB graphs with d = γ were
classified. It turns out that Γ is NDB with d= γ if and only if Γ is either isomorphic to a
complete graph on n≥ 2 vertices, a complete multipartite graph with parts of cardinality 2
or to a cycle on 2d or 2d+1 vertices. In Chapter 9 we study regular NDB graphs for which
γ = d+ 1 (see also [29]). The situation in this case is much more complex than in the case
γ = d. We show that the only regular NDB graphs with valency k, diameter d and γ = d+1
are the Petersen graph (with k = 3 and d = 2), the complement of the Petersen graph
(with k = 6 and d= 2), the complete multipartite graph Kt×3 with t parts of cardinality 3,
t≥ 2 (with k = 3(t−1) and d= 2), the Möbius ladder graph on 8 vertices (with k = 3 and
d= 2), the Paley graph on 9 vertices (with k = 4 and d= 2), the 3-dimensional hypercube
Q3 (with k = 3 and d= 3), the line graph of the 3-dimensional hypercube Q3 (with k = 4
and d= 3), and the icosahedron (with k = 5 and d= 3).

Another concept closely related to the concept of distance-balanced graphs is the one of
strongly distance-balanced graphs. For an arbitrary pair of adjacent vertices u and v of a
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given graph Γ, and any two non-negative integers i, j, we let

Di
j(u,v) = {x ∈ V (Γ) | ∂(u,x) = i and ∂(v,x) = j}.

A graph Γ is called strongly distance-balanced (SDB for short) if |Di
i−1(u,v)|= |Di−1

i (u,v)|
holds for every i ≥ 1 and every pair of adjacent vertices u and v in Γ. It is easy to see
that a strongly distance-balanced graph is also distance-balanced, but the converse is not
true in general (see [55]). For more results on this and related concepts see, for example,
[3, 8, 50, 57, 75].

In Chapter 10, we solve an open problem posed by Kutnar and Miklavič [57] by constructing
several infinite families of nonbipartite nicely distance-balanced graphs which are not
strongly distance-balanced. We also disprove a conjecture regarding the characterization of
strongly distance-balanced graphs posed by Balakrishnan et al. [3] by providing infinitely
many counterexamples, and answer a question posed by Kutnar et al. in [55] regarding
the existence of semisymmetric distance-balanced graphs which are not strongly distance-
balanced by providing an infinite family of such examples. We also show that for a
graph Γ with n vertices and m edges it can be checked in O(mn) time if Γ is strongly
distance-balanced and if Γ is nicely distance-balanced.





Chapter 9

On certain regular nicely
distance-balanced graphs

A connected graph Γ is called nicely distance–balanced (NDB for short), whenever there
exists a positive integer γ = γ(Γ), such that for any two adjacent vertices u,v of Γ

there are exactly γ vertices of Γ which are closer to u than to v, and exactly γ vertices
of Γ which are closer to v than to u. Let d denote the diameter of Γ. It is known that
d≤ γ, and that nicely distance-balanced graphs with γ = d are precisely complete graphs,
complete multipartite graphs with parts of cardinality 2, and cycles of length 2d or 2d+ 1.
In this chapter we classify regular nicely distance-balanced graphs with γ = d+ 1.

The chapter is organized as follows. After some preliminaries in Section 9.1 we prove
certain structural results about NDB graphs with γ = d+ 1 in Section 9.2. In Section 9.3
we show that if Γ is a regular NDB graph with γ = d+1, then d≤ 5 and the valency of
Γ is either 3, 4 or 5. In Sections 9.4, 9.5 and 9.6 we consider each of these three cases
separately. In Section 9.7 we prove our main result.

The chapter is based on joint work with Štefko Miklavič and Safet Penjić. Our main results
will be published in Revista de la Unión Matemática Argentina; see [29] for more details.

9.1 Preliminaries

In this section we recall some preliminary results that we will find useful later in the
chapter. Let Γ be a finite, simple, connected graph with vertex set V (Γ), and edge set E(Γ).
If u,v ∈ V (Γ) are adjacent then we simply write u∼ v and we denote the corresponding
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edge by uv with an understanding that uv = vu. For u ∈ V (Γ) and an integer i we let
Γi(u) denote the set of vertices of V (Γ) that are at distance i from u. We abbreviate
Γ(u) = Γ1(u). We set ε(u) = max{∂(u,z) | z ∈ V (Γ)} and we call ε(u) the eccentricity of u.
Let d= max{ε(u) | u ∈ V (Γ)} denote the diameter of Γ. Pick adjacent vertices u,v of Γ.
For any two non-negative integers i, j we let

Di
j(u,v) = Γi(u)∩Γj(v).

By the triangle inequality we observe only the sets Di−1
i (u,v), Di

i(u,v) and Di
i−1(u,v)

(1≤ i≤ d) can be nonempty. Moreover, the next result holds.

Lemma 9.1.1. With the above notation, abbreviate Di
j = Di

j(u,v). Then the following
(i)–(iv) hold for 1≤ i≤ d.

(i) If w ∈Di
i−1 then Γ(w)⊆Di−1

i−2 ∪D
i−1
i−1 ∪D

i−1
i ∪Di

i−1∪Di
i ∪Di+1

i .

(ii) If w ∈Di
i then Γ(w)⊆Di−1

i−1 ∪D
i−1
i ∪Di

i−1∪Di
i ∪Di

i+1∪Di+1
i ∪Di+1

i+1.

(iii) If w ∈Di−1
i then Γ(w)⊆Di−2

i−1 ∪D
i−1
i−1 ∪D

i−1
i ∪Di

i−1∪Di
i ∪Di

i+1.

(iv) If Di
i+1 6= ∅ (Di+1

i 6= ∅, respectively) then Dj
j+1 6= ∅ (Dj+1

j 6= ∅, respectively) for
every 0≤ j ≤ i.

Proof. Straightforward (see also Figure 9.1). �

u

v

D1
1 · · · Di

i · · · Dd
d

· · · Di−1
i · · · Dd−1

d

· · · Di
i−1 · · · Dd

d−1

Figure 9.1: Graphical representation of the sets Di
j(u,v). The line between Di

j and Dn
m indicates

possible edges between vertices of Di
j and Dn

m.

Let us recall the definition of nicely distance-balanced graphs. For an edge uv of Γ we denote

Wu,v = {x ∈ V (Γ) | ∂(x,u)< ∂(x,v)}.
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We say that Γ is nicely distance–balanced (NDB for short) whenever there exists a positive integer
γ = γ(Γ), such that for any edge uv of Γ,

|Wu,v|= |Wv,u|= γ

holds. One can easily see that Γ is NDB if and only if for every edge uv ∈ E(Γ) we have that

d∑
i=1
|Di

i−1(u,v)|=
d∑
i=1
|Di−1

i (u,v)|= γ. (9.1)

Pick adjacent vertices u,v of Γ. For the purposes of this chapter we say that the edge uv is
(d+ 1)-balanced, if (9.1) holds for vertices u,v with γ = d+ 1.

Graph Γ is said to be regular, if there exists a non-negative integer k, such that |Γ(u)|= k for
every vertex u ∈ V (Γ). In this case we also say that Γ is regular with valency k (or k-regular for
short). The following simple observation about regular graphs will be very useful in the rest of
the chapter.

Lemma 9.1.2. Let Γ be a connected regular graph. Then for every edge uv of Γ we have that

|D1
2(u,v)|= |D2

1(u,v)|.

Proof. Note that Γ(u) = {v}∪D1
1(u,v)∪D1

2(u,v) and Γ(v) = {u}∪D1
1(u,v)∪D2

1(u,v). As Γ is
regular, the claim follows. �

Assume that Γ is regular with valency k. If there exists a non-negative integer λ, such that every
pair u,v of adjacent vertices of Γ has exactly λ common neighbours (that is, if |D1

1(u,v)|= λ),
then we say that Γ is edge-regular (with parameter λ). Before we start with our study of regular
NDB graphs with γ = d+ 1 we have a remark.

Remark 9.1.3. Let Γ be a regular NDB graph with diameter d and γ = d+ 1. Observe first that
d≥ 2. Moreover, if d= 2 then it follows from [57, Theorem 5.2] that Γ is one of the following
graphs:

1. the Petersen graph,

2. the complement of the Petersen graph,

3. the complete multipartite graph Kt×3 with t parts of cardinality 3 (t≥ 2),

4. the Möbius ladder graph on 8 vertices,

5. the Paley graph on 9 vertices.
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In what follows we will therefore assume that d≥ 3.

Let Γ be a NDB graph with diameter d≥ 3 and with γ = γ(Γ) = d+ 1. Pick vertices x0,xd of Γ
such that ∂(x0,xd) = d, and let x0,x1, . . . ,xd be a shortest path between x0 and xd. Consider
the edge x0x1 and note that

{x1,x2, . . . ,xd} ⊆Wx1,x0 .

It follows that there is a unique vertex u ∈Wx1,x0 \{x1,x2, . . . ,xd}. Let `= `(x0,x1) (2≤ `≤ d)
be such that u ∈D`−1

` (x1,x0), and so D`−1
` (x1,x0) = {u,x`} and Di−1

i (x1,x0) = {xi} for 2≤ i≤
d,i 6= `.

9.2 Some structural results

Let Γ be a NDB graph with diameter d ≥ 3 and γ = γ(Γ) = d+ 1. In this section we prove
certain structural results about Γ. To do this, let us pick arbitrary vertices x0,xd of Γ with
∂(x0,xd) = d, and let us pick a shortest path x0,x1, . . . ,xd between x0 and xd. Set Di

j =Di
j(x1,x0)

and `= `(x0,x1). Recall that the unique vertex u ∈Wx1,x0 \{x1,x2, . . . ,xd} is contained in D`−1
` .

Observe that
{x0,x1, . . . ,xd−1} ⊆Wxd−1,xd

(9.2)

and
{x2,x3, . . . ,xd} ⊆Wx2,x1 . (9.3)

Note that if `≥ 3, then also u ∈Wx2,x1 . In addition, we will use the following abbreviations:

A=
d⋃
i=2

(
Γ(xi)∩Di

i

)
,

B =
(
Γ(x2)∩D2

1
)
∪
(
Γ(xd)∩Dd

d−1
)
.

Proposition 9.2.1. With the notation above, the following (i), (ii) hold.

(i) There are no edges between xi and Di
i−1∪D

i−1
i−1 for 3≤ i≤ d−1.

(ii) |Γ(x2)∩ (D1
1 ∪D2

1)| ≤ 1.

Proof. (i) Assume that for some 3 ≤ i ≤ d− 1 we have that z is a neighbour of xi contained
in Di

i−1 ∪D
i−1
i−1. Let x0,y1, . . . ,yi−2,z be a shortest path between x0 and z. Observe that

{y1, . . . ,yi−2,z}∩{x0,x1, . . . ,xd−1} = ∅ and that {y1, . . . ,yi−2,z} ⊆Wxd−1,xd
. These comments,

together with (9.2), yield |Wxd−1,xd
| ≥ d+ 2, which contradicts the fact that γ = d+ 1.



CHAPTER 9. ON CERTAIN REGULAR NICELY DISTANCE-BALANCED GRAPHS 151

(ii) Let z1,z2 ∈ Γ(x2)∩ (D1
1 ∪D2

1), z1 6= z2. Then z1,z2 ∈Wxd−1,xd
. This, together with (9.2),

contradicts the fact that γ = d+ 1. �

Proposition 9.2.2. With the notation above, the following (i), (ii) hold.

(i) |A∪B| ≤ 2.

(ii) If `≥ 3, then |A∪B∪
(
Γ(u)∩ (D`

` ∪D`
`−1)

)
|= 1.

Proof. (i) Note that A∪B ⊆Wx2,x1 and that (A∪B)∩{x2, . . . ,xd} = ∅. This, together with
(9.3), forces |A∪B| ≤ 2.

(ii) Note that in this case we have that u∈Wx2,x1 . The proof that |A∪B∪
(
Γ(u)∩(D`

`∪D`
`−1)

)
| ≤ 1

is now similar to the proof of (i) above. On the other hand, if |A∪B∪
(
Γ(u)∩ (D`

` ∪D`
`−1)

)
|= 0,

then |Wx2,x1 |= d, contradicting the fact that γ = d+ 1. �

9.3 Regular NDB graphs with γ = d+1

Let Γ be a regular NDB graph with valency k, diameter d≥ 3 and γ = γ(Γ) = d+1. In this section
we use the results from Section 9.2 to find bounds on k and d. As in the previous section, let us
pick arbitrary vertices x0,xd of Γ with ∂(x0,xd) = d, and let us pick a shortest path x0,x1, . . . ,xd

between x0 and xd. Set Di
j =Di

j(x1,x0) and `= `(x0,x1).

Proposition 9.3.1. Let Γ be a regular NDB graph with valency k, diameter d= 3 and γ = 4.
Then for every x ∈ V (Γ) we have eccentricity ε(x) = 3.

Proof. Since d = 3 there exists y ∈ V (Γ) such that ε(y) = 3. Pick x ∈ Γ(y). By the triangle
inequality we also observe that ε(x) ∈ {2,3}. Suppose that ε(x) = 2. Then, the sets D3

2(x,y) and
D3

3(x,y) are both empty. Recall that γ = 4, and so by Lemma 9.1.2 we thus have |D1
2(x,y)|=

|D2
1(x,y)|= 3, which implies D2

3(x,y) = ∅, contradicting that ε(y) = 3. Therefore, ε(x) = 3 for
every x ∈ Γ(y). Since Γ is connected, this finishes the proof as every neighbour of a vertex of
eccentricity 3 has also eccentricity 3. �

Proposition 9.3.2. There exists no regular NDB graph with valency k = 6, diameter d= 3 and
γ = 4.

Proof. Suppose to the contrary that there exists a regular NDB graph Γ with valency k = 6,
diameter d= 3 and γ = 4. Then, by Proposition 9.3.1, every vertex x ∈ V (Γ) has eccentricity
ε(x) = 3.
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Let us pick an edge xy ∈ E(Γ). By Lemma 9.1.2 we have that |D1
2(x,y)|= |D2

1(x,y)|, and so it
follows from (9.1) that |D2

3(x,y)|= |D3
2(x,y)| as well. We will prove that the sets D2

3(x,y) and
D3

2(x,y) are nonempty.

Assume to the contrary that the sets D3
2(x,y) and D2

3(x,y) are empty. As γ = d+ 1 = 4 we have
that |D1

2(x,y)| = |D2
1(x,y)| = 3. Moreover, by Proposition 9.3.1 the set D3

3(x,y) is nonempty.
Pick z ∈D3

3(x,y) and note that there exists a vertex w ∈ Γ(z)∩D2
2(x,y). Pick x1 ∈D1

2(x,y) and
observe that ∂(x1,z) ∈ {2,3}. We first claim that ∂(x1,z) = 3. Suppose to the contrary that
∂(x1,z) = 2. Without loss of generality, we could assume that w and x1 are adjacent. Notice
that there exists a neighbour v of w in D1

1(x,y)∪D2
1(x,y) since ∂(w,y) = 2. Therefore, we have

{x,y,x1,v,w} ⊆Ww,z, contradicting that γ = 4. This yields that ∂(x1,z) = 3, and so there exists
a shortest path x1,v1,w1,z between x1 and z of length 3. Note that by the above claim we have
that w1 ∈D2

2, and so {x,y,x1,v1,w1} ⊆Ww1,z. As x1 6∈ {x,y}, this yields a contradiction with
γ = 4. This shows that the sets D2

3(x,y) and D3
2(x,y) are nonempty.

Assume for the moment that |D2
3(x,y)|= 2. Since γ = 4, it follows from (9.1) that |D1

2(x,y)|= 1.
Let x2 denote the unique vertex of Γ in D1

2(x,y) and let x3 be a neighbour of x2 which is in
D2

3(x,y). Since the edge xx2 is 4-balanced and D2
3(x,y)∪{x2} ⊆Wx2,x we have that x2 has at

most one neighbour in D2
2(x,y)∪D2

1(x,y). However, as k = 6, this shows that x2 has at least
two neighbours in D1

1(x,y) and so the edge x2x3 is not 4-balanced. Consequently, for every edge
xy ∈ E(Γ) we have that |D2

3(x,y)|= |D3
2(x,y)|= 1.

It follows from the above comments and (9.1) that |D1
2(x,y)| = |D2

1(x,y)| = 2 for every edge
xy ∈ E(Γ). This implies that |D1

1(x,y)|= 3 for every edge xy ∈ E(Γ) and so, Γ is edge-regular
with λ= 3.

Pick an edge xy ∈ E(Γ). Let D1
2(x,y) = {x2,u} and let x3 be a neighbour of x2 in D2

3(x,y). We
observe that the three common neighbours of x2 and x3 are not all in D2

2(x,y), since the edge
xx2 is 4-balanced. Then, u is a common neighbour of x2 and x3 and there exist two common
neighbours of x2 and x3 in D2

2(x,y). Moreover, since the edge xx2 is 4-balanced, x2 has no
neighbours in D2

1(x,y). Furthermore, as k = 6 we have that x2 has a neighbour, say z, in D1
1(x,y).

It now follows that Γ(x)∩Γ(x2) = {u,z}, contradicting that λ= 3. �

Theorem 9.3.3. Let Γ be a regular NDB graph with valency k, diameter d≥ 3 and γ = d+1.
Then k ∈ {3,4,5}.

Proof. First note that a cycle Cn (n ≥ 3) is NDB with γ(Cn) equal to the diameter of Cn.
Therefore, k ≥ 3.

Assume first that ` = 2 and recall that in this case the set D1
2 = {x2,u}. We observe that x1

and x3 are the only neighbours of x2 in the set D0
1 ∪D2

3. Furthermore, by Proposition 9.2.1(ii),
x2 has at most one neighbour in D1

1 ∪D2
1 and by Proposition 9.2.2(i), x2 has at most two
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neighbours in D2
2. Moreover, since `= 2, we also notice that x2 has at most one neighbour in

D1
2. If x2 and u are not adjacent, then k ≤ 5. Assume next that x2 and u are adjacent. We

consider the cases d≥ 4 and d= 3 separately. If d≥ 4, we also have that u ∈Wxd−1,xd
, and so

Wxd−1,xd
= {x0,x1, . . . ,xd−1,u} (recall that γ = d+ 1). If w ∈D1

1 ∪D2
1 is adjacent to x2, then we

have that w ∈Wxd−1,xd
, a contradiction. Therefore, x2 has no neighbours in D1

1 ∪D2
1. As x2 has

at most 2 neighbours in D2
2, it follows that k ≤ 5. If x2 and u are adjacent and d= 3, then k ≤ 6.

However, by Proposition 9.3.2, there exists no regular NDB graph with valency k = 6, diameter
d= 3 and γ = 4. This shows that k ≤ 5.

Assume next that `≥ 3. By Propositions 9.2.1(ii) and 9.2.2(ii), x2 has at most one neighbour in
D1

1 ∪D2
1, and at most one neighbour in D2

2. Since x2 has at most two neighbours in D2
3 (namely

x3 and u), it follows that k ≤ 5. This concludes the proof. �

Theorem 9.3.4. Let Γ be a regular NDB graph with valency k, diameter d≥ 3 and γ = d+1.
Then the following (i)–(iii) hold.

(i) If k = 3, then d ∈ {3,4,5}.

(ii) If k = 4, then d ∈ {3,4}.

(iii) If k = 5, then d= 3.

Proof. (i) Assume that d≥ 6 and consider first the case `= 2. Note that by Proposition 9.2.1(i)
x4 and x5 have a neighbour in D4

4 and D5
5 respectively. If x3 has a neighbour in D3

3 then this
contradicts Proposition 9.2.2(i). Therefore, x3 and u are adjacent and so u ∈Wxd−1,xd

. This and
(9.2) implies that x2 has no neighbours in D1

1 ∪D2
1. If x2 and u are adjacent, then we have that

|Wu,x2 |= |Wx2,u|= 1, contradicting γ = d+1. Therefore, x2 has a neighbour in D2
2, contradicting

Proposition 9.2.2(i).

If `= 3, then by Proposition 9.2.1(i) vertex x5 has a neighbour in D5
5. By Proposition 9.2.1(i)

and Proposition 9.2.2(ii), x3 and x4 are both adjacent with u. But then |Wu,x3 |= |Wx3,u|= 1,
contradicting γ = d+ 1.

If `= d−1, then by Proposition 9.2.1(i) vertex x3 has a neighbour in D3
3. Proposition 9.2.1(i)

and Proposition 9.2.2(ii) now force that x2 has a neighbour in D1
1 and that xd−1 and u are

adjacent. As |Wxd−1,xd
|= d+1 we have that also xd and u are adjacent (otherwise u ∈Wxd−1,xd

).
But now |Wu,xd−1 |= |Wxd−1,u|= 1, contradicting γ = d+ 1.

If ` = d, then x3 and x4 both have a neighbour in D3
3 and D4

4 respectively, contradicting
Proposition 9.2.2(ii).

Assume finally that 4 ≤ ` ≤ d− 2. Similarly as above we see that x` and x`+1 are not both
adjacent to u, so either x` has a neighbour in D`

` or x`+1 has a neighbour in D`+1
`+1 (but not both).
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Therefore we have that u ∈Wxd−1,xd
, and so x2 has no neighbours in D1

1 ∪D2
1. Consequently, x2

has a neighbour in D2
2, contradicting Proposition 9.2.2(ii).

(ii) Assume d≥ 5. If `= 2, then by Proposition 9.2.1(i) vertex x3 has at least one neighbour in
D3

3, while vertex x4 has two neighbours in D4
4. However, this contradicts Proposition 9.2.2(i).

If `≥ 3, then again by Proposition 9.2.1(i) vertex x3 (vertex x4, respectively) has at least one
neighbour in D3

3 (D4
4, respectively), contradicting Proposition 9.2.2(ii).

(iii) Assume d≥ 4. It follows from the proof of Theorem 9.3.3 that in this case ` ∈ {2,3} holds.
If `= 2, then by Proposition 9.2.1(ii) and since k = 5, vertex x2 has at least one neighbour in D2

2,
while vertex x3 has at least two neighbours in D3

3. However, this contradicts Proposition 9.2.2(i).

If ` ≥ 3, then by Proposition 9.2.1(i) vertex x3 has at least two neighbours in D3
3, again

contradicting Proposition 9.2.2(ii). This shows that d= 3. �

Proposition 9.3.5. Let Γ be a regular NDB graph with valency k, diameter d= 3 and γ = 4.
Then for every edge xy ∈ E(Γ) we have that |D2

3(x,y)|= |D3
2(x,y)| 6= 0.

Proof. Let us pick an edge xy ∈ E(Γ) . Recall that by Lemma 9.1.2, we have that |D1
2(x,y)|=

|D2
1(x,y)|, and so it follows from (9.1) that |D2

3(x,y)|= |D3
2(x,y)| as well. Therefore, it remains

to prove that the sets D2
3(x,y) and D3

2(x,y) are nonempty.

Assume to the contrary that the sets D3
2(x,y) and D2

3(x,y) are empty. As γ = d+ 1 = 4 we have
that |D1

2(x,y)|= |D2
1(x,y)|= 3. In view of Theorem 9.3.3 we therefore have k ∈ {4,5}. Moreover,

by Proposition 9.3.1 the set D3
3(x,y) is nonempty. Pick z ∈D3

3(x,y) and note that there exists a
vertex w ∈ Γ(z)∩D2

2(x,y).

Assume first that k = 4. Then the set D1
1(x,y) is empty. Hence, there exist vertices u ∈D1

2(x,y)
and v ∈D2

1(x,y) which are neighbours of w. We thus have {u,v,w,x,y} ⊆Ww,z, contradicting
γ = 4.

Assume next that k = 5. Note that in this case |D1
1(x,y)|= 1. Let us denote the unique vertex

of D1
1(x,y) by u. If w and u are not adjacent, then a similar argument as in the previous

paragraph shows that |Ww,z| ≥ 5, a contradiction. Therefore, w and u are adjacent, and so
Ww,z = {x,y,u,w}. It follows that the remaining three neighbours of w (let us denote these
neighbours by v1,v2,v3) are also adjacent to z. As {u,w,z} ⊆Wu,x, at least two of these three
common neighbours (say v1 and v2) are in D2

2 (recall D2
3 and D3

2 are empty). By the same
argument as above (that is Γ(v1)∩ (D1

2 ∪D2
1) = ∅ and Γ(v2)∩ (D1

2 ∪D2
1) = ∅), v1 and v2 are

adjacent to u, and so {u,w,v1,v2,z} ⊆Wu,x, a contradiction. This shows that D2
3(x,y) and

D3
2(x,y) are both nonempty. �
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Figure 9.2: (a) Case d= 5, k = 3 and `= 4 (left). (b) Case d= 5, k = 3 and `= 3 (right).

9.4 Case k = 3

Let Γ be a regular NDB graph with valency k = 3, diameter d≥ 3 and γ = γ(Γ) = d+ 1. Recall
that by Theorem 9.3.4(i) we have d ∈ {3,4,5}. In this section we first show that in fact d= 4 or
d= 5 is not possible, and then classify NDB graphs with k = d= 3. We start with a proposition
which claims that d 6= 5. Although the proof of this proposition is rather tedious and lengthy, it
is in fact pretty straightforward.

Proposition 9.4.1. Let Γ be a regular NDB graph with valency k = 3, diameter d ≥ 3 and
γ = γ(Γ) = d+ 1. Then d 6= 5.

Proof. Assume to the contrary that d= 5. Pick vertices x0,x5 of Γ such that ∂(x0,x5) = 5. Pick
also a shortest path x0,x1,x2,x3,x4,x5 from x0 to x5 in Γ. Let Di

j =Di
j(x1,x0), let `= `(x0,x1)

and recall that 2≤ `≤ 5. Observe that if `≥ 3, then there is a unique vertex w ∈D1
1 and a unique

vertex y2 ∈D2
1. In this case x2 and w are not adjacent, otherwise edge wx1 is not 6-balanced.

Similarly we could prove that w and y2 are not adjacent, and so w has a neighbour v in D2
2.

Assume first that `= 5. Then by Proposition 9.2.1(i) vertex x3 has exactly one neighbour in D3
3.

Now vertex x2 has a neighbour in D2
1 ∪D2

2, contradicting Proposition 9.2.2(ii).

Assume `= 4. As x2 has a neighbour in D2
1 ∪D2

2, Propositions 9.2.1(i) and 9.2.2(ii) imply that
x4 is adjacent to u. If x5 is adjacent to u, then Wu,x4 = {u}, a contradiction. Therefore, x5 and u
are not adjacent, and so Wx4,x5 = {x4,x3,x2,x1,x0,u}. Consequently, w 6∈Wx4,x5 , which implies
∂(x5,w) = 4. It follows that there exists a path w,v1,v2,v3,x5 of length 4, and it is easy to see
that v1 = v, v2 ∈D3

3 and v3 ∈D4
4, see Figure 9.2(a).

If x2 is adjacent with y2, then y2 ∈Wx4,x5 , a contradiction. Therefore, x2 has a neighbour
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z ∈ D2
2. If z = v, then {x2,x3,x4,x5,u,v,v2,v3} ⊆Wx2,x1 , a contradiction. Therefore z 6= v,

Wx2,x1 = {x2,x3,x4,x5,u,z}, and z is adjacent to y2 (recall that z must be at distance 2 from x0

and that y is not adjacent with x1 and v). If z has a neighbour in D3
2 ∪D3

3, then this neighbour
would be another vertex in Wx2,x1 , which is not possible. The only other possible neighbour of z
is v, and so z and v are adjacent. It is now clear that Ww,v = {w,x0,x1}, contradicting γ = 6.

Assume `= 3. By Proposition 9.2.1(i), we have that either x4 is adjacent to u, or that x4 has
a neighbour in D4

4. Let us first consider the case when x4 and u are adjacent. If also x3 and
u are adjacent, then ux3 is clearly not 6-balanced, and so Propositions 9.2.1(i) and 9.2.2(ii)
imply that u and x3 have a common neighbour v2 in D3

3. Since x4x5 is 6-balanced, v2 must be
at distance 2 from x5, which implies that v2 and x5 have a common neighbour v3 ∈D4

4. But now
{x2,x3,x4,x5,u,v2,v3} ⊆Wx2,x1 , a contradiction. Therefore x4 is not adjacent to u, and so x4

has a neighbour z in D4
4. Propositions 9.2.1(i) and 9.2.2(ii) imply that x3 has no neighbours in

D2
2 ∪D3

2 ∪D3
3, and so x3 is adjacent to u. This implies that z and x5 are adjacent, as otherwise

x4x5 is not 6-balanced. Similarly, by Proposition 9.2.2(ii) u has no neighbours in D3
2 ∪D3

3, and
so u is adjacent to v (note that v is the unique vertex of D2

2). As in the previous paragraph (since
w 6∈Wx4,x5 = {x4,x3,x2,x1,x0,u}) we obtain that there exists a path w,v,v2,v3,x5 of length 4,
and that v2 ∈D3

3, v3 ∈D4
4 (note that it could happen that z = v3). Note that u and x3 have

no neighbours in D3
3, and that the only neighbour of v in D3

3 is v2. Therefore, as k = 3, this
implies that v2 is the unique vertex of D3

3. Let us now examine the cardinality of D4
4. By

Proposition 9.2.2(ii), both neighbours of x5, different from x4, are in D4
4, and so |D4

4| ≥ 2. On
the other hand, if v2 has two neighbours in D4

4, then wx0 is not 6-balanced, and so v3 is the
unique neighbour of v2 in D4

4. As x4 has exactly one neighbour in D4
4 (namely z), this shows

that |D4
4| = 2 and that v3 6= z. But as Γ is a cubic graph, it must have an even order. Then,

there exists a vertex t in D5
5. Note that t is not adjacent to x5, and so it must be adjacent to

at least one of z,v3. However, if t is adjacent to z, then x2x1 is not 6-balanced, while if it is
adjacent to v3, then wx0 is not 6-balanced. This shows that ` 6= 3

Assume finally that `= 2. By Proposition 9.2.1(i), vertex x4 has a neighbour z ∈D4
4. Also by

Proposition 9.2.1(i), vertex x3 either has a neighbour in D3
3, or is adjacent with u. Assume first

that x3 is adjacent with u. Note that in this case x2 6∼ u (otherwise edge x2u is not 6-balanced)
and {x4,x3,x2,x1,x0,u}=Wx4,x5 . It follows that x2 cannot have a neighbour inD2

1 (otherwise the
edge x4x5 is not 6-balanced) and so x2 has a neighbour v ∈D2

2. Now if v has a neighbour v2 ∈D3
3,

then {x2,x3,x4,x5,z,v,v2} ⊆Wx2,x1 , a contradiction. Therefore v has no neighbours in D3
3,

implying that ∂(x5,v) = 4. But this forces v ∈Wx4,x5 , a contradiction. Thus x3 6∼ u, and it follows
that x3 has a neighbour v2 ∈D3

3. As {x2,x3,x4,x5,v2,z}=Wx2,x1 , vertex x2 has no neighbours
in D2

1 ∪D2
2, implying that x2 is adjacent to u. Since Wx4,x5 = {x4,x3,x2,x1,x0,u}, vertex z is

adjacent to x5, and vertices v2 and x5 have a common neighbour in D4
4. Now, since x1x2 is 6-

balanced we have that this common neighbour is in fact z, and so z is adjacent to v2. Now consider
the edge v2z. Note that {x1,x2,x3,v2} ⊆Wv2,z. As ∂(x0,v2) = 3, there exist vertices y1,y2, such
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that x0,y1,y2,v2 is a path of length 3 between x0 and v2. Observe that {x0,y1,y2,v2} ⊆Wv2,z.
As {x1,x2,x3}∩{x0,y1,y2}= ∅, we have that |Wv2,z| ≥ 7, a contradiction. �

9.4.1 Case d= 4 is not possible

Let Γ be a regular NDB graph with valency k = 3, diameter d ≥ 3 and γ = γ(Γ) = d+ 1. We
now consider the case d= 4. Our main result in this subsection is to prove that this case is not
possible. For the rest of this subsection pick arbitrary vertices x0,x4 of Γ such that ∂(x0,x4) = 4.
Pick a shortest path x0,x1,x2,x3,x4 between x0 and x4. Let Di

j =Di
j(x1,x0) and let `= `(x0,x1).

Let u denote the unique vertex of D`−1
` \{x`}.

Proposition 9.4.2. Let Γ be a regular NDB graph with valency k = 3, diameter d = 4 and
γ = γ(Γ) = d+ 1 = 5. With the notation above, we have that ` 6= 4.

Proof. Assume to the contrary that `= 4. Note that in this case since k = 3 and |D1
2|= |D2

1|= 1
we have that |D1

1|= 1. Let w denote the unique vertex of D1
1, and let z denote the neighbour of

x2, different from x1 and x3. Observe that z 6= w, as otherwise x1w is not 5-balanced. Similarly,
w is not adjacent to the unique vertex y2 of D2

1. Observe also that {x0,x1,x2,x3} ⊆Wx3,u.
We claim that u ∈ Γ(x4). To prove this, suppose that x4 and u are not adjacent. Then
x4 ∈Wx3,u, and so z is contained in D2

2. Observe that ∂(z,u) = 2, otherwise x3u is not 5-balanced.
Therefore, u and z must have a common neighbour z1 and it is clear that z1 ∈D3

3. But now
{x2,x3,x4,u,z,z1} ⊆Wx2,x1 , a contradiction. This proves our claim that u∼ z.

Suppose now that z = y2. Then D3
2 ∪D4

3 ∪{u,x2,x3,x4,y2} ⊆Wx2,x1 . Note that by the NDB
condition we have |D3

2 ∪D4
3|= 3, and so x2x1 is not 5-balanced, a contradiction. We therefore

have that z ∈D2
2.

By Proposition 9.2.2(ii) it follows that u and x4 have a neighbour z1 and z2 in D3
3, respectively.

We observe z1 6= z2, as otherwise x4u is not 5-balanced. Note that z has no neighbours in D3
3,

as otherwise x2x1 is not 5-balanced. Therefore, z is not adjacent to any of z1,z2, which gives
us Wx3,x4 =Wx3,u = {x3,x2,x1,x0,z}. Consequently, ∂(w,u) = ∂(w,x4) = 3, and so the (unique)
neighbour of w in D2

2 is adjacent to both z1 and z2. But this implies that wx0 is not 5-balanced,
a contradiction. �

Proposition 9.4.3. Let Γ be a regular NDB graph with valency k = 3, diameter d = 4 and
γ = γ(Γ) = d+ 1 = 5. With the notation above, we have that ` 6= 3.

Proof. Suppose that ` = 3. By Lemma 9.1.2 we have |D2
1| = 1, and since k = 3 also |D1

1| = 1.
Let w and y2 denote the unique vertex of D1

1 and D2
1, respectively. Since γ = 5, y2 has at least

one neighbour y3 in D3
2, and |D4

3| ≤ 2. If D4
3 = ∅, then there are three vertices in D3

2, which
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are all adjacent to y2, contradicting k = 3. By Proposition 9.4.2 we have that |D4
3| 6= 2, and

so |D4
3| = 1, |D3

2| = 2. Let y4 denote the unique element of D4
3 and let u1 denote the unique

element of D3
2 \{y3}. Without loss of generality assume that y4 and y3 are adjacent. Observe

that Γ(y2) = {x0,y3,u1}, and so w has a neighbour v ∈D2
2, and it is easy to see that v is the

unique vertex of D2
2 (see Figure 9.3(a)). By Proposition 9.2.1(i) we find that either x3 ∈ Γ(u), or

x3 has a neighbour in D3
3.

Case 1: there exists z ∈ Γ(x3)∩D3
3. Note that in this case we have Wx2,x1 = {x2,x3,x4,u,z}. We

split our analysis into two subcases.

Subcase 1.1: vertices u and x4 are not adjacent. As x2x1 is 5-balanced and as v is the unique
vertex of D2

2, this forces that u is adjacent with v and z. As every vertex in D3
3 is at distance 3

from x1 and as vertices u, x3 already have three neighbours each, this implies that beside z there
is at most one more vertex in D3

3 (which must be adjacent with v). But this shows that x4 could
have at most one neighbour in D3

3 (observe that z could not be adjacent with x4, as otherwise z
is not at distance 3 from x0), and consequently x4 has at least one neighbour in D4

4 ∪D4
3. But

now x2x1 is not 5-balanced, a contradiction.

Subcase 1.2: vertices u and x4 are adjacent. By Proposition 9.2.2(ii), vertex u is either adjacent
to v ∈D2

2 or to z ∈D3
3. If u is adjacent to v, then {x0,x1,x2,u,v,w} ⊆Wu,x4 , a contradiction.

This shows that u∼ z. Note that the third neighbour of z is one of the vertices v,y3,u1, and so z
and x4 are not adjacent. Consequently, Wx3,x4 = {x3,x2,x1,x0,z}, and so w must be at distance
3 from x4. Therefore, v and x4 have a common neighbour v1 ∈D3

3. Note that v1 6= z as z and x4

are not adjacent. Every vertex in D3
3, different from z and v1, must be adjacent with v in order

to be at distance 3 from x1. This shows that |D3
3| ≤ 3. If there exists vertex v2 ∈D3

3, which is
different from z and v1, then there must be a vertex t ∈D4

4 (recall that Γ is of even order). As
t could not be adjacent with x4, it must be adjacent with at least one of v1,v2. However, this
is not possible (note that in this case {w,v,v1,v2,x4, t} ⊆Ww,x0 , a contradiction). Therefore,
D3

3 = {z,v1} and D4
4 = ∅. It follows that y4 is adjacent with v1 and u1. If z and v are adjacent,

then Wx1,w = {x1,x2,u,x3}, contradicting γ = 5. Therefore, z is adjacent to either y3 or u1. This
shows that either y3 or u1 is contained in Wx3,x4 = {x3,x2,x1,x0,z}, a contradiction.

Case 2: x3 and u are adjacent. Observe that x4 /∈ Γ(u), otherwise ux3 is not 5-balanced. It follows
that Wx3,x4 = {x3,x2,x1,x0,u}, and so ∂(w,x4) = 3. Therefore there exists a common neighbour
z of x4 and v, and note that z ∈ D3

3. Reversing the roles of the paths x0,x1,x2,x3,x4 and
x1,x0,y2,y3,y4, we get that u1 and y3 are adjacent, and that y4 /∈ Γ(u1). As |Wx1,w|= 5, vertex
u must have a neighbour, which is at distance 3 from x1 and at distance 4 from w. As x4,y3 and
u1 ar all at distance 3 from w, this implies that u has a neighbour z1 ∈D3

3, which is not adjacent
with v (and is therefore different from z). Note that since z1 is at distance 3 from x0, it is adjacent
with u1. As k = 3, v has a neighbour z2 6= z in D3

3. Pick now a vertex t∈D4
4 (observe that D4

4 6= ∅
as Γ has even order). If t is adjacent with x4 or with z1, then t ∈Wx2,x1 = {x2,x3,x4,u,z1}, a
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Figure 9.3: (a) Case d= 4, k = 3 and `= 3 (left). (b) Case d= 4, k = 4 and `= 2 (right).

contradiction. If t is adjacent with z or z2, then t ∈Ww,x0 = {w,v,z,z2,x4}, a contradiction.
This finally proves that ` 6= 3. �

Proposition 9.4.4. Let Γ be a regular NDB graph with valency k = 3, diameter d = 4 and
γ = γ(Γ) = d+ 1 = 5. With the notation above, Γ is triangle-free.

Proof. Pick an edge xy ∈ E(Γ) and let Di
j = Di

j(x,y). If either D4
3 or D3

4 is nonempty, then
Propositions 9.4.2 and 9.4.3 together with Lemma 9.1.2 imply that |D1

2| = |D2
1| = 2. As Γ is

3-regular, the set D1
1 is empty, and so xy is not contained in any triangle.

Assume next that D4
3 =D3

4 = ∅. If the edge xy is contained in a triangle, then D1
2 and D2

1 both
contain at most one vertex, and so D2

3 and D3
2 could contain at most two vertices as Γ is 3-regular.

We thus have |Wx,y| ≤ 4, contradicting γ = 5. The result follows. �

Proposition 9.4.5. Let Γ be a regular NDB graph with valency k = 3, diameter d ≥ 3 and
γ = γ(Γ) = d+ 1. Then d 6= 4.

Proof. Towards a contradiction suppose that d= 4, and so γ = 5. Assume the notation from the
first paragraph of this subsection, and note that Propositions 9.4.2 and 9.4.3 imply that `= 2.
By Lemma 9.1.2 we have |D2

1|= 2. Let u1,y2 denote the vertices of D2
1. Note that D1

1 is empty.
We also observe that by Proposition 9.2.1(i) either u ∈ Γ(x3), or x3 has a neighbour in D3

3. We
consider these two cases separately.

Case 1: u and x3 are adjacent. Then {x0,x1,x2,x3,u}=Wx3,x4 , and so neither x2 nor u have
neighbours in D2

1. Since Γ is triangle-free, there exists w ∈ Γ(x2)∩D2
2, and w has a neighbour in

D2
1 (by definition of the set D2

2). We may assume without loss of generality that w ∈ Γ(y2). Note
that ∂(w,x3) = 2, and so ∂(w,x4) = 2 as well, as otherwise x3x4 is not 5-balanced. It follows
that there exists a common neighbour z of w and x4, and it is clear that z ∈D3

3.
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Similarly we find that u has a neighbour w1 ∈D2
2, and as k = 3, we have that w1 6= w. Note

that {x2,x1,x0,w,y2} = Wx2,x3 , and so ∂(x3,u1) = 3 (otherwise u1 ∈Wx2,x3 , a contradiction).
Note however that ∂(x3,u1) = 3 is only possible if w1 and u1 are adjacent. A similar argument
as above shows that w1 and x4 must have a common neighbour z1 ∈ D3

3. If z1 = z, then
{z,w,w1,y2,u1,x0} ⊆Wz,x4 , a contradiction. Therefore z1 6= z, and it is now clear that D2

2 =
{w,w1}, D3

3 = {z,z1}. If there exists t ∈D4
4, then t is adjacent to either z or z1, but none of

these two possible edges is 5-balanced, and so D4
4 = ∅. If z (z1, respectively) has a neighbour in

D4
3, then x2x1 (ux1, respectively) is not 5-balanced, a contradiction. As Γ is triangle-free, z and

z1 both have a neighbour in D3
2. Assume now for a moment that there exists a vertex y4 ∈D4

3.
In this case γ = 5 forces that there is a unique vertex in D3

2, which is therefore adjacent to both
z and z1, to y4 and to at least one of y2,u1, contradicting k = 3. It follows that D4

3 = ∅. Let us
denote the neighbours of z and z1 in D3

2 by v and v1 respectively. Note that as zx4 and z1x4

are 5-balanced, we have that Wz,x4 = {z,w,v,y2,x0} and Wz1,x4 = {z1,w1,v1,u2,x0}. It follows
that v and v1 must be adjacent to y2 and u1, respectively, and so v 6= v1. As k = 3, also v and v1

are adjacent. It is now easy to see that Γ is not NDB with γ = 5 (for example, edge x1u is not
5-balanced). This shows that u and x3 are not adjacent.

Case 2: x3 has a neighbour w in D3
3. As Γ is triangle-free, x2 has a neighbour z in D2

1 ∪D2
2, and

w 6∼ x4. If z ∈D2
1, then {x0,x1,x2,x3,z,w} ⊆Wx3,x4 , a contradiction. This yields that z ∈D2

2. If
∂(z,x4)≥ 3, then again {x0,x1,x2,x3,z,w} ⊆Wx3,x4 , a contradiction. Therefore, z and x4 have
a common neighbour w1 ∈D3

3, and w1 6= w as w 6∼ x4. But now {x2,x3,x4,z,w,w1} ⊆Wx2,x1 , a
contradiction. This finishes the proof. �

9.4.2 Case d= 3

In this subsection we consider the case d= 3. We start with the following proposition.

Proposition 9.4.6. Let Γ be a regular NDB graph with valency k = 3, diameter d= 3 and γ = 4.
Then for every edge x0x1 of Γ we have that |D1

2(x1,x0)|= |D2
1(x1,x0)|= 2.

Proof. Pick an edge x0x1 of Γ and let Di
j =Di

j(x1,x0). Observe first that |D1
2| ≤ 2 as k = 3. By

Proposition 9.3.5 we have that D2
3 6= ∅, and so pick x3 ∈D2

3. Note that x1 and x3 have a common
neighbour x2 ∈D1

2. Assume to the contrary that |D1
2|= 1, and so |D2

3|= 2, |D1
1|= 1 = |D2

1|. Let
us denote the unique vertex of D2

1 by y2 (note that y2 has two neighbors, say y3 and u1 in D3
2), the

unique vertex of D1
1 by w, and the unique vertex of D2

3 \{x3} by u (note that Γ(x2) = {x1,x3,u}).
Note that w has a neighbour v in D2

2, and that D2
2 = {v}.

Assume first that u and x3 are not adjacent. ThenWx2,x3 = {x2,u,x1,x0}, and so w is at distance
2 from x3 (otherwise w ∈Wx2,x3). It follows that x3 is adjacent with v. Similarly we show that
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u is adjacent with v. As none of the neighbours of v is contained in D3
3, every vertex from D3

3

must be adjacent to either u or x3, and so D3
3 ∪{x2,x3,u} ⊆Wx2,x1 . It follows that |D3

3| ≤ 1. As
Γ is a cubic graph, it must have an even order, which gives us D3

3 = ∅. This shows that both u
and x3 have a neighbour in D3

2. But now {y2,y3,u1,x3,u}∪D3
2 ⊆Wy2,x0 , a contradiction.

Therefore, u and x3 must be adjacent, and they have a common neighbour x2. Let z1 and z2

denote the third neighbour of u and x3, respectively. If z1 = z2 then ux3 is not 4-balanced, and
so we have that z1 6= z2. Furthermore, as {x2,x3,u} ⊆Wx2,x1 , not both of z1,z2 are contained in
D3

3 ∪D3
2. Therefore, either z1 or z2 is equal to v. Without loss of generality assume that z1 = v.

But then d = 3 forces Wx2,u = {x2,x1,x0}, a contradiction. This shows that |D1
2|= 2, and by

Lemma 9.1.2 also |D2
1|= 2. �

Corollary 9.4.7. Let Γ be a regular NDB graph with valency k = 3, diameter d= 3 and γ = 4.
Then Γ is triangle-free and D3

3(x,y) = ∅ for every edge xy of Γ.

Proof. Pick an arbitrary edge xy of Γ and let Di
j =Di

j(x,y). By Proposition 9.3.5 we get that
the sets D1

2, D2
1, D2

3 and D3
2 are all nonempty. Furthermore, by Proposition 9.4.6 and Lemma

9.1.2 we have that |D1
2|= |D2

1|= 2 and |D3
2|= |D2

3|= 1 (recall that γ = 4). Since k = 3, it follows
that D1

1 = ∅. This shows that Γ is triangle-free.

We next assert the set D3
3 is empty. Suppose to the contrary there exists z ∈D3

3 and let w denote
a neighbour of z. Assume first that w ∈D2

2. Since D1
1 = ∅, there exist vertices u ∈D1

2 and v ∈D2
1

which are neighbours of w. We thus have {u,v,w,x,y} ⊆Ww,z, contradicting γ = 4. This shows
that w /∈D2

2. Therefore z is adjacent to both vertices which are in D3
2 and D2

3. As z has three
neighbours, none of which is in D2

2, and as |D2
3|= |D3

2|= 1, it follows that z has a neighbour
w′ ∈D3

3. But by the same argument as above, w′ must be adjacent to both vertices in D3
2 and

D2
3, contradicting the fact that Γ is triangle-free. �

Theorem 9.4.8. Let Γ be a regular NDB graph with valency k = 3, diameter d≥ 3 and γ = d+1.
Then Γ is isomorphic to the 3-dimensional hypercube Q3.

Proof. By Theorem 9.3.4(i), Proposition 9.4.1 and Proposition 9.4.5 we have that d= 3. Pick
an edge xy of Γ and let Di

j =Di
j(x,y). Observe that Γ is triangle-free and D3

3 = ∅ by Corollary
9.4.7. We first show that D2

2 = ∅ as well. Observe that as D1
1 = ∅, every vertex of D2

2 must
have a neighbour in both D1

2 and D2
1. This shows

∣∣D2
2
∣∣ ∈ {1,2,3}, and so |V (Γ)| ∈ {9,10,11}.

However, since Γ is regular with k = 3, we have |V (Γ)| = 10 and
∣∣D2

2
∣∣ = 2. In [7], it is shown

that the number of connected 3-regular graphs with 10 vertices is 19, but only 5 of them have
diameter d= 3 and girth g ≥ 4. Out of these five graphs, only four of them have all vertices with
eccentricity 3, see Figure 9.4. It is easy to see that none of these graphs is NDB with γ = 4. This
shows that D2

2 = ∅, and so |V (Γ)|= 8. But it is well-known (and also easy to see) that Q3 is the
only cubic triangle-free graph with eight vertices and diameter d= 3. �
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Figure 9.4: Connected 3-regular graphs of order 10 with diameter d= 3, girth g ≥ 4 and with
all vertices with eccentricity 3.

9.5 Case k = 4

Let Γ be a regular NDB graph with valency k = 4, diameter d≥ 3 and γ = γ(Γ) = d+ 1. Recall
that by Theorem 9.3.4(ii) we have d ∈ {3,4}. In this section we first show that case d= 4 is not
possible, and then classify regular NDB graphs with k = 4 and d= 3. We start with the following
lemma.

Lemma 9.5.1. Let Γ be a regular NDB graph with valency k = 4, diameter d= 4 and γ = γ(Γ) =
d+1. Pick vertices x0,x4 of Γ such that ∂(x0,x4) = 4, and pick a shortest path x0,x1,x2,x3,x4

between x0 and x4. Let `= `(x0,x1), Di
j =Di

j(x1,x0) and D`−1
` = {x`,u}. Then `= 2. Moreover,

u∼ x2 and u∼ x3.

Proof. Assume first that `= 4. By Proposition 9.2.1(i), vertex x3 has a neighbour z in D3
3. Now

Wx2,x1 = {x2,x3,x4,u,z}, and so x2 has no neighbours in D2
2 ∪D2

1. Consequently, x2 has two
neighbours in D1

1, contradicting Proposition 9.2.1(ii).

Assume now that `= 3. By Proposition 9.2.1(i) x3 does not have neighbours in D3
2 ∪D2

2, and
so by Proposition 9.2.2(ii) we get that x3 and u are adjacent, and that x3 has a neighbour
z in D3

3. By Proposition 9.2.2(ii) vertex x2 has no neighbours in D2
2 ∪D2

1, and so x2 has a
neighbour w in D1

1. Now {x3,x2,x1,x0,w} ⊆Wx3,x4 , implying that x4 is adjacent to both u and
z. Similarly, {u,x2,x1,x0,w} ⊆Wu,x4 , and so u has no neighbours in D2

2 ∪D3
2. It follows that u

has a neighbour in D3
3, and by Proposition 9.2.2(ii), this neighbour is z. But now the edge x3u

is not 5-balanced, a contradiction.

This shows that `= 2. By Proposition 9.2.1(i), vertex x3 has either one or two neighbours in
D3

3. If x3 has two neighbours in D3
3, then by Proposition 9.2.2(i) vertex x2 has no neighbours in

D2
2 ∪D2

1. Therefore, x2 is adjacent to the unique vertex w ∈D1
1, and is also adjacent to u. But

now we have that {x3,x2,x1,x0,u,w} ⊆Wx3,x4 , a contradiction.

Therefore, x3 has exactly one neighbour in D3
3. As by Proposition 9.2.1(i) vertex x3 has no
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neighbours in D2
2 ∪D3

2, we have that x3 ∼ u. Consequently {x3,x2,x1,x0,u} ⊆Wx3,x4 , and so x2

and u have no neighbours in D1
1 ∪D2

1. Since k = 4 and since edges x2x1 and ux1 are 5-balanced,
it follows that both of x2 and u have exactly one neighbour in D2

2, and that x2 ∼ u. �

Proposition 9.5.2. Let Γ be a regular NDB graph with valency k = 4, diameter d ≥ 3 and
γ = γ(Γ) = d+ 1. Then d 6= 4.

Proof. Assume on the contrary that d= 4. Pick vertices x0,x4 of Γ such that ∂(x0,x4) = 4. Pick
a shortest path x0,x1,x2,x3,x4 between x0 and x4. Let Di

j =Di
j(x1,x0), let `= `(x0,x1) and let

D`−1
` = {x`,u}. Recall that by Lemma 9.5.1 we have that `= 2 and that vertex u is adjacent

with x2 and x3. Let z denote a neighbour of x3 in D3
3 (note that by Proposition 9.2.1(i) vertex

x3 has no neighbours in D2
2 ∪D3

2).

Since Wx3,x4 = {x3,x2,x1,x0,u}, vertices x2 and u have no neighbours in D1
1∪D2

1. Let us denote
the neighbours of u and x2 in D2

2 by v1, v2, respectively. Note that v1 6= v2, otherwise edge ux2

is not 5-balanced. Furthermore, {x3,x2,x1,x0,u}=Wx3,x4 implies that x4 and z are adjacent,
and that x4 is at distance 2 from both v1 and v2. Consequently, v1 and v2 both have a common
neighbour, say z1 and z2 respectively, with x4, and these common neighbours must be in D3

3.
But as edges x2x1 and ux1 are 5-balanced, this implies that z1 = z = z2 (see Figure 9.3(b)).

Note that v1 and v2 both have at least one neighbour in D1
1 ∪D2

1. Let us denote a neighbour of
v1 (v2, respectively) in D1

1∪D2
1 by w1 (w2, respectively). If w1 6=w2, then {z,v1,v2,w1,w2,x0} ⊆

Wz,x4 , contradicting γ = 5. Therefore w1 = w2 and by applying Lemma 9.5.1 to the path
x0,w1,v1,z,x4 we get that vertices v1 and v2 are adjacent. But now it is easy to see that
Wu,x2 = {u,v1}, a contradiction. This finishes the proof. �

Proposition 9.5.3. Let Γ be a regular NDB graph with valency k = 4, diameter d = 3 and
γ = γ(Γ) = 4. Then for every edge x0x1 of Γ we have that |D1

2(x1,x0)|= |D2
1(x1,x0)|= 2.

Proof. Pick an edge x0x1 of Γ and let Di
j =Di

j(x1,x0). By Proposition 9.3.5 we have that D2
3 6= ∅,

and so γ = 4 implies |D1
2| ≤ 2. Assume to the contrary that |D1

2|= 1, and so |D2
3|= 2, |D1

1|= 2
and |D2

1|= 1. Let x3,u be vertices of D2
3, and let x2 be the unique vertex of D1

2. Let z denote
the neighbour of x2, different from x1,x3,u, and note that z ∈D2

2 ∪D2
1 ∪D1

1. In each of these
three cases we derive a contradiction.

Assume first that z ∈ D2
2. Then D1

2(x2,x1) = {x3,u,z}, and γ = 4 forces D2
3(x2,x1) = ∅,

contradicting Proposition 9.3.5.

Assume next that z ∈D2
1 (note that z is the unique vertex inD2

1). Then {x2,z,x3,u}∪D3
2 ⊆Wx2,x1 .

As D3
2 6= ∅ by Proposition 9.3.5, this contradicts γ = 4.
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Assume finally that z ∈D1
1. Recall that |D1

1|= 2 and denote the other vertex of D1
1 by w. If

z and w are adjacent, then Wx1,z = {x1}, a contradiction. If z has a neighbour v ∈D2
2, then

{z,v,x2,u,x3} ⊆Wz,x0 , a contradiction. This shows that z is adjacent to the unique vertex of
D2

1. Let us denote this vertex by y2. As Wx2,x3 =Wx2,u = {x2,x1,x0,z}, vertices x3 and u are
both at distance 2 from y2. But this shows that Wz,y2 = {x1,z,x2}, a contradiction. �

Theorem 9.5.4. Let Γ be a regular NDB graph with valency k = 4, diameter d ≥ 3 and γ =
γ(Γ) = d+ 1. Then Γ is isomorphic to the line graph of the 3-dimensional hypercube Q3.

Proof. By Theorem 9.3.4(ii) and Proposition 9.5.2 we have that d = 3. Pick an arbitrary
edge xy of Γ. By Proposition 9.5.3 we have that |D1

2(x,y)| = |D2
1(x,y)| = 2. Consequently

|D1
1(x,y)|= 1, and so Γ is an edge-regular graph with λ = 1. Observe that γ = 4 also implies

that |D2
3(x,y)|= |D3

2(x,y)|= 1. Observe that Γ contains |V (Γ)|k/6 = 2|V (Γ)|/3 triangles, and so
|V (Γ)| is divisible by 3.

Pick vertices x0,x3 of Γ at distance 3 and let x0,x1,x2,x3 be a shortest path from x0 to x3.
Abbreviate Di

j =Di
j(x1,x0). Obviously D2

3 = {x3} and x2 ∈D1
2. Let us denote the other vertex of

D1
2 by u, the vertices of D2

1 by y2,v, the vertex of D3
2 by y3 and the vertex of D1

1 by w. Without
loss of generality we may assume that y2 and y3 are adjacent. Since Γ is edge-regular with
λ= 1, we also obtain that x2 and u are adjacent, that y2 and v are adjacent, and that w has two
neighbours, say z1 and z2, in D2

2, and that z1,z2 are also adjacent. As Wx2,x3 = {x2,x1,x0,u}, x3

is at distance 2 from w, and so x3 is adjacent to exactly one of z1,z2. Without loss of generality
we could assume that x3 and z1 are adjacent.

Note that Γ(w) = {x0,x1,z1,z2}, and so x2 and w are not adjacent. Vertex x2 is also not adjacent
to y2, as otherwise edge x2y2 is not contained in a triangle. If x2 ∼ v then v ∼ u and the edge
ux2 is contained in two triangles, contradicting λ= 1. It follows that x2 has no neighbours in
D2

1. Therefore, x2 has a neighbour in D2
2. Consequently, by Proposition 9.2.2(i), x3 could have

at most one neighbour in D3
3 ∪D3

2.

We now show that D3
3 = ∅. Assume to the contrary that there exists t ∈D3

3. If t is adjacent to z1

or z2, then {w,z1,z2,x3, t} ⊆Ww,x0 , a contradiction. If t is adjacent with z ∈D2
2 \{z1,z2}, then

z has a neighbour in D1
2 and a neighbour in D2

1, implying that |Wz,t| ≥ 5, a contradiction. It
follows that t has no neighbours in D2

2, and so t is adjacent with x3 (and with y3). Now the
unique common neighbour of x3 and t must be contained in D3

3 ∪D3
2, contradicting the fact that

x3 could have at most one neighbour in D3
3 ∪D3

2. This shows that D3
3 = ∅.

Let us now estimate the cardinality of D2
2. Observe that each z ∈D2

2 \{z1,z2} has a neighbour
in D1

2. But u could have at most two neighbours in D2
2, while x2 has exactly one neighbour in

D2
2. It follows that 2≤ |D2

2| ≤ 5, and so 11≤ |V (Γ)| ≤ 14. As |V (Γ)| is divisible by 3, we have
that |V (Γ)|= 12. By [42, Corollary 6], there are just two edge-regular graphs on 12 vertices with
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x1
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x1
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Figure 9.5: The line graph of Q3, drawn in two different ways.

λ= 1, namely the line graph of 3-dimensional hypercube (see Figure 9.5), and the line graph
of the Möbius ladder graph on eight vertices. It is easy to see that the latter one is not even
distance-balanced. �

9.6 Case k = 5

Let Γ be a regular NDB graph with valency k = 5, diameter d≥ 3 and γ = γ(Γ) = d+ 1. Recall
that by Theorem 9.3.4 we have that d= 3, and so γ = 4. In this section we classify such NDB
graphs. We first show that in this case we have that |D1

2(x1,x0)| = |D2
1(x1,x0)| = 2 for every

edge x1x0 of Γ.

Proposition 9.6.1. Let Γ be a regular NDB graph with valency k = 5, diameter d= 3 and γ = 4.
Then for every edge x0x1 of Γ we have that |D1

2(x1,x0)|= |D2
1(x1,x0)|= 2.

Proof. Pick an edge x0x1 of Γ and let Di
j =Di

j(x1,x0). By Proposition 9.3.5 we have that D2
3 6= ∅,

and so γ = 4 implies |D1
2| ≤ 2. Assume to the contrary that |D1

2|= 1, and so |D2
3|= 2, |D1

1|= 3
and |D2

1|= 1. Let x3,u be vertices of D2
3, and let x2 be the unique vertex of D1

2. Let us denote
the unique vertex of D2

1 by y2, and the vertices of D1
1 by z1,z2,z3. Note that also |D3

2|= 2, and
let us denote these two vertices by y3,u1. Clearly we have that x2 is adjacent to both x3 and u,
and y2 is adjacent to both y3 and u1, see the diagram on the left side of Figure 9.6.

Observe that each edge xy of Γ is contained in at least one triangle; otherwise |Wx,y| ≥ 5> γ,
a contradiction. Therefore, x2 and y2 both have at least one neighbour in D1

1. On the other
hand, these two vertices could not have more than one neighbour in D1

1, as otherwise |Wx2,x3 | ≥ 5
(|Wy2,y3 | ≥ 5, respectively), a contradiction. Without loss of generality we could assume that
z1 is the unique neighbour of x2 in D1

1. Note that it follows from Proposition 9.2.1(ii) that
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x1

x0

x2

y2
z1z2

z3

u

x3 u1
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w w′

x1
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x2

y2
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z3

u

x3 u1

y3

Figure 9.6: Graph Γ from Proposition 9.6.1.

x2 and y2 are not adjacent. This shows that x2 has a unique neighbour (say w) in D2
2. As

Wx2,x3 =Wx2,u = {x2,x1,x0,z1}, vertex w is adjacent to both u and x3. Similarly we prove that
also y2 has a unique neighbour in D2

2, say w′, and that w′ is adjacent to both u1 and y3. If
w = w′, then the degree of w is at least 6, a contradiction. Therefore, w 6= w′, see the diagram
on the right side of Figure 9.6.

Note that Wx2,x1 = {x2,x3,u,w}, and so both y3 and u1 are at distance 3 from x2. Similarly,
Wx1,x2 = {x1,x0,z2,z3}, and so y2 is at distance 2 from x2. Therefore y2 and x2 have a common
neighbour, and by the above comments the only possible common neighbour is z1. It follows
that z1 and y2 are adjacent. But now {y2,x0,x1,z1,x2} ⊆Wy2,y3 (recall that ∂(x2,y3) = 3), a
contradiction. This shows that |D1

2|= 2. By Lemma 9.1.2 we obtain that |D2
1|= 2 as well. �

Theorem 9.6.2. Let Γ be a regular NDB graph with valency k = 5, diameter d≥ 3 and γ = d+1.
Then Γ is isomorphic to the icosahedron.

Proof. First recall that by Theorem 9.3.4 we have d= 3, and so γ = 4. We will first show that Γ
is edge-regular with λ= 2. Pick an arbitrary edge xy and observe that by Proposition 9.6.1 we
obtain |D1

2(x,y)|= 2, which forces |D1
1(x,y)|= 2. This shows that Γ is edge-regular with λ= 2.

It follows that for every vertex x of Γ, the subgraph of Γ which is induced on Γ(x), is isomorphic
to the five-cycle C5. By [6, Proposition 1.1.4], Γ is isomorphic to the icosahedron. �

9.7 Proof of the main result

The main result of this chapter is the following theorem.

Theorem 9.7.1. Let Γ be a regular NDB graph with valency k and diameter d. Then γ = d+ 1
if and only if Γ is isomorphic to one of the following graphs:
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1. the Petersen graph (with k = 3 and d= 2);

2. the complement of the Petersen graph (with k = 6 and d= 2);

3. the complete multipartite graph Kt×3 with t parts of cardinality 3, t ≥ 2 (with k = 3(t−1)
and d= 2);

4. the Möbius ladder graph on 8 vertices (with k = 3 and d= 2);

5. the Paley graph on 9 vertices (with k = 4 and d= 2);

6. the 3-dimensional hypercube Q3 (with k = 3 and d= 3);

7. the line graph of the 3-dimensional hypercube Q3 (with k = 4 and d= 3);

8. the icosahedron (with k = 5 and d= 3).

Proof. It is straightforward to see that all graphs from Theorem 9.7.1 are regular NDB graphs
with γ = d+ 1. Assume now that Γ is a regular NDB graph with valency k, diameter d and
γ = d+ 1. If d= 2, then it follows from Remark 9.1.3 that Γ is isomorphic either to the Petersen
graph, the complement of the Petersen graph, the complete multipartite graph Kt×3 with t

parts of cardinality 3 (t ≥ 2), the Möbius ladder graph on eight vertices, or the Paley graph
on 9 vertices. If d≥ 3, then it follows from Theorem 9.3.4 that k ∈ {3,4,5}. If k = 3, then Γ is
isomorphic to the 3-dimensional hypercube Q3 by Theorem 9.4.8. If k = 4 then Γ is isomorphic
to the line graph of Q3 by Theorem 9.5.4. If k = 5, then Γ is isomorphic to the icosahedron by
Theorem 9.6.2. �





Chapter 10

On some problems regarding
distance-balanced graphs

A graph Γ is said to be distance-balanced if for any edge3 uv of Γ, the number of vertices
closer to u than to v is equal to the number of vertices closer to v than to u, and it is

called nicely distance-balanced if in addition this number is independent of the chosen edge uv.
A graph Γ is said to be strongly distance-balanced if for any edge uv of Γ and any integer k, the
number of vertices at distance k from u and at distance k+1 from v is equal to the number of
vertices at distance k+ 1 from u and at distance k from v.

In this chapter we solve an open problem posed by Kutnar and Miklavič [57] regarding the
existence of nonbipartite nicely distance-balanced graphs which are not strongly distance-balanced.
We construct several infinite families of such graphs, see Proposition 10.2.7 and Corollary 10.2.8
for a construction of regular examples, and Proposition 10.2.16 for a construction of non-regular
examples. In Section 10.3 we provide an infinite family of counterexamples to a conjecture
regarding the characterization of strongly distance-balanced graphs posed by Balakrishnan et al.
[3]. In Section 10.4 we answer a question posed by Kutnar et al. in [55] regarding the existence
of semisymmetric distance-balanced graphs which are not strongly distance-balanced and provide
an infinite family of such examples. In Section 10.5 we show that for a graph Γ with n vertices
and m edges it can be checked in O(mn) time if Γ is strongly distance-balanced and if Γ is nicely
distance-balanced.

The chapter is based on joint work with Ademir Hujdurović. Our main results are currently
published in European Journal of Combinatorics (2022); see [25] for more details.
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10.1 Preliminaries

In this section we recall some preliminary results that we will find useful later in the chapter.
Let Γ denote a finite, simple, connected graph with vertex set V (Γ), and edge set E(Γ). If
u,v ∈ V (Γ) are adjacent then we simply write u∼ v and we denote the corresponding edge by
uv with an understanding that uv = vu. For u ∈ V (Γ) and an integer i we let Si(u) denote
the set of vertices of V (Γ) that are at distance i from u. We abbreviate S(u) = S1(u). We set
ε(u) = max{∂(u,z) | z ∈ V (Γ)} and we call ε(u) the eccentricity of u. Let d= max{ε(u) | u∈ V (Γ)}
denote the diameter of Γ. Pick adjacent vertices u,v of Γ. For any two non-negative integers i, j
we let

Di
j(u,v) = Si(u)∩Sj(v).

By the triangle inequality we observe only the sets Di−1
i (u,v), Di

i(u,v) and Di
i−1(u,v) (1≤ i≤ d)

can be nonempty (see also Figure 10.1).

u

v

D1
1 · · · Di

i · · · Dd
d

· · · Di−1
i · · · Dd−1

d

· · · Di
i−1 · · · Dd

d−1

Figure 10.1: Graphical representation of the sets Di
j(u,v). The line between Di

j and D`
m

indicates possible edges between vertices of Di
j and D`

m.

Let us recall the definition of nicely distance-balanced graphs. For an edge uv of Γ we denote

Wu,v = {x ∈ V (Γ) | ∂(x,u)< ∂(x,v)}.

We say that Γ is nicely distance–balanced (NDB for short) whenever there exists a positive integer
γ = γ(Γ), such that for any edge uv of Γ,

|Wu,v|= |Wv,u|= γ

holds. One can easily see that Γ is NDB if and only if for every edge uv ∈ E(Γ) we have that

d∑
i=1
|Di

i−1(u,v)|=
d∑
i=1
|Di−1

i (u,v)|= γ.
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Pick adjacent vertices u,v of Γ. For the purposes of this chapter we say that the edge uv is
balanced, if |Wu,v|= |Wv,u| holds for vertices u,v.

Another concept closely related to the concept of distance-balanced graphs is the one of strongly
distance-balanced graphs. A graph Γ is called strongly distance-balanced (SDB for short) if
|Di

i−1(u,v)|= |Di−1
i (u,v)| holds for every i≥ 1 and every edge uv in Γ. Please note SDB graphs

are also called distance-degree regular and were first studied in [46]. It is easy to see that a
strongly distance-balanced graph is also distance-balanced, but the converse is not true in general
(see [55]).

Kutnar et al. gave the following characterization of strongly distance-balanced graphs.

Proposition 10.1.1 ([55, Proposition 2.1]). Let Γ be a graph with diameter d. Then Γ is
strongly distance-balanced if and only if |Si(u)|= |Si(v)| holds for every edge uv ∈E(Γ) and every
i ∈ {0, . . . ,d}.

We say that an edge uv of a graph Γ is strongly distance-balanced if |Di
i−1(u,v)|= |Di−1

i (u,v)|
holds for every i≥ 1. From the proof of [55, Proposition 2.1] the following result can be obtained.
We include the proof here for the sake of completeness.

Lemma 10.1.2. Let Γ be a graph with diameter d, and uv an arbitrary edge of Γ. Then the
edge uv is strongly distance-balanced if and only if |Si(u)|= |Si(v)| for every i ∈ {1, . . . ,d}.

Proof. Assume first the edge uv of Γ is strongly distance-balanced. Then, by definition, we have
|Di

i−1(u,v)|= |Di−1
i (u,v)| for every i≥ 1. However, since Si(u) =Di

i+1(u,v)∪Di
i(u,v)∪Di

i−1(u,v)
(disjoint union) and Si(v) =Di−1

i (u,v)∪Di
i(u,v)∪Di+1

i (u,v) (disjoint union), we have also that
|Si(u)|= |Si(v)| for every i ∈ {1, . . . ,d}.

Next assume that |Si(u)|= |Si(v)| holds for every i ∈ {1, . . . ,d}. Using induction we show that
|Di

i−1(u,v)| = |Di−1
i (u,v)| holds for every i ∈ {1, . . . ,d}. Obviously, |D1

0(u,v)| = |D0
1(u,v)| = 1.

Suppose now that |Dk
k−1(u,v)|= |Dk−1

k (u,v)| holds for 1≤ k ≤ d. We observe

|Dk
k+1(u,v)| = |Sk(u)|− |Dk

k(u,v)|− |Dk
k−1(u,v)| (10.1)

|Dk+1
k (u,v)| = |Sk(v)|− |Dk

k(u,v)|− |Dk−1
k (u,v)| (10.2)

Since |Sk(u)|= |Sk(v)| and in view of the induction hypothesis, |Dk
k−1(u,v)|= |Dk−1

k (u,v)|, it
follows from (10.1) and (10.2) that |Dk

k+1(u,v)|= |Dk+1
k (u,v)|. This finishes the proof. �

An automorphism of a graph is a permutation of its vertex set that preserves the adjacency
relation of the graph. The set of all automorphisms of a graph Γ is called the automorphism group
and denoted by Aut(Γ). A graph is vertex-transitive if its automorphism group acts transitively
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on the vertex-set, and it is called edge-transitive if its automorphism group acts transitively on
the edge set. Kutnar et al. [55] used Proposition 10.1.1 to prove that vertex-transitive graphs
are strongly distance-balanced. Lemma 10.1.2 implies that in order to check if a given graph is
strongly distance-balanced, one only needs to check the pairs of adjacent vertices that belong to
different orbits under the action of the automorphism group of the graph.

10.2 Constructions of nonbipartite NDB graphs that
are not SDB

Nicely distance-balanced graphs were studied in [57], where it is proved that in the class of
bipartite graphs, the families of DB graphs and NDB graphs coincide, while there are examples
of bipartite NDB graphs that are not SDB given by Handa [45]. In [57] examples of nonbipartite
SDB graphs that are not NDB were constructed and the following problem was posed.

Problem 10.2.1 ([57, Problem 3.3]). Find a nonbipartite NDB graph which is not SDB.

In this section we will construct several infinite families of nonbipartite NDB graphs which are
not SDB and so, solve Problem 10.2.1. To do this, we first study the Cartesian product of graphs.
NDB graphs in the framework of the Cartesian graph product were studied in [57]. We start this
section with the definition of this product.

Let G and H denote connected graphs. The Cartesian product of G and H, denoted by G�H,
is the graph with vertex set V (G)×V (H) where two vertices (g1,h1) and (g2,h2) are adjacent if
and only if g1 = g2 and h1 ∼ h2 in H, or h1 = h2 and g1 ∼ g2 in G. We observe that the Cartesian
product is commutative and that

∂G�H ((g1,h1),(g2,h2)) = ∂G(g1,g2) +∂H(h1,h2).

The next result is a direct consequence of [57, Theorem 4.1].

Lemma 10.2.2. Let G and H denote connected NDB graphs with |V (H)| · γG = |V (G)| · γH .
Then, the Cartesian product G�H is NDB with γG�H = |V (H)| ·γG = |V (G)| ·γH . In particular,
the Cartesian product of n-copies of G is NDB with γ = |V (G)|n−1 ·γG.

Proof. Immediate from [57, Theorem 4.1] and a straightforward induction argument. �
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It was proved by Kutnar et al. in [55, Theorem 3.3] that the Cartesian product of graphs is SDB
if and only if both factors are SDB. Similarly, the Cartesian product of graphs is bipartite if and
only if both factors are bipartite. Therefore the next results holds:

Lemma 10.2.3. Let G and H denote connected graphs. Then, the Cartesian product G�H is
SDB if and only if both G and H are SDB. In particular, the Cartesian product of n-copies of G
is SDB if and only if G is SDB.

Lemma 10.2.4. Let G and H denote connected graphs. Then, the Cartesian product G�H
is bipartite if and only if both G and H are bipartite. In particular, the Cartesian product of
n-copies of G is bipartite if and only if G is bipartite.

We now show how the above results can be used to construct infinitely many examples of
nonbipartite NDB graphs which are not SDB, provided that at least one such example exists.

Proposition 10.2.5. Let G denote a nonbipartite NDB graph which is not SDB. If H is a
NDB graph and |V (H)| · γG = |V (G)| · γH then the Cartesian product G�H is a nonbipartite
NDB graph with γG�H = |V (H)| ·γG = |V (G)| ·γH which is not SDB. In particular, the Cartesian
product of n-copies of G is a nonbipartite NDB graph with γ = |V (G)|n−1 ·γG that is not SDB.

Proof. Immediate from Lemmas 10.2.2, 10.2.3 and 10.2.4. �

We will now construct an example of a nonbipartite NDB graph which is not SDB.

Definition 10.2.6. Let Γ be the graph with vertex set V = {0,1,2}×Z10 where the adjacencies
are (0, j)∼ (1, j+ 1), (0, j)∼ (1, j+ 4), (0, j)∼ (2, j+ 1), (0, j)∼ (2, j+ 4), (1, j)∼ (1, j+ 4) and
(2, j)∼ (2, j+ 4) for every j ∈ Z10 with all the computations in the second component performed
modulo 10. A graphical representation of Γ is shown in Figure 10.2.

Keeping in mind the graph Γ defined in Definition 10.2.6, we now consider certain maps on V (Γ).

Let ρ, τ and ϕ the functions such that for every j ∈ Z10,

ρ(0, j) = (0, j+ 7), ρ(1, j) = (1, j+ 7), ρ(2, j) = (2, j+ 7),

τ(0, j) = (0,7− j), τ(1, j) = (1,2− j), τ(2, j) = (2,2− j),

ϕ(0, j) = (0, j), ϕ(1, j) = (2, j), ϕ(2, j) = (1, j),

with all the computations in the second component performed modulo 10. It is easy to see that
these maps are automorphisms of Γ. Moreover, we observe ρ is a rotation, τ is a reflection and ϕ
swaps vertices with 1 and 2 as first coordinate and fixes all the others.
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(1,6)
(0,5)

(1,9)

(0,8)

(1,2)

(0,1)

(1,5)

(0,4)

(1,8)

(0,7)

(1,1)
(0,0)

(1,4)

(0,3)

(1,7)

(0,6)

(1,0)

(0,9)

(1,3)

(0,2)

(2,4) (2,1)

(2,7)

(2,0)

(2,3)

(2,6) (2,9)

(2,2)

(2,5)

(2,8)

Figure 10.2: A regular nonbipartite NDB graph Γ that is not SDB.

Proposition 10.2.7. Let the graph Γ be as defined in Definition 10.2.6. Then, Γ is a regular
nonbipartite NDB graph that is not SDB.

Proof. Let the graph Γ be as defined in Definition 10.2.6. See also Figure 10.2. Notice that
Γ has diameter 4. By construction we observe that every vertex in Γ has valency 4 and
that Γ has odd cycles. Therefore, Γ is a regular nonbipartite graph. Let Aut(Γ) denote the
automorphism group of Γ. For α ∈ Aut(Γ) and every pair of adjacent vertices u,v ∈ V (Γ) we
have that α(Wu,v) = Wα(u),α(v) and since α is a bijection, |Wα(u),α(v)| = |Wu,v|. Pick now the
edge (0,0)(1,1) and note the following hold:

W(0,0),(1,1) = {(0,0),(2,1),(2,4),(1,4),(1,0),(2,0),(2,5),(2,7),(1,6),(2,3),(2,9),(2,6)},

W(1,1),(0,0) = {(1,1),(1,7),(1,5),(0,7),(1,3),(0,4),(1,9),(0,6),(0,1),(0,2),(0,5),(0,8)}.

Then, the edge (0,0)(1,1) is balanced and |W(0,0),(1,1)| = |W(1,1),(0,0)| = 12. Furthermore, the
automorphism τ maps the edge (0,0)(1,1) to the edge (0,7)(1,1) and so, (0,7)(1,1) is balanced and
|W(0,7),(1,1)|= 12. Considering ϕ ∈ Aut(Γ) we also observe the edges (0,0)(1,1) and (0,7)(1,1) are
respectively mapped to the edges (0,0)(2,1) and (0,7)(2,1) which shows the edges (0,0)(2,1) and
(0,7)(2,1) are balanced and |W(0,0),(2,1)|= |W(0,7),(2,1)|= 12. Therefore, since ρ is an automorphism
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of Γ, it follows from the above comments that all the edges (0, j)(1, j + 1), (0, j)(1, j + 4),
(0, j)(2, j+ 1), (0, j)(2, j+ 4) are all balanced and

|W(0,j),(1,j+1)|= |W(0,j),(1,j+4)|= |W(0,j),(2,j+1)|= |W(0,j),(2,j+4)|= 12

for every j ∈ Z10. Pick now the edge (1,1)(1,5) and note that

W(1,1),(1,5) = {(1,1),(1,7),(0,0),(0,7),(0,3),(2,4),(2,1),(1,4),(0,6),(1,0),(2,0),(2,7)},

W(1,5),(1,1) = {(1,5),(0,4),(1,9),(0,1),(2,2),(1,2),(0,5),(2,5),(0,8),(1,6),(2,9),(2,6)},

which shows this edge is balanced and |W(1,1),(1,5)| = |W(1,5),(1,1)| = 12. Since ρ ∈ Aut(Γ), it
is easy to see there exists an automorphism of Γ that maps the edge (1,1)(1,5) to the edge
(1, j)(1, j+ 4) and as ϕ ∈ Aut(Γ) swaps vertices with 1 and 2 as first coordinate and fixes all
the others, that there exists an automorphism of Γ that maps the edge (1,1)(1,5) to the edge
(2, j)(2, j+ 4). We thus have the edges (1, j)(1, j+ 4) and (2, j)(2, j+ 4) are all balanced and
|W(1,j),(1,j+4)|= |W(2,j),(2,j+4)|= 12. Hence, Γ is NDB with γ = 12. We also notice

D2
3((1,1),(0,0)) = {(1,3),(0,4),(1,9),(0,6),(0,1)},

D3
2((1,1),(0,0)) = {(1,0),(2,0),(2,5),(2,7)}.

This yields that Γ is not SDB. The result follows. �

The graph given in Definition 10.2.6 can be used to construct an infinite family of regular
nonbipartite NDB graphs which are not SDB.

Corollary 10.2.8. There exists infinitely many regular nonbipartite NDB graphs which are not
SDB.

Proof. Let the graph Γ be as defined in Definition 10.2.6 and consider the Cartesian product
of n copies of Γ. The result now is a straightforward consequence of Propositions 10.2.5 and
10.2.7. �

Corollary 10.2.8 provides an infinite family of nonbipartite regular NDB graphs which are not
SDB. We next give a construction of a nonregular infinite family.

Definition 10.2.9. Let k ≥ 3 be an integer. Let Γ(k) denote the graph of order 12k+ 6 with
vertex set Vk = {xi | i ∈ Z8k+4}∪{yi | i ∈ Z4k+2} where xi ∼ xi+1 and yi ∼ xi+m with

m ∈ {0,2k−1,2k+ 1,4k+ 2,6k+ 1,6k+ 3}.
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All the computations in the index of xj are performed modulo 8k+ 4 while all the computations
in the index of yj are performed modulo 4k+ 2.

Throughout this section we will need the following notation.

Notation 10.2.10. With reference to Definition 10.2.9, for an integer k ≥ 3, any subset X ⊆ Vk
will be identified with a pair of sets (A,B) where A is the set of indexes of xi vertices that belong
to X, while B is the set of indexes of yi vertices that belong to X, that is A= {i∈Z8k+4 | xi ∈X}
and B = {i ∈ Z4k+2 | yi ∈X}. Let ` ∈ {4k+ 2,8k+ 4} and let H ⊆ Z`. For any integer j, we
denote j+H = {j+h | h ∈H} where the computations are performed modulo `. Moreover, for
h ∈H we denote 〈h〉= {nh : n ∈ Z} and 〈h〉∗ = 〈h〉 \{0}.

The following results will be very useful in the rest of the chapter.

Lemma 10.2.11. For an integer k ≥ 3, let the graph Γ(k) be as defined in Definition 10.2.9. Let
K = {0,2k+ 1,2k+ 3} and M = {0,2k−1,2k+ 1,4k+ 2,6k+ 1,6k+ 3}. The following holds:

(i) S0(xj) = ({j} ,∅) and S1(xj) = ({j±1} , j+K) for xj ∈ Vk. In particular, |S0(xj)| = 1
and |S1(xj)|= 5.

(ii) S0(yj) = (∅,{j}) and S1(yj) = (j+M,∅) for yj ∈ Vk. In particular, |S0(yj)| = 1 and
|S1(yj)|= 6.

Proof. Pick xj ,yj ∈ Vk. It is clear that S0(xj) = {xj} and S0(yj) = {yj}. By Definition 10.2.9 we
observe that {xj−1,xj+1} ⊆ S1(xj) and xj ∼ yj+m with m ∈ {0,2k+ 1,2k+ 3}. Similarly, vertex
yj ∼ xj+m with m ∈ {0,2k−1,2k+ 1,4k+ 2,6k+ 1,6k+ 3}. The result follows. �

Lemma 10.2.12. For an integer k ≥ 5, let the graph Γ(k) be as defined in Definition 10.2.9. For
xj ∈ Vk the following hold:

(i) S2(xj) = (±2 + j+ 〈2k+ 1〉∪ j+ 〈2k+ 1〉∗ ,±1 + j+K),

(ii) S3(xj) = (±3 + j+ 〈2k+ 1〉∪±1 + j+ 〈2k+ 1〉∗ ,±3 + j+ 1 + 〈2k+ 1〉∪{j+ 2}),

(iii) S4(xj) = (±4 + j+ 〈2k+ 1〉 ,±4 + j+ 1 + 〈2k+ 1〉∪{j+ 3}) ,

(iv) Si(xj) = (±i+ j+ 〈2k+ 1〉 ,±i+ j+ 1 + 〈2k+ 1〉), for every i ∈ {5, . . . ,k},

(v) |S2(xj)|= 16, |S3(xj)|= 19, |S4(yj)|= 13 and |Si(xj)|= 12 for every 5≤ i≤ k. Moreover,
the eccentricity of xj equals k.

Proof. Pick a vertex xj ∈ Vk. Assume for a moment that z ∈ Si(xj) for some 0 ≤ i ≤ ε(xj)
and let w be a neighbour of z. Then, by the triangle inequality, ∂(xj ,w) ∈ {i− 1, i, i+ 1}
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and so w ∈ Si−1(xj)∪Si(xj)∪Si+1(xj). Therefore, Si+1(xj) consists of all the neighbours of
vertices in Si(xj) which are not in Si−1(xj) nor Si(xj). Now, (i)–(iii) immediately follow from
Lemma 10.2.11 and the above comments after a careful inspection of the neighbours’ sets of
vertices in Si(xj). We now prove part (iv) by induction. Similarly as above we see that (iv) holds
for i ∈ {5,6}. Let us now assume that (iv) holds for i−1 and i, where i≥ 6. Hence, we have that

Si−1(xj) = (±(i−1) + j+ 〈2k+ 1〉 ,±(i−1) + j+ 1 + 〈2k+ 1〉) ,

Si(xj) = (±i+ j+ 〈2k+ 1〉 ,±i+ j+ 1 + 〈2k+ 1〉) . (10.3)

Next, we compute the neighbours of the vertices belonging to the set Si(xj). By Lemma 10.2.11
and equation (10.3), we get that

S ((±i+ j+ 〈2k+ 1〉 ,∅)) = (±i±1 + j+ 〈2k+ 1〉 ,±i+ j+ 〈2k+ 1〉+K) , (10.4)

S ((∅,±i+ j+ 1 + 〈2k+ 1〉)) = (±i+ j+ 1 +{0,2k+ 1}+M,∅) , (10.5)

where K and M are the sets as defined in Lemma 10.2.11. Observe that

〈2k+ 1〉+K = 〈2k+ 1〉∪ (2 + 〈2k+ 1〉), (10.6)

where the operations are performed modulo 4k+ 2. Similarly, we have that

{0,2k+ 1}+M = (−2 + 〈2k+ 1〉)∪〈2k+ 1〉 , (10.7)

where the operations are performed modulo 8k+4. Therefore, from (10.4)–(10.7) it turns out
that the set of all neighbours of the vertices which are in Si(xj) is given as follows:

S (Si(xj)) = (±i±1 + j+ 〈2k+ 1〉 ,±i±1 + j+ 1 + 〈2k+ 1〉) .

We thus have that

Si+1(xj) = S (Si(xj))\ (Si−1(xj)∪Si(xj))

= (±(i+ 1) + j+ 〈2k+ 1〉 ,±(i+ 1) + j+ 1 + 〈2k+ 1〉) ,

proving the claim (iv).

Let us now prove (v). The first part of the statement immediately holds from (i)–(iv) above. To
prove the second part, let ` denote the eccentricity of xj . From Lemma 10.2.11 and (i)–(iv) above,
the sets Si(xj) (0≤ i≤ k) are nonempty and so, `≥ k. Observe that

∑k
i=0 |Si(xj)|= 12k+6 = |Vk|.

Since the collection of all the sets Si(xj) (0≤ i≤ `) is a partition of the vertex set it follows that
the sets Si(xj) are empty for i > k. Then, `≤ k and the result follows. �
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The proof of the next result can be done in a similar way to that of Lemma 10.2.12 above and is
therefore omitted and left to the reader.

Lemma 10.2.13. For an integer k ≥ 5, let the graph Γ(k) be as defined in Definition 10.2.9. For
yj ∈ Vk the following hold:

(i) S2(yj) = (±1 + j+ 〈2k+ 1〉∪ j+{2k−2,6k},±2 + j+ 〈2k+ 1〉∪ j+{2k+ 1}).

(ii) S3(yj) = (±3 + j−1 + 〈2k+ 1〉∪−2 + j+ 〈4k+ 2〉 ,±3 + j+ 〈2k+ 1〉∪±1 + j+ 〈2k+ 1〉).

(iii) S4(yj) = (±4 + j−1 + 〈2k+ 1〉∪−3 + j+ 〈4k+ 2〉 ,±4 + j+ 〈2k+ 1〉).

(iv) For every 5≤ i≤ k, the set Si(yj) = (±i+ j−1 + 〈2k+ 1〉 ,±i+ j+ 〈2k+ 1〉).

(v) |S2(yj)|= 15, |S3(yj)|= 18, |S4(yj)|= 14 and |Si(yj)|= 12 for every 5≤ i≤ k. Moreover,
the eccentricity of yj equals k.

For an integer k ≥ 5, let the graph Γ(k) be as defined in Definition 10.2.9. We next show that
some edges of Γ(k) are balanced.

Lemma 10.2.14. For an integer k ≥ 5, let the graph Γ(k) be as defined in Definition 10.2.9. For
the edge xjxj+1 the following hold:

(i) |D1
0(xj ,xj+1)|= |D0

1(xj ,xj+1)|= 1.

(ii) |D2
1(xj ,xj+1)|= |D1

2(xj ,xj+1)|= 4.

(iii) |D3
2(xj ,xj+1)|= |D2

3(xj ,xj+1)|= 12.

(iv) |D4
3(xj ,xj+1)|= |D3

4(xj ,xj+1)|= 7.

(v) |D`+1
` (xj ,xj+1)|= |D`

`+1(xj ,xj+1)|= 6 for all 4≤ `≤ k−1.

(vi) |Dk
k(xj ,xj+1)|= 6.

(vii) The edge xjxj+1 is balanced and the sets Di
i(xj ,xj+1) (1≤ i≤ k−1) are all empty.

Proof. Pick j ∈ Z8k+4 and consider the edge xjxj+1. By Lemma 10.2.12 and Lemma 10.2.13 we
first observe that Γ(k) has diameter k. Now, (i)–(vi) immediately follows from Lemma 10.2.12.
Let us now prove (vii). From (i)–(v) above, we notice

|Wxj ,xj+1 |=
k−1∑
i=0
|Di+1

i (xj ,xj+1)|= 6k =
k−1∑
i=0
|Di

i+1(xj ,xj+1)|= |Wxj+1,xj |.
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Hence, the edge xjxj+1 is balanced. Moreover, by (vi) above we also notice that

k−1∑
i=1
|Di

i(xj ,xj+1)|= |Vk|−2|Wxj ,xj+1 |− |Dk
k(xj ,xj+1)|= 0.

The result follows. �

The proof of the next result is omitted as it can be carried out using the same arguments as the
proof of Lemma 10.2.14.

Lemma 10.2.15. For an integer k ≥ 5, let the graph Γ(k) be as defined in Definition 10.2.9 and
let K = {0,2k+ 1,2k+ 3}. For every ` ∈K and for every edge xjy` the following hold:

(i) |D1
0(xj ,y`)|= |D0

1(xj ,y`)|= 1.

(ii) |D2
1(xj ,y`)|= 5 and |D1

2(xj ,y`)|= 4.

(iii) |D3
2(xj ,y`)|= |D2

3(xj ,y`)|= 11.

(iv) |D4
3(xj ,y`)|= 7 and |D3

4(xj ,y`)|= 8.

(v) |Di+1
i (xj ,y`)|= |Di

i+1(xj ,y`)|= 6 for all 4≤ i≤ k−1.

(vi) |Dk
k(xj ,y`)|= 6.

(vii) The edge xjy` is balanced and the sets Di
i(xj ,y`) (1≤ i≤ k−1) are all empty.

We are now ready to provide an infinite family of nonbipartite and nonregular NDB graphs which
are not SDB.

Proposition 10.2.16. For an integer k ≥ 5, let the graph Γ(k) be as defined in Definition 10.2.9.
Then, Γ(k) is a nonbipartite NDB graph which is not SDB nor regular.

Proof. By Definition 10.2.9 and Lemma 10.2.11, it is clear that Γ(k) is not regular. This implies
that Γ(k) is not SDB since for at least one edge uv the corresponding sets D1

2(u,v) and D2
1(u,v)

will not be of the same cardinality. Pick j ∈ Z8k+4. Recall that {xj−1,xj+1} ⊆ S1(xj) and
xj ∼ yj+m with m ∈ {0,2k+1,2k+3}. It now follows from Lemma 10.2.15 that the edges xjxj+1,
xjyj , xjy2k+1+j and xjy2k+3+j are all balanced. Moreover, it turns out that

|Wxj ,xj+1 |= |Wxj ,yj |= |Wxj ,y2k+j+1 |= |Wxj ,x2k+3+j
|= 6k.

In addition, for i, i′ ∈ Z4k+2 we observe vertices yi and yi′ are not adjacent. Since j is arbitrary,
we thus have all the edges of Γ(k) are balanced. Consequently, it follows from the above comments
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that Γ(k) is NDB with γ = 6k. We also notice that Γ(k) is nonbipartite as the set Dk
k(xj ,yj) is

nonempty by Lemma 10.2.15. This concludes the proof. �

We end this section with the following two remarks.

Remark 10.2.17. Graphs Γ(3) and Γ(4) are also nonbipartite NDB graphs which are not SDB,
with γ = 18 and γ = 24 respectively, but we considered only the case when k ≥ 5 for the simplicity
of proofs.

Remark 10.2.18. Graphs Γ(k) defined in Definition 10.2.9 are prime with respect to the Cartesian
product of graphs (cannot be obtained as a Cartesian product of two non-trivial graphs). Suppose
Γ(k) ∼=G�H for some graphs G and H. Observe that the edge xixi+1 lies on exactly 2 cycles of
length 4 in Γ(k) for every i ∈ Z8k+4. Since the vertices of Γ(k) have degree 5 or 6, without loss of
generality we may assume that the minimum degree in G is at least 3. It follows that the edge
xixi+1 must belong to the H-layers in the Cartesian product G�H, since it lies only on 2 cycles
of length 4. Then, it holds that all of the xi vertices belong to the same H-layer, implying that H
has at least 8k+4 vertices. Since |V (Γ(k))|= 12k+6 = |V (G)| · |V (H)|, it follows that G is the
graph with one vertex.

10.3 Counterexamples to a conjecture regarding
SDB graphs

Let Γ be a graph, and let S be a subset of its vertex set. For a vertex v of Γ we define

∂(v,S) =
∑
x∈S

∂(v,x).

Balakrishnan et al. [3] proved that a connected graph Γ is distance-balanced if and only if
∂(v,V (Γ)) = ∂(u,V (Γ))) for all u,v ∈ V (Γ). They posed the following conjecture regarding a
similar characterization of strongly distance-balanced graphs.

Conjecture 10.3.1 ([3, Conjecture 3.2]). A graph Γ is strongly distance-balanced if and only if
∂(u,Wu,v) = ∂(v,Wv,u) holds for every pair of adjacent vertices u,v of Γ.

It is clear that strongly distance-balanced graphs satisfy the above condition, but the question
was if the converse also holds. We will now provide an infinite family of counterexamples to
Conjecture 10.3.1.

Let k and l be positive integers. Let C6(k, l) denote the graph obtained from the 6-cycle by
replacing every vertex in one bipartition set of C6 with k pairwise non-adjacent vertices, and
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replacing every vertex in the other bipartition set of C6 with l pairwise non-adjacent vertices,
see Figure 10.3 for an example. To be more precise, let {x0,x1,x2,x3,x4,x5} be the vertex set
of the 6-cycle, and let the vertex-set of C6(k, l) be ({x0,x2,x4}×Zk)∪ ({x1,x3,x5}×Zl), and
adjacencies given by (x2i, r)∼ (x2i±1,s) for every i ∈ {0,1,2} and every r ∈ Zk, s ∈ Zl. Observe
that any permutation of vertices inside sets {x2i}×Zk and {x2i+1}×Zl, preserves all the edges.
Hence, it is an automorphism. Observe also that the 2-step rotation, function mapping (xi, j) into
(xi+2, j) it is also an automorphism of C6(k, l). It follows that the graph C6(k, l) is edge-transitive.
Observe that C6(k, l) is vertex-transitive if and only if k = l.

Figure 10.3: Graph C6(2,3).

The following proposition shows that graph C6(k, l) with k 6= l is a counterexample to
Conjecture 10.3.1.

Proposition 10.3.2. Let k and l be positive integers, and let the graph C6(k, l). Then C6(k, l)
is strongly-distance balanced if and only if k = l, while ∂(u,Wu,v) = ∂(v,Wv,u) holds for every
pair of adjacent vertices u,v of C6(k, l).

Proof. Observe that C6(k, l) is regular if and only if k = l. It follows that for k 6= l, the graph
C6(k, l) is not strongly-distance-balanced. Moreover, for k = l, the graph C6(k, l) is vertex-
transitive, and since every vertex-transitive graph is strongly-distance-balanced it follows that
C6(k, l) is SDB if and only if k = l.
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Let u= (x0,0) and v = (x1,0). Observe that

D1
2(u,v) = ({x1}× (Zl \{0}))∪ ({x5}×Zl),

D2
1(u,v) = ({x0}× (Zk \{0}))∪ ({x2}×Zk),

D2
3(u,v) = ({x4}×Zk),

D3
2(u,v) = ({x3}×Zl).

It follows that ∂(u,Wu,v) = |D1
2(u,v)|+ 2 · |D2

3(u,v)|= (2l−1) + 2k = 2k+ 2l−1. Similarly we
have that ∂(v,Wv,u) = |D2

1(u,v)|+ 2 · |D3
2(u,v)|= (2k−1) + 2l = 2k+ 2l−1. We conclude that

∂(u,Wu,v) = ∂(v,Wv,u). Since the graph C6(k, l) is edge-transitive, it follows that the same holds
for any pair of adjacent vertices. This concludes the proof. �

10.4 Distance-balanced property in semisymmetric
graphs

The main goal for this section is to answer a question by Kutnar et al. from [55].

Symmetry is perhaps one of those purely mathematical concepts that has found wide applications
in several other branches of science and in many of these problems, symmetry conditions are
naturally blended with certain metric properties of the underlying graphs. Kutnar et al. explored
a purely metric property of being (strongly) distance-balanced in the context of graphs enjoying
certain special symmetry conditions. They showed that vertex-transitive graphs are not only
distance-balanced, they are also strongly distance-balanced (see [55]). Furthermore, since being
vertex-transitive is not a necessary condition for a graph to be distance-balanced, it was therefore
natural for the authors to explore the property of being distance-balanced within the class of
semisymmetric graphs; a class of objects which are as close to vertex-transitive graphs as one can
possibly get, that is, regular edge-transitive graphs which are not vertex-transitive. The smallest
semisymmetric graph has 20 vertices and its discovery is due to Folkman [35], the initiator of
this topic of research.

A semisymmetric graph is necessarily bipartite, with the two sets of bipartition coinciding
with the two orbits of the automorphism group. Consequently, semisymmetric graphs have no
automorphisms which switch adjacent vertices, and therefore, may arguably be considered as
good candidates for graphs which are not distance-balanced. Indeed, Kutnar et al. proved there
are infinitely many semisymmetric graphs which are not distance-balanced, but there are also
infinitely many semisymmetric graphs which are distance-balanced. They also wondered the
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following question.

Question 10.4.1 ([55, Question 4.6]). Is it true that a distance-balanced semisymmetric graph
is also strongly distance-balanced?

We next answer this question negatively by giving a construction of an infinite family of
semisymmetric DB graphs which are not SDB. Before embarking on the corresponding
construction, we make the following observations about the distance-balanced property in
semisymmetric graphs using certain graph product.

Let G and H denote graphs. The lexicographic product of G and H, denoted by G[H], is the
graph with vertex set V (G)×V (H) where two vertices (g1,h1) and (g2,h2) are adjacent if and
only if g1 ∼ g2, or g1 = g2 and h1 ∼ h2. It turns out that the lexicographic product G[H] is
connected if and only if G is connected.

Necessary and sufficient conditions under which the lexicographic product give rises to a distance-
balanced graph are given in [52].

Lemma 10.4.2 ([52, Theorem 4.2]). Let G and H be connected graphs. Then, the lexicographic
product G[H] is distance-balanced if and only if G is distance-balanced and H is regular.

Kutnar et al. also investigated the strongly distance-balanced property of lexicographic graph
products.

Lemma 10.4.3 ([55, Theorem 3.4]). Let G and H be graphs such that G[H] is connected.
Then, the lexicographic product G[H] is strongly distance-balanced if and only if G is strongly
distance-balanced and H is regular.

For constructions of several infinite families of semisymmetric distance-balanced graphs the
following result will be useful:

Lemma 10.4.4 ([55, Proposition 4.3]). Let Γ be a semisymmetric graph. Then for every positive
integer n, the lexicographic product Γ[nK1] is semisymmetric, where nK1 denotes the empty
graph of n vertices.

With these results in mind, we would like to point out that the desired construction can be
given provided we find at least one connected distance-balanced semisymmetric graph which
is not strongly distance-balanced. Namely, let Γ be such a graph. Then combining together
Lemma 10.4.2 and Lemma 10.4.4, we have that Γ[nK1] is a distance-balanced semisymmetric
graph for every positive integer n. Additionally, since Γ is a connected graph which is not SDB,
it follows from Lemma 10.4.3 that Γ[nK1] is not SDB. For every positive integer n, we thus
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have that the lexicographic product Γ[nK1] is a DB semisymmetric graph which is not SDB.
Kutnar et al. checked the list of all semisymmetric connected cubic graphs of order up to 768
[14], and there are exactly 11 distance-balanced graphs in this list, all of them are also strongly
distance-balanced. They also checked the list of all connected semisymmetric tetravalent graphs
of order up to 100 from the list of Potočnik and Wilson, and there are 26 distance-balanced
graphs in this list, all of which are also strongly distance-balanced. In the meantime, Potočnik
and Wilson extended their list of connected tetravalent edge-transitive graphs up to 512 vertices
[82], and using this extended list we were able to find examples of semisymmetric graphs which
are distance-balanced but not strongly distance-balanced.

Example 10.4.5. Graphs C4[150,9], C4[240,60], C4[240,61], C4[240,105], C4[240,168],
C4[288,145], C4[288,171], C4[288,246], C4[312,40], C4[336,46], C4[336,49], C4[336,107],
C4[336,129], C4[336,135], C4[336,157], C4[336,166], C4[360,177], C4[384,81], C4[384,85],
C4[384,341], C4[384,380], C4[384,462], C4[384,499], C4[400,44], C4[432,163], C4[432,164],
C4[432,198], C4[432,229], C4[432,241], C4[432,253], C4[432,274], C4[432,282], C4[480,126],
C4[480,131], C4[480,300], C4[480,359], C4[480,453], C4[480,461], C4[480,520], C4[480,523],
C4[486,68], C4[486,69], C4[486,74], C4[504,154], C4[504,155] defined in [82] are connected
semisymmetric graphs of valency 4 which are distance-balanced but not strongly distance-balanced.
(The parameter n in C4[n,i] denotes the order of the corresponding graph). Using the distance-
orbit chart given in [82] (where the sizes of orbits of the stabilizer Aut(Γ)u of a vertex u at
distances 0,1, . . . ,d from u are shown) one can easily check the distance-balanced and strongly
distance-balanced properties of the graph under consideration (the orbit sizes are given for
representatives of bipartition sets). For example, the distance-orbit chart of the graph C4[150,9]
is presented below in Table 10.1.

Distance 0 1 2 3 4 5 6 7 8
White vertex 1 4 2,42 22,44 2,47 22,49 23,47 1,2,42

Black vertex 1 4 2,42 22,44 22,47 22,49 2,47 1,2,42 2

Table 10.1: The distance-orbit chart of the graph C4[150,9].

This means that there are 4 vertices at distance 1 from a white vertex, 10 vertices at distance two
(one orbit of size 2 and two orbits of size 4), 20 vertices at distance 3 (two orbits of size 2 and 4
orbits of size 4), and so on. By the result of Balakrishnan et al. [3], a graph is distance-balanced
if and only if the sum of the distances from a given vertex to all other vertices is independent of
the chosen vertex, which can easily be verified from the distance-orbit chart. Similarly, a graph is
strongly distance-balanced if and only if the number of vertices at distance i from a given vertex
is independent of the chosen vertex, which can also easily be read from the distance-orbit chart.
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Corollary 10.4.6. There exist infinite families of distance-balanced semisymmetric graphs which
are not strongly distance-balanced.

10.5 Recognition of SDB and NDB graphs

Let Γ be a graph with n vertices and m edges. In [3] it is proved that it can be verified in
O(mn) time if Γ is distance-balanced. We will now prove that the same result holds for strongly
distance-balanced graphs and nicely distance-balanced graphs.

Proposition 10.5.1. Let Γ be a connected graph with n vertices and m edges. It can be checked
in O(mn) time if Γ is strongly distance-balanced.

Proof. By Proposition 10.1.1 it follows that Γ is strongly distance-balanced if and only if |Si(u)|
does not depend on the choice of vertex u, for any i ∈ {1, . . . ,d} where d is the diameter of Γ.
Using BFS algorithm, the sizes of sets |Si(u)| can be determined in O(m) time, for any fixed
vertex u. Calculating these numbers for every vertex of Γ can then be done in O(mn) time. �

Proposition 10.5.2. Let Γ be a connected graph with m edges. It can be checked in O(mn)
time if Γ is nicely distance-balanced.

Proof. Using the BFS algorithm, computing the distance from each vertex to all other vertices
can be done in O(mn) time, and this information can be stored, for example in a distance matrix.
For a fixed edge uv, iterating over each vertex w and checking whether ∂(u,w) is smaller, larger
or equal than ∂(v,w), we can compute the sizes of Wu,v and Wv,u, which can be done in O(n)
time (for a single edge). Calculating the values of Wu,v and Wv,u can then be done in O(mn)
time. �
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Chapter 11

Final remarks on Terwilliger algebras

The contributions to algebraic combinatorics within this dissertation can be roughly divided
into two different but interrelated categories: the study of Terwilliger algebras of certain

graphs and the resolution of some problems related to distance-balanced graphs.

All the original results presented in this Ph.D. dissertation about Terwilliger algebras of graphs
are contained in research papers which are/will be published in specialized SCI journals; see
[23, 24, 26, 27, 28] for more details.

Terwilliger algebras, originally known as subconstituent algebras, are introduced in [89] for
association schemes and their representations are extensively studied for (P and Q)-polynomial
association schemes in [90, 91]. Subconstituent algebras of any arbitrary finite, simple and
connected graph are considered in [88] and their studies for distance-regular graphs have received
considerable attention since then. However, the state of the art regarding Terwilliger algebras of
graphs, which are not distance-regular, is not as intense.

The research for this Ph.D. dissertation broadens our knowledge of Terwilliger algebras of graphs
that are not necessarily distance-regular. Specifically, our research is concentrated around thin
irreducible T -modules with endpoint 0 and with endpoint 1 (with respect to a fixed vertex) of
general graphs, not necessarily distance-regular. Certain combinatorial conditions in a graph are
shown to hold if and only if some algebraic properties of the corresponding Terwilliger algebra
are satisfied. As a result, we contribute to a common effort of the mathematical community to
understand the Terwilliger algebra of a graph (with respect to a fixed vertex) and the interplay
of combinatorial properties of this graph and algebraic properties of its corresponding Terwilliger
algebra.

Let us discuss these contributions briefly and make some suggestions for future research.

To begin our investigation, we provided a purely combinatorial characterization of the property
that the unique irreducible T -module with endpoint 0 is thin in Chapter 3. The number of walks
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of a certain shape between vertex x and vertices at some fixed distance from x is used in this
characterization.

The study of irreducible T -modules with endpoint 1 of certain graphs that are not necessarily
distance-regular follows naturally. Thus, we characterized those vertices x of a graph Γ, for which
the corresponding Terwilliger algebra T = T (x) has no irreducible T -modules with endpoint 1.
We proved that there are irreducible T -modules with endpoint 1 if and only if x is not a leaf.
Hence, we assumed the valency of x is at least 2 from that moment on.

The study of Terwilliger algebras in general appears to be overly complicated at the moment.
Therefore, we concentrated on some cases where the irreducible modules with endpoint at most
1 are thin. We assumed that the unique irreducible T -module with endpoint 0 is thin, or
equivalently, that x is pseudo-distance-regularized. Our next goal was to find a combinatorial
characterization of graphs, which also have a unique irreducible T -module of endpoint 1 (up to
isomorphism), and this module is thin. We anticipated that this problem would be too difficult
to solve in this dissertation. Instead, we began by laying the groundwork for dealing with this
issue by solving other problems which were, of course, closely related to our main goal and which
we thought were easier to solve.

According to [21, Theorem 1.3], when the graph is distance-regular, the previously described
situation occurs if and only if the graph is bipartite or almost-bipartite. As it seems bipartite
distance-regular graphs and distance-biregular graphs are closely related, a natural way to explore
the desired situation and get results involving Terwilliger algebras of non-distance-regular graphs
was to study the case when the graph is distance-biregular. Consequently, in Chapter 4 we
showed that if Γ is distance-biregular, then, again, Γ has (up to isomorphism) a unique irreducible
T -module with endpoint 1, and this module is thin.

Bipartite distance-regular graphs and distance-biregular graphs are connected bipartite graphs
in which the so-called local distance-regularity holds for each of their vertices. Accordingly,
an obvious step forward was to consider the case where the graph is bipartite and the local
distance-regularity property holds for the base vertex but not necessarily for all the others. We
dealt with this situation in Chapter 5 where we found certain combinatorial consequences of the
above algebraic condition.

Our next problem concerned non-bipartite graphs. In other words, even if the graph Γ is not
bipartite, the unique irreducible T -module with endpoint 0 is thin if Γ is distance-regular around
the base vertex x. Therefore, in Chapter 6 we extended the results from Chapter 5. As a result,
when the base vertex x is distance-regularized, certain combinatorial consequences of the above
algebraic conditions were given for this more general situation.

We emphasize that by solving the problems listed above, we gained the insight required to attack
our main problem and pursue our goal. We thus generalized the above results to the case when
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Γ is not necessarily distance-regular around x in Chapter 7. The main result of this Ph.D. thesis
is a combinatorial characterization of graphs which are pseudo-distance-regular around x and
also have a unique irreducible T -module (up to isomorphism) with endpoint 1, and this module
is thin. This characterization of such graphs involves the number of some walks of a particular
shape. Last but not least, we gave precise examples to construct many graphs which possess
these properties from our general solution.

From the above comments, a natural continuation of this research is to study similar problems
in the case when the trivial T -module is not thin. The generalization of these problems under
the assumption that the unique irreducible module with endpoint 0 is not thin, in our opinion,
may be too difficult to handle using the techniques demonstrated in this dissertation. We thus
propose studying certain graphs, for which finding such a combinatorial characterization seems
to be achievable.

The following couple of problems we describe below concern graphs where for a certain vertex
the trivial module is close to being thin. Let us now define that the trivial module T x̂ is almost
thin, if the dimension of E∗i (T x̂) is at most 2 for every 0≤ i≤ ε(x).

Problem 1. Let Γ be a graph with vertex set X. Fix x ∈ X and let T = T (x) denote the
corresponding Terwilliger algebra. Find a purely combinatorial condition which is equivalent to
the property that the unique irreducible T -module with endpoint 0 is almost thin.

We also propose to study irreducible T -modules with endpoint 1 in the case when the trivial
T -module is not thin. It turns out that there are no irreducible T -modules with endpoint 1 if
and only if dim(E∗1T x̂) = |Γ(x)|. Consequently, if we would like to explore this general situation
when the trivial T -module is almost thin, we will need that dim(E∗1T x̂)< |Γ(x)|.

Problem 2. Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and let
T = T (x) denote the Terwilliger algebra of Γ with respect to x. Assume that the unique irreducible
T -module with endpoint 0 is not thin and that dim(E∗1T x̂)< |Γ(x)|. Consider the property that Γ
has, up to isomorphism, a unique irreducible T -module with endpoint 1, and that this T -module
is thin. Find combinatorial consequences of this algebraic condition. Characterize graphs where
the above conditions hold.

It is our impression that the results in the case when the trivial module is almost thin could
be of a similar flavor to the results of this dissertation. Nevertheless, the situation will become
slightly more complicated.





Chapter 12

Final remarks on distance-balanced
graphs

The contributions to algebraic combinatorics within this dissertation can be roughly divided
into two different but interrelated categories: the study of Terwilliger algebras of certain

graphs and the resolution of some problems related to distance-balanced graphs.

All the original results presented in this Ph.D. dissertation about distance-balanced graphs are
contained in research papers which are published in specialized SCI journals; see [25, 29] for
more details.

Let Γ = (X,R) be a simple, finite, and connected graph and let X and R denote the vertex
set and the edge set of Γ, respectively. For u,v ∈X, let ∂(u,v) = ∂Γ(u,v) denote the minimal
path-length distance between u and v. For a pair of adjacent vertices u,v of Γ we denote

Wu,v = {x ∈X | ∂(x,u)< ∂(x,v)}.

We say that Γ is distance–balanced (DB for short) if for an arbitrary pair of adjacent vertices u
and v of Γ we have that

|Wu,v|= |Wv,u|.

Although Handa began researching distance-balanced graphs in [45], the term itself was coined
by Jerebic, Klavžar and Rall in [52]. The family of distance-balanced graphs is very rich, and its
study is interesting not only from various purely graph-theoretic perspectives, but also because
the balancedness property of these graphs makes them appealing in many research areas.

With the research undertaken for the completion of this Ph.D. dissertation, we provide certain
methods and techniques that allow us to not only classify certain DB graphs, but also to construct
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some infinite families of them which are of interest in this area of research.

Let us briefly discuss these contributions and suggest possible paths for future research.

The notion of nicely distance-balanced graphs appears quite naturally in the context of DB
graphs. We say that Γ is nicely distance–balanced (NDB for short) whenever there exists a
positive integer γ = γ(Γ), such that for an arbitrary pair of adjacent vertices u and v of Γ,

|Wu,v|= |Wv,u|= γ

holds.

Assume now that Γ is NDB. Let us denote the diameter of Γ by d (the diameter of a graph is
the maximum distance between two vertices). In [57], where these graphs were first defined,
it was proved that d ≤ γ and NDB graphs with d = γ were classified. It turns out that Γ is
NDB with d= γ if and only if Γ is either isomorphic to a complete graph on n≥ 2 vertices, to
a complete multipartite graph Kt×2 (t≥ 2) with t parts of cardinality 2, or to a cycle on 2d or
2d+1 vertices. Therefore, we concentrated our study on the class of regular NDB graphs with
γ = d+1 in Chapter 9. The main result is shown in Theorem 9.7.1 where the classification of
such graphs is given.

From the above comments, some continuations of this research naturally arise. Therefore, we
would like to propose some problems which will be described below.

Problem 1. Classify NDB graphs with diameter d and γ ∈ {d+ 1,d+ 2}.

We expect that the situation in these cases is much more complex than in the case γ = d.
Following the techniques we used in Chapter 9, we also propose the following problem which we
believe is easier to solve.

Problem 2. Classify (edge-)regular NDB graphs with diameter d and γ = d+ 2.

One possible way to attack the classification problem for NDB graphs is to try to classify NDB
graphs Γ with γ = k for a fixed positive integer k. Observe that Γ is NDB with γ = 1 if and only
if Γ is a complete graph. In [57], Kutnar and Miklavič classify NDB graphs Γ with γ ∈ {1,2,3}.
Although, for larger integers k the classification quickly becomes very complicated, it is obvious
to consider the next situation as well.

Problem 3. Classify NDB graphs with γ = 4.

Another concept closely related to the concept of distance-balanced graphs is the one of strongly
distance-balanced graphs. For an arbitrary edge uv of a given graph Γ, and any two nonnegative
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integers i, j, we let
Di
j(u,v) = {x ∈X | ∂(u,x) = i and ∂(v,x) = j}.

A graph Γ is called strongly distance-balanced (SDB for short) if |Di
i−1(u,v)|= |Di−1

i (u,v)| holds
for every i≥ 1 and every edge uv in Γ.

Throughout Chapter 10, we focused our attention on some problems about distance-balanced
graphs, especially on the construction of certain families of DB graphs, which seem to be of
interest in this area of research.

Our first construction was related to certain NDB graphs which are not SDB. Nicely distance-
balanced graphs were studied in [57], where it is proved that in the class of bipartite graphs,
the family of DB graphs and NDB graphs coincide, while there are examples of bipartite NDB
graphs that are not SDB given by Handa [45]. Moreover, in [57], examples of nonbipartite SDB
graphs that are not NDB were constructed. In Chapter 10 we solved [57, Problem 3.3] posed by
Kutnar and Miklavič regarding the existence of nonbipartite NDB graphs which are not SDB.
We proved there exist infinitely many (regular) nonbipartite NDB graphs which are not SDB.

Our second construction was related with a conjecture by Balakrishnan et al. about a
characterization of SDB graphs. Let Γ be a graph, and let S be a subset of its vertex set.
For a vertex v of Γ we define

∂(v,S) =
∑
x∈S

∂(v,x).

Balakrishnan et al. [3] proved that a connected graph Γ is distance-balanced if and only if
∂(v,X) = ∂(u,X) for all u,v ∈X. Moreover, they conjectured that a graph Γ is strongly distance-
balanced if and only if ∂(u,Wu,v) = ∂(v,Wv,u) holds for every pair of adjacent vertices u,v of Γ.
It is clear that strongly distance-balanced graphs satisfy the above condition, but the question
was if the converse also holds. In Chapter 10 we disproved [3, Conjecture 3.2] by providing
infinitely many counterexamples.

Our third construction dealt with the property of being (strongly) distance-balanced in the
context of graphs enjoying certain special symmetry conditions. Kutnar et al. showed that
vertex-transitive graphs are not only distance-balanced, they are also strongly distance-balanced
(see [55]). Furthermore, since being vertex-transitive is not a necessary condition for a graph to
be distance-balanced, it was therefore natural for the authors to explore the property of being
distance-balanced within the class of semisymmetric graphs. Indeed, Kutnar et al. proved
there are infinitely many semisymmetric graphs which are not distance-balanced, but there are
also infinitely many semisymmetric graphs which are distance-balanced. In Chapter 10 we also
answered [55, Question 4.6] posed by Kutnar et al. regarding the existence of semisymmetric
DB graphs which are not SDB. We proved there exist infinite families of distance-balanced
semisymmetric graphs which are not strongly distance-balanced.
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Let Γ be a graph with n vertices and m edges. In [3] it is proved that it can be verified in O(mn)
time if Γ is distance-balanced. We concluded Chapter 10 by showing that for a graph Γ with n
vertices and m edges it can be checked in O(mn) time if Γ is strongly distance-balanced and if Γ
is nicely distance-balanced.

For a graph Γ and a vertex v, one can construct the sets Si(v) of all vertices in Γ which are
at distance i from v. By Proposition 10.1.1, we observe that Γ is SDB if and only if the sizes
of the sets Si(v) do not depend on the choice of v. In [3], Balakrishnan et al. showed that a
graph is distance-balanced if and only if the sum of the distances from a given vertex to all
other vertices is independent of the chosen vertex. Namely, Γ is DB if and only if

∑
i i|Si(v)| is

constant. Therefore, the following question naturally arises.

Problem 4. Does there exist a characterization of NDB graphs in terms of the sets Si(v)?
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Povzetek v slovenskem jeziku

V naši raziskavi se bomo ukvarjali s kombinatoričnimi objekti, ki jim pravimo grafi. Graf
Γ = (X,R) je matematičen objekt, ki je sestavljen iz končne množice vozlišč X in množice
povezav (oziroma neurejenih parov vozlišč) R. Ponavadi vsako vozlišče x ∈X prestavimo s točko
v ravnini, povezavo e= {x,y} ∈ R pa predstavimo s črto, ki povezuje vozlišči x in y.

Teorija grafov spada v kombinatoriko. To je del matematike, ki proučuje strukturo in preštevanje
diskretnih objektov. Na nasprotnem polu matematike je matematična analiza, ki proučuje zvezne
objekte. Konkretneje, teorija grafov je uporabna za proučevanje kakršnegakoli sistema, v katerem
obstajajo nekakšni odnosi med pari elementov tega sistema. Ti odnosi so ponavadi opredeljeni
z neko binarno relacijo. Zato ni presenetljivo, da so bili številni problemi in rezultati teorije
grafov prvotno formulirani v kontekstu odnosov med ljudmi. Prav tako je tudi številne druge
matematične koncepte mogoče opredeliti z uporabo pojmov teorije grafov.

V tej disertaciji je interakcija med grafi in določenimi algebraičnimi objekti še posebej intenzivna
in pomembna. V tej disertaciji se bomo namreč ukvarjali s proučevanjem Terwilligerjevih algeber
določenih grafov, ter z nekaterimi problemi znotraj razreda razdaljno-uravnoteženih grafov. Zato
smo opise znanstvenega ozadja disertacije in njenega akademskega doprinosa razdelili v dva
dela. V prvem delu obravnavamo Terwilligerjeve algebre, v drugem pa razdaljno-uravnotežene
grafe. Prav tako bomo privzeli, da je bralec seznanjen z osnovnimi definicijami teorije grafov in
algebraične kombinatorike. Za nadaljne definicije ter notacijske konvencije iz teh dveh področij
priporočamo monografije [6, 39, 40, 96].

Terwilligerjeva algebra grafa

Naj bo Γ graf in naj bo G nek algebraični objekt, ki je prirejen grafu Γ. Ena glavnih motivacij
pri našem raziskovanju je naslednje vprašanje: kaj lahko rečemo o kombinatoričnih lastnostih
grafa Γ, če vemo, da ima objekt G določene algebraične lastnosti? In seveda obratno: kaj lahko
povemo o algebričnih lastnostih objekta G, če vemo, da ima graf Γ določene kombinatorične
lastnosti? Morda najbolj znan primer te interakcije med kombinatoriko in algebro dobimo, če za
objekt G vzamemo grupo avtomorfizmov grafa Γ. V tem primeru je znanih veliko povezav med
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kombinatoričnimi lastnostmi grafa Γ in algebraičnimi lastnostmi grupe G. Na primer, če grupa G
deluje tranzitivno na množici vozlišč grafa Γ, potem je Γ regularen graf, v smislu, da ima vsako
vozlišče grafa Γ enako število sosedov. V literaturi lahko najdemo še veliko primerov takšnih
medsebojnih povezav med kombinatoričnimi lastnostmi grafa Γ in algebraičnimi lastnostmi
njegove grupe avtomorfizmov.

V tej disertaciji algebraični objekt, ki bo prirejen grafu Γ, ne bo njegova grupa avtomorfizmov,
temveč matrična algebra, imenovana Terwilligerjeva algebra grafa Γ. Glavna motivacija pa
seveda ostaja enaka: kaj lahko povemo o kombinatoričnih lastnostih grafa Γ, če vemo, da ima
pripadajoča Terwilligerjeva algebra določene algebraične lastnosti? In obratno: kaj lahko povemo
o algebraičnih lastnostih pripadajoče Terwilligerjeve algebre grafa Γ, če vemo, da ima graf Γ
določene kombinatorične lastnosti?

Terwilligerjeve algebre asociativnih shem je definiral Terwilliger v [89, Definicija 3.3]. Ter-
willigerjeva algebra grafa je nekomutativna matrična algebra, ki jo generira matrika sosednosti
grafa, skupaj z nekaterimi diagonalnimi matrikami, ki vsebujejo lokalne informacije o strukturi
grafa glede na neko fiksno vozlišče. Od takrat so bili objavljeni številni članki, v katerih je
bila Terwilligerjeva algebra uspešno uporabljena za študij komutativnih asociativnih shem in
razdaljno-regularnih grafov; glej [43, 44, 60, 65, 68, 78, 79, 81, 84, 86] za najnovejše rezultate na
to temo.

Algebra T je bila v glavnem uporabljena za proučevanje razdaljno-regularnih grafov (glej na
primer [6] za definicijo razdaljno-regularnih grafov). Ta algebra je bila uporabljena tudi za
proučevanje Q-polinomskih razdaljno-regularnih grafov [9, 11, 38, 47, 58, 72, 71] (glej [6, stran
135] za definicijo Q-polinomski-razdaljno regularnih grafov), dvodelnih razdaljno-regularnih
grafov, skoraj dvodelnih razdaljno-regularnih grafov [13], asociativnih sheme grup [4, 5], krepko
regularnih grafov [13], Doobovih shem [85] (glej [6, stran 27] za definicijo Doobove sheme) in
asociativnih shem nad Galois-evimi kolobarji karakteristike štiri [51]. Uporabljena je bila celo v
teoriji kodiranja [37, 83].

Čeprav se lahko definicijo Terwilligerjeve algebre zlahka posploši na poljuben končen, enostaven
in povezan graf, ne obstaja veliko rezultatov o Terwilligerjevih algebrah grafov, ki niso razdaljno-
regularni. V člankih [54, 61] je bila preučevana Terwilligerjeva algebra incidenčnega grafa
tako imenovane Johnsonove geometrije. V članku [94] je avtor preučeval Terwilligerjevo
algebro incidenčnega grafa Hammingovega grafa. V članku [93] je bila proučena povezava
med Terwilligerjevo algebro grafa Γ in še eno matrično algebro, ki je povezana z grafom Γ, in sicer
tako imenovano kvantno sosednostno algebro grafa Γ. V člankih [59, 97] pa so avtorji proučevali
strukturo nekaterih T -algeber končnih dreves. Omenjeni rezultati so najnovejši rezultati v tej
smeri.

V tem poglavju naj bo Γ končen, enostaven in povezan graf. Izberimo si vozlišče x grafa Γ, ki ni
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list, in naj bo T = T (x) pripadajoča Terwilligerjeve algebra. Algebra T je zaprta za konjugiranje
in transponiranje. Zato se v mnogih primerih ta algebra učinkovito proučuje preko njenih
nerazcepnih modulov.

Predpostavimo sedaj za trenutek, da je graf Γ razdaljno-regularen. Izkaže se, da je v tem
primeru enolično določen nerazcepni T -modul s krajiščem 0 tanek. Predpostavimo tudi, da je Γ
dvodelen. Izkaže se, da ima algebra T , do izomorfizma natančno, enolično določen nerazcepen
T -modul s krajiščem 1, in da je ta modul prav tako tanek. Prav zaradi tega so bili v tem
primeru v literaturi intenzivno proučevani nerazcepni T -moduli s krajiščem 2; glej na primer
[9, 11, 15, 16, 17, 18, 19, 20, 38, 62, 63, 66, 67, 69, 70, 81]. Po drugi strani, če Γ ni dvodelen, je
struktura nerazcepnih T -modulov s krajiščem 1 veliko bolj zapletena kot za dvodelne grafe. Za
tovrstne rezultate glej na primer [21, 47, 71, 72, 92].

Naša raziskava se bo osredotočala na nerazcepne T -module s krajiščem 0 ali 1 splošnih grafov, ki
niso nujno razdaljno-regularni.

Kot smo že omenili, je bilo do sedaj mnogo raziskav Terwilligerjevih algeber namenjeno
raziskovanju razdaljno-regularnih grafov, katerih Terwilligerjeva algebra (glede na neko njihovo
vozlišče) ima, do izomorfizma natančno, relativno malo nerazcepnih modulov z danim krajiščem,
ter so vsi ti moduli (ne)tanki. Kot primer glej [63, 64, 65, 66, 67, 68, 74, 81]. V teh raziskavah
raziskovalci ponavadi želijo pokazati, da je ta algebraičen pogoj izpolnjen če in samo če graf
premore določene kombinatorične lastnosti. Naravno nadaljevanje teh raziskav so raziskave
Terwilligerjevih algeber grafov, ki niso nujno razdaljno-regularni. Te raziskave so predstavljene v
prvem delu te doktorske disertacije.

Izkaže se, da obstaja enolično določen nerazcepen T -modul s krajiščem 0. Že v [88] je Terwilliger
pokazal, da je ta modul tanek, če je graf Γ razdaljno-regularen glede na vozlišče x. Če pa je
nerazcepen T -modul s krajiščem 0 tanek, potem ne drži nujno, da je Γ razdaljno-regularen glede
na x. Fiol in Garriga [33] sta kasneje vpeljala pojem pseudo-razdaljne-regularnosti okoli vozlišča
x, ki temelji na priredbi uteži vozliščem, kjer te uteži ustrezajo komponentam (normaliziranega)
pozitivnega lastnega vektorja. Pokazala sta, da je enolično določen nerazcepen T -modul s
krajiščem 0 tanek natanko takrat, ko je graf Γ pseudo-razdaljno-regularen glede na vozlišče x
(glej tudi [30, Izrek 3.1]). V poglavju 3 podamo povsem kombinatorično karakterizacijo lastnosti,
da je ta T -modul tanek. V tej karakterizaciji nastopa število sprehodov (ki imajo določeno v
naprej predpisano obliko) v grafu Γ med vozliščem x ter vozlišči na določeni fiksni razdalji od
vozlišča x.

V nadaljevanju potem privzamemo, da je natančno določen nerazcepen T -modul s krajiščem
0 tanek (oziroma ekvivalentno, da je Γ pseudo-razdaljno-regularen glede na vozlišče x). Naš
naslednji cilj je podati kombinatorično karakterizacijo grafov, ki imajo tudi, do izomorfizma
natančno, enolično določen nerazcepen T -modul s krajiščem 1, ter je ta T -modul tanek. Če
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je Γ razdaljno-regularen, potem ima, do izomorfizma natančno, enolično določen nerazcepen
T -modul s krajiščem 1 (in je le-ta modul tanek) natanko takrat, ko je Γ dvodelen ali skoraj
dvodelen [21, Izrek 1.3]. V poglavju 4 pokažemo, da imajo tudi razdaljno-biregularni grafi do
izomorfizma natančno enolično določen nerazcepen T -modul s krajiščem 1 (in je le-ta modul
tanek). Primer, ko je graf Γ razdaljno-regularen glede na vozlišče x, ne pa nujno razdalno-
regularen ali razdaljno-biregularen, obravnavamo v poglavju 5 in poglavju 6. V poglavju 7 zgornji
rezultat posplošimo na primer, ko graf Γ ni nujno razdaljno-regularen glede na vozlišče x. Glavni
rezultat tega dela disertacije je kombinatorična karakterizacija takih grafov. Tudi v tem primeru
v karakterizaciji nastopa število sprehodov grafa Γ, ki so določene oblike. Pripomnimo, da so ti
rezultati posplošitev prejšnjih prizadevanj raziskovalcev, da bi razumeli in klasificirali grafe, ki
so pseudo-razdaljno-regularni glede na neko vozlišče, in imajo tudi, do izomorfizma natančno,
enolično določen nerazcepen T -modul s krajiščem 1, ter je ta T -modul tanek, glej [13, 16, 21].
Podali bomo tudi konstrukcijo neskončne družine grafov, ki imajo zgoraj opisano lastnost.

Razdaljno-uravnoteženi grafi

Naj bo Γ = (X,R) končen, neusmerjen, povezan graf, kjer je X množica njegovih vozlišč, R pa
množica njegovih povezav. Za poljubni vozlišči u,v ∈X označimo z ∂(u,v) = dΓ(u,v) dolžino
najkrajše poti med u in v. Za par sosednjih vozlišč u,v v grafu Γ definirajmo

Wu,v = {x ∈X | ∂(x,u)< ∂(x,v)}.

Rečemo, da je Γ razdaljno-uravnotežen, kadar za poljuben par sosednjih vozlišč u in v v Γ velja

|Wu,v|= |Wv,u|.

Z raziskavami razdaljno-uravnoteženih grafov je leta 1999 pričel Handa, ki je v članku [45]
proučeval razdaljno-uravnotežene delne kocke. Samo ime razdaljno-uravnoteženi grafi pa so
vpeljali Jerebic, Klavžar in Rall v članku [52]. V tem članku so dokazali nekatere osnovne
lastnosti razdaljno-uravnoteženih grafov, ter karakterizirali kartezične in leksikografske produkte
razdaljno-uravnoteženih grafov, ki so razdaljno-uravnoteženi. Družina razdaljno-uravnoteženih
grafov je zelo bogata. Študij te družine je zanimiv iz različnih povsem teoretičnih vidikov,
kjer se osredotočimo na določeno lastnost teh grafov, kot recimo simetričnost oziroma grupa
avtomorfizmov [55, 56, 98], povezanost [45, 75], ali kompleksnost algoritmov, ki so povezani s
temi grafi [8]. Vsekakor pa ni presenetljivo, da so ti grafi zaradi svojih lastnosti zanimivi tudi na
drugih raziskovalnih področjih, kot so recimo matematična kemija in komunikacijska omrežja. Na
primer, raziskave razdaljno-uravnoteženih grafov so močno povezane z raziskavami dobro znanih
Wiener-jevega in Szeged-ovega indeksa (glej [2, 52, 50, 87]). Dalje, razdaljno-uravnoteženi grafi
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predstavljajo zelo zaželjene modele raznih komunikacijskih omrežij [2]. Nedovno so bile v članku
[12] proučevane povezave med razdaljno-uravnoteženimi grafi ter problemom trgovskega potnika.

Izkaže se, da se dajo razdaljno-uravnoteženi grafi karakterizirati z lastnostmi, ki nimajo na prvi
pogled nič skupnega z njihovo originalno definicijo iz [52]. Na primer, v [3] je bilo pokazano,
da razdaljno-uravnoteženi grafi sovpadajo s tako imenovanimi self-median grafi; to so grafi, pri
katerih je vsota razdalj od izbranega vozlišča x do vseh ostalih vozlišč grafa neodvisna od izbire
vozlišča x. Drug tak primer so tako-imenovani grafi enakih možnosti (glej [2] za njihovo definicijo).
V [2] so avtorji pokazali, da razdaljno-uravnoteženi grafi s sodo mnogo vozlišči sovpadajo z grafi
enakih možnosti. Naj omenimo še, da so bile v literaturi definirane in študirane tudi razne
posplošitve razreda razdaljno-uravnoteženih grafov, glej na primer [1, 36, 49, 53, 76].

Pojem lepo razdaljno-uravnoteženih grafov se v kontekstu razdaljno-uravnoteženih grafov pojavi
povsem naravno. Pravimo, da je Γ lepo razdaljno-uravnotežen, kadar obstaja tako naravno število
γ = γ(Γ), da za poljuben par sosednjih vozlišč u in v v grafu Γ velja

|Wu,v|= |Wv,u|= γ.

Jasno je, da je vsak lepo razdaljno-uravnotežen graf tudi razdaljno-uravnotežen, vendar pa
nasprotno ni nujno res. Na primer, če je n≥ 3 poljubno liho naravno število, je graf prizme na
2n vozliščih razdaljno-uravnotežen, ne pa tudi lepo razdaljno-uravnotežen.

Predpostavimo sedaj, da je Γ lepo razdaljno-uravnotežen. Z d označimo premer grafa Γ (premer
grafa je največja razdalja med dvema vozliščema). V [57], kjer so bili ti grafi prvič definirani,
je bilo dokazano, da je d ≤ γ. Poleg tega je bila podana klasifikacija vseh lepo razdaljno-
uravnoteženih grafov, za katere velja d= γ. Izkaže se, da je graf Γ lepo razdaljno-uravnotežen
z d= γ, če in samo če je Γ izomorfen bodisi polnemu grafu na n≥ 2 vozliščih, bodisi polnemu
večdelnemu grafu Kt×2 (t≥ 2), ali pa ciklu na 2d oz. 2d+1 vozliščih. V tej disertaciji študiramo
lepo razdaljno-uravnotežene grafe, za katere je γ = d+1. Izkaže se, da je situacija v tem primeru
bistveno bolj zapletena kot v primeru, ko je γ = d. Zato smo se osredotočili na študij regularnih
razdaljno-uravnoteženih grafov, za katere je γ = d+1. V poglavju 9 podamo popolno klasifikacijo
takšnih grafov, glej Izrek 9.7.1.

Drug koncept, ki je tesno povezan s konceptom razdaljno-uravnoteženih grafov, je koncept krepko
razdaljno-uravnoteženih grafov. Za poljubno povezavo uv danega grafa Γ in za katerikoli dve
nenegativni celi števili i, j naj bo

Di
j(u,v) = {x ∈X | ∂(u,x) = i in ∂(v,x) = j}.

Graf Γ se imenuje krepko razdaljno-uravnotežen, če za vsak i≥ 1 in vsako povezavo uv v Γ velja
|Di

i−1(u,v)| = |Di−1
i (u,v)|. Preprosto je videti, da je krepko razdaljno-uravnotežen graf tudi
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razdaljno-uravnotežen, vendar obratno v splošnem ne drži (glej [55]). Za več rezultatov o krepko
razdaljno-uravnoteženih grafih in o sorodnih konceptih glej [3, 8, 50, 57, 75].

V poglavju 10 disertacije se osredotočimo na konstrukcije nekaterih družin razdaljno-uravnoteženih
grafov, ki so izjemno zanimive na tem podrčju raziskovanja.

Prva konstrukcija je konstrukcija nedvodelnih lepo razdaljno-uravnoteženih grafov, ki niso krepko
razdaljno-uravnoteženi. Namreč, lepo razdaljno-uravnoteženi grafi so bili študirani v [57], kjer
je bilo tudi dokazano, da znotraj razreda dvodelnih grafov, razreda razdaljno-uravnoteženih
grafov in lepo razdaljno-uravnoteženih grafov sovpadata. Po drugi strani pa obstajajo primeri
dvodelnih razdaljno-uravnoteženih grafov, ki niso krepko razdaljno-uravnoteženi [45]. Dalje, v
[57] so bili predstavljeni primeri nedvodelnih krepko razdaljno-uravnoteženih grafov, ki niso lepo
razdaljno-uravnoteženi. V poglavju 10 tako razrešimo [57, Problem 3.3] glede obstoja nedvodelnih
lepo razdaljno-uravnoteženih grafov, ki niso krepko razdaljno-uravnoteženi, ki sta ga postavila
Kutnar in Miklavič. Problem rešimo s konstrukcijo neskončne družine takšnih grafov.

Naša druga konstrukcija v tej disertaciji je v povezavi z domnevo o karakterizaciji krepko
razdaljno-uravnoteženih grafov, ki so jo postavili Balakrishnan in ostali v [3]. Naj bo Γ graf in
naj bo S podmnožica njegove množice vozlišč. Za poljubno vozlišče v grafa Γ definiramo

∂(v,S) =
∑
x∈S

∂(v,x).

Balakrishnan in ostali [3] so dokazali, da je povezan graf Γ razdaljno-uravnotežen, če in samo če je
∂(v,X) = ∂(u,X) za vse u,v ∈X. Postavili so naslednjo domnevo glede podobne karakterizacije
krepko razdaljno-uravnoteženih grafov: graf Γ je krepko razdaljno-uravnotežen, če in samo če
za vsak par sosednjih vozlišč u,v grafa Γ velja ∂(u,Wu,v) = ∂(v,Wv,u). Jasno je, da krepko
razdaljno-uravnoteženi grafi izpolnjujejo zgornji pogoj, vendar je še vedno odprto vprašanje,
ali velja tudi obratno. V poglavju 10 pokažemo, da domneva [3, Conjecture 3.2] ne drži. To
dokažemo s konstrukcijo neskončne družine protiprimerov za to domnevo.

Naša tretja konstrukcija je v povezavi z lastnostjo (krepke) razdaljne-uravnoteženosti v kontekstu
grafov, ki premorejo določeno stopnjo simetrije. Kutnar in ostali so pokazali, da vozliščno-
tranzitivni grafi niso le razdaljno-uravnoteženi, ampak tudi krepko razdaljno-uravnoteženi (glej
[55]). Ker vozliščna tranzitivnost ni nujen pogoj, da je graf razdaljno-uravnotežen, je bilo torej
naravno, da so avtorji raziskali lastnost razdaljne-uravnoteženosti znotraj razreda tako imenovanih
semisimetričnih grafov; to je razred grafov, ki so kolikor je le mogoče blizu vozliščno-tranzitivnim
grafom. Ti grafi so torej regularni povezavno-tranzitivni grafi, ki pa niso vozliščno-tranzitivni.
Najmanjši semisimetrični graf ima 20 oglišč. Za njegovo odkritje je zaslužen Folkman [35], ki
velja tudi za začetnika te veje raziskovanja.

Semisimetrični graf je nujno dvodelen, pri čemer dvodelni množici sovpadata z orbitama njegove
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grupe avtomorfizmov na množici vozlišč grafa. Posledično semisimetrični grafi ne premorejo
avtomorfizmov, ki bi zamenjali par sosednjih vozlišč. Zato se naravno pojavijo kot dobri
kandidati za grafe, ki niso razdaljno-uravnoteženi. Kutnar in ostali so dokazali, da obstaja
neskončno semisimetričnih grafov, ki niso razdaljno-uravnoteženi, vendar obstaja tudi neskončno
semisimetričnih grafov, ki so razdaljno-uravnoteženi. V poglavju 10 odgovorimo na vprašanje [55,
Question 4.6], ki so ga postavili Kutnar in ostali: ali obstoja semisimetričen razdaljno-uravnotežen
graf, ki ni krepko razdaljno-uravnotežen? Na to vprašanje ogovorimo s konstrukcijo neskončne
družine takšnih grafov.

Poglavje 10 zaključimo z rezultatom, da za graf Γ z n vozlišči in m povezavami obstaja algoritem,
ki v času O(mn) preveri, ali je graf Γ krepko razdaljno-uravnotežen oziroma lepo razdaljno-
uravnotežen.
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