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Abstract
CONSTRUCTING NEW SUPERCLASSES OF BENT FUNCTIONS
AND FURTHER CONSTRUCTIONS OF CRYPTOGRAPHICALLY

SIGNIFICANT MAPPINGS OUTSIDE M#

This thesis introduces results which lead to new secondary constructions
of (vectorial) bent functions outside the completed Maiorana-McFarland
class M#. It consists of roughly three parts.

The first part considers a new construction method for vectorial bent
functions via the so-called (PU) property, which is obtained as a gener-
alization of the construction methods provided by Tang et al. [82] and
Zheng et al. [90]. We extend the number of infinite families of vectorial
bent functions and provide a modification of the mentioned construction
to obtain instances of vectorial Boolean functions with maximal number
of bent components. The same method was further extended to the p-
ary case to obtain instances of p-ary weakly regular bent and plateaued
(n,m)-functions, where p is an odd prime. We also showed that the
(PU) property can be characterized via second-order derivatives, as it
was done in [90] for the binary case.

The second part addresses the construction of two new superclasses of
bent functions SC (superclass of C and D0) and CD (superclass of C and
D), and their applications in the design of related combinatorial objects.
We provide sufficient conditions for which these functions are outside
M#. Furthermore, we obtain new instances of bent (n, k)-functions
weakly/almost strongly/strongly outside M#. Unfortunately the output
dimension is not maximal (k < n/2), however our instances provide the
largest known output dimensions in the literature. We also used the
notion of these classes to characterize (n,m)-functions with maximal
number of bent components outside M#, where m > n/2, and for n = 6
we give a complete characterization. We also obtained new instances of
bent 4-decompositions via the SC and CD classes.

The third part addresses some known secondary constructions of bent
functionsc, like the direct and indirect sum as well as 4-decompositions.
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viii ABSTRACT

We provide conditions for which these construction methods yield bent
functions outside M#. We also construct several classes of (homoge-
neous) cubic bent functions (without affine derivatives) outside M# and
show that one of the obtained classes is non-decomposable (inseperable).

Math. Subj. Class. (2020): 94A60, 06E30, 11T71

Keywords: (vecotorial) bent functions, class inclusion, complete
Maiorana-McFaralnd class, MNBC functions, secondary constructions,
weakly/almost strongly/strongly outside M#, 4-decomposition, (PU)
property, SC and CD class, direct and indirect sum



Povzetek
KONSTRUKCIJE NOVIH SUPERRAZREDOV UKRIVLJENIH

FUNKCIJ IN NADALJNJE KONSTRUKCIJE KRIPTOGRAFSKO
POMEMBNIH PRESLIKAV IZVEN M#

Doktorska disertacija predstavlja rezultate, ki vodijo do novih sekun-
darnih konstrukcij (vektorskih) ukrivljenih funkcij izven poplnega
Maiorana-McFarland razreda M#. Sestavljena je iz okvirno treh delov.

V prvem delu doktorske disertacije obravnavamo novo metodo konstruk-
cije vektorskih ukrivljenih funkcij z uporabo tako imenovane (PU) last-
nosti, ki je pridobljena kot posplošitev konstrukcijskih metod, ki sta jih
uvedla Tang et al. [82] in Zheng et al. [90]. V tem delu razširimo množico
neskončnih družin vektorskih ukrivljenih funkcij in modificiramo omen-
jeno konstrukcijo, da dobimo primere vektorskih Boolovih funkcij z
največjim številom ukrivljenih komponent. Isto metodo razširimo na
problem p-arnih funkcij (p je liho praštevilo), kjer dobimo primere p-
arnih šibko regularnih ukrivljenih in platojskih (n,m)-funkcij. Pokažemo
tudi, da je mogoče (PU) lastnost karakterizirati z odvodi drugega reda,
podobno kot je bilo za binarni primer storjeno v [90].

V drugem delu doktorske disertacije obravnavamo konstrukcijo dveh
novih superrazredov ukrivljenih funkcij SC (superrazred razredov C in
D0) in CD (superrazred razredov C in D) ter njune uporabe pri načr-
tovanju njima sorodnih kombinatoričnih objektov. Zagotovimo tudi za-
dostne pogoje, pod katerimi ležijo te funkcije izven razreda M#. Po-
leg tega predstavimo nove primere ukrivljenih (n, k)-funkcij šibko/skoraj
močno/močno izven M#. Žal izhodna dimenzija ni največja (k < n/2),
vendar naši primeri zagotavljajo največje znane izhodne dimenzije v lit-
eraturi. Pojem teh razredov uporabimo tudi za karakterizacijo (n,m)-
funkcij z največjim številom ukrivljenih komponent izven razreda M#,
kjer je m > n/2. V posebnem primeru, kjer je n = 6, podamo tudi
popolno karakterizacijo. Preko razredov SC in CD pridobimo tudi nove
primere ukrivljenih 4-dekompozicij.

Tretji del doktorske disertacije je obravnava določenih znanih sekun-
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x POVZETEK

darnih konstrukcij ukrivljenih funkcij, kot sta neposredna in posredna
vsota ter 4-dekompozicije. V tem delu podamo pogoje, pri katerih te
konstrukcije generirajo ukrivljene funkcije izven razreda M#. Konstru-
iramo tudi več razredov (homogenih) kubičnih ukrivljenih funkcij (brez
afinih odvodov) izven M# in pokažemo, da je en izmed pridobljenih
razredov nerazgradljiv (neločljiv).

Math. Subj. Class. (2020): 94A60, 06E30, 11T71

Ključne besede: (vektorske) ukrivljene funkcije, vključitev razreda,
popoln Maiorana-McFaralnd razred, MNBC funkcije, sekundarne kon-
strukcije, šibko/skoraj močno/močno izven M#, 4-dekompozicija, (PU)
lastnost, razreda SC in CD, neposredna in posredna vsota
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Chapter 1

Introduction

People’s desire of wanting to keep some information confidential in phys-
ical form marks the beginning of cryptography - the discipline that by
today’s definition enables two parties to securely communicate via an
insecure channel. Naturally, wanting to keep something secret will not
work for everyone, who would like to know what lies behind this secrecy.
This resulted in the development of cryptanalysis - the science of break-
ing ciphers and revealing the original message. Together, cryptography
and cryptanalysis form the field of cryptology, whose study and impor-
tance has grown exponentially with the development of modern science
as we know it today.

At first, before the modern era, the main purpose of cryptography was to
ensure secrecy in communications related to war and diplomatic affairs,
whilst in recent decades the field has expanded beyond confidentiality
to the concerns of checking message integrity, sender/receiver identity
authentication, digital signatures, interactive proofs, and secure compu-
tation, among others. The information we want to send has to travel
through insecure channels via some servers over which we have no con-
trol, but despite that, we want the information to remain private.

A key objective of cryptography is to enable two parties, usually referred
to as Alice (sender) and Bob (reciever) to communicate safely over an
insecure channel. This means that no third party, known as the adver-
sary, usually referred to as Eve, is not able to derive any information
about the plaintext from the observed ciphertext. The message they
want to exchange is called plaintext and the message they send through
the channel is called ciphertext. Alice encrypts the plaintext m and ob-
tains the ciphertext c via some encryption key KE. The ciphertext is
then transmitted to Bob, who uses a decryption process together with
the ciphertext and decryption key KD to obtain the original message.
A classic example of such a cryptosystem is depicted in Figure 1.1. If
both the encryption and decryption key are the same (KE = KD), we
are talking about symmetric-key crpytography. On the other hand, if the
encryption key is public, in other words, if everyone is able to send Bob a
ciphered message which only he can decipher using his secret decryption
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2

key, we are talking about public-key cryptography. The main advantage
of symmetric-key cryptography over public-key cryptography is that it is
fast and efficient for large amounts of data. On the other hand, public-
key cryptography can be used not only for safe communication but also
for authentication with digital signatures.

ENCRYPT DECRYPT

ATTACKER

Key K Key KE D

Figure 1.1: Scheme of a classic cryptosystem

When simulating attacks on cryptosystems, it is assumed that Eve knows
both encryption and decryption algorithms. That is, the security of a
cryptographic system should not rely on the secrecy of the algorithms
and methods but only on the secrecy of the keys. These principles were
stated by A. Kerckhoffs in [42].
We will focus mainly on symmetric cryptography, as the topics in
the thesis adress properties of cryptographic primitives related to it.
Symmetric-key cryptography contains two large families of cryptographic
primitives, namely, block ciphers (Figure 1.2) and stream ciphers (Figure
1.3).

Block cipher
encryption

PLAINTEXT

CIPHERTEXT

Figure 1.2: Example of a block cipher

PLAINTEXT

Keystream

Stream 
Cipher

CIPHERTEXT

Figure 1.3: Example of a stream cipher

Stream ciphers generate a pseudorandom sequence (appears to be sta-
tistically random, despite having been produced by a completely deter-
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ministic and repeatable process) of bits, called keystream, that is usually
XOR-ed (added modulo two) to the plaintext to obtain the ciphertext.
Some of the well-known encryption algorithms that belong to the family
of stream ciphers include SEAL [76], SNOW [34], ISAAC [40], Trivium
[26], and Grain [35].
On the other hand, the general idea in the design of block ciphers is
to divide the plaintext into blocks (of length 2k, usually it equals 64,
128 or 256) and encrypt each block individually, thus obtaining a cipher
comprised of ciphertext blocks. Two popular structures used within the
design block are Feistel-based or alternatively a substitution-permutation
network. Modern designs of block cipher employ an iterative application
of several identical rounds to produce a cipher text block. A key aspect
is that these rounds implement the concept of confusion and diffusion,
which were introduced by C. E. Shannon in his classified report [80].
The role of confusion is that each bit of the ciphertext should depend
on the plaintext and secret key in a very complicated manner. On the
other hand, diffusion can be roughly interpreted as the property that the
ciphertext bits, after applying one encryption round, depend on many
input bits. In other words, the change of one single bit in the plaintext
should result in the change of roughly half of the bits in the ciphertext.
In the substitution-permutation network (SPN) we note two notions: S-
box and P -box. The substitution box (S-box) employs Shannon’s prin-
ciple of confusion and substitutes a small block of input bits by another
block of bits. In general it is a mapping that maps n bits to m bits,
where n is not necessarily the same as m. For example, the S-box used
in DES (see below) mapped 6-bit inputs to 4-bit outputs. Another com-
ponent in the SPN is the so-called permutation box (P -box), which takes
the outputs of all S-boxes and permutes them. In principle, the P -box
employs Shannon’s principle of diffusion.
One of the first block cipher is considered to be Lucifer, developed at IBM
in the 1970s based on work done by Horst Feistel. Later, a revised version
of Lucifer was adapted as a US government FIPS (Federal Information
Processing Standard) standard, which was called the Data Encryption
Standard (DES, which was publicly released in 1976 and has been widely
used by both governmental and private organisations.
As soon as the specifications of DES were made public, the cipher became
the subject of controversy. Doubts about the security of DES arose
from the fact that Lucifer’s original 128-bit secret key had been reduced
to 56 bits, and also that the design principles of its substitution and
permutation tables were never made public.
In 1992, Matsui introduced the concept of linear cryptanalysis [54] and
applied it to DES. A few years later, the DESCHALL project publicly
broke a DES enciphered message. It became clear that due to the small
keylength of DES, it was susceptible to brute force attacks and hence,
a new encryption standard had to be chosen. DES has been superseded
as a United States Federal Standard by the Advanced Encryption Stan-
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dard (AES), adopted by National Institute of Standards and Technology
(NIST) in 2001 after a 5-year public competition. It was developed by
Joan Daemen and Vincent Rijmen, and submitted to the competition
under the name Rijndael [25]. Some other well-known block ciphers are
for instance IDEA [47], Blowfish [78], RC5 [75], PRESENT [9], to name
a few.
In general, when considering cryptanalytic assumptions, there are four
main scenarios of applying cryptanalysis with respect to what kind of
information is at the attacker’s disposal.
⋆ In the weakest ciphertext-only scenario, the attacker only has access

to several ciphertext that were generated by a targeted block cipher
using the unknown secret symmetric key. Their goal is then either
to recover parts (or entire) plaintexts or alternatively to recover
(a portion of) the secret key. This type of scenario is the most
practical, but on the other hand the cryptanalysis is hardest to
perform.

⋆ In the case of known-plaintext scenario, the attacker has at his dis-
posal many plaintext/ciphertext pairs and his goal is to deduce (a
portion of) the secret key.

⋆ The chosen-plaintext scenario is similar to the known-plaintext at-
tack with the difference that the attacker has the access to the
encryption device and can encrypt any messages (plaintexts) of his
choice. The goal is, again, to recover the secret key or a portion of
it.

⋆ The chosen-ciphertext scenario is similar to the latter scenario
though the attacker decrypts the ciphertexts of his choice thus ob-
taining the corresponding plaintexts.

In order to ensure high security, the functions in block ciphers have to
satisfy various conditions/properties. In what follows we will mainly
address the security of S-boxes, which can be viewed as a collection of
mappings from Fn2 → F2, known as Boolean functions. Here, with Fn2 , we
denote the n-dimensional vector space over F2 = {0, 1}. As mentioned
earlier, Matsui developed the notion of linear cryptanalysis which breaks
the full 16-round DES cipher with 247 plaintext/ciphertext pairs.
To ensure high enough protection against these types of attacks the no-
tion of nonlinearity was introduced (cf. Chapter 2). Boolean functions
which are at the maximal possible distance to the set of all affine func-
tions (mappings la : Fn2 → F2 defined by la(x) = a ·x⊕ b, a ∈ Fn2 , b ∈ F2)
have the highest nonlinearity and are called bent functions, a term intro-
duced by O. Rothaus in 1976 [77]. Aside from high nonlinearity, other
cryptographically important properties of a Boolean functions are con-
nected with the notion of balancedness, strict avalanche criterion and
propagation criterion, algebraic degree, correlation immunity, to name
a few. For more details on these properties we refer the reader to the
books [19, 24]. Throughout the thesis, the notion of nonlinearity and
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bent functions will be of main interest for us.

In the last fifty years, a lot of research was done on bent functions and
their applications. In coding theory, the task of determining the so-called
covering radius for the Reed-Muller code RM(r, n) of order 1 is equiva-
lent to the task of finding certain bent functions [41, 50]. Some special
instances of quadratic bent functions can be used to construct Kerdock
codes [43] that are optimal and have large code distances, which grow
with the code lengths [27, 81]. The problem of constructing Hadamard
matrices is a well-known combinatorial problem, which remains unsolved
since 1893. If the matrix size is N = 2n (n is even), then this problem can
be transformed (with some restrictions) to the task of constructing bent
functions in n variables [77]. Bent functions can also be characterized via
strongly regular graphs with parameters (v, k, λ, µ). This means that the
graph contains v vertices each of degree k and for any vertices a and b the
number of vertices incident to a and b simultaneously is equal to λ or µ,
which depends on the presence or absence of the edge between a and b,
respectively. In [8] it was shown that a Boolean function f is bent if and
only if its Cayley graph Gf is strongly regular and λ = µ. Bent functions
have also been studies because of their connection with difference sets.
Let (G,+) be an Abelian group of order v. A subset D ⊆ G of size k is
called a difference set with parameters (v, k, λ) if every nonzero g ∈ G
can be represented as g = b−d in exactly λ ways, where b, d ∈ D. In [28]
it was proved that a Boolean function f in n variables is bent if and only
if the set D = {(x, f(x)) : x ∈ Fn2} is a difference set with parameters
(2n+1, 2n, 2n−1) in the additive group Zn+1

2 . Although they seem like a
perfect choice for secure cryptographical mappings, their main crypto-
graphic drawback is that they are not balanced. However, even though
they cannot be used directly, bent functions can be modified to obtain
new functions which still have high nonlinearity and are applicable in
the construction of block and stream ciphers. For example, the ciphers
CAST [1] and Grain [35] as well as the hash function HAVAL [93] use
certain modifications of bent functions in their construction. For more
details on bent functions we refer to the books of Carlet, Sihem and
Tokareva [19, 59, 83] and to the paper of Zhang and Pasalic [87].

Although a lot of research in the field of bent function has been done,
there are still a lot of open problems. Among those, we note the prob-
lem of determining the number of bent functions for a fixed number of
variables, their design and characterization. The construction methods
of vectorial bent functions can be divided into two classes: primary and
secondary, referring respectively to the designs that build these functions
form scratch and alternatively using the known ones, respectively.

When considering classes of bent functions, there are two primary classes
referred to as partial spread (PS) class due to Dillon [29] and the
Maiorana-McFarland (M) class [55]. The term primary refers to the
design that does not employ known bent functions to generate new ones
(giving rise to the so-called secondary methods), it rather uses a suitable
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set of affine functions (typical for the Maiorana-McFarland method [55])
or a collection of disjoint n/2-dimensional subspaces to construct a bent
function on Fn2 (typical for the partial spread class introduced by Dillon
[29]). Another generic class, denoted by N , was proposed by Dobbertin
[30] and it includes both M and a subclass of PS commonly denoted
PSap. A non-exhaustive list of various secondary constructions can be
found in the following works [17, 18, 22, 37, 57, 92]. In 1993, Carlet [17],
motivated by the results of Dillon, introduced two secondary classes of
bent functions, which will be of great interest throughout the thesis, de-
noted by C and D, which are derived through a suitable modification of
bent functions in the M class. The main problem with the secondary
constructions is the difficulty to answer the question about the classifi-
cation of such generated bent functions. More precisely, it may happen
that some of these secondary constructions simply generate bent func-
tions which belong to the known primary classes of bent functions in
which case only their explicit representation is of importance. Neverthe-
less, showing the non-inclusion into the completed primary classes (for
the definition of a completed class see Definition 2.2.3) is usually a hard
task, especially in the case of the so-called PS class due to the lack of
efficient indicators. Essentially, the problem can be reduced to identify-
ing cliques in a graph, which is known to be NP-hard [88]. In the case
of the completed M class such an indicator exists (cf. Lemma 2.2.4),
however it becomes computationally inefficient for n ≥ 14 (cf. Section
7.2.1).
An explicit subclass of D, named D0, was introduced by Carlet in [17]
and its cardinality is of approximately the same size as of M. It was
shown that this subclass contains bent functions that do not belong to
the completed classes M# or PS#. A complete characterization of the
D0 class with respect to its intersection with M, extending a partial
characterization of Carlet, has recently been given in [44]. This does not
substantially help in achieving a complete classification of bent functions,
as the two primary classes stand only for a portion of ≈ 276 of bent
functions on F8

2, whereas their totality is around 2106 [48]. In recent
articles [89, 88, 45], the analysis of these two secondary classes has been
taken further towards specifying a sufficient set of conditions so that
the resulting bent functions are also provably outside M#, where the
superscript “#” in general denotes a completed version of the considered
class (cf. Definition 2.2.3). Due to the hardness of overall conditions,
ensuring that at the same time the specified bent functions are indeed
in C or D and additionally outside M# (possibly also outside PS#) is
a rather difficult task. One of the main objectives of this thesis is to
further extend the number of bent functions lying outside the M# class.
The bentness property has been extended to general (n,m)-functions,
i.e. mappings from Fn2 to Fm2 (cf. Section 2.3). As shown by Nyberg
[64], these functions exist only for m ≤ n/2. The construction meth-
ods of vectorial bent functions can also be divided into two classes:
primary and secondary. For some known constructions (primary and
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secondary) of both Boolean and vectorial bent functions, we refer to
[21, 31, 58, 61, 62, 63, 68, 86]. Another goal of this thesis is to addi-
tionally address the design of vectorial bent functions that are weak-
ly/strongly or almost strongly outside M# (cf. Definition 2.3.5), a no-
tion which was introduced in [67]. Most of the constructions are based
on a generlized construction inspired by the works in [82, 90] via the
so-called (Pτ) property (we will refer it as the (PU) property, cf. Lemma
3.1.5). Similarly to the Boolean case, these vectorial objects may pro-
vide better understanding related to more complete classification of these
structures.
The rest of the thesis is organized in the following way. In Chap-
ter 2 we give basic notations, definitions and some well-known results
used throughout the thesis. However, certain notions will be introduced
throughout the thesis when deemed appropriate and needed.
Chapters 3 and 4 introduce a new method for the secondary construction
of bent (n,m)-functions and p-ary weakly regular bent (n,m)-functions
(for definition see Section 2.4) via the so-called (PU) property. This
construction will be of great importance for obtaining functions weakly,
strongly or almost strongly outside M#.
Chapter 5 addresses the construction of two new superclasses SC (super-
class of C and D0) and CD (superclass of C and D) as well as providing
sufficient conditions for which these functions are outside M#. In the
end of the chapter, we provide explicit definitions of the duals of certain
functions in SC and CD.
In Chapter 6, we give an overview of the applications of the newly con-
structed classes SC and CD for the construction of vectorial bent func-
tions weakly/strongly/almost strongly outside M# as well as so-called
vectorial MNBC functions (cf. Definition 3.3.1) weakly/strongly outside
M#.
Chapter 7 further extends the number of bent functions outside the M#

class viewed as so-called 4-decompositions. We also obtain instances of
so-called bent 4-decompositions outside M# via the SC and CD classes.
Chapter 8 considers two well-known secondary constructions - direct
and indirect sum, and we provide conditions for which these functions
lie outside M#. We also give instances of (homogeneous) cubic bent
functions (without affine derivatives) and greatly increase the bounds of
[71] for the dimensions in which they exist. We also show that one of
the constructed classes is non-decomposable (inseperable) and we also
provide vectorial bent functions strongly outside M# of relatively large
output dimension.
At the end of the thesis we provide some concluding remarks. The results
of this PhD Thesis are published in the following articles:
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⋆ A. Bapić and E. Pasalic. A new method for secondary construc-
tions of vectorial bent functions. Designs, Codes and Cryptography,
volume 89(11), pages 2463–2475, 2021.

⋆ A. Bapić and E. Pasalic. Constructions of (vectorial) bent functions
outside the completed Maiorana–McFarland class. Discrete Applied
Mathematics, volume 314, pages 197–212, 2022.

⋆ A. Bapić, E. Pasalic, F. Zhang, and S. Hodžić. Constructing new
superclasses of bent functions from known ones. Cryptography and
Communications, SI Boolean Functions and Their Applications VI,
pages 1–28, 2022.

⋆ A. Bapić, E. Pasalic, A. Polujan, and A. Pott. Vectorial boolean
functions with the maximum number of bent components outside
the M# class. Submitted manuscript. Available at: https:
//www.wcc2022.uni-rostock.de/storages/uni-rostock/
Tagungen/WCC2022/Papers/WCC_2022_paper_9.pdf

⋆ A. Bapić. Secondary constructions of vectorial p-ary weakly reg-
ular bent functions. Submitted manuscript. Available at: https:
//arxiv.org/submit/4600103/view

⋆ E. Pasalic, A. Bapić, F. Zhang, and Y. Wei. Explicit infinite fam-
ilies of bent functions outside the completed Mairona-McFarland.
Submitted manuscript. Available at: https://eprint.iacr.org/
2022/1126

⋆ F. Zhang, E. Pasalic, A. Bapić and B. Wang. Applications of the
indirect sum in the design of several special classes of bent functions
outside the completed M class. Submitted manuscript. Available
at: https://eprint.iacr.org/2022/8697



Chapter 2

Preliminary concepts

In this chapter, we give most of the definitions and concepts related to
(vectorial) Boolean functions that will be used throughout the thesis.
Some specific concepts will be also introduced in the corresponding sec-
tions when deemed appropriate due to simplicity and overall structure
of the thesis.
Let Fpn denote the Galois field of order pn, where p is a prime number.
Its cyclic group F∗

pn is a multiplicative group with pn − 1 elements, con-
taining all the elements of the finite field Fpn except the zero element.
It is generated by a primitive element α ∈ Fpn and once such an ele-
ment is fixed, we can use it to express the basis of the finite field as
{α0, α1, . . . , αn−1}. Consequently, any element ω in Fpn can be expressed
as

ω = v0α
0 + v1α

1 + · · ·+ vn−1α
n−1,

where v0, . . . , vn−1 ∈ Fp. From this, we note a natural isomorphism τ
between the finite field Fpn and the vector space Fnp of p-ary n-tuples
such that

v0α
0 + v1α

1 + · · ·+ vn−1α
n−1 ∈ Fpn 7→ (v0, . . . , vn−1) ∈ Fnp .

Because of this, we will often use both the notion of finite fields as well
as vector spaces. With “⊕” we will denote the summation when working
with vector spaces and “+” when considering finite field notation.
Apart from Chapter 4, we will be considering the binary case, i.e.
p = 2, throughout the thesis. The Hamming weight of a vector
x = (x0, x1, . . . , xn−1) ∈ Fn2 , denoted by wt(x), is defined as

wt(x) = | {i ∈ {0, 1, . . . , n− 1} : xi = 1} |.
The Hamming distance d between two vectors x, y ∈ Fn2 is the num-
ber of positions in which their coordinates differ. That is d(x, y) =
|{i : xi ̸= yi}|. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn2 the usual
scalar (dot) product over F2 is defined as

x · y = x1y1 ⊕ · · · ⊕ xnyn,

9
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wheras in the finite field notations it is characterized via the trace func-
tion Trnm : F2n → F2m, m|n, defined with

Trnm(x) = x+ x2
m

+ x2
2m

+ · · ·+ x2
(n/m−1)m

, x ∈ F2n.

If m = 1, this function is called the absolute trace function. For
x, y ∈ F2n, their scalar product (using a suitable basis of F2n over F2)
the following connection can be established (see [19]) as

x · y = Trn1 (xy).

2.1 Boolean functions

Any mapping from Fn2 (or F2n) to F2 is called an n-variable Boolean
function and the set of all such functions will be denoted with Bn. The
support of the function is defined as Sf = {x ∈ Fn2 : f(x) = 1}. The
distance between two Boolean function f and g on the same number
of variables n is measured as the number of places in which their truth
tables differ, i.e. d(f, g) = |{x ∈ Fn2 : f(x) ̸= g(x)}|. A function on n
variables is said to be balanced if exactly half of its output bits are zero
and half are one; that is if |Sf | = 2n−1. There are many ways on how to
represent a Boolean function f ∈ Bn:

• truth table. The (0, 1)-sequence defined by

Tf = (f(v0), f(v1), . . . , f(v2n−1))

is called the truth table of f , where v0 = (0, . . . , 0, 0), v1 =
(0, . . . , 0, 1), . . . , v2n−1 = (1, . . . , 1, 1) are ordered by lexicograph-
ical order ({e0, . . . , e2n−s−1} ⊂ Fn2 is ordered lexicographically if
|ei| < |ei+1| for any i ∈ [0, 2n−s − 2], where |ei| =

∑n−1
j=0 ei,n−1−j2

j

denotes the integer representation of ei ∈ Fn2). For higher values
of n such sequences are very long and they are often presented in
hexadecimal or base32 form (cf. bent functions in the Appendix).

• algebraic normal form. The algebraic normal form (ANF) of f is
a multivariate polynomial in F2[x0, . . . , xn−1] \ (x20 ⊕ x0, . . . , x

2
n−1 ⊕

xn−1) of the form

f(x0, . . . , xn−1) =
⊕
u∈Fn

2

aux
u, (2.1)

where au ∈ F2 and xu =
∏n−1

j=0 x
uj
j .

The following theorem gives us an explicit formula on how to com-
pute the values au in the ANF (2.1).
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Theorem 2.1.1. [19] Let f be a Boolean function defined on Fn2 .
Then the algebraic normal form of f is unique. Moreover, the coef-
ficients of the ANF and the values of f satisfy the following

au =
⊕
x⪯u

f(x) and f(u) =
⊕
x⪯u

ax,

where x ⪯ y if and only if xi ≤ yi, for all 0 ≤ i ≤ n− 1.
An important notion that we have to mention here is the so-called
algebraic degree of a Boolean function. Let f be a Boolean function
in algebraic normal form (2.1). The algebraic degree of f is defined
as

deg f = max{wt(u) : u ∈ Fn2 , au ̸= 0}.

• trace representation. The trace representation of f is not unique
unlike the previous two representations. Every Boolean function
can be presented as

x 7→ Trn1

(
2n−1∑
i=0

δix
i

)
,

where δi ∈ F2n.
Throughout the thesis, especially when considering the inclusion/exclu-
sion in the M# class (cf. Lemma 2.2.4), the notion of derivatives of
Boolean functions will be of great importance.
Definition 2.1.2. The derivative of f ∈ Bn in the direction of a ∈ Fn2 ,
denoted by Daf , is again a Boolean function in Bn defined by

Da(f) = f(x⊕ a)⊕ f(x), x ∈ Fn2 .

For any k > 1 we can define the k-th order derivative of a Boolean
function at a1, a2, . . . , ak ∈ Fn2 with

Da1,a2,...,akf = Da1Da2 . . . Dakf.

Specially, with An, we will denote the class of all affine Boolean functions,
i.e. functions of the form x 7→ a ·x⊕ε, for a ∈ Fn2 , ε ∈ F2. For a Boolean
function f ∈ Bn we define its nonlinearity Nf as the minimal Hamming
distance of f from the set of all affine functions, that is,

Nf = min{d(f, g) : g ∈ An}.

Aside from nonlinearity, another imporant tool we will need to intro-
duce bent functions and describe important cryptographic properties of
Boolean functions is called the Walsh-Hadamard transform, which is
defined as follows.
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Let f be a Boolean function defined on Fn2 . The Walsh-Hadamard trans-
form (WHT) of f is the map Wf : Fn2 → Z, defined by

Wf(u) =
∑
x∈Fn

2

(−1)f(x)⊕x·u, u ∈ Fn2 , (2.2)

where x · u = x0u0 ⊕ . . . ⊕ xn−1un−1. The sequence of the 2n Walsh
coefficients given by (2.2) as u varies is called the Walsh spectrum of
f . Similarly, we define the inverse Walsh-Hadamard transform (inverse
WHT) at a point u ∈ Fn2 with

(−1)f(u) = 2−n
∑
x∈Fn

2

Wf(x)(−1)x·u. (2.3)

In terms of the Walsh-Hadamard transform, the nonlinearity of f can
be defined as

Nf = 2n−1 − 1

2
max
u∈Fn

2

|Wf(u)|.

The concept of (extended) affine equivalence proves to be very important
in the analysis (i.e., classification) of Boolean functions, since it preserves
various properties (it permutes the spectrum of a function, preserves the
degree, etc).
Definition 2.1.3. For two Boolean functions f and g defined on Fn2 we
say that they are extended affine equivalent (EA equivalent) if there is a
nonsingular n× n matrix A over the field F2, vectors b and c in Fn2 , and
a constant λ ∈ F2 such that, for every x ∈ Fn2 ,

g(x) = f(Ax⊕ b)⊕ c · x⊕ λ.

If λ = 0 and c = 0n, the functions f and g are said to be affine equivalent.
We see that affine equivalence is a special case of EA equivalence. When
we talk about equivalent Boolean functions, we will mean EA equiva-
lence, if not stated otherwise.
In the following section we introduce the notion of bent functions as well
as some primary and secondary classes of bent functions which will be
the core topic of the thesis.

2.2 Bent functions

The term “bent function” was introduced by Rothaus in 1976 [77]. These
functions have a wide range of applications in cryptography, coding the-
ory, maximum length sequences, theory of difference sets, and many
more. For more details on bent functions and their applications we refer
to [19, 24, 59, 83].
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One of the many important cryptographic properties a Boolean functions
has to have is high nonlinearity to provide resistance against so-called
linear cryptanalysis [54]. The functions that have maximal nonlinearity
are exactly bent functions, i.e., they are at maximal Hamming distance
from the set of affine functions. There are many characterizations of bent
functions. To summarize, we state just a few that will be of interest to
us.

For a function f ∈ Bn the following statements are equivalent:

• f is bent.

• Wf(u) = ±2n/2 for all u ∈ Fn2 .

• Daf is balanced for all a ∈ Fn∗2 .

• x 7→ f(x)⊕ a · x is bent for any a ∈ Fn2 .

• Nf = 2n−1 − 2n/2−1.

When a Boolean function f is bent, the Boolean function f ∗ ∈ Bn such
that

Wf(u) = 2
n
2 (−1)f

∗(u),

for any u ∈ Fn2 , is also bent and is called the dual of f (see [19]). Aside
from bent functions, we will be also interested in so called s-plateaued
and 5-valued spectra Boolean functions.

A function f ∈ Bn is called s-plateaued if its Walsh spectra only takes
three values 0 and ±2

n+s
2 (the value 2

n+s
2 is called the amplitude), where

s ≥ 1 if n is odd and s ≥ 2 if n is even (s and n always have the same
parity).

A class of 1-plateaued functions for n odd, or 2-plateaued for n even,
corresponds to so-called semi-bent functions.

The Walsh support of an s-plateaued function has cardinality #Sf =
2n−s [14, Proposition 4]. A dual function f ∗ of an s-plateaued f ∈ Bn is
defined through Wf(ω) = 2

n+s
2 (−1)f

∗(ω), for ω ∈ Sf . To specify the dual
function as f ∗ : Fn−s2 → F2 we use the concept of lexicographic ordering,
which was introduced in Section 2.1.

Since Sf is not ordered in general, we will always represent it as Sf =
v⊕E, where E is lexicographically ordered for some fixed v ∈ Sf and e0 =
0n. A direct correspondence between Fn−s2 and Sf = {ω0, . . . , ω2n−s−1}
is achieved through E so that for the lexicographically ordered Fn−s2 =
{x0, x1, . . . , x2n−s−1} we have

f
∗
(xi) = f ∗(v ⊕ ei) = f ∗(ωi), (2.4)

where xi ∈ Fn−s2 , ei ∈ E, i ∈ [0, 2n−s − 1].
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Remark 2.2.1. Throughout the thesis, the dual of an s-plateaued func-
tion f : Fn2 → F2 will be denoted by f ∗ and is considered as a function on
Sf (that is f ∗ : Sf → F2). However, as specified in (2.4), the notation f ∗

associates this dual to a function defined on Fn−s2 , that is f ∗ : Fn−s2 → F2.

Throughout the thesis, several special forms of bent functions will be of
interest for us, which is why we summarize their notion in the following
section.

2.2.1 Classes of bent functions

Till today, the number of bent functions in n variables is only known for
n ≤ 8. For n ≥ 10 this remains an open problem. In n = 2, 4 and 6 bent
functions have been completely classified under the action of the general
linear group.

For n = 8 there are approximately 2106 [48] bent functions. If we were to
imagine all these bent functions as an enormous garden, the bent func-
tions classified for n = 8 could fit on a single flower(whose cardinality is
c.a. 276). Thus, it is natural to ask, what are the remaining ”flowers“.
The solution is to study constructions of bent functions. One approach
of designing "new" bent functions, on the same or on a larger variable
space, uses already known bent functions. these methods are commonly
referred to as secondary constructions. These are called secondary con-
structions. The two known primary constructions are direct in the sense
that they do not use bent functions as building blocks, and most likely
there do not exist other primary methods. Therefore, to classify and
enumerate bent functions, the secondary construction methods are of
great importance. In what follows we present the two main primary
classes M and PS, as well as two secondary classes C and D, which will
be of great interest throughout the thesis.

Bent functions in M and PS

When considering classes of bent functions, there are two primary classes
referred to as partial spread (PS) class due to Dillon [29] and the
Maiorana-McFarland (M) class [55]. The term primary refers to the
design that does not employ known bent functions to generate new ones
(giving rise to the so-called secondary methods), it rather uses a suitable
set of affine functions (typical for the Maiorana-McFarland method [55])
or a collection of disjoint n/2-dimensional subspaces to construct a bent
function on F2n (typical for the partial spread class introduced by Dillon
[29]).

The Maiorana-McFarland class M is the set of n-variable (n = 2m)
Boolean functions of the form

(M) : f(x, y) = x · π(y)⊕ g(y), x, y ∈ Fm2
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where π is a permutation on Fm2 , and g is an arbitrary Boolean function
on Fm2 . This is one of the few classes where the explicit construction of
the duals is known. For f ∈ M , we have that its associated dual bent
function f ∗ ∈ M (see also Remark 7.2.1 for the fact that f ∗ is in M) is
given by

f ∗(x, y) = y · π−1(x)⊕ g(π−1(x)), x, y ∈ Fm2 ,
where π−1 denotes the inverse permutation of π. Quite often we will
describe these functions using finite field notation:

f(x, y) = Trm1 (xπ(y)) + g(y), x, y ∈ F2m,

where Trm1 denotes the absolute trace.
In order to introduce the partial spread construction of bent functions
functions, we first give a definition of a partial spread.
Definition 2.2.2. A partial spread of order s in Fn2 with n = 2k is a
set of s vector subspaces U1, . . . , Us of Fn2 of dimension k each, such that
Ui ∩ Uj = {0} for all i ̸= j. The partial spread of order s = 2k + 1 in Fn2
with n = 2k is called a spread.
In the following, we denote by 1U : Fn2 → F2 the indicator function of
U ⊆ Fn2 , i.e., 1U(x) = 1 if x ∈ U , and 0 otherwise. Using the notion
of a partial spread, Dillon [29] introduced a partial spread construction
of bent functions, which splits the PS class into the following two sub-
classes:

• The PS+ class is the set of Boolean bent functions of the form

(PS+) : f(x) =
2k−1+1∑
i=1

1Ui
(x), x ∈ Fn2

where the vector spaces U1, . . . , U2k−1+1 of Fn2 form a partial spread
in Fn2 .

• The PS− class is the set of Boolean bent functions of the form

(PS−) : f(x) =
2k−1∑
i=1

1U∗
i
(x), x ∈ Fn2

where the vector spaces U1, . . . , U2k−1 of Fn2 form a partial spread in
Fn2 and U ∗

i := Ui \ {0}.
The Desarguesian partial spread class PSap ⊂ PS− is the set of Boolean
bent functions f on F2k × F2k of the form

(PSap) : f : (x, y) ∈ F2k × F2k 7→ h (x/y) ,

where x/y = 0 if y = 0 for x, y ∈ F2k and h : F2k → F2 is a balanced
Boolean function with h(0) = 0.
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Bent functions in C and D

In 1993, Carlet [17] introduced two additional secondary classes of bent
functions, denoted by C and D, which are derived through a suitable
modification of bent functions in the M class. One explicit class derived
by Carlet, containing instances that do not belong to M or PS, is named
D0 and its cardinality is of approximately the same size as of M. This
does not substantially help in achieving a complete classification of bent
functions, as the two primary classes stand only for a portion of ≈ 276

of bent functions on F8
2, whereas their totality is around 2106 [48].

The C class of bent functions contains all functions of the form

(C) : f(x, y) = x · π(y)⊕ 1L⊥(x), (2.5)

where L is any linear subspace of Fm2 , 1L⊥ is the indicator function of
the space L⊥ = {x ∈ Fm2 : x · y = 0, ∀y ∈ L}, and π is any permutation
on Fm2 such that:

(C) π−1(a⊕ L) is a flat (affine subspace), for all a ∈ Fm2 .

The permutation π−1 and the subspace L are then said to satisfy the
(C) property, or for short (π−1, L) has property (C).
Another class introduced by Carlet [17], called D, is defined similarly as

(D) : f(x, y) = x · π(y)⊕ 1E1
(x)1E2

(y), (2.6)

where π is a permutation on Fm2 and E1, E2 two linear subspaces of Fm2
such that π(E2) = E⊥

1 .

Class inclusion of bent functions

As we want to have non-equivalent bent functions, we note the following
definition in connection with the EA-equivalence (cf. Definition 2.1.3)
Definition 2.2.3. Let F ⊂ Bn be any class of bent functions. Its com-
pleted class F# ⊂ Bn is defined as follows:

F# = {f(Ax⊕ b)⊕ c · x⊕ ε : f ∈ F , A ∈ GL(n,F2), b, c ∈ Fn2 , ε ∈ F2},

i.e., it contains the primary class and all the other bent functions that
can be derived from the primary class using some affine transformations.
Showing the non-inclusion into the completed primary classes is usually a
hard task. For M# there exist an inclusion indicator due to Dillon (1974)
(cf. Lemma 2.2.4), but it becomes computationally inefficient for n ≥ 14.
For PS#, there are no such inclusion indicators and consequently proving
that a function is outside PS# becomes an extremely difficult task.

Lemma 2.2.4. [29] A bent function f in n variables belongs to M# if
and only if there exists an n

2 -dimensional linear subspace V of Fn2 such
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that the second order derivatives

DαDβf(x) = f(x)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x⊕ α⊕ β)

vanish for any α, β ∈ V .

In recent articles [89, 88, 45], the analysis of the C and D classes has been
taken further towards specifying a sufficient set of conditions so that the
resulting bent functions are also provably outside M#. Due to the hard-
ness of overall conditions, ensuring that at the same time the specified
bent functions are indeed in C or D and additionally outside M# (possi-
bly also outside PS#) is a rather difficult task. These conditions involve
the concept of linear structures which is defined below.

Definition 2.2.5. An n-variable Boolean function f is said to have a
linear structure if there exists a nonzero a ∈ Fn2 such that f(x⊕a)⊕f(x)
is a constant function.

We note the following useful results for confirming if a function is in C
and D outside M#.

Theorem 2.2.6. [88, Theorem 1] Let n = 2m ≥ 8 be an even integer
and let f(x, y) = π(y) ·x⊕1L⊥(x), where L is any linear subspace of Fm2
and π is a permutation on Fm2 such that (π−1, L) has property (C). If
(π−1, L) satisfies:

(C1) dim(L) ≥ 2;

(C2) u · π has no nonzero linear structure for all u ∈ Fm∗

2 ,

then f is a bent function in C outside M#.

Theorem 2.2.7. [88, Theorem 2] Let n = 2m ≥ 8 be an even integer
and let f(x, y) = π(y) · x ⊕ 1E1

(x)1E2
(y), where π is a permutation on

Fm2 , and E1, E2 are two linear subspaces of Fm2 such that π(E2) = E⊥
1 . If

(π,E1, E2) satisfies:

(D1) dim(E1) ≥ 2 and dim(E2) ≥ 2;

(D2) u · π has no nonzero linear structure for all u ∈ Fm∗

2 ;

(D3) deg(π) ≤ m− dim(E2),

then f is a bent function in D outside M#.

2.3 Vectorial Boolean (bent) functions

Similarly to Boolean functions, one can define the Walsh-Hadamard
transform, non-linearity, algebraic degree, etc. of functions F that map
from Fn2 to Fm2 , where n and m are arbitrary positive integers. These
functions are called (n,m)-functions or vectorial Boolean functions or
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S-boxes. Clearly, any vectorial Boolean function F : Fn2 → Fm2 can be
presented in the form

F (x) = (f0(x), f1(x), . . . , fm−1(x)) , x ∈ Fn2 ,

where fi : Fn2 → F2, i = 0, . . . ,m− 1, are called the coordinate functions
of the function F . Properties of an (n,m)-function F may be char-
acterised by the 2m − 1 non-zero linear combinations of its coordinate
functions, called component functions.
Definition 2.3.1. Let F be an (n,m) function. The functions x ∈
Fn2 7→ v · F (x), 0 ̸= v ∈ Fm2 are called the component functions of F .
Equivalently, in the finite field representation, let F : F2n → F2m. The
component functions of F are the functions Trm1 (bF (x)), b ∈ F∗

2m.

Let F be an (n,m)-function. The function WF : Fn2 × Fm∗

2 → Z defined
by

WF (u, v) =
∑
x∈Fn

2

(−1)v·F (x)⊕u·x, u ∈ Fn2 , v ∈ Fm∗

2 ,

is called the (extended) Walsh-Hadamard transform of the function F
and the Walsh support of F is the set of those (u, v) ∈ Fn2 × Fm∗

2 such
that WF (u, v) ̸= 0, denoted by WF . The algebraic degree of an (n,m)-
function F is defined by

degF = max{deg(v · F ) : v ∈ Fm∗

2 }.

The non-linearity NF of an (n,m)-function F is defined as

NF = 2n−1 − 1

2
max

u∈Fn
2 ,v∈Fm∗

2

|WF (u, v)|.

Similarly as in the Boolean case we can define bent (n,m)-functions as
follows.
Definition 2.3.2. An (n,m)-function is said to be bent if all of its com-
ponent functions are bent, i.e., |Wv·F (u)| = 2

n
2 , for all u ∈ Fn2 , v ∈ Fm∗

2 .
As it was shown by Nyberg [64], these functions exist only for m ≤ n/2.
When talking about equivalent vectorial Boolean functions, we note the
following equivalences.
Definition 2.3.3. [13] Two (n,m)-functions F and F ′ are called:

• affine equivalent if F ′ = A1 ◦ F ◦ A2, where the mappings A1 and
A2 are affine permutations of F2m and F2n, respectively;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦A2 +A,
where the mappings A : F2n → F2m, A1 : F2m → F2m, A2 : F2n →
F2n are affine, and where A1 and A2 are permutations;
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• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some
affine permutation L of F2n ×F2m the image of the graph of F is the
graph of F ′, that is, L(ΓF ) = ΓF ′, where ΓF = {(x, F (x)) : x ∈ F2n}
and ΓF ′ = {(x, F ′(x)) : x ∈ F2n}.

Although different, these equivalent relations have a connection. Obvi-
ously, every affine equivalence is a particular case of EA-equivalence. In
[20] it has been shown that EA-equivalence is a particular case of CCZ-
equivalence and every permutation is CCZ-equivalent to its inverse.

Remark 2.3.4. In [12] it has been shown that when considering bent
(n,m)-functions, CCZ- and EA-equivalence coincide.

Similarly as for the Boolean case, we distinguish primary and secondary
classes of vectorial bent Boolean functions.

Let us define F : F2m × F2m → F2m with F (x, y) = xπ(y) + g(y), where
π : F2m → F2m is a permutation and g : F2m → F2m is an arbitrary
function. A function defined in such a way belongs to the class of vecto-
rial bent Maiorana-McFarland functions. Similarly to the Boolean case,
the Desarguesian partial spread class PSap of bent (n,m)-functions with
m = n/2 is defined as the set of (n,m)-functions F on F2m × F2m of
the form F : (x, y) ∈ F2m × F2m 7→ H (x/y), where x/y = 0 if y = 0 for
x, y ∈ F2m and H is a permutation on F2m such that H(0) = 0.

For some known constructions (primary and secondary) of both Boolean
and vectorial bent functions, we refer to [21, 31, 58, 61, 62, 63, 68, 86].
Similarly as for the Boolean case, the (partial) exclusion of a given (n,m)
bent function from a considered completed class is a difficult task. Since,
in contrast to M#, there are no class inclusion criteria for the PS#

class (similar to Lemma 2.2.4 of Dillon), throughout this thesis we will
consider (partial) exclusion from the M# class. With respect to this, we
note the notion of functions weakly and strongly outside given completed
version of some primary class introduced in [67] as well as a new notion
of functions almost strongly outside a completed class.

Definition 2.3.5. Let F : F2n → F2m be any bent (n,m)-function,
m ≤ n/2, and let F denote some primary class of bent functions.

• F is weakly outside F# ⇔ (∃u ∈ Fm∗

2 ) u · F /∈ F# .

• F is strongly outside F# ⇔ (∀u ∈ Fm∗

2 ) u · F /∈ F#.

• F is almost strongly outside F# ⇔ (∃!u ∈ Fm∗

2 ) u · F ∈ F#.

More details on vectorial bent functions and their class inclusion will be
introduced in Chapter 6. In the following section we give a brief overview
of p-ary functions which will be discussed in Chapter 4.
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2.4 p-ary functions

A function from Fpn to Fp is called a p-ary function and the set of all such
functions is denoted by Bpn. Any p-ary function f ∈ Bpn can be uniquely
expressed as a polynomial in Fp[x0, . . . , xn−1] \ ⟨xp0 − x, . . . , xpn−1 − x⟩ as

f(x0, . . . , xn−1) =
∑
a∈Fn

p

λa

n−1∏
i=0

xaii ,

where λa ∈ Fp. The algebraic degree of f is defined as

deg(f) = max{wt(a) : λa ̸= 0},

where wt(a) = |{i : ai ̸= 0, 0 ≤ i ≤ n − 1}| is the weight of a ∈ Fnp .
The generalized Walsh-Hadamard transform (GWHT) and its inverse of
a p-ary function f ∈ Bpn at a point a ∈ Fnp are defined by

Hf(a) =
∑
x∈Fn

p

ξf(x)−⟨a,x⟩
p ,

and
ξf(a) = p−n

∑
x∈Fn

p

Hf(x)ξ
⟨a,x⟩
p ,

respectively, where ξp = e
2πi
p denotes the complex primitive p-th root

of unity and ⟨a, b⟩ denotes an inner product on Fnp . For convenience,
if we are considering functions in vector space notation, we will define
⟨x, y⟩ =

∑n
i=1 xiyi, and if are considering finite field notation, we will

define ⟨α, β⟩ = trn(αβ), where

trnm(α) := α + αp
m

+ αp
2m

+ · · ·+ αp
m(n/m−1)

denotes the trace function from Fpn to Fpm, m|n. For simplicity we will
use the notation trn := trn1 .

A function f ∈ Bpn is said to be bent if |Hf(a)|2 = pn for all a ∈ Fnp .
Furthermore, f is said to be regular bent if for every b ∈ Fnp , p−n/2Hf(b) =

ξ
f∗(b)
p for some mapping f ∗ ∈ Bpn, which is then called the dual of f . The

bent function f is said to be weakly regular if there exists a complex
number z with |z| = 1, such that zp−n/2Hf(b) = ξ

f∗(b)
p for all b ∈ Fnp . As

noted in [59], regular bent functions can only be found for even n and for
odd n with p mod 4 = 1. Moreover, for a weakly regular bent function,
the constant z (defined above) can only be equal to ±1 or ±i. Weakly
regular bent functions always come in pairs, since the dual is bent as well.
Moreover, it holds that f ∗∗(x) = f(−x), f ∗∗∗(x) = f ∗(−x), f ∗∗∗∗(x) =
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f(x) (see [59]). For a p-ary function f ∈ Bpn, we define its derivative
Daf ∈ Bpn at a point a ∈ Fpn as

Daf(x) = f(x+ a)− f(x), x ∈ Fpn.

Similarly, the k-th order derivative of f with respect to a1, . . . , ak ∈ Fpn
is defined by Da1,...,akf(x) = Da1Da2 . . . Dakf(x), for all x ∈ Fpn.
Any mapping F from Fpn to Fpm is called a vectorial p-ary function (or
a p-ary (n,m)-function). We say that F is (weakly regular) bent if for
every u ∈ F∗

pm, its component function Fu ∈ Bpn defined as Fu(x) =
trm(uF (x)), x ∈ Fpn, is p-ary (weakly regular) bent. Unlike the binary
case, p-ary bent (n,m)-functions exist for all m ≤ n [23].
Another important class of vectorial p-ary bent functions are the so-
called plateaued p-ary (n,m)-functions. Namely, we say that a p-ary
(n,m)-function F is plateaued if H2

Fλ
(x) ∈ {0, pn+s} for all x ∈ Fpn and

all λ ∈ F∗
pm, for some s ∈ N0 (which is called the amplitude). Specially,

if s = 0 we are talking about bent functions, and if s = 1, then such
functions are called near-bent. If all the components have the same
amplitude s, then these functions are called s-plateaued p-ary (n,m)-
functions.



Chapter 3

Secondary constructions of vectorial
bent functions via the (PU ) property

In 2017, Tang et al. [82] proposed a secondary construction of bent
functions of the form

f(x) = g(x) + h(Trn1 (u1x), . . . , T r
n
1 (utx)),

where n = 2m, g is any known bent function in n variables satis-
fying some conditions, h(X1, . . . , Xt) is an arbitrary polynomial in
F2[X1, . . . , Xt], t is a positive integer such that 1 ≤ t ≤ m, and u1, . . . , ut
are suitably selected (distinct) nonzero elements in F2n. Using this
construction, several new infinite families of bent functions from specific
instances of bent functions (derived from Kasami, Niho and Gold-like
monomials; or taken from the Maiorana-McFarland class) were obtained.

This result has been recently extended by Zheng et al. [90] for
the purpose of specifying vectorial bent functions. Let n = 2m and k
be its positive divisor such that k ≤ m. The authors of [90] proposed a
method of constructing bent (n, k)-functions of the form

F (x) = G(x) + h(x),

where G is a bent (n, k)-function satisfying certain properties and h is a
Boolean function. Using this approach the authors in [90] constructed
three new infinite families of bent (n, k)-functions, as well as new
infinite families of vectorial plateaued (n, k+ t)-functions (t ≥ 0) having
maximal number of bent components.

In this chapter, we extend the result of Zheng et al. [90] by proposing a
new construction method of bent (n,m)-functions, n = 2m and t|m, of
the form

F (x) = G(x) +H(x), (3.1)

where G is a suitable bent (n,m)-function and H is an (n, t)-function
(in difference to the use of Boolean h(x)). More precisely, the assump-
tion on G is that the duals of its components Gλ(x) = Trm1 (λF (x))

22
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satisfy certain forms of linearity, so that for some nonzero elements
u1, u2, . . . , ut ∈ F2m it holds that

G∗
λ

(
x+

t∑
i=1

uiwi

)
= G∗

λ(x) +
t∑
i=1

wigi(x) (3.2)

for all x ∈ F2n and (w1, . . . , wt) ∈ Ft2, where G∗
λ denotes the dual of Gλ.

Remark 3.0.1. In this case, we will say that (G∗
λ)λ∈F∗

2m
satisfies the (PU)

property (with the defining set U = {u1, . . . , ut}).
Most notably, specifying H(x) = h(Trn1 (u1x), . . . , T r

n
1 (utx)), the func-

tion h : Ft2 → F2t can be chosen arbitrarily which gives a relatively large
class of different functions for a fixed function G. It is also proved that
the vectorial bentness of F (x) = G(x) + H(x) implies that H cannot
be bent. We identify several suitable classes of vectorial bent functions
G (satisfying the above mentioned property), which then give rise to
infinite families of vectorial bent functions for any fixed G. The rest
of the chapter is organised as follows. In Section 3.1 we give our main
construction of vectorial bent functions, along with an analysis on EA-
equivalence. Some new infinite families of vectorial bent functions are
derived in Section 3.2. In Section 3.3, we propose a new method of
specifying infinite classes of vectorial (n, n)-functions having maximum
number of bent components.

3.1 Generic construction of vectorial bent functions

Motivated by the results given in [82] and [90], we provide the following
construction of vectorial Boolean functions.
Construction 3.1.1. Let {u1, . . . , ut} = U ⊆ F∗

2n be linearly indepen-
dent elements over F2, where n = 2m and t|m. Let G : F2n → F2m be any
vectorial bent function such that (G∗

λ)λ∈F∗
2m

satisfies the (PU) property
(3.2). Let h(X1, . . . , Xt) be any vectorial Boolean Function from Ft2 to
F2t. Define F : F2n → F2m, using G and h, as

F (x) = G(x) +H(x), (3.3)

where H : F2n → F2t is defined by H(x) = h(Trn1 (u1x), . . . , T r
n
1 (utx)).

Equivalently, if h is defined using the finite field notation so that h :
F2t → F2t, then define

F (x) = G(x) +H(x)

= G(x) + h(Trn1 (u1x) + αTrn1 (u2x) + · · ·+ αt−1Trn1 (utx)), (3.4)

where α is a primitive element of F2t.
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Example 3.1.2. Let us consider the Kasami function G : F28 → F24

defined by G(x) = x2
4+1. It is well-known that the components of G are

bent whose dualsG∗
λ satisfy (3.2) [57, 82]. We note that (28−1)/(24−1) =

17 and thus F∗
24 = ⟨α17⟩, where α is a root of the primitive polynomial

p(x) = x8 + x4 + x3 + x2 + 1 ∈ F28[x]. As suggested in [90], let us define
S = {x ∈ F28 : x · x24 = 1} and assume that {τ1, . . . , τ4} is a basis of
F24. The so-called defining set, introduced in [90] and required in (3.2),
is U = {τ1v, . . . , τ4v}, where v ∈ S, v ̸= 1. For example, we can take

U = {u1, . . . , u4}
= {α5 + α2 + α, α7 + α4 + α3 + α2 + 1, α7 + α3 + α2, α6 + α5 + 1}.

Let h : F24 → F24 be defined as h(x) = x3. Then

F (x) = G(x) +H(x)

= x17 + (Tr81(u1x) + βTr81(u2x) + · · ·+ β2Tr81(u3x) + β3Tr81(u4x))
3,

where β = α17. Using the mathematical software Sage and MAGMA, we
confirm that F is a bent (8, 4)-function and it is CCZ-inequivalent to G
and H.
In connection to Construction 3.1.1 and Example 3.1.2, we state the
following theorem.
Theorem 3.1.3. The function F generated by Construction 3.1.1 is a
bent (n,m)-function.

Proof. Let λ ∈ F∗
2m be arbitrary. Let us consider the component Gλ

and let hλ : Ft2 → F2 be defined as hλ = Trm1 (λh). From the inverse
Walsh-Hadamard transform, we have that

(−1)hλ(X1,...,Xt) =
∑

(w1,...,wt)∈Ft
2

Whλ
(w1, . . . , wt)(−1)

∑t
i=1 wiXi.

For any x ∈ F2n and 1 ≤ i ≤ t ≤ m, taking Xi = Trn1 (uix), we obtain

(−1)hλ(Tr
n
1 (u1x),...,T r

n
1 (utx)) =

∑
(w1,...,wt)∈Ft

2

Whλ
(w1, . . . , wt)(−1)Tr

n
1 ((

∑t
i=1 wiui)x).

(3.5)

Multiplying both sides of (3.5) by (−1)Gλ(x)+Tr
n
1 (βx), we have

(−1)Gλ(x)+Hλ(x)+Tr
n
1 (βx)

=
∑

(w1,...,wt)∈Ft
2

Whλ
(w1, . . . , wt)(−1)Gλ(x)+Tr

n
1 ((β+

∑t
i=1 wiui)x).



CHAPTER 3. SECONDARY CONSTRUCTIONS OF VBF VIA THE (PU ) PROPERTY 25

By summing the previous expression on both sides over all x ∈ F2n and
using the fact that G is vectorial bent, we obtain that

WFλ
(β) =

∑
(w1,...,wt)∈Ft

2

Whλ
(w1, . . . , wt)WGλ

(β +
t∑
i=1

uiwi)

= 2m
∑

(w1,...,wt)∈Ft
2

Whλ
(w1, . . . , wt)(−1)G

∗
λ(β+

∑t
i=1 uiwi). (3.6)

It follows from (3.2) and (3.6) that

WFλ
(β) = 2m(−1)G

∗
λ(β)

∑
(w1,...,wt)∈Ft

2

Whλ
(w1, . . . , wt)(−1)

∑t
i=1 wigi(β).

The sum on the right-hand side corresponds to the inverse Walsh-
Hadamard transform of hλ at the point (g1(β), . . . , gt(β)) and thus we
have

WFλ
(β) = 2m(−1)G

∗
λ(β)+hλ(g1(β),g2(β),...,gt(β)).

Since β ∈ F2n is arbitrary, we have that Fλ is bent for all λ ∈ F∗
2m. In

other words, F is a bent (n,m)-function.

Remark 3.1.4. If we have a function f : X → Y , then the number of
possible functions f equals to #Y #X . Thus, since h is a (t, t)-function,
there are 2t2t possible choices for h. Hence, we can construct at most 2t2t

bent (n,m)-functions F from a fixed bent function G and an arbitrary
function h. In the case when n = 8 and m = t = 4, we have 264

possibilities.
We note that in [90] the authors characterized the (PU) property via
second-order derivatives as follows.
Lemma 3.1.5. [90] Let g ∈ Bn be any bent function. Then the following
statements are equivalent.
(i) There exist u1, . . . , ut ∈ F2n and g1, . . . , gt ∈ Bn such that

g

(
x+

t∑
i=1

wiui

)
= g(x) +

t∑
i=1

wigi(x), (3.7)

for all w = (w1, . . . , wt) ∈ F2t.
(ii) DuiDujg ≡ 0 for all 1 ≤ i, j ≤ t.

For convenience and simplicity we will sometimes consider the (PU)
property via second order derivatives as seen in Lemma 3.1.5.

The following lemma is a straightforward consequence of linearity
of the mapping L : F2n → Ft2, where L(x) = (Trn1 (u1x), . . . , T r

n
1 (utx))

and u1, . . . , ut ∈ F2t are linearly independent over F2.
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Lemma 3.1.6. Let u1, . . . , ut ∈ F∗
2t be linearly independent elements

over F2, n = 2m, t|m. Then the multiset

V = {(Trn1 (u1x), . . . , T rn1 (utx)) : x ∈ F2n} = Ft2 ∪ Ft2 . . . ∪ Ft2︸ ︷︷ ︸
2n−t sets

, (3.8)

contains exactly 2n−t copies of every element of Ft2.
It is interesting to notice that H : F2n → F2t in Construction 3.1.1 cannot
be vectorial bent, as shown below.
Proposition 3.1.7. Let u1, . . . , um ∈ F∗

2n be linearly independent ele-
ments over F2, where n = 2m. The function H : F2n → F2m defined
by

H(x) = h(Trn1 (u1x), . . . , T r
n
1 (umx)),

where h : Fm2 → F2m is arbitrary, cannot be bent.

Proof. Let λ ∈ F∗
2m be arbitrary. Let us consider the value of WHλ

(0).

WHλ
(0) =

∑
x∈F2n

(−1)Hλ(x) =
∑
x∈F2n

(−1)hλ(Tr
n
1 (u1x),...,T r

m
1 (umx))

(3.8)
= 2n−m

∑
X∈Fm

2

(−1)hλ(X) = 2m ·Whλ
(0)

Since Whλ
(0) ̸= ±1, it follows that WHλ

(0) ̸= ±2m. Hence, Hλ cannot
be bent. Thus, no components of H are bent Boolean functions.

Remark 3.1.8. From [82, Lemma 2.1] we know that if u1, . . . , ut ∈ F∗
2n

are linearly independent over F2 and f ∈ F2[X1, . . . , Xt] is a reduced
polynomial of algebraic degree d, then f(Trn1 (u1x), . . . , T rn1 (utx)) is also
of algebraic degree d. Hence, the algebraic degree of H is

deg(H) = max
λ∈F∗

2t

deg(Hλ)

Remark 3.1.9. (CCZ-equivalence) From [12, Theorem 1], the
CCZ-equivalence between bent (n,m)-functions coincides with EA-
equivalence. Therefore, since H is not vectorial bent it follows that
the functions G and H used in Construction 3.1.1 are always EA-
inequivalent. Moreover, it is interesting to note that the vectorial bent
function F is obtained by adding a nonlinear non-bent vectorial function
H to a bent function G.
Example 3.1.10. Let us consider the bent (8, 4)-function

G(x) =
2r−1∑
i=1

x(i2
m−r+1)(2m−1)+1
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with m = 4, r = 3. (G∗
λ)λ∈F∗

2m
satisfies the (PU) property (3.2) with the

defining set U = {u1, . . . , u4}, where U forms a basis of F24 over F2. We
note that deg(G) = 4. Let us consider the functions h1,h2,h3 : F24 →
F24 defined by

h1(X) = X3;

h2(X) = X3 +X13;

h3(X) = X3 +X13 +X15,

where deg(hi) = i + 1, for i = 1, 2, 3. Let Fi be the bent (8, 4)-function
obtained from Construction 3.1.1 via G and hi. Using Sage and MAGMA
we confirm that deg(Fi) = 4. Furthermore, when considering the EA-
equivalence between the functions we observe that Fi and G are EA-
inequivalent, for i = 1, 2, 3. Moreover, the functions F1 and F3, F2 and
F3 are EA-inequivalent, whereas F1 and F2 are EA-equivalent.
The following result is a direct consequence of the fact that the algebraic
degree is an EA-invariant.
Proposition 3.1.11. Using the same notation as in Construction 3.1.1,
let F be a bent (n,m)-function constructed from G and H. If deg(H) >
deg(G), then F and G are EA-inequivalent.

Proof. The result follows directly from

deg(F ) = max{deg(H), deg(G)} = deg(H) > deg(G)

and the fact that the algebraic degree is invariant under EA-equivalence.

We conclude the section with the following two questions.
Question 3.1.12. What can we say about EA-equivalence between F
and G, if F and G have the same algebraic degree?
Question 3.1.13. Let Fi be bent (n,m)-functions obtained from Con-
struction 3.1.1 via Gi and Hi, for i = 1, 2. Assuming that deg(F1) =
deg(F2), what can we say about the EA-equivalence between F1 and F2?
From Example 3.1.10, we have observed that among the functions F1, F2
and F3, the functions F1 and F2 were EA-equivalent, whilst the other
pairings were EA-inequivalent. Thus, it is natural to ask, what choice of
G or H affects this EA-equivalence.

3.2 New infinite families of vectorial bent functions

In [90], the authors constructed several infinite families of vectorial
bent functions using certain vectorial bent functions G that satisfy the
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property (3.2). The very same functions can be used to construct new
families of vectorial bent functions via Construction 3.1.1. In addition,
we consider vectorial bent functions from the Maiorana-McFarland class
which were not considered in [90], but were considered by Tang et al.[82]
in the construction of bent Boolean functions.

We summarise some useful results from [90] in the following theo-
rem.
Theorem 3.2.1. Let G be one of the following bent (n,m)-functions:

(i) G(x) = x2
m+1, n = 2m;

(ii) G(x) =
∑2r−1

i=1 x(i2
m−r+1)(2m−1)+1, n = 2m, gcd(r,m) = 1;

(iii) G(x) = Trnm(ωx
2m+1), n = 4m, m ≥ 2 and ω is a generator of the

cyclic group U = {x ∈ F22m : x2
m+1 = 1}.

Then (G∗
λ)λ∈F∗

2m
satisfies the (PU) property (3.2) with the defining set

(i) {u1, . . . , um} ⊂ F∗
2n such that uiu2

m

j ∈ F∗
2m for all 1 ≤ i < j ≤ m;

(ii) {u1, . . . , um} is a basis of F2m over F2;

(iii) {u1, . . . , um} ⊂ F∗
2n such that uiu2

m

j ∈ F∗
2m for all 1 ≤ i < j ≤ m,

respectively.
Theorem 3.2.2. Let G(x) be one of the three bent (n,m)-functions in
Theorem 3.2.1, {u1, . . . , ut} the corresponding defining set for property
(3.2) for (G∗

λ)λ∈F∗
2m

and let t be a positive divisor of m. Let h(X1, . . . , Xt)
be any vectorial Boolean function from Ft2 to F2t. Then the function
F (x) = G(x) +H(x), generated by Construction 3.1.1, is a bent (n,m)-
function.

Proof. The result is an immediate consequence of Construction 3.1.1,
Theorem 3.1.3 and Theorem 3.2.1.

Let us define F : F2m×F2m → F2m with F (x, y) = xπ(y)+g(y), where π :
F2m → F2m is a permutation and g : F2m → F2m is an arbitrary function.
A function defined in such a way belongs to the class of vectorial bent
Maiorana-McFarland functions. Let λ ∈ F∗

2m be arbitrary, we then have
the component Fλ(x, y) = Trm1 (λxπ(y) + λg(y)). Its corresponding dual
is defined with (see [96]):

F ∗
λ(x, y) = Trm1

(
yπ−1(x/λ) + λg(π−1(x/λ)

)
,

where π−1 is the inverse permutation of π. Motivated by [82, Section
E], we will consider two subclasses of the vectorial Maiorana-McFarland
class which satisfy the (PU) property (3.2).
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Following the methodology in [82], we note that (3.2) can be writ-
ten in bivariate form as follows:

G∗
λ

(
x+

t∑
i=1

αiwi, y +
t∑
i=1

βiwi

)
= G∗

λ(x, y) +
t∑
i=1

wigi(αi, βi)

for all (x, y) ∈ F2m × F2m and (w1, . . . , wt) ∈ Ft2, where
0 ̸= ui = (αi, βi) ∈ F2m × F2m and gi is a Boolean function from
F2m × F2m to F2, 1 ≤ i ≤ t.

Since each linear function from F2m × F2m to F2 can be written as
Trm1 (ux+ vy), where (u, v) ∈ F2m × F2m, the vectorial Boolean function
in (4.2) by Construction 3.1.1 can be rewritten as:

F (x, y) = G(x, y) + h (Trm1 (αix+ βiy), . . . , T r
m
1 (αtx+ βty)) .

Lemma 3.2.3. Let ui = (αi, βi) ∈ F2m × F2m be linearly independent
elements over F2, where 1 ≤ t ≤ m. Let G(x, y) = yπ(x), where π is
a linear permutation over F2m. If Trm1

(
βiπ

−1
(αj

λ

)
+ βjπ

−1
(
αi

λ

))
= 0 for

each 1 ≤ i < j ≤ t and λ ∈ F∗
2m, then the dual component G∗

λ satisfies
(3.2) with

gi(x, y) = Trm1

(
yπ−1

(αi
λ

)
+ βiπ

−1
(x
λ

)
+ βiπ

(αi
λ

))
. (3.9)

Proof. Let X = x +
∑t

i=1wiαi and Y = y +
∑t

i=1wiβi. It follows from
(3.2) and the fact that π is linear that

G∗
λ (X,Y ) = Trm1

((
y +

t∑
i=1

wiβi

)
π−1

(
x

λ
+

t∑
i=1

wi
αi

λ

))

= G∗
λ(x, y) +

t∑
i=1

wiTr
m
1

(
yπ−1

(αi

λ

)
+ βiπ

−1
(x
λ

))
+

+
t∑

i=1

Trm1

(
w2
i βiπ

(αi

λ

))
+

∑
1≤i<j≤t

wiwjTr
m
1

(
βiπ

−1
(αj

λ

)
+ βjπ

−1
(αi

λ

))

= G∗
λ(x, y) +

t∑
i=1

wiTr
m
1

(
yπ−1

(αi

λ

)
+ βiπ

−1
(x
λ

)
+ βiπ

(αi

λ

))
+

+
∑

1≤i<j≤t

wiwjTr
m
1

(
βiπ

−1
(αj

λ

)
+ βjπ

−1
(αi

λ

))

= G∗
λ(x, y) +

t∑
i=1

wigi(x, y) +
∑

1≤i<j≤t

wiwjTr
m
1

(
βiπ

−1
(αj

λ

)
+ βjπ

−1
(αi

λ

))
,

where gi is defined by (3.9). The conclusion follows from the assumption
that

Trm1

(
βiπ

−1
(αj
λ

)
+ βjπ

−1
(αi
λ

))
= 0,
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for each 1 ≤ i < j ≤ t and λ ∈ F∗
2m.

The following result is an immediate consequence of Lemma 3.2.3.

Corollary 3.2.4. Let α1, . . . , αt ∈ F∗
2m be linearly independent elements

over F2, 1 ≤ t ≤ m. Denote ui = (αi, 0) and let G(x, y) = yπ(x),
where π is a linear permutation over F2m. Then, the dual component G∗

λ
satisfies (3.2) with

gi(x, y) = Trm1

(
yπ−1

(αi
λ

))
,

for any λ ∈ F∗
2m.

The use of non-quadratic vectorial bent functions in the Maiorana-
McFarland class in Construction 3.1.1 is given below.
Proposition 3.2.5. Let s be a positive divisor of m such that m/s is
odd. Let ui = (αi, βi) ∈ F2s × F2s be linearly independent elements over
F2, where 1 ≤ t ≤ m. Let G(x, y) = xπ(y), where π(y) = ayd for a
positive integer d such that d(2s + 1) ≡ 1 (mod 2m − 1) and a ∈ F∗

2m. If
αiβj + αjβi = 0 and Trm1 (βiα

2
j + βjα

2
i ) = 0 for any 1 ≤ i < j ≤ t and

λ ∈ F∗
2m, then the dual component G∗

λ satisfies (3.2) with

gi(x, y) = Trm1

(
y

(aλ)2s+1

(
α2
i + αix+ αix

2s
)
+

1

(aλ)2s+1

(
βiαix+ βiαix

2s + βiα
2
i

))
.

(3.10)

Proof. Since π−1(x) = x2
s+1, we have that G∗

λ(x, y) = Trm1

(
y
(
x
λ

)2s+1
)
.

Let X = x +
∑t

i=1wiαi and Y = y +
∑t

i=1wiβi. It follows from (3.2)
and the fact that α2s

i = αi, β
2s

i = βi, that

G∗
λ (X,Y ) = Trm1

(y + t∑
i=1

wiβi

)(
x

aλ
+

t∑
i=1

wi
αi

aλ

)2s+1


= Trm1

(y + t∑
i=1

wiβi

)(
x

aλ
+

t∑
i=1

wi
αi

aλ

)2s (
x

aλ
+

t∑
i=1

wi
αi

aλ

)
= Trm1

(
y
( x
aλ

)2s+1
+ y

x

aλ

t∑
i=1

wi

(αi

aλ

)2s
+ y

( x
aλ

)2s t∑
i=1

wi
αi

aλ
+ y

t∑
i=1

wi

(αi

aλ

)2s+1

+
t∑

i=1

wiβi

( x
aλ

)2s+1
+

t∑
i=1

wiβi
x

aλ

t∑
j=1

wj

(αj

aλ

)2s
+

t∑
i=1

wiβi

( x
aλ

)2s t∑
j=1

wj
αj

aλ

+

t∑
i=1

wiβi

(αi

aλ

)2s+1
)

= G∗
λ(x, y) +

t∑
i=1

wiTr
m
1

(
y

(aλ)2s+1

(
α2
i + αix+ αix

2s
))

+

+

t∑
i=1

t∑
j=1

wiwjTr
m
1

(
1

(aλ)2s+1

(
βiαjx+ βiαjx

2s + βiα
2
j

))



CHAPTER 3. SECONDARY CONSTRUCTIONS OF VBF VIA THE (PU ) PROPERTY 31

= G∗
λ(x, y) +

t∑
i=1

wiTr
m
1

(
y

(aλ)2s+1

(
α2
i + αix+ αix

2s
))

+

+

t∑
i=1

wiTr
m
1

(
1

(aλ)2s+1

(
βiαix+ βiαix

2s + βiα
2
i

))
+

∑
1≤i<j≤t

Trm1
(
(x2

s
+ x)(βiαj + βjαi) + βiα

2
j + βjα

2
i

)
= G∗

λ(x, y) +

t∑
i=1

wigi(x, y) +
∑

1≤i<j≤t

Trm1
(
(x2

s
+ x)(βiαj + βjαi) + βiα

2
j + βjα

2
i

)
,

where gi is defined by (3.10). The conclusion follows immediately from
the assumption that αiβj + αjβi = 0 and Trm1 (βiα2

j + βjα
2
i ) = 0.

Corollary 3.2.6. Let s be a positive divisor of m such that m/s is odd.
Let α1, . . . , αt ∈ F∗

2s be linearly independent elements over F2, 1 ≤ t ≤ m,
and define ui = (αi, 0). Let G(x, y) = xπ(y), where π(y) = ayd for a
positive integer d such that d(2s + 1) ≡ 1 (mod 2m − 1) and a ∈ F∗

2m.
Then, the dual component G∗

λ satisfies (3.2) with

gi(x, y) = Trm1

(
y

(aλ)2s+1

(
α2
i + αix+ αix

2s
))

,

for any λ ∈ F∗
2m.

Theorem 3.2.7. Let α1, . . . , αt ∈ F∗
2m be linearly independent elements

over F2, t|m. Let G(x, y) = yπ(x), where π is a linear permutation over
F2m, and let h be any vectorial Boolean function from Ft2 to F2t. Then,
the function F : F2m × F2m → F2m given by

F (x, y) = yπ(x) + h(Trm1 (α1x), . . . , T r
m
1 (αtx)),

generated by Construction 3.1.1, is a bent (n,m)-function.

Proof. The result follows immediately from Theorem 3.1.3 and Corollary
3.2.4.

Example 3.2.8. Let G : F24 × F24 → F24 be defined with G(x, y) = xy.
Let U = {1, β, β2, β3}, where β = α17, and α be a root of the primitive
polynomial p(x) = x8 + x4 + x3 + x2 + 1 ∈ F28[x]. Let h : F24 → F24 be
defined with h(X) = X3. From Theorem 3.2.7, the function

F (x, y) = xy +
(
Trm1 (x) + βTrm1 (βx) + β2Trm1 (β

2x) + β3Trm1 (β
3x)
)3

is a quadratic bent (8, 4)-function EA-inequivalent to G.
Theorem 3.2.9. Let s be a positive divisor of m such that m/s is odd.
Let α1, . . . , αt ∈ F∗

2s be linearly independent elements over F2, t|m. Let
G(x, y) = xπ(y), where π(y) = ayd for a positive integer d such that



32 3.3. NEW FAMILIES OF (n, n)-FUNCTIONS WITH MNBC

d(2s + 1) ≡ 1 (mod 2m − 1) and a ∈ F∗
2m, and let h be any vectorial

Boolean function from Ft2 to F2t. Then, the function F : F2m×F2m → F2m

given by
F (x, y) = axyd + h(Trm1 (α1x), . . . , T r

m
1 (αtx)),

generated by Construction 3.1.1, is a bent (n,m)-function.

Proof. The result follows immediately from Theorem 3.1.3 and Corollary
3.2.6.

3.3 New families of (n, n)-functions with maximal
number of bent components

In 2018 Pott et al. [73] proved that an (n, n)-function, n = 2m, can
have at most 2n− 2m bent components. Furthermore, by studying these
objects, they have found a new infinite class of bent (n,m)-functions of
the form

F i
α(x) = Trnm(αx

2i(x+ x2
k

)),

where α ∈ F2n \ F2m. Later, Mesnager et al. [60] presented a class
of (n, n)-functions with maximal number of bent components CCZ-
inequivalent to F i

α and this topic was also treated by Zheng et al. [90].

A generic method of generating new vectorial plateaued (n,m + t)-
functions with maximal number of bent components, where n = 2m and
t > 1, was given in [90]. More precisely, given a bent (n,m)-function G,
under certain conditions, the (n,m+ t)-function

T1(x) = (G(x), f1(x), . . . , ft(x))

is vectorial plateaued if and only if the (n, t)-function (f1(x), . . . , ft(x))
is vectorial plateaued. For certain choices of the vectorial bent function
G, it was shown that T1 has the maximal number of bent components.
In the same article, the authors also showed that the (n, n)-functions

T2 =

(
G(x), T rn1 (u1x), T r

n
1 (u1x)Tr

n
1 (u2x), . . . ,

m∏
i=1

Trn1 (uix)

)
,

under additional conditions and certain choices of the bent (n,m)-
function G, also have the maximal number of bent components.
Definition 3.3.1. F is said to be an (n,m)-MNBC, m ≥ n/2 function
if it has 2m − 2m−n/2 bent components.
In the rest of this section, we present a new method to construct (n, n)-
functions with maximal number of bent components. We note that the
functions T1 and T2 above are constructed by extending a bent (n,m)-
function G through addition of suitably chosen coordinates, whereas in
our method we are summing a bent (n,m)-function G and some (n, n)-
function H′.
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Construction 3.3.2. Let u1, . . . , ut ∈ F∗
2n be linearly independent ele-

ments over F2, where n = 2m and t|m. Let G be a bent (n,m)-function
such that (G∗

λ)λ∈F∗
2m

satisfies the (PU) property (3.2). Let h(X1, . . . , Xt)
be any vectorial Boolean Function from Ft2 to F2t. Construct an (n, n)-
function F : F2n → F2n via G and h as follows:

F (x) = G(x) +H′(x),

where H′ : F2n → F2n is defined by

H′(x) = γh(Trn1 (u1x), . . . , T r
n
1 (utx))

and γ ∈ F2n \ F2m. Equivalently, if h is defined using the finite field
notation, then F can be written as

F (x) = G(x) +H′(x)

= G(x) + γh(Trn1 (u1x) + αTrn1 (u2x) + · · ·+ αt−1Trn1 (utx)),

where α is a primitive element of F2t.
Theorem 3.3.3. Let F be an (n, n)-function, n = 2m, generated by
Construction 2. Then, F has 2n − 2m bent components.

Proof. Let G(x) = (f1(x), . . . , fm(x)), where f1, . . . , fm : F2n → F2 are
the coordinates of G. Without loss of generality, we can extend G to an
(n, n)-function with G(x) = (f1, . . . , fm, 0, . . . , 0). For λ ∈ F∗

2n, we have
that Gλ is not bent if and only if Trn1 (λG(x)) = 0, or equivalently, if
λ ∈ F∗

2m. Hence, the number of bent components is 2n − 1− (2m − 1) =
2n − 2m. Let λ ∈ F2n such that Gλ is bent. We have that

Fλ(x) = Gλ(x) + Trn1 (λH
′(x))

is also bent, by the result of Tang et al. [82] and the fact that Trn1 (λH′)
is a Boolean function. The number of bent components of F equals to
the number of bent components of G, which is 2n − 2m. Hence F is an
(n, n)-function with maximal number of bent components.

Theorem 3.3.4. Let G(x) be one of the bent (n,m)-functions in Theo-
rem 3.1.3, 3.2.7 or 3.2.9 and let {u1, . . . , ut} (with t|m) be its correspond-
ing defining set for the property (3.2). Let h(X1, . . . , Xt) be any vectorial
Boolean function from Ft2 to F2t. Then the function F (x) = G(x)+H′(x),
generated by Construction 2, is an (n, n)-function with maximal number
of bent components.

Proof. The result follows immediately from Theorem 3.3.3 and Construc-
tion 2.



Chapter 4

Secondary constructions of
vectorial p-ary weakly regular bent
functions via the (PU ) property

In [74], the results of Tang et al. introduced in Chapter 3, were gen-
eralized for the construction of several infinite families of p-ary weakly
regular bent functions. In this chapter, we further generalize these re-
sults to obtain a secondary construction of vectorial p-ary weakly regular
bent and plateaued functions of the form

F (x) = G(x) +H(x),

where G is a suitable p-ary weakly regular bent (n,m)-function and H
is a p-ary (n, t)-function. Furthermore, we give a characterization of the
(PU) property for the p-ary case via second-order derivatives, as it was
done for the Boolean case in [90]. The rest of the chapter is organized as
follows. In Section 4.1 we give our main construction of vectorial p-ary
weakly regular bent and plateaued functions. Some new infinite families
of vectorial p-ary weakly regular bent functions via the p-ary Maiorana-
McFarland class are presented in Section 4.2. We also show that certain
monomial p-ary weakly regular bent (n,m)-functions cannot be used for
this construction, as it was the case for p = 2 in [4, 82, 90].

4.1 Generic construction of vectorial p-ary bent
functions

Similarly as in the binary case, with G∗
λ we denote the dual of the p-

ary bent component Gλ, λ ∈ F∗
pm, of a vectorial p-ary bent function

G : Fpn → Fpm, m|n.

Construction 4.1.1. Let u1, . . . , ut ∈ F∗
pn be linearly independent ele-

ments over Fp, where m|n and t|m. Let G : Fpn → Fpm be any p-ary

34
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weakly regular bent function whose components Gλ(x) = trm(λG(x)),
with λ ∈ F∗

pm, satisfy

G∗
λ

(
x+

t∑
i=1

uiwi

)
= G∗

λ(x) +
t∑
i=1

wigi(x) (4.1)

for all x ∈ Fpn and (w1, . . . , wt) ∈ Ftp, where gi(x) is a p-ary function
from Fpn to Fp, 1 ≤ i ≤ t.

Let h(X1, . . . , Xt) be any vectorial p-ary function from Ftp to Fpt. Define
F : Fpn → Fpm, using G and h, as

F (x) = G(x) +H(x), (4.2)

where H : Fpn → Fpt is defined by H(x) = h(trn(u1x), . . . , trn(utx)).
Equivalently, if h is defined using the finite field notation so that h :
Fpt → Fpt, then define

F (x) = G(x) +H(x)

= G(x) + h(trn(u1x) + αtrn(u2x) + · · ·+ αt−1trn(utx)),

where α is a primitive element of Fpt.
Remark 4.1.2. Similarly as for the binary case, we will say that
(G∗

λ)λ∈Fpm
∗ satisfies the (PU) property (with the defining set U =

{u1, . . . , ut}).
Remark 4.1.3. We note that in this case h can be a function in Bnp .
This cooresponds to the p-ary case of [90, Theorem 3.3].
Using this construction, we prove the following result which is the p-ary
equivalent of Theorem 3.1.3.
Theorem 4.1.4. The function F generated by Construction 4.1.1 is a
p-ary weakly regular bent (n,m)-function.

Proof. Let λ ∈ F∗
pm be arbitrary. Let us consider the component Gλ and

let hλ : Ftp → Fpt be defined as hλ = trm(λh). From the inverse GWHT,
we have that

ξhλ(X1,...,Xt)
p = p−t

∑
(w1,...,wt)∈Ft

p

Hhλ
(w1, . . . , wt)(−1)

∑t
i=1 wiXi.

For any x ∈ Fpn and 1 ≤ i ≤ t ≤ m, taking Xi = trn(uix), we obtain

ξhλ(trn(u1x),...,trn(utx))
p = p−t

∑
(w1,...,wt)∈Ft

p

Hhλ
(w1, . . . , wt)ξ

trn((
∑t

i=1 wiui)x)
p .

(4.3)
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Multiplying both sides of (4.3) by ξGλ(x)+trn(βx), we have

ξGλ(x)+Hλ(x)+trn(βx) = p−t
∑

(w1,...,wt)∈Ft
p

Hhλ
(w1, . . . , wt)ξ

Gλ(x)+trn((β+
∑t

i=1 wiui)x)
p .

By summing the previous expression on both sides over all x ∈ Fpn and
using the fact that G is p-ary weakly regular bent, we obtain that

HFλ
(β) = p−t

∑
(w1,...,wt)∈Ft

p

Hhλ
(w1, . . . , wt)HGλ

(β +
t∑
i=1

uiwi)

= p−t+n/2z
∑

(w1,...,wt)∈Ft
p

Hhλ
(w1, . . . , wt)ξ

G∗
λ(β+

∑t
i=1 uiwi)

p , (4.4)

where z ∈ C such that |z| = 1. It follows from (4.1) and (4.4) that

HFλ
(β) = p−t+n/2zξG

∗
λ(β)

∑
(w1,...,wt)∈Ft

p

Hhλ
(w1, . . . , wt)ξ

∑t
i=1 wigi(β)

p .

The sum on the right-hand side corresponds to the inverse GWHT of hλ
at the point (g1(β), . . . , gt(β)) and thus we have

HFλ
(β) = pn/2zξG

∗
λ(β)+hλ(g1(β),g2(β),...,gt(β))

p .

Since β ∈ Fpn is arbitrary, we have that Fλ is p-ary weakly regular bent
for all λ ∈ F∗

pm. In other words, F is a p-ary weakly regular bent (n,m)-
function.

Remark 4.1.5. If we have a function f : X → Y , then the number
of possible functions f equals to #Y #X . Thus, since h is a p-ary (t, t)-
function, there are ptpt possible choices for h. Hence, we can construct at
most ptpt p-ary bent (n,m)-functions F from a fixed bent function G and
an arbitrary function h. In the case when p = 3, n = 4 and m = t = 2,
we have 318 possibilities.
Similarly, as noted in [90] for the Boolean case, we can use Construction
4.1.1 to obtain new instances of plateaued p-ary (n,m)-functions.
Corollary 4.1.6. With the same conditions as in Theorem 4.1.4, let l be
any positive integer. Let hi be any reduced polynomial in Fp[X1, . . . , Xn],
for i = 1, . . . , l. Then
F (x) = (G(x),h1(trn(u1x), . . . , trn(u2x)), . . . ,hl(trn(u1x), . . . , trn(u2x)))

is a plateaued p-ary (n,m + l)-function if and only if the p-ary (n, l)-
function

x 7→ (h1(trn(u1x), . . . , trn(u2x)), . . . ,hl(trn(u1x), . . . , trn(u2x))),

x ∈ Fpn, is plateaued.
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Proof. For any v ∈ Ftp the function ⟨v, (h1, . . . ,hl)⟩ is again a reduced
polynomial, and thus by Theorem 1, the p-ary function ⟨(λ, v), F ⟩ is bent
for all λ ∈ F∗

pm. Hence, F is plateaued if and only if all the components
⟨(0, v), (h1, . . . ,hl)⟩ are plateaued for v ̸= 0, or equivalently, if x 7→
(h1, . . . ,hl), x ∈ Fpn, is a plateaued p-ary (n, l)-function.

Before providing instances of new vectorial p-ary weakly regular bent
functions, we will provide another characterisation of the (PU) property
via second-order derivatives, as it was done by Zheng et. al for the binary
case in [90].
Lemma 4.1.7. Let g ∈ Bnp be any p-ary weakly regular bent function.
Then the following statements are equivalent.
(i) There exist u1, . . . , ut ∈ Fpn and g1, . . . , gt ∈ Bnp such that

g

(
x+

t∑
i=1

wiui

)
= g(x) +

t∑
i=1

wigi(x), (4.5)

for all w = (w1, . . . , wt) ∈ Fpt.
(ii) DuiDujg ≡ 0 for all 1 ≤ i, j ≤ t.

Proof. (i ⇒ ii) As w is arbitrary, let us take w = ei, where ei =
(e0, . . . , et) with ek = 1 for k = i, and ek = 0, otherwise, for 1 ≤ k ≤ t.
Then (4.5) becomes g(x+ ui) = g(x) + gi(x), or equivalently,

gi(x) = g(x+ ui)− g(x) = Duig(x).

Similarly, for any 1 ≤ i, j ≤ t, we deduce that

g(x+ ui + uj) = g(x) + gi(x) + gj(x)

= −g(x) + (g(x+ ui) + g(x+ uj))

⇒DuiDujg(x) = 0, for any x ∈ Fpn.

(ii⇒ i) Let us define gi := Duig, for i = 1, . . . , t. Let q ∈ Fp and 1 ≤ i ≤
t be arbitrary. We will show that that g(x+ qui) = g(x) + qDuig(x), for
all x ∈ Fpn. From the assumption that DuiDujg ≡ 0 and taking i = j,
we have that

g(x+ 2ui)− 2g(x+ ui) + g(x) = 0

⇒ g(x+ 2ui) = −g(x) + 2g(x+ ui) = g(x) + 2Duig(x). (4.6)

If we change x with x+ ui in (4.6), then:

g(x+ 3ui)− 2g(x+ 2ui) + g(x+ ui) = 0. (4.7)
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Furthermore, from (4.6) and (4.7), we also note that

g(x+ 3ui) = 2(g(x) + 2Duig(x))− g(x+ ui)

= g(x) + 4Duig(x)−Duig(x)

= g(x) + 3Duig(x) (4.8)

If we continue inductively, we observe that g(x+ qui) = g(x)+3Du1g(x)
holds indeed for all x ∈ Fpn and all q ∈ Fp. Assume now that 1 ≤ i, j ≤ t
and wi, wj ∈ Fp are arbitrary. Since g(x+ qui) = g(x) + qDuig(x) holds
for all q ∈ Fp and 1 ≤ i ≤ t, we have that

g(x+ wiui + wjuj) = g((x+ wiui) + wjuj)

= g(x+ wiui) + wjDujg(x+ wiui)

= g(x) + wiDuig(x) + wj(g(x+ wiui + uj)

− g(x+ wiui))

= g(x) + wiDuig(x) + wj (g(x+ uj) + wiDuig(x+ uj)

−g(x)− wiDuig(x))

= g(x) + wiDuig(x) + wj
(
Dujg(x) + wiDujDuig(x)

)
= g(x) + wiDuig(x) + wjDujg(x)

Using mathematical induction, it is easy to show that (4.5) holds for all
(w1, . . . , wt) ∈ Fpt and all x ∈ Fpn.

Remark 4.1.8. We note that the functions gi in (4.5) are exactly the
derivatives Duig, i = 1, . . . , t.

4.2 New infinite families of vectorial p-ary weakly
regular bent functions

Using similar methods as in [4, 74, 82, 90], we will present certain classes
of p-ary vectorial weakly regular bent functions whose components sat-
isfy the (PU) property and thus may be used for the construction of
new p-ary weakly regular bent and plateaued functions via Construction
4.1.1. We note that the proofs are analogous to the proofs in binary
case as seen in Chapter 3. Before that, we present some observations on
certain monomial weakly regular bent functions and their connection to
the (PU) property.

4.2.1 Observations on monomial p-ary weakly regular bent
functions

Let n = 2m. Since functions of the form x 7→ trm(λx
pm+1), x ∈ Fpn are p-

ary weakly regular bent for λ ∈ F∗
pm (see e.g. [49]), the function F defined
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by G(x) = xp
m+1 is a vectorial p-ary weakly regular bent function. From

[36], we know that the dual of Gλ is defined as G∗
λ(x) = −trm

(
xp

m+1

λpm+λ

)
.

From [74, Theorem 3.4], the component G∗
λ satisfies the property (PU) if

trm

(
up

m

i uj + uiu
pm

j

λpm + λ

)
= 0,

for all ui, uj ∈ U ⊆ Fpn with |U | = t|m. Thus, for i = j, we must
have that trm(2(λp

m

+ λ)−1up
m+1
i ) = 0 for all 1 ≤ i ≤ t. If we want to

construct a vectorial p-ary bent function F from G via Construction
4.1.1, then the above equality has to hold for all λ ∈ F∗

pm. Thus, we
must have that up

m+1
i = 0 and consequently ui = 0 for all 1 ≤ i ≤ t.

Hence, one cannot construct a vectorial p-ary weakly regular bent
(n,m)-function via the Kasami function G.

Similarly, let us we consider the function G(x) = x2 on Fpn. The duals
of its components Gλ(x) = trn(λx

2) are defined by G∗
λ(x) = −tr(x24λ),

for λ ∈ F∗
pn. Suppose U ⊂ Fpn denotes the set from Construction 4.1.1.

From Lemma 4.1.7, we must have DuDvG
∗
λ ≡ 0, for all u, v ∈ U , and

consequently, for all λ ∈ F∗
pn. Let u, v ∈ U be arbitrary, then

DuDvG
∗
λg(x) = −trn

(
x2 − (x+ u)2 − (x+ u)2 + (x+ 2u)2

4λ

)
= −tr

(
2uv

4λ

)
= −tr

(uv
2λ

)
.

Thus, we must have that tr
(
uv
2λ

)
= 0 for all u, v ∈ U and all λ ∈ F∗

pn.

Specially, if u = v, then we have that tr
(
u2

2λ

)
= 0. However, this is only

possible if u = 0. In other words, we cannot construct vectorial p-ary
bent functions via G and Construction 4.1.1. Consequently, we have the
following remark.

Remark 4.2.1. If G is a vectorial p-ary weakly regular bent function
defined as G(x) = xp

m

+ 1 or G(x) = x2, for x ∈ Fpn, then one cannot
construct new vectorial p-ary weakly regular bent functions via Con-
struction 4.1.1.

Based on this observation, we have the following interesting open prob-
lem.

Question 4.2.2. Can we find an exponent d such that G(x) = xd is a
monomial p-ary weakly regular bent function and all of its components
satisfy the (PU) property?
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4.2.2 New infinite families of vectorial p-ary weakly regular
bent functions from the p-ary Maiorana-McFarland class

Let n = 2m and let us identify Fpn with Fpm × Fpm. The well known
Maiorana-McFarland class of vectorial p-ary bent functions can be de-
fined as

F (x, y) = xπ(y) + g(y), x, y ∈ Fpm,
where π : Fpm → Fpm is a permutation and g ∈ Bnp is an arbitrary p-ary
function. Let λ ∈ F∗

pm be arbitrary, then Fλ(x, y) = trm(λxπ(y)+λg(y)).
Its corresponding dual is defined with (see [96]):

F ∗
λ(x, y) = trm

(
−yπ−1(x/λ) + λg(π−1(x/λ)

)
,

where π−1 is the inverse permutation of π. Following the methodology
in [74], we note that for α = (a1, a2), β = (b1, b2) ∈ Fpm × Fpm, the scalar
product trm(αβ) can be defined as trm(a1b1 + a2b2).
In [74] the authors considered the p-ary case for linearized polynomials.
In the following results, we extend this notion to the vectorial p-ary
case and obtain new instances of vectorial p-ary weakly regular bent and
plateaued functions. The vectorial p-ary function (4.2) in Construction
4.1.1 can be rewritten in bivariate form as:

F (x, y) = G(x, y) + h (trm(αix+ βiy), . . . , trm(αtx+ βty)) ,

where the elements ui ∈ U correspond to ui = (αi, βi) ∈ Fpm × Fpm.
Lemma 4.2.3. Let n = 2m and u1, . . . , ut ∈ F∗

pn be linearly independent
elements over Fp, where 1 ≤ t|m. Denote ui = (αi, βi) ∈ Fpm × Fpm.
Let G(x, y) = yπ(x), where π is a linear permutation over Fpm. If
trm

(
βiπ

−1
(αj

λ

)
+ βjπ

−1
(
αi

λ

))
= 0 for each 1 ≤ i, j ≤ t and λ ∈ F∗

pm,
then the dual component G∗

λ satisfies (4.1) with

gi(x, y) = −trm
(
yπ−1

(αi
λ

)
+ βiπ

−1
(x
λ

))
. (4.9)

Proof. Let X = x +
∑t

i=1wiαi and Y = y +
∑t

i=1wiβi. It follows from
(4.1) and the fact that π is linear that

G∗
λ (X, Y ) = trm

(
−

(
y +

t∑
i=1

wiβi

)
π−1

(
x

λ
+

t∑
i=1

wi
αi
λ

))

= G∗
λ(x, y)−

t∑
i=1

witrm

(
yπ−1

(αi
λ

)
+ βiπ

−1
(x
λ

))
−

t∑
i=1

w2
i trk

(
βiπ

−1
(αi
λ

))
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−
∑

1≤i<j≤t
wiwjtrm

(
βiπ

−1
(αj
λ

)
+ βjπ

−1
(αi
λ

))
= G∗

λ(x, y) +
t∑
i=1

wigi(x, y)−
t∑
i=1

w2
i trm

(
βiπ

−1
(αi
λ

))
−∑

1≤i<j≤t
wiwjtrm

(
βiπ

−1
(αj
λ

)
+ βjπ

−1
(αi
λ

))
,

where gi is defined by (3.9). The conclusion follows from the assumption
that

trm

(
βiπ

−1
(αj
λ

)
+ βjπ

−1
(αi
λ

))
= 0,

for each 1 ≤ i, j ≤ t and λ ∈ F∗
pm.

The following result is an immediate consequence of Lemma 4.2.3.
Corollary 4.2.4. Let α1, . . . , αt ∈ F∗

pm be linearly independent elements
over Fp, 1 ≤ t ≤ k. Denote ui = (αi, 0) and let G(x, y) = yπ(x),
x, y ∈ Fpm, where π is a linear permutation over Fpm. Then, the dual
component G∗

λ satisfies (4.1) with

gi(x, y) = trm

(
yπ−1

(αi
λ

))
,

for any λ ∈ F∗
pm.

Thus, as an immediate result of Theorem 4.1.4 (Corrolary 4.1.6) and
Corollary 4.2.4, we have the following infinite family of vectorial p-ary
weakly regular bent (plateaued) (2m,m)-functions.
Theorem 4.2.5. Let α1, . . . , αt ∈ F∗

pm be linearly independent elements
over Fp, t|m. Let G(x, y) = yπ(x), where π is a linear permutation
over Fpm, and let h be any vectorial function from Ftp to Fpt. Then, the
function F : Fpm × Fpm → Fpm given by

F (x, y) = yπ(x) + h(trm(α1x), . . . , trm(αtx)),

generated by Construction 4.1.1, is a vectorial p-ary weakly regular bent
(n,m)-function.
Theorem 4.2.6. Let α1, . . . , αt ∈ F∗

pm be linearly independent elements
over Fp, t|m. Let G(x, y) = yπ(x), where π is a linear permutation
over Fpm, and let hi be any reduced polynomial in Fp[X1, . . . , Xt], for
1 ≤ i ≤ l, such that the function
x 7→ H(x) = (h1(trm(α1x), . . . , trm(αtx)), . . . ,h1(trm(α1x), . . . , trm(αtx))),

with x ∈ Fpm, is a plateaued p-ary (m, l)-function. Then, the function
F : Fpm × Fpm → Fm+l

p defined by

F (x, y) = (yπ(x),H(x))
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is a plateaued p-ary (n,m+ l)-function.
Example 4.2.7. Let G : F34 × F34 → F34 be defined with G(x, y) = xy.
Let U = {1, β, β3, β9}, where β = α82, and α be a root of the primitive
polynomial p(x) = x8+2x5+x4+2x2+2x+2 ∈ F38[x]. Let h : F34 → F34

be defined with h(X) = X13. From Theorem 4.2.5, the function

F (x, y) = xy +
(
tr4(x) + βtr4(βx) + β2tr4(β

2x) + β3tr4(β
3x)
)13

is a ternary weakly regular bent (8, 4)-function.



Chapter 5

Two new superclasses of bent
functions SC and CD

In this chapter, we show that under certain conditions it is possible to
construct two superclasses of bent functions that stem from D0, D and
C, which will be denoted as the SC and CD class. These classes of
functions use the addition of indicators typical to D0 and C, and D and
C, respectively. Therefore their overall effect is a modification of a bent
function on a suitable subset instead on a subspace. We also show that
the adding indicators of D0 and D cannot give bent functions.

We give sufficient conditions which ensure that bent functions in CD and
SC lie outside M# and provide several generic methods for specifying
these objects. We also partially address the normality of these functions
and in this context we further refine the constraints on functions in
CD to be outside the completed PS+ class. This problem of finding
non(weakly)-normal bent functions is intrinsically difficult and it remains
open to show whether there are instances of bent functions in CD which
are non(weakly)-normal.

At the end of the chapter we explicitly characterize the duals of certain
instances of bent functions in C,D,SC and CD which will be of interest
for the construction of bent 4-concatenations (cf. Section 7.2.3).

5.1 Bentness of Boolean functions in the class SC
Let g : F2m × F2m → F2, defined by g(x, y) = Trm1 (xπ(y)), be a bent
Boolean function, where π is a permutation on F2m. Obviously, g ∈ M#.
If we define δ0(x) = x2

m−1 + 1 to be the Dirac symbol, that is δ0(x) = 1,
if x = 0, and equals 0 otherwise, the function g(x, y)+δ0(x) is a function
in the class D0[17]. If L is a linear subspace of F2m, then

1L⊥(x) =
∏

ω∈b(L)

(Trm1 (ωx) + 1),

43
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where b(L) denotes the basis of L, is the indicator function of L⊥ in
finite field notation. We note that if (π−1, L) satisfies the (C) property,
then g(x, y) + 1L⊥(x) is in the C class. Furthermore, let r = dim(L⊥).

We will show that functions of the form

f(x, y) = g(x, y) + 1L⊥(x) + δ0(x), x, y ∈ F2m

are bent and outside M# under certain conditions. This is the first time
where the truth table of a bent function from the Maiorana-McFarland
class was modified in 2m(2r − 1) = 2m+r − 2m places, that is, it is not a
power of 2 nor corresponds to an indicator of a subspace.
Theorem 5.1.1. Let π be a permutation on F2m and L ⊂ F2m be a linear
subspace of F2m such that (π−1, L) satisfies the (C) property. Then the
function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xπ(y)) + 1L⊥(x) + δ0(x) (5.1)

is bent.

Proof. Let (a, b) ∈ F2m × F∗
2m be arbitrary. Let us consider the Walsh

coefficient Wf(a, b).

Wf(a, b) =
∑

x,y∈F2m

(−1)f(x,y)+Tr
m
1 (ax+by)

=
∑

x,y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+δ0(x)+Tr

m
1 (ax+by).

Since δ0(x) = 1 only if x = 0, and equals 0 otherwise, we have that

Wf(a, b) =
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax+by)

+
∑
y∈F2m

(−1)0+1+1+Trm1 (0+by)

=
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax+by) +

∑
y∈F2m

(−1)Tr
m
1 (by)

=
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax+by) + 0

=
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax+by) (5.2)

Furthermore, if we denote with g(x, y) = Trm1 (xπ(y)) + 1L⊥(x), we note
that ∑

y∈F2m

(−1)g(0,y)+Tr
m
1 (yb) =

∑
y∈F2m

(−1)1+Tr
m
1 (yb) = 0.
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Thus, we may add this sum to (5.2) and obtain that

Wf(a, b) =
∑
x∈F2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax+by) = Wg(a, b).

If b = 0, we have that

Wf(a, 0) =
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax) + 2m

=
∑

x,y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax)

−
∑
y∈F2m

(−1)g(0,y)+Tr
m
1 (0) + 2m

=
∑

x,y∈F2m

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax) + 2m+1

= Wg(a, 0) + 2m+1 (5.3)

From the well-known Parseval’s equation, it holds that∑
a,b∈F2m

W 2
f (a, b) =

∑
a,b∈F2m

W 2
g (a, b) = 24m.

Let us express W 2
f in terms of W 2

g as follows.

24m =
∑

a,b∈F2m

W 2
f (a, b) =

∑
a∈F2m

W 2
f (a, 0) +

∑
b̸=0,a∈F2m

W 2
f (a, b)

=
∑
a∈F2m

(Wg(a, 0) + 2m+1)2 +
∑

b ̸=0,a∈F2m

W 2
g (a, b)

=
∑
a∈F2m

(W 2
g (a, 0) + 2m+2Wg(a, 0) + 22m+2)

+
∑

b̸=0,a∈F2m

W 2
g (a, b)

=
∑

a,b∈F2m

W 2
g (a, b) + 2m+2

∑
a∈F2m

Wg(a, 0) + 23m+2

24m = 24m + 2m+2
∑
a∈F2m

Wg(a, 0) + 23m+2

∑
a∈F2m

Wg(a, 0) = −22m (5.4)
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Since g is a bent function (it is in the C class), it follows that Wg(a, b) =
±2m for all a, b ∈ F2m. Thus, from (5.4) it follows that

∑
a∈F2m

Wg(a, 0) = α · 2m + β · (−2m) = −22m, α, β ∈ Z, 0 ≤ α, β ≤ 2m

⇒α = 0, β = 2m,

that is, Wg(a, 0) = −2m for all a ∈ F2m. Hence, from (5.3) we have that
Wf(a, 0) = 2m for all a ∈ F2m. In other words, Wf(a, b) = ±2m for all
(a, b) ∈ F2m × F2m, i.e., the function f is indeed bent.

The above result motivates the following definition.
Definition 5.1.2. Let π be a permutation on F2m and let L ⊂ F2m be a
linear subspace of F2m such that (π−1, L) satisfies the (C) property. Then
the class of bent functions f : F2m × F2m → F2 containing all functions
of the form

(SC) : f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) + a1δ0(x), ai ∈ F2, (5.5)
is called SC and is a superclass of D0 and C.
Remark 5.1.3. Notice that for f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) +
a1δ0(x), the indicator 1S(x) = 1L⊥(x)+ δ0(x) (taking a0 = a1 = 1) is the
characteristic function of the set S := L⊥\{0}. Setting a0 = 1, a1 = 0 we
recover the class D0, whereas the case a0 = 0, a1 = 1 specifies the class C.
Is is interesting to observe that these functions can also be viewed either
as further modifications performed on the members of D0 (addition of
1L⊥(x)) or alternatively a modification of the members in C (through
addition of δ0(x)).
With the following result, we show that the newly constructed class of
bent functions is indeed outside M# under certain conditions.
Theorem 5.1.4. With the same notation as in Theorem 5.1.1, the func-
tion f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xπ(y)) + 1S(x), x, y ∈ F2m,

where 1S(x) = 1L⊥(x) + δ0(x), 2 ≤ dim(L) < m and Trm1 (µπ) has no
non-zero linear structures for all µ ∈ F∗

2m, is a bent function in the class
SC outside M#.

Proof. From Lemma 2.2.4, it suffices to show that there is no subspace
K of F2m × F2m on which the second-order derivative DaDbf vanishes,
for some a, b ∈ K.
Let K = K1 × K2, K1, K2 ̸= {0}, be an m-dimensional subspace of
F2m × F2m, and let a = (a1, a2), b = (b1, b2) ∈ K be arbitrary nonzero
elements with a ̸= b. Then, we have that

DaDbf(x, y) = DaDbg(x, y) +Da1Db1δ0(x) = 0
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⇔DaDbg(x, y) = Da1Db1δ0(x),

for all x, y ∈ F2m, where g(x, y) = Trm1 (xπ(y)) + 1L⊥(x).The de-
gree of g(x, y) relative to x equals deg(1L⊥) = dim(L) < m. Thus,
deg(DaDbg) ≤ m − 1 − 2 = m − 3. On the other hand, deg(δ0) = m,
and thus deg(Da1Db1δ0) = m − 2. Since the degrees of the functions
DaDbg and Da1Db1δ0 relative to x differ, it follows that DaDbf ̸= 0. If
K = F2m × {0}, with the same conclusion as before, DaDbf ̸= 0 for
0 ̸= a, b ∈ K, a ̸= b. Suppose K = {0} × F2m and let a = (0, a2), b =
(0, b2) ∈ K be arbitrary and distinct. Then

DaDbδ0(x, y) = D0D0δ0(x, y) = 0,

for all x, y ∈ F2m. Since g is in C outside M# (all conditions of Theorem
2.2.6 are satisfied), we have that DaDbg ̸= 0. Hence, it follows that
DaDbf ̸= 0 for 0 ̸= a, b ∈ K distinct. Thus, there is no m-dimensional
subspace of F2m × F2m on which the second-order derivatives DaDbf
vanish, i.e. the function f is outside M#.

Especially, we can specify the following explicit family of bent functions
outside M#. But first, we note the following useful result.

Proposition 5.1.5. [88] Let π(x) = xd be a monomial permutation over
F2n. Then none of the component functions of π(x) will admit a linear
structure if and only if wt(d) ≥ 3.
Corollary 5.1.6. Let n = 2m and s ≥ 2 be a positive divisor of m
such that m/s is odd. Let π(y) = yd be a permutation on F2m such that
d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Let U = {1, α, . . . , αs−1},
where α is a primitive element of F2s. If L = ⟨K⟩, where K ⊆ U , then
the Boolean function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xy
d) + 1L⊥(x) + δ0(x), x, y ∈ F2m,

is a bent function in SC outside M#.

Proof. Since gcd(m, s) = s and m/s is odd, from [88, Theorem 9] we
know that (π−1, L) satisfies the (C) property. Furthermore, wt(d) ≥ 3,
which implies that Trm1 (µπ) has no nonzero linear structures (cf. Propo-
sition 5.1.5), for all µ ∈ F∗

2m, and 2 ≤ dim(L) ≤ s < m. Thus, from
Theorem 5.1.4 it follows that f is a bent function in SC outside M#.

Remark 5.1.7. Notice that our modification is performed on sets which
however possess a lot of structure (a union of two subspaces). A similar
modification of bent functions performed on random sets of the same
cardinality as our union of two subspaces, thus considering (x, y) 7→
Trm1 (xπ(y))+1S(x), can hardly preserve the bentness. For this purpose
we considered 20000 randomly selected sets S ⊂ F212 of cardinality 26 ×
(24−1) which is of the same size as for δ0(x)+1L⊥(x) when dim(L) = 2),



48 5.1. BENTNESS OF BOOLEAN FUNCTIONS IN THE CLASS SC

see also Example 5.1.8. It could be checked that for none of the 20000
randomly chosen sets S the function (x, y) 7→ Tr61(xy

38) + 1S(x) was
bent. In addition, other choices of permutation π(y), different from
π(y) = y38 gave the same result. Hence, considering modifications of
bent functions on randomly selected sets S seems not to be an efficient
method for deriving new bent functions.

5.1.1 On EA-equivalence between D0 and SC class

One indicator for the EA-equivalence of bent functions is the weight dis-
tribution of the second-order derivatives, originally considered by Dillon
[29]. That is, two bent functions f, g ∈ Bn are EA-equivalent if and only
if the multisets {∗ wt(DaDbf) : a, b ∈ F∗

2n ∗} and {∗ wt(DaDbg) : a, b ∈
F∗
2n ∗} are equal. This criterion can be applied to bent functions in SC

and D0 for proving their EA-inequivalence. That is, let π be a permuta-
tion on F2m and let L ⊂ F2m be a linear subspace of F2m such that (π−1, L)
satisfies the (C) property. Then, the function f : F2m×F2m → F2 defined
by

f(x, y) = Trm1 (xπ(y)) + 1L⊥(x) + δ0(x)

is a function in SC. One can rewrite f as f(x, y) = g(x, y) + 1L⊥(x),
where g(x, y) = Trm1 (xπ(y)) + δ0(x) ∈ D0. Let us consider the second-
order derivatives of f . For 0 ̸= a = (a1, a2), b = (b1, b2) ∈ F2m × F2m, we
have that

DaDbf(x, y) = DaDbg(x, y) +Da1Db11L⊥(x).

For simplicity, we assume that dim(L) = 2 (see also Example 5.1.8 be-
low), then dim(L⊥) = m − 2. Since deg(1L⊥) = 2, it is easy to verify
that

Da1Db11L⊥ ≡
{

1, ⟨a1, b1⟩∗ ⊈ L⊥

0, otherwise,

where ⟨a1, b1⟩∗ = {a1, b1, a1 + b1}. In other words,

DaDbf ≡
{
DaDbg + 1, ⟨a1, b1⟩∗ ⊈ L⊥

DaDbg, otherwise. .

Hence, assuming that DaDbg is not balanced for all ⟨a1, b1⟩∗ ⊈ L⊥ then
the weight distributions of DaDbf and DaDbg differ and thus f and
g are EA-inequivalent. Thus, functions in SC can be EA-inequivalent
to functions in the class D0. A similar argument can be applied when
dim(L) > 2 in which case the difference between DaDbg and DaDbf is a
function of degree dim(L)− 2 and in general the weight distributions of
the second order derivatives are different.

We give also the following computational observation confirming the
above discussion regarding EA-equivalence.
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Example 5.1.8. Let f : F26×F26 → F2 be defined by f(x, y) = g(x, y)+
1L⊥(x), where g(x, y) = Tr61(xy

38) + δ0(x) and L = ⟨1, α(26−1)/3⟩, α is a
primitive element of F26. Then, the functions f and g are bent functions
in SC and D0, respectively. Let us consider the weight distributions of
their second-order derivatives. For simplicity, we denote with [u, v] the
weight u which appears v times as a weight of DaDbg or DaDbf .
The weight distribution {∗ wt(DaDbg) : 0 ̸= a, b ∈ F26 × F26 ∗} is given
by:

[256, 1953] [1024, 567] [1152, 17577]
[1536, 2268] [1600, 70308] [1664, 189]
[1792, 61425] [1824, 60480] [1856, 82782]
[1888, 117936] [1920, 577836] [1952, 396144]
[1984, 470484] [2016, 982800] [2048, 2682666]
[2080, 970704] [2112, 447930] [2144, 423360]
[2176, 554715] [2208, 120960] [2240, 70308]
[2272, 60480] [2304, 81585] [2496, 117180]
[2560, 3780] [2944, 5859] [3072, 189]

On the other hand, the weight distribution {∗ wt(DaDbf) : 0 ̸= a, b ∈
F26 × F26 ∗} is:

[256, 1185] [1024, 567] [1152, 12969] [1536, 2268]
[1600, 88740] [1664, 117] [1792, 68145] [1824, 59040]
[1856, 75870] [1888, 116784] [1920, 560196] [1952, 403920]
[1984, 457620] [2016, 974160] [2048, 2682666] [2080, 979344]
[2112, 460794] [2144, 415584] [2176, 572355] [2208, 122112]
[2240, 77220] [2272, 61920] [2304, 74865] [2432, 72]
[2496, 98748] [2560, 3780] [2944, 10467] [3072, 189]
[3840, 768]

The above weight distributions are clearly different. Moreover, in the
weight distribution of DaDbf we have two additional values, which
do not appear in the weight distribution of DaDbg. Notice that the
weight distributions remain different for suitably chosen subspaces L
with dim(L) > 2.
Motivated by this construction, we will consider the existence of other
superclasses: SD (superclass of D and D0), CD (superclass of C and D)
and SCD (superclass of C, D and D0). It turns out that only the class
CD contains bent functions, whereas the other classes do not.

5.2 Bentness of Boolean functions in the class SD
As before, we consider g : F2m × F2m → F2 defined as g(x, y) =
Trm1 (xπ(y)), where π is a permutation on F2m, which is a bent func-
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tion in M. We now show that if E1, E2 ̸= {0} are two linear sub-
spaces of F2m such that π(E2) = E⊥

1 (we do not consider the possibilities
E1 ×E2 = {0}× F2m or F2m ×{0}), then Boolean functions of the form,
constituting the SD class,

(SD) : f(x, y) = g(x, y) + 1E1
(x)1E2

(y) + δ0(x), x, y ∈ F2m, (5.6)

cannot be bent.
Theorem 5.2.1. Let π be a permutation on F2m and E1, E2 ⊂ F2m be
two linear subspace of F2m such that π(E2) = E⊥

1 . Then, the function
f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xπ(y)) + 1E1
(x)1E2

(y) + δ0(x)

is not bent.

Proof. Let us first compute Wf(0, 0) as:

Wf(0, 0) =
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) +

∑
y∈F2m

(−1)1E2
(y)+1

=
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) −

∑
y∈F2m

(−1)1E2
(y)

=
∑
x∈F2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) − 2

∑
y∈F2m

(−1)1E2
(y)

= Wg(0, 0)− 2 · (2m − |E2|).

Since g(x, y) = Trm1 (xπ(y)) + 1E1
(x)1E2

(y) is a bent function in D, we
have that either Wg(0, 0) = 2m or −2m.

Assuming that Wg(0, 0) = 2m, then

Wf(0, 0) = 2m − 2 · 2m + 2|E2| = −2m + 2|E2|.
The requirement that Wf(0, 0) = ±2m implies that |E2| = 0 or 2m. How-
ever, E2 ̸= ∅ and obviously dimE2 < m, thus this case is not possible.
On the other hand, if Wg(0, 0) = −2m then we necessarily have

Wf(0, 0) = −2m − 2 · 2m + 2|E2| = −3 · 2m + 2|E2|.
Requiring that Wf(0, 0) = ±2m, implies that |E2| = 2m+1 or 2m, both of
which are again not possible. Hence, Wf(0, 0) ̸= ±2m, that is, f is not a
bent function.

Remark 5.2.2. Similarly, using the ideas as in the proof of Theorem
5.2.1, one can show that functions of the form (constituting the SCD
class)

(SCD) : f(x, y) = g(x, y) + 1L⊥(x) + 1E1
(x)1E2

(y) + δ0(x),

cannot be bent.
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5.3 Bentness of Boolean functions in the class CD

In this section, we consider the remaining case which corresponds to the
mixture of indicators stemming from C and D. Let g : F2m × F2m → F2,
defined by g(x, y) = Trm1 (xπ(y)) ∈ M, be a bent Boolean function,
where π is a permutation on F2m. Let L ⊂ F2m be a linear subspace of
F2m such that (π−1, L) satisfies the (C) property, and let E1, E2 ̸= {0}
be two linear subspaces of F2m such that π(E2) = E⊥

1 . We consider the
bentness of Boolean functions f in 2m variables, being members of the
class CD (cf. Definition 5.3.3), of the form

f(x, y) = g(x, y) + 1L⊥(x) + 1E1
(x)1E2

(y), x, y ∈ F2m. (5.7)

The primary task is to find conditions which ensure that the function f
given by (5.7) is bent. Let us consider the Walsh coefficient Wf(a, b) for
arbitrary but fixed (a, b) ∈ F2m × F2m. Furthermore, let us denote with
C(x, y) := Trm1 (xπ(y)) + 1L⊥(x) and M(a, b) = C(x, y) + Trm1 (ax+ by).
Then,

Wf(a, b) =
∑

x,y∈F2m

(−1)M(a,b)+1E1
(x)1E2

(y)

=
∑
x∈E1

∑
y∈F2m

(−1)M(a,b)+1E2
(y) +

∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

= −
∑
x∈E1

∑
y∈E2

(−1)M(a,b) +
∑
x∈E1

∑
y/∈E2

(−1)M(a,b)

+
∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

= −2
∑
x∈E1

∑
y∈E2

(−1)M(a,b) +
∑
x∈E1

∑
y∈F2m

(−1)M(a,b)

+
∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

=
∑

x,y∈F2m

(−1)M(a,b) − 2
∑
x∈E1

∑
y∈E2

(−1)M(a,b)

= WC(a, b)− 2
∑
x∈E1

∑
y∈E2

(−1)M(a,b)

= WC(a, b)− 2
∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (xπ(y))+1L⊥(x)+Trm1 (ax+by).

Since E⊥
1 = π(E2), we have that Trm1 (xπ(y)) = 0 for (x, y) ∈ E1 × E2.
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It follows now that

Wf(a, b) = WC(a, b)− 2 ·

∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by)

−2
∑

x∈E1∩L⊥

∑
y∈E2

(−1)Tr(ax+by)

 . (5.8)

Furthermore, if we denote K = E1 ∩ L⊥, it is easy to see that∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
2ε1+ε2, (a, b) ∈ E⊥

1 × E⊥
2

0, otherwise , (5.9)

∑
x∈K

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
2κ+ε2, (a, b) ∈ K⊥ × E⊥

2

0, otherwise , (5.10)

where εi = dim(Ei) and κ = dim(K). Since K ⊂ E1, it follows that
E⊥

1 ⊂ K⊥, and therefore E⊥
1 × E⊥

2 ⊂ K⊥ × E⊥
2 . Obviously, when

(a, b) /∈ K⊥ × E⊥
2 , we have that Wf(a, b) = WC(a, b). Let us now

consider the following cases:

Case 1: Suppose that (a, b) ∈ E⊥
1 × E⊥

2 . Since we want that f
is a bent function, we have the following situations:
(I) If Wf(a, b) = WC(a, b), then

WC(a, b) = WC(a, b)− 2ε1+ε2+1 + 2κ+ε2+2

⇔2ε1+ε2+1 = 2κ+ε2+2

⇔κ = ε1 − 1.

(II) If Wf(a, b) = −WC(a, b), then −2WC(a, b) = −2m+1+2κ+ε2+2. Since
WC(a, b) = ±2m, we have

−2m+1 = −2m+1 + 2κ+ε2+2 or 2m+1 = −2m+1 + 2κ+ε2+2.

The first case is not possible since a power of two is strictly larger
than zero, and the second one leads to κ = ε1.

Case 2: Suppose that (a, b) ∈ (K⊥ \ E⊥
1 ) × E⊥

2 . Again, requiring that
f is bent leads to the following cases:
(I) If Wf(a, b) = WC(a, b), then

WC(a, b) = WC(a, b) + 2κ+ε2+2 ⇔ 2κ+ε2+2 = 0,

which is not possible.
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(II) If Wf(a, b) = −WC(a, b), then −2WC(a, b) = 2κ+ε2+2. Since the
right-hand side of the equality is positive, so must be the left-hand
side. Thus, we must have that WC(a, b) = −2m and in this case
κ = ε− 1.

From Case 1 and 2, we obtain bent Walsh coefficients only when κ = ε1
or κ = ε1−1. These observations are summarized below, where Theorem
5.3.1 corresponds to the case κ = ε1− 1 and Theorem 5.3.2 refers to the
case κ = ε1.
Theorem 5.3.1. Let π be a permutation on F2m, L ⊂ F2m be a linear
subspace of F2m such that (π−1, L) satisfies the (C) property, and let
E1, E2 ̸= {0} be two linear subspaces of F2m such that π(E2) = E⊥

1 and
dim(E1 ∩ L⊥) = dim(E1) − 1. Then, the function f : F2m × F2m → F2
defined by

f(x, y) = C(x, y) + 1E1
(x)1E2

(y),

where C(x, y) = Trm1 (xπ(y)) + 1L⊥(x), is bent. Moreover, it holds that

Wf(a, b) =

{
−WC(a, b), (a, b) ∈ ((E1 ∩ L)⊥ \ E⊥

1 )× E⊥
2

WC(a, b), otherwise .

Proof. Suppose that (a, b) /∈ (E1 ∩ L)⊥ × E⊥
2 . From (5.8)-(5.10), it is

easy to see that Wf(a, b) = WC(a, b). Suppose that (a, b) ∈ E⊥
1 × E⊥

2 .
Again, (5.8)-(5.10) implies that

Wf(a, b) = WC(a, b)− 2 · (2ε1+ε2 − 2 · 2ε1−1+ε2) = WC(a, b).

Lastly, if (a, b) ∈ ((E1 ∩ L)⊥ \E⊥
1 )×E⊥

2 , the sum (5.9) is equal to zero,
and thus from (5.8) and (5.10) it follows that

Wf(a, b) = WC(a, b)− 2 · 2ε1+ε2 = WC(a, b)− 2m+1.

Using Parseval’s equation, it is straightforward to show that WC(a, b) =
2m, for all (a, b) ∈ (E1 ∩ L)⊥ × E⊥

2 . Thus,

Wf(a, b) = 2m − 2m+1 = −2m = −WC(a, b).

In other words, the function f is bent.

Theorem 5.3.2. Let π be a permutation on F2m, E1, E2 ̸= {0} be two
linear subspaces of F2m such that π(E2) = E⊥

1 and (π−1, E⊥
1 ) satisfies the

(C) property. Then the function f : F2m × F2m → F2 defined by

f(x, y) = C(x, y) + 1E1
(x)1E2

(y),

where C(x, y) = Trm1 (xπ(y)) + 1E1
(x), is bent. Moreover, it holds that

Wf(a, b) =

{
−WC(a, b), (a, b) ∈ E⊥

1 × E⊥
2

WC(a, b), otherwise .
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Proof. We note that (5.8) becomes

Wf(a, b) = WC(a, b) + 2
∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by)

=

{
WC(a, b) + 2m+1, (a, b) ∈ E⊥

1 × E⊥
2

WC(a, b), otherwise .

Using Parseval’s equation, it is straightforward to show that WC(a, b) =
−2m for all (a, b) ∈ E⊥

1 × E⊥
2 . Thus,

Wf(a, b) = −2m + 2m+1 = 2m = −WC(a, b).

In other words, the function f is bent.

Definition 5.3.3. Let π be a permutation on F2m, L ⊂ F2m be a linear
subspace of F2m such that (π−1, L) satisfies the (C) property, and let
E1, E2 ̸= {0} be two linear subspaces of F2m such that π(E2) = E⊥

1 . If
dim(E1∩L⊥) = dim(E1)−1 or E1 = L⊥, then the class of bent functions
f : F2m × F2m → F2 containing all functions of the form

(CD) : f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) + a11E1
(x)1E2

(y), ai ∈ F2,
(5.11)

is called CD and is a superclass of C and D.
Remark 5.3.4. Let us consider the sum of the indicators 1L⊥(x) +
1E1

(x)1E2
(y) defined above. We note that

1L⊥(x) + 1E1
(x)1E2

(y) = 1

⇔(x, y) ∈ (L⊥ × F2m) \ (E1 × E2) ∨ (x, y) ∈ (E1 × E2) \ (L⊥ × F2m)

⇔(x, y) ∈ (L⊥ × F2m)△(E1 × E2) := S,

where ∆ denotes the symmetric difference of sets. Moreover, the cardi-
nality of S is equal to

|S| = 2m+λ + 2ϵ1+ϵ2 − 2ϵ2+1 · |L⊥ ∩ E1|, (5.12)

where dim(L⊥) = λ and dim(Ei) = ϵi, i = 1, 2. It is easy to verify that S
is neither a linear nor an affine subspace of F2n, rather a set of elements
in F2n.

5.3.1 Sufficient conditions for functions in CD to be outside
M#

Similarly as for functions in SC, we present sufficient conditions for func-
tions in the CD class to be provably outside M#. We also partially ad-
dress the normality of these functions and the main conclusion is that the
choice of indicators must be further refined in order to possibly identify
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instances within CD class which are weakly non-normal. Consequently,
this would imply that such functions lie outside the completed PS+ class.
The following proposition is proved to be useful for our main result.
Proposition 5.3.5. Let V be a subspace of Fn2 . Then, we have

deg(DaDb(1V (x))) =

{
n− dim(V )− 2, if a, b, a⊕ b /∈ V
0, otherwise

.

Proof. We know that deg(1V (x)) = n−dim(V ). Further, if a, b, a⊕b /∈ V ,
then

DaDb(1V (x))) = 1V (x)⊕ 1V (x⊕ a)
⊕1V (x⊕ b)⊕ 1V (x⊕ a⊕ b)

= 1V ∪(V⊕a)∪(V⊕b)∪(V⊕a⊕b)(x),

that is, deg(DaDb(1V (x))) = n− dim(V )− 2. If either a ∈ V , b ∈ V , or
a⊕ b ∈ V then

DaDb(1V (x))) = 0.

We are now able to prove that, under certain conditions, functions in
CD are provably outside M#.
Theorem 5.3.6. Let π be a permutation on Fm2 , L ⊂ Fm2 be a lin-
ear subspace of Fm2 such that (π−1, L) satisfies the (C) property, and let
E1, E2 ̸= {0m} be two linear subspaces of Fm2 such that π(E2) = E⊥

1 .
Furthermore, we assume that either dim(E1 ∩ L⊥) = dim(E1) − 1 or
E1 = L⊥. Let f : Fm2 × Fm2 → F2 be defined by

f(x, y) = x · π(y)⊕ 1L⊥(x)⊕ 1E1
(x)1E2

(y).

If (π−1, L) and (π,E1, E2) satisfy the properties (C1) and (D1)− (D3),
respectively (cf. Theorems 2.2.6 and 2.2.7), then f is a bent function in
CD outside M#.

Proof. From Theorems 5.3.1-5.3.2, it follows that f is bent. From Lemma
2.2.4, it suffices to show that there is no m-dimensional subspace V of
Fm2 × Fm2 := Fn2 on which the second-order derivative DaDb(f) vanishes,
for any nonzero a, b ∈ V .
The second-order derivative of f with respect to a = (a1, a2) and b =
(b1, b2) in V ⊂ Fm2 × Fm2 , can be written as

DaDbf(x, y) = x · (Da2Db2π(y))⊕ a1 ·Db2π(y ⊕ a2)
⊕b1 ·Da2π(y ⊕ b2)⊕Da1Db11L⊥(x)⊕DaDb1E1

(x)1E2
(y).

(5.13)
We know that E1×E2 is a subspace of Fn2 and therefore Fn2 =

⋃
ui∈U

(E1×

E2)⊕ui, where U is a set of (disjoint) coset representatives w.r.t. E1×E2
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and consequently (ui ⊕ (E1 × E2)) ∩ (uj ⊕ (E1 × E2)) = ∅ for any ui ̸=
uj ∈ U . Any a ∈ Fn2 can then be written as a = a[1] ⊕ a[2], where
a[1] ∈ E1 × E2 and a[2] ∈ U . Thus, we have

DaDb1E1
(x)1E2

(y) = Da[2]Db[2]1E1
(x)1E2

(y). (5.14)

If |{a[2] ∈ U : (a[1] ⊕ a[2]) ∈ V }| > 2, then we select two nonzero vectors
a, b ∈ V such that a[2], b[2] ∈ U , where a = a[1] ⊕ a[2] and b = b[1] ⊕ b[2].
Thus, we have a[2] ⊕ b[2] ∈ U , that is, a[2] ⊕ b[2] /∈ E1 × E2. From
Proposition 5.3.5 and (5.14), we have that

deg (DaDb1E1
(x)1E2

(y)) = m− 2.

Since the properties (D1) and (D3) are satisfied, we have that
deg (DaDb(π(y) · x)) < m − 2 and deg (Da1Db11L⊥(x)) ≤ dim(L) − 2 <
m− 2. From (5.13), it follows that

DaDbf ̸≡ 0.

If |{a[2] ∈ U : (a[1] ⊕ a[2]) ∈ V }| ≤ 2, then |V ∩ (E1 × E2)| ≥ 2m−1 (since
|V | = 2m). From property (D1) and π(E2) = E⊥

1 , we have

|V ∩ (E1 × E2)| ≥ 2m−1 > |E1| and |V ∩ (E1 × E2)| ≥ 2m−1 > |E2|.

Moreover, we have that

|V ∩ (E1 × 0m)| ≥ 2 and |V ∩ (0m × E2)| ≥ 2,

which can be justified as follows. For instance, assuming that |V ∩ (E1×
0m)| < 2 then |V ∩ (E1 × E2)|≤|E2|, which is in contradiction with
|V ∩ (E1×E2)| ≥ 2m−1 > |E2|. Hence, we can select two nonzero vectors
a, b ∈ V ∩ (E1 × E2) such that a = (a1,0m), b = (0m, b2).

From (5.13), we have that

DaDbf(x, y) = a1 ·Db2π(y)⊕DaDb1E1
(x)1E2

(y)
= a1 ·Db2π(y),

since a, b ∈ V ∩ (E1 × E2) and therefore DaDb1E1
(x)1E2

≡ 0. As the
property (D2) is satisfied, it holds that a1 ·Db2π ̸≡ const. Thus, for any
m-dimensional subspace V of Fm2 ×Fm2 we can find nonzero a, b ∈ V such
that DaDbf ̸≡ 0.

As an immediate consequence of the previous result, we present the
following explicit family of bent functions in CD outside M#. We will
define it using a finite field notation.
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Proposition 5.3.7. Let n = 2m, m even, and s be a positive divisor of
m such that m/s is odd. Let π(y) = yd be a permutation on F2m such
that d(2s+1) ≡ 1 (mod 2m− 1) and wt(d) ≥ 3. Let L = ⟨1, α, . . . , αs−1⟩,
where α is a primitive element of F2s, E2 = ⟨α 2s−1

3 , α
2(2s−1)

3 ⟩ and E1 = E⊥
2 .

Then, the function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xy
d) + 1L⊥(x) + 1E1

(x)1E2
(y), x, y ∈ F2m,

is a bent function in CD outside M#.

Proof. From [88, Theorem 9] we know that (π−1, L) satisfies the (C)
property. Since m is even and m/s is odd, we must have that s is even.
Thus, 22 − 1 = 3|2s − 1 and furthermore E2 is not only a vector space
but also corresponds to a subfield {0, 1, α 2s−1

3 , α
2(2s−1)

3 } of F2s. Since π
is a monomial permutation, it must map every subfield to itself, thus
π(E2) = E2 = E⊥

1 . Since wt(d) ≥ 3, from [88, Proposition 5], we have
that Trm1 (uπ(y)) admits no linear structures, for any u ∈ F∗

2m. Since
dim(E2) = 2, we have that dim(E1) = m − 2. Hence, the conditions
(C1) and (D1) − (D3) of Theorems 2.2.6 and 2.2.7, respectively, are
satisfied. From Theorem 5.3.6, it follows that f is a bent function in CD
outside M#.

Example 5.3.8. Let m = 6, s = 2 and d = 38. One can easily verify
that d(2s + 1) ≡ 1 (mod 2m − 1). With respect to the notation in
Proposition 5.3.7, we have that for E2 = F22 and E1 = E⊥

2 the function
f : F26 × F26 → F2 defined by

f(x, y) = Tr61(xy
38) + 1E1

(x)(1 + 1E2
(y)), x, y ∈ F26,

is a bent function in CD and is outside M#.
Remark 5.3.9. Especially, for m = 6, we inspected all possible choices
for L,E1 and E2 such that either dim(L) = dim(E2) = 2 or 3, (π−1, L)
satisfies the (C) property and π(E2) = E⊥

1 , where π(y) = y38 is a fixed
permutation on F26. Using the mathematical software Sage, we were able
to construct 500 functions f ∈ CD of the form (5.11) for the fixed permu-
tation π given above. Furthermore, all of them are outside M#. With
the same notation as in the example above, we could also confirm that
the function f is pairwise EA-inequivalent to the functions f1(x, y) =
Tr61(xy

38) + 1E1
(x) ∈ C and f2(x, y) = Tr61(xy

38) + 1E1
(x)1E2

∈ D. The
question whether (some of) these functions induce distinct EA-equivalent
classes is left open.

We now provide one more example of bent functions in CD outside M#,
for larger n.
Example 5.3.10. Let m = 9 and d = 284. We note that d(23 + 1)
mod (29 − 1) = 1, wt(d) = 4 and d mod (23 − 1) = 4. Let L =
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⟨1, α, α2⟩ and E2 = ⟨α, α2⟩, where α is a primitive element of F23 such
that α3 + α + 1 = 0. From [88, Theorem 9], we know that (π−1, L)
satisfies the (C) property. We further observe that E2 is a 2-dimensional
subspace of F26. Let us show that π(E2) = E2. From α3 = α + 1 we
have that α4 = α + α2. Because α is an element in the small field F23,
we consider its exponent modulo 23 − 1. Thus, we have that:

0d = 0,

αd = α4 = α + α2,

(α2)d = (α2)4 = α8 = α,

(α + α2)d = (α4)d = α16 = (α8)2 = α2.

In other words, π(E2) = E2 = E⊥
1 . Since wt(d) ≥ 3, from [88, Proposi-

tion 5], we have that Trm1 (uπ) does not admit linear structures, for any
u ∈ F∗

2m. Since dim(E2) = 2, we have that dim(E1) = m− 2. Hence the
conditions (C1) and (D1) − (D3) of Theorems 2.2.6 and 2.2.7, respec-
tively, are satisfied. From Theorem 5.3.6, it follows that the function
f : F29 × F29 → F2 defined by

f(x, y) = Tr91(xy
d) + 1S(x, y), x, y ∈ F29,

is a bent function in CD outside M#, where 1S(x, y) = 1 if and only if
(x, y) ∈ S and S = (L⊥×F2m)△(E1×E2) (see Remark 5.3.4), and equals
0 otherwise. From (5.12), it is clear that 1S modifies the truth table of
g(x, y) at 29+6 = 215 positions. Furthermore, S is neither a linear nor an
affine subspace.
With the same notation as in Example 5.3.10, Table 5.1 illustrates the
bentness and algebraic degree of the Boolean function f : F29×F29 → F2
defined as

f(x, y) = Tr91(xy
d) + a01L⊥(x) + a11E1

(x)1E2
(y) + a2δ0(x), (5.15)

for all possible values a0, a1, a2 ∈ F2.

(a0, a1, a2) ∈ F3
2 Algebraic degree Bent Class

(0, 0, 0) 5 yes M
(0, 0, 1) 9 yes D0 \M#

(0, 1, 0) 9 yes D \M#

(0, 1, 1) 9 no -
(1, 0, 0) 5 yes C \M#

(1, 0, 1) 9 yes SC \M#

(1, 1, 0) 9 yes CD \M#

(1, 1, 1) 9 no -

Table 5.1: Class inclusion in M# of the Boolean function f defined by (5.15)

As a generalization of Example 5.3.10, we give the following result which
regards the case n = 2m where m is odd.



CHAPTER 5. TWO NEW SUPERCLASSES OF BENT FUNCTIONS SC AND CD 59

Proposition 5.3.11. Let n = 2m, m = 3l is odd and r be a positive
integer such that gcd(r, 3l) = 3 and d(2r + 1) ≡ 1 mod 2m − 1 with
wt(d) ≥ 3. Let L = ⟨1, α, α2⟩ and E2 = ⟨α, α2⟩ and E1 = E⊥

2 , where α
is a primitive element of F23 such that α3+α+1 = 0. Then the function
f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xy
d) + 1L⊥(x) + 1E1

(x)1E2
(y), x, y ∈ F2m,

is a bent function in CD outside M#.

Proof. Because gcd(r, 3l) = 3 and m/3 = l is odd, by [88, Theorem 9],
we have that (ϕ, L) satisfies the (C) property, where ϕ(x) = x2

r+1 is a
permutation of F2m and L = ⟨1, α, α2⟩. Furthermore, since π(x) = xd is
the inverse of ϕ and wt(d) ≥ 3, we know that Trm1 (uπ) has no nonzero
linear structures for any u ∈ F∗

2m. Now, we prove that d mod (23 −
1) = 4. It is well-known that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1. Thus,
gcd(23l − 1, 23 − 1) = 23 − 1. Furthermore, if a ≡ b mod N and M |N ,
then a ≡ b mod M . Hence, we have that d(2r + 1) ≡ 1 mod 23 − 1.
Since (23−1)|(2r−1) = (2r+1−2), we have that 2r+1 ≡ 2 mod 23−1.
From the last two congruences, we conclude that 2d ≡ 1 mod 7 and it
is easy to compute that d ≡ 4 mod 7. From α3 = α + 1 we have that
α4 = α+ α2. Because α is an element in the small field F23, we consider
its exponent modulo 23 − 1. Thus, we have that:

0d = 0,

αd = α4 = α + α2,

(α2)d = (α2)4 = α8 = α,

(α + α2)d = (α4)d = α16 = (α8)2 = α2.

In other words, π(E2) = E2 = E⊥
1 . Since dim(E2) = 2, we have that

dim(E1) = m − 2. Hence, the conditions (C1) and (D1) − (D3) of
Theorems 2.2.6 and 2.2.7, respectively, are satisfied. From Theorem
5.3.6, it follows that the function f : F29 × F29 → F2 defined by

f(x, y) = Trm1 (xy
d) + 1L⊥(x) + 1E1

(x)1E2
(y), x, y ∈ F2m,

is a bent function in CD outside M#.

Using the software Wolfram Mathematica, we could confirm this result,
and additionally some suitable values of r and d for different m are listed
below.
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m r d

9 3 284
9 6 228
15 3 18204
15 6 18652
15 9 14116
15 12 14564
21 3 1165084
21 6 935652
21 9 1197788
21 12 899364
21 15 1161500
21 18 932068

5.3.2 Addressing the normality of functions in CD

In [15], it has been shown that if a Boolean function f in 2m variables is
in the completed PS+ class, then it is weakly normal. In other words, if
a function is weakly non-normal then it lies outside the completed PS+

class. Recall that a function f : F2m
2 → F2 is called normal (weakly nor-

mal) if there exists a flat of dimension m in F2m
2 such that f is constant

(affine) on this flat. In this section, we discuss the weak normality of the
functions in CD and propose an interesting research problem regarding
them.

Remark 5.3.12. Depending on the choice of L,E1 and E2, the functions
in CD are weakly normal in the majority of cases when π(E2) = E2 = E⊥

1 .

If dim(E1 ∩ L⊥) = dim(E1) − 1 or E1 = L⊥, we can have four possible
situations E1 = L⊥, L⊥ ⊂ E1, E1 ⊂ L⊥ and dim(E1) = dim(L⊥) ∧
dim(E1 ∩ L⊥) = dim(E1)− 1. We will consider these cases depending if
π(E2) = E2 or π(E2) ̸= E2.

1. Suppose that π(E2) = E2 = E⊥
1 .

(a) L⊥ = E1. If we consider an m-dimensional subspace E1×E2 of
F2m × F2m, we have that 1 + 1E2

(y) = 0 for all y ∈ E2. Thus,
1E1

(x)(1 + 1E2
(y)) is always equal to 0. On the other hand,

because of the choice of E1 and E2, we have that Trm1 (xπ(y)) =
0 because x ∈ E1 and π(E2) = E⊥

1 . Thus, f |E1×E2
≡ 0.

(b) L⊥ ⊂ E1. If we take α ∈ F2m \ E1, we have that 1L⊥(x) =
1E1

(x) = 0 for all x ∈ α + E1. Thus, 1L⊥(x) + 1E1
(x)1E2

(y)
vanishes on the m-dimensional flat (α+E1)×E2. Furthermore,
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for (x, y) ∈ (α + E1)× E2 (w.l.o.g. say x = α + e1) we have:

Trm1 (xπ(y)) = Trm1 ((α + e1)π(y)) = Trm1 (απ(y)) + Trm1 (e1π(y))︸ ︷︷ ︸
=0 (same as in 1.)

= Trm1 (απ(y)).

Since π(E2) = E2 we have that {Trm1 (απ(y)) : y ∈ E2} =
{Trm1 (αy) : y ∈ E2}, which is obviously the truth table of an
affine function. Thus, f |(α+E1)×E2

is affine.

(c) E1 ⊂ L⊥. If we take λ ∈ L⊥ \E1, we have that 1L⊥(x) = 1 and
1E1

(x) = 0 for all x ∈ λ+E1. Thus, 1L⊥(x)+1E1
(x)1E2

(y) = 1
on the m-dimensional flat (λ + E1) × E2. Similarly as in 2.,
Trm1 (xπ(y)) is affine on this flat. Thus, f |(λ+E1)×E2

is affine.

(d) dim(E1) = dim(L⊥) = m− µ, dim(E1 ∩ L⊥) = m− µ− 1. Let
U = E1 + L⊥ be the direct sum of E1 and L⊥. It holds that
dim(U) = dim(E1)+dim(L⊥)−dim(E1∩L⊥) = m−µ+1. On
the other hand, dim(E2) = µ.
i. If µ = 2 (all of the known constructions of functions in D

outside M# have dim(E2) = 2), then dim(U) = m− 1. Let
α ∈ F2m \ U . If we consider the flat A = (α + U) × {0, β},
where β ∈ E2, we have that 1L⊥(x) + 1E1

(x)1E2
(y) = 0 and

Trm1 (xπ(y)) is affine for all (x, y) ∈ A. Thus, f |A is affine.
ii. Suppose µ > 2. Again, we have that dim(U) = m − µ +

1 and dim(E2) = µ. Let W be any (µ − 1)-dimensional
subspace of E2. Then, 1L⊥(x) + 1E1

(x)1E2
(y) vanishes on

A = (α, 0) + (U ×W ), where α /∈ U . Let us consider the
function Trm1 (xπ(y)). If x ∈ α+U , then w.l.o.g. x = α+xu
for some xu ∈ U . We have that:

Trm1 ((α + xu)π(y))) = Trm1 (απ(y)) + Trm1 (xuπ(y)).

We note that if xu ∈ U \ E1, then Trm1 (xuπ(y)) is not nec-
essarily an affine function and thus we cannot be certain if
f is affine on A.

To summarize, we have that f is weakly normal for the situations
(a)-(d-i). In the case (d-ii), the question whether f is weakly normal
remains open.

The case when π(E2) ̸= E2, seems to be more difficult to analyse which
leads to the following open problem.

Question 5.3.13. With the same notation as in Definition 5.3.3, sup-
pose that either π(E2) ̸= E2 or π(E2) = E2 with dim(E1) = dim(L⊥) =
m− µ, µ > 2. Is the function f defined by (5.11) weakly normal?
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Remark 5.3.14. Apart from the exclusion from the PS class, it would
be of interest to investigate whether bent functions in CD may also lie
outside the completed classes C# and D#. Apparently, by the definition
of CD, the members of CD cannot lie in C or D but due to the lack of
indicators for the membership in their completed versions there is no
rigorous conclusion concerning this question. Most likely, only certain
instances of functions in CD are outside C# and D#. This however
remains to be shown and appears to be a difficult task.

5.4 Bent duals of functions in C,D,SC and CD
In 1993, Carlet determined the bent duals of functions in D0 [17, Corol-
lary 1] and D [17, Proposition 1]. In this section, we determine explicitly
the bent duals of certain instances of functions in C not covered by Car-
let’s result. We also present another approach to determine the duals
of certain functions in D and show that these can be constructed from
the C and M class. The duals of certain functions in SC and CD are
also specified and it is shown that these can be used to construct bent
functions in Bn+2 by concatenating four suitable bent functions in Bn
that stem from these classes. Moreover, we show that the resulting bent
functions are outside the M# class.

We recall that, by [17, Corollary 1], the following result gives us the bent
duals of functions in D0.

Proposition 5.4.1. [17] Let n = 2m and π be a permutation on F2m.
Let f : F2m × F2m → F2 be a bent function in the D0 class defined by

f(x, y) = xπ(y) + δ0(x), x, y ∈ F2m. (5.16)

Then, its dual f ∗ is also a bent function in 2m variables defined by
f ∗(x, y) = yπ−1(x) + δ0(y).

Throughout this section we will be using the notion of (PU) property as
seen in Lemma 3.1.5.

5.4.1 Bent duals of certain functions in C and D
In what follows, we determine the bent duals of certain instances of bent
functions in C and D.

Proposition 5.4.2. (C instance) Let f : F2m × F2m → F2 be a bent
function defined by

f(x, y) = Trm1 (xy
d) +

∏
i∈I

(Trm1 (α
ix) + 1), x, y ∈ F2m, (5.17)
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where α is a primitive element of F2s, I ⊂ {0, . . . , s− 1}, s is a positive
divisor of m such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and
wt(d) ≥ 3. Then, the dual f ∗ : F2m × F2m → F2 of f is defined by

f ∗(x, y) = Trm1 (x
2s+1y)+

∏
i∈I

(Trm1 (y(α
ix+αix2

s

+α2i))+ 1), x, y ∈ F2m.

Proof. By [82, Lemma 4.15], it holds that the function (x, y) 7→
Trm1 (x

2s+1y) satisfies the (PU) property with the defining set U =
{(αi, 0) : i = 0, . . . , s− 1} (we note that the general condition is that for
all (u1, u2), (v1, v2) ∈ U ⊂ F2s × F2s it holds that u1v2 + u2v1 = 0 and
Trm1 (u

2
1v2 + v21u2) = 0). Thus, by [82, Theorem 4.17], its dual is defined

by

f ∗(x, y) = Trm1 (x
2s+1y)+

∏
i∈I

(Trm1 (y(α
ix+αix2

s

+α2i))+ 1), x, y ∈ F2m.

Notice that
∏

i∈I(Tr
m
1 (α

ix) + 1) corresponds to the indicator function
F2m ∋ x 7→ 1L⊥(x) where L = ⟨αi : i ∈ I⟩. Furthermore, by [52, Theorem
5.8-(ii)], we can take L = ⟨c1, . . . , cl⟩ where ci ∈ F∗

2s for i = 1, . . . , l, so
that (π−1, L) satisfies the (C) property, where π is defined as above.

To determine the duals of functions in the D class, we will use a sec-
ondary construction of bent functions in bivariate form introduced in
[82]:

Construction 5.4.3. Let U = {ui = (u1,i, u2,i) : 1 ≤ i ≤ t} ⊆ F2m×F2m,
where 1 ≤ t ≤ m. Let g : F2m × F2m be any bent function function
whose dual g∗ satisfies the (PU) property with the defining set U . Let
F (X1, . . . , Xt) be any reduced polynomial in F2[X1, . . . , Xt]. Then the
function f : F2m × F2m → F2 defined by

f(x, y) = g(x, y) + F (Trm1 (u1,1x+ u1,2y), . . . , T r
m
1 (ut,1x+ ut,2y))

is bent and its dual (by [90, Theorem 2.3]) is defined by

f ∗(x, y) = g∗(x, y) + F (Du1
g∗(x, y), . . . , Dut

g∗(x, y)). (5.18)

Let π(y) = yd and E2 be a vector subspace corresponding to a subfield in
F2s, where s is a positive divisor of m such that m/s is odd, d(2s+1) ≡
1 (mod 2m−1) and wt(d) ≥ 3. The following lemma shows that the duals
g∗ of bent functions g in 2m variables, defined by g(x, y) = Trm1 (xy

d) +
1E2

(y), x, y ∈ F2m, satisfy the (PU) property with the defining set U =
{0} × b(E2), where b(E2) is a basis of E2.
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Lemma 5.4.4. Let E2 be a vector space in F2m which corresponds to a
subfield in F2s, where s is a positive divisor of m such that m/s is odd,
d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Let g : F2m × F2m → F2 be a
bent function defined by

g(x, y) = Trm1 (xy
d) + 1E2

(y), x, y ∈ F2m.

Then, its dual is defined by

g∗(x, y) = Trm1 (x
2s+1y) + 1E2

(x2
s+1),

and furthermore DaDbg
∗ ≡ 0 for all a, b ∈ U = {0} × b(E2) or b(E2)×

{0}.

Proof. Obviously, the function g is a Maiorana-McFarland function of
the form g(x, y) = Trm1 (xπ(y))+h(y) with π(y) = yd and h(y) = 1E2

(y).
Thus, its dual is of the form

g∗(x, y) = Trm1 (yπ
−1(x))+h(π−1(x)) = Trm1 (x

2s+1y)+1E2
(x2

s+1), x, y ∈ F2m.

Let a, b ∈ U and x, y ∈ F2m be arbitrary. Clearly,

DaDbg
∗(x, y) = DaDbTr

m
1 (yx

2s+1) +DaDb1E2
(x2

s+1).

By [82, Lemma 4.15], it holds that DaDbTr
m
1 (yx

2s+1) = 0. On the other
hand, because 1E2

(x2
s+1) depends only on x, it is easy to note that

DaDb1E2
(x2

s+1) = 0 for all x ∈ F2m if a, b ∈ {0}×E2. Hence, g∗ satisfies
the (PU) property with the defining set U = {0} × b(E2). On the other
hand, if U = b(E2)× {0}, then

DaDb1E2
(x2

s+1) = 1E2
(x2

s+1) + 1E2
((x+ a)2

s+1) + 1E2
((x+ b)2

s+1)

+ 1E2
((x+ a+ b)2

s+1).

Now if x ∈ E2, then x2
s+1, (x + a)2

s+1, (x + b)2
s+1, (x + a + b)2

s+1 ∈ E2

for all a, b ∈ b(E2) and thus DaDb1E2
(x2

s+1) = 0. If x /∈ E2, as E2 is a
field and x 7→ x2

s+1 is a monomial permutation, the elements of E2 are
mapped to itself and thus x2s+1 /∈ E2. Furthermore, since a ∈ b(E2),
it must hold that x + a /∈ E2 and similarly as before (x + a)2

s+1 /∈ E2.
The same argument holds for (x + b)2

s+1 and (x + a + b)2
s+1. Thus,

DaDb1E2
(x2

s+1) = 0 for all x ∈ F2m.

Now, as a direct consequence of Construction 3.1.1 and Lemma 5.4.4,
we have the following result which is used to provide the dual of certain
instances of bent functions in D, namely in Theorem 5.4.7.
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Proposition 5.4.5. With the same notation as in Lemma 5.4.4, let
f : F2m × F2m → F2 be defined by

f(x, y) = g(x, y) + 1E1
(x), x, y ∈ F2m,

where g(x, y) = Trm1 (xy
d) + 1E2

(y) and E1 = E⊥
2 . Then, f is bent and

its dual is defined by

f ∗(x, y) = g∗(x, y) +
∏

ω∈b(E2)

(Trm1 (y(ωx
2s + ωx+ ω2)) + 1), x, y ∈ F2m.

Proof. By Lemma 5.4.4, g∗ satisfies the property (PU) with the defining
set b(E2)×{0}. Thus, by Construction 3.1.1, the function f defined by

f(x, y) = g(x, y) +
∏

ω∈b(E2)

(Trm1 (ωx) + 1) = g(x, y) + 1E1
(x)

is bent. Let us compute the first order derivative of g∗ in (ω, 0) for
ω ∈ b(E2).

D(ω,0)g
∗(x, y) = g∗(x, y) + g∗(x+ ω, y)

= Trm1 (x
2s+1y) + 1E2

(x2
s+1) + Trm1 ((x+ ω)2

s+1y)

+ 1E2
((x+ ω)2

s+1)

= Trm1 (y(ωx
2s + ωx+ ω2).

Thus, by Construction 3.1.1, the dual f ∗ of f is defined by

f ∗(x, y) = g∗(x, y) +
∏

ω∈b(E2)

(Trm1 (y(ωx
2s + ωx+ ω2)) + 1), x, y ∈ F2m.

In [57] the author determines the duals for functions obtained by the
following secondary construction of bent functions.
Theorem 5.4.6. [57, Theorem 4] Let n be any positive even integer. Let
f1, f2 and f3 be three bent functions on Fn2 . Denote by f4 the function
f1 + f2 + f3 and by σ the function f1f2 + f1f3 + f2f3. Now, if f4 is bent
and if f ∗4 = f ∗1 + f ∗2 + f ∗3 , then σ is bent and σ∗ = f ∗1f

∗
2 + f ∗1f

∗
3 + f ∗2f

∗
3 .

We will now prove that certain functions in D can be expressed in terms
of Theorem 5.4.6 and as a direct consequence we will be able to determine
the duals of the corresponding functions in SC and CD.
Theorem 5.4.7. (D instances) With the same notation as in Theorem
5.4.6, let n = 2m, s be a positive divisor of m such that m/s is odd, and
d a positive integer such that d(2s+1) ≡ 1 (mod 2m− 1) and wt(d) ≥ 3.
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Let E2 be a subfield of F2s and E1 = E⊥
2 . Let fi : F2m × F2m → F2,

i = 1, 2, 3, 4, be defined by:

f1(x, y) = Trm1 (xy
d),

f2(x, y) = Trm1 (xy
d) + 1E1

(x),

f3(x, y) = Trm1 (xy
d) + 1E2

(y),

f4(x, y) = f1(x, y) + f2(x, y) + f3(x, y).

Then, using σ = f1f2 + f1f3 + f2f3, the function σ(x, y) = Trm1 (xy
d) +

1E1
(x)1E2

(y) is bent and its dual is defined by

σ∗(x, y) = Trm1 (x
2s+1y)

+
∏

ω∈b(E2)

(Trm1 (ωx
2s+1) + 1)(Trm1 (y(ωx+ ωx2

s

+ ω2)) + 1).

(5.19)

Proof. Firstly, by Proposition 5.4.5, we have that f4 is bent and its dual
f ∗4 is defined by

f ∗4 = Trm1 (x
2s+1y) +

∏
ω∈b(E2)

(Trm1 (ωx
2s+1) + 1)︸ ︷︷ ︸

ψ1(x)

+

∏
ω∈b(E2)

(Trm1 (y(ωx+ ωx2
s

+ ω2)) + 1)︸ ︷︷ ︸
ψ2(x,y)

. (5.20)

From Proposition 5.4.2 and Lemma 5.4.4, it is easy to compute that
f ∗1 + f ∗2 + f ∗3 = f ∗4 . Thus, by Theorem 5.4.6, the function σ is bent.
Furthermore,
σ(x, y) = f1(x, y)f2(x, y) + f1(x, y)f3(x, y) + f2(x, y)f3(x, y)

= Trm1 (xy
d) + Trm1 (xy

d)1E1
(x) + Trm1 (xy

d) + Trm1 (xy
d)1E2

(y)+

+ Trm1 (xy
d) + Trm1 (xy

d)1E2
(y) + Trm1 (xy

d)1E1
(x) + 1E1

(x)1E2
(y)

= Trm1 (xy
d) + 1E1

(x)1E2
(y),

that is σ ∈ D, and its dual is defined by:
σ∗(x, y) = f ∗1 (x, y)f

∗
2 (x, y) + f ∗1 (x, y)f

∗
3 (x, y) + f ∗2f

∗
3 (x, y)

= Trm1 (x
2s+1y) + ψ1(x)ψ2(x, y)

= Trm1 (x
2s+1y)

+
∏

ω∈b(E2)

(Trm1 (ωx
2s+1) + 1)(Trm1 (y(ωx+ ωx2

s

+ ω2)) + 1).
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The above results are used in the next section for specifying the duals
of bent functions in SC and CD.

5.4.2 Duals of bent functions in SC and CD
Using a similar approach as in Proposition 5.4.5, we will show that cer-
tain functions (“parts” of functions in SC and CD) satisfy the (PU) prop-
erty with some defining set, and consequently we will be able to deter-
mine the duals of the corresponding functions in SC and CD.
Proposition 5.4.8. (SC case) Let f : F2m×F2m → F2 be a bent function
defined by

f(x, y) = Trm1 (xy
d) +

∏
i∈I

(
Trm1 (α

ix) + 1
)
+ δ0(x), x, y ∈ F2m, (5.21)

where α is a primitive element of F2s, I ⊂ {0, 1, . . . , s − 1}, s is a
positive divisor of m such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1)
and wt(d) ≥ 3. Then, the dual f ∗ : F2m × F2m → F2 of f is defined by

f ∗(x, y) = Trm1 (x
2s+1y) +

∏
i∈I

(
Trm1 (y(α

ix+ αix2
s

+ α2i)) + 1
)
+ δ0(y),

for x, y ∈ F2m.

Proof. Let g(x, y) = Trm1 (xy
d) + δ0(x). Then, by Proposition 5.4.1, we

have that g∗(x, y) = Trm1 (yx
2s+1) + δ0(y). We will prove that g∗ satisfies

the (PU) property with the defining set U = {αi : i ∈ I} × {0}. Let
a, b ∈ U and x, y ∈ F2m be arbitrary. Then,

DaDbg
∗(x, y) = DaDb(Tr

m
1 (x

2s+1y)) +DaDb(δ0(y)) = 0,

because the first summand is equal to zero by [82, Lemma 4.15] and the
second summand is equal to zero since the y-coordinate of a and b is
equal to zero. Thus, by [82, Theorem 4.17], the function f is indeed
bent and its dual is defined by

f ∗(x, y) = Trm1 (x
2s+1y) +

∏
i∈I

(
Trm1 (y(α

ix+ αix2
s

+ α2i)) + 1
)
+ δ0(y),

for x, y ∈ F2m.

Using a similar method, we determine the duals of bent functions in CD.
Theorem 5.4.9. (CD case) With the same notation as in Theorem
5.4.7, let σ : F2m × F2m → F2 be defined by σ(x, y) = Trm1 (xy

d) +
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1E1
(x)1E2

(y), x, y ∈ F2m. Let L ⊂ E2 be any subspace of F2m of di-
mension at least 2. Then, the function f : F2m × F2m → F2 defined
by

f(x, y) = σ(x, y) +
∏

ω∈b(L)

(Trm1 (ωx) + 1), x, y ∈ F2m,

is bent and its dual is defined by

f ∗(x, y) = σ∗(x, y) +
∏

ω∈b(L)

(Trm1 (y(ωx+ ωx2
s

+ ω2)) + 1), x, y ∈ F2m,

(5.22)

where b(L) is the basis of L.

Proof. Let a, b ∈ b(L) × {0} and x, y ∈ F2m be arbitrary. From
Theorem 5.4.7, we have that DaDbσ

∗(x, y) = DaDbTr
m
1 (x

2s+1y) +
DaDbψ1(x)ψ2(x, y), where ψ1, ψ2 are defined by (5.20). By [82, Lemma
4.15], we have that DaDbTr

m
1 (x

2s+1y) = 0. Let λ ∈ b(L) ⊂ E2 be
arbitrary. Then,

ψ2(x+λ, y) =
∏

ω∈b(E2)

(Tr1m(y(ωx2
s

+ωλ+ωx+ωλ+ω2))+1) = ψ2(x, y)

and thus ψ2(x) = ψ2(x+ a) = ψ2(x+ b) = ψ2(x+ a+ b). Hence,

DaDbψ1(x)ψ2(x, y) = ψ1(x)ψ2(x, y) + ψ1(x+ a)ψ2(x+ a, y)

+ ψ1(x+ b)ψ2(x+ b, y) + ψ1(x+ a+ b)ψ2(x+ a+ b, y))

= ψ2(x, y)(ψ1(x) + ψ1(x+ a) + ψ1(x+ b) + ψ1(x+ a+ b)

= ψ2(x, y)(1E2
(x2

s+1) + 1E2
((x+ a)2

s+1)+

1E2
((x+ b)2

s+1) + 1E2
((x+ a+ b)2

s+1)).

Because x 7→ x2
s+1 is a monomial permutation and E2 is a field, it holds

that (x + λ)2
s+1 ∈ E2 if and only if x + λ ∈ E2, and for λ ∈ E2, it is

equivalent to the fact that x ∈ E2. Thus, as a, b ∈ b(L) ⊂ E2, we have
that

DaDbψ1(x)ψ2(x, y) = ψ2(x, y)(1E2
(x2

s+1) + 1E2
(x2

s+1)

+ 1E2
(x2

s+1) + 1E2
(x2

s+1)) = 0,

for all x, y ∈ F2m. Hence, σ∗ satisfies the (PU) property with the defining
set b(L) × {0}. Consequently, by Construction 3.1.1, the function f is
bent and its dual is defined by (5.22).



Chapter 6

Applications of the classes SC and
CD for the construction of other
cryptographically significant
mappings

6.1 Vectorial bent functions weakly/almost strong-
ly/strongly outside M#

One of the goals of this chapter is to address the design of vectorial bent
functions (with coordinates in C or D) weakly/strongly outside M#

introduced in [88]. Similarly to the Boolean case, these vectorial objects
may provide better understanding related to more complete classification
of these structures.

6.1.1 New families of (vectorial) bent functions weakly/al-
most strongly outside M#

In this section we construct several infinite families of bent functions
lying weakly and almost strongly outside the class M#. We use the
construction method presented in [4] and show that with some addi-
tional constraints, we are able to give an univariate definition of vecto-
rial bent functions whose (certain) components are outside M#. In this
section, we address the case when only some components are outside the
class M#, whilst in the next section we consider the design of functions
strongly outside M#.

Let us define F : F2m × F2m → F2m with F (x, y) = xπ(y) + g(y),
where π : F2m → F2m is a permutation and g : F2m → F2m is an ar-
bitrary function. Let λ ∈ F∗

2m be arbitrary, we then have the component
Fλ(x, y) = Trm1 (λxπ(y) + λg(y)). Its corresponding dual is defined as

69
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(see [96]):

F ∗
λ(x, y) = Trm1

(
yπ−1(x/λ) + λg(π−1(x/λ)

)
,

where π−1 is the inverse permutation of π. As a generalization of the
results in [4], we give the following result.
Lemma 6.1.1. Let α1, . . . , αt be any t linearly independent elements in
F∗
2m, where 1 ≤ t ≤ m. Let G(x, y) = xπ(y), where π is any permutation

over F2m. Then the dual component G∗
λ satisfies (3.2) with

gi(x, y) = Trm1

(
αiπ

−1
(x
λ

))
. (6.1)

Proof. Let λ, x, y ∈ F∗
2m and (w1, . . . , wt), (s1, . . . , st) ∈ Ft2 be arbitrary.

Let us consider (3.2).

G∗
λ

(
x+

t∑
i=1

ui,1wi, y +
t∑

i=1

ui,2si

)
= G∗

λ

(
x, y +

t∑
i=1

αisi

)
= Trm1

((
y +

t∑
i=1

αisi

)
π−1

(x
λ

))

= Trm1

(
yπ−1

(x
λ

))
+

t∑
i=1

siTr
m
1

(
αiπ

−1
(x
λ

))
= G∗

λ(x, y) +

t∑
i=1

sigi(x, y),

where gi, i = 1, . . . , t, is defined by (6.1).

As a direct consequence of Theorem 3.1.3 and Lemma 6.1.1, we have the
following result.
Theorem 6.1.2. Let α1, . . . , αt be any t linearly independent elements
in F∗

2m, t|m. Let G(x, y) = xπ(y), where π is any permutation over F2m,
and let h be any vectorial Boolean function from Ft2 to F2t. Then the
function

F (x, y) = xπ(y) + h(Trm1 (α1y), . . . , T r
m
1 (αty)),

generated by Construction 1, is a bent vectorial (n, t)-function.
Remark 6.1.3. We note that specifying F (x, y) = G(x, y) +H(x, y) =
G(x, y) + H1(y) with H1(y) = h(Trm1 (α1y), . . . , T r

m
1 (αty)) gives bent

functions in M. Hence, we need to identify suitable sets U = {u1, . . . , ut}
such that H depends on (x, y) with x ̸= 0.
In connection with the class D0, we obtain the following result which
holds in general for any permutation π for which the function is in D0 \
M#.
Proposition 6.1.4. Let G(x, y) = xπ(y) be a bent (2m,m)-function,
where π is a permutation on F2m such that x 7→ Trm1 (xλπ(y)) + δ0(x) ∈
D0\M# for λ ∈ F∗

2m such that Trm1 (λ) = 1. Then, the function F (x, y) =
G(x, y) + δ0(x) is a bent (n,m)-function weakly outside M#.
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Proof. For λ ∈ F∗
2m we have that

Gλ(x) = Trm1 (λxπ(y))

+ δ0(x)Tr
m
1 (λ) =

{
Trm1 (λxπ(y)) + δ0(x), T rm1 (λ) = 1
Trm1 (λxπ(y)), T rm1 (λ) = 0

In other words, the component Gλ is in D0 if Trm1 (λ) = 1 and in M#

if Trm1 (λ) = 0. This implies that the function F is weakly outside the
class M#.

Suppose G satisfies property (3.2) with the defining set {u1, . . . , um},
ui = (αi, 0), αi ∈ F∗

2m. Let X = (Trm1 (u1x), . . . , T r
m
1 (umx)) and let

h(X) = δ0(X), i.e. h(X) = 1 if X = 0m, and 0 otherwise. Since

δ0(X) = 1 ⇔ X = 0m ⇔ Trm1 (u1x) = . . . = Trm1 (umx) = 0

⇔ x = 0 ⇔ δ0(x) = 1

we conclude that

G(x, y) + h(Trm1 (α1x), . . . , T r
m
1 (αmx)) ⇔ G(x, y) + δ0(x).

In other words, the function F in Proposition 6.1.4 may be obtained
using Construction 3.1.1.
Remark 6.1.5. In [67], the authors give an example of a vectorial bent
function weakly outside M#, constructed from the class D0. It is defined
as follows: F ′ = (f1, . . . , fm), where fi : F2m × F2m → F2m is defined by
fi(x, y) = Trm1 (αiπ(y)x) + x2

m−1 + 1, 1 ≤ i ≤ m and (α1, α2, . . . , αm) =
(1, γ, γ2, . . . , γ2

m−1

) ∈ D0 \ M#, where γ is a primitive element of F2m

and π is a permutation on F2m. We note that the function constructed in
Proposition 6.1.4 is the same as the one constructed in [67], but written
in univariate form.

Vectorial bent functions weakly outside M#

For a bent (2m,m)-function G(x, y) = xπ(y), let

Gλ(x, y) = Trm1 (λxπ(y)) = Trm1 (xπλ(y))

denote its components, πλ = λπ, λ ∈ F∗
2m. Suppose that for the permu-

tation π there exists a subfield L = F2t, t|m, of F2m (which corresponds
to a linear subspace in Fm2 ) such that (π−1, L) satisfies the (C) prop-
erty. It is natural to ask, does this imply that (π−1

λ , L) satisfies the (C)
property. Depending on these results we can possibly define criteria for
which the components of a certain vectorial bent function are in C (or
D) outside M# and give methods for their construction such that they
are weakly/strongly outside M#. Motivated by these questions, we give
the following results.
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Proposition 6.1.6. Let π be a permutation of F2m and L = F2t be a
subfield of F2m such that (π−1, L) satisfies the (C) property. Then, for
any λ ∈ F∗

2m, the pair (π−1
λ , λL) satisfies the (C) property.

Proof. Let λ ∈ F∗
2m be arbitrary. For the permutation πλ(y) = λπ(y), its

inverse is defined by π−1
λ (y) = π−1

(
y
λ

)
. Let a ∈ F2m be arbitrary. Then

π−1
λ (a+ λL) = π−1

(
a+ λL

λ

)
= π−1

(a
λ
+ L

)
.

Since a ∈ F2m is arbitrary, so is a/λ ∈ F2m. Thus, it follows that (π−1
λ , λL)

satisfies the (C) property.

Corollary 6.1.7. Let π be a permutation of F2m and L = F2t a subfield
of F2m such that (π−1, L) satisfies the (C) property. Then, for any λ ∈
L ⊂ F∗

2m, the pair (π−1
λ , L) satisfies the (C) property.

Given the behaviour of the components regarding (C) property, we give
the following result which gives us an infinite family of bent (2m,m)-
functions weakly outside M#.
Proposition 6.1.8. Let s be a positive divisor of m such that m/s is
odd. Let U = {1, α, . . . , αt−1} be t linearly independent elements in F∗

2s,
α is a primitive element in F2s and t|m. Let G(x, y) = xπ(y), where
π(y) = yd is a permutation on F2m for a positive integer d such that
wt(d) ≥ 3 and d(2s + 1) ≡ 1 (mod 2m − 1). Then (π−1, L), L = ⟨U⟩,
satisfies the (C) property and the function

F (x, y) = xyd + h(Trm1 (x), T r
m
1 (αx), . . . , T r

m
1 (α

t−1x)),

where h : Ft2 → F2 is defined by h(X1, . . . , Xt) =
∏t

i=1(Xi + 1), with
Xi = Trm1 (α

i−1x), is a bent (2m,m)-function weakly outside M#.

Proof. From Theorem 3.2.9 we know that F is a bent (n,m)-function.
Let λ ∈ F∗

2m be arbitrary. Then,

Fλ(x) = Trm1 (λxy
d)+H(x)Trm1 (λ) =

{
Trm1 (λxy

d) +H(x), T rm1 (λ) = 1
Trm1 (λxy

d), T rm1 (λ) = 0.

If Trm1 (λ) = 0, then the component Fλ is obviously in M#. If Trm1 (λ) =
1, then from Corollary 6.1.7 and Theorem 2.2.6 we have that Fλ is in
C outside M# (we again point out that the function h can be chosen
arbitrarily thanks to Theorem 3.1.3, and in this case it represents the
indicator of the space L⊥ in finite field notation, which ultimately led to
the components being in C outside M#, thanks to Theorem 2.2.6).

Similarly, we can construct another infinite family of bent (2m,m)-
functions weakly outside M# using the SC class.
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Proposition 6.1.9. Let s be a positive divisor of m such that m/s is
odd. Let U = {1, α, . . . , αt−1} be t linearly independent elements in F∗

2s,
α is a primitive element in F2s and t|m. Let G(x, y) = xπ(y), where
π(y) = yd is a permutation on F2m for a positive integer d such that
wt(d) ≥ 3 and d(2s + 1) ≡ 1 (mod 2m − 1). Then (π−1, L), L = ⟨U⟩,
satisfies the (C) property and the function

F (x, y) = xyd + h(Trm1 (x), T r
m
1 (αx), . . . , T r

m
1 (α

t−1x)) + δ0(x),

where h : Ft2 → F2 is defined by h(X1, . . . , Xt) =
∏t

i=1(Xi + 1), with
Xi = Trm1 (α

i−1x), is a bent (2m,m)-function weakly outside M#.

Proof. Let λ ∈ F∗
2m be arbitrary. Then,

Fλ(x) = Trm1 (λxy
d) + (H(x) + δ0(x))Tr

m
1 (λ)

=

{
Trm1 (λxy

d) +H(x) + δ0(x), T rm1 (λ) = 1
Trm1 (λxy

d), T rm1 (λ) = 0.

If Trm1 (λ) = 0, then the component Fλ is obviously in M#. If Trm1 (λ) =
1, then from Corollary 5.1.6 we have that Fλ is in SC outside M#.

Example 6.1.10. Let m = 6 and λ = α
2m−1

3 , where α is a primitive
element of F2m. If we choose L = ⟨1, λ⟩ and π(y) = y38, then (π−1, L)
satisfies the (C) property (see [88, Example 1]) and wt(38) = 3, that is,
π admits no linear structures. Hence, the function

F (x, y) = xy38 + (Trm1 (x) + 1)(Trm1 (λx) + 1)

is a bent (12, 6)-function weakly outside M#. Notice that the expression
(Trm1 (x) + 1)(Trm1 (λx) + 1) specifies the indicator function in finite field
notation.
The previous result can be extended to a more general case as follows.
Theorem 6.1.11. Let n = 2m > 8 be an even integer and let G(x, y) =
Trmt (xπ(y)) be a bent (n, t)-function, π is a permutation of F2m, such
that (G∗

λ)λ∈F∗
2t

satisfies the property (3.2) with U = {u1, . . . , ut}, ui =
(αi−1, 0), α is a primitive element of F2t, t|m. If (π−1,F2t) satisfies the
(C) property, dim(F2t) ≥ 2 and Trm1 (µπ) has no nonzero linear struc-
tures for µ ∈ F∗

2m, then the function
F (x, y) = Trmt (xπ(y)) +H(x)

with

H(x) = h(Trm1 (x), T r
m
1 (αx), . . . , T r

m
1 (α

t−1x)) =
t∏
i=1

(Trm1 (α
i−1x) + 1),

is a bent (n, t)-function weakly outside M#.
The proof is similar to the proof of Proposition 6.1.8.



74 6.1. VBF WEAKLY/ALMOST STRONGLY/STRONGLY OUTSIDE M#

Some remarks on functions in C and the (C) property

In reference to the results given in Proposition 6.1.6 and Corollary 6.1.7,
the following question is quite natural: If (π−1, L) satisfies the (C) prop-
erty and λ /∈ L, does this imply that (π−1

λ , L) satisfies the (C) property?

In [17], the author defines the C class to be the family of all bent functions
of the form xπ(y) + 1L⊥(x), where (π−1, L) satisfies the (C) property.
However, can we have functions of the same form that are bent but
(π−1, L) does not satisfy the (C) property. More specifically, can we
have that (π−1, L) satisfies the (C) property but (π−1

λ , L) does not, and
furthermore the function xπλ(y) + 1L⊥(x) is bent, where λ ∈ F∗

2m?

Let n = 2m > 8 be an even integer and let G(x, y) = xπ(y) be a bent
(n,m)-function, π is a permutation of F2m, such that G∗

λ satisfies the
property (3.2) with U = {u1, . . . , ut}, ui = (αi−1, 0), where λ ∈ F∗

2m and
α is a primitive element of F2t, t|m. From Theorem 3.1.3, we know that
the function

F (x, y) = xπ(y) +H(x)

with

H(x) = h(Trm1 (x), T r
m
1 (αx), . . . , T r

m
1 (α

t−1x)) =
t∏
i=1

(Trm1 (α
i−1x) + 1),

is a bent (n,m)-function, where H is the indicator function in finite
field notation. When considering the components of F , they are exactly
of the form xπλ(y) + Trm1 (λ)H(x), λ ∈ F∗

2m, and all of them are bent.
However, we did not give any information on the (C) property. Thus,
the following question arises.

Question 1: Does there exist a bent (n,m)-function G(x, y) = xπ(y)
such that the conditions of Theorem 3.1.3 with defining set U are satis-
fied, but (π−1, L) does not satisfy the (C) property and L = ⟨U⟩, where
U is the defining set in property (3.2).

We note the following result which is a direct consequence of [17, Theo-
rem].

Proposition 6.1.12. [17] Let L× {0} be any linear subspace in F2m ×
F2m. Then the function f(x, y) + 1L⊥(x) is bent if and only if for any
(α, β) ∈ F2m × F2m the restriction of f ∗(x, y) to (α, β) + (L× {0}) is
either constant or balanced.

As a corollary of the above proposition, the author notes that if (π−1, L)
satisfies the (C) property, then the restriction of f ∗(x, y) to (α, β) +
(L× {0}) is either constant or balanced, which implies the bentness of
f ∗. However, there might be instances of functions such that (π−1, L)
does not satisfy the (C) property but the restriction of f ∗(x, y) to (α, β)+
(L× {0}) is still either constant or balanced.
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All examples of functions G ∈ M# which satisfy (3.2) are either linear
or power permutations. In the case of power permutations the answer
is clear. If π(y) = yd is a permutation of F2m then its inverse is also a
power permutation, say ϕ(y) = π−1(y) = ys. For λ ∈ F∗

2m we have that

ϕλ(a+ L) = ϕ(λ−1(a+ L)) = λ−s(a+ L)s = λ−sϕ(a+ L),

that is, if ϕ(a + L) is a flat, then ϕλ(a + L) is also a flat and (ϕλ, L)
satisfies the (C) property.
In connection to this discussion, we give the following example where
(ϕ, L) satisfies the (C) property but (ϕλ, L) does not.

Example 6.1.13. Let ϕ(x) = x9 + x3 + x be a permutation defined on
F25. For L = ⟨α2 + α, α4 + 1⟩, α is a primitive element of the field F25

such that α5 + α2 + 1 = 0, the pair (ϕ, L) satisfies the (C) property (see
[53]). If we take λ = α2 + α, then λ−1L = ⟨1, α3 + 1⟩. However, as
shown in [53], since 1 ∈ λ−1L, the pair (ϕλ, L), ϕλ(x) = ϕ(λ−1x), does
not satisfy the (C) property.
Thus, an interesting problem for further research can be stated as follows.
Open problem 6.1.14. Find bent (n,m)-functions G(x, y) = xπ(y)
which satisfy property (3.2) and π is not a power permutation.
If such functions G do exist, we might learn more about their behaviour
regarding the bentness of F (as constructed in Theorem 3.1.3) and their
inclusion in the C class and connection to the (C) property (Theorem
2.2.6 and Proposition 6.1.12).

Vectorial bent functions almost strongly outside M#

Up until now, all the examples of vectorial bent functions we gave were
weakly outside M#. The construction of functions that are strongly
outside M# and additionally of maximal output space is a much harder
task. In what follows, we distinguish bent (n,m)-functions which have
2m − 2 components outside M#. In this case, we will say that the
function is almost strongly outside M#.
Lemma 6.1.15. Let α be a primitive element of F2m. With Iλ we denote
the set {i : 0 ≤ i ≤ m− 1, T rm1 (λα

i) = 1}. Then |{λ ∈ F∗
2m : Iλ = ∅}| =

1.

Proof. Let us consider the vector

vλ = (Trm1 (λα), T r
m
1 (λα

2), . . . , T rm1 (λα
m−1).

Then, {vλ : λ ∈ F2m} contains all the elements of Fm−1
2 , each of which

appears exactly two times. Obviously, we have vλ = 0m−1 for λ = 0.
Thus, there exists a unique ξ ∈ F∗

2m for which vξ = 0m−1.
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Theorem 6.1.16. Let n = 2m > 8 be an even integer and let G(x, y) =
Trmt (xπ(y)) be a bent (n, t)-function, π is a permutation of F2m, such
that (G∗

λ)λ∈F∗
2t

satisfies the property (3.2) with U = {u1, . . . , ut}, ui =
(αi−1, 0), α is a primitive element of F2t, t|m. If (π−1

λ , ⟨1, τ⟩) satisfies
the (C) property for all τ ̸= 1, λ ∈ F∗

2t and Trm1 (µπ) has no nonzero
linear structures for µ ∈ F∗

2m, then the function

F (x, y) = Trmt (xπ(y)) +H(x)

with

H(x) = h(Trm1 (x), T r
m
1 (αx), . . . , T r

m
1 (α

t−1x))

= (Trm1 (x) + 1) ·

(
t−1∑
i=1

αi
(
Trm1 (α

ix) + 1
))

,

is a bent (n, t)-function almost strongly outside M#.

Proof. From Theorem 6.1.2, we know that F is a bent (n, t)-function.
Let λ ∈ F∗

2t be arbitrary. The component Fλ becomes:

Fλ(x) = Trt1(λTr
m
t (xπ(y)))

+ (Trm1 (x) + 1) ·

(
t−1∑
i=1

Trt1(λα
i)
(
Trm1 (α

ix) + 1
))

. (6.2)

First, let us suppose that Iλ = {i : 1 ≤ i ≤ t − 1, T rt1(λα
i) = 1} ̸= ∅.

We have that
t−1∑
i=1

Trt1(λα
i)
(
Trm1 (α

ix) + 1
)
=
∑
i∈Iλ

(
Trm1 (α

ix) + 1
)

=
∑
i∈Iλ

Trm1 (α
ix) + (|Iλ| mod 2).

Thus, (6.2) becomes:

Fλ(x) = Trt1(Tr
m
t (xλπ(y)))

+ (Trm1 (x) + 1) ·

(∑
i∈Iλ

Trm1 (α
ix) + (|Iλ| mod 2)

)
= Trm1 (xπλ(y))) + (Trm1 (x) + 1) · (Trm1 (ξλx) + (|Iλ| mod 2))︸ ︷︷ ︸

=ψλ(x)

,

where ξλ =
∑

i∈Iλ α
i. We distinguish two cases:



CHAPTER 6. APPLICATIONS OF THE CLASSES SC AND CD 77

1. |Iλ| mod 2 = 1. Then ψλ is exactly the indicator function of the
subspace ⟨1, ξλ⟩⊥. Furthermore, 1 ̸= ξλ ∈ F∗

2t and thus (π−1
λ , ⟨1, ξλ⟩)

satisfies the (C) property and the conditions of Theorem 2.2.6, thus
it follows that Fλ is in C outside M#.

2. |Iλ| mod 2 = 0. Then

Fλ(x) = Trm1 (xπλ(y)) + (Trm1 (x) + 1)Trm1 (ξλx)

= Trm1 (xπλ(y)) + (Trm1 (x) + 1)(Trm1 (ξλx) + 1) + (Trm1 (x) + 1)

= F ′
λ(x, y) + (Trm1 (x) + 1)

The function F ′
λ is a bent function in C outside M# (see Case 1.).

Since Trm1 (x)+1 is an affine function, by adding it to F ′
λ, their sum

still remains in C \M#. Hence, Fλ is a bent function in C outside
M#. We would like to point out that in this case the function
(Trm1 (x)+1)Trm1 (ξλx) represents the indicator function of an affine
subspace.

On the other hand, if Iλ = ∅, from Lemma 6.1.15 we know that this
occurs for exactly one λ ∈ F∗

2t, then Hλ ≡ 0 and Fλ ∈ M. Thus, 2t − 2
components of F are in C outside M# and one component is in M#. In
other words, F is almost strongly outside M#.

Especially, if we consider power permutations we obtain the following
results.
Lemma 6.1.17. Let s > 1 be a positive divisor of m such that m/s
is odd and π(y) = yd be a permutation of F2m such that d(2s + 1) ≡
1(mod 2m − 1). Let τ ̸= 1, λ ∈ F∗

2s be arbitrary. Then (π−1
λ , ⟨1, τ⟩)

satisfies the (C) property.

Proof. Since gcd(m, s) = s and m/s is odd, from [88, Theorem 9] we
know that (π−1, ⟨1, τ⟩) satisfies the (C) property. Thus, for every a ∈
F2m, we have that

π−1
λ (a+ ⟨1, τ⟩) = (λ−1(a+ ⟨1, τ⟩))2s+1 = λ−(2s+1)π−1(a+ ⟨1, τ⟩)

which is again a flat. In other words, (π−1
λ , ⟨1, τ⟩) satisfies the (C) prop-

erty.

Proposition 6.1.18. Let n = 2m and s ≥ 2 be a positive divisor of m
such that m/s is odd. Let π(y) = yd be a permutation on F2m such that
d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Let U = {1, α, . . . , αs−1},
where α is a primitive element of F2s. Then,

F (x, y) = Trms (xy
d) +H(x)
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with

H(x) = h(Trm1 (x), T r
m
1 (αx), . . . , T r

m
1 (α

s−1x))

= (Trm1 (x) + 1) ·

(
s−1∑
i=1

αi
(
Trm1 (α

ix) + 1
))

,

is a bent (n, s)-function almost strongly outside M#.

Proof. From Lemma 6.1.17 we know that (π−1
λ , ⟨1, τ⟩) satisfies the (C)

property for all τ ̸= 1, λ ∈ F∗
2s. Since wt(d) ≥ 3, (π−1

λ , ⟨1, τ⟩) satisfies
the conditions of Theorem 2.2.6. From Theorem 3.2.9 and 6.1.16, it
follows that F is a bent (n, s)-function almost strongly outside M# with
components in C.

Example 6.1.19. Let m = 9 and s = 3. Suppose that α is a primitive
element of F23 and let U = {1, α, α2}. Since 284·(23+1) mod 29−1 = 1,
let π(y) = y284 be a permutation on F29. Then

F (x, y) = Tr93(xy
284) + (Tr91(x) + 1)(α(Tr91(αx) + 1) + α2(Tr91(α

2x) + 1))

is a bent (18, 3)-function almost strongly outside M#.

The main difference between Theorems 6.1.11 and 6.1.16 is that the
function H in the former case is Boolean, whereas in the latter (al-
most strongly) case it is a vectorial Boolean function. When consid-
ering the component functions, if H is Boolean, then Trm1 (λH(X)) =
Trm1 (λ)H(X), which is why we have only half of the components outside
M# in Theorem 6.1.11. On the other hand, we noticed that if we con-
sider H as a vectorial function of certain form, then we can have more
non-zero components Trm1 (λH(X)), as seen in Theorem 6.1.16. Nev-
ertheless, we need a more subtle modification of the function H such
that no component Trm1 (λH(X)) is zero. A family of such functions is
proposed in the next section.

6.1.2 New families of vectorial bent functions strongly outside
M#

We now show that by slightly modifying the function H in Proposition
6.1.18, we can construct an infinite family of bent (n, s)-functions (where
the exponent s is chosen as in Proposition 6.1.18) strongly outside M#.

Theorem 6.1.20. Let n = 2m > 8 be an even integer and let G(x, y) =
Trmt (xπ(y)) be a bent (n, t)-function, π is a permutation of F2m, such
that (G∗

λ)λ∈F∗
2t

satisfies the property (3.2) with U = {u1, . . . , ut}, ui =
(αi−1, 0), α is a primitive element of F2t, t|m, t < m. If (π−1

λ , ⟨1, τ⟩)
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satisfies the (C) property for all τ ̸= 1, λ ∈ F∗
2t and Trm1 (µπ) has no

nonzero linear structures for all µ ∈ F∗
2m, then the function

F (x, y) = Trmt (xπ(y)) +H(x)

with

H(x) = (Trm1 (x) + 1) ·

(
t−1∑
i=1

αi
(
Trm1 (α

ix) + 1
))

+ (x2
m−1 + 1),

is a bent (n, t)-function strongly outside M#.

Proof. Let λ ∈ F∗
2t be arbitrary. The components of F are of the form

Fλ(x, y) = Trm1 (xλπ(y)) + (Trm1 (x) + 1) ·

(
t−1∑
i=1

Trt1(λα
i)
(
Trm1 (α

ix) + 1
))

+ Trt1(λ)(x
2m−1 + 1).

If Trt1(λ) = 0, the component Fλ is bent because of Theorem 3.1.3 (and
in particular (3.4)) and if Trt1(λ) = 1, the component Fλ is bent because
of Theorem 5.1.1. Thus all components are bent, i.e. F is a bent (n, t)-
function.

Now we will show that the components are outside M#. We will
distinguish several cases, depending on the value of Trm1 (λα

i), for
i = 0, . . . , t− 1.

1. Trt1(λ) = 0 and Trm1 (λαi) = 1 for at least one i = 1, . . . , t−1. Then
the component Fλ is of the form

Fλ(x, y) = Trm1 (xλπ(y)) + (Trm1 (x) + 1)(Trm1 (ξλx) + (|Iλ| mod 2)),
(6.3)

where ξλ =
∑

i∈Iλ α
i and Iλ = {i : Trm1 (λαi) = 1, 1 ≤ i ≤ t−1}. In

Theorem 6.1.16 we have already proved that the Boolean functions
of form (6.3) are in C outside M#.

2. If Trm1 (λ) = 1 and Trm1 (λαi) = 0 for all i = 1, . . . , t− 1, then Fλ is
of the form

Fλ(x, y) = Trm1 (xλπ(y)) + (Trm1 (x) + 1) · 0 + (x2
m−1 + 1)

= Trm1 (xλπ(y)) + x2
m−1 + 1,

that is, Fλ is in the class D0, and as such outside M#.
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3. Trt1(λ) = 1 and Trm1 (λα
i) = 1 for at least one i = 1, . . . , t − 1.

Then, Fλ is of the form

Fλ(x, y) = Trm1 (xλπ(y)) + (Trm1 (x) + 1) · (Trm1 (ξλx) + (|Iλ| mod 2))︸ ︷︷ ︸
=Gλ(x,y)

+ (x2
m−1 + 1),

where ξλ =
∑

i∈Iλ α
i and Iλ = {i : Trm1 (λαi) = 1, 1 ≤ i ≤ t−1}. We

note that Gλ(x, y) is a bent Boolean function in the class C outside
M# (again, see proof of Theorem 6.1.16). Thus, from Theorem
5.1.4, it follows that Fλ is a bent function in the class SC outside
M#.

Thus, for all λ ∈ F∗
2t the component Fλ is outside M#, in other words,

F is strongly outside M#.

Remark 6.1.21. Notice that Theorem 6.1.20 generate vectorial bent
functions whose components belong to classes C,D0 and SC. The class
SC plays an important role here since it allowed us to extend the func-
tions almost strongly outside M# to functions strongly outside M#.
This knowledge on the choice of H such that it has no non-zero com-
ponents, allows us to construct vectorial Boolean functions which are
strongly outside M#. We note that if we would extend H to be an
(m,m)-function, we would again obtain a zero component, in the previ-
ous construction. In other words, the design method in Theorem 6.1.20
cannot produce vectorial Boolean functions strongly outside M# and
with maximal output space.
Specially, we give the following infinite family of bent (n, s)-functions
strongly outside M#.
Corollary 6.1.22. Let n = 2m and s ≥ 2 be a positive divisor of m
such that m/s is odd. Let π(y) = yd be a permutation on F2m such that
d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Let U = {1, α, . . . , αs−1},
where α is a primitive element of F2s. Then,

F (x, y) = Trms (xy
d) +H(x)

with

H(x) = (Trm1 (x) + 1) ·

(
s−1∑
i=1

αi
(
Trm1 (α

ix) + 1
))

+ (x2
m−1 + 1),

is a bent (n, s)-function strongly outside M#.

Proof. Follows directly from Theorem 6.1.20 and Lemma 6.1.17.
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The following example illustrates the specification of a bent (18, 3)-
function with all components in C outside M#, thus with output di-
mension larger than two, which was obtained in [67].
Example 6.1.23. Let m = 9 and s = 3. Suppose that α is a primitive
element of F23 and let U = {1, α, α2}. Since 284·(23+1) mod 29−1 = 1,
let π(y) = y284 be a permutation on F2m. Let F : F2m × F2m → F2s be a
function defined by

F (x, y) = Tr93(xy
284) + (Tr91(x) + 1)(α(Tr91(αx) + 1) + α2(Tr91(α

2x) + 1))

+ (Tr91(αx) + 1)(Tr91(α
2x) + 1).

From Theorem 3.2.9, we know that F is bent. Let us consider the
components of F . With Xi we will denote Tr91(αi + 1), i = 0, 1, 2. For
λ ∈ F∗

23 we have that

Fλ(x, y) = Tr91(xλy
284) +X0(Tr

3
1(λα)X1 + Tr31(λα

2)X2 + Tr31(λ)X1X2︸ ︷︷ ︸
=ψλ(x)

Let us consider the vector vλ = (Tr31(λα), T r
3
1(λα

2), T r31(λ)) as λ goes
through F∗

23. Using the mathematical software Sage, we note the follow-
ing (see Table 6.1).

λ ∈ F∗
23 vλ ψλ(x) ψλ(x) = φλ(x) + l(x) L

1 (0, 0, 1) X1X2 - ⟨α, α2⟩
α (0, 1, 0) X0X2 - ⟨1, α2⟩

α + 1 (0, 1, 1) (X0 +X1)X2 (X0 +X1 + 1)X2 +X2 ⟨α + 1, α2⟩
α2 (1, 0, 0) X0X1 - ⟨1, α⟩

α2 + 1 (1, 0, 1) (X0 +X2)X1 (X0 +X2 + 1)X1 +X1 ⟨α, α2 + 1⟩
α2 + α (1, 1, 0) (X1 +X2)X0 (X1 +X2 + 1)X0 +X0 ⟨1, α+ α2⟩

α2 + α + 1 (1, 1, 1) X0(X1 +X2) +X1X2 (X0 +X1 + 1)(X1 +X2 + 1) +X0 +X1 +X2 + 1 ⟨α + 1, α2 + 1⟩

Table 6.1: Behaviour of the function ψλ for λ ∈ F∗
23

Firstly, we note that by adding an affine function l to a bent function f
lying in a class K, we will still remain in the same class K. Thus, when
considering ψλ we may add an arbitrary number of affine functions to
point out the subspace L such that ψλ (or φλ) (in finite field notation)
corresponds to the indicator function 1L⊥ (in vector space notation).
The cases corresponding to α+ 1, α2 + 1, α2 + α are easy to see. Let us
consider the last case:

X0(X1 +X2) +X1X2

= X0(X1 +X2 + 1) +X0 +X1(X1 +X2 + 1) +X2
1 +X1

= (X1 +X2 + 1)(X0 +X1) +X0 +X1 +X1

= (X1 +X2 + 1)(X0 +X1 + 1) +X1 +X2 + 1 +X0
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Furthermore, from [88, Theorem 9], (π−1, L) satisfies the (C) property
for all L in the table above, as well as all the conditions in Theorem
2.2.6. Thus, all the components are in C outside M#. Hence, F is a
bent (18, 3)-function strongly outside M#.
The following result is an immediate consequence of the previous exam-
ple.

Proposition 6.1.24. Let n = 2m and m/3 be odd. Let π(y) = yd be a
permutation on F2m such that d(23+1) ≡ 1 (mod 2m−1) and wt(d) ≥ 3.
Let U = {1, α, α2}, where α is a primitive element of F23. Then,

F (x, y) = Trm3 (xy
d) +H(x)

with

H(x) = (Trm1 (x) + 1) ·
(
α (Trm1 (αx) + 1) + α2

(
Trm1 (α

2x) + 1
))

+ (Trm1 (αx) + 1)
(
Trm1 (α

2x) + 1
)
,

is a bent (n, 3)-function strongly outside M#.
Remark 6.1.25. In [67] the authors give an example of a vectorial (n, 2)-
function strongly outside M#. With the previous proposition we are able
to extend the output space by one and this is the first example of such
functions.
Open problem 6.1.26. The function in Example 6.1.23 is a vectorial
bent function strongly outside M#. However, due to the complexity of
this topic, we leave as an open problem how to extend this function to
a general form, that is, how to generalize Proposition 6.1.24 to cover
(n,m)-functions.

6.2 Vectorial Boolean functions with the maximum
number of bent components outside M#

The construction of (n,m)-MNBC functions outside the M# class is
a difficult theoretical problem. As presented in [2], several nontrivial
constructions of (n,m)-MNBC functions contain vectorial (n, n/2)-bent
functions, and hence many Boolean bent components from M# class.
Recently, in [3], the authors provided further examples of (n, n)-MNBC
functions of the form x 7→ (G(x), H(x)), where G is a suitably chosen
vectorial bent function and H is some vectorial Boolean function. The
obtained results are presented via three different approaches and all of
the obtained examples had bent components in the M# class. Em-
ploying a trivial construction, it is also hard to construct (n,m)-MNBC
functions outside the M# class, since only few examples of (n, n/2)-bent
functions outside M# are known [5, 70, 72]. In this thesis, we construct
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several infinite families of nontrivial MNBC functions outside the M#

class using the extension approach, considered recently in [56, 70] in
the context of vectorial bent functions, thus giving a positive answer to
[3, Question 1]. The main idea of our approach is to extend vectorial
(n, n/2)-bent functions by non-bent coordinates in such a way, that the
remaining bent components fall into secondary constructions of Boolean
bent functions outside the M# class, what guarantees that the obtained
(n,m)-functions are MNBC and outside M#.

The rest of the chapter is organized in the following way. In Section 6.2.1,
we consider in detail the notion of a t-step extension MNBC function,
which we use to distinguish inequivalent MNBC functions, and, partic-
ularly, to classify all MNBC functions in six variables. Moreover, we
show that some of them are nontrivial and do not belong to the M#

class. In the sequel, we present several theoretical constructions of such
functions based on the analysis of several large classes of Boolean bent
functions, namely, PSap, D0 and C. In Section 6.2.2, we propose a par-
tial spread construction of 1-step extension MNBC functions based on
PSap vectorial bent functions. In Section 6.2.3, by applying similar tech-
niques, we provide constructions of 1-step and 2-step extension MNBC
functions outside M# based on the secondary constructions of Boolean
bent functions, namely, D0, C and SC classes. In Section 6.2.4, we com-
bine several techniques presented in Section 6.2.3 for the construction
of 1-step and 2-step extension MNBC functions and provide a construc-
tion of t-step extension (n,m)-MNBC functions outside the M# class,
where 3 ≤ t ≤ n/6. With these results, we give a solution to the open
problem [6, Item 1., p. 9]. The representatives of equivalence classes of
MNBC functions on F6

2 are given in Appendix.

6.2.1 Complete classification of MNBC functions in six vari-
ables

For vectorial Boolean functions with the maximum number of bent com-
ponents below the Nyberg’s bound, i.e., vectorial bent functions, CCZ-
and EA-equivalence coincide [11, 32, 46]. Recently, it was proven that for
a vectorial function (beyond the Nyberg’s bound), the MNBC property
is invariant under CCZ-equivalence [60]. In view of this recent result, it
is reasonable to conjecture, that CCZ-equivalence and EA-equivalence
coincide for MNBC functions beyond the Nyberg’s bound as well. Now
we give an example of two EA-inequivalent, but CCZ-equivalent MNBC
functions in six variables.

Example 6.2.1. Let x ∈ F6
2 and y ∈ F4

2. Consider the following 1-
step extension MNBC functions F : F6

2 → F4
2 and F ′ : F6

2 → F4
2 given by
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algebraic normal forms:

F (x) =


x1x4 + x2x5 + x3x6

x2x4 + x3x4 + x1x5 + x2x5 + x1x6
x1x4 + x2x4 + x1x5 + x2x5 + x3x5 + x2x6
x1x2 + x2x4 + x3x4 + x1x5 + x2x5 + x1x6

 ,

F ′(x) =


x1x2x3 + x1x4 + x2x5 + x3x6

x1x3 + x2x3 + x1x2x4 + x1x5 + x4x6
x1x3 + x2x4 + x2x5 + x1x2x5 + x5x6
x1x2 + x1x2x3 + x1x4 + x2x5 + x3x6

 .

It is easy to see, that deg(F ) = 2 and deg(F ′) = 3, from what follows
that F and F ′ are EA-inequivalent. However, the functions F and F ′

are CCZ-equivalent, since L (GF ) = GF ′, where an affine permutation L
on F6

2 × F4
2 is given by

L(x,y) =



x2
1 + x1 + x2
x1 + x5 + x6
1 + x3 + x4
x2 + x3 + x5

1 + x2 + x3 + y2 + y4
x1 + x2 + x3 + x6 + y1 + y3
1 + x3 + x4 + x5 + x6 + y2

1 + x1 + x2 + x4 + y3
x1 + x2 + x3 + x6 + y1 + y2 + y3 + y4


.

Remark 6.2.2. With Example 6.2.1, we conclude that CCZ-equivalence
is more general than EA-equivalence for the class of MNBC functions.
Recently, the complete classification of vectorial bent functions in six
variables [70, 72], as well as of quadratic vectorial bent functions in
eight variables [69] was obtained. With the same approach, we classify
all MNBC functions on F6

2 and check, which of them belong to the M#

class. First, we give the following definition.
Definition 6.2.3. Let F be an (n,m)-function. Let the linear code CF
over F2 be defined as the row space of the (n+m+ 1)× 2n-matrix over
F2 with columns (1, x, F (x))Tx∈F2n

. We call an (n,m)-MNBC function F
with n/2 + 1 ≤ m ≤ n a t-step extension if dim(CF ) = 1 + n + n/2 + t,
where 1 ≤ t ≤ n/2.
Remark 6.2.4. 1. Let F be a t-step extension (n,m)-MNBC function.
The value t gives a measure of non-triviality of MNBC-functions. With
Definition 6.2.3, an (n,m)-MNBC function is trivial, if it is a 0-step
extension.
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2. Note that if two MNBC functions F and F ′ are t-step and t′-step
extension with t ̸= t′, then F and F ′ are CCZ-inequivalent, since in-
equivalent linear codes CF and CF ′ define CCZ-inequivalent functions [32,
Theorem 9].
3. Let 1 ≤ t ≤ n/2−1. Given a t-step extension (n,m)-MNBC function
F , it is easy to obtain a (t−1)-step extension (n,m)-MNBC function F ′,
by removing a suitable non-bent component function of F . On the other
hand, it seems to be a difficult problem to find a function f : Fn2 → F2
such that the function F ′′ : x 7→ (F (x), f(x)) is a (t + 1)-step extension
(n,m+ 1)-MNBC function.
In the following proposition, we summarize our computational results
about the classification of MNBC functions in six variables.
Proposition 6.2.5. On F6

2, there exist 40 CCZ-equivalence classes of
MNBC functions. Among them, there are:

1. 13 CCZ-equivalence classes of 0-step extension; these are the (6, 3)-
bent functions in [72, Table A2(c)].

2. 17 CCZ-equivalence classes of 1-step extension.
3. 7 CCZ-equivalence classes of 2-step extension.
4. 3 CCZ-equivalence classes of 3-step extension.

If an MNBC function F on F6
2 is a 2-step or a 3-step extension, then

F ∈ M.
Now we briefly discuss the main steps of the used approach. Since any
(n,m)-MNBC function F has 2m−n/2 non-bent components, which form
an (m− n/2)-dimensional vector space [73, 91], one can represent F in
the form

F (x) = (b1(x), . . . , bn/2(x), n1(x), . . . , nm−n/2(x)),

where all bi are bent, all nj are non-bent and ⟨n1, . . . , nm−n/2⟩ is a vector
space of non-bent functions of dimension m − n/2. Applying a non-
degenerate linear transformation to the output of F , we get

F ′(x) = (b1(x), . . . , bn/2(x), bn/2+1(x), . . . , bm(x)),

where bn/2+i := bi+ni is bent for 1 ≤ i ≤ m−n/2, since by [91, Theorem
3.1], all non-bent components of F belong to ⟨n1, . . . , nm−n/2⟩. In this
way, we may assume that all coordinate functions of an MNBC func-
tion F are bent. Consequently, any (n,m)-MNBC function F can be
represented as F (x) = (F̄ (x), f(x)), where F̄ (x) is an (n,m− 1)-MNBC
function and f is a Boolean bent function on Fn2 (for m = n/2 + 1 we
let F̄ be (n, n/2)-bent). In this case, we say that F̄ is extendable to F .
With this representation of MNBC functions, we start with inequivalent
vectorial (6, 3)-bent functions from [72] and extend them recursively to
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(6,m)-MNBC functions by appending at each step a Boolean bent func-
tion without affine terms exhaustively. The extension relation between
the obtained CCZ-equivalence classes is given in Figure 6.1.

1

2120

2

14 18

3 4 5

232215

6 7 8

2725 2624

9 10

29 30

11

19 28

12

17

13

16

3231 3533 34 36 37

3938 40

Figure 6.1: The structure of CCZ-equivalence classes of (6,m)-MNBC functions. If
an equivalence class i is extendable to an equivalence class j, we put a directed edge
between them. The equivalence classes denoted by gray are inside M# and by red are
outside M#.

We check CCZ-equivalence of MNBC functions F and F ′ via equiva-
lence of linear codes CF and CF ′ (see [32, Theorem 9]) with the alge-
bra system Magma [10]. With the implementation [71, Algorithm 1]
of Lemma 2.2.4 applied coordinate-wise to all EA-inequivalent MNBC
functions contained in a CCZ-equivalence class, we check whether a given
CCZ-equivalence class belongs to M#. Finally, we list representatives
of the obtained CCZ-equivalence classes in the Appendix.
Remark 6.2.6. 1. Alternatively to [71, Algorithm 1], one can use a
graph-theoretic approach in order to check, whether a given bent func-
tion f on Fn2 belongs to M#. Let G = (V,E) be a graph with the
vertex-set V = Fn2 and the edge-set E = {{a, b} ∈ V × V : Da,bf = 0}.
Then the existence of a vector space U ⊂ Fn2 with dim(U) = n/2 s.t.
Da,bf = 0 for any a, b ∈ U is equivalent to the existence of a clique U
of size 2n/2 in G, whose elements form a vector space of dimension n/2.
For details on the implementation, we refer to [65].

2. On F6
2, there are 17 CCZ-equivalence classes of 1-step extension

MNBC functions, and there are 23 EA-equivalence classes of 1-step ex-
tension MNBC functions. CCZ-equivalence classes 14 and 21 contain 3
EA-equivalence classes (each), CCZ-equivalence classes 23 and 27 con-
tain 2 EA-equivalence classes (each), and every other CCZ-equivalence
class i with 14 ≤ i ≤ 30 contains exactly one EA-equivalence class.
With the computational results obtained in this section, one can see
that even in a small number of variables nontrivial MNBC functions
with components outside M# exist. In the sequel, we provide several
theoretical constructions of such functions. Finally, we suggest to work
on the following problem in order to shed more light on the phenomenon
observed in Example 6.2.1.
Open problem 6.2.7. Find explicit constructions of (n,m)-MNBC
functions for all n ≥ 6 and n/2+1 ≤ m ≤ n, which are EA-inequivalent,
but CCZ-equivalent.
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6.2.2 MNBC functions from the PSap class

In the following theorem, we give the partial spread construction of
MNBC functions.
Theorem 6.2.8. Let n = 2k and let G be a vectorial (n, k)-bent function
from the PSap class. Let also U be a spread line of the form U =
{(0, y) : y ∈ F2k}. Then the function F : F2k × F2k → Fk+1

2 defined as

F (x, y) = (G(x, y),1U(x, y)) (6.4)

is an (n, k + 1)-MNBC function.

Proof. Since 1U : Fn2 → F2 is the indicator of the vector space U of
dimension k, we have wt(1U) = 2k and hence 1U is not bent. In this
way, it is enough to show that for any PSap Boolean bent function g on
F2k×F2k, which is a bent component of the functionG, the function g+1U
on F2k × F2k is bent. For a, b ∈ F2k, we compute the Walsh transform
Wg+1U

(a, b) of g + 1U at a, b ∈ F2k, by considering the following two
cases.
Case 1. Let a, b ∈ F2k with b ̸= 0. The Walsh transform of g + 1U is
given by

Wg+1U
(a, b) =

∑
x,y∈F2k

(−1)g(x,y)+1U (x,y)+Tr
k
1 (ax+by)

=
∑
y∈F2k

(−1)g(0,y)+1U (0,y)+Tr
k
1 (by)

+
∑
x∈F∗

2k

∑
y∈F2k

(−1)g(x,y)+1U (x,y)+Tr
k
1 (ax+by) = Wg(a, b) = ±2k,

since
∑

y∈F2k
(−1)g(0,y)+1U (0,y)+Tr

k
1 (by) =

∑
y∈F2k

(−1)Tr
k
1 (by) = 0 (because

b ̸= 0), and the function g is bent on F2k × F2k.
Case 2. Let a, b ∈ F2k with b = 0. The Walsh transform of g + 1U is
given by

Wg+1U
(a, 0) =

∑
x,y∈F2k

(−1)g(x,y)+1U (x,y)+Tr
k
1 (ax)

=
∑
y∈F2k

(−1)g(0,y)+1U (0,y) +
∑
x∈F∗

2k

∑
y∈F2k

(−1)g(x,y)+1U (x,y)+Tr
k
1 (ax)

=− 2k +Wg(a, 0)− 2k.

Since for PSap bent function g on F2k × F2k the Walsh transform
Wg(a, 0) = +2k for any a ∈ F2k, we have that Wg+1U

(a, 0) = −2k.
This completes the proof.
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Remark 6.2.9. 1. In the same way, one can show that for the spread
line U = {(x, 0) : x ∈ F2k} the (n, k + 1)-function F of the form (6.4) is
MNBC.

2. The bent component functions of MNBC functions of the form (6.4)
belong to the PSap and PS+ classes. Addition of the indicator of the
spread line F2k×{0} or the indicator of {0}×F2k to a PSap bent function
g on F2k ×F2k gives a bent function in PS+ class, because the PSap bent
function g is constant 0 on the mentioned spread lines. Similarly, one
can use other spreads (not necessarily Desarguesian) for the construction
of MNBC functions.

3. Weng, Feng and Qiu [85] proved that almost every PSap bent function
on Fn2 is outside M#. Since 2n/2 − 1 component functions of MNBC
functions of the form (6.4) belong to PSap, we have that almost every
MNBC function of this form is outside M#. Remarkably, with this
construction one can extend a vectorial bent function in PSap ∩ M to
an MNBC function outside M#, as the example of equivalence classes
11 and 19 in Figure 6.1 shows; this is the only such an example in six
variables, since the only equivalence classes of (6, 3)-bent functions inside
PSap are 11, 12 and 13 (see Figure 6.1 and [72, Table IV.2.]).

4. Any PSap vectorial bent function (x, y) ∈ F2k × F2k 7→ H(x/y) in
n = 2k = 6 variables can be extended to at least two inequivalent 1-step
extension MNBC functions from the PSap class. With Magma [10], one
can show that for any permutation H on F2k × F2k, MNBC functions of
the form

F : (x, y) ∈ F2k × F2k 7→ (H(x/y),1U(x, y)),

F ′ : (x, y) ∈ F2k × F2k 7→ (H(x/y),1V (x, y)),
(6.5)

where U = {(0, y) : y ∈ F2k} and V = {(x, 0) : x ∈ F2k}, are CCZ-
inequivalent.

Conjecture 6.2.10. In view of the last observation in Remark 6.2.9, we
conjecture that MNBC functions F and F ′ defined by (6.5) are inequiv-
alent for any permutation H on F2k.

6.2.3 MNBC functions from secondary constructions of
Boolean bent functions

In this section, using secondary constructions of Boolean bent functions,
we construct three families of MNBC functions: two families of 1-step
extension stemming from D0 and C classes, and one family of 2-step
extension stemming from the SC class, which is a superclass of D0 and
C.
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MNBC functions stemming from the D0 class

In the following, we define δ0 : F2k → F2 to be the indicator of 0 ∈ F2k,
i.e., δ0 = 1{0}. With this notation, Boolean functions f : F2k × F2k → F2

of the form

f(x, y) = Trk1(xπ(y)) + δ0(x) for x, y ∈ F2k, (6.6)

where π is a permutation on F2k, are bent and the set of bent functions
of the form (6.6) is called the D0 class of Boolean bent functions [17].
Carlet [17] proved, that bent functions of the form (6.6), where π is a
quadratic permutation such that there is no affine hyperplane of F2k on
which π is affine, do not belong to the M# class. In a recent work [44],
the authors provided complete characterization of D0 ∩M#, which we
summarize in the following theorem.
Theorem 6.2.11. [44, Theorems 5,7] Let k be an integer, k ≥ 4. Let π
be a permutation of F2k with one of the following two properties:

1. The algebraic degree of π satisfies deg(π) ≥ 3;
2. The permutation π is quadratic and there is no affine hyperplane of

F2k on which π is affine.

Then the function f : F2k × F2k → F2 defined by f(x, y) = Trk1(xπ(y)) +
δ0(x) for x, y ∈ F2k is a bent function in D0 outside M#. Moreover, the
second condition is also a necessary one for quadratic permutations.

With the use of bent functions from D0 \ M# class, we derive the fol-
lowing family of MNBC functions.
Theorem 6.2.12. Let n = 2k ≥ 8 and let γ ∈ F2n \ F2k. Let π be a
permutation on F2k satisfying one of conditions of Theorem 6.2.11. Then
the (n, n)-function F defined by

F (x, y) = xπ(y) + γδ0(x) for x, y ∈ F2k, (6.7)

is a 1-step extension (n, n)-MNBC function outside the M# class.

Proof. First, we show that the function F has the maximum number of
bent components and is outside M#. Let λ ∈ F∗

2n be arbitrary. Then

Fλ(x, y) = Trk1(xπ(y)Tr
n
k (λ)) + δ0(x)Tr

n
1 (λγ)

is not bent if and only if Trnk (λ) = 0. This holds, if λ ∈ F∗
2k. Thus, there

are (2n − 1) − (2k − 1) = 2n − 2k bent components. Since |{x ∈ F2n :
Trn1 (γx) = 1}| = |{x ∈ F2n : Trn1 (γx) = 0}| = 2n−1, there exist at least
2n − 2k − 2n−1 = 2k(2k−1 − 1) many λ /∈ F2k such that Trn1 (λγ) = 1.
In this case, we have that Fλ ∈ D0 \ M#. Now we show that F is a
1-step extension. Since G(x, y) := xπ(y) is an (n, k)-function, we can
write G(x, y) = (g1(x, y), . . . , gk(x, y)), where g1, . . . , gk : F2k ×F2k → F2.
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Since γ ∈ F2n \ F2k, we can construct the function F ′ in the following
form

F ′(x, y) = (g1(x, y), . . . , gk(x, y), δ0(x)).

Thus, F ′ is an MNBC (n, k+1)-function, since the non-bent component
functions of F ′ are 0 and δ0. Furthermore, we note that the dimension
of the linear code CF ′ is given by dim(CF ′) = 1 + n + k + 1 which,
by definition, means that F ′ is a nontrivial MNBC (n, k + 1)-function.
Consequently, the MNBC (n, n)-function F is a 1-step extension.

MNBC functions stemming from the C class

In this section, we present several infinite families of MNBC functions
provably outside the M# class based on the generic construction of
MNBC functions introduced in [4]. It was shown that several Maiorana-
McFarland vectorial bent functions G : F2k × F2k → F2k satisfy the con-
ditions of Construction 3.1.1. Now we show that for these vectorial bent
functions G : F2k×F2k → F2k one can specify a vectorial function h, such
that MNBC functions, obtained via Construction 3.1.1, are outside the
M# class. The choice of the function h is strongly related with C and
D0 classes of Boolean bent functions, which contain functions provably
outside M#.
Recall that the C class of bent functions introduced by Carlet [17] is the
set of Boolean functions f : F2k × F2k → F2 of the form

f(x, y) = Trk1(xπ(y)) + 1L⊥(x), (6.8)

where L is any vector subspace of F2k, 1L⊥ is the indicator function of
the orthogonal complement L⊥ = {x ∈ F2k : Tr

k
1(xy) = 0,∀ y ∈ L}, and

π is any permutation on F2k such that
(C) π−1(a+ L) is a flat (affine subspace), for all a ∈ F2k.

The permutation π−1 and the subspace L are then said to satisfy the (C)
property. For short, we also write (π−1, L) has property (C). Recall that
a Boolean function f : F2n → F2 has a linear structure if there exists an
element a ∈ F∗

2n such that x 7→ f(x+ a) + f(x) is a constant function.
Using Construction 3.1.1 and Theorem 2.2.6, we obtain the following
family of MNBC functions outside the M# class.
Theorem 6.2.13. Let U = {u1, . . . , uτ} be a set of τ linearly indepen-
dent elements in F∗

2k, where n = 2k ≥ 8 and τ | k. Let π be a permutation
on F2k and G(x, y) = xπ(y), where x, y ∈ F2k, be an (n, k)-bent function
whose dual bent components G̃λ, λ ∈ F∗

2k, satisfy the property (PU) with
the defining set U . Let h : Fτ2 → F2 be defined by its ANF as follows

h(x1, . . . , xτ) =
τ∏
i=1

(xi + 1). (6.9)
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If ((λπ)−1, ⟨U⟩) satisfies the (C) property and the conditions of Theorem
2.2.6 for all λ ∈ F∗

2k, then the (n, n)-function F constructed from G and
h as

F (x, y) = G(x, y) + γh(Trk1(u1x), . . . , T r
k
1(uτx)), (6.10)

where γ ∈ F2n \F2k, is a 1-step extension (n, n)-MNBC function outside
M#.

Proof. From Construction 3.1.1, it follows that the function F is an
(n, n)-MNBC function. The function h, defined in such a way, represents
the indicator function of the subspace ⟨U⟩⊥ of F2k. If Trk1(λγ) = 1 for
λ ∈ F∗

2k, then Fλ(x, y) = Trk1(xλπ(y)) + 1⟨U⟩⊥(x). Since ((λπ)−1, ⟨U⟩)
satisfies the (C) property and the conditions of Theorem 2.2.6 for all
λ ∈ F∗

2k, it follows that Fλ ∈ C \M#. If Trk1(λγ) = 0 then Fλ ∈ M#,
hence F is outside M#. Now we show that F is a 1-step extension.
Since G(x, y) := xπ(y) is an (n, k)-function, we can write G(x, y) =
(g1(x, y), . . . , gk(x, y)), where gi : F2k × F2k → F2 for all 1 ≤ i ≤ k.
Since γ ∈ F2n \F2k, we can construct the function F ′ (see Remark 6.2.4)
in the following form F ′(x, y) = (g1(x, y), . . . , gk(x, y), gk+1(x, y)), where
gk+1(x, y) := h(Trk1(u1x), . . . , T r

k
1(uτx)). Thus, F ′ is an (n, k+1)-MNBC

function, since the non-bent components of F ′ are 0 and gk+1. Finally,
since CF = CF ′, we have that dim(CF ) = dim(CF ′) = 1 + n + k + 1,
consequently the (n, n)-MNBC function F is a 1-step extension.

Following the proof of [5, Proposition 3], we give the following family of
1-step extension (n, n)-MNBC functions outside M# by specifying the
permutation π to be a power mapping.
Proposition 6.2.14. Let k ≥ 4 and s be a positive divisor of k such that
k/s is odd. Let U = {1, α, . . . , ατ−1} be a set of τ linearly independent
elements in F∗

2s, α is a primitive element in F2s and τ | k. Let G(x, y) =
xπ(y), where x, y ∈ F2k, π(y) = yd is a permutation on F2k for a positive
integer d such that wt(d) ≥ 3 and d(2s + 1) ≡ 1 (mod 2k − 1). Then
(π−1, ⟨U⟩), satisfies the (C) property and for any γ /∈ F2k, the function

F (x, y) = xyd + γh(Trk1(x), T r
k
1(αx), . . . , T r

k
1(α

τ−1x)),

where h is defined by (6.9), is a 1-step extension (n, n)-MNBC function
outside the M# class.

Proof. By [4, Proposition 3], the dual bent components G̃λ of G satisfy
the property (PU) with the defining set U given above for any λ ∈ F∗

2k.
Thus, from Construction 3.1.1, it follows that the function F is an (n, n)-
MNBC function. We will show that F is outside M#. Let λ ∈ F∗

2k be
arbitrary. If Trk1(λγ) = 0, we have that Fλ(x, y) = Gλ(x, y) ∈ M. Sup-
pose that Trk1(λγ) = 1, then Fλ(x, y) = Trk1(λxy

d) + 1⟨U⟩⊥(x). For any
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permutation π on F2k, let σλ(y) := λπ(y). Note that σ−1
λ (y) = π−1(λ−1y).

Let π(y) = yd, where d is defined above. Then, σ−1
λ (y) = λ−2s−1π−1(y),

where π−1(y) = y2
s+1. We will show that (σ−1

λ , ⟨U⟩) satisfies the (C)
property. Let a ∈ F2k be arbitrary. Then

σ−1
λ (a+ ⟨U⟩) = λ−2s−1(a+ ⟨U⟩)2s+1 = λ−sπ−1(a+ ⟨U⟩)

is a flat as π−1(a+ ⟨U⟩) is a flat by [53, Theorem 5.8]. Since wt(d) ≥ 3,
by [88, Proposition 5] it follows that Trk1(λπ) has no nonzero linear
structures. Thus by Theorem 2.2.6 it follows that Fλ is in C outside M#.
Hence, F is outside M#. Finally, from Theorem 6.2.13, we conclude that
F is a 1-step extension.

MNBC functions stemming from the SC class

In [5, Section 3], the first two authors defined a new superclass of bent
functions obtained from the C and D0 class as follows. Let π be a per-
mutation on F2k and let L ⊂ F2k be a linear subspace of F2k such that
(π−1, L) satisfies the (C) property. Then the class of bent functions
f : F2k ×F2k → F2 containing all functions of the form (5.5) is called SC
and is a superclass of D0 and C.
As noted in Theorem 5.1.1, under certain conditions, the functions in
SC are outside the completed Maiorana-McFarland class M#. With
the notation of Proposition 6.2.14, we construct the following family of
MNBC functions.
Theorem 6.2.15. Let x, y ∈ F2k. The function F : F2k × F2k → F2n

defined by

F (x, y) = xyd + γ1h(Tr
k
1(x), T r

k
1(αx), . . . , T r

k
1(α

t−1x)) + γ2δ0(x),
(6.11)

where t < k, is a 2-step extension (n, n)-MNBC function outside M#,
for all γ1, γ2 ∈ F2n \ F2k.

Proof. First, we show that F has the maximum number of bent compo-
nents and is outside M#. Let λ ∈ F∗

2n be arbitrary. Then

Fλ(x, y) = Trk1(xπ(y)Tr
n
k (λ))

+ h(Trk1(x), T r
k
1(αx), . . . , T r

k
1(α

t−1x))Trn1 (λγ1) + δ0(x)Tr
n
1 (λγ2)

is not bent if and only if Trnk (λ) = 0. This holds, if λ ∈ F∗
2k. Thus,

there are (2n − 1) − (2k − 1) = 2n − 2k bent components. Since
|{x ∈ F2n : Trn1 (γix) = 1}| = |{x ∈ F2n : Trn1 (γix) = 0}| = 2n−1,
there exist at least 2n − 2k − 2n−1 = 2k(2k−1 − 1) many λ /∈ F2k such
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that Trn1 (λγi) = 1, for i = 1, 2. When Trk1(λγ1) = Trk1(λγ2) = 1, the
component is in SC outside M#, if Trk1(λγ1) = 1, T rk1(λγ2) = 0, the
component is in C outside M#, and if Trk1(λγ1) = 0, T rk1(λγ2) = 1,
the component is in D0 outside M#. Now we show that F is a 2-
step extension. Since G(x, y) := xπ(y) is an (n, k)-function, we can
write G(x, y) = (g1(x, y), . . . , gk(x, y)), where g1, . . . , gk : F2k × F2k →
F2. Since γ1, γ2 ∈ F2n \ F2k, we can construct the function F ′ in
the following form F ′(x, y) = (g1(x, y), . . . , gk(x, y),h(X), δ0(x)), X =
(Trk1(x), . . . , T r

k
1(α

t−1x)). Thus, F ′ is an MNBC (n, k + 2)-function,
since the non-bent component functions of F ′ are 0, δ0 and h. Note
that if t = k, then δ0 = h. Thus, we assume that t < k. Further-
more, we note that the dimension of the linear code CF ′ is given by
dim(CF ′) = 1+n+k+2 which, by definition, means that F ′ is a nontriv-
ial MNBC (n, k+2)-function. Consequently, the MNBC (n, n)-function
F is a 2-step extension.

Example 6.2.16. Let n = 12 and the multiplicative group of F212 be
given by F∗

2n = ⟨α⟩, where the primitive element α satisfies α12 + α7 +

α6 + α5 + α3 + α + 1 = 0. Let λ = α
212−1

3 . If we choose L = ⟨1, λ⟩ and
π(y) = y38, then (π−1, L) satisfies the (C) property (see [88, Example
1]) and wt(38) = 3, that is, π admits no linear structures. Using a com-
puter algebra system, one can check that the following (12, 12)-MNBC
functions

F1(x, y) =xy
38 + α233(Tr61(x) + 1)(Tr61(λx) + 1) and

F2(x, y) =xy
38 + α233(Tr61(x) + 1)(Tr61(λx) + 1) + α121δ0(x)

are 1-step and 2-step extension, respectively. That is, the dimensions
of the linear codes CF1

and CF2
, are equal to 1 + n + n/2 + 1 = 20 and

1 + n+ n/2 + 2 = 21, respectively.

6.2.4 A family of t-step extension MNBC functions

In [5], the authors present the following secondary construction of vecto-
rial bent functions outside M#, which can be used to construct nontrivial
(n, n)-MNBC functions outside M#.
Theorem 6.2.17. Let n = 2k ≥ 8 and t ≥ 3 be a positive divisor of k
such that k/t is odd. Let π(y) = yd be a permutation on F2k such that
d(2t + 1) ≡ 1 (mod 2k − 1) and wt(d) ≥ 3. Let α be a primitive element
of F2t. Then the (n, n)-function F defined by

F (x, y) = xyd +H(x), x, y ∈ F2k

with

H(x) =
(
Trk1(x) + 1

)
·

(
t−1∑
i=1

γiα
i
(
Trk1(α

ix) + 1
))

+ µδ0(x),
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where γi, µ /∈ F2k, γi ̸= γj (i ̸= j), is a t-step extension (n, n)-function
outside M#.

Proof. Similarly as in the proof of Theorems 6.2.12 and 6.2.15, we note
that F has (2n−1)− (2k−1) = 2n−2k bent components, some of which
are outside M#.
Let Trk1(λ) = 1. When Trk1(λγiαi) = 1 for at least one i ∈ {1, . . . , t− 1}
and Trk1(λµ) = 0, the component is in C outside M# (as shown in [5,
Proposition 2]). If Trk1(λγiαi) = 1 for at least one i ∈ {1, . . . , t − 1}
and Trk1(λµ) = 1, the component is in SC outside M# (as shown in [5,
Corollary 3]). Lastly, if Trk1(λγiαi) = 0 for all i ∈ {1, . . . , t − 1} and
Trk1(λµ) = 1, the component is in D0 outside M#. For the remaining
cases, it is easy to see that the components are in M#. Now we show
that F is an t-step extension.
Since G(x, y) := xπ(y) is an (n, k)-function, we can write

G(x, y) = (g1(x, y), . . . , gk(x, y)),

where gi : F2k × F2k → F2, for i = 1, . . . , k. For µ, γ1, . . . , γt−1 ∈ F2n \
F2k and 1, α, . . . , αt−1 ∈ F2t, we have that {µ, γ1α, . . . , γt−1α

t−1} is a
linearly independent set over F2 (since α is a primitive element of F2t).
Furthermore, because γi, µ /∈ F2k we have that γiαi, µ /∈ F2k for i =
1, . . . , t− 1, and thus the set

{1, ω, . . . , ωk−1, µ, γ1α, . . . , γt−1α
t−1}

is linearly independent over F2, where ω is a primitive element of F2k

with ω(2k−1)/(2t−1) = α. Let us show that the functions ht = δ0, hi =
1⟨1,αi⟩⊥, i = 1, . . . , t − 1, are linearly independent. Let us consider their
linear combination λ1h1 + . . . + λt−1ht−1 + λtht. Suppose that for some
i ∈ {1, . . . , t} we have λi = 1.
If λt = 1, then

δ0 =
t−1∑
j=1

λjhj =
∑
j∈J

hj,

where J = {j : 1 ≤ j ≤ t− 1, λj = 1}. We have that

1⟨1,α,...,αk−1⟩⊥ = δ0 =
∑
j∈J

hj

= (Trk1(x) + 1)

Trk1
∑

j∈J

αjx

+
∑
j∈J

λj


=

{
1⟨1,

∑
j∈J α

j⟩⊥, if
∑

j∈J λj = 1

1⟨1,
∑

j∈J α
j⟩⊥ + l, otherwise ,
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where l(x) = Trk1(x) + 1. It is easy to note that the left- and right-hand
side cannot be equal, no matter what the choice of λi ∈ F2 is.
Hence, without loss of generality, we may assume that λt = 0. Suppose
that for some i ∈ {1, . . . , t− 1} we have λi = 1. Then

hi =
t−1∑
i̸=j=1

λjhj =
∑
j∈J

hj,

where J = {j : 1 ≤ j ≤ t − 1, j ̸= i, λj = 1}. Let ξ =
∑

j∈J α
j. It is

easy to compute that

1⟨1,αi⟩⊥ = hi = (Trk1(x) + 1)(Trk1(ξx) + ε), ε =
∑
j∈J

λj.

If ε = 1, it follows that ⟨1, ξ⟩ = ⟨1, αi⟩, which implies that ξ ∈ ⟨1, αi⟩.
This is not possible because ξ is a linear combination of {α, . . . αt−1} \
{αi} and α is a primitive element of F2t. If ε = 0, we have that

1 = hi(0) = (Trk1(0) + 1)(Trk1(ξ0)) = 0,

which is not true. Thus we must have that λi = 0 for all i = 1, . . . , t. In
other words, h1, . . . , ht are linearly independent over F2. Furthermore,
the functions g1, . . . , gk, h1, . . . , ht are also linearly independent. Hence
we can construct the function F ′ in the following form

F ′(x, y) = (g1(x, y), . . . , gk(x, y), h1(x), . . . , ht(x)).

Thus, F ′ is an (n, k+ t)-MNBC function, since the non-bent component
functions of F ′ are 0 and v · (h1, . . . , ht) for v ∈ Ft∗2 . Furthermore, as
the coordinates g1, . . . , gk, h1, . . . , ht are linearly independent, we note
that the dimension of the linear code CF ′ is given by dim(CF ′) = 1 +
n + k + t which, by definition, means that F ′ is a nontrivial (n, k + t)-
MNBC function. Consequently, the (n, n)-MNBC function F is an t-step
extension.

Example 6.2.18. Let k = 9 and t = 3. Suppose that α is a primitive
element of F23. Since 284 · (23 + 1) mod 29 − 1 = 1, let π(y) = y284 be
a permutation on F29. Let γ1, γ2, γ3 be distinct elements in F218 \ F29.
Then

F (x, y) = xy284 + (Tr91(x) + 1)(γ1α(Tr
9
1(αx) + 1)

+ γ2α
2(Tr91(α

2x) + 1)) + γ3δ0(x)

is a 3-step (18, 18)-MNBC function outside M#.
Additionally, we specify the bounds for the value of t in Theorem 6.2.17,
thus determining a measure of non-triviality of the constructed MNBC-
functions.
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Remark 6.2.19. Let n = 2k and k/t be odd, i.e., k = mt, m odd. Note
that m > 1 as for m = 1 we obtain that d(2t + 1) mod (2t − 1) = 1
holds for d = 2t−1 and wt(d) = 1 which implies that the function is in
M#. Hence, without loss of generality, we may assume that m ≥ 3,
then t = n

2m ≤ n
6 , i.e., we have that 3 ≤ t ≤ n/6. Furthermore, since

t is a positive divisor of k and k/ gcd(k, t) = k/t is odd it follows that
gcd(2t+1, 2k−1) = 1. From [33, Theorem 4.1.-(i)], there exists a unique
solution of the linear congruence d(2t + 1) ≡ 1 (mod 2k − 1).
Finally, we give a precise expression of d for t = 3, and hence, show that
Example 6.2.18 is a particular instance of an explicit infinite family of
MNBC functions.
Proposition 6.2.20. Let k = 3m, where m = 3 + 2l for some l ∈ N0.
Let also

d = 2k−1 +
l+1∑
i=1

(
2k−6i+1 + 2k−6i + 2k−6i−1

)
.

Then we have that wt(d) ≥ 3 and d(23 + 1) ≡ 1 (mod 2k − 1).

Proof. The fact that wt(d) ≥ 3 follows from the definition of d. Denote
by θ the number (23 + 1)d− 1 and compute it in the following way:

θ = 2k+2 + 2k−1

+
l+1∑
i=1

(
2k−6i+4 + 2k−6i+3 + 2k−6i+2 + 2k−6i+1 + 2k−6i + 2k−6i−1

)
− 1

= 2k+2 + 2k−1 +
(
2k−2 + 2k−3 + 2k−4 + 2k−5 + 2k−6 + 2k−7

)
+
(
2k−8 + 2k−9 + 2k−10 + 2k−11 + 2k−12 + 2k−13

)
+ . . .

+
(
2k−6l−2 + 2k−6l−3 + 2k−6l−4 + 2k−6l−5 + 2k−6l−6 + 2k−6l−7

)
+ 2 + 1− 2− 1− 1 = 22(2k − 1) + (2k − 1) = (2k − 1)(22 + 1),

because k − 6l = 9 and 2k − 1 =
∑k−1

i=0 2
i. Since (2k − 1)|θ, the result

follows.

In addition to the questions raised in Sections 6.2.1 and 6.2.2, we would
like to mention the following open problems.

1. In n = 6 variables, all (n/2−1)-step and n/2-step extension MNBC
functions belong to the M# class. In view of this observation, it
is interesting to ask whether (n/2− 1)-step and n/2-step extension
MNBC functions outside M# can in general exist for n > 6.

2. To the best of our knowledge, for a t-step extension (n, n)-MNBC
function outside the M# class, the largest known value of t is equal
to n/6 and achieved by the construction in Theorem 6.2.17. In view
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of this result, we suggest to find constructions of t-step extension
(n, n)-MNBC functions outside the M# class with t > n/6.



Chapter 7

Explicit infinite families of
4-decompositions outside M#

In this chapter, we provide some fundamental results related to the in-
clusion in M# and eventually we obtain many infinite families of bent
functions that are provably outside M#. The fact that a bent function
f is in/outside M# if and only if its dual is in/outside M# is em-
ployed in the so-called 4-decomposition of a bent function on Fn2 , which
was originally considered by Canteaut and Charpin [14] in terms of the
second-order derivatives and later reformulated in [39] in terms of the
duals of its restrictions to the cosets of an (n− 2)-dimensional subspace
V . For each of the three possible cases of this 4-decomposition of a bent
function (all four restrictions being bent, semi-bent, or 5-valued spec-
tra functions), we provide generic methods for designing bent functions
provably outside M#. For instance, for the elementary case of defining
a bent function h(x, y1, y2) = f(x)⊕ y1y2 on Fn+2

2 using a bent function
f on Fn2 , we show that h is outside M# if and only if f is outside M#.
This approach is then generalized to the case when two bent functions
are used. More precisely, the concatenation f1||f1||f2||(1⊕ f2) also gives
bent functions outside M# if either f1 or f2 is outside M#. The cases
when the four restrictions of a bent function are semi-bent or 5-valued
spectra functions are also considered and several design methods of de-
signing infinite families of bent functions outside M#, using the spectral
domain design considered in [37, 39], are proposed.

7.1 Preliminary results on the spectral design

7.1.1 Specifying 5-valued spectra functions through duals

We first recall certain notations, introduced in [39], useful in handling
the 5-valued spectra Boolean function which has two different non-zero
absolute values.

98



CHAPTER 7. EXPLICIT INFINITE FAMILIES OF 4-DECOMPOSITIONS OUTSIDE M# 99

Let the WHT spectrum of a function f : Fn2 → F2 contain the values
0,±c1,±c2 (c1 ̸= c2), where c1, c2 ∈ N. Some of the results in [39] are
stated in a more general context, but since the 4-decomposition of bent
functions is our main objective we only consider the cases c1 = 2n/2 and
c2 = 2(n+2)/2 above. For i = 1, 2, by S [i]

f ⊂ Fn2 we denote the set

S
[i]
f = {u ∈ Fn2 : |Wf(u)| = ci},

and we can define the functions f ∗[i] : S
[i]
f → F2 such that the following

equality holds:

Wf(u) =

{
0, u ̸∈ S

[1]
f ∪ S [2]

f ,

ci · (−1)f
∗
[i](u), u ∈ S

[i]
f , i ∈ {1, 2}.

(7.1)

For i = 1, 2, let vi ∈ Fn2 and Ei = {e(i)0 , . . . , e
(i)

2λi−1
} ⊂ Fn2 (e(i)0 = 0n) be

lexicographically ordered subsets of cardinality 2λi such that

S
[i]
f = {ω(i)

0 , . . . , ω
(i)

2λi−1
} = vi ⊕ Ei,

where ω(i)
j = vi ⊕ e

(i)
j , for j ∈ [0, 2λi − 1]. Clearly, the lexicographically

ordered set Ei imposes an ordering on S
[i]
f with respect to the equality

ω
(i)
j = vi⊕e(i)j . Using the representation of S [i]

f = vi⊕Ei and the fact that
the cardinality of S [i]

f is a power of two the function f
∗
[i], as a mapping

from Fλi2 to F2, is defined as

f
∗
[i](xj) = f ∗[i](vi ⊕ e

(i)
j ) = f ∗[i](ω

(i)
j ), j ∈ [0, 2λi − 1], (7.2)

where Fλi2 = {x0, . . . , x2λi−1} is ordered lexicographically.
A more specific method for designing 5-valued spectra functions on Fn2
(thus Wf(u) ∈ {0,±2n/2,±2

n+2
2 }), originally considered in [39], will be

used in Section 7.2.5 for specifying suitable quadruples of such functions
whose concatenation will give bent functions outside M#.

7.1.2 Decomposition of bent functions

The decomposition of bent functions on Fn2 , n is even, to affine subspaces
a ⊕ V , for some k-dimensional linear subspace V ⊂ Fn2 , was considered
in [14]. For a bent function f ∈ Bn, the restriction to a ⊕ V is denoted
by fa⊕V and it can be viewed as a function from Fk2 → F2 using

fa⊕V (xi) = fa⊕V (a⊕ vi), i ∈ [0, 2k − 1], (7.3)
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for lexicographically ordered V = {v0, . . . , v2k−1} and Fk2 =
{x0, . . . , x2k−1}. This identification between V and Fk2, and thus the
definition of fa⊕V : Fk2 → F2, strongly depends on the ordering of V .
The 4-decomposition of a bent function f ∈ Bn, as a special case con-
sidered in [14], then defines four subfunctions on the four cosets of
some (n − 2)-dimensional linear subspace. More precisely, for nonzero
a, b ∈ Fn2 with a ̸= b this (n − 2)-dimensional subspace is defined as
V = ⟨a, b⟩⊥, where the dual of a linear subspace, say S ⊂ Fn2 , is defined
as S⊥ = {x ∈ Fn2 : x · y = 0, ∀y ∈ S}.
Let (f1, f2, f3, f4) be such a decomposition, that is, f1, . . . , f4 ∈ Bn−2 are
defined on the four cosets 0n⊕V, a⊕V, b⊕V, (a⊕b)⊕V respectively, thus
Q = ⟨a, b⟩ and Q⊕ V = Fn2 (with Q∩ V = {0n}). Such a decomposition
is called a bent 4-decomposition when all fi (i ∈ [1, 4]), are bent; a semi-
bent 4-decomposition when all fi (i ∈ [1, 4]) are semi-bent; a 5-valued
4-decomposition when all fi (i ∈ [1, 4]) are 5-valued spectra functions so
that Wfi ∈ {0,±2(n−2)/2,±2n/2} [14]. These are the only possibilities and
we strictly have that all the restrictions have the same spectral profile,
for instance the restrictions cannot be a mixture of bent and semi-bent
functions.
The 4-decomposition was fully described in [14] in terms of the second-
order derivatives (with respect to a and b) of the dual f∗ of a bent function
f. Alternatively, the approach that will be used in this thesis, this de-
composition can be specified in terms of Walsh supports and duals of
its restrictions f1, . . . , f4 [39]. Note that functions fi are considered as
functions in (n − 2)-variables in terms of relation (7.3) (that is when
dim(V ) = k = n− 2).
Theorem 7.1.1. [39] Let f ∈ Bn be a bent function, for even n ≥ 4. Let
a, b ∈ Fn2 \ {0n} (a ̸= b) and V = ⟨a, b⟩⊥. If we denote by (f1, . . . , f4) the
4-decomposition of f with respect to V , then (f1, . . . , f4) is:

1. A bent 4-decomposition if and only if it holds that f ∗1⊕f ∗2⊕f ∗3⊕f ∗4 =
1.

2. A semi-bent 4-decomposition if and only if functions fi (i ∈ [1, 4])
are pairwise disjoint spectra semi-bent functions1.

3. A five-valued 4-decomposition if and only if the following statements
hold:

a) The sets S [1]
fi

= {ϑ ∈ Fn−2
2 : |Wfi(ϑ)| = 2

n
2 } (i ∈ [1, 4]) are

pairwise disjoint;

b) All S [2]
fi

= {ϑ ∈ Fn−2
2 : |Wfi(ϑ)| = 2

n−2
2 } are equal (i ∈ [1, 4]),

and for f ∗[2],i : S
[2]
fi

→ F2 it holds that f ∗[2],1⊕f ∗[2],2⊕f ∗[2],3⊕f ∗[2],4 = 1.

1Two semi-bent functions f1 and f2 on Fn−2
2 , for even n, are said to be disjoint spectra functions

if Wf1(u) = 0 ⇒Wf1(u) = ±2n/2, or vice versa.
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In the rest of this thesis, we consider the canonical 4-decomposition
so that a = (0, 0, . . . , 0, 1), b = (0, 0, . . . , 1, 0) ∈ Fn2 and consequently
V = Fn−2

2 × {(0, 0)} in Theorem 7.1.1. Then, the function f is the
concatenation of fi ∈ Bn−2 which we denote by f = f1||f2||f3||f4.

7.2 Decomposing bent functions - design methods

From the design perspective, Theorem 7.1.1 allows us to specify (possibly
new) bent functions by specifying suitable quadruples of bent, semi-
bent, or 5-valued spectra functions. We develop these ideas below more
precisely in the rest of this section, but before this we propose an efficient
algorithm for testing the inclusion in M#, which was used throughout
the thesis.

7.2.1 An algorithm for determining whether f ∈ M#

We first describe an algorithmic approach to determine whether a bent
function is outside M#. The algorithm is based on Lemma 2.2.4 and
some graph-theoretical concepts.
Let f ∈ Bn be a bent function. Set Γ = (V,E) to be a graph with edge
set

E = {{a, b} : a, b ∈ F∗
2n;DaDbf ≡ 0},

and vertex set V ⊂ F∗
2n consisting of all distinct vertices appearing in

the edge set E. For simplicity, we do not add 0 to V as D0Dbf ≡ 0 for
all b ∈ F2n. With this approach, we reduce the size of the vertex set V
as DaDbf ̸≡ 0, for some a, b ∈ F∗

2n. In practice, the size of the vertex set
becomes relatively small and for instance in dimension n = 8 we could
verify that typical values for |V | are 0 and 6. We also remark that we
consider the graph Γ to be simple as there are no loops (DaDaf ≡ 0
holds for all a ∈ F2n); and it is not directed since DaDbf = DbDaf for
any a, b ∈ F2n.
From Lemma 2.2.4, we know that we need to find an (n/2)-dimensional
linear subspace V of F2n on which the second-order derivatives of f van-
ish. From the graph-theoretical perspective, this problem corresponds
to finding a clique Λ ( a complete subgraph) of size 2n/2− 1 in the graph
Γ and additionally checking whether V (Λ)∪{0} forms a linear subspace
in Fn2 . Finding a clique in a graph is known to be an NP-complete prob-
lem and, specifically, the time complexity of this search would be of size
O(2n2

n/2

). However, in practice, this number is much smaller because
the number of vertices (namely |V |) of the graph Γ is almost negligible
compared to 2n. The full Sage implementation has been added to the
appendix. It might be of interest to optimize further the performance of
this algorithm so that larger input sizes can be efficiently tested.
We have considered 100 bent functions in dimension 8 and the average
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time needed to check whether one function is outside M# was approx.
17 seconds. For n = 10, the average time for checking the property
of being in or outside M# was 30 minutes. On the other hand, when
n = 12, the time complexity is approximately 22 hours on average.
For the purpose of this thesis, the proposed algorithm is sufficiently
efficient and is superior to a straightforward approach of checking all
n/2-dimensional subspaces and verifying the vanishing property of the
second-order derivatives. Most importantly, all the examples provided
in this thesis (in certain cases the ANFs are also given) can be efficiently
checked using the Sage algorithm given in Section 7.2.1. We also note
the following interesting observation.

Remark 7.2.1. We remark that the dual of a bent function f ∈ M,
given by f(x, y) = x·π(y)⊕h(y) for x, y ∈ Fn/22 , where π is a permutation
on Fn/22 and h is arbitrary, is apparently in M (see for instance [19] for
the specification of f ∗). The same is true when f ∈ M# is considered
since the class inclusion is invariant under the EA transform.

7.2.2 Defining suitable bent 4-decompositions

Recently, a quadruple of distinct bent functions, satisfying that f ∗1 ⊕
f ∗2 ⊕ f ∗3 ⊕ f ∗4 = 1, was identified in [7]. It was additionally shown that
their concatenation f1||f2||f3||f4 is provably outside the M# class. More
precisely, the authors considered a quadruple of bent functions (not all
of them being in M#) that belong to the C and D class of Carlet [17]
and their suitable “modifications” for this purpose. Nevertheless, the
following results show that the same method can generate new bent
functions outside M# when a single bent function (alternatively a pair
of bent functions) outside M# is used.

Theorem 7.2.2. Let n be even and f be a bent function in n variables.
Set h(x, y1, y2) = f(x)⊕y1y2 for yi ∈ F2, so that h = f ||f ||f ||f ||(1⊕f) ∈
Bn+2 is also bent. Then, f is outside M# if and only if h is outside
M#.

Proof. It is well-known that h = f ||f ||f ||f ||(1 ⊕ f) ∈ Bn+2 is bent if f
is bent. Notice that ‘f is outside M# if and only if h is outside M#’ is
equivalent to ‘f is in M# if and only if h is in M#’.

Suppose first that h is outside M#, thus we want to show that f is
outside M#. Assume on the contrary that f is in M#, thus there exists
(at least) one linear subspace V ⊂ Fn2 with dim(V ) = n/2 such that
Da′Db′f ≡ 0, for any a′, b′ ∈ V . Let E = V × {(0, 0), (0, 1)} which is a
subspace of Fn+2

2 of dimension n/2 + 1. We then have that

D(a′,a1,a2)D(b′,b1,b2)h ≡ 0,
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for any a′, b′ ∈ V and (a1, a2), (b1, b2) ∈ {(0, 0), (0, 1)}, thus the second-
order derivative of h vanish on E. Hence, h is in M# which contradicts
our assumption that h is outside M#.

Now, we show that f is outside M# implies that h is outside M#.
Assuming f ̸∈ M#, then for any subspace V ⊂ Fn2 with dim(V ) = n/2,
we can always find two vectors a′, b′ such that Da′Db′f ̸≡ 0. Let E ⊂
Fn2 × F2

2 be any subspace with dim(E) = n/2 + 1. There are two cases
to be considered.

1. If dim(E ∩ (Fn2 × {(0, 0)})) ≥ n/2, then we can find two vectors
(a′, 0, 0), (b′, 0, 0) and consequently

D(a′,0,0)D(b′,0,0)h = Da′Db′f ̸≡ 0.

2. If dim(E ∩ (Fn2 × {(0, 0)})) < n/2, then we must have E ∩ ({0n} ×
F2
2) = {0n}×F2

2 since dim(E) = n/2+ 1 (using that dim(E ∩ (Fn2 ×
F2
2)) = n/2 + 1). Here, there are three cases to be considered.

(a) If Da′Db′f ≡ 0 for any two vectors (a′, 0, 0), (b′, 0, 0) ∈ E∩(Fn2×
{(0, 0)}), then we can specify (a1, a2) = (1, 0), (b1, b2) = (1, 1)
so that

D(a1,a2)D(b1,b2)(y1y2) = 1.

Thus,

D(a′,a1,a2)D(b′,b1,b2)h = Da′Db′f ⊕D(a1,a2)D(b1,b2)(y1y2) ≡ 1 ̸= 0.

(b) If Da′Db′f ≡ 1 for any two nonzero vectors (a′, 02), (b
′, 02) ∈

E ∩ (Fn2 ×{02}), then we select (a1, a2) = (1, 0), (b1, b2) = (0, 0)
so that

D(a1,a2)D(b1,b2)y1y2 ≡ 0.

Thus,

D(a′,a1,a2)D(b′,b1,b2)h = Da′Db′f ⊕D(a1,a2)D(b1,b2)(y1y2) ≡ 1 ̸= 0.

(c) If Da′Db′f ̸= const. for two nonzero vectors (a′, 02), (b
′, 02) ∈

E ∩ (Fn2 × {02}), then

D(a′,a1,a2)D(b′,b1,b2)h = Da′Db′f ̸= const.

This concludes the proof.

Corollary 7.2.3. Let n and m be even positive integers and h be a bent
function in Bn. Then, the function f(x, y1, y2, . . . , ym) = h(x)⊕ y1y2 ⊕
· · · ⊕ ym−1ym is outside M# if and only if h is outside M#.
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Now, we investigate another non-trivial selection of bent quadruples (dif-
ferent from f = f1||f1||f1||(1⊕ f1), which satisfy the necessary and suf-
ficient condition f ∗1 ⊕ f ∗2 ⊕ f ∗3 ⊕ f ∗4 = 1. It turns out that the basic
concatenation method of using just two bent functions, where at least
one of them is outside M#, also generates bent functions outside M#.
Using the convention that f(x, 0, 0) = f1(x), f(x, 0, 1) = f2(x),
f(x, 1, 0) = f3(x) and f(x, 1, 1) = f4(x), the ANF of f = f1||f2||f3||f4 is
given by

f(x, y1, y2) = f1(x)⊕y1(f1⊕f3)(x)⊕y2(f1⊕f2)(x)⊕y1y2(f1⊕f2⊕f3⊕f4)(x).
(7.4)

Theorem 7.2.4. Let n = 2m be even and f1, f2 ∈ Bn be two bent
functions. Set f = f1||f1||f2||(f2 ⊕ 1), which by (7.4) gives

f(x, y1, y2) = (1⊕ y1)f1(x)⊕ y1f2(x)⊕ y1y2, x ∈ Fn2 , y1, y2 ∈ F2. (7.5)

If either f1 or f2 are outside M#, then f ∈ Bn+2 is bent and outside
M#.

Proof. Since f ∗1 ⊕ f ∗1 ⊕ f ∗2 ⊕ (f2 ⊕ 1)∗ = 1, then f is bent.
For convenience, we denote a = (a′, a2, a3), b = (b′, b2, b3) ∈ Fn2 ×F2×F2.
Let V be an arbitrary (m + 1)-dimensional subspace of Fn+2

2 . From
Lemma 2.2.4, it is sufficient to show that for an arbitrary (m + 1)-
dimensional subspace V of Fn+2

2 one can always find two vectors a, b ∈ V
such that D(a′,a2,a3)D(b′,b2,b3)f(x, y1, y2) ̸= 0 for some (x, y1, y2) ∈ Fn+2

2 .
We have

D(a′,a2,a3)D(b′,b2,b3)f(x, y1, y2) = (1⊕ y1)Da′Db′f1(x)⊕ y1Da′Db′f2(x)
⊕a2Db′ (f1 ⊕ f2) (x⊕ a′)
⊕b2Da′ (f1 ⊕ f2) (x⊕ b′)⊕ a2b3 ⊕ a3b2.

(7.6)
There are two cases to be considered.

1. Assuming that dim (V ∩ (Fn2 × {(0, 0)})) ≥ m implies the existence
of two vectors a = (a′, a2, a3), b = (b′, b2, b3) ∈ V such that a′ ̸= b′,
a2 = a3 = b2 = b3 = 0, for which Da′Db′f2 ̸≡ 0 if we suppose that
f2 is outside M#. From (7.6), for y1 = 1, we obtain

D(a′,a2,a3)D(b′,b2,b3)f(x, 1, y2) = Da′Db′f2(x) ̸≡ 0.

Thus, we have found a, b ∈ V such that DaDbf(x, 1, y2) ̸= 0, which
also implies that DaDbf(x, y1, y2) ̸= 0.
Now, assume that f1 /∈ M#. Similarly, there will exist two vectors
a = (a′′, a2, a3), b = (b′′, b2, b3) ∈ V such that a′′ ̸= b′′, a2 = a3 =
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b2 = b3 = 0, for which Da′′Db′′f1 ̸≡ 0. Setting y1 = 0 in (7.6), we
obtain

D(a′,a2,a3)D(b′,b2,b3)f(x, 0, y2) = Da′Db′f1(x) ̸≡ 0,

and again we conclude that DaDbf(x, y1, y2) ̸= 0.

2. When dim (V ∩ (Fn2 × {(0, 0)})) < m, we have V ∩ ({0n}×F2
2) = F2

2

since dim
(
V ∩ (Fn2 × F2

2)
)
= m + 1. Furthermore, we can find two

vectors a = (a′, a2, a3), b = (b′, b2, b3) ∈ V such that a′ = 0n, b
′ = 0n,

a2 = 1, b2 = 0, and a3 = 0, b3 = 1. From (7.6), we have

D(0n,1,0)D(0n,0,1)f(x, y1, y2) = 1 ̸= 0. (7.7)

Thus, there is no (m+ 1)-dimensional linear subspace of Fn+2
2 on which

the second-order derivatives of f vanish, i.e., f is outside M#.

Example 7.2.5. Let f1, f2 ∈ B8 be defined by f1(x, y) = x ·
y and f2(x, y) = x · π2(y) ⊕ δ0(x), respectively, where π2 =
(0, 1, 2, 3, 4, 5, 8, 10, 6, 12, 7, 15, 13, 11, 9, 14) is a permutation of F4

2 in in-
teger form and x, y ∈ F4

2. Here, δ0(x) =
∏
(1 ⊕ xi) is the indicator

of the subspace 04 × F4
2. We note that f1 ∈ M# and f2 ∈ D0 \ M#,

where D0 is the class of bent functions introduced by Carlet [17] whose
members are of the same form as f2 above. Let f1 = (f1, f1, f2, f2 ⊕ 1)
and f2 = (f2, f2, f1, f1 ⊕ 1) be defined via (7.5). Using the algorithm in
Section 7.2.1, we have confirmed that f1, f2 ∈ B10 are both bent functions
outside M#.
An iterative design of bent functions outside M# follows easily from
Theorem 7.2.4.
Corollary 7.2.6. Let f1, f2 ∈ Bn be two bent functions such that ei-
ther f1 or f2 is outside M#. Set f

(1)
1 = (f1, f1, f2, f2 ⊕ 1) and f

(1)
2 =

(f2, f2, f1, f1 ⊕ 1). For k ≥ 2 we define

f
(k)
1 = (f

(k−1)
1 , f

(k−1)
1 , f

(k−1)
2 , f

(k−1)
2 ⊕ 1)

and
f
(k)
2 = (f

(k−1)
2 , f

(k−1)
2 , f

(k−1)
1 , f

(k−1)
1 ⊕ 1).

Then, f(k)1 and f
(k)
2 are bent functions in n+ 2k variables outside M#.

7.2.3 Constructing bent 4-decompositions using SC and CD
Using Theorem 7.1.1, we show that bent functions stemming from
M, C,D0 and SC form a bent 4-decomposition. To satisfy the conditions
of Theorem 7.1.1, we note that f1 is defined by f1(x, y) = Trm1 (xy

d) + 1
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instead of Trm1 (xyd), so that the sum f ∗1 +f
∗
2 +f

∗
3 +f

∗
4 equals 1 (otherwise

it would be 0).
Theorem 7.2.7. Let n = 2m, s be a positive divisor of m such that m/s
is odd, and d a positive integer such that d(2s+1) ≡ 1 (mod 2m−1) and
wt(d) ≥ 3. Let f1 : F2m×F2m → F2 be defined by f1(x, y) = Trm1 (xy

d)+1,
and f2, f3 and f4 be defined by (5.16), (5.17) and (5.21), respectively.
Then, f = (f1, . . . , f4) is a bent function in n+ 2 variables.

Proof. Firstly, we note that f ∗1 (x, y) = Trm1 (x
2s+1y)+1, x, y ∈ F2m. From

Propositions 5.4.2, 5.4.1 and 5.4.8 it is easy to compute that f ∗1 (x, y) +
f ∗2 (x, y) + f ∗3 (x, y) + f ∗4 (x, y) = 1 for all x, y ∈ F2m. Thus, by Theorem
7.1.1 it holds that f = (f1, . . . , f4) is a bent 4-decomposition, i.e., it
follows that f is a bent function in n+ 2 variables.

Remark 7.2.8. Explicitly, let f = (f1, f2, f3, f4) be defined as in Theo-
rem 7.1.1, then by [37, Corollary 1], we can write f : F2m×F2m×F22 → F2
as

f(x, y, z1, z2) = f1(x, y) + z1(f1 + f3)(x, y) + z2(f1 + f2)(x, y), (7.8)

for x, y ∈ F2m, z1, z2 ∈ F2 which corresponds to the concatenation f =
f1||f2||f3||f4. Let f1, f2, f3, f4 and f be defined as in Theorem 7.2.7, then
(7.8) evaluates to:

f(x, y, z1, z2) = Trm1 (xy
d) + z11L⊥(x) + z2δ0(x) + z1 + z2 + 1,

for x, y ∈ F2m, z1, z2 ∈ F2.
Moreover, it turns out that bent functions described in Theorem 7.2.7
do not belong to the completed M class. For convenience, we use the
vector space representation below.
Theorem 7.2.9. Let n = 2m be even and f ∈ Bn be given as in Theorem
7.2.7 so that

f(x, y, z1, z2) = ϕ(y) · x⊕z11L⊥(x)⊕z2δ0(x)⊕z1⊕z2⊕1, (7.9)

where x, y ∈ Fm2 , z1, z2 ∈ F2. If c · ϕ has no nonzero linear structures for
any c ∈ Fm2 \ {0m}, then f is outside M#.

Proof. For convenience, we denote a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) ∈
Fm2 ×Fm2 ×Fm2 ×Fm2 . Let V be an arbitrary (m+1)-dimensional subspace
of Fn+2

2 . It is sufficient to show that for an arbitrary (m+1)-dimensional
subspace V of Fn+2

2 one can always find two vectors a, b ∈ V such that
D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, y, z1, z2) ̸= 0 for some (x, y, z1, z2) ∈ Fn+2

2 . We
have

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, y, z1, z2) = Da2Db2(ϕ(y)) · x
⊕ Db2(ϕ(y⊕a2)) · a1⊕Da2(ϕ(y⊕b2)) · b1
⊕ z2Da1Db1δ0(x)⊕z1Da1Db11L⊥(x)⊕T (x),

(7.10)
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where T (x) = a3Db11L⊥(x⊕ a1)⊕ b3Da11L⊥(x⊕ b1)⊕ a4Db1δ0(x⊕ a1)⊕
b4Da1δ0(x⊕ b1). There are three cases to be considered.

1. Let |{x ∈ Fm2 : (x, y, z1, z2) ∈ V }| > 2. We can select two vectors
a, b ∈ V such that a1 ̸= 0m, b1 ̸= 0m and a1 ̸= b1. From (7.10), we
have

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x, y, z1, z2) = z2Da1Db1δ0(x)⊕M(x, y, z1),

where

M(x, y, z1) = Da2Db2(ϕ(y)) · x⊕Db2(ϕ(y⊕a2)) · a1
⊕Da2(ϕ(y⊕b2)) · b1⊕z1Da1Db11L⊥(x)

⊕T (x).

As Da1Db1δ0 ̸≡ 0, it must hold that DaDbf ̸≡ 0.
2. Let |{x ∈ Fm2 : (x, y, z1, z2) ∈ V }| = 2. We select a =

(a1, a2, a3, a4) ∈ V such that a1 ̸= 0m. Since |V | = 2m+1, we can
select b = (b1, b2, b3, b4) ∈ V such that b1 = 0m and b2 ̸= 0m. Notice
that b1 = 0m implies that Da2(ϕ(y⊕b2)) · b1 = 0. From (7.10), we
deduce that

D(a1,0m,0,0)D(0m,b2,0,0)f(x, y, z1, z2)
∣∣∣
x=0m,z1=z2=0

= Db2(ϕ(y)) · a1.

As c ·ϕ has no nonzero linear structures for any c ∈ Fm2 \{0m}, then
Db2ϕ(y) · a1 is not a constant function. Thus, we have found two
elements a, b ∈ V such that DaDbf ̸≡ 0.

3. Let |{x ∈ Fm2 : (x, y, z1, z2) ∈ V }| = 1. We have |{y ∈ Fm2 :
(x, y, z1, z2) ∈ V }| ≥ 2m−1. For any a = (0m, a2, a3, a4) ∈ V such
that a2 ̸= 0m, we have Da2ϕi ̸≡ const., Da2ϕj ̸≡ const. and
Da2(ϕi ⊕ ϕj) ̸≡ const., where 1 ≤ i ̸= j ≤ m and ϕ = (ϕ1, . . . , ϕm),
since c · ϕ has no nonzero linear structure for any c ∈ Fm2 \ {0m}.
Furthermore,

|{b2 ∈ Fm2 : Db2Da2ϕi = Db2Da2ϕj ≡ 0m}| < 2m−1,

since the maximum cardinality

|{b2 ∈ Fm2 : Db2Da2ϕi = Db2Da2ϕj ≡ 0m}| = 2m−2

is attained if both Da2ϕi and Da2ϕj are affine. Hence, we can select
two vectors a, b ∈ V such that Da2Db2ϕ ̸≡ 0m. Since

D(0m,a2,a3,a4)D(0m,b2,b3,b4)f(x, y, z1, z2) = Da2Db2(ϕ(y)) · x,

we conclude that D(a1,a2,a3,a4)D(b1,b2,b3,b4)f ̸≡ 0.



108 7.2. DECOMPOSING BENT FUNCTIONS - DESIGN METHODS

Similarly as in Theorem 7.2.7, we will show that certain functions from
M, C,D and CD can form a bent 4-decomposition.
Theorem 7.2.10. Let n = 2m, s be a positive divisor of m such that
m/s is odd, and d a positive integer such that d(2s+1) ≡ 1 (mod 2m−1)
and wt(d) ≥ 3. Let E2 = F2s, L ⊂ E2 be a subspace of F2m and E1 = E⊥

2 .
Let f1 : F2m ×F2m → F2 be defined by f1(x, y) = Trm1 (xy

d)+1, and f2, f3
and f4 be defined by:

f2(x, y) = Trm1 (xy
d) + 1L⊥(x),

f3(x, y) = Trm1 (xy
d) + 1E1

(x)1E2
(y),

f4(x, y) = Trm1 (xy
d) + 1L⊥(x) + 1E1

(x)1E2
(y).

Then, f = (f1, . . . , f4) is a bent function in n+ 2 variables.

Proof. From Proposition 5.4.2, Theorem 5.4.7 and Theorem 5.4.9, it is
easy to compute that f ∗1 (x, y) + f ∗2 (x, y) + f ∗3 (x, y) + f ∗4 (x, y) = 1 for all
x, y ∈ F2m. Thus, by Theorem 7.1.1, it holds that f = (f1, . . . , f4) is a
bent 4-decomposition, i.e., it follows that f is a bent function in n + 2
variables.

Remark 7.2.11. Let f1, f2, f3, f4 and f be defined as in Theorem 7.2.10,
then (7.8) evaluates to

f(x, y, z1, z2) = Trm1 (xy
d) + z11L⊥(x) + z21E1

(x)1E2
(y) + z1 + z2 + 1,

where x, y ∈ F2m, z1, z2 ∈ F2.

7.2.4 Semi-bent case of 4-decomposition

The construction of disjoint spectra semi-bent functions was treated in
several articles, see [38] and references therein. In terms of the spectral
design method in [38], constructing quadruples of semi-bent functions
on Fn2 (with n even), whose spectra belong to {0,±2

n+2
2 }, with pairwise

disjoint spectra can be easily achieved by specifying suitable Walsh sup-
ports. It has already been observed in [37, 94] that trivial plateaued
functions, having an affine subspace as their Walsh support, essentially
correspond to partially bent functions introduced by Carlet in [16] which
admit linear structures. Nevertheless, the selection of these Walsh sup-
ports as affine subspaces or subsets will be shown to be irrelevant for
the class inclusion of the resulting bent functions, which will be entirely
governed by the bent duals.

Known results on the design methods of plateaued Boolean functions

Before proving the main results of this section, we will give a brief
overview of some known useful results obtained in [38] regarding the
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construction and properties of s-plateaued Boolean functions. For sim-
plicity, we adopt these results for semi-bent functions, thus s = 2, and
employ only the parts relevant for our purposes.
Theorem 7.2.12. [38, Theorem 3.3 (with s = 2)] Let Sf = v ⊕ EM =
{ω0, . . . , ω2n−2−1} ⊂ Fn2 , for some v ∈ Fn2 , M ∈ GL(n,F2) and subset
E = {e0, e1, . . . , e2n−2−1} ⊂ Fn2 , where n is even. For a function g :

Fn−2
2 → F2 such that wt(g) = 2n−3 + 2

n−2
2 −1 or wt(g) = 2n−3 − 2

n−2
2 −1

(having bent weight), let the Walsh spectrum of f on Fn2 be defined (by
identifying xi ∈ Fn−2

2 and ωi ∈ Sf through ei ∈ E using (2.4)) as

Wf(u) =

{
2

n+2
2 (−1)g(xi), for u = v ⊕ eiM ∈ Sf ,

0, u ̸∈ Sf .
(7.11)

Then:
i) f is an 2-plateaued (semi-bent) function if and only if g is at bent

distance to
Φf = {ϕu : Fn−2

2 → F2 : χϕu = ((−1)u·ω0, (−1)u·ω1, . . . , (−1)u·ω2n−2−1),

ωi ∈ Sf , u ∈ Fn2}, (7.12)

where for a subset B ⊂ Bn a function g is said to be at bent distance
to B if for all f ∈ B it holds that dH(f, g) = 2n−1 ± 2n/2−1.

ii) If E ⊂ Fn2 is a linear subspace, then f is semi-bent if and only if g
is a bent function on Fn−2

2 .

Remark 7.2.13. Since |Sf | = 2n−2 and the absolute value of
the Walsh coefficients in Theorem 7.2.12 is 2

n+2
2 , Parseval’s identity∑

u∈Fn
2
Wf(u)

2 = 22n is clearly satisfied. For ease of notation, we will
consider f ∈ Bn+2 and use a dual bent function g ∈ Bn. The Walsh
support Sf ⊂ Fn+2

2 with |Sf | = 2n, can be specified as a binary matrix
of size 2n× (n+2) of the form Sf = (c⊕Fn2M) ≀Tµ1

≀Tµ2
, M ∈ GL(n,F2)

and c ∈ Fn2 . Here, the part c⊕ Fn2M is an affine permutation of Fn2 and
corresponds to the first n columns of Sf ; whereas the last two columns
Tµ1

≀ Tµ2
of Sf are binary truth tables of µ1, µ2 ∈ Bn.

To construct nontrivial semi-bent functions (whose Walsh supports are
subsets), one can employ bent functions in the MM class defined by

g(x, y) = x · ψ(y)⊕ t(y); x, y ∈ Fn/22 , (7.13)

where ψ is an arbitrary permutation on Fn/22 and t ∈ Bn/2 is arbitrary.
We give below a slightly modified version of Theorem 4.2 in [38] since
we are interested in semi-bent functions in even dimensions. Therefore,
we define the Walsh support as Sf = (c ⊕ EM) ≀ Tµ ≀ Tµ rather than
Sf = (c ⊕ EM) ≀ Tµ as originally in [38]. Notice that the use of a
nonlinear function µ : Fn2 → F2 ensures that Sf is not an affine/linear
subspace.
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Theorem 7.2.14. [38, Theorem 4.2] Let g(x, y) = x · ψ(y), x, y ∈ Fn/22 ,
be a bent function, n is even. For an arbitrary matrix M ∈ GL(n,F2)
and vector c ∈ Fn2 , let Sf = (c⊕ EM) ≀ Tµ ≀ Tµ, where E = Fn2 is ordered
lexicographically and µ ∈ Bn, we have:

i) Let E1, E2 be subspaces of Fn/22 such that ψ(E2) = E⊥
1 and define

µ(x, y) = ϕE1
(x)ϕE2

(y), where ϕEi
denotes the characteristic func-

tion of Ei. Then, f : Fn+2
2 → F2, whose Walsh spectrum is specified

by means of (7.11) in Theorem 7.2.12 (with dimension n+2 instead
of n) is a semi-bent function.

ii) Let L be a subspace of Fn2 and define µ(x, y) = ϕL(x). If ψ−1(v+L⊥)
is an affine subspace for all v ∈ Fn2 , then f : Fn+2

2 → F2, whose
Walsh spectrum is specified by means of (7.11) in Theorem 7.2.12
(with dimension n+ 2 instead of n), is a semi-bent function.

Bent functions outside M# using semi-bent functions with suitable duals

By employing the above results, the authors in [38] also proposed a con-
struction method of disjoint spectra plateaued functions, see Theorem
4.4 in [38], and additionally showed that these functions can be effi-
ciently utilized for the construction of bent functions. For the particular
case of specifying four semi-bent functions on Fn+2

2 , by using a bent dual
g ∈ Bn, it is convenient to express Fn+2

2 = V ⊕ Q where for simplicity
V = Fn2 × {(0, 0)} and Q = 0n × F2

2. Notice that the choice of V leads
to the canonical concatenation/decomposition given by (7.4). The main
idea is then to specify disjoint Walsh supports of semi-bent functions fi
on the cosets of V in Fn+2

2 . The reason for selecting Sf(c⊕FMn ) ≀Tt1 ≀Tt2 in
Theorem 7.2.15 as a non-affine subspace is to demonstrate a somewhat
harder design rationale that employs Theorem 7.2.12 i), which requires
that the set Φf is at bent distance to the bent dual g. Again, the use
of a suitable bent dual g ∈ Bn (taken outside M#) is decisive when the
design of bent functions outside M# is considered.
Theorem 7.2.15. Let n be even and g be a bent function in n variables.
For an arbitrary matrix M ∈ GL(n,F2) and vector c ∈ Fn2 , let Sf =
(c⊕Fn2M)≀Tt1 ≀Tt2 ⊂ Fn+2

2 , where t1, t2 ∈ Bn such that g(x, y)⊕v1t1(x, y)⊕
v2t2(x, y) is bent for any v1, v2 ∈ F2, where x, y ∈ Fn/22 . Let Q = {0n} ×
F2
2 = {q00, q01, q10, q11} and set Sfa = qa ⊕ Sf , for qa ∈ Q and a ∈

F2
2. Then, the functions fi ∈ Bn+2, constructed using Theorem 7.2.12

with Sfi and g, are semi-bent functions on Fn+2
2 with pairwise disjoint

spectra. Moreover, if r-ind(g) < n/2 − 2, then the function f ∈ Bn+4,
whose canonical restrictions are f|Fn+2

2 ×{a} := fa, where a ∈ F2
2 (thus

f = f00||f01||f10||f11), is a bent function outside M#.

Proof. Let c ∈ Fn2 and M ∈ GL(n,F2) be arbitrary. Let Sf = (c⊕Fn2M) ≀
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Tt1 ≀ Tt2, where t1, t2 ∈ Bn. The columns of c⊕ Fn2M correspond to affine
functions in n variables, say l1, . . . , ln ∈ An. Thus, by assumption on g,
the function g ⊕ v · (l1, . . . , ln, t1, t2) is bent for any v ∈ Fn+2

2 . Hence, g
is at bent distance to Φf = {ϕv ∈ Bn : Tϕv = (v · ω0, . . . , v · ω2n−1), ωi ∈
Sf , v ∈ Fn+2

2 }. Let Sfa = qa ⊕ Sf , for qa ∈ Q. By Theorem 7.2.12 i),
the functions fa ∈ Bn+2, whose Walsh spectral values at v ∈ Fn+2

2 are
defined by:

Wfa(v) =

{
2

n+4
2 (−1)g(xi,yi), v=(c⊕(xi,yi)·M,t1(xi,yi),t2(xi,yi))⊕qa ∈ Sfa

0, v /∈ Sfa
,

(7.14)
are 2-plateaued (semi-bent) functions, for a ∈ F2

2. Furthermore, we have
∪qa∈Q(qa ⊕ Sf) = Fn+2

2 and the function f = f00||f01||f10||f11 ∈ Bn+4 is
bent by Theorem 7.1.1 ii). It remains to show that f is outside M#. For
convenience, we write u = (α, β, γ, ω) ∈ Fn/22 ×Fn/22 ×F2

2×F2
2. Then, the

Walsh-Hadamard transform of f at u ∈ Fn+4
2 evaluates to:

Wf(u) =
∑

(x,y,z,w)∈(Fn/2
2 )2×(F2

2)
2

(−1)f(x,y,z,w)⊕(x,y,z,w)·u

=
∑
w∈F2

2

∑
(x,y,z)∈(Fn/2

2 )2×F2
2

(−1)fw(x,y,z)⊕(x,y,z)·(α,β,γ)⊕w·ω

=
∑
w∈F2

2

(−1)w·ω
∑

(x,y,z)∈(Fn/2
2 )2×F2

2

(−1)fw(x,y,z)⊕(x,y,z)·(α,β,γ)

=
∑
w∈F2

2

(−1)w·ωWfw(α, β, γ) = (∗).

As ∪q∈Q(q ⊕ Sf) = Fn+2
2 and q ⊕ Sf ∩ q′ ⊕ Sf = ∅ for q ̸= q′, we

have that (α, β, γ) is in exactly one support Sfw for some w ∈ F2
2. We

note that (α, β) = c ⊕ (α′, β′) ·M for some (α′, β′) ∈ Fn/22 × Fn/22 and
γ = (t1(α

′, β′), t2(α
′, β′)) ⊕ aγ for some aγ ∈ F2

2, whose choice depends
on the value of γ. Hence,

(α, β, γ) = (c⊕ (α′, β′) ·M, t1(α
′, β′), t2(α

′, β′))⊕ qaγ .

Thus, we have that

(∗) = 2
n+4
2 · (−1)aγ ·ω⊕g(α

′,β′)

= 2
n+4
2 · (−1)((t1(((α,β)⊕c)·M

−1),t2(((α,β)⊕c)·M−1))⊕γ)·ω⊕g(((α,β)⊕c)·M−1)

which implies that the dual f∗ ∈ Bn+4 of f is defined by

f∗(x, y, z, w) = ((t1(((x, y)⊕ c) ·M−1), t2(((x, y)⊕ c) ·M−1))⊕ z) · w
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⊕ g(((x, y)⊕ c) ·M−1),

for x, y ∈ Fn/22 and z, w ∈ F2
2. Without loss of generality, let us consider

the function

h(x, y, z, w) = f∗((x, y, z, w) ·M ′ ⊕ (c, 02, 02))

= ((t1(x, y), t2(x, y))⊕ z) · w ⊕ g(x, y)

= g(x, y)⊕ z · w ⊕ (t1(x, y), t2(x, y)) · w,

where

M ′ =

(
M O4

O4 I4

)
.

We note that h and f∗ are EA-equivalent functions and thus belong to
the same completed class of bent functions.
Let us now consider the second-order derivative of h. Suppose
that V is some (n + 4)/2-dimensional subspace of Fn+4

2 and let
α = (α(1), α(2), α(3), α(4)), β = (β(1), β(2), β(3), β(4)) ∈ V where
α(1), α(2), β(1), β(2) ∈ Fn/22 , α(3), α(4), β(3), β(4) ∈ F2

2. For easier notation,
we will denote with α12 = (α(1), α(2)) and β12 = (β(1), β(2)). As w is
arbitrary, let w = α4 ⊕ β4. This further implies that

DαDβh(x, y, z, w)|w=α4⊕β4 = Dα12
Dβ12g(x, y)

⊕ α4 · (Dβ12t1(x, y), Dβ12t2(x, y)) (7.15)
⊕ β4 · (Dα12

t1(x, y), Dα12
t2(x, y))

⊕ α(3) · β(3) ⊕ α(4) · β(4).

First, we note that dim({(x, y) ∈ Fn/22 × Fn/22 : (x, y, z, w) ∈ V }) ≥
n/2− 2. If

α4 · (Dβ12t1(x, y), Dβ12t2(x, y))

⊕ β4 · (Dα12
t1(x, y), Dα12

t2(x, y)) (7.16)

⊕ α(3) · β(3) ⊕ α(4) · β(4) = const.,

then, from (7.15),

DαDβh(x, y, z, w)|w=α4⊕β4 ̸= 0

as r-ind(g) < n/2 − 2. On the other hand, if the sum in (7.16) is non-
constant, then again from (7.15), we must have

DαDβh(x, y, z, w)|w=α4⊕β4 ̸= 0.

Thus h /∈ M#, which implies that f∗ /∈ M#. By Remark 7.2.1, it means
that f is outside M#.
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Since g ∈ Bn is supposed to be a bent function outside M#, we can
employ the class D0 of Carlet [17] or certain families of bent functions
in C and D that are provably outside M# [45, 88, 89]. Alternatively
g can be taken from the recent classes SC and CD [5, 7], which are
specified in Corollary 7.2.16 below. Notice that the subspaces L,E1, E2
used to define g in Corollary 7.2.16 below, satisfy certain conditions
with respect to the permutation π, see [17, 89, 88]. However, there
exist efficient design methods for specifying bent functions in the above
classes that are provably outside M# [5, 7, 45, 88, 89]. On the other
hand, for t1, t2 ∈ Bn we use certain indicators that preserve the bentness
of g(x, y) ⊕ v1t1(x, y) ⊕ v2t2(x, y). The results are summarised in the
following corollary, where we denote δ0(x) =

∏n/2
i=1(xi ⊕ 1) which is the

indicator function of the subspace 0n/2 × Fn/22 .

Corollary 7.2.16. With the same notation as in Theorem 7.2.15, if a
bent function g ∈ Bn with r-ind(g) < n/2− 2 and t1, t2 ∈ Bn are defined
by:

i) g(x, y) = x · π(y) ⊕ δ0(x) ∈ D0 \ M#, t1(x, y) = t2(x, y) =

δ0(x), x, y ∈ Fn/22 ,

ii) g(x, y) = x ·π(y)⊕1L⊥(x) ∈ C \M#, t1, t2 correspond to 1L⊥(x) or
δ0(x), x, y ∈ Fn/22 ,

iii) g(x, y) = x · π(y)⊕ 1L⊥(x)⊕ δ0(x) ∈ SC \M#, t1, t2 correspond to
1L⊥(x) or δ0(x), x, y ∈ Fn/22 , or

iv) g(x, y) = x · π(y) ⊕ 1L⊥(x) ⊕ 1E1
(x)1E2

(y) ∈ CD \M#, t1(x, y) =

t2(x, y) = 1L⊥(x), x, y ∈ Fn/22 ,

then f ∈ Bn+4 is a bent function outside M#.

In the following example, we take g ∈ D0\M# in 8 variables to construct
a bent function in 12 variables outside M# by means of Theorem 7.2.15.
The result was also confirmed using our algorithm in Section 7.2.1.

Example 7.2.17. Let g(x, y) = x · π(y) ⊕ δ0(x), x, y ∈
F4
2, be a bent function in D0 (outside M#), where π =

(0, 1, 11, 13, 9, 14, 6, 7, 12, 5, 8, 3, 15, 2, 4, 10) is a permutation of F4
2 rep-

resented in integer form. We note that r-ind(g) = 1. Let c ∈ F8
2 and
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M ∈ GL(8,F2) be arbitrary, say,

c = (0, 0, 1, 0, 1, 1, 1, 1), M =



0 0 0 1 0 0 1 1
1 1 1 1 1 1 0 1
0 1 1 1 0 1 0 1
1 1 0 1 1 1 1 1
0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 0 1 1 1 0 0


.

Let Sf = (c⊕F8
2 ·M) ≀Tδ0 ≀Tδ0, where Tδ0 is the truth table of the function

δ0(x) viewed as a function on F8
2. That is, δ0(x, y) = δ0(x) ∈ B8. Then,

fi ∈ B10 defined via Sfi and g, using Theorem 7.2.12, are pairwise disjoint
spectra functions, where Sfi = Sf ⊕ qi and qi ∈ Q = {08} × F2

2. In other
words, f = (f0, f1, f2, f3) ∈ B12 is a bent function and can be viewed
as a concatenation of four semi-bent functions. Furthermore, using our
algorithm in Section 7.2.1, we have confirmed that f lies outside M#.
The ANF of f is given by (9.4) in Appendix.
The following remarks are important with respect to the cardinality
of bent functions outside M# or the presence linear structures of the
constituent semi-bent functions.
Remark 7.2.18. Notice that the number of possibilities of selecting Sfi
(which is a binary matrix of size 2n× (n+2)) is quite large. We have 2n

possible choices for c ∈ Fn2 and
∏n

k=0(2
n−2k) choices for M ∈ GL(n,F2).

Thus, for fixed Boolean functions t1, t2 ∈ Bn, we have 2n
∏n

k=0(2
n − 2k)

choices for Sf . For example, for n = 8 this number equals ≈ 270.2.
Remark 7.2.19. The existence of linear structures in the semi-bent
functions fi, used in Theorem 7.2.15 to specify f, is of no importance
when determining whether f ̸∈ M#. We have confirmed this, using our
algorithm from Section 7.2.1, by verifying that the resulting bent func-
tions are always outside M# provided that the bent function g used to
define the dual of fi (by means of (7.14)) is outside M#. It is completely
irrelevant whether these semi-bent functions possess linear structures
(having affine supports Sfi) or not.

7.2.5 Four bent decomposition in terms of 5-valued spectra
functions

To specify 5-valued spectra Boolean functions, the authors in [39] pro-
vided a sufficient and necessary condition that the Walsh spectra of
fi (corresponding to two different amplitudes) must satisfy, see Section
7.1.1. The notion of totally disjoint spectra functions was also intro-
duced in [39], which can be regarded as a sufficient condition so that
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the Walsh spectrum specified by (7.1) is a valid spectrum of a Boolean
function.

Definition 7.2.20. [39, Definition 4.1] For two disjoint sets S [1]
f , S

[2]
f ⊂

Fn2 , with #S
[1]
f +#S

[2]
f = 2λ1 + 2λ2 < 2n, we say that the dual functions

f ∗[1] : S
[1]
f → F2 and f ∗[2] : S

[2]
f → F2 (in terms of (7.1)) are totally disjoint

spectra functions if it holds that

X1(u)X2(u) = 0 and |X1(u)|+ |X2(u)| > 0,

for all u ∈ Fn2 , where Xi(u) =
∑

ω∈S[i]
f
(−1)f

∗
[i](ω)⊕u·ω, for i = 1, 2.

Remark 7.2.21. Note that the second condition implies the nonexis-
tence of a vector u ∈ Fn2 for which X1(u) = X2(u) = 0. Without this con-
dition, the notion of totally disjoint spectra coincides with non-overlap
disjoint spectra functions in [84].
Furthermore, a generic method of specifying totally disjoint spectra func-
tions was also given in [39].
Construction 7.2.22. [39] Let n, m and k be even with n = m + k.
Let h ∈ Bm and g ∈ Bk be two bent functions. Let H be any subspace
of Fm2 of co-dimension 1, and let H = Fm2 \H. Let also E1 = Fk2 ×H and
E2 = {0k} ×H. The Walsh spectrum of f ∈ Bn, with (α, β) ∈ Fk2 × Fm2 ,
can be constructed as follows:

Wf(α, β) =


(−1)g(α)⊕h(β) · 2n/2, (α, β) ∈ E1

(−1)h(β) · 2m/2+k, (α, β) ∈ E2

0, otherwise.

(7.17)

Then, Wf is a valid spectrum of a Boolean function f ∈ Bn. Let now

f1(α, β) = g(α)⊕ h(β), (α, β) ∈ E1

f2(α, β) = h(β), (α, β) ∈ E2.

Then, f1 : E1 → F2 and f2 : E2 → F2 are totally disjoint spectra
functions.
Remark 7.2.23. Notice that the sets E1 and E2 in Construction 7.2.22
can be defined similarly using any element v ∈ Fk2 instead of 0k, so that
E2 = {v} × H and E1 = Fk2 × H remains the same. Then, E1 and E2
are clearly disjoint.
Now, we need to specify a quadruple of 5-valued spectra functions in
Bn−2 by means of Construction 7.2.22, which additionally satisfies the
condition given by item iii) of Theorem 7.1.1. More precisely:

a The sets S [1]
fi

= {ϑ ∈ Fn−2
2 : |Wfi(ϑ)| = 2

n
2 } (i ∈ [1, 4]) are pairwise

disjoint;
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b All S [2]
fi

= {ϑ ∈ Fn−2
2 : |Wfi(ϑ)| = 2

n−2
2 } are equal (i ∈ [1, 4]), and

for f ∗[2],i : S
[2]
fi

→ F2 it holds that f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1.

When k = 2, Construction 7.2.22 can generate suitable quadruples of
5-valued spectra functions (which are individually totally disjoint spec-
tra functions) as shown below. Notice that the subspaces S [1]

fi
will

correspond to E(i)
2 and S [2]

fi
to E(i)

1 in Theorem 7.2.24.

Theorem 7.2.24. Let n = m + 2 be even so that m is also even. Let
h ∈ Bm and g ∈ Bk = B2 be two bent functions. Let H be any subspace
of Fm2 of co-dimension 1, and let H = Fm2 \H. Let also E

(i)
1 = F2

2 × H

and E
(i)
2 = {c(i)} × H, for i = 1, . . . , 4, where c(i) ∈ F2

2 are ordered
lexicographically so that c(i) ̸= c(j) for 1 ≤ i ̸= j ≤ 4. We specify the
spectra of fi ∈ Bn as follows:

Wfi(α, β) =


(−1)g(α)⊕h(β)⊕d · 2n/2, (α, β) ∈ E

(i)
1

(−1)h(β) · 2n−2
2 +2, (α, β) ∈ E

(i)
2

0, otherwise,

(7.18)

where d = 1 if i = 4, otherwise d = 0. Then, the function f ∈ Bn+2
given as the concatenation f = f1||f2||f3||f4 is a bent function.

Proof. The functions fi ∈ Bn, specified by (7.18), are clearly 5-valued
spectra functions. We need to verify that their spectra corresponds to
Boolean functions. By Construction 7.2.22, corresponding to the defi-
nition of E(1)

1 and E(1)
2 using c(1) = (0, 0), this is true for f1. Due to the

definition of E(i)
1 and E(i)

2 and Remark 7.2.23, the same is true for any fi
which are all Boolean 5-valued spectra functions. For instance, using
c(2) = (0, 1) to define f2, the condition that E(1)

1 = E
(2)
1 is clearly true

and furthermore (0, 0)×H ∩ (0, 1)×H = ∅, that is E(1)
2 ∩ E(2)

2 = ∅.
Now, the condition for a valid 4-decomposition into 5-valued spectra
functions is given by iii) in Theorem 7.1.1. The supports E(i)

2 are clearly
disjoint by their definition, whereas E(i)

1 are defined on the same subspace
of Fn2 . The last condition that the bent duals defined on E

(i)
1 satisfy

f ∗[2],1⊕f ∗[2],2⊕f ∗[2],3⊕f ∗[2],4 = 1 follows from the specification of the spectra

on E(i)
1 , using the fact that d = 1 only when i = 4.

Remark 7.2.25. Since d = 1 when i = 4, the complement of the dual is
used for the fourth constituent function f4. This ensures that the bent
duals satisfy f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1. Nevertheless, this is not the
only choice and the bent duals can be specified in other ways (through
the complement operation) as long as their sum equals 1.
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The following examples illustrate the details of this construction and the
possibility of getting bent functions outside M#. Notice that the dual
h used to specify f is not necessarily in M#.
Example 7.2.26. Let n = 8 and let h ∈ B6, g ∈ B2 be defined by
h(x0, . . . , x5) = x0x1⊕x2x3⊕x4x5 ∈ M and g(x0, x1) = x0x1. Using the
mathematical software Sage, we constructed the functions f (i) ∈ B8 for
i = 1, . . . , 4 defined by (7.18) and their ANF’s are given as follows:

f1(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x6x7,

f2(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x6 ⊕ x6x7,

f3(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x7 ⊕ x6x7,

f4(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x6 ⊕ x4x7 ⊕ x4

⊕ x6x7 ⊕ 1

Then, the function f ∈ B10 given as the concatenation f = f1||f2||f3||f4
is a cubic bent function defined by f(x0, . . . , x9) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕
x4x6x7 ⊕ x4x6x8 ⊕ x4x7x9 ⊕ x4x8x9 ⊕ x6x7 ⊕ x8x9. Using our algorithm
in Section 7.2.1, we could verify that f ∈ M#.
On the other hand, the following two examples illustrate that selecting
the dual h to be outside M#, the resulting bent functions (constructed
using Theorem 7.2.24) are outside M#.

Example 7.2.27. Let h ∈ B8 defined by h(x, y) = Tr41(xy
7) +

δ0(x), x, y ∈ F24, be a bent function in the class D0 \ M# [17, 88],
and let g ∈ B2 be defined by g(x0, x1) = x0x1. Using Sage we con-
structed the functions fi ∈ B10 for i = 1, . . . , 4 defined by (7.18). Then,
the function f ∈ B12 given as f = f1||f2||f3||f4 is a bent function of
algebraic degree 5. This time the function f , whose ANF is given by
(9.2) in the appendix, is outside M#.
Example 7.2.28. Let n = 10 and h ∈ B8, g ∈ B2 be bent functions,
where g(x0, x1) = x0x1. The function h ∈ B8, whose ANF is given by
(9.1) in Appendix, lies in PS# and is outside M#. Using Sage, we
constructed the functions fi ∈ B10 for i = 1, . . . , 4 defined by (7.18).
Then, the function f ∈ B12 given as f = f1||f2||f3||f4 is a bent function
of algebraic degree 5. Again, it could be confirmed that f is outside M#

(its ANF is given by (9.3) in Appendix).
The above examples indicate that the conclusions (related to the dual)
given in Section 7.2.2 seem to be applicable in this case as well. More
precisely, the class belongingness of f in Theorem 7.2.24 is strongly re-
lated to the choice of the dual bent functions.
Theorem 7.2.29. Let f ∈ Bn+2 be constructed by means of Theorem
7.2.24, thus f = f1||f2||f3||f4 where fi ∈ Bn. If the dual bent function
h ∈ Bn−2 in Theorem 7.2.24 is outside M#, then f is outside M#.
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Proof. By Remark 7.2.1, f is outside M# if and only if its dual f ∗
is outside M#. Hence, it is enough to show that f ∗ is outside M#.
The “duals” of the restrictions fi are actually given by (7.18). By the
definition of f ∗, we have that (−1)f

∗(u) = 2−
n+2
2 Wf(u) for any u ∈ Fn+2

2 ,
since f ∈ Bn+2. For convenience, we write u = (α, β, γ) ∈ F2

2 × Fm2 × F2
2

with n = m + 2 as used in Theorem 7.2.24. We notice that in general,
using that x = (x′, xn+1, xn+2) ∈ Fn2 × F2 × F2, we have

Wf(α, β, γ)

=
∑

x∈Fn
2×F2

2

(−1)f(x)+u·x

=
∑

x∈Fn
2×(0,0)

(−1)f(x
′,0,0)+(α,β)·x′ +

∑
x∈Fn

2×(0,1)

(−1)f(x
′,0,1)+(α,β)·x′+γ2

+
∑

x∈Fn
2×(1,0)

(−1)f(x
′,1,0)+(α,β)·x′+γ1 +

∑
x∈Fn

2×(1,1)

(−1)f(x
′,1,1)+(α,β)·x′+γ1+γ2

= Wf1(α, β) + (−1)γ2Wf2(α, β) + (−1)γ1Wf3(α, β) + (−1)γ1+γ2Wf4(α, β)

. (7.19)

Hence, for any fixed γ ∈ F2
2, we can compute the value of Wf(α, β, γ) by

using the Walsh spectra of the constituent functions fi.

We first notice that Wfi(α, β) = (−1)h(β) · 2n−2
2 +2 when (α, β) ∈ E

(i)
2 ,

and furthermore by construction the sets E(i)
2 are mutually disjoint for

i = 1, . . . , 4. Hence, if for instance (α, β) ∈ E
(1)
2 then Wf1(α, β) =

(−1)h(β) · 2n−2
2 +2 and Wfi(α, β) = 0 for 2 ≤ i ≤ 4, which implies that

Wf(α, β, γ) = (−1)h(β) · 2n
2+1 when (α, β) ∈ E

(1)
2 . The other cases when

(α, β) ∈ E
(i)
2 for i ̸= 1 are similar.

Now, considering the case (α, β) ∈ E
(i)
1 , we first notice that E1 := E

(1)
1 =

· · · = E
(4)
1 (by construction), where E1 = F2

2×H as in Theorem 7.2.24. In
addition, Wfi(α, β) = (−1)g(α)⊕h(β)+d ·2n/2, where d = 1 when i = 4 only.
This also implies that Wf1(α, β) = Wf2(α, β) = Wf3(α, β) = −Wf4(α, β)
when (α, β) ∈ E1. Therefore, using (7.19), we have

Wf(α, β, 0, 0) = Wf1(α, β) +Wf2(α, β) +Wf3(α, β)−Wf4(α, β)

= 2Wf1(α, β)

Wf(α, β, 0, 1) = Wf1(α, β)−Wf2(α, β) +Wf3(α, β) +Wf4(α, β)

= 2Wf1(α, β)

Wf(α, β, 1, 0) = Wf1(α, β) +Wf2(α, β)−Wf3(α, β) +Wf4(α, β)

= 2Wf1(α, β)

Wf(α, β, 1, 1) = Wf1(α, β)−Wf2(α, β)−Wf3(α, β)−Wf4(α, β)
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= −2Wf1(α, β).

Hence, Wf(α, β, γ1, γ2) = 2 · 2n/2(−1)g(α)⊕h(β)+γ1γ2 when (α, β) ∈ E1,
where g(α)⊕ h(β) + γ1γ2 falls into the framework of Theorem 7.2.2 and
additionally Remark 7.2.1 applies. Notice that the case (α, β) ̸∈ E1 and
at the same time having Wfi(α, β) = 0 is already covered above since
then (α, β) ∈ E

(j)
2 for some j ̸= i. This is a consequence of the fact that

E1 ∪ (∪4
i=1E

(i)
2 ) = Fn2 .

To summarize, the dual f ∗ is equal to g(α) ⊕ h(β) + γ1γ2 when f ∗ is
restricted to the subspace (α, β, γ) ∈ E1 × F2

2 and to h(β) when f ∗ is
restricted to the complement of E1 × F2

2. Notice that g is a 2-variable
quadratic bent function, thus g(α1, α2) = α1α2. Therefore, using the
assumption that h ̸∈ M#, Remark 7.2.1 and Corollary 7.2.3 imply that
f ∗ ̸∈ M# and hence f ̸∈ M#.

Remark 7.2.30. The condition on the dual bent function h ∈ Bn−2 is
strictly sufficient and not necessary. There exist bent functions {f} in
eight variables, represented as f = f1||f2||f3||f4 where fi are 5-valued
spectra functions, that are outside M#. Since in this case the dual bent
function h is defined on F4

2 it apparently belongs to M.

7.3 5-valued spectra functions from the generalized
M class

Another method of specifying 5-valued spectra functions, also given in
[39], uses the generalized Maiorana-McFarland class (GMM) of Boolean
functions. For convenience and ease of notation, we use the variable
set x0, . . . , xn−1 instead of x1, . . . , xn for functions on Fn2 .
Theorem 7.3.1. [39] Let E0 ⊂ Fs2 with 1 ≤ s ≤ ⌊n/2⌋. Let E1 =
E0 × Ft2, where E0 = Fs2\E0 and 0 ≤ t ≤ ⌊n/2⌋. Let ϕ0 be an injective
mapping from E0 to Fn−s2 , and ϕ1 be an injective mapping from E1 to
Fn−s−t2 . Let X = (x0, . . . , xn−1) ∈ Fn2 and X(i,j) = (xi, . . . , xj) ∈ Fj−i+1

2 .
Let f ∈ Bn be defined as follows:

f(X) =

{
ϕ0(X(0,s−1)) ·X(s,n−1), if X(0,s−1) ∈ E0

ϕ1(X(0,s+t−1)) ·X(s+t,n−1), if X(0,s+t−1) ∈ E1.

Let
T0 = {ϕ0(η) | η ∈ E0},

and
T1 = {ϕ1(θ) | θ ∈ E1}.

Then, we have
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a) Wf(ω) ∈ {0,±2n−s,±2n−s−t} if t ̸= 0 and T0 ⊂ Ft2 × T1, where
T1 = Fn−s−t2 \T1;

b) Wf(ω) ∈ {0,±2n−s,±2n−s+1} if t = 0, T0 ∩ T1 ̸= ∅ and T0 ̸= T1.
Example 7.3.2. Let n = 8, s = 3 and t = 1. Now, we employ Theorem
7.3.1 to construct 5-valued spectra functions f (1), . . . , f (4) that satisfy
Theorem 7.1.1. The resulting function f = f (1)||f (2)||f (3)||f (4) ∈ B10

is then bent. Let Fn2 = {v(n)0 , . . . , v
(n)
2n−1} denote the lexicographically

ordered n-dimensional vector space over F2. Furthermore, we note that
all sets defined below are also lexicographically ordered. We define E0 =

{e(0)0 , e
(0)
1 , e

(0)
2 }, where e

(0)
i = v

(3)
i ∈ F3

2 for i = 0, 1, 2, and E1 = E0×F2 =

{e(1)0 , e
(1)
1 , . . . , e

(1)
9 } ⊂ F4

2, where E0 = F3
2 \ E0. Let ϕ1 : E1 → F4

2 be
defined by

ϕ1(e
(1)
i ) = v

(4)
i ,

for i = 0, . . . , 9 Let T1 = {ϕ1(θ) : θ ∈ E1} and T1 = F4
2 \ T1, where

clearly |T1| = 6. Let Γ = F2 × T1 = {γ0, . . . , γ11} ⊂ F2 × F4
2 = F5

2 and let
ϕ
(j)
0 : E0 → F5

2 be defined by

ϕ
(j)
0 (e

(0)
i ) = γi+3j, e

(0)
i ∈ E0,

for j = 1, . . . , 4.

If T (j)
0 = {ϕ(j)0 (η) : η ∈ E0}, then T (j)

0 ⊂ F2×T1 (as required in Theorem
7.3.1-(a)), for j = 1, . . . , 4. Now let X = (x0, . . . , x7) ∈ F8

2 and X(i,j) =

(xi, . . . , xj) ∈ Fj−i+1
2 . For j = 1, 2, 3, 4, f (j) ∈ B8 is defined as follows:

f (j)(X) =

{
ϕ
(j)
0 (X(0,2)) ·X(3,7) + δ1(j), if X(0,2) ∈ E0

ϕ1(X(0,3)) ·X(4,7) + δ1(j), if X(0,3) ∈ E1,

where δ1(j) = 1 for j = 1 and 0 otherwise. Let S(j)
1 = {x ∈ F8

2 :

|Wf (j)(x)| = 25} and S
(j)
2 = {x ∈ F8

2 : |Wf (j)(x)| = 24}. Using Sage
we could verify that all S(j)

1 are pairwise disjoint and all S(j)
2 are equal.

Furthermore, by the construction, f ∗[2],1 ⊕ . . . ⊕ f ∗[2],4 = 1. Hence, by
Theorem 7.1.1, the function f = f (1)||f (2)||f (3)||f (4) ∈ B10 of algebraic
degree 5 is bent, and its ANF is defined by:

f(x0, . . . , x9) = x0x1x2x3x4 ⊕ x0x1x2x3x9 ⊕ x0x1x2x4x8 ⊕ x0x1x2x4 ⊕
x0x1x2x6⊕x0x1x3x4⊕x0x1x3x9⊕x0x1x4x8⊕x0x1x4⊕x0x1x6⊕x0x1x7⊕
x0x2x4⊕x0x2x5x8⊕x0x2x5⊕x0x2x6⊕x0x4⊕x0x5x8⊕x1x2x5⊕x1x2x6x8⊕
x1x5 ⊕ x1x6x8 ⊕ x1x6 ⊕ x2x3x4 ⊕ x2x3x9 ⊕ x2x4x8 ⊕ x2x5x8 ⊕ x2x6x8 ⊕
x2x7 ⊕ x3x9 ⊕ x4x8 ⊕ x5x8 ⊕ x5 ⊕ x6x8 ⊕ x7 ⊕ x8x9 ⊕ x8 ⊕ x9 ⊕ 1.

Nevertheless, using our algorithm in Section 7.2.1 implemented in Sage,
we could confirm that f ∈ M#.
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As a generalization of the previous example, we give the following result.
We assume that all sets are ordered lexicographically and we denote
Fn2 = {v(n)0 , v

(n)
1 , . . . , v

(n)
2n−1}.

Remark 7.3.3. We assume that all sets defined in Theorem 7.3.4 are
ordered lexicographically, and with Fk2 = {v(k)0 , v

(k)
1 , . . . , v

(k)

2k−1
} (for suit-

able k) we will denote the elements of the lexicographically ordered k-
dimensional vector space over F2.

Theorem 7.3.4. Let n = 2m ≥ 8, E0 = {e(0)0 , . . . , e
(0)
τ−1} ⊂ Fm−1

2 where
τ < 2s − 1 and 4τ ≤ 2m+1, and E1 = E0 × F2 = {e(1)0 , . . . , e

(1)
λ }⊂ Fm2 ,

where λ = 2 · (2m−1 − τ)− 1 and E0 = Fm−1
2 \ E0. Let ϕ1 : E1 → Fm2 be

an injective mapping defined by

ϕ1(e
(1)
i ) = v

(m)
i , e

(1)
i ∈ E1,

for i = 0, 1, . . . , λ, whose image set is denoted by T1 = {ϕ1(θ) : θ ∈ E1}.
Now, denoting Γ = F2 × (Fm2 \ T1) = {γ0, γ1, . . . , γ4τ−1}, let ϕ(j)0 : E0 →
Γ ⊂ Fm+1

2 , for j = 1, . . . , 4, be injective mappings defined by

ϕ
(j)
0 (e

(0)
i ) = γi+τ(j−1), e

(0)
i ∈ E0.

Let X = (x0, . . . , xn−1) ∈ Fn2 and X(i,j) = (xi, . . . , xj) ∈ Fj−i+1
2 . For

j = 1, . . . , 4, f (j) ∈ Bn is defined as follows:

f (j)(X) = δ1(j)⊕

{
ϕ
(j)
0 (X(0,m−2)) ·X(m−1,n−1), if X(0,m−2) ∈ E0

ϕ1(X(0,m−1)) ·X(m,n−1), if X(0,m−1) ∈ E1,

where δ1(j) = 1 for j = 1 and 0 otherwise. Then, the function f ∈ Bn+2

given as the concatenation f = f (1)||f (2)||f (3)||f (4) is a bent function.

Proof. Firstly, we note that Wf (j)(x) ∈ {0,±2m,±2m+1} by Theorem
7.3.1, for j = 1, . . . , 4 ( with s = m − 1 and t = 1). It remains to show
that these functions satisfy the conditions of Theorem 7.1.1-(iii).

Let S
[1]

f (j)
= {x ∈ Fn2 : |Wf (j)(x)| = 2m+1} and S

[2]

f (j)
= {x ∈ Fn2 :

|Wf (j)(x)| = 2m}, for j = 1, . . . , 4. The cardinality of Γ can be com-
puted as

|Γ| = 2 · |Fm2 \ T1| = 2(2m − |E1|) = 2 · (2m − 2(2m−1 − τ))

= 2m+1 − 2m+1 + 4τ = 4τ.

Because |Γ| = 4τ ≤ 2m+1 and |ϕ(j)0 (E0)| = τ , it is easy to see that
ϕ
(j)
0 splits Γ into 4 disjoint subsets, that is, Γ =

⋃4
j=1 ϕ

(j)
0 (E0) and
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ϕ
(j)
0 (E0) ∩ ϕ

(j′)
0 (E0) = ∅ for j ̸= j′. Consequently, the sets S [1]

f (j)
are

pairwise disjoint for j = 1, . . . , 4. As the function ϕ1 is the same for
all f (j), it follows that all sets S [2]

f (j)
are equal. The condition that the

bent duals defined on S [2]

f (j)
satisfy f ∗[2],1 ⊕ f ∗[2],2 ⊕ f ∗[2],3 ⊕ f ∗[2],4 = 1, follows

from the fact that δ1(j) = 1 only for j = 1. This follows from the fact
that |Wf(x)| = 2m is determined by the value of ϕ1(X(0,m−1)) ·X(m,n−1)

(cf. proof of [39, Theorem V.6]) and consequently the values of f ∗[2],j are
the same except for j = 1, where we additionally add the constant 1.
Thus, the conditions given in item iii) of Theorem 7.1.1 are satisfied and
f = f (1)||f (2)||f (3)||f (4) ∈ Bn+2 is a bent function.

Remark 7.3.5. The above statement also holds if E0 is a collection of
arbitrary τ elements in Fm−1

2 . However, (partial) computer simulations
indicate that this approach only generates bent functions inside the M#

class, regardless of the choice of E0.
Open problem 7.3.6. Prove or disprove that the bent functions con-
structed using Theorem 7.3.4 always belong to M# regardless of the
choice of E0.



Chapter 8

Applications of the indirect sum in
the design of several special classes
of bent functions outside M#

Two well-known secondary constructions of bent functions are the direct
and indirect sum methods. We show that the direct sum, under more
relaxed conditions compared to those in [71], can generate bent functions
provably outside the completed Maiorana-McFarland class (M#). We
also show that the indirect sum method, though imposing certain condi-
tions on the initial bent functions, can be employed in the design of bent
functions outside M#. Furthermore, applying this method to suitably
chosen bent functions we construct several generic classes of homoge-
nous cubic bent functions (considered as a difficult problem) that might
posses additional properties (namely without affine derivatives and/or
outside M#). Our results significantly improve upon the best known in-
stances of this type of bent functions given by Polujan and Pott [71], and
additionally we solve an open problem in [71, Open Problem 5.1]. More
precisely, we show that one class of our homogenous cubic bent func-
tions is non-decomposable (inseparable) so that h under a non-singular
transform B cannot be represented as h(xB) = f(y)⊕ g(z). Finally, we
provide a generic class of vectorial bent functions strongly outside M#

of relatively large output dimensions, which is generally considered as a
difficult task.

8.1 Direct and indirect sum methods

The direct sum method is probably one of the best known design ra-
tionales when constructing new bent functions form the known ones.
Namely, provided that both f and g are bent functions on Fn2 and
on Fm2 (both n and m are even), respectively, the function h(x, y) =
f(x) ⊕ g(y) is also bent on Fn+m2 . A special case of this approach
arises when g is a quadratic bent function given in a canonical form

123
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g(y) = y1y2 ⊕ · · · ⊕ ym−1ym, which was recently considered in [65]. It
was shown that in this particular case h is outside M# if and only if f
is outside M#. This motivates us to investigate other choices of g (not
only quadratic canonical ones) in this context.

8.1.1 Specifying sufficient conditions for the direct sum
method

In this section, we consider the conditions under which h(x, y) = f(x)⊕
g(y) is outside M#. Special cases of the direct sum constructions have
been also addressed in Chapter 6 (cf. Theorem 7.2.2 and Corollary
7.2.3). Before we provide a more general statement of the above result,
we provide an important observation useful in the analysis of the direct
and indirect sum methods.
Proposition 8.1.1. Let n be an even positive integer, and let E be a
vector subspace of Fn2 with dim(E) ≥ n/2 + 1. Then, for every bent
function f ∈ Bn and for every x0 ∈ Fn2 there are a, b ∈ E such that

DaDbf(x)|x=x0 ̸= 0.

Proof. Assume that there is a bent function f : Fn2 → F2 and x0 ∈ Fn2
such that DaDbf(x0) = 0, for every a, b ∈ E. We can assume that
x0 = 0 (otherwise we can take f ′(x) = f(x ⊕ x0)), and that f(0) = 0
(otherwise we can take f ⊕ 1). Then, from DaDbf(0) = 0 we have
f(0) ⊕ f(a) = f(b) ⊕ f(a ⊕ b), i.e. f(a ⊕ b) = f(a) ⊕ f(b) for every
a, b ∈ E. This means that f is linear on E and so there is a linear
function L : Fn2 → F2 that agrees with f on E. To see this, take a
basis e1, . . . , ek of E, extend it to a basis e1, . . . , en on Fn2 , and define L
as L(

∑n
i=1wiei) =

∑k
i=1wif(ei), for every w1, . . . , wn ∈ F2. Then, L is

linear and agrees with f on E. Let l ∈ Fn2 be such that L(x) = l · x, for
every x ∈ Fn2 . Then, f(x) ⊕ l · x = 0 for every x ∈ E. By the Poisson
summation formula [19, Corollary 1] we have:∑

u∈v⊕E⊥

(−1)w·uφ̂(u) = |E⊥|(−1)w·v
∑

x∈w⊕E

(−1)v·xφ(x),

for any pseudo-Boolean function φ on Fn2 where φ̂(u) =∑
x∈Fn

2
φ(x)(−1)u·x denotes the Fourier transform of φ at point u ∈ Fn2 .

Setting w = 0, v = l, φ = (−1)f , and denoting by f ∗ the dual of f , we
get:

1

|E⊥|
∑

u∈l⊕E⊥

2n/2(−1)f
∗(u) =

∑
x∈E

(−1)f(x)⊕l·x =
∑
x∈E

(−1)0 = 2dim(E).

But
∑

u∈l⊕E⊥(−1)f
∗(u) ≤ |E⊥|, so we have 2dim(E) ≤ 2n/2, and this is a

contradiction because dim(E) ≥ n/2 + 1.
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We also recall a useful concept of relaxed M-subspaces introduced by
Polujan and Pott [71].
Definition 8.1.2. [71] A vector subspace U ⊆ Fn2 is called a relaxed M-
subspace of a Boolean function f ∈ Bn, if for all a, b ∈ U the second order
derivatives DaDbf are either constant zero or constant one functions.
i.e., DaDbf = 0 or DaDbf = 1. We denote by RMSr(f) the collection
of all r-dimensional relaxed M-subspaces of a Boolean function f and
by RMS(f) the collection

RMS(f) :=
n⋃
r=1

RMSr(f).

Definition 8.1.3. [71] For a Boolean function f ∈ Bn its relaxed linear-
ity index r-ind(f) is defined by r-ind(f):= max

U∈RMS(f)
dim(U).

Notice that for a quadratic Boolean function f ∈ Bn its relaxed linearity
index equals r-ind(f)= n.
Lemma 8.1.4. [71, Corollary 4.6] Let f and g be two bent function on
Fn2 and Fm2 , respectively. The function h, defined as h(x, y) = f(x)⊕g(y),
is outside M# if r-ind(f) < n/2 and r-ind(g) ⩽ m/2.
The following result further refines the above claim by dropping the
condition that r-ind(g) ⩽ m/2.
Theorem 8.1.5. Let f and g be two bent function on Fn2 and Fm2 , re-
spectively. The function h, defined as h(x, y) = f(x) ⊕ g(y), is outside
M# if r-ind(f) < n/2.

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that h does not
belong to M#, by using Lemma 2.2.4. We need to show that there does
not exist an (n+m2 )-dimensional subspace V such that

D(a(1),b(1))D(a(2),b(2))h = 0,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . We have

D(a(1),b(1))D(a(2),b(2))h(x, y) = Da(1)Da(2)f(x)⊕Db(1)Db(2)g(y). (8.1)

Let V ba a (n+m2 )-dimensional subspace of Fn2 ×Fm2 . There are two cases
to be considered.

1. If dim({x|(x, y) ∈ V }) ⩾ n/2, we can select two a(1), a(2) ∈
{x|(x, y) ∈ V } such that

Da(1)Da(2)f(x) ̸= constant

since r-ind(f) < n/2. Thus, we have

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= 0
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for any b(1), b(2) ∈ {y|(x, y) ∈ V } since Da(1)Da(2)f(x) only depends
on variables x.

2. If dim({x|(x, y) ∈ V }) < n/2, then we must have

dim({y|(0n, y) ∈ V }) > m/2

since dim(V ) = (n+m)/2 (that is, ||V || = 2(n+m)/2). From Proposi-
tion 8.1.1, we can select two vectors b(1), b(2) ∈ {y|(0n, y) ∈ V } such
that

Db(1)Db(2)g(y) ̸= 0.

Thus, we can select (0n, b
(1)), (0n, b

(2)) ∈ V such that

D(0n,b(1))D(0n,b(2))h(x, y) = Db(1)Db(2)g(y) ̸= 0.

Example 8.1.6. Let f ∈ B8 be a bent function in PS# outside M#

whose truth table in hexadecimal form corresponds to

0x813dcc51a81752a59d810e0f1761c3c124a73361682b629908db9455710bfffe,

and let g ∈ B4 be defined by g(x0, . . . , x3) = x0x3 ⊕ x1x2 ⊕ x1x3. The
function h ∈ B12 defined as the direct sum of f and g is a bent function
outside M#, which was checked using the Sage implementation described
in Section 7.2.1.

Remark 8.1.7. By Theorem 8.1.5, the function h in Example 8.1.6 is
outside M#. However, since r-ind(g) = m > m/2, this does not follow
from Lemma 8.1.4.

In the other direction, it is necessary that either f or g is outside M#

so that h = f ⊕ g is outside M#.

Theorem 8.1.8. Let f and g be two bent function on Fn2 and Fm2 , re-
spectively. If the function h, defined as h(x, y) = f(x)⊕ g(y), is outside
M#, then either f or g is outside M#.

Proof. Assuming that both f and g are in M# implies the existence
of two subspaces ∆(n) ∈ Fn2 and ∆(m) ∈ Fm2 with dimension n/2 and
m/2, respectively, such that Da(1)Da(2)f = 0 and Db(1)Db(2)g = 0 for any
a(1), a(2) ∈ ∆(n), b(1), b(2) ∈ ∆(m). Hence, we can set ∆ = ∆(n) × ∆(m).
Further, we have

D(a(1),b(1))D(a(2),b(2))h = 0

for any (a(1), b(1)), (a(2), b(2)) ∈ ∆. From Lemma 2.2.4, h is in M#, which
contradicts the fact that h is outside M#.
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Open problem 8.1.9. It is clear that f ∈ Bn is outside M# implies that
there exist two vectors a, b ∈ V ⊂ Fn2 such that DaDb(f) ̸= 0, for some V
with dim(V ) ⩾ n/2. From Lemma 2.2.4, we know f ∈ Bn is outside M#

if r-ind(f) < n/2. However, there might exist bent functions {f} with
r-ind(f) = n/2 outside M# (that is, for which there exists a subspace
V , with dim(V ) = n/2, so that DaDb(f) = 0 or DaDb(f) = 1). We leave
the construction of such functions as an open problem.

8.1.2 Indirect sum method giving rise to bent functions out-
side M#

The indirect sum method, introduced by Carlet [18, 22], is a secondary
construction of bent functions that does not impose any additional con-
ditions on the initial bent functions. In this section, we provide sufficient
conditions on the bent functions fi and gi so that h defined by (8.2) is
provably outside M#.
Corollary 8.1.10. [18] Let f1 and f2 be bent functions on Fn2 (n even)
and g1 and g2 be bent functions defined on Fm2 . Then, h : Fn2 ×Fm2 defined
as

h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x)(g1 ⊕ g2)(y), x ∈ Fn2 , y ∈ Fm2 ,(8.2)

is a bent function and its dual is obtained from f ∗1 , f ∗2 , g∗1 and g∗2 by the
same formula as h is obtained from f1, f2, g1 and g2.
It is important to notice that fi and gi are arbitrary bent functions, but
interestingly enough the condition that both f1⊕f2 and g1⊕g2 are bent
implies that h defined by (8.2) is outside M#.
Theorem 8.1.11. Let f1 and f2 be bent functions on Fn2 (n even). Let
g1 and g2 be bent functions defined on Fm2 (m even). Let h be defined as
in (8.2). If f1 ⊕ f2 and g1 ⊕ g2 are bent, then h is outside M#.

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that h does not
belong to M# by using Lemma 2.2.4. We need to show that there does
not exist an (n+m2 )-dimensional subspace V such that

D(a(1),b(1))D(a(2),b(2))h = 0,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . We have

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Da(1)Da(2)f1(x)⊕Db(1)Db(2)g1(y)⊕ (g1 ⊕ g2)(y)Da(1)Da(2)(f1 ⊕ f2)(x)
⊕(f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)⊕Da(1)(f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y)
⊕Da(2)(f1 ⊕ f2)(x)Db(2)(g1 ⊕ g2)(y)
⊕Da(1)⊕a(2)(f1 ⊕ f2)(x)Db(1)⊕b(2)(g1 ⊕ g2)(y)

(8.3)
There are three cases to be considered.
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(i) For n = m, there are two subcases.
(a) If dim({x|(x, y) ∈ V }) = dim({y|(x, y) ∈ V }) = n (that is,

{x|(x, y) ∈ V } = {y|(x, y) ∈ V } = Fn2), then there are two
cases to be considered.
i. Assume that either deg(f1 ⊕ f2) > 2 or deg(g1 ⊕ g2) > 2.

Without loss of generality, we suppose deg(f1 ⊕ f2) > 2.
Then, we can find two vectors a(1), a(2) ∈ Fn2 such that

Da(1)Da(2)(f1 ⊕ f2)(x) ̸= constant. (8.4)

Since the algebraic degree of g1 ⊕ g2 is strictly greater than
the algebraic degree of its derivatives, from (8.3) and (8.4),
we obtain

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= 0.

ii. For deg(f1 ⊕ f2) = 2 and deg(g1 ⊕ g2) = 2, we can find two
vectors a(1), a(2) ∈ Fn2 such that

Da(1)Da(2)(f1 ⊕ f2)(x) = 1. (8.5)

Since g1⊕g2 is bent and deg(g1⊕g2) = 2, its derivatives are
affine functions. We also know Db(1)Db(2)g1(y) has nonzero
linear structures, since g1 is a quadratic function. Hence,
from (8.3) and (8.5), we get

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= 0.

(b) If dim({x|(x, y) ∈ V }) < n or dim({y|(x, y) ∈ V }) < n, then
we have {y|(0n, y) ∈ V } ̸= ∅ or {x|(x, 0n) ∈ V } ̸= ∅. Without
loss of generality, we suppose that {y|(0n, y) ∈ V } ̸= ∅. Hence,
we can select (0n, b

(1)) ∈ V ∩ ({0n} × Fn∗2 ) and (a(2), b(2)) ∈
V ∩ (Fn∗2 × Fn∗2 ). From (8.3), we have

D(0n,b(1))D(a(2),b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)

⊕Da(2)(f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y ⊕ b(2))
̸= 0,

(8.6)

since f1 ⊕ f2, g1 ⊕ g2 are bent (that is, Da(2)(f1 ⊕ f2)(x) ̸=
constant and Db(1)(g1⊕g2)(y⊕ b(2)) ̸= constant ) and deg((f1⊕
f2)(x)) > deg(Da(2)(f1 ⊕ f2)(x)).

(ii) For n ̸= m, there are also two cases to be considered.
(a) For n > m, we have (n +m)/2 > m. Thus, we can select two

vectors (a(1), 0m) ∈ V ∩(Fn∗2 ×{0m}) and (a(2), b(2)) ∈ V ∩(Fn∗2 ×
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Fm∗
2 ). From (8.3), we have

D(a(1),0m)D(a(2),b(2))h(x, y)

= Da(1)Da(2)f1(x)⊕ (g1 ⊕ g2)(y)Da(1)Da(2)(f1 ⊕ f2)(x)

⊕Da(1)(f1 ⊕ f2)(x⊕ a(2))Db(2)(g1 ⊕ g2)(y)
̸= 0,

(8.7)

since f1 ⊕ f2, g1 ⊕ g2 are bent (that is, Da(1)(f1 ⊕ f2)(x ⊕
a(2)) ̸= constant and Db(2)(g1 ⊕ g2)(y) ̸= constant ) and
deg((g1 ⊕ g2)(y)) > deg(Db(2)(g1 ⊕ g2)(y)).

(b) For n < m, we have (n+m)/2 > n. Now, we select (0n, b(1)) ∈
V ∩ ({0n} × Fm∗

2 ) and (a(2), b(2)) ∈ V ∩ (Fn∗2 × Fm∗
2 ) and from

item (i) − (b) we conclude that D(0n,b(1))D(a(2),b(2))h(x, y) ̸= 0.
This concludes the proof.

It is tempting to relax the conditions on the initial functions as illustrated
in the following example. The condition that either deg(f1 ⊕ f2) > 2 or
deg(g1 ⊕ g2) > 2 seems to be sufficient at least for certain choices of
the initial functions. However, proving this in general appears to be a
difficult task since there exist certain (n +m)/2-dimensional subspaces
of F(n+m)/2

2 , say {V }, for which this condition is not enough to ensure
the existence of a, b ∈ V so that DaDbh ̸= 0, for h defined by (8.2).
Example 8.1.12. Let f1, f2 ∈ B6 and g1, g2 ∈ B4 be bent functions
such that deg(f1 ⊕ f2) > 2. Then, h ∈ B10 defined by (8.2) is a bent
function outside M#. For example, we may take

f1(x0, . . . , x5) = x0x1x2 ⊕ x0x1x3 ⊕ x0x1x4 ⊕ x0x2x3 ⊕ x0x2x5 ⊕ x0x3x4

⊕ x0x3x5 ⊕ x0x4x5 ⊕ x1x2x4 ⊕ x1x2x5 ⊕ x1x3x4 ⊕ x1x3x5

⊕ x1x4x5 ⊕ x2x3x4 ⊕ x2x3x5 ⊕ x2x4x5

f2(x0, . . . , x3) = x0x1 ⊕ x2x3 ⊕ x4x5

g1(x0, . . . , x3) = x0x1 ⊕ x0x3 ⊕ x1x2 ⊕ x0 ⊕ x1

g2(x0, . . . , x3) = x0x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x1

The truth table in hexadecimal form of the function h obtained from
(8.2) equals:

0x4874842e842eb78b842e7bd17bd14874842e48747bd17bd1b78b7bd17bd14874842e7bd1
48747bd17bd1b78bb78b842e7bd1b78bb78b842e4874842e842e842e842e7bd17bd17bd14874b7
8bb78b842e7bd1b78b842e842e7bd1842e842e842eb78b48747bd148747bd1842e842e842e7bd18
42e842e842e4874842e842e842e

Using the Sage implementation from Section 7.2.1, we have confirmed
that h ∈ B10 is outside M#.
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Open problem 8.1.13. We leave as an open problem the specification
of more relaxed sufficient conditions on the initial bent functions fi and
gi used to define h in (8.2) so that h is provably outside M#.

Outside M# property from the class membership of the initial functions

We remark that the previous results do not impose any condition on
the constituent bent functions in terms of their class membership. How-
ever, it turns out that the indirect sum behave quite similarly as the
direct sum, though requiring additional constraints on the initial func-
tions which ensure that h is outside M#. The following lemma is needed
in the proof of our main result.
Lemma 8.1.14. Let f1 be a bent function on Fn2 . If r-
ind(f1) < n/2, then there exist three vectors a(1), a(2), a(3) ∈ E
such that Da(1)Da(2)f1(x) ̸= constant, Da(1)Da(3)f1(x) ̸= constant, and
Da(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) ̸= constant, where E ⊆ Fn2 is a subspace
with dim(E) > n/2.

Proof. Since r-ind(f1) < n/2, from Definitions 8.1.2 and 8.1.3, we
know dim(RMS(f1)) < n/2. Without loss of generality, set
dim(RMS(f1)) = n/2− 1 and dim (E) = n/2 + 1.
Let U ⊆ E be a relaxed M-subspace of f1 such that U ∪ {α⊕U} is not
a relaxed M-subspace for all α ∈ E \ U. Then, we have

dim (E)− dim(U) ≥ dim (E)− dim(RMS(f1)) ≥ 2. (8.8)

Without loss of generality, we suppose dim(U) = n/2 − 1. We set
{α(1), α(2), . . . , α(n/2−1)} to be a basis of U and {α(1), α(2), . . . , α(n/2+1)}
be a basis of E.
We set U (α) = {γ : DγDαf1(x) = constant, γ ∈ E}, where α ∈
{α(n/2), α(n/2+1), α(n/2) ⊕ α(n/2+1)}. From r-ind(f1) < n/2 and the def-
inition of U , we have

U (α(n/2)) ⊂ E, U (α(n/2+1)) ⊂ E, U (α(n/2)⊕α(n/2+1)) ⊂ E. (8.9)

We also know U (α(n/2)), U (α(n/2+1)) and U (α(n/2)⊕α(n/2+1)) are subspaces of E.
From (8.9), we have

∆ :=
(
E \ U (α(n/2))

)
∩
(
E \ U (α(n/2+1))

)
∩
(
E \ U (α(n/2)⊕α(n/2+1))

)
= E \

(
U (α(n/2)) ∪ U (α(n/2+1)) ∪ U (α(n/2)⊕α(n/2+1))

)
̸= ∅.

(8.10)
Hence, we can select a(1) ∈ ∆, a(2) = α(n/2), a(3) = α(n/2+1). Fur-
ther, we have Da(1)Da(2)f1(x) ̸= constant, Da(1)Da(3)f1(x) ̸= constant
and Da(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) ̸= constant, since Da(1)Da(2)f1(x)⊕
Da(1)Da(3)f1(x) = Da(1)Da(2)⊕a(3)f1(x).
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Theorem 8.1.15. Let f1 and f2 be bent functions on Fn2 (n even). Let g1
and g2 be bent functions defined on Fm2 (m even) such that deg(g1⊕g2) >
0. Let h be defined as in (8.2). If r-ind(f1) < n/2 (hence f1 ̸∈ M#) and
deg(f1 ⊕ f2) = 1, then h is outside M#.

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that h does not
belong to M#, by using Lemma 2.2.4. We need to show that there does
not exist an (n+m2 )-dimensional subspace V of Fn+m2 such that

D(a(1),b(1))D(a(2),b(2))h = 0,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . Since deg(f1 ⊕ f2) = 1, we have

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Da(1)Da(2)f1(x)⊕Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)
⊕Da(1)(f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y)⊕Da(2)(f1 ⊕ f2)(x)Db(2)(g1 ⊕ g2)(y)
⊕Da(1)⊕a(2)(f1 ⊕ f2)(x)Db(1)⊕b(2)(g1 ⊕ g2)(y)

= Da(1)Da(2)f1(x)⊕Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)
⊕εa(1)Db(1)(g1 ⊕ g2)(y)⊕ εa(2)Db(2)(g1 ⊕ g2)(y)
⊕εa(1)⊕a(2)Db(1)⊕b(2)(g1 ⊕ g2)(y),

(8.11)
where εa(1), εa(2), εa(1)⊕a(2) ∈ F2. Since r-ind(f1) < n/2, we know deg(f1) ≥
3.
There are three cases to be considered.
(i) For dim ({x|(x, y) ∈ V }) > n/2, since r-ind(f1) < n/2, from Defi-

nitions 8.1.2 and 8.1.3, we know dim(RMS(f1)) < n/2. Without
loss of generality, set dim(RMS(f1)) = n/2− 1.
From Lemma 8.1.14, we know there exist
(a(1), b(1)), (a(2), b(2)), (a(3), b(3)) ∈ V such that

Da(1)Da(2)f1(x) ̸= constant,
Da(1)Da(3)f1(x) ̸= constant,

Da(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) = Da(1)Da(2)⊕a(3)f1(x) ̸= constant.
(8.12)

Since f1 ⊕ f2 is given, from (8.12), we get

Da(1)Da(2)f1(x)⊕ (f1 ⊕ f2)(x) ̸= constant (8.13)

or
Da(1)Da(3)f1(x)⊕ (f1 ⊕ f2)(x) ̸= constant. (8.14)

Without loss generality, we assume that (8.13) holds. There are
three cases to be considered.
(a) If Db(1)Db(2)(g1 ⊕ g2)(y) ̸= constant, from (8.11), we obtain

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= constant.
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(b) If Db(1)Db(2)(g1 ⊕ g2)(y) = 1, we conclude

Db(1)(g1 ⊕ g2)(y) ̸= constant,

Db(2)(g1 ⊕ g2)(y) ̸= constant

and
Db(1)⊕b(2)(g1 ⊕ g2)(y) ̸= constant.

If (8.12), (8.13) and (8.11), we deduce

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= constant.

(c) Finally, when Db(1)Db(2)(g1⊕ g2)(y) = 0, from (8.12) and (8.11),
we get

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= constant.

(ii) If dim({x|(x, y) ∈ V }) = n/2, then there are three cases to be
considered.
(a) If dim({y|(x, y) ∈ V }) = m/2, then

V = {x|(x, 0m) ∈ V } × {y|(0n, y) ∈ V }

since dim(V ) = (n + m)/2. Using the assumption that r-
ind(f1) < n/2, there will exist (a(1), 0m), (a

(2), 0m) ∈ V such
that

Da(1)Da(2)f1(x) ̸= constant.

Applying this to (8.11), we deduce that

D(a(1),0m)D(a(2),0m)h(x, y) ̸= constant.

(b) Assume now that m/2 < dim({y|(x, y) ∈ V }) < (n+m)/2.
Then, for arbitrary a1, a2 ∈ {x|(x, y) ∈ V }, we always have
{y|(a1, y) ∈ V } ∩ {y|(a2, y) ∈ V } ≠ ∅. Hence, we can select
two vectors (a(1), b(1)), (a(2), b(2)) ∈ V such that b(1) = b(2) and
Da(1)Da(2)f1(x) ̸= constant. Again, using that Da(1)Da(2)f1(x) ̸=
constant in (8.11), we conclude

D(a(1),b(1))D(a(2),b(2))h(x, y) ̸= constant.

(c) When dim({y|(x, y) ∈ V }) = (n+m)/2, we have {y|(a1, y) ∈
V } ∩ {y|(a2, y) ∈ V } = ∅ for arbitrary a1, a2 ∈ {x|(x, y) ∈ V }
and dim({y|(0n, y) ∈ V }) = m/2. Since dim({α|Dα(f1 ⊕ f2) =
0}) = n− 1 and dim({x|(x, y) ∈ V }) = n/2, we can select one
nonzero vector a ∈ {x|(x, y) ∈ V } such that Da(f1 ⊕ f2) = 0.
Further,

dim({(0n, y)|(0n, y) ∈ V } ∪ {(a, y)|(a, y) ∈ V }) = m/2 + 1.
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Then, by Proposition 8.1.1, we can select two vectors
(a(1), b(1)), (a(2), b(2)) ∈ {(0n, y)|(0n, y) ∈ V }∪{(a, y)|(a, y) ∈ V }
such that

Db(1)Db(2)g1(y) ̸= 0.

Setting this in (8.11), we obtain

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) ̸= 0.
(8.15)

(iii) If dim({x|(x, y) ∈ V }) < n/2, then we have dim({y|(x, y) ∈ V }) ≥
m/2 + 1. Further, we have dim({y|(0, y) ∈ V }) ≥ m/2 + 1 since
dim(V ) = (n+m)/2. Hence, from Proposition 8.1.1, we can select
two vectors (0n, b

(1)), (0n, b
(2)) ∈ V such that

Db(1)Db(2)g1(y) ̸= 0.

Again, putting this in (8.11), we have

D(0n,b(1))D(0n,b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) ̸= 0.
(8.16)

Remark 8.1.16. We note that the functions f1 and f2 as well as g1 and
g2 in Example 8.1.12 are not affine related, that is, deg(f1⊕f2), deg(g1⊕
g2) > 1. This leads us to believe that the condition deg(f1 ⊕ f2) = 1 in
Theorem 8.1.15 seems to be only sufficient but not necessary.

Remark 8.1.17. The main reason for using the condition that deg(f1⊕
f2) = 1 in Theorem 8.1.15 is related to n/2-dimensional subspaces
V of Fn+m2 with the property that dim({x|(x, y) ∈ V }) ≥ n/2 and
dim({y|(x, y) ∈ V }) ≥ m/2. In this case, we cannot ensure that some of
the following inequalities Da(1)Da(2)f1(x) ̸= (f1⊕f2)(x), Da(1)Da(2)f1(x) ̸=
Da(1)(f1 ⊕ f2)(x) and Da(1)Da(2)f1(x) ̸= Da(2)(f1 ⊕ f2)(x) hold.

Similarly to Theorem 8.1.15, we can prove even a stronger statement
which excludes the possibility of having constant second order derivatives
of h on any (n + m)/2-dimensional subspace. The proof of Theorem
8.1.18 can be found in Appendix.

Theorem 8.1.18. Let f1 and f2 be bent functions on Fn2 (n even). Let g1
and g2 be bent functions defined on Fm2 (m even) such that deg(g1⊕g2) >
0. Let h be defined as in (8.2). If r-ind(f1) < n/2, deg(f1 ⊕ f2) = 1 and
r-ind(g1) < m/2 + 1, then h is outside M# and r-ind(h) < (n+m)/2.
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8.2 Design methods for homogenous bent functions

The design methods for homogenous bent functions are very few and it
appears that this subclass of bent functions is quite small. The main
progress has been made recently in [71], where the authors efficiently
specified new homogenous cubic bent functions using the direct sum and
stated the following open problem: Construct homogeneous cubic bent
functions without affine derivatives outside the M# class without the
use of the direct sum. In this section, we positively answer this problem
by applying the indirect sum method to suitably selected initial bent
functions. Moreover, we improve the results in [71] with respect to the
dimension of input variable space, see Table 8.1. In the following section
we will be interested in the notion of fast points, which are defined as
follows.

Definition 8.2.1. The point a ∈ Fn2 is called a fast point of a function
f ∈ Bn if it satisfies deg(Daf) < deg(f)− 1. The set of all fast points of
f will be denoted with FPf .

8.2.1 Homogenous bent functions using the indirect sum

In what follows, we construct homogeneous cubic bent functions without
affine derivatives outside the M# by using the indirect sum and thereby
partially solve the open problem in [71].

Theorem 8.2.2. Let n and m be two positive even integers. Let f1 and
g1 be two homogeneous cubic bent functions on Fn2 and Fm2 , respectively.
Let f2(x) = f1(x)⊕ c · x, where c ∈ Fn2 \ {0n}, and g2(y) = g1(y)⊕Q(y)
be also bent, where Q is a homogeneous quadratic function. Then, the
function h ∈ Bn+m defined by (8.2) is a homogeneous cubic bent function.
Further, if r-ind(f1) < n/2, then h is outside M#. If f1 has no affine
derivatives and FPg1 ∩ FPg1⊕g2 = {0m}, then h has no affine derivatives.

Proof. From Corollary 8.1.10, h is a bent function in n + m variables.
Since deg(f1 ⊕ f2) = 1 and Q is a homogeneous quadratic function in m
variables, then h is a homogeneous cubic bent function.

From Theorem 8.1.15, since r-ind(f1) < n/2 and deg(f1 ⊕ f2) = 1, h is
outside M#. For a(1) ∈ Fn2 and b(1) ∈ Fm2 , we have

D(a(1),b(1))h(x, y) = Da(1)f1(x)⊕Db(1)g1(y)

⊕(g1 ⊕ g2)(y)Da(1)(f1 ⊕ f2)(x)⊕ (f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y).
(8.17)

To show that h has no affine derivatives, we consider two cases:

a) If a(1) = 0n, then b(1) ̸= 0m. From (8.17), we deduce

D(0n,b(1))h(x, y) = Db(1)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y).
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Since g1 is cubic and FPg1∩FPg1⊕g2 = {0m}, then deg(Db(1)g1(y)) = 2
or deg(Db(1)(g1 ⊕ g2)(y)) = 1. Hence, deg(D(0n,b(1)h) = 2.

b) If a(1) ̸= 0n, then deg(Da(1)f1) = 2 due to the assumption on f1.
From (8.17), we have deg(D(a(1),b(1))h) = 2 since f1 ⊕ f2 is a linear
function.

Remark 8.2.3. One can also set Q(y) := g1(y) ⊕ g1(y ⊕ a) ⊕ A(y) in
Theorem 8.2.2, where a ∈ Fn2 \FPg1 and A(y) stands for the affine terms
of g1(y)⊕ g1(y ⊕ a).
Corollary 8.2.4. Let n,m and t be three positive even integers such that
t ≤ m. Let f1 and g1 be two homogeneous cubic bent functions on Fn2
and Fm2 , respectively. Let f2(x) = f1(x)⊕ c · x, where c ∈ Fn2 \ {0n}, and
g2(y) = g1(y⊕e(t)), where e(t) = (e

(t)
1 , e

(t)
2 , . . . , e

(t)
m ) ∈ Fm2 , e(t)i = 1 if i = t,

e
(t)
i = 0 otherwise. Let h be defined as in (8.2). If r-ind(f1) < n/2, then
h is a homogeneous cubic bent functions on Fn+m2 outside M#. If f1 has
no affine derivatives and FPg1 ∩ FPg1⊕g2 = {0m}, then h has no affine
derivatives.

Proof. Since g1 is a homogeneous cubic bent function, g1(y)⊕g1(y⊕e(t))
is a homogeneous quadratic function. From Theorem 8.2.2, identifying
Q(y) := g1(y)⊕g1(y⊕e(t)), we know that h is a homogeneous cubic bent
function since g2(y) = g1(y)⊕

(
g1(y)⊕ g1(y ⊕ e(t))

)
= g1(y) + Q(y) is a

bent function. Furthermore, Theorem 8.2.2 implies that h has no affine
derivatives if f1 has no affine derivatives and FPg1 ∩FPg1⊕g2 = {0m}.

Homogeneous cubic bent function without affine derivatives outside M#

were specified by Polujan and Pott [71, Theorem 4.9] with the number
of variables n ≥ 50. The following example demonstrates that such
functions can be specified on much smaller variable spaces compared to
[71] (namely for n = 20).
Example 8.2.5. Let f1 be a homogenous cubic bent function without
affine derivatives on F10

2 , with r-ind(f1) = 4, whose ANF is given as (see
[71, Table 4])
f1(x0, . . . , x9) = x0x1x5 ⊕ x0x1x6 ⊕ x0x1x7 ⊕ x0x1x9 ⊕ x0x2x3 ⊕ x0x2x4 ⊕
x0x2x6⊕x0x2x8⊕x0x2x9⊕x0x3x4⊕x0x3x5⊕x0x3x7⊕x0x3x8⊕x0x3x9⊕
x0x4x6⊕x0x5x6⊕x0x5x7⊕x0x5x9⊕x0x6x8⊕x0x6x9⊕x0x8x9⊕x1x2x4⊕
x1x2x7⊕x1x2x8⊕x1x2x9⊕x1x3x5⊕x1x3x6⊕x1x3x7⊕x1x4x5⊕x1x4x8⊕
x1x5x6⊕x1x5x8⊕x1x5x9⊕x1x6x7⊕x1x6x9⊕x1x7x8⊕x1x7x9⊕x1x8x9⊕
x2x3x6⊕x2x3x8⊕x2x4x5⊕x2x4x6⊕x2x4x7⊕x2x4x9⊕x2x5x7⊕x2x5x8⊕
x2x6x9⊕x2x7x8⊕x2x7x9⊕x2x8x9⊕x3x4x6⊕x3x4x8⊕x3x4x9⊕x3x5x7⊕
x3x5x9⊕x3x6x7⊕x3x6x8⊕x3x6x9⊕x3x7x9⊕x3x8x9⊕x4x5x7⊕x4x5x8⊕
x4x5x9⊕x4x6x8⊕x4x6x9⊕x4x7x8⊕x4x7x9⊕x4x8x9⊕x5x6x7⊕x5x7x9⊕
x5x8x9 ⊕ x6x7x9,
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and let g1 = f1 . Then, from Corollary 8.2.4, the function h defined as
in (8.2) via f1, f2, g1, g2, is a homogeneous cubic bent function without
affine derivatives on F20

2 outside M#.
Seberry, Xia and Pieprzyk in [79, Theorem 8] proved that one can
construct homogeneous cubic bent functions for all even m ̸= 8. Let
F : Fm2 → F2 be defined as in [79, Theorem 8]

F (y) =

m/2⊕
i=1

yiyi+m/2 ⊕ C(ym/2+1, ym/2+2, . . . , ym),

where C(ym/2+1, ym/2+2, . . . , ym) is a certain cubic function. Then, there
exists a nonsingular matrix T such that F (Ty) is a homogeneous cubic
bent function [79]. Let ϕ be a linear permutation on Fm/22 such that ϕ⊕I
is also a linear permutation, where I is the identity permutation. Thus,
Q′(y) :=

(
ϕ(y1, y2, . . . , ym/2)

)
· (ym/2+1, ym/2+2, . . . , ym) is bent. Further,

we have that
F (Ty)⊕Q(y) (8.18)

is a bent function, where Q(y) = Q′(Ty) ⊕ A(y) is a homogeneous
quadratic function and A(y) is affine.
In [71], the authors provided one 10-variable function, denoted by
h104 ∈ B10, which is a homogeneous cubic bent function without affine
derivatives and r-ind(h104 ) = 4 < 10/2, thus h104 ̸∈ M#.

Theorem 8.2.2, employing h104 and F (Ty), implies the following result.
Theorem 8.2.6. Let n = 10 and m ≥ 6 be a positive even integer such
that m ̸= 8. Let f1 = h104 , g1(y) = F (Ty) and g2(y) = g1(y)⊕Q(y), where
F (Ty) and Q(y) are defined by (8.18). Let also f2(x) = f1(x) ⊕ c · x,
where c ∈ F10

2 \ {010}. Then, h defined by (8.2) is a homogeneous cubic
bent function in m+10 variables without affine derivatives outside M#.

Proof. Since r-ind(h104 ) = 4 < 10/2, from Theorem 8.2.2, we deduce that
h is a homogeneous cubic bent functions in m+10 variables outside the
M#. Since Q is a quadratic bent function, we have FPQ = FPg1⊕g2 =
{0m}. Theorem 8.2.2 implies that h has no affine derivatives.

Theorem 8.2.7. Let n,m be two positive even integers such that
n ≥ 6,m ≥ 6. Let f1 be a (homogeneous) cubic bent function with
dim (FPf1) = 1 on Fn2 . Without loss of generality, we set FPf1 = {0n, ε}.
Let c ∈ {α|α ∈ Fn2 , α · ε = 1} and define f2(x) = f1(x)⊕ c ·x. Let g1 be a
(homogeneous) cubic bent function without affine derivatives on Fm2 such
that r-ind(g1) < m/2. Define a bent function g2(y) = g1(y)⊕Q(y), where
Q is a (homogeneous) quadratic function such that deg(Dbg1(y)⊕Q(y)) =
2, for any b ∈ FPQ \ {0m}. Then, h defined by (8.2) is a (homogeneous)
cubic bent function without affine derivatives outside M#.
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Proof. From Theorem 8.2.2, we know that h is a (homogeneous) cubic
bent function outside M#.

Now we prove h does not have affine derivatives. There are two cases to
be considered. Let a(1) ∈ Fn2 and b(1) ∈ Fm2 .

i) If a(1) /∈ FPf1 = {0n, ε}, then deg(Da(1)f1) = 2. From (8.17), we
have deg(D(a(1),b(1))h) = 2 since f1 ⊕ f2 is a linear function.

ii) If a(1) = ε, from (8.17), we have

D(ε,b(1))h(x, y) = Dεf1(x)⊕Db(1)g1(y)

⊕(g1 ⊕ g2)(y)Dε(c · x)⊕ (c · x)Db(1)(g1 ⊕ g2)(y)
= Dεf1(x)⊕Db(1)g1(y)⊕Q(y)⊕ (c · x)Db(1)Q(y).

(8.19)
There are two cases to be considered.

(a) If b(1) ∈ FPQ \ {0m}, then deg(Db(1)g1(y) ⊕ Q(y)) = 2. Hence,
from (8.19), we have deg(D(ε,b(1))h(x, y)) = 2.

(b) If b(1) /∈ FPQ\{0m}, from (8.19), we get deg(D(ε,b(1))h(x, y)) = 2

since deg((c · x)Db(1)Q(y)) = 2 or b(1) = 0m.

Remark 8.2.8. Let us consider the homogeneous quadratic func-
tion Q(y) = De(t)g1(y) as defined in Corollary 8.2.4, where e(t) =

(e
(t)
1 , e

(t)
2 , . . . , e

(t)
m ) ∈ Fm2 , e(t)i = 1 if i = t, e(t)i = 0 otherwise. The

vector e(t) is obviously a fast point for the function Q (more precisely,
it is a linear structure) because De(t)Q(y) = De(t)De(t)g1 ≡ 0. With
respect to the above notation, we have that De(t)(g1(y) ⊕ Q(y)) =
De(t)g1(y) ⊕ De(t)g1(y) = 0, thus Q does not satisfy Theorem 8.2.7. We
also note that D(ε,e(t))h(x, y) = Dεf1(x), which is an affine function. Us-
ing Sage we observed that ε is the only affine derivative of h.

Based on the above remark, the following open problem is an interesting
research challenge.

Open problem 8.2.9. Find instances of quadratic homogeneous bent
functions Q which satisfy Theorem 8.2.7 and thus give rise to homoge-
neous cubic bent functions without affine derivatives outside M#.

From Theorems 8.1.15 and 8.2.6, we note that [71, Theorem 4.9] (see
Theorem 8.2.19) can be generalized as follows:

Theorem 8.2.10. On Fn2 there exist homogeneous cubic bent functions
(without affine derivatives) outside M# for n ≥ 16, n ̸= 18.
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8.2.2 Non-decomposability of our bent functions

In this section, we solve an open problem on the decomposability of bent
functions raised in [71, Open Problem 5.1]. We essentially show that
the homogenous cubic bent functions constructed by means of Theorem
8.2.14 are non-decomposable in the sense of the definition below.
Definition 8.2.11. [95] A function f ∈ Bn is said to be decomposable if
there exists a nonsingular n× n matrix B over F2 and an integer l with
1 ≤ l ≤ n−1 such that f(xB) = g(y)⊕h(z), where x = (y, z), y ∈ Fl2, z ∈
Fn−l2 , g ∈ Bl and h ∈ Bn−l. Otherwise, f is said to be non-decomposable.

Lemma 8.2.12. [95, Theorem 2] A function f ∈ Bn is decomposable if
and only if there exists an integer p with 1 ≤ p ≤ n− 1, a p-dimensional
linear subspace W of Fn2 and a complementary subspace U in Fn2 (thus
U + W = Fn2) such that for every non-zero vector α ∈ W and every
non-zero vector β ∈ U , we have

f(x)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x⊕ α⊕ β) = 0.

The following result specifies some useful properties of the function h104
mentioned earlier.
Lemma 8.2.13. Let A := (a(1), a(2), . . . , a(10)) be a basis of F10

2 . Then,
||{ε ∈ A | Da(i)Dεh

10
4 ̸= 0}|| ≥ 3, for any a(i) ∈ A. Moreover, for disjoint

non-empty subsets S, T ⊂ A that partition A, S ∪T = A, there exist two
vectors α(1) ∈ S and α(2) ∈ T such that Dα(1)Dα(2)h104 ̸= 0.

Proof. From Theorem 8.2.6, we know that h given by (8.2), defined using
h104 , is a homogeneous cubic bent function in m + 10 variables without
affine derivatives (with m even). In particular, deg(Da(i)h

10
4 ) = 2, for any

i = 1, . . . , 10. Without loss of generality, we set i = 1. We also know
dim(FPD

a(1)
h104

) ≤ n− deg(Da(1)h
10
4 ). Hence,

dim(FPD
a(1)

h104
) = dim({ε | Da(1)Dεh

10
4 = constant}) ≤ n− 2. (8.20)

Since h104 is bent, Da(1)h
10
4 is a quadratic balanced function, that is, there

exists at least one vector β such thatDa(1)Dβh
10
4 = 1 (due to the existence

of linear terms in the ANF of Da(1)h
10
4 ). Furthermore, using (8.20), we

have
dim({ε ∈ F10

2 | Da(1)Dεh
10
4 = 0}) ≤ n− 3, (8.21)

which implies that

dim(⟨{ε ∈ F10
2 | Da(i)Dεh

10
4 ̸= 0, ε ∈ A}⟩) ≥ 3, ∀a(i) ∈ A, (8.22)

where ⟨·⟩ denotes the span of a set.

Now we prove Dα(1)Dα(2)h104 ̸= 0. There are two cases to be considered.
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1. For ||S|| ≤ 3 or ||T || ≤ 3 , from (8.22), we must two vectors α(1) ∈ S
and α(2) ∈ T such that Dα(1)Dα(2)h104 ̸= 0 since DαDαh

10
4 = 0 for any

α ∈ F10
2 .

2. Let ||S|| = 4 (resp. 5) and ||T || = 6 (resp. 5). There are also
two cases to be considered. Since r-ind(h104 ) = 4, without loss
of generality, let U be a 4-dimensional subspace of F10

2 such that
Da(1)Da(2)h

10
4 = constant, for any a(1), a(2) ∈ U . From Definitions

8.1.2, and 8.1.3, there exist a(1), a(2) ∈ U ∪ (α(2) ⊕U) for any α(2) ∈
F10
2 \ U such that Da(1)Da(2)h

10
4 ̸= constant.

(a) When either U ⊆ ⟨S⟩ or U ⊆ ⟨T ⟩, using Definitions 8.1.2 and
8.1.3, we can find two vectors α(1) ∈ S and α(2) ∈ T such that
Dα(1)Dα(2)h10 ̸= 0.

In fact, for any α(2) ∈ F10
2 \ U , there must exist one vector

α(1) ∈ U such that Dα(1)Dα(2)h10 ̸= 0 since

Dα(1)Dα(2)h104 = Dα(1)Dα(1)⊕α(2)h104 = Dα(2)Dα(1)⊕α(2)h104 .

(b) When U ⊈ ⟨S⟩ and U ⊈ ⟨T ⟩, we know ||S|| = 4 (resp. 5) and
||T || = 6 (resp. 5). Further, ||U∪⟨S⟩|| < 24 and ||U∪⟨T ⟩|| < 24.
Hence, we can find two vectors α(1) ∈ S and α(2) ∈ T such that
Dα(1)Dα(2)h104 ̸= 0.

Theorem 8.2.14. For n = 10 , and even m ≥ 6 such that m ̸= 8,
let h be defined as in Theorem 8.2.6. Then, h is a homogeneous non-
decomposable cubic bent function in m + 10 variables without affine
derivatives outside M#.

Proof. From Theorem 8.2.6, h ∈ Bm+10 is a homogeneous cubic bent
function without affine derivatives outside M#.

It remains to prove that h is non-decomposable. From Lemma 8.2.12, we
need to show that for arbitrary integer p with 1 ≤ p ≤ m+10−1, any p-
dimensional linear subspace W of Fn+m2 and its arbitrary complementary
subspace U in Fn+m2 , there always exists two vectors (a(w), b(w)) ∈ W and
(a(u), b(u)) ∈ U , such that

D(a(w),b(w))D(a(u),b(u))h ̸= 0,
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where a(w), a(u) ∈ Fn2 and b(w), b(u) ∈ Fm2 . Similarly to (8.11), we have

D(a(w),b(w))D(a(u),b(u))h(x, y)

= Da(w)Da(u)f1(x)⊕Db(w)Db(u)g1(y)⊕ (f1 ⊕ f2)(x)Db(w)Db(u)(g1 ⊕ g2)(y)
⊕Da(w)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y)⊕Da(u)(f1 ⊕ f2)(x)Db(u)(g1 ⊕ g2)(y)
⊕Da(w)⊕a(u)(f1 ⊕ f2)(x)Db(w)⊕b(u)(g1 ⊕ g2)(y).

(8.23)

Since W is a p-dimensional linear subspace of Fm+10
2 and U is the com-

plementary subspace of W in Fm+10
2 , we have

⟨{x | (x, y) ∈ W} ∪ {x | (x, y) ∈ U}⟩ = Fn2 ,
⟨{y | (x, y) ∈ W} ∪ {y | (x, y) ∈ U}⟩ = Fm2 .

(8.24)

Further, for any vector (a, b) ∈ Fn+m2 , we have (a(w), b(w)) ∈ W and
(a(u), b(u)) ∈ U such that (a, b) = (a(w), b(w))⊕ (a(u), b(u)).

There are two cases to be considered:

a) For {x | (x, y) ∈ W} = {0n}, from (8.24), we have {x | (x, y) ∈
U} = Fn2 and W ⊆ {0n} × Fm2 . Further, we can select (0n, b

(w)) ∈
W, (a(u), b(u)) ∈ U such that Da(u)(f1⊕ f2) = 1 (since deg(f1⊕ f2) =
1) and

Db(w)Db(u)g1(y)⊕Db(w)(g1 ⊕ g2)(y ⊕ b(u)) ̸= constant, (8.25)

since g1⊕g2 is a bent function (that is, Dβ(1)(g1⊕g2)(y)⊕Dβ(2)(g1⊕
g2)(y) = Dβ(1)⊕β(2)(g1 ⊕ g2)(y ⊕ β(1)) ̸= constant if β(1) ̸= β(2)) and
{x | (x, y) ∈ U} = Fn2 . From (8.23), we have

D(a(w),b(w))D(a(u),b(u))h(x, y)

= Db(w)Db(u)g1(y)⊕ (f1 ⊕ f2)(x)Db(w)Db(u)(g1 ⊕ g2)(y)

⊕Db(w)(g1 ⊕ g2)(y ⊕ b(u)) ̸= 0.

(8.26)

b) For {x | (x, y) ∈ U} = {0n}, from (8.24), we have {x | (x, y) ∈
W} = Fn2 and U ⊆ {0n} × Fm2 . Similarly to a), we deduce
D(a(w),b(w))D(a(u),b(u))h(x, y) ̸= 0.

c) When both {x|(x, y) ∈ W} ̸= {0n} and {x | (x, y) ∈ U} ̸= {0n},
from Lemma 8.2.13, there exist two vectors a(w) ∈ {x | (x, y) ∈ W}
and a(u) ∈ {x | (x, y) ∈ U} such that Da(w)Da(u)f1 ̸= 0. Then, there
must exist (a(w), b(w)) ∈ W and (a(u), b(u)) ∈ U such that b(w) = b(u),
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since (a(w) ⊕ a(u), 0m) ∈ Fn+m2 . From (8.23), we have

D(a(w),b(w))D(a(u),b(w))h(x, y)

= Da(w)Da(u)f1(x)⊕Db(w)Db(w)g1(y)
⊕(f1 ⊕ f2)(x)Db(w)Db(w)(g1 ⊕ g2)(y)
⊕Da(w)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y)
⊕Da(u)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y)
⊕Da(w)⊕a(u)(f1 ⊕ f2)(x)Db(w)⊕b(w)(g1 ⊕ g2)(y)

= Da(w)Da(u)f1(x)⊕Da(w)⊕a(u)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y).
(8.27)

There are two cases to be considered:

i) If Da(w)⊕a(u)(f1 ⊕ f2) = 0, then D(a(w),b(w))D(a(u),b(w))h(x, y) =
Da(w)Da(u)f1(x) ̸= 0.

ii) If Da(w)⊕a(u)(f1 ⊕ f2) = 1, then D(a(w),b(w))D(a(u),b(w))h(x, y) =
Da(w)Da(u)f1(x) ⊕ Db(w)(g1 ⊕ g2)(y) ̸= 0 since g1 ⊕ g2 is a bent
function.

Open problem 8.2.15. [71, Open Problem 5.1] Construct homogeneous
cubic bent functions without affine derivatives outside the class M#

without the use of the direct sum.

Apparently, if h is obtained by using the direct sum of two functions,
then h is decomposable. Thus, if h is non-decomposable, then h is a bent
function which cannot be represented as a direct sum of two functions
on disjoint variable spaces (under an invertible linear transform). The
functions constructed by Theorem 8.2.14 are homogeneous cubic bent
functions without affine derivatives outside the class M# and does not
fall into the framework of the direct sum. Hence, we answer positively
the open problem above.

8.2.3 Another method of specifying (non-decomposable) cu-
bic bent functions

We now utilize a method of specifying cubic bent functions without
affine derivatives specified in [14], suitable to be used in the indirect
sum. Before we proceed, recall that the absolute trace function from F2k

to F2 is defined as Trk1(x) = x+ x2
1

+ · · ·+ x2
k−1

.

Lemma 8.2.16. [14] Let m = 2t be an even integer m ≥ 6,m ̸= 8, and
let j be an integer such that 1 ≤ j < t and gcd(2j + 1, 2t − 1) = 1. The
cubic bent function g on Fm2 defined by g(z, w) = Trt1(zw

2j+1) has no
affine derivatives.



142 8.2. DESIGN METHODS FOR HOMOGENOUS BENT FUNCTIONS

This approach can be embedded in the indirect sum method so that the
resulting bent functions are without affine derivatives and additionally
do not belong to M#.
Theorem 8.2.17. Let n,m = 2t be two even integers n ≥ 10,m ≥ 6
and m ̸= 8 (due to Lemma 8.2.16). Let 1 ≤ j < t such that gcd(2j +
1, 2t− 1) = 1. Let f be a cubic function on Fn2 without affine derivatives
such that r-ind(f) < n/2. Define a cubic function g on Fm2 as g(z, w) =
Trt1(zw

2j+1) and let the function h on Fn+m2 be given as

h(x, z, w) = f(x)+g(z, w)+Trn1 (ax)
(
Trt1(zw

2j+1) + Trt1((z + c)w2j+1)
)
,

where x ∈ F2n, z, w ∈ F2t and c ∈ F2t \ {0}. Then, h is a cubic bent
function without affine derivatives outside M#.

Proof. From Lemma 8.2.16, we know that g is a bent function in m
variables. Set f ′(x) = f(x)+Trn1 (ax) and g′(z, w) = g(z, w)+(g(z, w)+
g(z + c, w)) = g(z + c, w). Then, f ′ and g′ are bent. Corollary 8.1.10
implies that h is a cubic bent function.
By Lemma 8.2.16, g has no affine derivatives. Similarly to the proof of
Theorem 8.2.2, one can show that h has no affine derivatives.
Furthermore, r-ind(f) < n/2 and deg(f + f ′) = 1. By Theorem 8.2.2,
using the fact that r-ind(f) < n/2, h is outside M#.

Remark 8.2.18. Theorem 8.2.17 provides a generic construction of cu-
bic bent functions on Fk2 (with k = n + m) without affine derivatives
and outside M#, for even k ≥ 16 with k ̸= 18. However, these bent
functions are not necessarily homogeneous. A similar approach, based
on Lemma 8.2.16 above, was considered by Mandal et al. in [51] but
without the condition that resulting bent functions are outside M#.
Nevertheless, referring to the above remark, by selecting f = h104 the
function h in Theorem 8.2.17 is a non-decomposable cubic bent function
without affine derivatives outside M#, see also Section 8.2.2.
In [71], the series of existence results about cubic bent functions with
nice cryptographic properties were presented.
Theorem 8.2.19. [71, Theorem 4.9] On Fn2 there exist:

1. Cubic bent functions outside M# for all n ≥ 10.

2. Cubic bent functions without affine derivatives outside M# for all
n ≥ 26.

3. Homogeneous cubic bent functions outside M# for all n ≥ 26.
4. Homogeneous cubic bent functions without affine derivatives outside

M# for all n ≥ 50.
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According to Corollary 8.2.4 and Theorem 8.2.17, we substantially im-
prove the above results in terms of decreased variable spaces by provide
new instances of (homogenous) cubic bent functions having additional
properties (not having affine derivatives and being outside M#).
Theorem 8.2.20. On Fn2 there exist:

1. Cubic bent functions outside M# for all n ≥ 10.
2. (Non-decomposable) cubic bent functions without affine derivatives

outside M# for all n ≥ 20.

3. Homogeneous non-decomposable cubic bent functions outside M#

for all n ≥ 20.
4. Homogeneous non-decomposable cubic bent functions without affine

derivatives outside M# for all n ≥ 20.

Proof. We know that h104 is a homogeneous cubic bent function without
affine derivatives outside M#. From Theorem 8.1.5, we know cubic bent
functions outside M# in n variables can be obtained for n ≥ 10, thus
Case 1 holds. Theorems 8.2.14 and 8.2.17 support Case 2., whereas
Theorem 8.2.14 implies that Cases 3 and 4 hold.

Let “(H)CBF” denote “(homogeneous) cubic bent functions” ’ and “wAD”
denote “without affine derivatives”. To give a better overview and com-
parison of the results in this paper with those in [71], we present the
following table:

Function [71] n ≥ Missing n n ≥ Missing n
CBF outside M# 10 - 10 -

CBFwAD outside M# 26 14, 18∗ , 24 20 14, 18
HCBF outside M# 26 12, 14, 18, 24 20 12, 14, 18

HCBFwAD outside M# 50 12, 14, 16, 18, 24, 26, 28, 38, 48 20 12, 14, 18

Table 8.1: Comparison of bounds for the dimension n obtained in [71] with our results.
The entry denoted 18∗ is the correct value instead of 16 stated in [71].

8.3 Vectorial bent functions strongly outside M#

Constructing vectorial bent functions whose all nonzero component func-
tions are outside M#, named strongly outside M# in [66], is considered
to be a difficult problem.
Below we use the indirect sum in connection to Theorem 8.1.11 to show
the existence of these objects for relatively large output dimensions.
Theorem 8.3.1. Let F : F2n

2 → Fn2 and G : F2m
2 → Fm2 be two vectorial

bent functions, with n < m, whose coordinate representations are F =
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(f0, . . . , fn−1) and G = (g0, . . . , gn, . . . , gm−1), respectively. We set

hi(x, y) = fi(x)⊕ gi(y)⊕ (fi ⊕ f(i+1) mod n)(x)gn(y), (8.28)

where i = 0, 1, . . . , n− 1. Then, H = (h0, h1, . . . , hn−1) is a bent (2(n +

m), n)-function, i.e. H : F2(n+m)
2 → Fn2 is vectorial bent. Furthermore,

the (2(n+m), n− 1)-function H ′ = (h0, h1, . . . , hn−2) is strongly outside
M#.

Proof. We first prove any hi is a bent function in n +m variables. We
know that fi, f(i+1) mod n are bent. From Corollary 8.1.10, hi is bent if gi
and gi⊕ gn are bent. Note, that gn = gi⊕ (gi⊕ gn). Since G is vectorial
bent, it follows that hi is bent.
Let 0 ̸= c ∈ Fn+m2 be arbitrary and let us consider the bentness of the
component c ·H. We have:

c ·H = c · (h0, h1, . . . , hn−1)(x, y)
= (c0h0 ⊕ c1h1 ⊕ · · · ⊕ cn−1hn−1)(x, y)
= (c0f0 ⊕ c1f1 ⊕ · · · ⊕ cn−1fn−1)(x)

⊕(c0g0 ⊕ c1g1 ⊕ · · · ⊕ cn−1gn−1)(y)
⊕(c0(f0 ⊕ f1)⊕ c1(f1 ⊕ f2)⊕ · · · ⊕ cn−1(fn−1 ⊕ f0))(x)gn(y)

= (c · F )(x)⊕ (c ·G′)(y)⊕ (c · F ⊕ c · F ′)(x)gn(y)
= (c · F )(x)⊕ (c ·G′)(y)

⊕(c · F ⊕ c · F ′)(x)(c ·G′ ⊕ (c ·G′ ⊕ gn))(y),
(8.29)

where G′ = (g0, . . . , gn−1) and F ′ = (f1, . . . , fn−1, f0). We know that
c ·F , c ·F ′, c ·G′ and c ·G′⊕ gn are bent, as F and G are vectorial bent.
Thus, from Corollary 8.1.10, it follows that c · H ′ is also bent, for all
0 ̸= c ∈ Fn+m2 . In other words, H is a bent (2(n+m), n)-function.

If c /∈ {0n, 1n}, then the function c · F ⊕ c · F ′ is bent. We also
know that gn is bent. Hence, from Theorem 8.1.11, the function
c · (h0, h1, . . . , hn−1) is outside M# for c ∈ Fn2\{0n, 1n} and consequently,
H ′ = (h0, h1, . . . , hn−2) is a bent (2(n + m), n − 1)-function strongly
outside M#.

Remark 8.3.2. Since G is vectorial bent, the function gn in (8.28) can
be replaced by d · (gn, gn+1, . . . , gm−1), where d ∈ Fm−n

2 \{0m−n}.
For n = m, from Theorem 8.3.1, we have the following corollary.
Corollary 8.3.3. Let F,G : F2n

2 → Fn2 be two vectorial bent func-
tions, whose coordinate representations are F = (f0, . . . , fn−1) and
G = (g0, . . . , gn−1), respectively. We set

hi(x, y) = fi(x)⊕ gi(y)⊕ (fi ⊕ fi+1)(x)gn−1(y), x, y ∈ F2n
2 , (8.30)
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where i = 0, 1, . . . , n − 2. Then, H ′ = (h0, h1, . . . , hn−2) is a vectorial
bent function, where H ′ : F4n

2 → Fn−1
2 , and it is strongly outside M#.

Example 8.3.4. Let us consider the functions F (x, y) = xy and
G(x, y) = xy5, where x, y ∈ F23. From Corollary 8.3.3, the function
H = (h0, h1), where hi is defined with (8.30), is a bent (12, 2)-function
strongly outside M#.The base64 representations of h0 and h1 are (9.5)
and (9.6), which can be found in the appendix. Additionally, the bent-
ness of H and its exclusion from M# have been confirmed using Sage.

8.3.1 A generic construction using companion matrices

We now employ the indirect sum and primitive polynomials in the design
of vectorial bent functions strongly outside M#. It is well-known that if
p(z) = zm + am−1z

m−1 + . . .+ a1z + 1, ai ∈ F2 is a primitive polynomial
over the field F2 (which implies that wt((a1, . . . , am−1)) is odd), then its
order is equal to 2m − 1. The companion matrix A of p(z) is

A =


0 0 . . . 0 1
1 0 . . . 0 a1
... ... . . . ... ...
0 0 . . . 1 am−1

 .
Thus, we have Ai ̸= Aj for 0 ≤ i < j ≤ 2m − 2. Theorem 8.3.1 then
induces the following generic construction of vectorial bent functions
that are strongly outside M#.
Theorem 8.3.5. Let n,m be two positive integers such that n < m. Let
π and ϕ be two arbitrary permutations in n and m variables, respectively.
Let

fi(x
(1), x(2)) = Aiπ(x(2)) · x(1), gj(y

(1), y(2)) = Bjϕ(y(2)) · y(1),
x(1), x(2) ∈ Fn2 , y(1), y(2) ∈ Fm2 , (8.31)

where i = 0, 1, . . . , n− 1, j = 0, 1, . . .m− 1, and A,B be companion ma-
trices of the corresponding primitive polynomials over F2 of degree n and
m, respectively. Let F : F2n

2 → Fn2 and G : F2m
2 → Fm2 be two vectorial

bent functions, whose coordinate representations are F = (f0, . . . , fn−1)
and G = (g0, . . . , gn, . . . , gm−1), respectively. Let hi be defined by (8.28).
Then, H = (h0, h1, . . . , hn−1) is a bent (2(n +m), n)-function. Further,
the (2(n+m), n− 1)-function H ′ = (h0, h1, . . . , hn−2) is strongly outside
M#.

Proof. Since A,B are companion matrices of the corresponding primi-
tive polynomials over F2 of degree n and m, respectively, we conclude
that

⊕n−1
i=0 λiA

iπ(x(2)) and
⊕m−1

j=0 λjB
jϕ(y(2)) are also permutations in

n and m variables, respectively. Hence, F and G are two vectorial bent
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functions. From Theorem 8.3.1, H is a bent (2(n+m), n)-function and
the (2(n + m), n − 1)-function H ′ = (h0, . . . , hn−2) is strongly outside
M#.

In difference to [66], where the output dimension of this class of vectorial
bent functions was only two, the value n−1 is a significant improvement.
It can be easily verified that (2(n+m), n− 1) functions provide a larger
output dimension compared to (n, n/6) functions (also strongly outside
M#) recently specified in Section 6.1.2. Notice, however, that the max-
imal output dimension of a vectorial bent function in 2(n+m) variables
is n +m. Therefore, our approach still does not provide vectorial bent
functions strongly outside M# with maximal output dimension. The
existence of these objects still remains unknown.



Chapter 9

Conclusions

The results of this PhD thesis represent a significant contribution to a
number of standing open problems in cryptography, which have been an
active topic in the mathematical community for the last five decades.

A major part of the thesis deals with the construction of (vectorial)
bent functions outside the completed Maiorana-McFarland class using
different methods. We note that all the examples have been confirmed to
be outside M# using the mathematical software Sage and an algorithm
developed by us using the notion of cliques in graphs.

The (PU) property was generalized to obtain a construction method
for vectorial bent functions, which covers the previous two methods in
[82, 90]. Using this construction we also provided new instances of vec-
torial functions having maximal number of bent components. Similarly,
these results were extended to the p-ary case to develop secondary con-
structions of p-ary weakly regular bent (n,m)-functions.

By combining the indicators of C and D0, and C and D we obtained
new superclasses of bent functions, SC and CD, respectively. For both
classes we provided conditions under which these functions lie outside
M#. We observed that these classes have many applications. Most
notably, in the construction of vectorial bent functions weakly/strong-
ly/almost strongly outside M#. We note that our instances of vectorial
bent functions strongly outside M# have the largest (though not maxi-
mal) output space in the literature. These functions were also useful in
the construction of (n,m)-MNBC functions outside M#. We also gave
a complete classification of MNBC functions in six variables.

The fact that a bent function f is in/outside M# if and only if its
dual is in/outside M# is employed in the so-called 4-decomposition of
a bent function on Fn2 , which was originally considered by Canteaut and
Charpin [14] in terms of the second-order derivatives and later reformu-
lated in [39] in terms of the duals of its restrictions to the cosets of an
(n − 2)-dimensional subspace V . For each of the three possible cases
of this 4-decomposition of a bent function, we provide generic methods
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for designing bent functions provably outside M#. For instance, for the
elementary case of defining a bent function h(x, y1, y2) = f(x)⊕ y1y2 on
Fn+2
2 using a bent function f on Fn2 , we show that h is outside M# if and

only if f is outside M#. This approach is then generalized to the case
when two bent functions are used. More precisely, the concatenation
f1||f1||f2||(1 ⊕ f2) also gives bent functions outside M# if either f1 or
f2 is outside M#. The cases when the four restrictions of a bent func-
tion are semi-bent or 5-valued spectra functions are also considered and
several design methods of designing infinite families of bent functions
outside M#, using the spectral domain design considered in [37, 39], are
proposed.
Two well-known secondary constructions of bent functions are the direct
and indirect sum methods. We show that the direct sum, under more
relaxed conditions compared to those in [71], can generate bent functions
provably outside the completed Maiorana-McFarland class (M#). We
also show that the indirect sum method, though imposing certain condi-
tions on the initial bent functions, can be employed in the design of bent
functions outside M#. Furthermore, applying this method to suitably
chosen bent functions we construct several generic classes of homoge-
nous cubic bent functions (considered as a difficult problem) that might
posses additional properties (namely without affine derivatives and/or
outside M#). Our results significantly improve upon the best known in-
stances of this type of bent functions given by Polujan and Pott [71], and
additionally we solve an open problem in [71, Open Problem 5.1]. More
precisely, we show that one class of our homogenous cubic bent func-
tions is non-decomposable (inseparable) so that h under a non-singular
transform B cannot be represented as h(xB) = f(y)⊕ g(z). Finally, we
provide a generic class of vectorial bent functions strongly outside M#

of relatively large output dimensions, which is generally considered as a
difficult task.
The basic tools used in the research range from combinatorial to al-
gebraic cryptographic methods. In addition, we used the mathemati-
cal software Sage, Wolfram Mathematica and the Computational Al-
gebra System Magma to confirm our hypothesizes. The list of Sage
codes developed throughout the writing of the thesis can be found on
https://kripto.famnit.upr.si/sage/.
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Appendix

Sage implementation of Lemma 2.2.4:

def is_in_MM(f,n):

s=[];

for a in [1..2^n−1]:
for b in [a+1..2^n−1]:

if set(ttab(f.derivative(a).derivative(b)))=={0}:

s.append([a,b]);

G=Graph();

G.add_edges(s);

cl=list(sage.graphs.cliquer.all_cliques(G,2^(n/2)−1,2^(n/2)−1));
V=VectorSpace(GF(2),n);

V1=sorted(V);

b1=[V.subspace([V1[0]]+[V1[i] for i in s]) for s in cl];

for K in b1:

if len(K)==2^(n/2):

return True;

return False;

CCZ-inequivalent MNBC functions in six variables

Below we list representatives of CCZ-equivalence classes of MNBC func-
tions in n = 6 variables as polynomials fi : F26 → F26, where F∗

26 = ⟨a⟩
with a6 + a4 + a3 + a + 1 = 0. Note that the representatives fi of
CCZ-equivalence classes 1 ≤ i ≤ 13 are univariate representations of
the mappings x ∈ F6

2 → (F 3
i (x), 0), where F 3

i is a vectorial (6, 3)-bent
function in [72, Table A2(c)] and 0 is the null-vector. For convenience,
we sort the representatives of the first 13 CCZ-equivalence classes as in
Figure 6.1.
0-step extension:
f3. a

8x48 + a57x40 + a13x36 + a20x34 + a3x33 + a60x32 + a47x24 + a10x20 +
a45x18 + a59x17 + a35x16 + a10x12 + a2x10 + a48x9 + a47x8 + a50x6 +
a55x5 + a18x4 + a47x3 + a25x
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f6. a
35x56+ a21x52+ a10x50+ a55x49+ a41x48+ a3x44+ a18x42+ a50x41+
a22x40+ a9x38+ a20x37+ a16x36+ a34x35+ a48x34+ a62x33+ a12x32+
a26x28+a59x26+a11x24+a51x22+a51x21+a40x20+a46x19+a32x18+
a26x17 + a50x16 + a62x14 + a32x13 + a7x12 + a12x11 + a43x10 + a30x9 +
a16x8 + a62x7 + a2x6 + a34x5 + a42x3 + a23x2 + a3x

f7. a
58x56+a38x52+a27x50+a59x49+a58x48+a28x44+a16x42+a17x41+
a36x40+a23x38+a23x37+a51x36+a25x35+a52x34+a37x33+a21x32+
a10x28 + x26 + a57x25 + a16x24 + a40x22 + a4x21 + a14x20 + a38x19 +
a53x18+a45x17+a36x16+a15x14+a46x13+a29x12+a24x11+a39x10+
a37x9 + a39x8 + a50x7 + a22x6 + a6x5 + a46x4 + a36x3 + a16x2 + x

f13. a
52x56+ a42x52+ a22x50+ a28x49+ a21x48+ a4x44+ a58x42+ a57x41+
a13x40+ a26x38+ a6x37+ a53x36+ a20x35+ a51x34+ a12x33+ a37x32+
a53x28+a61x26+a53x25+a50x24+a29x22+a25x21+a14x20+a42x19+
a22x18+a24x17+a39x16+a48x14+a30x13+a41x12+a17x11+a41x10+
a16x9 + a59x8 + a23x7 + a8x6 + a53x5 + a15x4 + a28x3 + a6x2 + a46x

f2. a
34x48+a58x40+a28x36+a39x34+a14x33+a36x32+a25x24+a24x20+
a5x18 + a13x17 + a17x16 + a35x12 + a54x10 + a14x9 + a26x8 + a6x6 +
a6x5 + a57x4 + a60x3 + a50x2 + a18x

f12. a
48x56+ a9x52+ a41x50+ a25x49+ a37x48+ a38x44+ a58x42+ a61x41+
a5x40 + a5x38 + a32x37 + a58x36 + a38x35 + a6x34 + a13x33 + a61x32 +
a32x28+a23x26+a12x25+a32x22+a25x21+a15x20+a58x19+a34x18+
a8x17 + a32x16 + a35x14 + a22x13 + a60x12 + a47x11 + a3x10 + a62x9 +
a54x8 + a33x7 + a34x6 + a34x5 + a47x4 + a2x3 + a25x2 + a19x

f4. a
19x56 + a3x52 + a40x50 + a36x49 + a55x48 + a43x44 + a44x42 + a4x41 +
a32x40 + a10x38 + a15x37 + a25x36 + a7x35 + a5x34 + a11x33 + a21x32 +
a42x28+ a34x26+ a21x25+ a41x24+ a54x22+ a23x21+ a55x20+ a6x19+
a39x18+a60x17+a54x16+a22x14+a18x13+a11x12+a28x11+a48x10+
a24x9 + a56x8 + a12x7 + a48x6 + a34x5 + a12x4 + a62x3 + a20x2 + a27x

f1. a
42x48+ a23x40+ a21x36+ a27x33+ a22x32+ a57x24+ a7x20+ a26x18+
a30x17 + a30x16 + a13x12 + a29x10 + a35x9 + a45x8 + a7x6 + a14x5 +
a23x4 + ax3 + a25x2 + a19x

f5. a
13x56+a56x52+a28x50+a39x49+a53x48+a25x44+a24x42+a34x41+
a27x40+a49x38+a57x37+a16x36+a42x35+a17x34+a30x33+a32x32+
a8x28 + a61x26 + a33x25 + a41x24 + a14x22 + a55x21 + a30x20 + a2x19 +
a32x18+a29x17+a26x16+a37x14+a43x13+a56x12+a14x11+a56x10+
a30x9 + a6x8 + a53x7 + a6x6 + a21x5 + a34x4 + a6x3 + a48x2 + a11x

f9. a
56x56 + a4x52 + a42x50 + a49x49 + a22x48 + a55x44 + a60x42 + a3x41 +
a20x40+ a55x38+ a61x37+ a9x36+ a57x35+ a39x34+ a11x33+ a31x32+
a7x28 + a52x26 + a51x24 + a56x22 + a9x21 + a24x20 + a41x19 + a36x18 +
a35x17 + a56x16 + a22x14 + a8x13 + a15x12 + a37x11 + a60x10 + a18x9 +
a29x8 + a52x7 + a13x6 + a12x5 + a28x4 + a26x3 + a53x2 + a59x

f8. a
16x52 + a9x50 + a33x49 + a57x48 + a35x44 + a27x42 + a32x41 + a9x40 +
a48x38+a57x37+a42x36+a61x35+a33x34+a28x33+a35x32+a53x28+
a40x26+a56x25+a57x24+a11x22+a10x21+a25x20+a18x19+a30x18+
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a44x17+ a17x16+ a17x14+ a25x13+ a16x12+ a22x11+ a26x10+ a41x9+
a41x8 + a24x7 + a12x6 + a36x5 + ax4 + a53x3 + a4x2 + a3x

f11. a
55x56+ a39x50+ a8x49+ a14x48+ a14x44+ a27x42+ a52x41+ a18x40+
a55x38 + a46x37 + a53x36 + a56x35 + x34 + a17x33 + a35x32 + a42x28 +
a39x26 + a50x25 + a45x24 + ax22 + a10x21 + a2x20 + a62x19 + a22x18 +
a34x17 + a11x16 + a24x14 + a3x13 + a22x12 + a45x11 + a31x10 + a16x9 +
a21x8 + a44x7 + a40x6 + a48x5 + a18x4 + a46x3 + a33x2 + a3x

f10. a
55x56+ a39x50+ a8x49+ a57x48+ a14x44+ a27x42+ a52x41+ a42x40+
a55x38+ a46x37+ a32x36+ a56x35+ a24x34+ a11x33+ a8x32+ a42x28+
a39x26 + a50x25 + a48x24 + ax22 + a10x21 + a12x20 + a62x19 + a36x18 +
a19x17 + a16x16 + a24x14 + a3x13 + a29x12 + a45x11 + a24x10 + a51x9 +
a49x8 + a44x7 + a57x6 + a13x5 + a42x4 + a52x3 + a14x2 + a47x

1-step extension:
f14. a62x48+ a17x40+ a29x36+ a26x34+ a26x33+ a48x32+ a49x24+ a8x20+

a13x18 + a26x17 + a27x16 + a31x12 + a41x10 + a9x9 + a42x8 + a16x6 +
a8x5 + a25x4 + a23x3 + a11x2 + a62x

f15. a2x56+ a32x52+ a18x50+ a46x49+ a52x48+ a54x44+ a45x42+ a56x41+
a7x40 + a46x38 + a32x37 + a6x36 + a44x35 + a41x34 + a50x33 + a21x32 +
a34x28 + a49x26 + a50x25 + x24 + a60x22 + a15x21 + a34x20 + a46x19 +
a47x18 + a4x17 + a7x16 + a50x14 + a7x13 + a5x12 + a57x11 + a17x10 +
a12x9 + a17x8 + a60x6 + a2x5 + a7x4 + a23x3 + a49x2 + a34x

f16. a52x56+a43x52+a34x50+a28x49+a31x48+a60x44+a58x42+a54x41+
a46x40+ a55x38+ a9x37+ a15x36+ a20x35+ a42x34+ a54x33+ a38x32+
a53x28+a40x26+a29x25+a49x24+a62x22+a25x21+a17x20+a48x19+
a26x18 + a13x17 + a3x16 + a48x14 + a59x13 + a44x12 + a8x11 + a21x10 +
a32x9 + a43x8 + a23x7 + a20x6 + a38x5 + a49x4 + a32x3 + a27x2 + a6x

f17. a27x56+ a27x52+ a17x50+ a23x49+ a31x48+ a44x44+ a2x42+ a53x41+
a29x40+ a48x38+ a23x37+ a24x36+ a26x35+ a43x34+ a17x33+ a8x32+
a4x28 + a20x26 + a2x25 + a30x24 + a7x22 + a49x21 + a39x20 + a26x19 +
a24x18+a62x17+a37x16+a49x14+a53x13+a37x12+a37x11+a28x10+
a2x9 + a51x8 + a53x7 + a45x6 + a18x5 + a38x4 + a34x3 + a52x2 + a15x

f18. a20x56 + a4x52 + a41x50 + a37x49 + a8x48 + a44x44 + a45x42 + a5x41 +
a12x40+ a11x38+ a16x37+ a61x36+ a8x35+ a34x34+ a37x33+ a35x32+
a43x28+ a35x26+ a22x25+ a59x24+ a55x22+ a24x21+ a30x20+ a7x19+
a52x18+a25x17+a22x16+a23x14+a19x13+a26x12+a29x11+a26x10+
a26x9 + a18x8 + a13x7 + a52x6 + a7x5 + a51x4 + a50x3 + a37x2 + a22x

f19. a15x56+ a25x52+ a33x49+ a14x48+ a61x44+ a18x42+ a14x41+ a2x40+
a39x38+a27x37+a55x36+a53x35+a62x34+a17x33+a22x32+a20x28+
a9x26 + a2x25 + a45x24 + a34x22 + a26x21 + a19x20 + a43x19 + a14x18 +
a59x17+ a24x16+ a45x14+ a46x13+ a22x12+ a62x11+ a49x10+ a47x9+
a6x8 + a27x7 + a40x6 + a16x5 + a22x4 + a46x3 + a58x2 + a32x

f20. a20x56 + a4x52 + a41x50 + a37x49 + a46x48 + a44x44 + a45x42 + a5x41 +
a46x40 + a11x38 + a16x37 + a57x36 + a8x35 + ax34 + a11x33 + a48x32 +
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a43x28+ a35x26+ a22x25+ a16x24+ a55x22+ a24x21+ a44x20+ a7x19+
a14x18 + a34x17 + a6x16 + a23x14 + a19x13 + ax12 + a29x11 + a10x10 +
a31x9 + a19x8 + a13x7 + a49x6 + a33x5 + a41x4 + a23x3 + a59x2 + a34x

f21. a42x48+a47x40+a30x36+a58x34+a27x33+a55x32+a57x24+a32x20+
a22x18 + a58x17 + a5x16 + a13x12 + a59x10 + a60x9 + a22x8 + a7x6 +
a59x5 + a48x4 + ax3 + ax2 + a23x

f22. a20x56 + a4x52 + a41x50 + x48 + a44x44 + a45x42 + a59x41 + a31x40 +
a11x38 + a43x37 + a6x36 + a17x35 + a55x34 + a2x33 + a58x32 + a43x28 +
a35x26+a31x25+a17x24+a55x22+a15x21+a45x20+a52x19+a47x18+
a10x17 + a32x16 + a23x14 + ax13 + a19x12 + a47x11 + a20x10 + a12x9 +
a56x8 + a49x7 + a31x6 + a24x5 + a44x4 + a37x3 + a13x2 + a3x

f23. a21x56+ a16x52+ a31x50+ a23x49+ a62x48+ a10x44+ a3x42+ a49x41+
a23x40+a44x38+a40x37+a32x36+a23x35+a56x34+a23x33+a22x32+
a12x28+ a41x26+ a45x25+ a6x24+ a38x22+ a20x21+ a58x20+ a32x19+
a46x18 + a8x17 + a45x16 + a39x14 + a60x13 + a29x12 + a48x11 + x10 +
a39x9 + a62x8 + ax7 + a28x6 + a50x5 + a49x4 + a56x3 + a33x2 + a52x

f24. a30x56+a53x52+a53x50+a11x49+a48x48+a13x44+a18x42+a26x41+
a55x40+ a43x38+ a8x37+ a52x36+ a51x35+ a18x34+ a29x33+ a62x32+
a15x28+ a58x26+ a24x25+ a30x24+ a5x22+ a26x21+ a24x20+ a12x19+
a48x18+ a15x17+ a50x16+ a5x14+ a24x13+ a46x12+ a47x11+ a24x10+
a56x9 + a18x8 + a50x7 + a22x5 + a35x4 + a55x3 + a47x2 + a51x

f25. a9x56 + a55x52 + a42x50 + a6x49 + a24x48 + a56x44 + a18x42 + a28x41 +
a8x40 + a11x38 + a9x37 + a19x36 + a42x35 + a28x34 + a33x33 + a23x32 +
a4x28 + ax26 + a21x25 + a2x24 + a55x22 + a26x21 + a13x20 + a39x19 +
a21x18+a35x17+x16+a2x14+ax13+a18x12+a18x11+a33x10+a55x9+
a15x8 + a33x7 + a58x6 + a52x5 + a24x4 + x3 + a8x2 + a57x

f26. a9x56 + a55x52 + a42x50 + a6x49 + a62x48 + a56x44 + a18x42 + a28x41 +
a30x40 + a11x38 + a9x37 + a13x36 + a42x35 + a15x34 + a4x33 + a13x32 +
a4x28 + ax26 + a21x25 + a34x24 + a55x22 + a26x21 + a11x20 + a39x19 +
a43x17 + a33x16 + a2x14 + ax13 + a23x12 + a18x11 + a38x10 + a49x9 +
a58x8 + a33x7 + a50x6 + a18x5 + a28x4 + a5x3 + a19x2 + a5x

f27. a34x56+ a15x52+ a36x50+ a61x49+ a9x48+ a20x44+ a44x42+ a61x41+
a10x40+a10x38+a11x37+a52x36+a11x35+a14x34+a23x33+a16x32+
x28 + a50x26 + a58x25 + a44x24 + a13x22 + a11x21 + a52x20 + a48x19 +
a48x18+ a38x17+ a36x16+ a41x14+ a50x13+ a43x12+ a46x11+ a4x10+
a56x9 + a42x8 + a57x7 + a61x6 + a19x5 + a3x4 + a43x3 + a22x2 + a34x

f28. a55x56+ a35x52+ a43x50+ a8x49+ a49x48+ a32x44+ a27x42+ a23x41+
a56x40+a26x38+a28x37+a15x36+a56x35+a26x34+a31x33+a60x32+
a42x28+a13x26+a44x25+a55x24+a14x22+a10x21+a60x20+a25x19+
a26x18+a20x17+a54x16+a24x14+a10x13+a50x12+a32x11+a29x10+
a32x9 + a3x8 + a44x7 + a34x6 + a26x5 + a7x4 + a22x3 + a4x2 + a21x

f29. a55x56+ a35x52+ a43x50+ a8x49+ a56x48+ a32x44+ a27x42+ a23x41+
a14x40+ a26x38+ a28x37+ a40x36+ a56x35+ a19x34+ a53x33+ a3x32+
a42x28+ a13x26+ a44x25+ a9x24+ a14x22+ a10x21+ a41x20+ a25x19+
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a55x18 + a27x17 + a2x16 + a24x14 + a10x13 + a5x12 + a32x11 + a4x10 +
a29x9 + a50x8 + a44x7 + a49x6 + a61x5 + a31x4 + a16x3 + a36x2 + a61x

f30. a55x56+ a35x52+ a43x50+ a8x49+ a35x48+ a32x44+ a27x42+ a23x41+
a6x40+ a26x38+ a28x37+ a46x36+ a56x35+ a60x34+ a57x33+ a54x32+
a42x28+ a13x26+ a44x25+ a5x24+ a14x22+ a10x21+ a46x20+ a25x19+
a15x18+a58x17+a44x16+a24x14+a10x13+a24x12+a32x11+a42x10+
a9x9 + a56x8 + a44x7 + a7x6 + a44x5 + a19x4 + a12x3 + a29x2 + a44x

2-step extension:

f31. a21x56 + a5x52 + a42x50 + a38x49 + a24x48 + a45x44 + a46x42 + a6x41 +
a24x40 + a12x38 + a17x37 + a10x36 + a9x35 + a3x34 + a19x33 + a35x32 +
a44x28+ a36x26+ a23x25+ a55x24+ a56x22+ a25x21+ a17x20+ a8x19+
a58x18 + a2x17 + a42x16 + a24x14 + a20x13 + a37x12 + a30x11 + a5x9 +
a57x8 + a14x7 + a53x6 + a31x5 + a53x4 + a62x3 + a52x2 + a19x

f32. ax48 + a29x36 + a57x34 + a12x33 + a12x32 + a6x24 + a27x20 + a40x18 +
a23x17 + a55x16 + a2x12 + a9x10 + a34x9 + a49x8 + a24x6 + a39x5 +
a41x4 + a42x3 + a21x2 + a30x

f33. a14x56 + a9x52 + a24x50 + a62x49 + a11x48 + a3x44 + a59x42 + a15x41 +
a11x40+a37x38+a34x37+a36x36+a10x35+a18x34+a12x33+a61x32+
a5x28 + a34x26 + a27x25 + a56x24 + a31x22 + a18x21 + a3x20 + a10x19 +
a25x18+ a48x17+ a52x16+ a32x14+ a3x13+ a44x12+ a15x11+ a13x10+
a8x9 + a46x8 + a43x7 + a8x6 + a6x5 + a8x4 + a53x3 + a52x2 + a35x

f34. a14x56 + a9x52 + a24x50 + a62x49 + a61x48 + a3x44 + a59x42 + a15x41 +
a57x40+a37x38+a34x37+a36x36+a10x35+a35x34+a14x33+a23x32+
a5x28 + a34x26 + a27x25 + a17x24 + a31x22 + a18x21 + ax20 + a10x19 +
a25x18 + ax17 + a13x16 + a32x14 + a3x13 + a14x12 + a15x11 + a29x10 +
a8x9 + a61x8 + a43x7 + a12x6 + a30x5 + a23x4 + a39x3 + a4x2 + a32x

f35. a28x52+ a54x50+ a57x49+ a53x48+ a14x44+ a40x42+ a43x41+ a2x40+
a40x38+a28x37+a61x36+a25x35+a29x34+a31x33+a51x32+a40x28+
a3x26 + a6x25 + a51x24 + a29x22 + a50x21 + a39x20 + a49x19 + a3x18 +
a11x17 + a32x16 + a58x14 + a8x13 + a49x12 + a21x11 + a16x10 + a61x9 +
a11x8 + a4x7 + a4x6 + a33x5 + a46x4 + a38x2 + a55x

f36. a51x56 + x52 + a25x50 + a52x49 + a27x48 + a45x44 + a30x42 + a11x41 +
a9x40 + a46x38 + a2x37 + a10x36 + a50x35 + a50x34 + a5x33 + a26x32 +
a8x28 + a15x26 + a54x25 + a23x24 + a45x22 + a27x21 + a5x20 + a51x19 +
a41x18 + a33x17 + a8x16 + a9x14 + a51x13 + a54x12 + a53x11 + x10 +
a42x9 + a16x8 + a19x7 + a41x6 + a47x5 + x4 + a50x3 + a13x2 + a11x

f37. a51x56 + x52 + a25x50 + a52x49 + a43x48 + a45x44 + a30x42 + a11x41 +
a46x38 + a2x37 + a30x36 + a50x35 + a30x34 + a2x33 + a48x32 + a8x28 +
a15x26+a54x25+a19x24+a45x22+a27x21+a43x20+a51x19+a47x18+
a62x17 + a13x16 + a9x14 + a51x13 + a24x12 + a53x11 + a42x10 + a37x9 +
a46x8 + a19x7 + a49x6 + a57x5 + a29x4 + a4x3 + a36x2 + a24x

3-step extension:
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f38. a22x56 + a6x52 + a43x50 + a39x49 + a35x48 + a46x44 + a47x42 + a7x41 +
a36x40+ a13x38+ a18x37+ a46x36+ a10x35+ a21x34+ a46x33+ a3x32+
a45x28+ a37x26+ a24x25+ a51x24+ a57x22+ a26x21+ a22x20+ a9x19+
a9x18+ a52x17+ a12x16+ a25x14+ a21x13+ a52x12+ a31x11+ a49x10+
a49x9 + a10x8 + a15x7 + a50x6 + a34x5 + a11x4 + a50x3 + x2 + a25x

f39. a15x40+ a46x36+ a34x34+ a31x33+ a54x32+ a16x24+ a49x20+ a9x18+
a9x17+ax16+a51x12+a14x10+a49x9+a55x8+a13x6+a61x5+a33x4+
a39x3 + a59x2 + a26x

f40. a23x56+ a15x52+ a12x50+ a55x49+ a45x48+ a61x44+ a9x42+ a20x41+
a57x40+a3x38+a3x37+a6x36+a37x35+a40x34+a61x33+x32+a20x28+
a54x26+ a9x25+ a15x24+ a52x22+ a41x21+ a48x20+ a56x19+ a52x18+
a13x17 + a15x16 + a17x14 + a22x13 + a20x12 + a59x11 + a56x10 + a6x9 +
ax8 + a52x7 + a59x6 + a46x5 + a36x4 + a4x3 + a4x2 + a49x

ANF representations of certain bent functions:

x0x1x2x4 ⊕ x0x1x2x6 ⊕ x0x1x3x4 ⊕ x0x1x3x5 ⊕ x0x1x3x7 ⊕ x0x1x4x5 ⊕
x0x1x4x7 ⊕ x0x1x4 ⊕ x0x1x5x7 ⊕ x0x1x6x7 ⊕ x0x2x3x6 ⊕ x0x2x3x7 ⊕
x0x2x4x5 ⊕ x0x2x5x6 ⊕ x0x2x5x7 ⊕ x0x2x5 ⊕ x0x2x6x7 ⊕ x0x3x4x6 ⊕
x0x3x4x7⊕x0x3x4⊕x0x3x5x7⊕x0x3x6x7⊕x0x3x6⊕x0x3x7⊕x0x4x5x6⊕
x0x4x5⊕x0x4x6⊕x0x5x6x7⊕x0x5x6⊕x0x5x7⊕x0x7⊕x1x2x3x5⊕x1x2x3x6⊕
x1x2x4x5⊕x1x2x4x6⊕x1x2x4⊕x1x2x5x6⊕x1x2x5⊕x1x2x6x7⊕x1x2x7⊕
x1x3x4x7 ⊕ x1x3x5x6 ⊕ x1x3x5 ⊕ x1x3x6 ⊕ x1x3x7 ⊕ x1x4x6x7 ⊕ x1x4x7 ⊕
x1x4⊕x1x5x6⊕x1x5x7⊕x1x6⊕x2x3x4x5⊕x2x3x4x7⊕x2x3x4⊕x2x3x5x6⊕
x2x3x5x7 ⊕ x2x3x5 ⊕ x2x4x5x6 ⊕ x2x4x5x7 ⊕ x2x4x5 ⊕ x2x4x7 ⊕ x2x4 ⊕
x2x6x7 ⊕ x2x7 ⊕ x3x4x5x7 ⊕ x3x4x6x7 ⊕ x3x5x6 ⊕ x3x5 ⊕ x3x6x7 ⊕ x3x6

(9.1)

x0x1x2x6 + x0x1x2x7 + x0x1x2x8x9 + x0x1x2x8x10 + x0x1x2x9x11 +
x0x1x2x10x11 + x0x1x3x4 + x0x1x3x5 + x0x1x4 + x0x1x7 + x0x1x8x9 +
x0x1x8x10+x0x1x9x11+x0x1x10x11+x0x2x3x6+x0x2x4+x0x2x5+x0x2x7+
x0x2x8x9+x0x2x8x10+x0x2x9x11+x0x2x10x11+x0x3x4+x0x3x5+x0x3x6+
x0x3x7+x0x3x8x9+x0x3x8x10+x0x3x9x11+x0x3x10x11+x0x6+x1x2x3x4+
x1x2x4+x1x2x6+x1x3x5+x1x3x6+x1x5+x1x6+x1x7+x1x8x9+x1x8x10+
x1x9x11 + x1x10x11 + x2x3x4 + x2x3x5 + x2x3x6 + x2x4 + x2x6 + x2x7 +
x2x8x9 + x2x8x10 + x2x9x11 + x2x10x11 + x3x4 + x4x5x6x7 + x4x5x6x8x9 +
x4x5x6x8x10+x4x5x6x9x11+x4x5x6x10x11+x4x5x6+x4x5x7+x4x5x8x9+
x4x5x8x10+x4x5x9x11+x4x5x10x11+x4x5+x4x6x7+x4x6x8x9+x4x6x8x10+
x4x6x9x11 + x4x6x10x11 + x4x6 + x4x7 + x4x8x9 + x4x8x10 + x4x9x11 +
x4x10x11+x4+x5x6x7+x5x6x8x9+x5x6x8x10+x5x6x9x11+x5x6x10x11+
x5x6+x5x7+x5x8x9+x5x8x10+x5x9x11+x5x10x11+x5+x6x7+x6x8x9+
x6x8x10 + x6x9x11 + x6x10x11 + x6 + x7 + x8x10 + x9x11 + 1

(9.2)

x0x1x2x5⊕x0x1x2x6⊕x0x1x3x6⊕x0x1x3x7⊕x0x1x3x8x9⊕x0x1x3x8x10⊕
x0x1x3x9x11 ⊕ x0x1x3x10x11 ⊕ x0x1x4x6 ⊕ x0x1x4x7 ⊕ x0x1x4x8x9 ⊕



164 APPENDIX

x0x1x4x8x10⊕x0x1x4x9x11⊕x0x1x4x10x11⊕x0x1x4⊕x0x1x5x6⊕x0x1x6x7⊕
x0x1x6x8x9 ⊕ x0x1x6x8x10 ⊕ x0x1x6x9x11 ⊕ x0x1x6x10x11 ⊕ x0x1x6 ⊕
x0x2x3x5 ⊕ x0x2x4x7 ⊕ x0x2x4x8x9 ⊕ x0x2x4x8x10 ⊕ x0x2x4x9x11 ⊕
x0x2x4x10x11 ⊕ x0x2x5x6 ⊕ x0x2x5 ⊕ x0x2x6 ⊕ x0x2x7 ⊕ x0x2x8x9 ⊕
x0x2x8x10⊕x0x2x9x11⊕x0x2x10x11⊕x0x3x4x5⊕x0x3x4x7⊕x0x3x4x8x9⊕
x0x3x4x8x10 ⊕ x0x3x4x9x11 ⊕ x0x3x4x10x11 ⊕ x0x3x4 ⊕ x0x3x5x7 ⊕
x0x3x5x8x9 ⊕ x0x3x5x8x10 ⊕ x0x3x5x9x11 ⊕ x0x3x5x10x11 ⊕ x0x3x6x7 ⊕
x0x3x6x8x9 ⊕ x0x3x6x8x10 ⊕ x0x3x6x9x11 ⊕ x0x3x6x10x11 ⊕ x0x4x5x7 ⊕
x0x4x5x8x9 ⊕ x0x4x5x8x10 ⊕ x0x4x5x9x11 ⊕ x0x4x5x10x11 ⊕ x0x4x6x7 ⊕
x0x4x6x8x9 ⊕ x0x4x6x8x10 ⊕ x0x4x6x9x11 ⊕ x0x4x6x10x11 ⊕ x0x4x6 ⊕
x0x4x7 ⊕ x0x4x8x9 ⊕ x0x4x8x10 ⊕ x0x4x9x11 ⊕ x0x4x10x11 ⊕ x0x5x7 ⊕
x0x5x8x9 ⊕ x0x5x8x10 ⊕ x0x5x9x11 ⊕ x0x5x10x11 ⊕ x0x5 ⊕ x0x6x7 ⊕
x0x6x8x9 ⊕ x0x6x8x10 ⊕ x0x6x9x11 ⊕ x0x6x10x11 ⊕ x0x7 ⊕ x0x8x9 ⊕
x0x8x10 ⊕ x0x9x11 ⊕ x0x10x11 ⊕ x1x2x3x4 ⊕ x1x2x3x7 ⊕ x1x2x3x8x9 ⊕
x1x2x3x8x10 ⊕ x1x2x3x9x11 ⊕ x1x2x3x10x11 ⊕ x1x2x4x5 ⊕ x1x2x4x6 ⊕
x1x2x4⊕x1x2x5x6⊕x1x2x5x7⊕x1x2x5x8x9⊕x1x2x5x8x10⊕x1x2x5x9x11⊕
x1x2x5x10x11 ⊕ x1x2x5 ⊕ x1x2x7 ⊕ x1x2x8x9 ⊕ x1x2x8x10 ⊕ x1x2x9x11 ⊕
x1x2x10x11⊕x1x3x4x5⊕x1x3x4x6⊕x1x3x4x7⊕x1x3x4x8x9⊕x1x3x4x8x10⊕
x1x3x4x9x11 ⊕ x1x3x4x10x11 ⊕ x1x3x5 ⊕ x1x3x6x7 ⊕ x1x3x6x8x9 ⊕
x1x3x6x8x10⊕x1x3x6x9x11⊕x1x3x6x10x11⊕x1x3x6⊕x1x3x7⊕x1x3x8x9⊕
x1x3x8x10⊕x1x3x9x11⊕x1x3x10x11⊕x1x4x5x6⊕x1x4x5x7⊕x1x4x5x8x9⊕
x1x4x5x8x10 ⊕ x1x4x5x9x11 ⊕ x1x4x5x10x11 ⊕ x1x5x6 ⊕ x1x6 ⊕ x1x7 ⊕
x1x8x9⊕x1x8x10⊕x1x9x11⊕x1x10x11⊕x2x3x4x5⊕x2x3x4x6⊕x2x3x5x6⊕
x2x3x6x7 ⊕ x2x3x6x8x9 ⊕ x2x3x6x8x10 ⊕ x2x3x6x9x11 ⊕ x2x3x6x10x11 ⊕
x2x3x6 ⊕ x2x3x7 ⊕ x2x3x8x9 ⊕ x2x3x8x10 ⊕ x2x3x9x11 ⊕ x2x3x10x11 ⊕
x2x4x5x6 ⊕ x2x4x6x7 ⊕ x2x4x6x8x9 ⊕ x2x4x6x8x10 ⊕ x2x4x6x9x11 ⊕
x2x4x6x10x11 ⊕ x2x4x6 ⊕ x2x4 ⊕ x2x5x6x7 ⊕ x2x5x6x8x9 ⊕ x2x5x6x8x10 ⊕
x2x5x6x9x11⊕x2x5x6x10x11⊕x2x5x7⊕x2x5x8x9⊕x2x5x8x10⊕x2x5x9x11⊕
x2x5x10x11 ⊕ x2x7 ⊕ x2x8x9 ⊕ x2x8x10 ⊕ x2x9x11 ⊕ x2x10x11 ⊕ x3x4x5x7 ⊕
x3x4x5x8x9 ⊕ x3x4x5x8x10 ⊕ x3x4x5x9x11 ⊕ x3x4x5x10x11 ⊕ x3x4x6 ⊕
x3x5x6x7 ⊕ x3x5x6x8x9 ⊕ x3x5x6x8x10 ⊕ x3x5x6x9x11 ⊕ x3x5x6x10x11 ⊕
x3x5x6⊕x3x5⊕x3x6x7⊕x3x6x8x9⊕x3x6x8x10⊕x3x6x9x11⊕x3x6x10x11⊕
x3x6 ⊕ x8x9 ⊕ x10x11

(9.3)

f(x0, . . . , x11) = x0x1x2x3x8 ⊕ x0x1x2x3x9 ⊕ x0x1x2x4x8 ⊕ x0x1x2x4x9 ⊕
x0x1x2x5x8 ⊕ x0x1x2x5x9 ⊕ x0x1x2x5 ⊕ x0x1x2x6x8 ⊕ x0x1x2x6x9 ⊕
x0x1x2x6⊕x0x1x2x7x8⊕x0x1x2x7x9⊕x0x1x2x7⊕x0x1x2x8⊕x0x1x2x9⊕
x0x1x2 ⊕ x0x1x3x6x8 ⊕ x0x1x3x6x9 ⊕ x0x1x3x6 ⊕ x0x1x3x8 ⊕ x0x1x3x9 ⊕
x0x1x4x5⊕x0x1x4x6x8⊕x0x1x4x6x9⊕x0x1x4x6⊕x0x1x4x7⊕x0x1x4x8⊕
x0x1x4x9 ⊕ x0x1x4 ⊕ x0x1x5x6x8 ⊕ x0x1x5x6x9 ⊕ x0x1x5x6 ⊕ x0x1x5x8 ⊕
x0x1x5x9⊕x0x1x6x7x8⊕x0x1x6x7x9⊕x0x1x6x7⊕x0x1x6x8⊕x0x1x6x9⊕
x0x1x6⊕x0x1x7x8⊕x0x1x7x9⊕x0x1x7⊕x0x1x8⊕x0x1x9⊕x0x2x3x4x8⊕
x0x2x3x4x9⊕x0x2x3x5⊕x0x2x3x6x8⊕x0x2x3x6x9⊕x0x2x3x6⊕x0x2x3x7⊕
x0x2x3x8⊕x0x2x3x9⊕x0x2x3⊕x0x2x4x5x8⊕x0x2x4x5x9⊕x0x2x4x7x8⊕
x0x2x4x7x9⊕x0x2x4x8⊕x0x2x4x9⊕x0x2x4⊕x0x2x5x6x8⊕x0x2x5x6x9⊕
x0x2x5x6⊕x0x2x5x7⊕x0x2x5x8⊕x0x2x5x9⊕x0x2x6x7x8⊕x0x2x6x7x9⊕
x0x2x6x7 ⊕ x0x2x6x8 ⊕ x0x2x6x9 ⊕ x0x2x6 ⊕ x0x2x7x8 ⊕ x0x2x7x9 ⊕
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x0x2x8⊕x0x2x9⊕x0x2⊕x0x3x4x6x8⊕x0x3x4x6x9⊕x0x3x4x6⊕x0x3x4x7⊕
x0x3x4x8⊕x0x3x4x9⊕x0x3x6x8⊕x0x3x6x9⊕x0x3x7⊕x0x3x8⊕x0x3x9⊕
x0x3 ⊕ x0x4x5x6x8 ⊕ x0x4x5x6x9 ⊕ x0x4x5x6 ⊕ x0x4x5x8 ⊕ x0x4x5x9 ⊕
x0x4x6x7x8⊕x0x4x6x7x9⊕x0x4x6x7⊕x0x4x6x8⊕x0x4x6x9⊕x0x4x7x8⊕
x0x4x7x9 ⊕ x0x4x7 ⊕ x0x4x8 ⊕ x0x4x9 ⊕ x0x4 ⊕ x0x5x6x8 ⊕ x0x5x6x9 ⊕
x0x5x8 ⊕ x0x5x9 ⊕ x0x5 ⊕ x0x6x7x8 ⊕ x0x6x7x9 ⊕ x0x6x8 ⊕ x0x6x9 ⊕
x0x6 ⊕ x0x7x8 ⊕ x0x7x9 ⊕ x0x7 ⊕ x0x8 ⊕ x0x9 ⊕ x1x2x3x4 ⊕ x1x2x3x5x8 ⊕
x1x2x3x5x9⊕x1x2x3x5⊕x1x2x3x6x8⊕x1x2x3x6x9⊕x1x2x3x6⊕x1x2x3x8⊕
x1x2x3x9 ⊕ x1x2x4x5x8 ⊕ x1x2x4x5x9 ⊕ x1x2x4x6x8 ⊕ x1x2x4x6x9 ⊕
x1x2x4x6 ⊕ x1x2x4x7 ⊕ x1x2x4x8 ⊕ x1x2x4x9 ⊕ x1x2x5x6 ⊕ x1x2x5x7x8 ⊕
x1x2x5x7x9 ⊕ x1x2x5x7 ⊕ x1x2x5x8 ⊕ x1x2x5x9 ⊕ x1x2x5 ⊕ x1x2x6x7x8 ⊕
x1x2x6x7x9 ⊕ x1x2x6x8 ⊕ x1x2x6x9 ⊕ x1x2x6 ⊕ x1x2x7x8 ⊕ x1x2x7x9 ⊕
x1x2x7 ⊕ x1x2x8 ⊕ x1x2x9 ⊕ x1x2 ⊕ x1x3x4x5 ⊕ x1x3x4x6 ⊕ x1x3x4x7 ⊕
x1x3x5x6x8⊕x1x3x5x6x9⊕x1x3x5x6⊕x1x3x5x8⊕x1x3x5x9⊕x1x3x6x8⊕
x1x3x6x9 ⊕ x1x3x7 ⊕ x1x3x8 ⊕ x1x3x9 ⊕ x1x4x5x6x8 ⊕ x1x4x5x6x9 ⊕
x1x4x5x6 ⊕ x1x4x5x8 ⊕ x1x4x5x9 ⊕ x1x4x6x8 ⊕ x1x4x6x9 ⊕ x1x4x7 ⊕
x1x4x8 ⊕ x1x4x9 ⊕ x1x5x6x7x8 ⊕ x1x5x6x7x9 ⊕ x1x5x6x7 ⊕ x1x5x6x8 ⊕
x1x5x6x9 ⊕ x1x5x7x8 ⊕ x1x5x7x9 ⊕ x1x5x8 ⊕ x1x5x9 ⊕ x1x5 ⊕ x1x6x7x8 ⊕
x1x6x7x9 ⊕ x1x6x7 ⊕ x1x6x8 ⊕ x1x6x9 ⊕ x1x6 ⊕ x1x7x8 ⊕ x1x7x9 ⊕ x1x8 ⊕
x1x9⊕x2x3x4x5x8⊕x2x3x4x5x9⊕x2x3x4x6x8⊕x2x3x4x6x9⊕x2x3x4x6⊕
x2x3x4x8⊕x2x3x4x9⊕x2x3x5x6x8⊕x2x3x5x6x9⊕x2x3x5x6⊕x2x3x5x7⊕
x2x3x5x8 ⊕ x2x3x5x9 ⊕ x2x3x5 ⊕ x2x3x6x7 ⊕ x2x3x6x8 ⊕ x2x3x6x9 ⊕
x2x3x6⊕x2x3x8⊕x2x3x9⊕x2x3⊕x2x4x5x6x8⊕x2x4x5x6x9⊕x2x4x5x7x8⊕
x2x4x5x7x9 ⊕ x2x4x5x7 ⊕ x2x4x5x8 ⊕ x2x4x5x9 ⊕ x2x4x5 ⊕ x2x4x6x7x8 ⊕
x2x4x6x7x9 ⊕ x2x4x6x7 ⊕ x2x4x6x8 ⊕ x2x4x6x9 ⊕ x2x4x7x8 ⊕ x2x4x7x9 ⊕
x2x4x8 ⊕ x2x4x9 ⊕ x2x5x6x7x8 ⊕ x2x5x6x7x9 ⊕ x2x5x6x7 ⊕ x2x5x6x8 ⊕
x2x5x6x9 ⊕ x2x5x6 ⊕ x2x5x7x8 ⊕ x2x5x7x9 ⊕ x2x5x7 ⊕ x2x5x8 ⊕ x2x5x9 ⊕
x2x5⊕x2x6x7x8⊕x2x6x7x9⊕x2x6x8⊕x2x6x9⊕x2x7x8⊕x2x7x9⊕x2x8⊕
x2x9 ⊕ x2 ⊕ x3x4x5x6x8 ⊕ x3x4x5x6x9 ⊕ x3x4x5x8 ⊕ x3x4x5x9 ⊕ x3x4x5 ⊕
x3x4x6x7⊕x3x4x6x8⊕x3x4x6x9⊕x3x4x6⊕x3x4x8⊕x3x4x9⊕x3x5x6x8⊕
x3x5x6x9⊕x3x5x7⊕x3x5x8⊕x3x5x9⊕x3x6x8⊕x3x6x9⊕x3x7⊕x3x8⊕x3x9⊕
x4x5x6x7x8⊕x4x5x6x7x9⊕x4x5x6x8⊕x4x5x6x9⊕x4x5x7x8⊕x4x5x7x9⊕
x4x5x8⊕x4x5x9⊕x4x5⊕x4x6x7x8⊕x4x6x7x9⊕x4x6x7⊕x4x6x8⊕x4x6x9⊕
x4x6⊕x4x7x8⊕x4x7x9⊕x4x8⊕x4x9⊕x4⊕x5x6x7x8⊕x5x6x7x9⊕x5x6x7⊕
x5x6x8⊕ x5x6x9⊕ x5x7x8⊕ x5x7x9⊕ x5x7⊕ x5x8⊕ x5x9⊕ x5⊕ x6x7x8⊕
x6x7x9⊕x6x7⊕x6x8⊕x6x9⊕x6⊕x7x8⊕x7x9⊕x8x11⊕x8⊕x9x10⊕x9⊕1

(9.4)

The base64 representations of h0 and h1 in Example 8.3.4:
AE0eU3Q5aicATR5TdDlqJwBNHlN0OWonAE0eU3Q5aicATR5TdDlqJwBNHlN0OWonA
E0eU3Q5aicATR5TdDlqJwBNHlN0OWon/6yVxtiLsuEAU2o5J3RNHv+y4ayLxpXYAE0e
U3Q5aif/rJXG2Iuy4QBTajkndE0e/7LhrIvGldgATR5TdDlqJwBTajkndE0eAE0eU3Q5aicA
U2o5J3RNHv+y4ayLxpXY/6yVxtiLsuH/suGsi8aV2P+slcbYi7LhAE0eU3Q5aif/suGsi8aV2
ABTajkndE0e/6yVxtiLsuH/suGsi8aV2ABNHlN0OWon/6yVxtiLsuEAU2o5J3RNHgBNHlN
0OWonAE0eU3Q5aif/suGsi8aV2P+y4ayLxpXYAFNqOSd0TR4AU2o5J3RNHv+slcbYi7Lh
/6yVxtiLsuEATR5TdDlqJ/+slcbYi7Lh/6yVxtiLsuEATR5TdDlqJwBTajkndE0e/7LhrIvGl
dj/suGsi8aV2ABTajkndE0eAE0eU3Q5aicAU2o5J3RNHv+y4ayLxpXY/6yVxtiLsuH/rJXG
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2Iuy4f+y4ayLxpXYAFNqOSd0TR4ATR5TdDlqJwBNHlN0OWon/7LhrIvGldj/rJXG2Iuy4
QBTajkndE0e/6yVxtiLsuEAU2o5J3RNHgBNHlN0OWon/7LhrIvGldg=

(9.5)

ACc5Hk1qdFMAJzkeTWp0UwAnOR5NanRTACc5Hk1qdFMAJzkeTWp0UwAnOR5NanR
TACc5Hk1qdFMAJzkeTWp0UwAnOR5NanRTACc5Hk1qdFP/xrKL4dislf/Gsovh2KyVAD
lNdB4nU2oAOU10HidTav/YxuGylYus/9jG4bKVi6wAJzkeTWp0U//Gsovh2KyVADlNdB
4nU2r/2MbhspWLrP/Gsovh2KyVACc5Hk1qdFP/2MbhspWLrAA5TXQeJ1NqACc5Hk1qd
FP/xrKL4dislf/YxuGylYusADlNdB4nU2r/2MbhspWLrAA5TXQeJ1NqACc5Hk1qdFP/xr
KL4dislQAnOR5NanRTADlNdB4nU2r/xrKL4dislf/YxuGylYus/9jG4bKVi6z/xrKL4dislQA
5TXQeJ1NqACc5Hk1qdFMAJzkeTWp0UwA5TXQeJ1NqACc5Hk1qdFMAOU10HidTav/G
sovh2KyV/9jG4bKVi6z/xrKL4dislf/YxuGylYusACc5Hk1qdFP/2MbhspWLrP/YxuGylYus
ACc5Hk1qdFMAOU10HidTav/Gsovh2KyV/8ayi+HYrJUAOU10HidTagAnOR5NanRT/9j
G4bKVi6wAOU10HidTav/Gsovh2KyVACc5Hk1qdFP/2MbhspWLrAA5TXQeJ1Nq/8ayi+
HYrJU=

(9.6)

Proof of Theorem 8.1.18

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that r-ind(h) <
(n +m)/2, by using Definitions 8.1.2 and 8.1.3. We need to show that
there does not exist an (n+m2 )-dimensional subspace V of Fn+m2 such that

D(a(1),b(1))D(a(2),b(2))h = constant,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . There are three cases to be considered.
(i) For dim ({x|(x, y) ∈ V }) > n/2, the proof is same with the proof of

Theorem 8.1.15.
(ii) If dim({x|(x, y) ∈ V }) = n/2, then there are three cases to be

considered.
(a) For dim({y|(x, y) ∈ V }) = m/2, the proof is same with the

proof of Theorem 8.1.15.
(b) For m/2 < dim({y|(x, y) ∈ V }) < (n+m)/2, the proof is same

with the proof of Theorem 8.1.15.
(c) For dim({y|(x, y) ∈ V }) = (n+m)/2, we have {y|(a1, y) ∈

V } ∩ {y|(a2, y) ∈ V } = ∅ for arbitrary a1, a2 ∈ {x|(x, y) ∈
V }, a1 ̸= a2 and dim({y|(0n, y) ∈ V }) = m/2. Since
dim({α|Dα(f1 ⊕ f2) = 0}) = n − 1 and dim({x|(x, y) ∈ V }) =
n/2, we can select one nonzero vector a ∈ {x|(x, y) ∈ V } such
that Da(f1 ⊕ f2) = 0. Further,

dim({(0n, y)|(0n, y) ∈ V } ∪ {(a, y)|(a, y) ∈ V }) = m/2 + 1.



APPENDIX 167

Thus, from r-ind(g1) < m/2 + 1, we can select two vectors
(a(1), b(1)), (a(2), b(2)) ∈ {(0n, y)|(0n, y) ∈ V }∪{(a, y)|(a, y) ∈ V }
such that

Db(1)Db(2)g1(y) ̸= constant.

From (8.11), we have

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) ̸= constant.
(9.7)

(iii) If dim({x|(x, y) ∈ V }) < n/2, then we have dim({y|(x, y) ∈ V }) ≥
m/2 + 1. Further, we have dim({y|(0, y) ∈ V }) ≥ m/2 + 1 since
dim(V ) = (n + m)/2. Hence, from r-ind(g1) < m/2 + 1, we can
select two vectors (0n, b

(1)), (0n, b
(2)) ∈ V such that

Db(1)Db(2)g1(y) ̸= constant.

From (8.11), we have

D(0n,b(1))D(0n,b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) ̸= constant.
(9.8)



Povzetek v slovenskem jeziku

Želja ljudi, da bi nekatere informacije ostale zaupne, predstavlja začetek
kriptografije - discipline, ki po današnji definiciji omogoča dvema os-
ebama varno komuniciranje preko ne povsem varnega kanala. Seveda
želja, da bi nekaj ostalo tajno, ne ustreza vsem, ki bi radi vedeli, kaj se
skriva za to tajnostjo. To je privedlo do razvoja kriptoanalize - znanosti
o razbijanju šifer in razkrivanju izvirnega sporočila. Kriptografija in
kriptoanaliza skupaj tvorita področje kriptologije, katerega preučevanje
in pomen sta z razvojem sodobne znanosti, kot jo poznamo danes, ek-
sponentno narasla.
Pred moderno dobo je bil sprva glavni namen kriptografije zagotavljanje
tajnosti komunikacij povezanih z vojno in diplomatskimi zadevami. V
zadnjih desetletjih se je področje razširilo in se med drugim ukvarja s pre-
verjanjem celovitosti sporočil, avtentikacijo identitete pošiljatelja/pre-
jemnika, digitalnimi podpisi, interaktivnimi dokazi in varnim računan-
jem. Informacije, ki jih želimo poslati, morajo potovati po nezanesljivih
kanalih prek strežnikov, nad katerimi nimamo nadzora, kljub temu pa
želimo, da informacije ostanejo zasebne.

ENCRYPT DECRYPT

ATTACKER

Key K Key KE D

Figure 9.1: Shema klasičnega kriptosistema

Ključni cilj kriptografije je omogočiti dvema osebama, običajno ju imenu-
jemo Ana (pošiljateljica) in Boris (prejemnik), varno komunikacijo po
nezavarovanem kanalu. To pomeni, da nobena tretja oseba (nasprotnik),
običajno imenovana Eva, iz opazovanega šifriranega besedila ne more pri-
dobiti nobenih informacij o izvornem besedilu. Sporočilo, ki si ga Ana
in Boris želita izmenjati, se imenuje čistopis, sporočilo, ki ga pošljeta po
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kanalu pa tajnopis. Ana šifrira čistopism in pridobi tajnopis c z uporabo
nekega šifrirnega ključa KE. Šifrirano besedilo c nato posreduje Bobu,
ki s postopkom dešifriranja skupaj s šifriranim besedilom in dešifrirnim
ključem KD pridobi izvirno sporočilo m. Klasični primer takega kripto-
sistema je prikazan na sliki 9.1. Če sta šifrirni in dešifrirni ključ enaka
(KE = KD), govorimo o kriptografiji s simetričnim ključem. Po drugi
strani pa, če je šifrirni ključ javen, z drugimi besedami, če lahko vsakdo
pošlje Borisu šifrirano sporočilo, ki ga lahko samo on dešifrira s svojim
tajnim dešifrirnim ključem, govorimo o kriptografiji z javnim ključem.
Glavna prednost kriptografije s simetričnim ključem pred kriptografijo z
javnim ključem je, da je hitra in učinkovita za velike količine podatkov.
Po drugi strani pa se kriptografija javnega ključa lahko uporablja ne le za
varno komunikacijo, temveč tudi za preverjanje pristnosti z digitalnimi
podpisi. V primerjavi s simetričnimi ključi para javnega in zasebnega
ključa ni treba tako pogosto spreminjati.

Pri simulaciji napadov na kriptosisteme se predpostavlja, da Eva pozna
algoritme za šifriranje in dešifriranje. To pomeni, da varnost krip-
tografskega sistema ne sme biti odvisna od tajnosti šifrirnega algoritma,
temveč le od tajnosti ključev. Ta načela je navedel A. Kerckhoffs v [42].

Osredotočili se bomo predvsem na simetrično kriptografijo, saj teme
v disertaciji obravnavajo lastnosti kriptografskih sistemov, povezanih z
njo. Simetrična kriptografija vsebuje dve veliki družini kriptografskih
sistemov, in sicer bločne šifre (slika 9.2) in tokovne šifre (slika 9.3).

Block cipher
encryption

PLAINTEXT

CIPHERTEXT

Figure 9.2: Primer bločne šifre

PLAINTEXT

Keystream

Stream 
Cipher

CIPHERTEXT

Figure 9.3: Primer tokovne šifre

Tokovne šifre generirajo psevdonaključno zaporedje (zdi se, da je statis-
tično naključno, čeprav je bilo ustvarjeno s popolnoma determinističnim
in ponovljivim postopkom) bitov, imenovano ključni tok, ki se običajno
sešteje po modulu 2 z odprtim besedilom, da dobimo šifrirano besedilo.
Nekateri znani šifrirni algoritmi, ki spadajo v družino tokovnih šifer, so
SEAL [76], SNOW [34], ISAAC [40], Trivium [26] in Grain [35].
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Po drugi strani je splošna zamisel pri načrtovanju bločnih šifer, da se
odprto besedilo razdeli na bloke (dolžine 2k, običajno je vrednost k
enaka 64, 128 ali 256) in šifrira vsak blok posebej, s čimer dobimo
šifro, sestavljeno iz blokov šifriranega besedila. Dve priljubljeni struk-
turi, ki se uporabljata v bločnih šifrah, temeljita na Feistelovi strukturi
in na substitucijsko-permutacijskem omrežju. Sodobne zasnove bločnih
šifer uporabljajo iterativno uporabo več enakih krogov za izdelavo bloka
šifriranega besedila. Ključni vidik je, da ti krogi izvajajo koncept konfuz-
ije in difuzije, ki ju je uvedel C. E. Shannon v svojem poročilu [80]. Vloga
konfuzije je, da mora biti vsak bit šifriranega besedila zelo zapleteno
odvisen od izvornega besedila in tajnega ključa. Po drugi strani pa lahko
difuzijo v grobem razlagamo kot lastnost, da so biti šifrirnega besedila
po uporabi enega kroga šifriranja odvisni od številnih vhodnih bitov. Z
drugimi besedami, sprememba enega samega bita v izvornem besedilu
bi morala povzročiti spremembo približno polovice bitov v šifriranem
besedilu.

V substitucijsko-permutacijskem omrežju (SPN) sta pomembna dva po-
jma: S-škatle in P -škatle. Substitucijska škatla (S-škatla) uporablja
Shannonovo načelo konfuzije in zamenja majhen blok vhodnih bitov z
drugim blokom bitov. Na splošno je to preslikava, ki n bitov preslika
v m bitov, pri čemer n ni nujno enako kot m. Na primer S-škatla,
ki se uporablja v DES šifri (definicija sledi), preslika 6 vhdnih bitov v 4
izhodne bite. Druga komponenta v SPN je tako imenovana permutacijska
škatla (P -škatla), ki permutira vse izhode S-škatel. Načeloma P -škatla
uporablja Shannonovo načelo difuzije.

Za eno izmed prvih bločnih šifer velja šifra Lucifer, ki so jo pri IBM-u
razvili v sedemdesetih letih 20. stoletja na podlagi dela Horsta Feistla.
Pozneje je bila prilagojena različica Luciferja uporabljena kot standard
ameriške vlade FIPS (Federal Information Processing Standard), ki se
je imenoval ”Data Encription Standard“ (DES), ki je bil javno objavljen
leta 1976 in se je pogosto uporabljal v vladnih in zasebnih organizacijah.

Takoj, ko so bile specifikacije standarda DES objavljene, je šifra postala
predmet polemik. Dvomi o varnosti šifre DES so se pojavili zaradi de-
jstva, da je bil prvotni 128-bitni tajni ključ Luciferja zmanjšan na 56
bitov in tudi zato, ker načela zasnove njegovih substitucijskih in per-
mutacijskih tabel niso bila nikoli objavljena.

Leta 1992 je Matsui predstavil koncept linearne kriptoanalize [54] in ga
uporabil za napad na DES. Nekaj let pozneje je v okviru projekta DE-
SCHALL javno razkril šifrirano sporočilo DES. Postalo je jasno, da je
DES zaradi majhne dolžine ključa dovzeten za napade z grobo silo, zato
je bilo potrebno izbrati nov standard šifriranja. DES je kot zvezni stan-
dard Združenih držav nadomestil Advanced Encryption Standard (AES),
ki ga je leta 2001 po petletnem javnem natečaju sprejel National Insti-
tute of Standards and Technology (NIST). Razvila sta ga Joan Daemen
in Vincent Rijmen, na natečaj pa sta ga prijavila pod imenom Rijn-
dael. [25]. Nekatere druge znane bločne šifre so na primer še IDEA [47],
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Blowfish [78], RC5 [75], PRESENT [9], če naštejemo le nekatere.

Na splošno obstajajo štiri glavne kriptanalitične predpostavke scenarijev
v kriptoanalizi glede na to, kakšne informacije so napadalcu na voljo.

⋆ V najšibkejšem scenariju samo-tajnopis ima napadalec dostop le
do nekaj šifrirnih besedil, ki jih je ustvaril ciljni bločni šifrirnik
z uporabo neznanega tajnega simetričnega ključa. Njegov cilj je
obnoviti dele (ali kar celotno) izvorno besedilo ali pa obnoviti (del)
tajnega ključa. Ta scenarij je najbolj praktičen, po drugi strani pa
je kriptoanalizo najtežja izvesti.

⋆ V primeru scenarija znan-čistopis ima napadalec na voljo veliko
parov čistopis/tajnopis, njegov cilj pa je odkriti (del) skrivnega
ključa.

⋆ Scenarij izbrani-čistopis je podoben napadu z znanim-čistopisom s
to razliko, da ima napadalec dostop do šifrirne naprave in lahko
šifrira poljubna sporočila (čistopise) po svoji izbiri. Cilj je ponovno
obnoviti tajni ključ ali njegov del.

⋆ Scenarij izbrani-tajnopis je podoben prejšnjemu, čeprav napadalec
dešifrira šifrirne tekste po svoji izbiri in tako pridobi ustrezne
čistopise.

Za zagotavljanje visoke varnosti morajo funkcije v bločnih šifrah izpol-
njevati različne pogoje/lastnosti. V nadaljevanju se bomo ukvarjali pred-
vsem z varnostjo S-škatel, ki jih lahko obravnavamo kot zbirko preslikav
iz Fn2 → F2, znanih kot Boolove funkcije. Tu z Fn2 označujemo n-razsežni
vektorski prostor nad F2 = {0, 1}. Kot smo že omenili, je Matsui razvil
pojem linearne kriptoanalize, ki razbije celotno 16-rundno šifro DES z
247 pari čistopis/tajnopis.

Za zagotovitev dovolj visoke zaščite pred tovrstnimi napadi je bil uveden
pojem nelinearnost (glej poglavje 2). Boolove funkcije, ki so na največji
možni razdalji do množice vseh afinih funkcij (preslikave la : Fn2 → F2,
definirane z la(x) = a ·x⊕b, a ∈ Fn2 , b ∈ F2), imajo največjo nelinearnost
in se imenujejo ukrivljene funkcije, izraz, ki ga je uvedel O. Rothaus leta
1976 [77]. Poleg visoke nelinearnosti so druge kriptografsko pomembne
lastnosti Boolovih funkcij povezane s pojmom uravnoteženosti, strogim
kriterijem plazu in kriterijem širjenja, algebrsko stopnjo in korelacijsko
odpornostjo, če omenimo le nekatere. Za več podrobnosti o teh lastnostih
predlagamo bralcu ogled knjig [19, 24]. V celotni disertaciji nas bodo
zanimali predvsem pojmi nelinearnosti in ukrivljenih funkcij.

V zadnjih petdesetih letih je bilo opravljenih veliko raziskav o ukrivl-
jenih funkcijah in njihovih aplikacijah. V teoriji kodiranja je problem
določanja tako imenovanega pokrivnega polmera za Reed-Mullerjevo
kodo RM(r, n) reda 1 enakovreden problemu iskanja določenih ukrivl-
jenih funkcij [41, 50]. Nekatere posebne primere kvadratnih ukrivljenih
funkcij lahko uporabimo za konstrukcijo Kerdockovih kod [43], ki so op-
timalne in imajo velike kodne razdalje, ki rastejo z dolžino kode [27, 81].
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Problem konstruiranja Hadamardovih matrik je znan kombinatorični
problem, ki ostaja nerešen od leta 1893. Če je velikost matrike N = 2n

(n je sodo pozitivno število), potem lahko ta problem (z nekaterimi
omejitvami) pretvorimo v nalogo konstruiranja ukrivljenih funkcij z n
spremenljivkami [77]. Ukrivljene funkcije lahko opišemo tudi z uporabo
krepko regularnih grafov s parametri (v, k, λ, µ). To pomeni, da graf vse-
buje v vozlišč, kjer ima vsak stopnjo k, in za poljubni vozlišči a in b je
število vozlišč, ki sočasno pripadajo soseščini a in b, enako λ ali µ, kar je
odvisno od prisotnosti oziroma odsotnosti povezave med a in b. V članku
[8] je bilo pokazano, da je Boolova funkcija f ukrivljena natanko tedaj,
ko je njen Cayleyjev graf Gf krepko regularen in λ = µ. Ukrivljene
funkcije so bile preučevane tudi zaradi njihove povezave z diferencial-
nimi množicami. Naj bo (G,+) abelova grupa reda v. Podmnožica
D ⊆ G velikosti k se imenuje diferenčna množica s parametri (v, k, λ),
če lahko vsak neničelni g ∈ G predstavimo kot g = b − d na natanko
λ načinov, kjer so b, d ∈ D. V [28] je bilo dokazano, da je Boolova
funkcija f v n spremenljivkah ukrivljena natanko tedaj, ko je množica
D = {(x, f(x)) : x ∈ Fn2} diferenčna množica s parametri (2n+1, 2n, 2n−1)
v aditivni grupi Zn+1

2 . Čeprav se zdi, da so Boolove funkcije popolna
izbira za varne kriptografske preslikave, je njihova pomanjkljivost v
tem, da niso uravnotežene. Kljub temu, da jih ni mogoče uporabiti
neposredno, pa lahko ukrivljene funkcije spremenimo in dobimo nove
funkcije, ki imajo še vedno visoko nelinearnost in so uporabne pri grad-
nji bločnih in tokovnih šifer. Na primer, šifri CAST [1] in Grain [35] ter
razpršilna funkcija HAVAL [93] uporabljajo določene modifikacije ukrivl-
jenih funkcij pri svoji konstrukciji. Za več podrobnosti o ukrivljenih
funkcijah predlagamo bralcu ogled knjig Carleta, Sihema in Tokareve
[19, 59, 83].

Čeprav je bilo na področju ukrivljenih funkcij opravljenih veliko raziskav,
je še vedno veliko odprtih problemov. Med njimi omenjamo problem
določanja števila ukrivljenih funkcij za fiksno število spremenljivk, nji-
hovo načrtovanje in karakterizacijo. Metode konstrukcije ukrivljenih
funkcij lahko razdelimo v dva razreda: primarne in sekundarne, ki se
nanašata na zasnove, ki te funkcije zgradijo iz nič in alternativno z
uporabo znanih funkcij.

Pri obravnavi razredov ukrivljenih funkcij obstajata dva primarna
razreda, Dillonov [29] razred delnega razpona (PS) in Maiorana-
McFarland (M) razred [55]. Izraz primarni se nanaša na konstruk-
cijo, ki ne uporablja znanih ukrivljenih funkcij za generiranje novih (kar
je vzrok za tako imenovane sekundarne metode), temveč uporablja us-
trezno množico afinih funkcij (značilno za metodo Maiorana-McFarland
[55]) ali zbirko nepovezanih n/2-razsežnih podprostorov za konstrukcijo
ukrivljene funkcije na Fn2 (značilno za razred delnih razponov, ki ga je
predstavil Dillon [29]). Drugi splošni razred, označen z N , je predstavil
Dobbertin [30] in vključuje tako M kot podrazred PS, običajno označen
s PSap. Neizčrpen seznam različnih sekundarnih konstrukcij je na voljo
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v naslednjih delih [17, 18, 22, 37, 57, 92]. Leta 1993 je Carlet [17] na
podlagi Dillonovih rezultatov uvedel dva sekundarna razreda ukrivljenih
funkcij, ki imata pomembno vlogo v tej doktorski disertaciji, označena
z C in D, ki sta izpeljana z ustrezno modifikacijo ukrivljenih funkcij
iz razreda M. Glavna težava pri sekundarnih konstrukcijah je, da je
težko odgovoriti na vprašanje o klasifikaciji tako generiranih ukrivljenih
funkcij. Natančneje, lahko se zgodi, da nekatere od teh sekundarnih
konstrukcij preprosto generirajo ukrivljene funkcije, ki pripadajo znanim
primarnim razredom ukrivljenih funkcij in v tem primeru je pomembna
le njihova eksplicitna predstavitev. Kljub temu je prikaz nevključenosti v
popolne primarne razrede (za definicijo popolnega razreda glej definicijo
2.2.3) običajno težka naloga, še posebej v primeru tako imenovanega
razreda PS zaradi pomanjkanja učinkovitih indikatorjev. V bistvu je
problem mogoče zmanjšati na problem iskanja največje klike v grafu, za
katerega je znano, da je NP-težak [88]. V primeru zaključenega razreda
M tak indikator obstaja (prim. Lemma 2.2.4), vendar postane računsko
neučinkovit za n ≥ 14 (prim. razdelek 7.2.1).

Drug eksplicitni razred, ki ga je izpeljal Carlet in vsebuje primere, ki ne
pripadajo M ali PS, se imenuje D0, njegova kardinalnost pa je približno
enako velika kot pri M. To dejstvo nima posebnega vpliva na popolno
klasifikacijo ukrivljenih funkcij, saj ta dva primarna razreda predstavl-
jata le del ≈ 276 ukrivljenih funkcij na F8

2, medtem ko je njihova skupna
količina približno 2106 [48]. V nedavnih člankih [89, 88, 45] je bila analiza
teh dveh sekundarnih razredov izpeljana naprej v smeri določitve zadost-
nega nabora pogojev, da so dobljene ukrivljene funkcije dokazljivo tudi
izven M#, kjer zgornji indeks “#” na splošno označuje popolno različico
obravnavanega razreda. Zaradi težavnosti splošnih pogojev je zagotavl-
janje, da so določene ukrivljene funkcije hkrati v C ali D in dodatno izven
M# (morda tudi izven PS#), precej težka naloga. Eden od glavnih cil-
jev te disertacije je dodatno razširiti število ukrivljenih funkcij, ki ležijo
izven razreda M#.

Lastnost ukrivljenosti je bila razširjena na splošne (n,m)-funkcije, tj. na
preslikave iz Fn2 v Fm2 (prim. razdelek 2.3). Kot je pokazala Nyberg [64],
te funkcije obstajajo samo za m ≤ n/2. Metode konstrukcije vektorskih
ukrivljenih funkcij lahko prav tako razdelimo v dve kategoriji: primarni
in sekundarni . Za nekatere znane konstrukcije (primarne in sekundarne)
tako Boolovih kot vektorskih ukrivljenih funkcij se sklicujemo na [21, 31,
58, 61, 62, 63, 68, 86]. Drugi cilj te disertacije je dodatno obravnavati
oblikovanje vektorskih ukrivljenih funkcij, ki so šibko/močno ali skoraj
močno izven M# (prim. definicija 2.3.5), pojem, ki je bil uveden v [67].
Večina konstrukcij temelji na posplošeni konstrukciji, ki jo navdihujejo
dela v [82, 90] prek tako imenovane lastnosti (Pτ) (imenujemo jo lastnost
(PU), prim. lema 3.1.5). Podobno kot v Boolovem primeru lahko ti
vektorski objekti omogočijo boljše razumevanje, povezano s popolnejšo
klasifikacijo teh struktur.

Preostali del disertacije je organiziran na naslednji način. V poglavju
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2 podamo osnovne pojme, definicije in rezultate, ki se uporabljajo v
celotni disertaciji. Vendar pa bodo nekateri pojmi uvedeni skozi celotno
disertacijo, ko se bo zdelo primerno in potrebno.
Poglavji 3 in 4 predstavljata novo metodo za sekundarno konstrukcijo
ukrivljenih (n,m)-funkcij in p-arnih šibko regularnih ukrivljenih (n,m)-
funkcij (za definicijo glej poglavje 2.4) prek tako imenovane lastnosti
(PU). Ta konstrukcija bo zelo pomembna za pridobivanje funkcij, ki so
šibko/močno/skoraj močno izven M#.
Poglavje 5 obravnava konstrukcijo dveh novih superrazredov SC (super-
razred razredov C in D0) in CD (superrazred razredov C in D) ter podaja
zadostne pogoje, za katere so te funkcije izven M#. Na koncu poglavja
podamo izrecne definicije dualov nekaterih funkcij v SC in CD.
V poglavju 6 podamo pregled uporabe novo zgrajenih razredov SC in CD
za konstrukcijo vektorskih ukrivljenih funkcij šibko/močno/močno izven
M# ter tako imenovanih MNBC funkcij, vektorske (n,m)- funkcije z na-
jvečjim številom ukrivljenih komponent (prim. definicijo 3.3.1), šibko/-
močno izven M#.
Poglavje 7 dodatno razširja število ukrivljenih funkcij izven razreda
M#, ki jih obravnavamo kot tako imenovane 4-dekompozicije. Dobimo
tudi primere tako imenovanih ukrivljenih 4-dekompozicij izven M# prek
razredov SC in CD.
V poglavju 8 obravnavamo dve znani sekundarni konstrukciji -
neposredno in posredno vsoto ter podamo pogoje, za katere te funkcije
ležijo izven M#. Podamo tudi primere (homogenih) kubičnih ukrivl-
jenih funkcij (brez afinnih derivatov) in močno povečamo meje [71] za
razsežnosti, v katerih obstajajo. Pokažemo tudi, da je eden od kon-
struiranih razredov nerazgradljiv (neločljiv), in podamo tudi vektorske
ukrivljene funkcije močno izven M# z razmeroma veliko izhodno dimen-
zijo.

Zaključki

Rezultati te doktorske disertacije predstavljajo pomemben prispevek k
številnim odprtim problemom na področju kriptografije, ki so v zadnjih
petih desetletjih aktivna tema v matematični skupnosti.
Večji del disertacije se ukvarja z gradnjo (vektorskih) ukrivljenih
funkcij izven popolnega Maiorana-McFarland razreda z uporabo ra-
zličnih metod. Poudarjamo, da smo za vse primere potrdili, da so izven
M# z uporabo matematične programske opreme Sage in algoritma, ki
smo ga razvili z uporabo lastnosti klike v grafih.
Lastnost (PU) smo posplošili, da bi dobili metodo za konstrukcijo vek-
torskih ukrivljenih funkcij, ki zajema prejšnji dve metodi v [82, 90]. S to
konstrukcijo smo podali tudi nove primere vektorskih funkcij, ki imajo
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maksimalno število ukrivljenih komponent. Podobno smo te rezultate
razširili na p-arni primer in razvili sekundarne konstrukcije p-arnih šibko
regularnih ukrivljenih (n,m)-funkcij.
Z združitvijo kazalnikov C in D0 ter C in D smo dobili nova superrazreda
ukrivljenih funkcij, SC oziroma CD. Za oba razreda smo določili pogoje,
pod katerimi te funkcije ležijo izven M#. Opazili smo, da imata ta
razreda veliko možnosti uporabe. Predvsem pri konstrukciji vektorskih
ukrivljenih funkcij, ki so šibko/močno/močno izven M#. Opazili smo,
da imajo naši primeri vektorskih ukrivljenih funkcij močno izven M#

največji (čeprav ne največji po definiciji) izhodni prostor v literaturi.
Te funkcije so bile uporabne tudi pri konstrukciji funkcij (n,m)-MNBC
izven M#. Podali smo tudi popolno klasifikacijo funkcij MNBC v šestih
spremenljivkah.

Dejstvo, da je ukrivljena funkcija f v/izven M# natanko tedaj, ko je
njen dual v/izven M#, smo uporabili v tako imenovani 4-dekompoziciji
ukrivljene funkcije nad Fn2 , ki sta jo Canteaut in Charpin [14] prvotno
obravnavali v primeru odvodov drugega reda, pozneje pa sta jo v [39]
preoblikovali v primeru dualov in njenih omejitev na odseke (n − 2)-
razsežnega podprostora V . Za vsakega od treh možnih primerov te
4-dekompozicije ukrivljene funkcije podamo splošne metode za načr-
tovanje ukrivljenih funkcij dokazljivo izven M#. Na primer, za os-
novni primer definiranja ukrivljene funkcije h(x, y1, y2) = f(x) ⊕ y1y2
na Fn+2

2 z uporabo ukrivljene funkcije f na Fn2 pokažemo, da h leži izven
M# natanko tedaj, ko je f izven M#. Ta pristop nato posplošimo
na primer, ko uporabimo dve ukrivljeni funkciji. Natančneje, konkate-
nacija f1||f1||f2||(1 ⊕ f2) prav tako daje ukrivljene funkcije izven M#,
če je bodisi f1 bodisi f2 izven M#. Obravnavani so tudi primeri, ko
so štiri omejitve ukrivljene funkcije semi-ukrivljene ali petvrednostne
spektralne funkcije, in predlaganih je več metod načrtovanja neskončnih
družin ukrivljenih funkcij izven M# z uporabo načrtovanja spektralne
metode, obravnavane v [37, 39].
Dve znani sekundarni konstrukciji ukrivljenih funkcij sta metodi
neposredne in posredne vsote. Pokažemo, da lahko neposredna vsota pod
bolj sproščenimi pogoji v primerjavi s tistimi v [71] dokazljivo generira
ukrivljene funkcije izven popolnega razreda Maiorana-McFarland (M#).
Pokažemo tudi, da lahko metodo posredne vsote, čeprav postavlja
določene pogoje za začetne ukrivljene funkcije, uporabimo pri obliko-
vanju ukrivljenih funkcij izven M#. Poleg tega z uporabo te metode
za ustrezno izbrane ukrivljene funkcije konstruiramo več splošnih razre-
dov homogenih kubičnih ukrivljenih funkcij (kar je težaven problem),
ki bi lahko imeli dodatne lastnosti (namreč brez afinskih odvodov in-
/ali izven M#). Naši rezultati bistveno izboljšajo najbolj znane primere
tovrstnih ukrivljenih funkcij, ki sta jih podala Polujan in Pott [71], poleg
tega pa rešimo še odprt problem v [71, Open Problem 5.1]. Natančneje,
pokažemo, da je en razred naših homogenih kubičnih ukrivljenih funkcij
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nerazgradljiv (neločljiv), tako, da h pod nesingularno transformacijo B
ni mogoče predstaviti kot h(xB) = f(y) ⊕ g(z). Nazadnje podamo
splošen razred vektorskih ukrivljenih funkcij, ki so močno izven M# z
relativno velikih izhodnih dimenzij, kar na splošno velja za težko nalogo.
Osnovna orodja, uporabljena v disertaciji, segajo od kombinatoričnih do
algebrskih kriptografskih metod. Poleg tega smo uporabili matematično
programsko opremo Sage, Wolfram Mathematica in Magma, za potrditev
naše hipoteze. Seznam Sage kod, ki smo jih razvili med pisanjem dis-
ertacije, je na voljo na spletni strani https://kripto.famnit.upr.si/
sage/.
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