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Abstract

In the last decades, minimal codes have received a lot of attention from the cryp-
tographic community due to their important applications in security protocols
such as secret sharing schemes [5, 50] and secure-two party computation [24],
which are essential in today's digital world. This class of linear codes is charac-
terized by a covering property, namely, a linear code is minimal provided that
none of its non-zero codewords are covered by any other linearly independent
codeword.

From a mathematical point of view, the properties and constructions of in�-
nite families of minimal codes have become a fundamental topic in this area.
Much work has been carried out towards a complete understanding of the com-
binatorial and geometrical properties of these codes [1, 3, 6, 11, 15, 20]. As
for constructions, most of them had been based on Ashikhmin-Barg's su�cient
condition relating the minimum weight and maximum weight of a code [2], more
speci�cally, if the quotient of the minimum weight over the maximum weight
of a q-ary code is strictly larger than q−1

q
then the code is minimal. In other

words, this condition requires that the weights are close to each other. Linear
codes satisfying Ashikhmin-Barg's condition are called narrow, whereas a code
not satisfying it is termed wide.

It was a challenge to construct in�nite families of wide minimal codes, even in
the binary setting, since there were no known examples of such families until
the pioneering work of Ding et. al. [20], where they provided three in�nite
families of wide minimal binary codes using certain constructions based on
Boolean functions. Soon after, several methods were introduced to construct
wide minimal codes using a vast number of techniques: simplicial complexes
[13], characteristic functions [20, 29, 40], projective planes [3], cutting blocking
sets [6, 55], maximal arcs [25], weakly regular bent functions [37, 60] and weakly
regular plateaud functions [39, 40, 41, 42, 52], etc.

The purpose of this thesis is two-fold. First, elaborating on previous works
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vi ABSTRACT

[6, 20, 38], we provide several constructions of wide minimal binary codes using
the theory of Boolean functions, thus obtaining linear codes suitable for secret
sharing or two-party computations protocols. These families have the feature of
being �exible in terms of parameters so that they cover a wide range of possible
minimum weights.

As a second outcome, some generic constructions of minimal codes will be pro-
vided, which are based on di�erent well-known techniques from functions over
�nite �elds together with some new concepts tailored to the construction of
minimal codes (e.g. non-covering permutations). These constructions aim to
provide a general framework to obtain minimal codes, that can or cannot be
wide, in such a way that they have a larger dimension with respect to their
length. This is in particular important when considering applications since a
practical secure-two party computation protocol (based on linear codes) must
be constituted by a minimal code with a high transmission rate. Together with
the concept of non-covering permutations, the p-ary case is then treated under
this general framework.

All in all, this thesis provides several constructions of (wide) minimal codes
from generic constructions relying on the theory of Boolean and p-ary functions.
These constructions are generic in the sense that one can, in principle, input
any function satisfying certain weak assumptions and obtain di�erent minimal
codes which are not equivalent.

The rest of the document is organized as follows. In Chapter 1, the set up for
our results together with some motivation are given. In particular, we introduce
the concept of a minimal code and highlight its importance in the context of
secret sharing schemes and multi-party computation protocols. The necessary
de�nitions and preliminary results about functions, linear codes and minimal
codes are presented in Chapter 2.

The main results lie in Chapter 3 and Chapter 4. In Chapter 3, we present four
constructions of wide minimal binary linear codes from generic constructions
using Boolean functions. For several instances of these constructions, we give
a full speci�cation of their weight distributions. These techniques are named
with the word �method� and a distinctive mathematical object in question used
as an adjective. Thus, we introduce the basis method (Subsection 3.2.2), the
a�ne subspace method (Subsection 3.2.3), the hyperplane method (Section 3.3)
and the general Maiorana-McFarland method (Section 3.4).

Finally, three methods to obtain wide minimal codes with a larger dimension
are presented in Chapter 4. These approaches are based on standard operation
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of functions, such as the direct sum or derivatives. In Section 4.1, minimal
codes are constructed out of the direct sum of two Boolean functions under
some weak assumptions, namely, that one of the associated codes is minimal.
For the same purpose of constructing (wide) minimal codes, a novel concept of
�non-covering permutation� is introduced in Section 4.2. These permutations
turn out to be useful when specifying linear codes associated to bent functions
in the Maiorana-McFarland class. The last construction, referred as �the generic
construction�, which is a combined version of the direct sum method and the
derivative method is given in Section 4.3. Moreover, explicit examples of this
approach are given in Section 4.3.1. The generalization of these results to the
p-ary case is discussed in Section 4.4.

Four research papers are product of the investigation carried out in this thesis.
Three out of four are already published in high impact journals and the fourth
one is still in preparation. These articles are listed in the references as [44, 48,
64, 65].

Math. Subj. Class. (2020): 94C10 · 06E301

Keywords: Minimal linear codes · The Ashikhmin-Barg bound · Bent functions
· Characteristic functions · Derivatives · Direct sum · Permutations





Povzetek

V zadnjih desetletjih so minimalne kode bile deleºne veliko pozornosti krip-
tografske skupnosti zaradi svojih pomembnih aplikacij v varnostnih protokolih,
kot so sheme deljenja skrivnosti [5, 50] in varno dvostransko ra£unanje [24], ki
so bistvenega pomena v dana²njem digitalnem svetu. Za ta razred linearnih kod
je zna£ilna pokrivna lastnost, in sicer je linearna koda minimalna pod pogojem,
da nobena od njenih neni£elnih kodnih besed ni pokrita z nobeno drugo linearno
neodvisno kodno besedo.

Z matemati£nega vidika so lastnosti in konstrukcije neskon£nih druºin mini-
malnih kod postale temeljna tema na tem podro£ju. Veliko dela je bilo opravl-
jenega za popolno razumevanje kombinatori£nih in geometrijskih lastnosti teh
kod [1, 3, 6, 11, 15, 20]. Kar zadeva konstrukcije, jih je ve£ina temeljila na za-
dostnem Ashikhmin-Bargovem pogoju, ki povezuje najmanj²o in najve£jo teºo
kode [2], natan£neje, £e je koli£nik najmanj²e teºe q-arne kode nad njeno na-
jve£jo teºo strogo ve£ji od q−1

q
, potem je koda minimalna. Z drugimi besedami,

ta pogoj zahteva, da so uteºi blizu druga drugi. Linearne kode, ki izpolnju-
jejo pogoj Ashikhmin-Barg, imenujemo ozke, kode, ki tega ne izpolnjujejo, pa
²iroke.

Konstruirati neskon£ne druºine ²irokih minimalnih kod, tudi v binarni nas-
tavitvi, je bil izziv, saj do pionirskega dela Dinga et. al. [20] nismo imeli
nobenega primera. V omenjnem £lanku so nato predstavili tri neskon£ne druºine
²irokih minimalnih binarnih kod z uporabo nekaterih konstrukcij, ki temeljijo na
Boolovih funkcijah. Kmalu zatem je bilo uvedenih ve£ metod za konstruiranje
²irokih minimalnih kod z uporabo velikega ²tevila tehnik: simplicialni kompleksi
[13], karakteristi£ne funkcije [20, 29, 40], projektivne ravnine [3], rezane blo£ne
mnoºice [6, 55], maksimalni loki [25], ²ibko regularne ukrivljene funkcije [37, 60]
in ²ibko regularne platojske funkcije [39, 40, 41, 42, 52], itd.

Namen disertacije je dvojen. Prvi£, nadaljevanje raziskovalne smeri prej²njih del
[6, 20, 38] in iskanje ve£ konstrukcij ²irokih minimalnih binarnih kod z uporabo

ix
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teorije Boolovih funkcij, s £imer pridobimo linearne kode, primerne za sheme
deljenja skrivnosti ali protokole za dvostransko ra£unanje. Te druºine imajo
zna£ilnost, da imajo tak²ne prilagodljive parametre, da pokrivajo ²irok razpon
moºnih minimalnih uteºi.

Kot drugi rezultat bodo predstavljene nekatere splo²ne konstrukcije minimal-
nih kod, ki temeljijo na razli£nih dobro znanih tehnikah funkcij nad kon£nimi
polji, skupaj z nekaterimi novimi koncepti, prilagojenimi konstrukciji minimal-
nih kod (npr. nepokrivajo£e permutacije). Cilj teh konstrukcij je zagotoviti
splo²en okvir za generacijo minimalnih kod, ki so ²iroke, ali tudi ne, na tak
na£in, da imajo ve£jo dimenzijo glede na svojo dolºino. To je ²e posebej pomem-
bno pri obravnavi aplikacij, saj mora biti prakti£en varen dvostranski ra£unski
protokol (ki temelji na linearnih kodah) sestavljen iz minimalne kode z visokim
razmerjem. Skupaj s konceptom nepokrivajo£ih permutacij se p-arni primer
nato obravnava v tem splo²nem okviru.

Doktorska disertacija v splo²nem ponuja ve£ konstrukcij (²irokih) minimalnih
kod iz generi£nih konstrukcij, ki se opirajo na teorijo Boolovih in p-arnih funkcij.
Te konstrukcije so generi£ne v smislu, da lahko kot vhodni podatek vnesemo
poljubno funkcijo, ki izpolnjuje dolo£ene ²ibke predpostavke, in pridobimo ra-
zli£ne minimalne kode, ki niso ekvivalentne.

Preostali del dokumenta je organiziran na slede£i na£in. V poglavju 1 so podane
teoreti£ne osnove na²ih rezultatov skupaj z nekaj motivacije. Predstavljen je
koncept minimalne kode in poudarjen je njen pomen v kontekstu shem deljenja
skrivnosti in ve£stranskih ra£unskih protokolov. Potrebne de�nicije in prelimi-
narni rezultati o funkcijah, linearnih kodah in minimalnih kodah so predstavljeni
v poglavju 2.

Glavni rezultati so v poglavjih 3 in 4. V poglavju 3 predstavljamo ²tiri kon-
strukcije ²irokih minimalnih binarnih linearnih kod s splo²nimi konstrukcijami z
uporabo Boolovih funkcij. Za ve£ primerov teh konstrukcij podajamo popolno
speci�kacijo njihove porazdelitve uteºi. Te tehnike so poimenovane z besedo
�metoda� in dodanim opisom najpomembnej²im predmeta. Tako uvajamo
metodo baze (Poglavje 3.2.2), metodo a�nega podprostora (Poglavje 3.2.3),
metodo hiperravnine (Poglavje 3.3) in metodo splo²ne Maiorana-McFarland
funkcije (Poglavje 3.4).

Nazadnje so v poglavju 4 predstavljene tri metode za pridobitev ²irokih mini-
malnih kod z ve£jo dimenzijo. Ti pristopi temeljijo na standardnem delovanju
funkcij, kot so direktna vsota ali odvodi. V poglavju 4.1 so minimalne kode
sestavljene iz direktne vsote dveh Boolovih funkcij pod dolo£enimi ²ibkimi pred-
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postavkami, in sicer, da je ena od povezanih kod minimalna. Za isti namen kon-
struiranja (²irokih) minimalnih kod je v poglavju 4.2 predstavljen nov koncept
�nepokrivajo£e permutacije�. Te permutacije so uporabne pri dolo£anju lin-
earnih kod, povezanih z ukrivljenimi funkcijami v razredu Maiorana-McFarland.
Zadnja konstrukcija, imenovana �splo²na konstrukcija�, je kombinirana razli£ica
metode direktne vsote in metode odvodov. Podana je v poglavju 4.3 in njeni
eksplicitni primeri so podani v poglavju 4.3.1. Posplo²itev rezultatov na p-arni
primer je obravnavana v poglavju 4.4.

Plod raziskave, opravljene v doktorskem delu, so ²tiri strokovni £lanki. Trije od
²tirih so ºe objavljeni v uglednih revijah, £etrti pa je ²e v pripravi. Ti £lanki so
v referencah navedeni kot [44, 48, 64, 65].

Math. Subj. Class. (2020): 94C10 · 06E301

Klju£ne besede: Minimalne linearne kode · Pogoj Ashikhmin-Barg · Ukrivl-
jene funkcije · Karakteristi£ne funkcije · Odvodi · Direktna vsota · Permutacije





Contents

Acknowledgements iii

Abstract v

Povzetek ix

List of Figures xv

List of Tables xviii

1 Introduction 1
1.1 Secret sharing schemes . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Secure multi-party computation . . . . . . . . . . . . . . . . . . 7

2 De�nitions and preliminary results 10
2.1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Minimal codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 In�nite families of binary minimal codes 22
3.1 Wide minimal codes . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The basis method and a�ne subspaces . . . . . . . . . . . . . . 25

3.2.1 Vectorial blocking sets . . . . . . . . . . . . . . . . . . . 25
3.2.2 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 A�ne subspaces . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 The hyperplane method . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Root functions . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Weight distributions and asymptotic behaviour . . . . . 44

3.4 The general Maiorana-McFarland class . . . . . . . . . . . . . . 46
3.4.1 The �rst family of wide minimal codes from GMM . . . 47

xiii



xiv CONTENTS

3.4.2 The second family of wide minimal codes from GMM . 52
3.4.3 The third family of wide minimal codes from GMM . . 55

4 Minimal codes with larger dimensions 59
4.1 Direct sum method . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Subspaces of derivatives and non-covering permutations . . . . . 66

4.2.1 Non-covering permutations . . . . . . . . . . . . . . . . . 76
4.2.2 Revised techniques for GMM . . . . . . . . . . . . . . . 81

4.3 A generic construction of minimal codes . . . . . . . . . . . . . 83
4.3.1 Explicit wide minimal codes . . . . . . . . . . . . . . . . 87

4.4 The p-ary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions 105

Bibliography 109

Index 117

Povzetek v slovenskem jeziku 118



List of Figures

1.1 Schematic diagram of an error-correcting code. . . . . . . . . . . 2
1.2 A secret sharing scheme. . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Secure multi-party computation protocol. . . . . . . . . . . . . . 8

2.1 Hamming code H3. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Simplex code S3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 A prototypical example of a minimal code C of length n identi�ed

with an antichain in the lattice P ({1, . . . , n}) ordered by inclusion. 19

3.1 Graphical depiction of a vectorial blocking set BS. . . . . . . . . 26
3.2 Representation of a cutting vectorial (1,m− 1)-blocking set BS. 27
3.3 Case u′ = uA in the proof of Theorem 3.2.12. . . . . . . . . . . . 34
3.4 Case A ⊂ Hu′ in the proof of Theorem 3.2.12. . . . . . . . . . . . 34
3.5 Case |A ∩Hu′| = 2m−3 in the proof of Theorem 3.2.12. . . . . . . 35

4.1 A k-minimal pair given by a subspace of derivatives U of g and a
non-covering permutation φ. . . . . . . . . . . . . . . . . . . . . 96

xv





List of Tables

2.1 Known exponents d corresponding to in�nite classes of AB power
functions up to CCZ-equivalence and inversion modulo 2m − 1. . 13

3.1 Weight distribution of 5-weight wide minimal codes Cf , (τ1, . . . , τm−1) =
(0, 0, . . . , 0, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Weight distribution of 6-weight wide minimal codes Cf , when
(τ1, . . . , τm−1) is such that τm−1 = 1 and (τ1, . . . , τm−2) is nonzero. 38

3.3 Weight distribution of 8-weight wide minimal codes Cf , when
(τ1, . . . , τm−1) is such that τm−1 = 0 and (τ1, . . . , τm−2) is nonzero. 38

3.4 Walsh spectral values of r1
m w.r.t. the parity of m. . . . . . . . . 45

3.5 Nonzero weights of codewords of Cr1m . . . . . . . . . . . . . . . . 45
3.6 Walsh spectral values of r0

m w.r.t. the parity of m. . . . . . . . . 45
3.7 Nonzero weights of codewords of Cr0m . . . . . . . . . . . . . . . . 45
3.8 Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 1 mod 4. . . 49
3.9 Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 3 mod 4. . . 49
3.10 Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 0 mod 4. . . 50
3.11 Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 2 mod 4. . . 50
3.12 Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 0 mod 4 . . 53
3.13 Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 1 mod 4 . . 54
3.14 Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 2 mod 4 . . 54
3.15 Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 3 mod 4 . . 54
3.16 Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 1 mod 4 . 57
3.17 Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 3 mod 4 . 57
3.18 Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 0 mod 4 . 58
3.19 Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 2 mod 4 . 58

4.1 Weight distribution of Ch when f is a Boolean function with
f(0) = 0 and g is a bent function whose dual has weight 2s−1 −
2s/2−1 and h(x, y) = f(x) + g(y), where ρ runs over the set W abs

f . 64

xvii



xviii LIST OF TABLES

4.2 Weight distribution of Ch when f is a Boolean function with
f(0) = 0 and g is a bent function whose dual has weight 2s−1 +
2s/2−1 and h(x, y) = f(x) + g(y), where ρ runs over the set W abs

f . 64
4.3 Weight distribution of Ch when f is semi-bent, g is a bent function

whose dual has weight 2s−1 − 2s/2−1 and h(x, y) = f(x) + g(y). . 65
4.4 Weight distribution of Ch when f is semi-bent, g is a bent function

whose dual has weight 2s−1 + 2s/2−1 and h(x, y) = f(x) + g(y). . 65
4.5 Walsh spectrum of the semi-bent function f in Example 4.1.6

given by f(x1, x2, x3) = x1x2 + x3. . . . . . . . . . . . . . . . . . 66
4.6 Walsh spectrum of the semi-bent function f in Example 4.1.7

given by f(x1, x2, x3, x4) = x1x2x3 + x4. . . . . . . . . . . . . . 66
4.7 Weight distribution of C in Corollary 4.2.8. . . . . . . . . . . . . 75
4.8 Walsh spectrum of the component x 7→ Tr(φ(x)) of Dobbertin's

APN permutation x 7→ x29 in F25 = {v0, . . . , v31} ordered lexico-
graphically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Weight distribution of C(γ)
h in Theorem 4.3.5 for s/2 odd and an

AB permutation φ : Fs/22 → Fs/22 , where ρ runs over W abs
f and ρ′

runs over W abs
Dγf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Weight distribution of C(γ)
h in Theorem 4.3.6 for any AB permu-

tation φ : F5
2 → F5

2. . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.11 Weight distribution of the ternary code in Example 4.4.6 shown

in ascending order. . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Chapter 1

Introduction

A code is an algorithm that turns a source of information (words) into a di�erent
form (codewords). Typically, the source of information is given by means of a
set of symbols, called an alphabet . An error-correcting code is a code for which
any errors that are introduced can be detected and corrected. The ultimate
purpose of encoding information is to recover the original source message when
it is sent to a receiver over a noisy communication channel (see Figure 1.1 and
Example 1.0.1).

The study of error-correcting codes belongs to the mathematical �eld of Coding
Theory . Coding Theory dates back to 1948, when Claude E. Shannon published
his fundamental work A Mathematical Theory of Communication [51], in which
Shannon introduced the concept of information entropy as a measure of the
information content in a message.

Formally, an (n,M)Q-code is a proper subset C of Qn with cardinalityM , where
Q is a �nite non-empty set and n is a positive integer. A precise de�nition of a
code in accordance with the above paragraphs should be given by an injection
φ : Qk → Qn with M = |Q|k, thus, in our working de�nition, C is simply
identi�ed with the direct image of φ.

A measure of utmost importance when studying an error-correcting code C is
the so-called minimum distance d, de�ned by

d := min{dH(x, y) : x = (x1, . . . , xn) ∈ C, y = (y1, . . . , yn) ∈ C, x 6= y}, (1.1)

where the function dH gives the number of coordinates where the input vectors
di�er. The information rate R of an (n,M)Q code is the proportion of the
transmitted data that is not redundant, mathematically, R := log|Q|(M)/n.

1
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Message m

Encoding

Codeword c
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Decoding

Received word w

Detected errors,

Message m

corrected if possible

Figure 1.1: Schematic diagram of an error-correcting code.

Example 1.0.1. Suppose that the alphabet Q consists of the binary symbols
(bits) 0 and 1. Let us say that words are all binary vectors of length 3, i.e.,
k = 3. Let C be the code consisting of the following binary vectors of length
n = 8:

c0 = (0, 0, 0, 0, 0, 0, 0, 0);

c1 = (1, 1, 1, 1, 0, 0, 0, 0);

c2 = (0, 0, 1, 1, 1, 1, 0, 0);

c3 = (0, 0, 0, 0, 1, 1, 1, 1);

c4 = c1 + c2 = (1, 1, 0, 0, 1, 1, 0, 0);

c5 = c1 + c3 = (1, 1, 1, 1, 1, 1, 1, 1);

c6 = c2 + c3 = (0, 0, 1, 1, 0, 0, 1, 1);

c7 = c1 + c2 + c3 = (1, 1, 0, 0, 0, 0, 1, 1).

The encoding φ will be given by

(x1, x2, x3) 7→ x1c1 + x2c2 + x3c3,

where xi ∈ {0, 1}. Note that the information rate of this code is then 3
8
. If a

codeword c ∈ C is sent over a noisy channel and either two or an odd number
of errors are introduced, these can be detected as the received vector would not
be a codeword. However, these cannot be corrected in general. For instance,
if two errors occurred and the received vector is (1, 1, 1, 0, 1, 0, 0, 0), then errors
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could have happened either to c1 at the fourth and �fth coordinate or to c4 at the
third and sixth positions. On the other hand, if only one error occurred over the
transmission, then this error can be corrected by computing the closest codeword
to the received vector since this will be unique.

The approach to decoding described in the last paragraph of the previous exam-
ple is called the minimum distance decoding , or, the nearest neighbor decoding,
and it is the prototypical decoding algorithm for a code.

Error-correcting codes have been widely investigated due to their important
applications in consumer electronics, secure multi-party computation [15], secret
sharing schemes [11, 22, 63], authentication, data storage systems, association
schemes, and strongly regular graphs [9].

There are some assumptions that provide a more structured approach to study-
ing codes such as linearity, which is undoubtedly one of the most important
assumptions from a mathematical point of view. For a prime power q and a
positive integer n, denote by Fnq the n-dimensional vector space over the �-
nite �eld Fq with q elements. A linear [n, k, d]q-code is a k-dimensional linear
subspace C of Fnq whose minimum distance is d.

Since linear codes are subspaces of Fnq , it is natural to describe them by means
of a basis. Given an [n, k, d]q-code C, a k × n matrix G is called a generator
matrix of C provided that its rows form a basis for C, i.e. C = {aG : a ∈ Fkq}.
Similarly, an (n− k)× n matrix H is a parity-check matrix of C if its rows are
a basis for C⊥, where C⊥ denotes the dual code of C, de�ned by

C⊥ = {x ∈ Fnq : x · y = 0 for every y ∈ C}, (1.2)

where `·' denotes the standard dot product in Fnq .

For linear codes, there exists a simple general decoding algorithm for detecting
and correcting errors: let y be the received vector from a codeword x. Assume
that at most e = bd−1

2
c errors of transmission have occurred (this number is

called the error correction capacity of the code), where d denotes the minimum
distance. Error detection works simply by checking if the so-called syndrome
s = HyT is the zero vector since this property characterizes codewords. Error
correction works as follows: if the syndrome is not zero, then correcting errors
of transmission is equivalent to determining the di�erence ε = y − x, which
is called the error vector . This can be achieved by visiting all vectors z of
Hamming weight at most e in Fnq and checking if HzT = s since ε is the unique
vector of Hamming weight at most e in Fnq such that HεT = s. This decoding
method for linear codes is typically referred as syndrome decoding .
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Example 1.0.2. Continuing with Example 1.0.1, we see that C is a binary
linear [8, 3, 4]-code. A parity-check matrix for this code is

H =


0 1 0 1 0 1 0 1
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 1 0 1

 .

Since we know the code C can correct a single error i.e. the error capacity e
is equal to 1, we compute the syndromes of vectors of weight at most one1 as
follows (we omit brackets and commas to simplify notation):

Error vector ε Syndrome HεT

00000000 00000T

10000000 00001T

01000000 10000T

00100000 00100T

00010000 10101T

00001000 01000T

00000100 11001T

00000010 00010T

00000001 10011T

For instance, assuming there has been at most one transmission error, the re-
ceived vector y = (0, 0, 1, 1, 0, 1, 0, 0) whose syndrome is the column vector

HyT = (0, 1, 0, 0, 0)T ,

is corrected to the codeword

x = y − ε = (0, 0, 1, 1, 0, 1, 0, 0)− (0, 0, 0, 0, 1, 0, 0, 0) = (0, 0, 1, 1, 1, 1, 0, 0) = c2.

Our aim in this thesis is to provide several constructions of a particular type of
linear codes, called minimal codes, using the theory of Boolean/p-ary functions.
The following subsections illustrate the importance of minimal linear codes in
real-life applications and provide a sound motivation for their construction and
study of their properties.

1In general, there is a one-to-one correspondence between syndromes and cosets of C. A
vector of minimum weight in each coset is called a coset leader . Syndrome decoding then
comes down to computing syndromes of coset leaders.
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1.1 Secret sharing schemes

Suppose that a dealer knows a secret s which is meant to be distributed among
a set of participants U = {P0, . . . , Pn−1}, each of whom is allocated a corre-
sponding share u0, . . . , un−1 of the secret. The dealer gives out the secret in
such a way that only certain subsets of participants can access the secret when
they pool their shares together.

An access structure Γ is the family of all the subsets of participants that are
able to reconstruct the secret s from their partial information. The elements
of Γ are called authorized sets , whereas the subsets that are not in Γ are called
unauthorized sets. This setting is called a secret sharing scheme (Figure 1.2)
and it was invented independently by George Blakley [5] and Adi Shamir [50]
in 1979. Blakley described a type of secret sharing schemes using the fact that
n nonparallel (n − 1)-dimensional hyperplanes intersect at exactly one point
[5]. In contrast, Shamir's secret sharing schemes are based on the Lagrange
interpolation theorem [50].

· · ·

The dealer allocates shares of s.

Secret s

P0 Pn−2 Pn−1

Only authorized sets in Γ can recover s.

u0 u1 un−2 un−1

P1

Figure 1.2: A secret sharing scheme.

A secret sharing scheme is called perfect when unauthorized sets of participants
cannot determine the secret s. Any authorized set A ∈ Γ is minimal if its a
minimal element of the partially ordered set Γ under inclusion, i.e.

A′ ⊆ A and A′ ∈ Γ implies that A′ = A.

A monotone access structure Γ is an access structure Γ which is upward closed
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with respect to inclusion, i.e. for every A ∈ Γ,

A ⊆ A′ implies A′ ∈ Γ.

For monotone access structures, the collection of minimal authorized sets uniquely
determines the access structure.

Any linear [n, k, d]q-code C with generator matrix G = [g0
T · · · gn−1

T ], where the
superscript T means taking transpose, induces a perfect secret sharing scheme
with n − 1 participants U = {P1, . . . , Pn−1} for which the secret is an element
of Fq. The dealer randomly chooses a vector x = (x0, . . . , xk−1) ∈ Fkq such that
s = x · g0 (out of the qk−1 possible choices). Then the dealer computes u =
(s, u1, . . . , un−1) := xG and gives the i-th co-ordinate ui to the i-th participant.
Since s = x · g0, the shares ui1 , . . . , uil determine the secret s if and only if g0 is
a linear combination of gi1 , . . . , gil for some l with 1 6 l 6 n. Moreover, if a set
of participants can recover the secret, then so can any superset of it. Hence the
access structure of such scheme is perfect and monotone. The access structure
is then given by

Γ = {A ⊆ U : ∃A′ = {Pi1 , . . . , Pil} ⊆ A with g0 =
l∑

j=1

λjgij for λ1, . . . , λl ∈ Fq}.

This way of constructing secret sharing schemes from linear codes was �rst
observed by James L. Massey [34].

Consider a codeword c in the dual code C⊥ of the form

c = (1, 0, . . . , 0,−ci1 , 0, . . . , 0,−cil , 0, . . . , 0) (1.3)

where cij is at coordinate ij and cij 6= 0 for at least one j ∈ {1, . . . , l}. By
de�nition, GcT = 0, which implies g0 =

∑l
j=1 cijgij . Therefore, the existence of

a codeword in C⊥ of the form (1.3) is equivalent to the corresponding shares
being able to recover the secret.

The access structure Γ of this type of secret sharing schemes based on a linear
code can be completely determined by the family of minimal authorized sets
since Γ is monotone. By the previous observation about dual codewords, it is
enough to study minimal codewords of a linear code C.

The support of a vector v = (v1, . . . , vn) ∈ Fnq is the set of positions for which the
corresponding coordinate is nonzero, i.e. supp(v) := {i ∈ {1, . . . , n} : vi 6= 0}.
The weight of the vector v, denoted wt(v), equals |supp(v)|. Given a linear
code C, a codeword c1 ∈ C covers another codeword c2 ∈ C if the support of
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c1 contains that of c2. The notation c2 � c1 represents this relation, namely,
that c1 covers c2. If a nonzero codeword covers only its scalar multiples, but
no other nonzero codewords, then it is called a minimal codeword . If every
non-zero codeword of a linear code C is minimal, then the code itself is called
minimal .

At this point, it is clear that there is a one-to-one correspondence between the
collection of minimal access sets and the collection of minimal codewords of the
dual code C⊥ whose �rst coordinate is one.

The secret sharing schemes based on a linear code are completely determined
by its dual code, thus, exchanging the roles, one can study linear codes and
consider the secret sharing schemes based on their duals.

In 2003, Jin Yuan and Cunsheng Ding [21] provided the following description
of access structures related to minimal linear codes.

For a minimal [n, k, d]q-code C with generator matrix G = [g0
T · · · gn−1

T ] whose
columns are non-zero, the secret sharing scheme based on C⊥ satis�es the fol-
lowing:

� There are qk−1 minimal access sets;

� If, for some 1 6 i 6 n − 1, gi is a scalar multiple of g0, then participant
Pi must be in every minimal access set.

� If gi is not a scalar multiple of g0 for some 1 6 i 6 n− 1, then participant
Pi must be in (q − 1)qk−2 out of qk−1 minimal access sets.

1.2 Secure multi-party computation

The general idea behind secure multi-party computation is to correctly compute
the output of a function, from a number of secret inputs, without leaking any
information of the given inputs (see Figure 1.3). More formally, consider n
parties or players P1, . . . , Pn. Suppose that each player Pi holds a secret input
xi and the players agree on some function f that takes n inputs. The �nal
goal is to compute y = f(x1, . . . , xn) while making sure that the following two
properties are satis�ed:

� (Correctness) The correct value of y is computed;

� (Privacy) The output y is the only new information known to each player.

Unlike traditional cryptographic protocols, where the adversary is outside the
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set of participants, the cryptography in this model protects participants' privacy
from each other, thus the adversaries can be thought as a subset of participants.

Secure multi-party computation was introduced in 1982 by Andrew Yao where
he presented the so-called Millionaires' problem [61]. Later, the case n = 2
was re�ned by Yao using any computationally feasible function [62] whereas
the multi-party case was studied by Oded Goldreich, Silvio Micali and Avi
Wigderson [24].

P1

x1

P2

x2

P3

x3

Pn−1

xn−1

Pn

xn

· · ·

f(x1, . . . , xn)

Pn−2

xn−2

Figure 1.3: Secure multi-party computation protocol.

Let us focus on the particular case of secure two-party computation (n = 2).
Yao's techniques to construct secure two-party computation protocols are based
on garbled circuits and oblivious transfer . Oblivious transfer, introduced by
Michael O. Rabin [47], enables a receiver R to obtain one out of N secrets
s1, . . . , sN held by a sender S. The receiver chooses an index iR ∈ {1, . . . , N},
gets siR and learns nothing about sj for j 6= iR. Symmetrically, the sender S
learns nothing about iR.

Linear codes can be used to construct secure two-party computation protocols
using oblivious transfer as we describe in the following. For a broader discussion,
we refer the reader to [12].

We will only consider the secure evaluation of functions f of the form f :
Frq × I → Fq given by (X, Y ) 7→

∑r
i=1 fi(Y ) · xi, where I is any given set, and

fi : I → Fq are arbitrary functions. The secure computation of these functions
is important for several applications in cryptography and signal processing [12].

Let f be a function of the form described in the above paragraph. Suppose
that the input of player P1 is x and the input of player P2 is y. Consider an
[n, k, d]-linear code C with parity check matrix H. Denote by Hi the i-th row
of H.
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� P1 randomly chooses an encoding z = (z1, . . . , zn) ∈ Fnq of x i.e. x = Hzt

and inputs z.

� P2 inputs y and computes the support of the vector v =
∑n−k

i=1 fi(y)Hi ∈
C⊥, say, supp(v) = {i1, . . . , it};

� P1 and P2 perform an oblivious transfer on z1, . . . , zn and {i1, . . . , it};

� P2 receives zi1 , . . . , zit not learning anything about the other coordinates
and computes f(X, Y ) =

∑n−k
i=1 fi(Y )xi =

∑n−k
i=1 (fi(Y )Hi) · zt;

� P2 sends the result to P1.

The only computation that involves player P1 uses a t-out-of-n oblivious trans-
fer, thus P1 does not learn anything about Y . However, the parameter t could
leak some information about Y . This can be easily �xed either by using an
oblivious transfer protocol that hides the number of items or letting P2 make
some dummy requests.

To ensure that x is not known to P2 after knowing f(x, y), the code C⊥ is
required to be a minimal code: For any v ∈ C⊥, let Ψv : C⊥ → Fn−tq be the linear
mapping given by (c1, . . . , cn) 7→ (ci)i 6∈supp(v). If C⊥ is minimal, then ker(Ψv) =
〈v〉 and rank(Ψv) = dim(C⊥) − 1. Therefore, the remaining coordinates of z
that P2 does not know about lie in an (n− k − 1)-dimensional subspace of C⊥

so P2 cannot learn more about x than the scalar f(x, y).



Chapter 2

De�nitions and preliminary results

2.1 Boolean functions

For a prime p, the vector space Fmp can be identi�ed with the �nite �eld Fpm
by �xing a basis, thus these two objects share the same linear properties. A
mapping f from Fmp (or from Fpm) to Fp is called a p-ary function. A vectorial
p-ary function is a mapping of the form F : Fmp → Flp such that m and l are
positive integers not necessarily equal. A (vectorial) 2-ary function is simply
called a (vectorial) Boolean function. The set of m-variable Boolean functions
will be denoted by Bm.

Once an ordering of Fpm is �xed, say, Fpm = {α0 = 0, α1, . . . , αpm−1}, any p-
ary function f : Fpm → Fp uniquely determines a sequence of output values,
called the truth table, given as [f(α0), f(α1), . . . , f(αpm−1)], which in turn can
be viewed as a vector of length pm with entries in Fp.

Throughout, the lexicographic order will be considered unless otherwise stated.
A function f : Fpm → Fp and its truth table are then treated as the same object
whenever there is no ambiguity. The multivariate description of a vectorial
function F : Fmp → Fmp is described using coordinate functions f1, . . . , fm :
Fmp → Fp such that F (x) = (f1(x), . . . , fm(x)).

Non-zero linear combinations of coordinate functions are called component func-
tions . Then the component functions of F are mappings from Fmp to Fp given by
x 7→ 〈a, F (x)〉, where a ∈ (Fmp )∗ and 〈·, ·〉 is any nondegenerate bilinear form on
Fmp . Equivalently, the component functions of F : Fpm → Fpm are the mappings
x 7→ Tr(aF (x)) for a ∈ F∗pm , where Tr denotes the absolute trace on Fpm , i.e.
Tr(x) = x + xp + xp

2
+ · · · + xp

m−1
. For either a ∈ (Fmp )∗ or a ∈ F∗pm , we will

10
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denote by a ·F the corresponding component of F regardless of which algebraic
structure is being considered.

One of the most important tools to classify and analyze the behaviour of p-ary
functions is the so-called Walsh-Hadamard transform. Given f : Fmp → Fp and
λ ∈ Fmp , the Walsh-Hadamard transform of f at the point λ is de�ned as

Wf (λ) =
∑
x∈Fmp

ξf(x)−λ·x
p , (2.1)

where ξp = e2πi/p is the complex primitive p-th root of unity . The multi-set of
values {{Wf (λ) : λ ∈ Fmp }} is called the Walsh spectrum of f and it will be
denoted by Wf . We use the superscript ∗ to indicate the subset of non-zero
elements of a given set, e.g. F∗pm = Fpm \ {0} is the cyclic multiplicative group
of Fpm .

A cyclotomic �eld Q(ξp) is a �eld obtained by adjoining ξp to the �eld of rational
numbers Q. The �eld extension Q(ξp)/Q is a Galois extension1 of degree p− 1
whose Galois group Gal(Q(ξp)/Q) is the set of canonical automorphisms {φa :
a ∈ F∗p}, where φa : Q(ξp) → Q(ξp) is de�ned by φa(ξp) = ξap and φ(x) = x for
every x ∈ Q.

For several applications, it is important that a Boolean function is far from the
set of a�ne functions. This measure is captured in the notion of nonlinearity
of a function f : Fmp → Fp, which is the minimum distance between f and the
set of all m-variable a�ne functions (denoted by Am), i.e.

Nf = min
g∈Am

dH(f, g). (2.2)

A p-ary function f is said to be p-ary bent (or, simply, bent) if all its Walsh
coe�cients satisfy

|Wf (λ)|2 = pm. (2.3)

In the binary case, a Boolean function f : Fm2 → F2 is bent if and only if
Wf (λ) = ±2

m
2 for any λ ∈ Fm2 and the Walsh transform of a Boolean function

f can be related to Nf using the equality

Nf = 2m−1 − 1

2
max
λ∈Fm2

|Wf (λ)|. (2.4)

Note that bent Boolean functions exist only for even m. Bent functions were
named and introduced by Oscar Rothaus [49] in the 1960s although his research
was not published until 1976.

1A Galois extension is an algebraic extension which is normal and separable, see [30].
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A bent function f : Fmp → Fp is said to be regular bent if for every λ ∈ Fmp ,

p−m/2Wf (λ) = ξf̃(λ)
p (2.5)

for some mapping f̃ : Fmp → Fp. Such a function f̃ is called the dual function.
A bent function f : Fmp → Fp is said to be a weakly regular bent function if there
exists a complex number u with |u| = 1 such that

up−m/2Wf (λ) = ξf̃(λ)
p (2.6)

for all λ ∈ Fmp . Regular bent functions can only be found for even m and for
oddm with p ≡ 1 (mod 4). Weakly regular bent functions always come in pairs,
since their dual is bent as well. This, in general, does not hold for non-weakly
regular bent functions.

Letm be a positive odd integer. A Boolean function f : Fm2 → F2 is called semi-

bent if and only if its Walsh coe�cients lie in {0,±2
m+1

2 }. A vectorial Boolean
function F : Fm2 → Fm2 is called an almost bent or AB function if and only if
the Walsh coe�cients of its components belong to {0,±2

m+1
2 }, equivalently, if

all of its components are semi-bent.

Another important parameter of a function f : Fmp → Fp is its algebraic degree,
which is the largest degree of all the monomials with a nonzero coe�cient ai ∈ Fp
in the algebraic normal form (ANF) or multivariate representation of f , i.e.

f(x1, . . . , xm) =
∑

i=(i1,...,im)∈Fm2

ai

m∏
j=1

x
ij
j (2.7)

For a vectorial function, if f1, . . . , fm are the coordinate functions of F , then
the largest degree of the fi is the algebraic degree of F .

The derivative of a function F : Fpm → Fpm at direction γ ∈ F∗pm is de�ned as

DγF (x) = F (x+ γ)− F (x). (2.8)

Although the symbol DγF is not de�ned for γ = 0, it will be convenient to set
D0F to be the identically zero function. We make this convention whenever
there is no room for ambiguity.

A mapping F : Fpm → Fpm is called planar provided that all of its derivatives
are permutations. Planar functions can exist only when p is odd. A function
F : F2m → F2m is called almost perfect nonlinear or APN if its derivatives are
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2-to-1. For any a ∈ F∗2m and b ∈ F2m , we de�ne δ(a, b) = |{x ∈ F2m : DaF (x) =
b}|. The di�erential uniformity δF of F : F2m → F2m is de�ned as

δF = max
a∈F∗2m ,b∈F2m

δ(a, b). (2.9)

We also say that F is di�erentially δF -uniform, or simply, δF -uniform. The
subindex F will be dropped whenever it is clear from the context which function
we refer to. APN functions are exactly the 2-uniform functions. It is well-
known that every AB function is APN [10]. Most known examples of APN
functions and almost all known examples of planar functions are quadratic
thus the construction of �new� non-quadratic planar or APN functions is a
fundamental unsolved problem in this area.

Here �new functions� means that they are not equivalent under some of the
following notions of equivalence. Two vectorial Boolean functions F1, F2 : Fm2 →
Fl2 are called a�ne equivalent if there exist two a�ne automorphisms L,L′ on
Fm2 and Fl2, respectively, such that F2 = L′ ◦F1 ◦L. If there also exists an a�ne
vectorial Boolean function L′′ : Fm2 → Fl2 such that F2 = L′◦F1◦L+L′′ then they
are called extended a�ne equivalent (EA, for short). Moreover, if there exists an
a�ne automorphism on Fm2 ×Fl2 that maps the set {(x, y) ∈ Fm2 ×Fl2 : y = F1(x)}
onto {(x, y) ∈ Fm2 × Fl2 : y = F2(x)}, then the functions are called CCZ-
equivalent (Carlet-Charpin-Zinoviev).

A�ne equivalence is strictly stronger than EA-equivalence, which in turn is
strictly stronger than CCZ-equivalence [10]. The importance of these notions is
that certain parameters are preserved, e.g. di�erential uniformity is preserved
under CCZ-equivalence (hence under all of the mentioned equivalences).

The �rst known examples of AB functions have been power functions (or mono-
mials) on the �eld F2m for odd m, namely, functions de�ned by x 7→ xd. The
list of exponents d for which the power function F (x) = xd is AB are displayed
in Table 2.1.

Table 2.1: Known exponents d corresponding to in�nite classes of AB power
functions up to CCZ-equivalence and inversion modulo 2m − 1.

Exponent Conditions Type
2i + 1 gcd(i,m) = 1 Gold

22i − 2i + 1 gcd(i,m) = 1 Kasami
2(m−1)/2 + 3 Welch

2(m−1)/2 + 2(m−1)/4 − 1 m ≡ 1(mod 4) Niho
2(m−1)/2 + 2(3m−1)/4 − 1 m ≡ 3(mod 4) Niho
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It still is an open problem to show that the list of power AB functions in Table
2.1 is complete, as conjectured by Hans Dobbertin. There are examples of AB
functions that are EA-inequivalent to power functions and EA-inequivalent to
permutations. However, there are just some sporadic examples of AB functions
that are CCZ-inequivalent to power functions. We refer the reader to [9] for
more information related to this topic.

For m = 4, all APN functions are known and classi�ed under EA-equivalence
and CCZ-equivalence. So are they for m = 5. The case m = 6 is more compli-
cated: the quadratic APN functions are fully classi�ed; a complete classi�cation
of cubic APN functions in terms of CCZ equivalence was given [28]. For odd m,
there are several in�nite classes of APN permutations (e.g. power functions),
whereas for even m, the only known APN permutation lies in F26 [8]. The
existence of APN permutations for even m greater than or equal to eight is an
open problem, usually referred as �the big APN problem.�

2.2 Linear codes

As mentioned in the introduction, a linear [n, k, d]q-code is a k-dimensional
linear subspace C of Fnq with minimum Hamming distance d. The code C is
then referred as a q-ary linear code, or simply, a q-ary code. A 2-ary linear code
is called a binary linear code. A generator matrix of C is a k× n matrix whose
rows form a basis for C and a parity-check matrix of C is an (n−k)×n matrix
H whose rows form a basis for C⊥. Note the use of the variables n and q (a
prime power) when discussing the length of a q-ary linear code. Typically, we
will reserve m and p (a prime number) when discussing the dimension of the
input space of a p-ary function.

Given a linear code C with parity check matrix H, we have that a vector x is
in C if and only if HxT is the zero vector. Therefore, the minimum distance of
a linear code equals the minimum number of Fq-linearly dependent columns in
any of its parity check matrix. Several well-known operations can be performed
to obtain codes from existing ones [31], in particular, the extended code of C
will be denoted by Cext and the punctured code at the �rst coordinate will be
represented by C×, which is the code obtained by deleting the �rst coordinate
of each codeword in the original code.

For any integer k greater than two, the Hamming code Hk of length n = qk−1
q−1

is de�ned as the linear code with a parity check matrix whose columns form a
maximal pairwise linearly independent set (Figure 2.1). Its dual is called the
simplex code, denoted by Sk (Figure 2.2). These codes have played important
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roles as many computers and protocols are based on them in one way or another
[9, 31].

v127 = (1, 1, 1, 1, 1, 1, 1)

v0 = (0, 0, 0, 0, 0, 0, 0)

v11 v23 v28 v36 v41 v49 v58 v69 v78 v82 v89 v99 v104 v116

Figure 2.1: Hamming code H3.

v0 = (0, 0, 0, 0, 0, 0, 0)

v15 v51 v60 v85 v90 v102 v105

(0, 0, 0, 1, 1, 1, 1) (0, 1, 1, 0, 0, 1, 1) (0, 1, 1, 1, 1, 0, 0) (1, 0, 1, 0, 1, 0, 1) (1, 0, 1, 1, 0, 1, 0) (1, 1, 0, 0, 1, 1, 0) (1, 1, 0, 1, 0, 0, 1)

Figure 2.2: Simplex code S3.
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Example 2.2.1. A generator matrix of the Hamming code H3 with parameters
[7, 4, 3]2, equivalently, a parity check matrix for the simplex code S3 is

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .

Similarly, a generator matrix of the simplex code S3 with parameters [7, 3, 4]2
(a parity check matrix for H3) is

H =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

For an [n, k, d]q-code C, the number k
n
is called the information rate (sometimes

called the transmission rate) of the code. We say that C is distance-optimal ,
or simply, optimal, provided that there does not exist an [n, k, d′]q-code with
d < d′. The code C is called almost optimal if there is an optimal [n, k, d+ 1]q-
code, see [25, 27]. Two binary codes C and C ′ with the same parameters are
called equivalent , if they coincide after some permutations of the positions of
C ′.

Let C be an arbitrary q-ary linear code of length n. The weight enumerator
polynomial of C is the polynomial

AC(z) =
n∑
i=0

Aiz
i, (2.10)

where Ai is the number of codewords of weight i. The sequence (Ai)06i6n is
called the weight distribution of C. One of the most important results relating
the weights of C and the weights of its dual C⊥ is the so-called MacWilliams'
identity :

(1 + (q − 1)z)nAC(
1− z

1 + (q − 1)z
) = qkAC⊥(Z). (2.11)

There are essentially two generic methods to de�ne linear codes using p-ary
functions [9, 19]. The �rst method speci�es linear codes from a mapping F :
Fpm → Fpm and linear functions on Fpm [11], namely, the linear code CF ⊂ Fp

m

p

is de�ned by

CF = {ca,u := (Tr(aF (x)) + Tr(ux))x∈Fpm : a, u ∈ Fpm}. (2.12)
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An equivalent de�nition of CF can be obtained using the vector space represen-
tation of Fpm and the standard dot product. The dimension of CF is at most
2m and its length is pm. If F (0) is null, we may also consider the code obtained
by puncturing the �rst coordinate at each vector in CF , i.e., C×F . In this case,
the length is pm − 1 while the dimension remains at most 2m. For p = 2, the
code C×F can be used to characterize AB functions and APN functions [10].

When considering p-ary functions f : Fpm → Fp, the variable a in (2.12) will
run over Fp only, thus the elements in Cf are of the form ca,u := (af(x) +
Tr(ux))x∈Fpm , and its dimension is at most m + 1. If F : Fpm → Fpm has no
linear components, then CF has dimension 2m. Similarly, if f : Fpm → Fp is
not linear, Cf has dimension m + 1. Moreover, the weights of the linear codes
derived from the generic construction in (2.12) can be determined through the
Walsh transform of absolute trace functions [37] as

wt(ca,u) = pm − 1

p

∑
ω∈Fp

Wψωa(ωu), (2.13)

where ψα : Fpm → Fp is de�ned by x 7→ Tr(αF (x)) for α ∈ Fpm . In particular,
for p = 2, the non-zero weights of CF are 2m−1 and 2m−1 − 1

2
Wα·F (λ) for α ∈

F∗2m , λ ∈ F2m [19].

The second generic construction of linear codes from functions works as follows
[16, 17, 56]. Fix a multi-set D = {{d1, d2, . . . , dn}} ⊂ Fpm , called the de�ning
(multi-)set . De�ne

CD = {cx := (Tr(d1x),Tr(d2x), . . . ,Tr(dnx)) : x ∈ Fpm}. (2.14)

The length of CD is n and its dimension is at most m. It can be noted that
di�erent orderings of D give equivalent linear codes CD. The weight wt(cx) of
cx is n− Zx, where Zx equals |{i ∈ {1, . . . , n} : Tr(xdi) = 0}|. Moreover, since

pZx = n+
∑
y∈F∗p

n∑
i=1

ξTr(yxdi)
p , (2.15)

the weights of CD are determined via the values
∑

y∈F∗p

∑n
i=1 ξ

Tr(yxdi)
p .

Not surprisingly, suitable choices for D lead to linear codes with interesting
speci�c properties. The code Cf can be seen as an instance of the de�ning set
method by selecting D = {(f(x), x) : x ∈ Fmp } ⊂ Fm+1

p . The most natural
choice for D is the support supp(f) of a p-ary function, which has been widely
used. For instance, some codes with good parameters were derived [18, 19]
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using supports of classes of vectorial mappings from Fmp to Fmp . In particular,
when Boolean functions are considered, so that f : Fm2 → F2, this method gives
optimal codes when bent and semi-bent functions are employed [16].

2.3 Minimal codes

Recall that a linear code C is minimal if every non-zero codeword of a linear code
C is minimal, i.e. for every non-zero codewords c, c′ ∈ C, if supp(c) ⊆ supp(c′),
then there exists λ ∈ Fq such that c = λc′.

A su�cient condition for a code to be minimal over Fq was given by Alexei E.
Ashikhmin and Alexander Barg [2]. This condition states that if the minimum
weight wmin and the maximum weight wmax of a linear code C are su�ciently
close to each other, i.e.

wmin

wmax

>
q − 1

q
, (2.16)

then the code C must be minimal. This su�cient condition will be referred as
Ashikhmin-Barg's condition, or, the Ashikhmin-Barg bound .

A linear code is called narrow if it satis�es the Ashikhmin-Barg bound, namely,
if wmin/wmax >

q−1
q
. Thus, the previous discussion can be summarized as �nar-

row linear codes are minimal.� Conversely, linear codes satisfying wmin/wmax 6
q−1
q

are called wide.

Some sporadic examples of wide minimal codes were presented in [13, 15], how-
ever, there were no known examples of in�nite families of wide minimal codes
until the pioneering work of Cunsheng Ding, Ziling Heng and Zhengchun Zhou
[20], where they provided three explicit classes of wide minimal linear codes
over a binary alphabet.

Several methods have been devised to construct (wide) minimal codes, rang-
ing from simplicial complexes [13], characteristic functions [20, 29, 40] and
Kratchouk polynomials [20, 26, 40], to projective planes [3], maximal arcs [25],
weakly regular bent functions [37, 60] and weakly regular plateaud functions
[40, 42, 52]. The problem of designing minimal linear codes was also considered
using the notion of cutting blocking sets and it was shown [6, 55] that cutting
blocking sets and minimal codes are equivalent objects.

Since the property of minimality is related to the supports of codewords, it is
natural to think of a characterization of minimality in terms of the weights of
codewords within the given linear code. This is indeed the case, it can be proved
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. . .

{supp(c) : c ∈ C, c �= 0}

∅

{1, . . . , n}

P ({1, . . . , n})

Figure 2.3: A prototypical example of a minimal code C of length n identi�ed
with an antichain in the lattice P ({1, . . . , n}) ordered by inclusion.
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[26] that a code C is minimal if and only if for each pair of nonzero linearly
independent codewords a and b in C,∑

c∈F∗q

wt(a+ cb) 6= (q − 1)wt(a)− wt(b). (2.17)

For a minimal code C with parameters [n, k, d]q, it can be seen that the set of
non-empty supports {sup(c) : 0 6= c ∈ C} is a Sperner family2 (see Figure 2.3),
hence

|C| = qk 6 1 + (q − 1)

(
n

bn/2c

)
(2.18)

due to Sperner's theorem.

Minimal codes are closely related to another particular class of linear codes. A
code C is said to be intersecting provided that for every two non-zero codewords
c, c′ ∈ C, their supports overlap, i.e. sup(c)∩sup(c′) 6= ∅. More generally, a code
C is t-intersecting if for every two non-zero codewords c, c′ ∈ C, the cardinality
of sup(c)∩sup(c′) is at least t. In the binary case, the class of intersecting codes
and the class of minimal codes coincide. In general, a minimal q-ary code is
(q − 1)-intersecting for k > 2.

Some bounds on the parameters of minimal codes are given as follows. The
�rst one is called the maximal bound and it states that the ratio R = k/n of
a minimal code C asymptotically satis�es R 6 logq(2) as n goes to in�nity.
An improvement of the maximal bound was proved in [1], where the authors
showed that asymptotically R 6 1

q
. For each minimal code C with parameters

[n, k, d]q, it holds that
n > (k − 1)q + 1. (2.19)

Moreover, the minimum distance d is constrained by d > k + q − 2 and the
maximum distance wmax by wmax 6 n− k + 1 [1, 15].

A class C of codes is called asymptotically good if there exists a positive ε
such that for every positive integer n, there is a code C ∈ C with parame-
ters [n, kn, dn]q such that kn

n
> ε and dn

n
> ε. The class of minimal codes is

asymptotically good as inferred from the minimal bound [12, 15]: For any rate
R = k/n such that

0 6 R 6
1

2
logq

(
q2

q2 − q + 1

)
,

2A Sperner family (clutter , or, independent system), is a family F of subsets of a �nite set
F in which none of the sets contains another. Equivalently, a Sperner family is an antichain
in the powerset P (F ) viewed as a lattice under inclusion.
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there exists an in�nite sequence of [n, k]q minimal codes.

Recall that the direct product (sometimes called the Kronecker product) C1⊗C2

of linear codes C and C ′ with parameters [n, k, d]q and [n′, k′, d′]q, respectively,
is the linear code whose elements are n × n′ matrices for which every column,
respectively every row, is an element in C, respectively in C ′. Thus C1 ⊗ C2 is
an [nn′, kk′, dd′]q-code. Moreover, if C and C ′ are minimal, then so is C1 ⊗ C2.



Chapter 3

In�nite families of binary minimal

codes

The aim of this chapter is to present several constructions of in�nite families
of wide minimal binary codes from Boolean functions using di�erent combina-
torial/algebraic techniques. The crux of most constructions is to build speci�c
characteristic subsets of Fm2 to de�ne Boolean functions, which will be used to
generate wide minimal codes of length 2m. Roughly speaking, the combinato-
rial properties of the characteristic sets will provide wideness of the resulting
codes, whereas the algebraic properties will assure minimality. Throughout the
chapter, we will set p = 2 and consider the linear code Cf described in (2.12)
as de�ned using a Boolean function on the vector space Fm2 (not over the �nite
�eld F2m). The results presented in this chapter are based on the results proved
in [44] and in [64].

3.1 Wide minimal codes

Intrinsically, in�nite families of wide minimal codes have been harder to specify
since there were no know examples from the introduction of minimal codes in
1998 [2] until 2018 [20], when three in�nite families of wide minimal binary
linear codes were constructed. Additionally, some other e�orts to exhibit such
families have been made and examples of these families can be constructed using
several approaches [20, 29, 40, 66].

The strategy used in [20] is quite simple but powerful: consider Boolean func-
tions that resemble some classes of bent Boolean functions and plug them into
the code Cf de�ned by means of (2.12). The bent-like shape of f provides a

22
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systematic way to compute the weights of Cf and conclude that the codes are
minimal, whereas the fact that these functions are not bent gives enough room
to �stretch out� the weights to get wide minimal codes. This strategy is very
versatile and we will follow a similar approach on our constructions from the
generalMM class, see section 3.4.

The binary instance of equation (2.17) will be repeatedly used in the forthcom-
ing results so that it is worth stating and proving it now.

Proposition 3.1.1. [20] A binary linear code C ⊂ Fn2 is minimal if and only
if for each pair of distinct nonzero codewords a and b in C,

wt(a+ b) 6= wt(a)− wt(b).

Proof. The support of the sum of two binary vectors equals the symmetric
di�erence of their supports, hence wt(a+b) = wt(a)+wt(b)−2|supp(a)∩supp(b)|
for every a, b ∈ C. Thus the equation wt(a + b) = wt(a)− wt(b) is true if and
only if wt(b) = |supp(a)∩ supp(b)|, which in turn holds if and only if supp(b) ⊆
supp(a), i.e. b � a. Therefore the existence of a pair of non-zero codewords
a, b ∈ C that cover each other is equivalent to wt(a+ b) = wt(a)− wt(b).

Since the weights of the code Cf described in (2.12) are completely determined
by the Walsh transform of f (Equation (2.13)), the minimality of the code Cf
can be characterized via the Walsh values f .

Theorem 3.1.2. [20] Let f : Fm2 → F2 be a non-a�ne Boolean function. The
code Cf described in (2.12) is minimal if and only if for every pair of distinct
β1, β2 ∈ Fm2 it holds that

Wf (β1) +Wf (β2) 6= 2m and Wf (β1)−Wf (β2) 6= 2m. (3.1)

Equivalently, Cf is minimal if and only if for every Walsh coe�cient w = Wf (β),
the integer 2m ± w is not a Walsh coe�cient of f .

Proof. Since the extended simplex code Sextm is minimal, the only codewords
to consider are those where f appears, so let ca,u, ca′,u′ be arbitrary non-zero
codewords in Cf such that a 6= 0 or a′ 6= 0. By Proposition 3.1.1, ca′,u′ � ca,u
if and only if wt(ca,u + ca′,u′) 6= wt(ca,u) − wt(ca′,u′). When a = 1, it holds
that wt(c1,u) = 2m−1 − 1

2
Wf (u), wt(ca′,u′) is equal to either 2m−1 (which forces

wt(c1,u+ca′,u′) = 2m−1− 1
2
Wf (u+u′)), or, 2m−1− 1

2
Wf (u

′) (which forces wt(c1,u+
ca′,u′) = 2m−1). Similarly, when a = 0, it holds that wt(c1,u′) = 2m−1− 1

2
Wf (u

′),
wt(c0,u) = 2m−1 and wt(c0,u+c1,u′) = 2m−1− 1

2
Wf (u+u′). The result then follows

by plugging these possible values into wt(ca,u+ca′,u′) 6= wt(ca,u)−wt(ca′,u′).
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The characterization of minimality of the code Cf given in Theorem 3.1.2 enables
us to state a su�cient condition for minimality using only the extremal spectral
values of f . For this purpose, let the symbols Wmax (resp. Wmin) denote the
maximal (resp. minimal) Walsh value in the Walsh spectrum of a given Boolean
function f .

Corollary 3.1.3. Let f be a nona�ne Boolean function in Bm. If the extremal
Walsh values Wmax and Wmin satisfy

Wmax −Wmin < 2m and Wmax < 2m−1, (3.2)

then Cf is minimal.

Proof. Let β1, β2 ∈ Fm2 . Since Wmax is maximal, the sum Wf (β1) + Wf (β2) is
at most 2Wmax. By hypothesis, Wmax < 2m−1 so that Wf (β1) + Wf (β2) < 2m.
Since Wf (β2) >Wmin, the di�erence Wf (β1)−Wf (β2) is at mostWmax−Wmin,
hence Wf (β1)−Wf (β2) < 2m using the �rst condition in (3.2). The minimality
of Cf then follows by Theorem 3.1.2.

The following fact is a straightforward consequence of the proof of Theorem
3.1.2, which provides a simple characterization of the property of wideness of
linear codes of the form Cf .

Proposition 3.1.4. Let f be a non-a�ne Boolean function in Bm. The code
Cf is wide if and only if 2Wmax −Wmin > 2m.

Proof. Since f is non-a�ne, its Walsh spectrum contains at least one positive
value and at least one negative value. This implies thatWmax > 0 andWmin < 0.
The existence of both positive and negative values in the Walsh spectrum can
be easily con�rmed using Titsworth theorem.1 The minimum and maximum
weights of the code correspond to these extremal Walsh coe�cients so that
wmin = 2m−1 − Wmax

2
and wmax = 2m−1 − Wmin

2
. Replacing these values in the

quotient wmin

wmax
, we get that wmin

wmax
is at most 1

2
if and only if 2m 6 2Wmax −

Wmin.

It can be anticipated that the code Cf reveals information of the underlying
Boolean function f . Moreover, properties of the code must impose some re-
strictions on f , too. For instance, the following result gives an upper bound on
the nonlinearity of a Boolean function f ∈ Bm under the assumption that the
linear code Cf is wide.

1Titsworth theorem states that the sum
∑

u∈Fm
2
Wf (u)Wf (u + s) = 0 is null for any

s ∈ Fm2
∗.
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Proposition 3.1.5. Let f ∈ Bm be any non-a�ne Boolean function and Cf its
associated code. The nonlinearity Nf of f equals min{wmin, 2

m − wmax}, where
wmin and wmax denote, respectively, the minimum and maximum weights in Cf .
Moreover, if Cf is wide, then Nf 6 2m

3
.

Proof. Note that either Wmax or Wmin attains the maximum absolute value in
the Walsh spectrum of f . This yields that either

Nf = 2m−1 +
1

2
Wmin, or Nf = 2m−1 − 1

2
Wmax

sinceNf = 2m−1− 1
2

maxu∈Fm2 |Wf (u)|. Therefore,Nf = 2m−wmax orNf = wmin.
This gives Nf = min{wmin, 2

m − wmax}. From this, the value 2Nf is at most
2wmin. If Cf is wide, then 2wmin 6 wmax. Again, from the �rst part of the
theorem, wmax is at most 2m −Nf . Thus, Nf 6 2m

3
.

According to the above results, certain Boolean functions f cannot be used in
the construction of wide minimal binary linear codes. For instance, assume that
Wmin = −2l and Wmax = 2l for some l ∈ {m

2
, . . . ,m− 2,m− 1}. If l = m− 1,

then Cf is clearly not minimal since Wmax −Wmin = 2m. On the other hand, if
l 6 m− 2, then 2Wmax −Wmin = 3 · 2l 6 3 · 2m−2 < 2m. By Proposition 3.1.4,
the code Cf is narrow (hence minimal). Note that some well-known classes of
Boolean functions, such as bent and semi-bent functions, lie in this description
so they cannot give rise to wide codes. Alternatively, this could be inferred
from the bound on nonlinearity derived in Proposition 3.1.5.

3.2 The basis method and a�ne subspaces

The main idea of the constructions in this section will be to exploit the geometric
and combinatorial structures of Fm2 to construct suitable �stretched� subsets
∆ ⊂ Fm2 which will de�ne the support of a Boolean function f : Fm2 → F2, thus
we will consider characteristic functions of subsets. The geometric properties
will allow us to apply Theorem 3.2.2 below to obtain minimal codes, whereas
the combinatorial properties should provide wideness.

3.2.1 Vectorial blocking sets

Very recently, a geometric approach for constructing minimal codes was in-
troduced [6], where the authors showed a strong connection between cutting
vectorial blocking sets and minimal codes. Surprisingly, it turns out that these
two objects are the same [55].
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For each non-zero vector u in Fm2 , the symbol Hu will denote the complement
of the hyperplane2 determined by u, i.e.

Hu = {x ∈ Fm2 : u · x = 1}.

For any subset A of Fm2 , the complement of A is denoted by A. With this
notation, Hu is the hyperplane determined by u.

A set BS ⊆ Fm2 is a vectorial blocking set if it intersects non-trivially all hy-
perplanes of Fm2 , i.e., BS∗ ∩Hu 6= ∅ for each u ∈ Fm2 (Figure 3.1). A vectorial
blocking set BS is said to be d-dimensional if its span is d-dimensional, that
is, dim(〈BS〉) = d. A vectorial blocking set BS is called a vectorial (1,m− 1)-
blocking set if BS does not include any hyperplane Hu. A vectorial blocking
set BS is cutting if the intersection between BS and every hyperplane is not
included in any other hyperplane (Figure 3.2).

H1

H2

H3

H4

H2m−4

H2m−3

H2m−2

H2m−1

.

.

.

BS

Figure 3.1: Graphical depiction of a vectorial blocking set BS.

The following lemma is a trivial rephrasing of the introduced de�nitions on
blocking sets, so that its proof is omitted. However, this simple result will be
well-suited for the discussion in the sequel.

Lemma 3.2.1. [6] A subset BS of Fm2 is an m-dimensional cutting vectorial
(1,m− 1)-blocking set if and only if the following two conditions hold.

� For every pair of distinct u, u′ ∈ (Fm2 )∗, it holds that BS∗ ∩Hu 6⊆ Hu′;

� The set BS does not include any hyperplane.

2A hyperplane in an m-dimensional vector space is an (m− 1)-dimensional subspace.
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Hu

Hu ∩Hu
′

Hu

Hu ∩Hu
′

Hu
′

Hu
′

BS

Figure 3.2: Representation of a cutting vectorial (1,m− 1)-blocking set BS.

Following [6], given a Boolean function f : Fm2 → F2, denote the set of zeros of
f as V (f), i.e.,

V (f) = {x ∈ Fm2 : f(x) = 0}.

For every subset ∆ of Fm2 , the characteristic function (or indicator function) f
of ∆ is the Boolean function de�ned as

f(x) =

{
1, x ∈ ∆,
0, x ∈ Fm2 \∆.

(3.3)

The following theorem provides the aforementioned connection between minimal
codes and vectorial blocking sets. More precisely, it gives a su�cient condition
for a linear code Cf to be minimal in terms of the geometry of V (f). Vectorial
cutting blocking sets in Fm2 can be described via hyperplanes as expressed by
the following theorem.

Theorem 3.2.2. [6] If f : Fm2 → F2 is a Boolean function such that:

1) The set V (f) is an m-dimensional cutting vectorial (1,m− 1)-blocking set;

2) For every nonzero u ∈ Fm2 , Hu ∪ V (f) 6= Fm2 ,

then the code Cf given by (2.12) is a minimal binary code.
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Remark 3.2.3. A full characterization of minimality using vectorial blocking
sets has been given [55]. Every minimal code induces a vectorial cutting blocking
set and vice versa, thus in principle one can track down a vectorial blocking set
from any minimal code and one can create a minimal code from certain vectorial
blocking sets.

For the characteristic function f of a set ∆, the set of zeros V (f) is equal to
∆, namely, V (f) = Fm2 \∆. This simple observation allows us to turn Theorem
3.2.2 into the following corollary, which will be more suitable for our purposes.

Corollary 3.2.4. [6] Let ∆ be a subset of Fm2 and f be its characteristic func-
tion. If the following properties hold:

1) For each u ∈ Fm2 ∗, Hu ∩∆ 6= ∅ and Hu ∩∆ 6= ∅;

2) For every pair of distinct vectors u, u′ in (Fm2 )∗, Hu \Hu′ 6⊆ ∆ \Hu′,

then the code Cf is a minimal binary code.

Proof. These two conditions imply the hypotheses in Theorem 3.2.2 simply by
considering the complementary statements. Note that the statement �for every
nonzero u ∈ Fn2 , Hu ∩ ∆ 6= ∅� is equivalent to �for every nonzero u ∈ Fm2 ,
Hu ∪V (f) 6= Fm2 �, thus the �rst part in 1) is equivalent to the second condition
in Theorem 3.2.2. Now we prove that V (f) is anm-dimensional cutting vectorial
(1,m−1)-blocking set. Indeed, suppose there is a hyperplane Hu′ where u′ 6= 0
such that the intersection V (f)∗ ∩Hu′ is contained in Hu for some u ∈ (Fm2 )∗.
Taking complements, Hu ⊆ ∆∪{0}∪Hu′ , which implies Hu\Hu′ ⊆ ∆\Hu′ , thus
contradicting 2). This shows that V (f) is an m-dimensional cutting vectorial
blocking set. Finally observe that V (f) cannot contain any hyperplane Hv since
this would yield ∆ ⊆ Hu, which is a contradiction to 1). We have proved that
V (f) is an m-dimensional cutting vectorial (1,m− 1)-blocking set.

3.2.2 Bases

In what follows, we provide an e�cient method of selecting the support of f
based on Corollary 3.2.2, which then ensures both minimality and wideness
of the resulting codes. Most notably, the only requirement on the choice of a
suitable support of f ∈ Bm is the inclusion of (any) basis for Fm2 and at least
one particular element of its span.

Theorem 3.2.5 (The basis method). Let m > 5 be a positive integer. Let
∆ ⊂ Fm2 be an arbitrary subset and f be its characteristic function. If ∆ satis�es
the following conditions:
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a) m+ 1 6 |∆| 6 2m−2;

b) The set ∆ includes a basis B = {a1, . . . , am} for Fm2 and it contains a vector

τ1a1 + · · ·+ τmam

with (τ1, . . . , τm) ∈ Fm2 such that wt(τ1, . . . , τm) is even.

Then, the code Cf given by (2.12) is a wide minimal binary linear code with
parameters [2m,m+ 1, |∆|].

Proof. We �rst claim that for every nonzero u ∈ Fm2 we have Hu ∩∆ 6= ∅ and
Hu ∩∆ 6= ∅, i.e., there exist x1, x2 ∈ ∆ such that u · x2 = 1 and u · x1 = 0. For
each u ∈ (Fm2 )∗, there are two possibilities to consider.

i) If there exists an element ai ∈ B such that u ·ai = 0, then there must exist
an aj ∈ B ⊂ ∆ such that u · aj = 1 since the dimension of the orthogonal
space of u equals m− 1.

ii) If u · ai = 1 for all i ∈ {1, . . . , n}, then de�ne x2 = τ1a1 + · · ·+ τmam ∈ ∆.
Consequently, u · x2 = 0 since wt(τ1, . . . , τm) is even.

For every pair of non-zero vectors u, u′, the set Hu \Hu′ cannot be contained in
∆ \Hu′ since |Hu \Hu′ | = 2m−2 and |∆ \Hu′| < 2m−2. Using Corollary 3.2.4,
the code Cf is a minimal code. By assumption, |supp(f)| = |∆| 6 2m−2, hence
wmin 6 2m−2. This yields wmin

wmax
6 1

2
since the weight of linear functions is 2m−1.

Finally, the weight of c1,u ∈ Cf , for u 6= 0, equals

|Hu|+ |∆| − 2|Hu ∩∆|.

Since |∆| 6 2m−2, the number |Hu| − 2|Hu ∩∆| is non-negative, thus |∆| is the
minimum weight in Cf .

Note that the weight distribution of the codes constructed using the previous
theorem is very irregular. Nevertheless, their values completely rely on the
cardinality of ∆ and it can be shown that the maximum value in the Walsh
spectrum of f is 2m − 2|∆|, whereas other Walsh values belong to the set

{2|∆| − 4, 2|∆| − 8, . . . , 2|∆| − 4(|∆| − 1)}.

Example 3.2.6. Set m = 6. Consider the canonical basis E = {e1, . . . , e6} and
τ = (1, 0, 1, 1, 1, 0). Selecting ∆ = E ∪ {τ} we have |∆| = 7. The code Cf is
wide and minimal with weight enumerator given by

1 + z7 + 5z27 + 10z29 + 15z31 + 63z32 + 20z33 + 11z35 + 2z37.
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Thus, its minimum and maximum distance are 7 and 37, respectively. In other
words, Cf is an 8-weight code with parameters [64, 7, 7].

If we additionally select 9 arbitrary vectors, say, v1, . . . , v9 6∈ ∆ so that ∆′ =
E∪{τ, v1, . . . , v9}, then using ∆′ we obtain a wide minimal code with parameters
[64, 7, 16].

The following consequence of Theorem3.2.5 shows how to select a derivative of
a function in such a way that its associated code is a wide minimal code. This
will be important since derivatives of functions will play a crucial role in the
upcoming chapters, see Section 4.2 and Section 4.3.

Theorem 3.2.7. Let B = {a1, . . . , am} be a basis of Fm2 . De�ne the set

E = {τ1a1 + · · ·+ τmam : τ = (τ1, . . . , τm) ∈ Fm2 , wt(τ) is even}.

Let S be a non-empty subset of E such that |S| 6 2m−3−m. Consider ∆ = B∪S
and let f ∈ Bm be the characteristic function of ∆. Take any τ ′ = (τ ′1, . . . , τ

′
m) ∈

(Fm2 )∗ and de�ne γ = τ ′1a1 + · · ·+ τ ′mam. The following is true:

(i) The code Cf is a wide minimal binary [2m,m+ 1, |∆|]-linear code.

(ii) If wt(τ ′) is an even integer strictly greater than two and S 	 (γ + S) 6= ∅,
where the symbol 	 denotes symmetric di�erence, then the code CDγf is
also a wide binary [2m,m+ 1]-linear code.

(iii) If wt(τ ′) is an odd integer at least three and B∩ (γ+S) = ∅ then the code
CDγf is a wide minimal binary [2m,m+ 1]-linear code.

Proof. (i) The statement follows directly from Theorem 3.2.5.
(ii) Suppose that wt(τ ′) is even and wt(τ ′) > 2. It follows that (γ+B)∩B = ∅
since wt(τ ′) > 2. Observe that

supp(Dγf) = (γ + B) ∪B ∪ (S 	 (γ + S)).

Since |S| 6 2m−3−m, the cardinality of |supp(Dγf)| is at most 2m−2. The facts
that wt(τ ′) is even and S	(γ+S) is non-empty imply that supp(Dγf) contains
an element of the form τ1a1 + · · · + τmam with wt(τ) even. By Theorem 3.2.5,
the code CDγf is wide and minimal.
(iii) Suppose that wt(τ ′) is odd, wt(τ ′) > 3 and B ∩ (γ + S) = ∅. Again,
(γ + B) ∩B is empty since wt(τ ′) > 2. So is (γ + S) ∩ S since wt(τ ′) is odd.
Observe that

supp(Dγf) = (γ + B) ∪B ∪ (γ + S) ∪ S.
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As before, |supp(Dγf)| 6 2m−2 due to |S| 6 2m−3 − m. Note that the set
(γ+ B)∩E cannot be empty, thus supp(Dγf) contains an element of the form
τ1a1 + · · · + τmam with wt(τ) even. An application of Lemma 3.2.5 gives the
desired conclusion.

From the proof of Theorem 3.2.7, the minimum distance of the code CDγf is at
most 2m−2 in both cases studied in Theorem 3.2.7.

Example 3.2.8. Set m = 7. Consider the basis B ⊂ F7
2 with elements

a1 = e3 + e5 + e6; a2 = e2 + e5 + e6; a3 = e1 + e2 + e3 + e4 + e6;

a4 = e4 + e6; a5 = e1 + e4 + e6 + e7; a6 = e1 + e6;

a7 = e1 + e5 + e6 + e7,

where ei represents vectors in the canonical base. De�ne S ⊆ E with elements

s1 = a1 + a3 + a4 + a6; s2 = a3 + a4 + a5 + a7; s3 = a1 + a4;

s4 = a1 + a2 + a4 + a5 + a6 + a7; s5 = a2 + a3 + a5 + a6;

s6 = a1 + a2 + a3 + a7; s7 = a1 + a2 + a5 + a6,

and take γ = a2 + a4 + a6 + a7. Note that τ
′ = (0, 1, 0, 1, 0, 1, 1), wt(τ ′) = 4 and

|S| = 7 < 9 = 27−3−7. Computer-based simulations show that |S	(γ+S)| = 10
and the code CDγf is a wide minimal linear code, where f is the characteristic
function of ∆ = B ∪ S. This is a [128, 8, 24]-code with wmax = 80, so that
wmin/wmax = 1

3
. This is in accordance with (ii) of Theorem 3.2.7.

Example 3.2.9. Set m = 7. Consider the basis B ⊂ F7
2 with elements

a1 = e1 + e2 + e5 + e6; a2 = e1 + e3 + e6; a3 = e4 + e7;

a4 = e1 + e4; a5 = e4 + e5; a6 = e3 + e5 + e7;

a7 = e1 + e2 + e5.

De�ne S ⊆ E with elements

s1 = a1 + a4 + a5 + a7; s2 = a1 + a2 + a5 + a6; s3 = a1 + a2 + a4 + a7;

s4 = a2 + a3 + a4 + a5; s5 = a1 + a2 + a5 + a7; s6 = a4 + a7;

s7 = a1 + a2 + a3 + a5 + a6 + a7; s8 = 0; s9 = a4 + a6,

and take γ = a2 + a5 + a7. Note that τ ′ = (0, 1, 0, 0, 1, 0, 1), wt(τ ′) = 3,
and |S| = 9 = 27−3 − 7. Computer-based simulations show that CDγf is a wide
minimal [128, 8, 28]-linear code, where f is the indicator function of ∆ = B∪S.
Furthermore, wmax = 74, so that wmin/wmax = 8

37
. This is in accordance with

(iii) of Theorem 3.2.7.
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3.2.3 A�ne subspaces

In this section, a slightly di�erent approach for the purpose of constructing wide
minimal codes which takes a Boolean function f whose support has cardinality
greater than 2m−2. Recall that a k-dimensional a�ne subspace or coset is a
translation of a linear subspace of Fm2 , i.e. a set of the form a + V , where
a ∈ Fm2 and V is a k-dimensional subspace of Fm2 .

Lemma 3.2.10. Let A = a + V and B = b + W be two non-trivial a�ne
subspaces of Fm2 . Then either A and B are disjoint or A ∩ B is an a�ne
subspace such that dim(A ∩B) > dim(A) + dim(B)−m.

Proof. Suppose that A ∩B 6= ∅. Take x ∈ A ∩B. By de�nition, x = a+ v and
x = b + w for some v ∈ V and w ∈ W . We claim that A ∩ B = x + (V ∩W ).
Obviously, x+ (V ∩W ) ⊆ A∩B. Let y ∈ A∩B. By de�nition of A, y = a+ v′

for some v′ ∈ V . Likewise y = b + w′ for some w′ ∈ W as y ∈ B. Note that
y = x + v + v′ and also y = x + w + w′. This readily implies that v + v′

belongs to V ∩ W so that y is in x + (V ∩ W ). Thus A ∩ B is an a�ne
space with underlying linear space equal to V ∩ W . The second part of the
lemma comes from the fact that for every two linear subspaces, it holds that
dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W ).

Note that Lemma 3.2.10 is an easy consequence of the well-known similar result
about the intersection of linear subspaces. When dim(A) + dim(B) 6 m, the
bound obtained thereby is quite loose and no additional information about the
intersection is provided. On the contrary, when dim(A) + dim(B) > m (which
will be considered in the main theorems below), the intersection bound becomes
non-trivial.

The following lemma is useful for specifying wide minimal linear codes from
characteristic functions that include an (m− 2)-dimensional a�ne subspace in
their support.

Lemma 3.2.11. Let V be an (m − 2)-dimensional linear subspace of Fm2 . Let
a /∈ V and A = a + V be an (m − 2)-dimensional a�ne space. There exists a
unique uA ∈ (Fm2 )∗ such that A ∩HuA is empty.

Proof. Let V = {v1, . . . , vm−2} be a basis of V . Since a 6∈ V , the set V ∪ {a}
is linearly independent, therefore U := 〈V ∪ {a}〉 is an (m − 1)-dimensional
subspace. This implies that U = HuA , for some uA ∈ Fm2 . Any a + v ∈ A
satis�es uA · (a + v) = 0, thus A ⊆ HuA . In other words, A ∩ HuA = ∅ since
HuA ∪HuA = Fm2 . Note that uA is unique because if there were another u′ ∈ Fm2
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such that Hu′ ∩ A = ∅ then A ⊆ (HuA ∩ Hu′) \ {0} which is impossible as
|(HuA ∩Hu′) \ {0}| = 2m−2 − 1.

To get minimal codes, the characteristic sets must intersect all hyperplanes and
their complements. The strategy will be to puncture an a�ne subspace A and
adjoint a suitable disjoint set Γ, which will take care of the a�ne hyperplane
HuA grosso modo.

Theorem 3.2.12 (The a�ne subspace method). Let m > 4 be a positive integer
and A = a+V be an (m−2)-dimensional a�ne subspace of Fm2 . Fix an element
p0 ∈ A and consider S = A \ {p0}. Suppose that there is a non-empty set
Γ ⊂ Fm2 \ (A ∪ {0}) of cardinality strictly smaller than 2m−3 such that Γ ∩HuA

is non-empty. Let ∆ = S ∪ Γ ∪ {0} and let f ∈ Bm be its characteristic
function. The code Cf is then a minimal binary linear code with minimum

distance d ∈ {2m−2−|Γ|+2, . . . , 2m−2 +|Γ|}. Moreover, if |Γ∩HuA| 6 2m−3− |Γ|
2

then Cf is wide.

Proof. According to Lemma 3.2.10, for every u ∈ (Fm2 )∗ such that u 6= uA, it
must be that either A ⊂ Hu or |A ∩ Hu| = 2m−3. To prove minimality of the
code, we will verify the conditions in Corollary 3.2.4 taking into account these
possibilities. The hypothesis on Γ guarantees that ∆ ∩HuA 6= ∅. Note that the
di�erence A \∆ equals {p0}, hence Hu ∩∆ contains at least 2m−3− 1 elements.
Given that m > 4, it holds Hu∩∆ is non-empty for every u ∈ Fm2 . Additionally,
0 ∈ Hu ∩∆ for each u ∈ Fm2 so that Hu ∩∆ 6= ∅.
Now let us check that Hu\Hu′ 6⊆ ∆\Hu′ for every pair of distinct u, u′ ∈ (Fm2 )∗.
Suppose, for the sake of contradiction, that Hu \Hu′ is included in ∆ \Hu′ for
some di�erent non-zero u, u′. Note that |Hu \ Hu′ | = 2m−2 and consider the
following three cases:

Case 1: The set Hu′ ∩ A is empty, that is, u′ = uA. Then, either

|A ∩ (Hu \HuA)| = 2m−3 or |A ∩ (Hu \HuA)| = 2m−2.

In the latter case, p0 ∈ Hu\HuA while at the same time p0 6∈ ∆, a contradiction.
The former case implies

Hu \HuA ⊆ (∆ ∩Hu) \HuA .

However, |(∆ ∩ Hu) \ HuA| < 2m−2 and |Hu \ HuA| = 2m−2, a contradiction.
Therefore, Hu \HuA 6⊆ ∆ \HuA (see Figure 3.3).
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HuA

HuA
∩Hu

HuA

HuA
∩Hu

Hu

Hu

A

|A| = 2m−2

|Hu \HuA
| = 2m−2

→ |A ∩ (Hu \HuA
)| = 2m−2 or 2m−3

Figure 3.3: Case u′ = uA in the proof of Theorem 3.2.12.

Hu
′ ∩Hu

Hu
′ ∩Hu

Hu

Hu

A

Hu
′ Hu

′

Figure 3.4: Case A ⊂ Hu′ in the proof of Theorem 3.2.12.
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Case 2: The a�ne subspace A is a subset of Hu′ . In this case, the cardinality
of ∆ \Hu′ is at most 2m−3 since S ⊂ Hu′ . This implies that Hu \Hu′ cannot be
contained in ∆ \Hu′ (see Figure 3.4).

Case 3: The a�ne subspace A ∩Hu′ has cardinality 2m−3. Observe that

|∆ \Hu′| < 2m−3 + 2m−3 = 2m−2

since S can only contribute with at most 2m−3 elements to this di�erence. There-
fore, Hu \Hu′ cannot be contained in ∆ \Hu′ (see Figure 3.5).

Hu
′ ∩Hu

Hu
′ ∩Hu

Hu

Hu

A ∩Hu′

Hu
′ Hu

′

A ∩Hu′

Figure 3.5: Case |A ∩Hu′| = 2m−3 in the proof of Theorem 3.2.12.

These three cases show that Hu \ Hu′ 6⊆ ∆ \ Hu′ for every pair of distinct
u, u′ ∈ (Fm2 )∗. The conditions of Corollary 3.2.4 are thus satis�ed, hence Cf is
minimal. Assume that |Γ ∩HuA| 6 2m−3 − |Γ|

2
. Set κ = |Γ ∩HuA|. Notice that

|Γ| 6 2m−2 − 2κ and

|∆ \HuA| = 2m−2 + |Γ| − κ and |HuA \∆| = 2m−1 − κ.

This gives that the codeword c1,uA has weight 2m−1 + 2m−2 + |Γ| − 2κ, hence

wmax > 2m−1 + 2m−2 + |Γ| − 2κ.
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Since |∆| = 2m−2 + |Γ|, the minimum weight wmin is at most 2m−2 + |Γ|. Putting
everything together,

2wmin 6 2m−1 + 2|Γ| 6 2m−1 + |Γ|+ 2m−2 − 2κ 6 wmax,

which implies that wmin

wmax
6 1

2
.

The �rst question that should come to the thorough reader's mind is about the
existence of suitable sets Γ that satisfy the conditions in Theorem 3.2.12. A
special case given below is when |Γ| ∈ {1, 2}.

Corollary 3.2.13. Let m > 4 and B = {a1, . . . , am} be a basis of Fm2 such
that am has odd weight and it is orthogonal to all the other ai's, i.e., am · ai = 0
for 1 6 i 6 m − 1. De�ne V = 〈a1, . . . , am−2〉 and assign A = am−1 + V . Let
S = A \ {p0} for some p0 ∈ A. Fix (τ1, . . . , τm−1) ∈ Fm−1

2 \ {0} and de�ne Γ as
follows:

Γ =

{
{am} if m = 4,

{am, am + τm−1am−1 + · · ·+ τ1a1} if m > 4.

Suppose ∆ and f are de�ned as in Theorem 3.2.12. Then, Cf is a wide minimal
code.

Proof. The only non-trivial condition in 3.2.12 to prove is that the unique hy-
perplane disjoint to A is Ham , thus uA = am. Indeed, since am is orthogonal to
each ai, it holds that

〈a1, . . . , am−1〉 ∩Ham = ∅,

which yields A ∩Ham = ∅. Since the weight of am is odd, the element am lies
in Ham , hence Γ ∩Ham 6= ∅. The code Cf is then minimal.

To show that Cf is wide, note that, for m = 4, |Γ ∩Ham| = 1 < 3
2

= 2− 1
2
. For

m > 5, the vector
am + τm−1a(m−1) + · · ·+ τ1a1

lies in Ham since am ·ai = 0 for every i smaller than m and also am ∈ Ham as am
has odd weight. Hence, |Γ ∩Ham| = 2 < 2m−3 − 1 and the code Cf is therefore
wide by Theorem 3.2.12.

The minimum distance d depends on the intersection of the (m−2)-dimensional
a�ne subspace A with the a�ne hyperplanes Hu. The following examples
illustrate this dependence concretely.
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Example 3.2.14. Let m = 5. Consider the 3-dimensional linear subspace

V = 〈(1, 1, 0, 0, 0), (1, 0, 1, 0, 1), (0, 0, 1, 0, 1)〉

and de�ne A = (1, 1, 1, 1, 1) + V . Let p0 = (1, 1, 1, 1, 1) + (1, 1, 0, 0, 0) =
(0, 0, 1, 1, 1) and de�ne S = A \ {p0}. Let

Γ = {(0, 0, 1, 1, 0), (1, 1, 0, 1, 1)}.

Suppose that ∆ and f are de�ned as in Theorem 3.2.12. Using computer-based
simulations, one can con�rm that Cf is a wide minimal code with parameters
[32, 6, 8]. Furthermore, wmin = 8 and wmax = 22. Moreover, the set H(0,0,1,0,1)

is the a�ne hyperplane disjoint to A and Γ is included in it.

Example 3.2.15. Again, let m = 5. Consider the linear subspace

V = 〈(1, 1, 1, 1, 1), (1, 1, 0, 1, 0), (1, 1, 0, 1, 1)〉

and de�ne A = (1, 0, 1, 1, 0) + V . Let p0 = (1, 0, 1, 1, 0) + (1, 1, 1, 1, 1) =
(0, 1, 0, 0, 1) and de�ne S = A \ {p0}. Let

Γ = {(0, 0, 1, 0, 1), (0, 0, 1, 1, 0)}.

Again, specifying ∆ and f as in Theorem 3.2.12, one can verify that Cf is a
wide minimal code with parameters [32, 6, 10]. Furthermore, wmin = 10 (which
is di�erent from Example 3.2.14) and wmax = 24. In this case, the set H(1,0,0,1,0)

is the a�ne hyperplane disjoint to A and |Γ∩H(1,0,0,1,0)| = |{(0, 0, 1, 1, 0)}| = 1.

When the set Γ contains only two elements, there are just a few possibilities for
the cardinality of the intersection of Γ with the a�ne hyperplanes Hu. Conse-
quently, the weight distribution of the codes described in Corollary 3.2.13 can
be found since these cardinalities depend uniquely on the choice of the vector
(τ1, . . . , τm−1). The weight distributions are listed in descending order in Tables
3.1, 3.2 and 3.3.

Weight w Number of codewords Aw
2m−1 + 2m−2 − 2 1

2m−1 + 2 2m − 2m−2 − 3
2m−1 2m − 1

2m−1 − 2 2m−2 − 1
2m−2 + 2 3

Table 3.1: Weight distribution of 5-weight wide minimal codes Cf ,
(τ1, . . . , τm−1) = (0, 0, . . . , 0, 1).
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Weight w Number of codewords Aw
2m−1 + 2m−2 − 2 1

2m−1 + 4 2m−3

2m−1 + 2 2m − 5 · 2m−3 − 3
2m−1 2m − 1 + 3 · 2m−3

2m−1 − 2 2m−3 − 1
2m−2 + 2 3

Table 3.2: Weight distribution of 6-weight wide minimal codes Cf , when
(τ1, . . . , τm−1) is such that τm−1 = 1 and (τ1, . . . , τm−2) is nonzero.

Weight w Number of codewords Aw
2m−1 + 2m−2 − 2 1

2m−1 + 4 2m−3 − 1
2m−1 + 2 2m − 2m−3 − 3

2m−1 2m + 2m − 2m−3 − 4
2m−1 − 2 2m−3 − 1
2m−2 + 4 1
2m−2 + 2 1

2m−2 1

Table 3.3: Weight distribution of 8-weight wide minimal codes Cf , when
(τ1, . . . , τm−1) is such that τm−1 = 0 and (τ1, . . . , τm−2) is nonzero.

3.3 The hyperplane method

In this section, another way to derive wide minimal codes is given. We will
introduce two general results similar to Theorem 3.2.12. The main modi�cation
is the use of hyperplanes instead of (m− 2)-dimensional a�ne subspaces, thus
giving the cardinality of the support ∆ of f will be |∆| = 2m−1 − |Γ| + 1 for
a suitably chosen Γ with 3 6 |Γ| 6 2m−2. It is worth mentioning that the
minimality of the codes constructed in this section is not a consequence of
Corollary 3.2.4.

Theorem 3.3.1 (The hyperplane method). Let m > 4 be a positive integer.
Fix u0 ∈ (Fm2 )∗ and select a point p0 ∈ Hu0. Suppose that there is a non-
empty subset Γ of Hu0 which contains at least three elements but no more than
2m−2 and with the property that for each u ∈ (Fm2 )∗ di�erent from u0 such that
p0 ∈ Hu, the intersection Γ∩Hu is non-empty. Let ∆ = (Hu0 \Γ)∪{p0} and f
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be its characteristic function. The code Cf given by (2.12) is wide and minimal
with parameters [2m,m+ 1, 2m−1 − |Γ|+ 1]. Moreover, wmax = 2m − |Γ| − 1.

Proof. Recall that the weight of a codeword ca,u = af(x) + u · x in Cf is given
by |supp(ca,u)|, where

supp(ca,u) =


∆	Hu if a 6= 0;u 6= 0

∆ if a 6= 0, u = 0;

Hu if a = 0, u 6= 0;

∅ if a = 0, u = 0.

Let us estimate the possible non-zero values for |supp(ca,u)|. The only unknown
values are for a 6= 0 and u 6= 0 since |Hu| = 2m−1 for u 6= 0 and |∆| =
2m−1 − |Γ| + 1. Let a 6= 0 and u be a non-zero element in Fm2 . There are two
possibilities to consider.

(i) If u = u0, then Hu0 ∩∆ = {p0} so that

wt(c1,u0) = |∆	Hu0 | = |∆|+ |Hu0| − 2 = 2m − |Γ| − 1.

(ii) Suppose that u 6= u0. The intersection Hu0∩Hu has cardinality 2n−2. The
cardinality of ∆ ∩Hu relies on the way Γ ∪ {p0} intersects Hu. It attains
the smallest value when Γ is a subset of Hu and p0 6∈ Hu, hence

|∆ ∩Hu| > 2m−2 − |Γ|.

On the other hand, by the de�nition of Γ, it cannot hold simultaneously
that Γ is disjoint to Hu and p0 ∈ Hu, henceforth |∆∩Hu| 6 2m−2. Putting
these two bounds together gives

2m−2 − |Γ| 6 |∆ ∩Hu| 6 2m−2.

The weight wt(c1,u) is then bounded by

2m−1 − |Γ|+ 1 6 wt(c1,u) 6 2m−1 + |Γ|+ 1.

Note that the value 2m−1 + |Γ| + 1 is bounded above by 2m − |Γ| − 1 since
|Γ| 6 2m−2. From this, for each u ∈ Fm2 and a ∈ {0, 1}, the value wt(ca,u) is at
most 2m−|Γ|−1, which is attained by c1,u0 , hence wmax = 2m−|Γ|−1. Now, for
each u ∈ Fm2 and a ∈ {0, 1}, the value wt(ca,u) is at least |∆| = 2m−1 − |Γ|+ 1,
which is attained by c1,0 so wmin = |∆| = 2m−1 − |Γ|+ 1.
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To show the minimality and wideness of Cf , we use the derived expressions for
wmin and wmax. A simple computation on the minimum and maximum weights
shows that the code is wide, namely,

2wmin = 2m − 2|Γ|+ 2 6 2m − |Γ| − 1 = wmax

since |Γ| > 3. Thus wmin

wmax
6 1

2
. To prove the minimality of Cf , compute the

maximum and minimum Walsh values of f as

Wmin = 2m − 2wmax = −2m + 2|Γ|+ 2

and
Wmax = 2m − 2wmin = 2|Γ| − 2.

Since |Γ| 6 2m−2, the maximal Walsh value 2|Γ| − 2 is strictly smaller than
2m−1. Similarly,

Wmax −Wmin = (2|Γ| − 2)− (−2m + 2|Γ|+ 2) = 2m − 4 < 2m.

By Corollary 3.1.3, we get that Cf is minimal.

The following result, similar to Theorem 3.3.1, can be proved using the same
lines of reasoning in a complementary setting. This particularly means that the
selection of p0 and Γ are performed using the complements of the relevant hy-
perplanes. Observe that the method described below is indeed almost verbatim
compared to Theorem 3.3.1.

Theorem 3.3.2 (The hyperplane method, complementary setting). Let m > 4
be a positive integer. Fix u0 ∈ (Fm2 )∗ and select a point p0 ∈ Hu0. Suppose that
there is a non-empty set Γ ⊂ Hu0 with at least m elements but |Γ| < 2m−2, such
that the following two conditions hold:

� for every u ∈ (Fm2 )∗, u 6= u0, if p0 ∈ Hu, then Γ intersects Hu; and

� for every u ∈ (Fm2 )∗, u 6= u0, if p0 ∈ Hu, then Γ intersects Hu.

Let ∆ = (Hu0 \ Γ) ∪ {p0} and f be its characteristic function. The code Cf is
wide and minimal with parameters [2m,m+1, |Γ|+1]. Moreover, the maximum
weight satis�es wmax 6 2m−1 + |Γ| − 1.

Proof. Similarly to the proof of Theorem 3.3.1, estimate the value |supp(ca,u)|
for di�erent u ∈ Fm2 . Assume that a = 1. Note that supp(c1,0) = ∆ and
|∆| = 2m−1 − |Γ|+ 1.
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(i) Suppose that u = u0. In this case, the fact that Γ is a subset of the a�ne
hyperplane Hu0 and the de�nition of ∆ imply that the intersection Hu0∩∆
has 2m−1 − |Γ| many elements, thus

wt(c1,u0) = |∆	Hu0| = |Γ|+ 1.

(ii) Suppose that u 6= 0 and u 6= u0. The cardinality of ∆ ∩ Hv depends on
the way Γ ∪ {p0} intersects Hu. By the de�nition of Γ, it is impossible
that Γ is a subset of Hu and p0 6∈ Hu at the same time therefore

|∆ ∩Hu| > 2m−2 − |Γ|+ 1,

where we tacitly use |Hu0 ∩ Hu| = 2m−2. On the other hand, it cannot
happen simultaneously that Γ is disjoint to Hu and p0 ∈ Hu therefore

|∆ ∩Hu| 6 2m−2.

Putting these bounds together, we get

2m−2 − |Γ|+ 1 6 |∆ ∩Hu| 6 2m−2.

As before, the weight wt(c1,u) can be then bounded as follows

2m−1 − |Γ|+ 1 6 wt(c1,u) 6 2m−1 + |Γ| − 1.

Now it is evident that the maximum weight in the code satis�es wmax 6 2m−1 +
|Γ|−1 and that |Γ|+1 is the minimum weight (due to the restriction |Γ| < 2m−2).

The wideness of Cf is hence easy to show, the ratio wmin

wmax
6 |Γ|+1

2m−1 is less than 1
2
,

therefore Cf is wide. We turn to prove the minimality of the code Cf . Note that

Wmin = 2m − 2wmax > −2|Γ|+ 2

and
Wmax = 2m − 2wmin = 2m − 2|Γ| − 2.

In this case, Corollary 3.1.3 cannot be applied directly sinceWmax = 2m−2|Γ|−
2 > 2m−1. Instead, we will use a di�erent approach that uses the second largest
Walsh coe�cient as well.

From the paragraphs above, observe that the minimum weight is attained by a
single codeword and the second smallest weight is 2m−1 − |Γ| + 1. This yields
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that the largest Walsh value of f is attained once and the second largest, say,
w, is equal to 2|Γ| − 2. Compute the sum of these two values to get

Wmax + w = 2m − 2|Γ| − 2 + 2|Γ| − 2 = 2m − 4

which is strictly smaller than 2m. Since the largest Walsh coe�cient is attained
exactly once, for every distinct u, v ∈ Fm2 , it holds that

Wf (u) +Wf (v) 6Wmax + w < 2m,

and

Wf (u)−Wf (v) 6Wmax−Wmin 6 (2m− 2|Γ|− 2)− (−2|Γ|+ 2) = 2m− 4 < 2m.

According to Theorem 3.1.2, Cf is minimal.

3.3.1 Root functions

For the purpose of constructing explicit classes of wide minimal codes, we now
employ the so-called root functions analyzed in [43], which proved to be useful
for hardware circuits testing. A Boolean function f : Fm2 → F2 is called a root
function if for every x ∈ Fm2 , the output f(x) is null if and only if there is a
y ∈ Fm2 at distance one from x such that f(y) = 1. A family of non-a�ne
root functions of maximal weight was constructed in [43] using the following
procedure.

� Consider the a�ne function lm(x) = xm + · · · + x1 + ε, where ε ∈ F2. It
is readily seen that lm is a root function of weight 2m−1;

� Select p0 6∈ supp(lm) and switch up the value of lm at p0, i.e., de�ne l
(1)
m

such that l(1)
m (p0) = 1 and l(1)

m (x) = lm(x) for every x 6= p0;

� De�ne rεm by the property that rεm(x) = 0 for every x ∈ Fm2 such that
d(x, p0) = 1 and rεm(x) = l

(1)
m (x) otherwise.

In a more compact way, for the a�ne function lm(x) = xm + · · ·+ x1 + ε and a
�xed p0 6∈ supp(lm), de�ne

rεm(x) =


1 if x = p0;

0 if d(x, p0) = 1;

lm(x) otherwise.
(3.4)

Theorem 3.3.3. [43] The functions rεm : Fm2 → F2 described in (3.4) are root
functions of weight 2m−1−m+1. For m > 3, there are exactly 2m root functions
having this weight, and when m = 3 there are 2m−1 such functions.
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Theorem 3.3.4. Let m > 4 and consider a root function rεm with weight 2m−1−
m+ 1 described in (3.4). The code Crεm is a wide minimal code with parameters
[2m,m+ 1, d], where d = 2m−1 −m+ 1 when ε = 1 and d = m+ 1 when ε = 0.

Proof. Let ∆ denote the support of rεm. The construction of rεm gives that

∆ = (sup(lm) \ {x ∈ F2m : d(x, p0) = 1}) ∪ {p0}.

Consider two cases according to the values of ε.

(i) Suppose that ε = 1. In this case, set u0 to be the all-one vector in Fm2 ,
hence supp(lm) = Hu0 and p0 ∈ Hu0 . De�ne

Γ := {x ∈ Fm2 : d(x, p0) = 1}

and observe that Γ is a subset of the hyperplane Hu0 with m elements.
With this notation, write ∆ = (Hu0 \Γ)∪{p0}. In order to apply Theorem
3.3.1, it is enough to show that for every u ∈ (Fm2 )∗ with u 6= u0 such that
p0 ∈ Hu, the intersection Γ ∩Hu is non-empty. In fact, we will prove the
stronger statement that Γ ∩ Hu 6= ∅ for every non-zero u in Fm2 di�erent
from u0.
Choose an ordering of the elements in Γ, say, Γ = {x1, . . . , xm}, in such a
way that x1, . . . , xwt(p0) have weight equal to wt(p0)−1 and xwt(p0)+1, . . . , xm
have weight wt(p0) + 1. Moreover, if 0 ∈ Γ, then x1 = 0. Since wt(p0) is
odd (recall that p0 6∈ sup(lm)), the set {x2, . . . , xm} is linearly independent
over F2. Thus, there are m− 1 linearly independent vectors in Hu0 , thus
this is also a spanning set, i.e. 〈x2, . . . , xm〉 = Hu0 . Let u ∈ (Fm2 )∗ with
u 6= u0. If Γ ∩Hu = ∅, then 〈x2, . . . , xm〉 ∩Hu = ∅ which contradicts the
fact that |Hu0 ∩ Hu| = 2m−2. By Theorem 3.3.1, the code Cr1m is then a
wide minimal code.

(ii) Suppose that ε = 0. This case is similar to (i) with the only di�erence that
we apply Theorem 3.3.2 instead. Set u0 to be the all-one vector, whence
supp(lm) = Hu0 and p0 ∈ Hu0 . De�ne

Γ = {x ∈ Fm2 : d(x, p0) = 1}.

Observe that Γ is indeed a subset of Hu0 and has m elements. Write ∆ =
(Hu0 \ Γ) ∪ {p0}. To apply Theorem 3.3.2, we must show two conditions,
namely,

� for every u ∈ (Fn2 )∗ with u 6= u0, if p0 ∈ Hu, then Γ ∩Hu 6= ∅;

� for every u ∈ (Fn2 )∗ with u 6= u0, if p0 ∈ Hu, then Γ ∩Hu 6= ∅.
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In fact, we will prove the stronger statement that Γ intersects every a�ne
hyperplane Hu and every hyperplane Hu for u ∈ (Fm2 )∗ di�erent from u0.
To show this, note that the elements of Γ are linearly independent since
wt(p0) is even, hence, Γ is a basis for Fm2 consisting of elements of Hu0 .

For each non-zero vector u in Fm2 , the intersection Γ ∩ Hu is non-empty,
otherwise Γ would be a linearly independent subset within the (m − 1)-
dimensional subspace Hu. Let us now turn to prove the second condition,
i.e. for every non-zero u ∈ Fm2 with u 6= u0, Γ ∩ Hu 6= ∅. Suppose this
is not true, that is, assume there is a u ∈ (Fm2 )∗ such that Γ ⊆ Hu. Let
Γ = {γ1, . . . , γm} and select an arbitrary point x0 ∈ Hu0 \Hu. Since Γ is
a basis for Fm2 , there exist a positive integer k and γi1 , . . . , γik ∈ Γ such
that x0 = γi1 + · · · + γik . By the choice of x0, u0 · x0 = 1 and u · x0 = 0.
On the one hand, replacing the expression of x in terms of Γ

1 = u0 · x0 = u0 · (γi1 + · · ·+ γik) = (u0 · γi1) + · · ·+ (u0 · γik).

Since Γ ⊆ Hu0 , the integer k must be odd. On the other hand,

0 = u · x0 = u · (γi1 + · · ·+ γik) = (u · γi1) + · · ·+ (u · γik). (3.5)

Since Γ ⊆ Hu, k must be even, too. This is a contradiction that establishes
the result.

Example 3.3.5. Let m = 6 and consider a root function r1
6 with weight 27.

The code Cr16 is a wide minimal [64, 7, 27]-code with weight enumerator given by

1 + 6z27 + 15z29 + 20z31 + 63z32 + 15z33 + 6z35 + z37 + z57.

Similarly, consider a root function r0
6 with weight 27. The code Cr16 is a wide

minimal [64, 7, 7]-code with weight enumerator given by

1 + z7 + z27 + 6z29 + 15z31 + 63z32 + 20z33 + 15z35 + 6z37.

3.3.2 Weight distributions and asymptotic behaviour

For every m > 4, we have seen that the code Crεm is wide and minimal. The
asymptotic behaviour of the ratio wmin

wmax
can be easily established.

Corollary 3.3.6. Let Crεm be the linear code described in Theorem 3.3.4. Denote
by aεm the quotient wmin

wmax
, where ε ∈ {0, 1}. The numbers aεm satisfy

lim
m→∞

a1
m =

1

2
and lim

m→∞
a0
m = 0.
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Proof. For each positive integer m at least four, the minimum weight wmin of
the code Cr1m is = 2m−1 −m+ 1 and the maximum weight wmax is 2m −m− 1.
Hence

lim
m→∞

a1
m =

2m−1 −m+ 1

2m −m− 1

is clearly equal to 1
2
. For ε = 0, wmin = m+1 and wmax = 2m−1 +m−1, therefore

a0
m =

m+ 1

2m−1 +m− 1
,

which is zero as m goes to in�nity.

The weight distribution of the provided codes is directly related to the Walsh
spectra of root functions of maximal weight. These values are given in the
Tables 3.4�3.7 below.

Case Walsh spectra
m even ±2,±6,±10, . . . ,±2m− 2, −2m + 2m+ 2
m odd 0,±4,±8, . . . ,±2m− 2, −2m + 2m+ 2

Table 3.4: Walsh spectral values of r1
m w.r.t. the parity of m.

Case Weights
m even 2m−1 ± (m− 1), 2m−1 ± (m− 3), . . . , 2m−1 ± 1, 2m−1, 2m − (m+ 1)
m odd 2m−1 ± (m− 1), 2m−1 ± (m− 3), . . . , 2m−1 ± 2, 2m−1, 2m − (m+ 1)

Table 3.5: Nonzero weights of codewords of Cr1m .

Case Walsh spectra
m even ±2,±6,±10, . . . ,±(2m− 2), 2m − 2m− 2
m odd 0,±4,±8, . . . ,±(2m− 2), 2m − 2m− 2

Table 3.6: Walsh spectral values of r0
m w.r.t. the parity of m.

Case Weights
m even 2m−1 ± (m− 1), 2m−1 ± (m− 3), . . . , 2m−1 ± 1, 2m−1,m+ 1
m odd 2m−1 ± (m− 1), 2m−1 ± (m− 3), . . . , 2m−1 ± 2, 2m−1,m+ 1

Table 3.7: Nonzero weights of codewords of Cr0m .
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3.4 The general Maiorana-McFarland class

In what follows, we explore two slight modi�cations of some existing design
methods to construct wide binary linear codes given in [20], and, recently, in
[40]. These constructions make use of the general Maiorana-McFarland class of
Boolean functions. The codes presented in this section achieve a larger minimum
distance compared to the codes introduced in [20] and [40].

The general Maiorana-McFarland class of Boolean functions, denoted by GMM,
contains all the Boolean functions of the form:

f(x, y) = y · φ(x) + µ(x), (3.6)

where x ∈ Fκ2 , y ∈ Fλ2 , φ is an arbitrary mapping from Fκ2 to Fλ2 and µ : Fκ2 → F2.
If κ = λ and φ is a permutation on Fκ2 , then f is said to belong to theMaiorana-
McFarland class , denoted by MM. It can be proved that every function in
MM is bent [35].

We will exclusively consider simple functions for µ, such as the constant one
function over Fκ2 , the identically one function over (Fκ2)∗, abbreviated by µ ≡ 1
and de�ned by µ(x) = 1 for all x ∈ (Fκ2)∗ and µ(0) = 0, or the identically zero
function over Fκ2 .

First let us recall some useful properties of Krawtchouk polynomials, which will
be used in the proofs of the main results. Let m be a positive integer, and
let x be a variable taking non-negative integer values. The k-th Krawtchouk
polynomial is de�ned by

Pk(x,m) =
k∑
j=0

(−1)j
(
x

j

)(
m− x
k − j

)
(3.7)

where 0 6 k 6 m. For simplicity, we will simply write Pk(x) instead of Pk(x,m)
whenever there is no ambiguity. Using well-known properties of Krawtchouk
polynomials [20],

Pk(i) = (−1)iPm−k(i), 0 6 i 6 m. (3.8)

Moreover, for each u ∈ Fm2 with Hamming weight wt(u) = i, the k-th Krawtchouk
polynomial evaluated at i, Pk(i), satis�es∑

wt(v)=k

(−1)u·v = Pk(i). (3.9)
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3.4.1 The �rst family of wide minimal codes from GMM
As we have done so far, we will consider a suitable Boolean function to plug
it into the code Cf . The particular properties of f should provide the desired
minimality and wideness conditions. The authors' idea in [20] is very simple�
de�ne f ∈ GMM via an injection φ of the complement of the set U of elements
with weight at least two. In this case, the weight distribution of the resulting
codes will be easy to derive by the form of the function f .

Theorem 3.4.1. [20] Let r > 7 be an odd integer. Set κ = (r + 1)/2 and
λ = (r − 1)/2. Let U = {x ∈ Fκ2 : wt(x) > 2} and f be the Boolean function
de�ned in (3.6), where µ ≡ 1 and φ is an injection from Fκ2 \ U to (Fλ2)∗ such
that φ(x) = 0 for any x ∈ U . The punctured code C×f is a wide minimal

[2r − 1, r + 1, 2r−1 − 2λ−1(κ− 1)]-code.

Note that the code in Theorem 3.4.1 is de�ned over (Fr2)∗ hence its length is
2r − 1.

We now present the following modi�cation of 3.4.1. The proof of this result
uses a similar reasoning to that in [20, Theorem 5.5]. However, the presented
theorem gives codes with a better minimum distance in certain cases.

Theorem 3.4.2 (The GMM method I). Let r > 7 be an odd integer, κ =
(r + 1)/2 and λ = (r − 1)/2. Let U = {x ∈ Fκ2 : wt(x) 6 κ− 2} and f ∈ Br be
the Boolean function de�ned in (3.6), where µ is the identically one function, φ
is an injection from Fκ2 \ U to Fλ2

∗
such that φ(x) = 0 for any x ∈ U . The code

Cf is a minimal binary code with length 2r, dimension r + 1 and the following
hold:

(i) For odd κ, the code Cf has minimum distance 2r−1 − 2λ−1(κ− 1).

(ii) For even κ, the code Cf has minimum distance 2r−1 − 2λ−1(κ− 3).

Moreover, if r > 9 and r 6= 11, then Cf is wide.

Proof. According to Equation 3.9, we have

∑
x∈U

(−1)ν1·x =

{
|U |, if ν1 = 0,

−(Pκ−1(i) + (−1)wt(ν1)), if wt(ν1) = i,
(3.10)

where Pκ−1(i) = (−1)iPκ−(κ−1)(i) = (−1)iP1(i, κ) = (−1)i(κ − 2i) due to (3.7)
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and (3.8). Working out the sums involved in Wf (ν1, ν2),

Wf (ν1, ν2) =
∑
x∈Fκ2

∑
y∈Fλ2

(−1)φ(x)·y+1+ν1·x+ν2·y

=
∑

x∈(Fκ2\U)

∑
y∈Fλ2

(−1)φ(x)·y+1+ν1·x+ν2·y +
∑
x∈U

∑
y∈Fλ2

(−1)1+ν1·x+ν2·y.

Using (3.10), this implies that the possible values of the Walsh coe�cients are
given by

Wf (ν1, ν2) =


−(2κ − κ− 1)2λ if ν1 = 0, ν2 = 0;
(−1)i(κ− 2i+ 1)2λ if ν1 6= 0, wt(ν1) = i, ν2 = 0;

−(−1)ν1·φ
−1(ν2)2λ if ν2 ∈ Im(φ) \ {0};

0 if ν2 /∈ Im(φ),

(3.11)

where i = 1, 2, . . . , κ. From (3.11), we get that

Wf (ν1, ν2)±Wf (ω1, ω2) 6= 2r

for any pair of distinct (ν1, ν2), (ω1, ω2) ∈ Fκ2 ×Fλ2 . By Theorem 3.1.2, it follows
that Cf is minimal. The weight distribution of Cf is fully speci�ed by Tables
3.8-3.11.

For κ odd, set wt(ν1) = κ,wt(ν2) = 0. This yields

wt(φ(x) ·y+1+ν1 ·x+ν2 ·y) = 2r−1− 1

2
Wf (ν1, ν2) = 2r−1−2λ−1(κ−1), (3.12)

which can be used together with Tables 3.8 and 3.9 to prove (i). The minimum
distance 2r−1−2λ−1(κ−1) corresponds to the second row in Tables 3.8 and 3.9,
namely, when the weight 2r−1 − 2λ−1(κ+ 1− 2i) for i = κ.

For κ even, from Table 3.10 and Table 3.11, we know that if wt(ν1) = 2, wt(ν2) =
0, then

wt(φ(x) ·y+1+ν1 ·x+ν2 ·y) = 2r−1− 1

2
Wf (ν1, ν2) = 2r−1−2λ−1(κ−3), (3.13)

so this weight is attained and it can be seen to be equal to wmin, hence (ii)
holds. Additionally, it can be easily veri�ed (from Tables 3.8- 3.11) that

wmax = wt(φ(x) · y + 1) = 2r−1 + 2λ−1(2κ − κ− 1). (3.14)

Combining (3.12), (3.13) and (3.14), for κ > 5 and κ 6= 6, the ratio wmin

wmax
is at

most 1
2
, in other words Cf is wide when r > 9 and r 6= 11.
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The weight distributions of the codes speci�ed in Theorem 3.4.2 are given below
for di�erent values of κ modulo four.

Table 3.8: Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 1 mod 4.

Weight w Number of codewords Aw
2r−1 + 2λ−1(2κ − κ− 1) 1
2r−1 + 2λ−1(κ+ 1− 2i)

for 1 6 i 6 κ, i 6= (κ+ 1)/2 and i odd

(
κ
i

)
2r−1 − 2λ−1(κ+ 1− 2i)
for 1 6 i 6 κ and i even

(
κ
i

)
2r−1 + 2λ−1 (κ+ 1)2κ−1

2r−1 − 2λ−1 (κ+ 1)2κ−1

2r−1 2r − 1 + 2κ(2λ − κ− 2) +
(

κ
(κ+1)/2

)
0 1

Table 3.9: Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 3 mod 4.
Weight w Number of codewords Aw

2r−1 + 2λ−1(2κ − κ− 1) 1
2r−1 + 2λ−1(κ+ 1− 2i)
for 1 6 i 6 κ and i odd

(
κ
i

)
2r−1 − 2λ−1(κ+ 1− 2i)

for 1 6 i 6 κ, i 6= (κ+ 1)/2 and i even

(
κ
i

)
2r−1 + 2λ−1 (κ+ 1)2κ−1

2r−1 − 2λ−1 (κ+ 1)2κ−1

2r−1 2r − 1 + 2κ(2λ − κ− 2) +
(

κ
(κ+1)/2

)
0 1
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Table 3.10: Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 0 mod 4.
Weight w Number of codewords Aw

2r−1 + 2λ−1(2κ − κ− 1) 1
2r−1 + 2λ−1(κ+ 1− 2i)

for 1 6 i 6 (κ− 2)/2 and i odd

(
κ
i

)
+
(

κ
κ+1−i

)
2r−1 − 2λ−1(κ+ 1− 2i)

for 1 6 i 6 (κ− 2)/2 and i even

(
κ
i

)
+
(

κ
κ+1−i

)
2r−1 + 2λ−1 (κ+ 1)2κ−1

2r−1 − 2λ−1 (κ+ 1)2κ−1 +
(
κ
κ/2

)
+
(

κ
(κ+2)/2

)
2r−1 2r − 1 + 2κ(2λ − κ− 2)

0 1

Table 3.11: Weight distribution of Cf in Theorem 3.4.2 for κ ≡ 2 mod 4.
Weight w Number of codewords Aw

2r−1 + 2λ−1(2κ − κ− 1) 1
2r−1 + 2λ−1(κ+ 1− 2i)

for 1 6 i 6 (κ− 2)/2 and i odd

(
κ
i

)
+
(

κ
κ+1−i

)
2r−1 − 2λ−1(κ+ 1− 2i)

for 1 6 i 6 (κ− 2)/2 and i even

(
κ
i

)
+
(

κ
κ+1−i

)
2r−1 + 2λ−1 (κ+ 1)2κ−1 +

(
κ
κ/2

)
+
(

κ
(κ+2)/2

)
2r−1 − 2λ−1 (κ+ 1)2κ−1

2r−1 2r − 1 + 2κ(2λ − κ− 2)
0 1

The speci�cation of weight distributions given in the above tables is obtained in
a quite easy way using the Walsh spectrum of f given by (3.11). Nevertheless,
for convenience of the reader, we brie�y discuss how the weight distribution in
Table 3.10 is obtained, the remaining cases being similar. The �rst and last
entry in Table 3.10 are straightforward, the former weight corresponds to the
value Wf (0, 0) = −(2κ − κ − 1)2λ, which gives the weight 2r−1 − 1

2
Wf (0, 0) =

2r−1 + 2λ−1(2κ − κ− 1). To count the number of balanced codewords of weight
2r−1 (second to last row) we �rst notice that there are 2r − 1 non-zero linear
functions. We also need to add those codewords that correspond to the spectral
values Wf (ν1, ν2) = 0. Their number is

|{(ν1, ν2) ∈ Fκ2 × Fλ2 : ν2 6∈ Im(φ)}|
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which is exactly 2κ(2λ−κ−2). Thus, there are 2r−1 + 2κ(2λ−κ−2) balanced
codewords. The fourth row corresponds to the value Wf (ν1, ν2) = −2λ. Their
number is

|{(ν1, ν2) ∈ Fκ2 × Fλ2 : ν2 ∈ Im(φ) \ {0}, ν1 · φ−1(ν2) = 1}|

which equals (κ+1)2κ−1. The �fth row corresponds to the valueWf (ν1, ν2) = 2λ.
The frequency of this value equals to the sum of

|{(ν1, ν2) ∈ Fκ2 × Fλ2 : ν2 ∈ Im(φ) \ {0}, ν1 · φ−1(ν2) = 0}|

and
|{(ν1, ν2) ∈ Fκ2 × Fλ2 : wt(ν1) ∈ {κ/2, (κ+ 2)/2}, ν2 = 0}|,

in total (κ + 1)2κ−1 +
(
κ
κ/2

)
+
(

κ
(κ+2)/2

)
. Finally, the second and third row cor-

respond to the Walsh values (−1)i(κ − 2i + 1)2λ. Since 1 6 i 6 κ, there are
only κ/2− 1 di�erent non-zero values (the indices i and κ+ 1− i give the same
value), for each index i such that 1 6 i 6 κ/2− 1 we have

|{(ν1, ν2) ∈ Fκ2 × Fλ2 : wt(ν1) ∈ {i, κ+ 1− i}, ν2 = 0}|

codewords, i.e.
(
κ
i

)
+
(

κ
κ+1−i

)
.

Compared to the result in Theorem 3.4.1, the method in Theorem 3.4.2 achieves
a larger minimum distance and fewer weights when the parameter κ is even. For
instance, taking r = 15 gives that κ = 8 and our punctured code has parameters

[2r − 1, r + 1, 2r−1 − 2λ−1(κ− 3)− 1],

thus having minimum distance 214 − 26 · 5 − 1. On the other hand, the code
in Theorem 3.4.1 has minimum weight 214 − 26 · 7 and the di�erence between
the two is 127 (in general, the di�erence is 2λ − 1). In addition, when r ≡ 3
mod 4, from Table 3.10 and 3.11, the punctured code Cf in Theorem 3.4.2 has
r+1

4
+ 4 = κ

2
+ 4 non-zero di�erent weights, whereas the code in Theorem 3.4.1

has r+1
2

+ 2 = κ+ 2 non-zero di�erent weights. We illustrate this discussion in
the following example.

Example 3.4.3. Let r = 15. This gives κ = 8 and λ = 7, so that κ ≡ 0
mod 4. The minimum distance of Cf in this case, con�rmed by computer-based
simulations, equals 214 − 26 · 5 which is in agreement with (3.13). Also, the
maximum weight of the codewords equals 32192 which corresponds to 2r−1 +
2λ−1(2κ − κ− 1). Its enumerator polynomial is given by

1 + 36z16064 + 1278z16320 + 62975z16384 + 115216448 + 84z16576 + 9z16832 + z32192,
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which is consistent with Table 3.10. Note that when considering the punctured
code over (Fr2)∗ the weight distribution changes slightly, namely, the weight enu-
merator in this case is given by

1 + 36z16063 + 1278z16319 + 30208z16383 + 32767z16384 + 115216447 + 84z16575 + 9z16831 + z32191.

In contrast, the weight enumerator of the code in Theorem 3.4.1 for r = 15 is

1 + 8z15936 + 28z16064 + 56z16192 + 1350z16320 + 62975z16384 + 1080z16448 + 28z16576 + 8z16704 + z16382 + z32192.

3.4.2 The second family of wide minimal codes from GMM
Recently, a modi�cation of Theorem 3.4.1 was presented in [40]. In this con-
struction, the same hypotheses for the set U and f ∈ Br are assumed, the only
di�erence lies at the �nal step�the linear code Cf+1 is considered instead.

Theorem 3.4.4. [40] Let r > 7 be an odd integer, κ = (r + 1)/2 and λ =
(r− 1)/2. Let U = {x ∈ Fκ2 : wt(x) > 2} and f be the Boolean function de�ned
in (3.6), where µ ≡ 1 and φ is an injection from Fκ2 \ U to (Fλ2)∗ such that
φ(x) = 0 for any x ∈ U . The punctured code C×f+1 given by (2.12) considered

over (Fr2)∗ is a wide minimal [2r − 1, r + 1, 2r−1 − 2λ−1(2κ − κ− 1)− 1]-code.

A similar approach as in Theorem 3.4.2 to modify the previous result provides
codes with larger minimum distance.

Theorem 3.4.5 (The GMM method II). Let r > 7 be an odd integer, κ =
(r + 1)/2 and λ = (r − 1)/2. Let U = {x ∈ Fκ2 : wt(x) 6 κ− 2} and f ∈ Br be
the Boolean function de�ned in (3.6), where µ ≡ 1 and φ is an injection from
Fκ2 \ U to (Fλ2)∗ such that φ(x) = 0 for any x ∈ U . The code Cf+1 is a wide
minimal binary code with parameters [2r, r + 1, 2r−1 − 2λ−1(2κ − κ− 3)].

Proof. The proof is quite similar to the proof of Theorem 3.4.2. In this case,

Wf+1(ν1, ν2) =


(2κ − κ− 3)2λ if ν1 = 0, ν2 = 0;
((−1)i+1(κ− 2i+ 1)− 2)2λ if wt(ν1) = i, ν2 = 0;

(−1)ν1·φ
−1(ν2)2λ if ν2 ∈ Im(φ) \ {0};

0 if ν2 /∈ Im(φ),

(3.15)

where i = 1, 2, . . . , κ. Again, from (3.15), we know that

Wf (ν1, ν2)±Wf (ω1, ω2) 6= 2r,
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for any pair of distinct (ν1, ν2), (ω1, ω2) ∈ Fκ2 ×Fλ2 . By Theorem 3.1.2, it follows
that Cf is minimal. Observe that the minimum weight corresponds to

2r−1 − 1

2
Wf+1(0, 0) = 2r−1 − 2λ−1(2κ − κ− 3).

To show wideness, compute the maximum weight according to the parity of κ.
If κ is odd then the maximum weight corresponds to

2r−1 − 1

2
Wf+1(1κ, 0) = 2r−1 + 2λ−1(κ+ 1),

where 1κ denotes the all-one vector in Fκ2 . This yields

wmin

wmax

=
2r−1 − 2λ−1(2κ − κ− 3)

2r−1 + 2λ−1(κ+ 1)
6

1

2
.

If κ is even then the maximum weight is attained when wt(ν1) = κ − 1 or
wt(ν1) = 2 and it corresponds to

2r−1 − 1

2
Wf+1(ν1, 0) = 2r−1 + 2λ−1(κ− 1).

This implies
wmin

wmax

=
2r−1 − 2λ−1(2κ − κ− 3)

2r−1 + 2λ−1(κ− 1)
6

1

2
.

The weight distributions of the resulting codes in Theorem 3.4.5 are given in
Tables 3.12-3.15 below, where the possible values of κ modulo four are consid-
ered.

Table 3.12: Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 0 mod 4

Weight w Number of codewords Aw
2r−1 − 2λ−1(2κ − κ− 3) 1

2r−1 + 2λ−1((−1)i(κ+ 1− 2i) + 2)
for 1 6 i 6 κ, i 6∈ {(κ− 2)/2, (κ+ 4)/2}

(
κ
i

)
+
(

κ
κ−i+1

)
2r−1 + 2λ−1 (κ+ 1)2κ−1

2r−1 − 2λ−1 (κ+ 1)2κ−1 +
(

κ
(κ−2)/2

)
+
(

κ
(κ+4)/2

)
2r−1 2r − 1 + 2κ(2λ − κ− 2)

0 1
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Table 3.13: Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 1 mod 4
Weight w Number of codewords Aw

2r−1 − 2λ−1(2κ − κ− 3) 1
2r−1 + 2λ−1((−1)i(κ+ 1− 2i) + 2)

for 1 6 i ≤ κ, i 6= (k + 3)/2

(
κ
i

)
2r−1 + 2λ−1 (κ+ 1)2κ−1

2r−1 − 2λ−1 (κ+ 1)2κ−1

2r−1 2r − 1 + 2κ(2λ − κ− 2) +
(

κ
(k+3)/2

)
0 1

Table 3.14: Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 2 mod 4
Weight w Number of codewords Aw

2r−1 − 2λ−1(2κ − κ− 3) 1
2r−1 + 2λ−1((−1)i(κ+ 1− 2i) + 2)
for 1 6 i ≤ κ, i 6∈ {κ/2, (κ+ 2)/2}

(
κ
i

)
+
(

κ
k−i+1

)
2r−1 + 2λ−1 (κ+ 1)2κ−1 +

(
κ
k/2

)
+
(

κ
(k+2)/2

)
2r−1 − 2λ−1 (κ+ 1)2κ−1

2r−1 2r − 1 + 2κ(2λ − κ− 2)
0 1

Table 3.15: Weight distribution of Cf in Theorem 3.4.5 for κ ≡ 3 mod 4
Weight w Number of codewords Aw

2r−1 − 2λ−1(2κ − κ− 3) 1
2r−1 + 2λ−1((−1)i(κ+ 1− 2i) + 2)

for 1 6 i ≤ κ, i 6= (κ− 1)/2

(
κ
i

)
2r−1 + 2λ−1 (κ+ 1)2κ−1

2r−1 − 2λ−1 (κ+ 1)2κ−1

2r−1 2r − 1 + 2κ(2λ − κ− 2) +
(

κ
(k−1)/2

)
0 1

Compared to the result in Theorem 3.4.4, the method shown in Theorem 3.4.5
achieves codes with larger minimum distance and fewer weights regardless of
the parity of κ.

Example 3.4.6. Let r = 7. This gives κ = 4 and λ = 3, so that κ ≡ 0 mod 4.
The code constructed in Theorem 3.4.5 is a wide minimal [128, 8, 28]-code whose
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enumerator polynomial is

1 + z28 + 45z60 + 159z64 + 40z68 + 10z76.

This is consistent with Table 3.12. The same code considered over (F7
2)∗ has

parameters [127, 8, 27]. On the other hand, the code in Theorem 3.4.4 has pa-
rameters [127, 8, 19]. Then the di�erence between minimum weights is 8 (in
general, the di�erence equals 2λ). The enumerator polynomial of the punctured
code in Theorem 3.4.5 is

1 + z27 + 45z59 + 32z63 + 127z64 + 40z67 + 10z75,

whereas the enumerator polynomial of the code in Theorem 3.4.4 is

1 + z19 + z51 + 36z59 + 32z63 + 127z64 + 54z67 + 4z75.

Remark 3.4.7 (The wide bound). In general, a minimal code with parameters
[n, k, d] and maximum distance wmax satis�es wmax 6 n− k + 1 (the Singleton
bound for the maximum weight). Since a wide binary code satis�es 2wmin 6
wmax, a wide minimal binary code must satisfy

wmin 6 b1
2

(n− k + 1)c.

To the best of our knowledge, the best constructions in this regard (parameters
n = 2m, k = m + 1) are given in Theorem 3.3.1. Theorem 3.4.2 and Theorem
3.4.5 provide codes with good parameters since their minimum distances are
either 2r−1−2λ−1(κ−1) or 2r−1−2λ−1(κ−3), which are pretty close to b1

2
(2r−r)c.

3.4.3 The third family of wide minimal codes from GMM
The previous two sections illustrate the �exibility in the choice of a set U and
the corresponding Boolean function in the generalized Maiorana-McFarcland
class to de�ne wide minimal linear codes. A re�nement of these techniques
is presented in this section. The method employs the derivative of a speci�c
Boolean function instead.

In Theorem 3.4.2, the set U of vectors whose weight is at most κ− 2, i.e.

U = {x ∈ Fκ2 : wt(x) 6 κ− 2},

is used as building block of f , whereas the set U = {x ∈ Fκ2 : wt(x) > 2} is
used in Theorem 3.4.1. In what follows, we show that the same characteristic
set as used in Theorem 3.4.1 can actually give rise to wide minimal codes for a
suitable derivative of f , say Dγf .



56 3.4. THE GENERAL MAIORANA-MCFARLAND CLASS

Theorem 3.4.8 (The GMM method III). Let r > 9 be an odd integer, κ =
(r + 1)/2 and λ = (r − 1)/2. Let U = {x ∈ Fκ2 : wt(x) > 2} and f be the
Boolean function de�ned in (3.6), where µ is the identically one function and
φ is an injection from Fκ2 \ U to (Fλ2)∗ such that φ(x) = 0 for any x ∈ U . Let
γ = (1κ, 0) ∈ Fκ2 ×Fλ2 , where 1κ denotes the all-one vector in Fκ2 . The code CDγf
given by (2.12) is a wide minimal code with parameters [2r, r + 1, 2λ(κ+ 1)].

Proof. Set U ′ = U + 1κ. From the proof of Theorem 3.4.1 in [20, Theorem 5.5],
we know that ∑

x∈U

(−1)ν1·x =

{
|U |, if ν1 = 0,

P1(i) + 1, if wt(ν1) = i,
(3.16)

where P1(i) = κ− 2i.

Working out the sums in the Walsh value WDγf (ν1, ν2) for (ν1, ν2) ∈ Fκ2 ×Fλ2 by
using (3.10) and (3.16), we get

WDγf (ν1, ν2) =
∑
x∈Fκ2

∑
y∈Fλ2

(−1)φ(x)·y+φ(x+1κ)·y+ν1·x+ν2·y

=
∑

x∈(Fκ2\U)

∑
y∈Fλ2

(−1)φ(x)·y+ν1·x+ν2·y +
∑

x∈(Fκ2\U ′)

∑
y∈Fλ2

(−1)φ(x+1κ)·y+ν1·x+ν2·y

+
∑

x∈(U∩U ′)

∑
y∈Fλ2

(−1)ν1·x+ν2·y.

Therefore the Walsh coe�cients satisfy

WDγf (ν1, ν2) =


(2κ − 2κ− 2)2λ if ν1 = 0, ν2 = 0;
− (κ− 2i+ 1 + (−1)i(κ− 2i+ 1)) 2λ if wt(ν1) = i, ν2 = 0;

(1 + (−1)ν1·1κ)(−1)ν1·φ
−1(ν2)2λ if ν2 ∈ Im(φ) \ {0};

0 if ν2 /∈ Im(φ),
(3.17)

where i = 1, 2, . . . , κ. From (3.17), observe that

WDγf (ν1, ν2)±WDγf (ω1, ω2) 6= 2r

for any pair of distinct (ν1, ν2), (ω1, ω2) ∈ Fκ2 × Fλ2 , hence CDγf is minimal.

Using (3.17), the parameters and weight distribution of CDγf can be inferred,
see Tables 3.16 - 3.19. In this case, a codeword of minimal non-zero weight is
attained when wt(ν1) = 0, wt(ν2) = 0 (corresponding to the �rst row in Tables
3.16 - 3.19) so that the minimum distance wmin is equal to

wt(φ(x) · y + φ(x+ 1κ) · y) = 2r−1 − 1

2
WDγf (0, 0) = 2λ(κ+ 1), (3.18)
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where the last equality comes from the fact that WDγf (0, 0) = 2r − 2λ(2κ+ 2).
Similarly, a codeword of maximal weight is attained when wt(ν1) = 2, wt(ν2) =
0 (corresponding to the second row in Tables 3.16 - 3.19), so that

wmax = 2r−1 + 2λ(κ− 3). (3.19)

Combining (3.18) and (3.19), we obtain wmin

wmax
6 1

2
for κ > 5.

The weight distributions of the linear codes CDγf is given below in Tables 3.16
- 3.19) for di�erent values of κ modulo four.

Table 3.16: Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 1 mod 4

Weight w Number of codewords Aw
2λ(κ+ 1) 1

2r−1 + 2λ(κ+ 1− 2i)
for 1 6 i 6 κ, and i even

(
κ
i

)
2r−1 + 2λ κ2κ−2

2r−1 − 2λ 2κ−1 + κ2κ−2

2r−1 2r − 1 + 2κ(2λ − κ− 2) + (k + 1)2κ−1 +
(κ+1)/2∑
i=1

(
κ

2i−1

)
0 1

Table 3.17: Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 3 mod 4

Weight w Number of codewords Aw
2λ(κ+ 1) 1

2r−1 + 2λ(κ+ 1− 2i)
for 1 6 i 6 κ, i 6= (κ+ 1)/2 and i even

(
κ
i

)
2r−1 + 2λ κ2κ−2

2r−1 − 2λ 2κ−1 + κ2κ−2

2r−1

2r − 1 + 2κ(2λ − κ− 2) + (k + 1)2κ−1

+
(κ+1)/2∑
i=1

(
κ

2i−1

)
+
(

κ
(κ+1)/2

)
0 1
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Table 3.18: Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 0 mod 4

Weight w Number of codewords Aw
2λ(κ+ 1) 1

2r−1 + 2λ(κ+ 1− 2i)
for 1 6 i 6 κ, and i even, i 6= κ/2

(
κ
i

)
2r−1 + 2λ κ2κ−2 +

(
κ
κ/2

)
2r−1 − 2λ 2κ−1 + κ2κ−2

2r−1 2r − 1 + 2κ(2λ − κ− 2) + (k + 1)2κ−1 +
κ/2∑
i=1

(
κ

2i−1

)
0 1

Table 3.19: Weight distribution of CDγf in Theorem 3.4.8 for κ ≡ 2 mod 4

Weight w Number of codewords Aw
2λ(κ+ 1) 1

2r−1 + 2λ(κ+ 1− 2i)
for 1 6 i 6 κ, i 6= (κ+ 2)/2, and i even

(
κ
i

)
2r−1 + 2λ κ2κ−2

2r−1 − 2λ 2κ−1 + κ2κ−2 +
(

κ
(κ+2)/2

)
2r−1 2r − 1 + 2κ(2λ − κ− 2) + (k + 1)2κ−1 +

κ/2∑
i=1

(
κ

2i−1

)
0 1

The weight distribution tables above, referring to Theorem 3.4.8, have been
con�rmed both through computer-based simulations and theoretically. A simi-
lar reasoning used to specify the weight distribution in Table 3.2 can be applied
here.

The codes speci�ed by Theorem 3.4.8 have a smaller minimal distance than
those de�ned in Theorem 3.4.2. Nevertheless, we will show later that the code-
words of both codes can be simultaneously used resulting in codes with larger
dimension.



Chapter 4

Minimal codes with larger

dimensions

A minimal code is well-suited for the current practical two-party computation
protocols when their information rate is high. Similar to the case of (extended)
simplex codes Sm, the presented codes derived from Boolean functions Cf have
a rather bad information rate, namely, m+1

2m
. This motivates the quest of sec-

ondary constructions or, in general, any method, that allow us to increase the
dimension of resulting codes. Since our main goal in this thesis is the study of
wide minimal codes, the proposed methods in this chapter will be tailored to
increase the dimension of the codes Cf while preserving both properties.

In this chapter, we present essentially three constructions of minimal codes.
As a �rst step, a secondary construction of minimal codes based on bent-
concatenation is introduced. Then, some derivatives of a bent function g are
adjoined to the associated code Cg to produce wide minimal codes with larger
dimensions. Finally, these two methods will be put together into a more general
framework to produce codes with better dimensions, which are both wide and
minimal. Most of the results presented in this chapter are based on the results
proved in [65].

To ease notation, the set of n-variable linear functions will be denoted by Ln.
The elements of Ln are then functions of the form lv : Fnp → Fp de�ned by
lv(x) = v · x for v ∈ Fnp . Again, we will take no notice of whether these
functions are de�ned in Fnp or in Fpn .

Since at least two functions will be involved in the constructions of this chapter,
it will be useful to emphasize the function itself in the notation Wmax,Wmin so

59
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that for any p-ary function f , we will denote byW(f)
max (resp. W(f)

min) the maximal
(resp. minimal) value in the Walsh spectrum of f .

4.1 Direct sum method

As pointed out in the introduction, it is well-known [15] that the Kronecker
product of two minimal codes is a minimal code. However, little is known
about some other secondary constructions of minimal linear codes. This lack
of methods prompts us to provide a more suitable framework to study the
construction of minimal codes from other minimal codes or, at least, to obtain
minimal codes with a larger dimension from other mathematical objects under
weak assumptions.

The approach presented in this section will be based on the so-called direct
sum or bent concatenation of Boolean functions: let r, s and n be three positive
integers such that r + s = n1. Let f : Frp → Fp and g : Fsp → Fp be two p-ary
functions. The direct sum of f and g is the n-variable p-ary function h de�ned
by

h(x, y) = f(x) + g(y) for (x, y) ∈ Frp × Fsp. (4.1)

In this context, the following well-known result in the binary setting will be
proved useful in the sequel. The proof of this theorem is omitted, the interested
reader can track down a proof in [49].

Lemma 4.1.1. [9, 49] Let r, s and n be three positive integers such that r +
s = n. Let f ∈ Br and g ∈ Bs. Consider the direct sum h of f and g, i.e.
h(x, y) = f(x) + g(y). The following hold:

(i) The Walsh spectrum of h is completely determined by the Walsh spectra of
f and g, more precisely,

Wh(α, β) = Wf (α)Wg(β) (4.2)

for each (α, β) ∈ Fr2 × Fs2.

(ii) Let (u, v) ∈ Fn2 be a pair of vectors such that u = (u1, . . . , ur) and v =
(v1, . . . , vs). The weight of h+ l(u,v) satis�es

wt
(
h+ l(u,v)

)
= 2rwt (g + lv) + 2swt (f + lu)− 2wt (f + lu)wt (g + lv) .

(4.3)
1Throughout this chapter, typically, the variable m will denote the length of a linear code,

whereas n will be used to denote the input space of Boolean functions and the space Fnp will
be identi�ed with Frp × Fsp without further mentioning.
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Another concept will be presented before embarking in the main result of this
section. For any subset S ⊂ {1, . . . ,m}, de�ne the S-puncturing of an [m, k, d]-
code C ⊆ Fmq as the function pS : C → Fmq given by

pS(c)i =

{
ci if i 6∈ S;

0 otherwise,

where subindexes i indicate the coordinates of the corresponding vector.

The following lemma, whose proof is omitted, is a slight rephrasing of the
de�nition of minimality and it emphasizes that minimality is a local property
that depends on each coordinate.

Proposition 4.1.2. Let C be a p-ary linear code with parameters [m, k, d]. The
code C is minimal if and only if for every two linearly independent codewords
c, c′ ∈ C, there exists S ⊂ {1, . . . ,m} such that

pS(c) 6� pS(c′),

where pS denotes the S-puncturing of C.

We are now ready to state and prove the main result of this section. The idea
is simple�consider the associated code of the direct sum of two p-ary functions
f, g in such a way that the associated code of g is minimal.

Theorem 4.1.3 (The direct sum method). Let n, r, s be three integers such
that r + s = n. Let f : Frp → Fp be any function with f(0) = 0 and g : Fsp → Fp
be a non-a�ne function such that Cg is minimal. Consider their direct sum
h. If, for each v ∈ Fsp and a ∈ Fp, there exists a non-zero y ∈ Fsp such that
g(y) + lv(y) = a, then the code Ch, de�ned by (2.12), is a minimal p-ary linear
code. Moreover, for p = 2, if we de�ne

δ := max{W(f)
maxW(g)

max,W
(f)
minW

(g)
min},

then the parameters of Ch are [2n, n+ 1, 2n−1 − 1
2
δ].

Proof. First we will prove that if two codewords c1, c2 in Ch are linearly inde-
pendent and c1 � c2, then the induced codewords in Cg are linearly independent
unless either is zero. Let

c = (ag(y) + lv(y))y∈Fsp , c
′ = (a′g(y) + lv′(y))y∈Fsp ∈ Cg

be two linearly dependent non-zero codewords, i.e. c′ = λc for some λ ∈ F∗p,
c 6= 0. This easily implies v′ = λv and a′ = λa since g is non-a�ne. Consider
two codewords in Ch of the form

c1 = af(x) + ag(y) + lw(x) + lv(y) and c2 = λaf(x) + λag(y) + lw′(x) + lλv(y).
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By assumption, for every x ∈ Frp, there exists a non-zero yx such that

λa(f(x) + g(yx)) + λlv(yx) + lw′(x) = 0,

equivalently, lw′(x) = −λ(a(f(x) + g(yx)) + lv(yx)). Since c1 � c2, lw(x) =
a(f(x) + g(yx)) + lv(yx) for every x ∈ Frp. Thus, the function lw′(x) is equal to
λlw(x). This implies that c2 = λc1. Let c1, c2 ∈ Ch be two linearly independent
codewords in Ch. By the previous paragraph and by minimality of Cg, c1 � c2

unless either of the induced codewords in Cg is the zero codeword. In this case,
either c1 or c2 is a linear function depending on the variable x only. It cannot
happen that c1 � c2 and both codewords are linear depending on x only since
the simplex code is minimal. Without loss of generality, suppose that

c1 = (lw′(x))(x,y)∈Frp×Fsp and c2 = (a(f(x) + g(y)) + lw(x) + lv(y))(x,y)∈Frp×Fsp .

To prove that c1 6� c2, if a 6= 0, then let x0 ∈ Frp be such that lw′(x0) 6= 0 and
yx0 ∈ Fsp be such that g(yx0)+ la−1v(yx0) = −a−1(af(x0)+ lw(x0)). If a = 0, then
take x0 ∈ Frp such that lw′(x0) 6= 0 and yx0 ∈ Fsp such that lv(yx0) = −lw(x0).
Analogously, we can prove that c2 6� c1. This shows that Ch is minimal. The
second part of the statement, related to the minimum distance of Ch, follows at
once from Lemma 4.1.1.

An immediate consequence of Theorem 4.1.3 is that a bent function g together
with any other function f give rise to minimal linear codes.

Corollary 4.1.4. Let n, r, s be three integers such that r > 2, s > 2 and r+s = n
(when p = 2, let s be even). Let f : Frp → Fp be a function with f(0) = 0
and g : Fsp → Fp be bent. Consider the direct sum h(x, y) = f(x) + g(y).
The code Ch is a minimal linear code with parameters [pn, n + 1, d] where d >
pr(p− 1)(ps−1 − ps/2−1).

Proof. According to Theorem 4 in [11], the minimum weight wmin of Cg satis�es

wmin > (p− 1)(ps−1 − ps/2−1)

and every nonzero weight is at most (p − 1)(ps−1 + ps/2−1). This tells us that
the ratio wmin/wmax is at least

ps−1 − ps/2−1

ps−1 + ps/2−1
,

which is larger than p−1
p

because either p > 2 and s > 3 or p = 2 and s > 4.
By Ashikhmin-Barg's condition, the code Cg is minimal. Moreover, for every
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a ∈ Fp and v ∈ Fsp, there are at least ps−1− (p− 1)ps/2−1− 1 values y such that
g(y) + lv(y) = a since g+ lv is bent. Theorem 4.1.3 implies that Ch is a minimal
linear code. For every z ∈ Frp and every two linear functions u : Frp → Fp,
v : Fsp → Fp, the set {y ∈ Fsp : g(y) + lv(y) 6= f(z) + lu(z)} has cardinality
at least (p − 1)(ps−1 − ps/2−1) + 1 thus any codeword in Ch has weight strictly
greater than pr(p− 1)(ps−1 − ps/2−1).

As suggested by Lemma 4.1.1, the Walsh spectrum of the direct sum of p-ary
functions is well-understood and it entirely depends on the Walsh spectra of
each summand. In particular, when g : Fsp → Fp is bent, the Walsh spectrum
of the direct sum h(x, y) = f(x) + g(y) can be completely determined using the
Walsh spectrum of f . For simplicity, we will consider the case p = 2 since our
main results are given for the binary case. However, a similar analysis can be,
in principle, carried out for the case p > 2.

Consider the set (not multi-set) W abs
f of distinct absolute values of non-zero

elements in the Walsh spectrum Wf = {{Wf (λ) : λ ∈ Fr2}} of an arbitrary
Boolean function f ∈ Br, i.e.,

W abs
f = {|z| : z ∈ Wf , z 6= 0} = {|Wf (λ)| : λ ∈ Fn2 ,Wf (λ) 6= 0}, (4.4)

where a 6= b for any a, b ∈ W abs
f . For every element ρ in W abs

f , de�ne m+
ρ as the

multiplicity of ρ in Wf and de�ne m−ρ as the multiplicity of −ρ in Wf . Let also
m0 denote the multiplicity of 0 in Wf . For any bent function g ∈ Bs , denote
its dual bent function by g̃, i.e. (−1)g̃(λ) = 2−s/2Wg(λ) for any λ ∈ Fs2.

Corollary 4.1.5. Let n, r, s be three integers such that r > 2, s > 2 is even and
r + s = n. Let f ∈ Br be such that f(0) = 0 and g ∈ Bs be bent. Consider
h(x, y) = f(x) + g(y). The code Ch is a minimal binary linear code with pa-
rameters [2n, n+ 1,Nh] and it has 2|W abs

f |+ 1 di�erent non-zero weights, where

W abs
f is given by (4.4). The weight distributions of Ch, depending on the weight

of the dual g̃, are displayed in Table 4.1 and Table 4.2.

Proof. Since g ∈ Bs is bent, the code Cg is minimal. Theorem 4.1.3 implies that
Ch is minimal with parameters [2n, n+ 1, 2n−1 − 1

2
δ], where

δ = max{W(f)
maxW(g)

max,W
(f)
minW

(g)
min}.

Replacing the corresponding values for ±2s/2,

δ = 2s/2 max{W(f)
max,−W

(f)
min} = 2s/2 max

w∈Fr2
|Wf (w)|.
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Thus, the minimum distance of Ch equals the minimum distance Nh of h. For
every λ = (λ1, λ2) ∈ Fn2 , the weight of the codeword corresponding to c1,(λ1,λ2)

in Ch equals

2n−1 − 1

2
Wf (λ1)Wg(λ2) = 2n−1 ± 2s/2−1Wf (λ1).

By de�nition, the dual g̃ of g has weight 2s−1−2s/2−1 when |{w ∈ Fs2 : Wg(w) =
−2s/2}| = 2s−1 − 2s/2−1. Hence, for every ρ ∈ W abs

f , the weight 2n−1 − 2s/2−1ρ
of Ch is attained

(2s−1 + 2s/2−1)m+
ρ + (2s−1 − 2s/2−1)m−ρ times,

since it is attained by the pair of Walsh values (2s/2, ρ) or by the pair (−2s/2,−ρ).
Similarly, the weight 2n−1 + 2s/2−1ρ is attained

(2s−1 − 2s/2−1)m+
ρ + (2s−1 + 2s/2−1)m−ρ times.

A similar analysis can be done when the dual of g has weight 2s−1 + 2s/2−1.
Finally, note that for every ρ ∈ W abs

f , either m+
ρ 6= 0 or m−ρ 6= 0, this implies that

both weights 2n−1−2s/2−1ρ and 2n−1+2s/2−1ρ are always attained. Additionally,
distinct values in W abs

f yield distinct values of the corresponding weights, thus
there are 2||W abs

f ||+ 1 non-zero weights including the weight 2n−1.

Table 4.1: Weight distribution of Ch when f is a Boolean function with f(0) = 0
and g is a bent function whose dual has weight 2s−1 − 2s/2−1 and h(x, y) =
f(x) + g(y), where ρ runs over the set W abs

f .
Weight w Number of codewords Aw

2n−1 − 2s/2−1ρ (2s−1 + 2s/2−1)m+
ρ + (2s−1 − 2s/2−1)m−ρ

2n−1 + 2s/2−1ρ (2s−1 − 2s/2−1)m+
ρ + (2s−1 + 2s/2−1)m−ρ

2n−1 2n + 2sm0 − 1
0 1

Table 4.2: Weight distribution of Ch when f is a Boolean function with f(0) = 0
and g is a bent function whose dual has weight 2s−1 + 2s/2−1 and h(x, y) =
f(x) + g(y), where ρ runs over the set W abs

f .
Weight w Number of codewords Aw

2n−1 − 2s/2−1ρ (2s−1 − 2s/2−1)m+
ρ + (2s−1 + 2s/2−1)m−ρ

2n−1 + 2s/2−1ρ (2s−1 + 2s/2−1)m+
ρ + (2s−1 − 2s/2−1)m−ρ

2n−1 2n + 2sm0 − 1
0 1
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Once we know the Walsh spectrum of f , the weight distribution of the code
Ch is easily obtained. A simple instance is when r is an odd integer and f is
a semi-bent Boolean function with f(0) = 0. The weight distributions of Ch in
this case are displayed in Tables 4.3 and 4.4.

Table 4.3: Weight distribution of Ch when f is semi-bent, g is a bent function
whose dual has weight 2s−1 − 2s/2−1 and h(x, y) = f(x) + g(y).

Weight w Number of codewords Aw
2n−1 − 2s/2−12(r+1)/2 (2s−1 + 2s/2−1)(2r−2 + 2

r−3
2 ) + (2s−1 − 2s/2−1)(2r−2 − 2

r−3
2 )

2n−1 + 2s/2−12(r+1)/2 (2s−1 + 2s/2−1)(2r−2 − 2
r−3
2 ) + (2s−1 − 2s/2−1)(2r−2 + 2

r−3
2 )

2n−1 2n + 2n−1 − 1
0 1

Table 4.4: Weight distribution of Ch when f is semi-bent, g is a bent function
whose dual has weight 2s−1 + 2s/2−1 and h(x, y) = f(x) + g(y).

Weight w Number of codewords Aw
2n−1 − 2s/2−12(r+1)/2 (2s−1 − 2s/2−1)(2r−2 + 2

r−3
2 ) + (2s−1 + 2s/2−1)(2r−2 − 2

r−3
2 )

2n−1 + 2s/2−12(r+1)/2 (2s−1 − 2s/2−1)(2r−2 − 2
r−3
2 ) + (2s−1 + 2s/2−1)(2r−2 + 2

r−3
2 )

2n−1 2n + 2n−1 − 1
0 1

For the subsequent examples, it will be convenient to represent Fr2 ordered
lexicographically as Fr2 = {v0, . . . , v2r−1}, where the vectors vi ∈ Fr2 can be
thought as the r-length binary representation of the integer i for 0 6 i 6 r− 1.

Example 4.1.6. Let r = 3, s = 4. Consider the functions f ∈ B3 and g ∈ B4

given by f(x1, x2, x3) = x1x2+x3 and g(y1, y2, y3, y4) = y1y3+y2y4. The function
g is bent and f is semi-bent whose Walsh spectrum is given Table 4.5 below. By
computer-based simulations, we have veri�ed that the linear code Ch is a minimal
code with minimum weight wmin = Nh = 56 and wmax = 72. It is therefore a
[128, 8, 56]-code. Moreover, its weight enumerator is

1 + 36z56 + 191z64 + 28z72,

i.e., Ch is a three-weight code.
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Table 4.5: Walsh spectrum of the semi-bent function f in Example 4.1.6 given
by f(x1, x2, x3) = x1x2 + x3.

λ v0 v1 v2 v3 v4 v5 v6 v7

Wf (λ) 0 4 0 4 0 4 0 −4

Example 4.1.7. Let r = 4, s = 4. Consider the functions f ∈ B4 and g ∈ B4

given by f(x1, x2, x3, x4) = x1x2x3+x4 and g(y1, y2, y3, y4) = y1y3+y2y4+1. The
function g is a bent function and the Walsh spectrum of f is displayed in Table
4.6 below. It can be veri�ed that the linear code Ch is a minimal [256, 9, 104]-
code with wmin = Nh = 104 and wmax = 152. Moreover, its weight enumerator
is

1 + 6z104 + 54z120 + 383z128 + 58z136 + 10z152,

i.e., Ch is a �ve-weight code.

Table 4.6: Walsh spectrum of the semi-bent function f in Example 4.1.7 given
by f(x1, x2, x3, x4) = x1x2x3 + x4.

λ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

Wf (λ) 0 12 0 4 0 4 0 −4 0 4 0 −4 0 −4 0 4

The largest minimum distance which can be achieved for a bent function g ∈
Bs by means of Corollary 4.1.5, depends on the Walsh spectrum of f ∈ Br.
When n is even, choosing a bent function f ∈ Br gives the largest minimum
distance 2n−1 − 2n/2−1. When n is odd, a semi-bent function f ∈ Br will
provide the largest minimum distance of Ch, which is 2n−1 − 2s/2+ r+1

2
−1. The

codes constructed in either Theorem 4.1.3 or Corollary 4.1.5 cannot be optimal
(nor almost optimal) since optimal codes with length 2n and dimension n + 1
have minimum distance 2n−1 (the extended �rst order Reed-Muller code, which
is however not a minimal code). Nevertheless, the direct sum method gives an
extremely large family of minimal codes (with di�erent weight distributions)
due to the arbitrary selection of f and g.

4.2 Subspaces of derivatives and non-covering per-

mutations

In this section, we propose a di�erent approach to obtaining (wide) minimal
binary codes by employing a suitable subspace of derivatives of a bent function g
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which is taken from theMM class of bent functions. To achieve the minimality
of the resulting codes, it will be required that the underlying permutation φ
used to de�ne g satis�es certain covering properties. The proposed class of
permutations is much harder to specify for p > 2 and therefore we almost
exclusively focus on the binary case in this section. Nonetheless, we deal with
the general case in Subsection 4.2.1 and in Section 4.4.

For s even, let g ∈ Bs be a bent function in theMM class de�ned as

g(y1, y2) = y1 · φ(y2); (y1, y2) ∈ Fs/22 × Fs/22 , (4.5)

where φ is a permutation on Fs/22 such that the algebraic degree of each com-
ponent function a · φ is at least two.

The following lemmas identify useful non-covering properties of the codewords
related to derivatives of the bent function g at directions which a�ect only the
linear parts of g.

Lemma 4.2.1. Let g be a bent function on Fs2 (s even) in the MM class, as

speci�ed in (4.5). For any two di�erent vectors α, β ∈ Fs/22 × {0}, the corre-
sponding derivatives Dαg and Dβg are di�erent and

Dαg +Dβg = D(α+β)g. (4.6)

Moreover, for every non-zero v = (v1, v2) ∈ Fs/22 × Fs/22 , γ ∈ Fs/22 and ε ∈ F2,

wt(D(γ,0)g + lv + ε) =

{
2s−1 − 2s/2−1(−1)εWγ·φ(v2) if γ 6= 0, v1 = 0

2s−1 otherwise.
(4.7)

Proof. Compute, for every y = (y1, y2) ∈ Fs/22 × Fs/22 and γ ∈ Fs/22 ,

D(γ,0)g(y) = φ(y2) · y1 + φ(y2) · (y1 + γ) = φ(y2) · γ.

Consider a pair of vectors α = (α1, 0), β = (β1, 0) ∈ Fs/22 × {0}. The sum of the
corresponding derivatives satis�es

Dαg(y) +Dβg(y) = φ(y2) · α + φ(y2) · β = φ(y2) · (α + β) = Dα+βg(y),

for every y ∈ Fs2. Thus, equation (4.6) holds. Since g is bent, D(α+β)g is a
balanced function, hence Dαg and Dβg are di�erent.

To prove (4.7), suppose �rst that γ 6= 0 and v1 = 0. In this case, the function
D(γ,0)g+ lv + ε evaluated at an element y = (y1, y2) equals φ(y2) · γ + v2 · y2 + ε,
thus it has weight

2s/2(2s/2−1 − 1

2
(−1)εWγ·φ(v2)).
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Now, if either γ = 0 or v1 6= 0, then the function D(γ,0)g + lv + ε is either
a�ne (non-constant) or equals φ(y2) · γ + v2 · y2 + v1 · y1 + ε when evaluated at
y = (y1, y2), in both cases, wt(D(γ,0)g + lv + ε) = 2s−1.

Following the notation used for codewords in the linear code Cg, for a Boolean
function g ∈ Bs, denote by cα,v,ε the vector

(g(y + α) + v · y + ε)y∈Fs2
,

where α, v ∈ Fs2 and ε ∈ F2. Additionally, denote by c′α,v,ε the vector corre-
sponding to the derivative Dαg, i.e.

(g(y) + g(y + α) + v · y + ε)y∈Fs2
,

where α, v ∈ Fs2 and ε ∈ F2. The next result speci�es the non-covering property
among vectors that stem from a bent function g.

Lemma 4.2.2. Let s be even and y = (y1, y2) ∈ Fs/22 × Fs/22 . Let g be a bent

function in Bs as speci�ed in (4.5). For α, β ∈ Fs/22 × {0}, u, v ∈ Fs2 and
ε1, ε2 ∈ F2, the following hold:

(i) If α 6= β or lv + ε1 6= lu + ε2, then cα,v,ε1 6� cβ,u,ε2.

(ii) If β 6= 0 or lu + ε2 6= 1, then cα,v,ε1 6� c′β,u,ε2

Proof. The statements are proved separately.

(i) Since g is a bent function, the di�erence wt(cβ,u,ε2) − wt(cα,v,ε1) equals
either ±2s/2 or 0. On the other hand,

cα,v,ε1 + cβ,u,ε2 = (Dα+βg(y) + (v + u) · y + ε1 + ε2)y∈Fs2 = c′α+β,v+u,ε1+ε2
.

Using Lemma 4.2.1, we get wt(cα,v,ε1 + cβ,u,ε2) 6= 2s/2. Hence, if cα,v,ε1 �
cβ,u,ε2 , then cα,v,ε1 = cβ,u,ε2 . Equivalently, α = β and lv + ε1 = lu + ε2.

(ii) The function corresponding to cα,v,ε1 and cα,v,ε1 + c′β,u,ε2 is the sum of a
bent function and an a�ne function. Speci�cally, using the de�nition of
g,

cα,v,ε1 + c′β,u,ε2 = (g(y + α + β) + (v + u) · y + ε1 + ε2)y∈Fs2 .

From this, the weights of these vectors can be computed as wt(cα,v,ε1) =
2s−1 ± 2s/2−1 and wt(cα,v,ε1 + c′β,u,ε2) = 2s−1 ± 2s/2−1, thus

wt(c′β,u,ε2 + cα,v,ε1) + wt(cα,v,ε1) = 2s + 2s/2 or 2s − 2s/2 or 2s.
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If cα,v,ε1 � c′β,u,ε2 , then wt(c
′
β,u,ε2

) = wt(c′β,u,ε2 + cα,v,ε1) +wt(cα,v,ε1), which
implies that wt(c′β,u,ε2) must be equal to either 2s−2s/2 or 2s (the weight of
a vector cannot be larger than 2s). By Lemma 4.2.1, wt(c′β,u,ε2) 6= 2s−2s/2.
Consequently, if cα,v,ε1 � c′β,u,ε2 , then c

′
β,u,ε2

is the all-one vector, i.e. β = 0
and lu + ε2 is the identically one function.

Consider a basis B = {v1, . . . , vs+1} ⊂ F2s

2 for Cg. Let Dê1g, . . . , Dês/2g be the

derivatives of g at respective direction êi, where êi ∈ Fs/22 ×F
s/2
2 is the canonical

vector with all zero co-ordinates except for the i-th coordinate in which there
is a one. Note that for (y1, y2) ∈ Fs/22 × Fs/22 ,

Dêig(y1, y2) = y1 · φ(y2) + (y1 + ei) · φ(y2) = ei · φ(y2),

where we tacitly use the canonical vectors ei ∈ Fs/22 . The previous lemmas
suggest that if the vectors

Dê1g, . . . , Dês/2g

are added to the basis B, then one may obtain a minimal code with larger
dimension. Unfortunately, this is not always true since the covering properties
in Lemma 4.2.2 does not necessarily hold for the derivatives of g, i.e. Lemma
4.2.2 does not address the (non-)covering property of two vectors that stem
from the derivative of g.

Before providing a sound solution for the issue mentioned in the previous para-
graph, let us introduce a concept to elaborate on our discussion. The key idea
for the �rst construction method given in (2.12), is to adjoin non-a�ne functions
to the extended simplex code. Adjoining two linearly independent non-a�ne
functions f1, f2 ∈ Bn whose sum is non-a�ne gives a [2n, n+ 2, d]-code that will
be denoted by Cf1 ⊕ Cf2 , formally,

Cf1 ⊕ Cf2 := {(a1f1(x) + a2f2(x) + λ · x)x∈Fn2 : ai ∈ F2, λ ∈ Fn2}, (4.8)

which can be seen to be equal to Cf1 ∪ Cf2 ∪ Cf1+f2 . Recursively, we can de�ne⊕
i∈I Cfi for more than two functions. The minmiality of Cf1 ⊕ Cf2 can be

expressed in terms of the minimality of each individual code and an additional
non-covering property as stated in the following lemma.

Lemma 4.2.3. Let f1, f2 be two distinct non-a�ne Boolean functions such that
f1 + f2 is non-a�ne. Then, the code Cf1 ⊕ Cf2 is minimal if and only if Cf1,
Cf2 , Cf1+f2 are minimal and the following condition holds:
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For every two vectors λ1, λ2 ∈ Fn2 and elements ε1, ε2, ε3 ∈ F2 such that ε1 + ε2 +
ε3 = 1 (over Z), we have

(−1)ε1Wf1(λ1) + (−1)ε2Wf2(λ2) + (−1)ε3Wf1+f2(λ1 + λ2) 6= 2n. (4.9)

Proof. Let C := Cf1 ⊕ Cf2 . Suppose that C is minimal. Since Cf1 , Cf2 , Cf1+f2 are
subcodes of C, they are minimal too. Let λ1, λ2 ∈ Fn2 be arbitrary. We show
(4.9) only for the case ε1 = 1, ε2 = ε3 = 0, since the other two cases are similar
(symmetric). Consider two distinct non-zero codewords c1 = (f1(x)+λ1 ·x)x∈Fn2
and c2 = (f2(x) + λ2 · x)x∈Fn2 . Since C is minimal, c2 6� c1. This implies that

wt(c1)− wt(c2) 6= wt(c1 + c2),

which is equivalent to

−Wf1(λ1) +Wf2(λ2) 6= 2n −Wf1+f2(λ1 + λ2).

In other words, −Wf1(λ1)+Wf2(λ2)+Wf1+f2(λ1+λ2) 6= 2n. Conversely, suppose
that Cf1 , Cf2 , Cf1+f2 are minimal and (4.9) holds. It su�ces to prove that the
codewords stemming from di�erent codes do not cover each other. There are
several cases to consider but we only treat the case of (non-linear) c1 ∈ Cf1 and
c2 ∈ Cf2 , since the other cases are similar. Let c1 = (f1(x) + λ1 · x)x∈Fn2 and
c2 = (f2(x) + λ2 · x)x∈Fn2 . The statement c2 � c1 is equivalent to

2n−1 − 1

2
Wf1(λ1)− 2n−1 +

1

2
Wf2(λ2) = 2n−1 − 1

2
Wf1+f2(λ1 + λ2),

which, in turn, is equivalent to

−Wf1(λ1) +Wf2(λ2) +Wf1+f2(λ1 + λ2) = 2n.

Therefore c2 � c1 is incompatible with (4.9).

Let us now go back to the construction of minimal codes adjoining some vectors
to a basis for Cg. De�ne the functions g0 := g and gi := D(ei,0)g for i ∈
{0, . . . , s

2
}, where {e1, . . . , es/2} is the canonical basis for Fs/22 . As pointed out

earlier, Lemma 4.2.2 suggests that the code

C =
⊕

i∈{0,..., s
2
}

Cgi , (4.10)

may be minimal. We now introduce a special subclass of permutations φ over
Fm2 that allows us to assure minimality of the aforementioned code.
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De�nition 4.2.4. A permutation φ on Fm2 such that φ(0) = 0 is a non-covering
permutation if for every (a1, b) 6= (a2, b) ∈ Fm2 × (Fm2 )∗ we have

Wb·φ(a1)±Wb·φ(a2) 6= 2m, (4.11)

and furthermore for every pair (a1, b1), (a2, b2) ∈ Fm2 × (Fm2 )∗ with b1 6= b2, the
following is satis�ed

Wb1·φ(a1)−Wb2·φ(a2) +W(b1+b2)·φ(a1 + a2) 6= 2m. (4.12)

De�nition 4.2.4 implies that the degree of a · φ is at least 2 for any a ∈ (Fm2 )∗,
thus a non-covering permutation has no a�ne components. A particular class
of non-covering permutations stem from AB permutations: For odd m > 3, any
AB permutation φ satis�es

Wb·φ(a1)±Wb·φ(a2) 6 2 · 2
m+1

2 < 2m,

for (a1, b) 6= (a2, b) ∈ Fm2 × (Fm2 )∗ and

Wb1·φ(a1)−Wb2·φ(a2) +W(b1+b2)·φ(a1 + a2) 6 3 · 2
m+1

2 < 2m,

for (a1, b1), (a2, b2) ∈ Fm2 × (Fm2 )∗ such that b1 6= b2. Therefore, an AB permu-
tation φ is non-covering for odd m > 3.

Similarly, another class of non-covering permutations is the multiplicative in-
verse given by φ(y) = y2m−2 on F2m , as shown in the following lemma.

Lemma 4.2.5. Let m be any integer such that m > 5. The multiplicative
inverse permutation φ(y) = y2m−2 is a non-covering permutation on F2m.

Proof. For this proof, we identify the space Fm2 with F2m . It is well-known
[57] that the Walsh values of any component φb := Tr(by2m−2) of the inverse
permutation φ, for b ∈ F∗2m , are given by the integers congruent to 0 mod 4 in
the interval [−2m/2+1, 2m/2+1]. This implies |Wφb| 6 2m/2+1, for any b ∈ F∗2m .
For m > 5, we then have

Wφb(a1)±Wφb(a2) 6 2 · 2m/2+1 < 2m,

for (a1, b) 6= (a2, b) ∈ F2m ×F∗2m . This shows that (4.11) is satis�ed. For m > 5,
we also have

Wφb1
(a1)−Wφb2

(a2) +Wφb1+b2
(a1 + a2) 6 3 · 2

m+1
2 < 2m,

for (a1, b1), (a2, b2) ∈ F2m×F∗2m with b1 6= b2. Hence (4.12) is satis�ed form > 5.
The equation (4.12) holds also for m = 5, which can be con�rmed by computer
simulations (see also Example 4.2.12).
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With the notion of non-covering permutations, we are now able to prove the
following lemma, which shows that the desired (non-)covering property applies
also to vectors that stem from some derivatives of a bent function g in theMM
class as de�ned in (4.5).

Lemma 4.2.6. Let s be even. Let g ∈ Bs be a bent function inMM as de�ned
in (4.5, i.e.

g(y1, y2) = y1 · φ(y2)

for (y1, y2) ∈ Fs/22 × Fs/22 . Assume that φ is a non-covering permutation. For

α, β ∈ Fs/22 ×{0}, u, v ∈ Fs2 and ε ∈ F2, suppose that the vectors c
′
α,v,0 and c′β,u,ε

are di�erent from each other. It holds that c′α,v,0 6� c′β,u,ε unless c
′
α,v,0 is null or

c′β,u,ε is the all-one vector.

Proof. Let g, φ, α, β, u, v and ε be as in the statement. Using the de�nition of
g, the sum of its derivatives satis�es

g(y) + g(y + α) + g(y) + g(y + β) = g(y) + g(y + α + β)

for each y ∈ Fs2, hence

c′α,v,0 + c′β,u,ε = (Dα+βg(y) + (v + u) · y + ε)y∈Fs2 = c′α+β,v+u,ε.

Assume that c′β,u,ε is not the all-one vector. If either c′α,v,0 or c′β,u,ε depend on
y1, then exactly two vectors amongst c′α,v,0, c

′
β,u,ε, c

′
α+β,v+u,ε are balanced since

the only terms that depend on y1 are a�ne. In this case c′α,v,0 6� c′β,u,ε unless
c′α,v,0 is the zero vector.

Let us represent with a superscript (i) the restriction of an element in Fs/22 ×F
s/2
2

to the coordinate yi where i ∈ {1, 2}, e.g., v(2) is the restriction of v to the
coordinate y2.

Suppose that neither c′α,v,0 nor c
′
β,u,ε depend on the �rst variable y1 and c′α,v,0 �

c′β,u,ε, i.e.,
wt(c′β,u,ε)− wt(c′α,v,0) = wt(c′α+β,v+u,ε).

Let c1 = c′α,v,0
(2) and c2 = c′β,u,ε

(2). In this case,

2s/2wt(c1)− 2s/2wt(c2) = 2s/2wt(c1 + c2)

since none of the vectors depend on y2. Factor out to get

wt(c2)− wt(c1) = wt(c1 + c2). (4.13)
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Note that c1 and c2 can be expressed as

c1 = (φ(y2) · α(1) + v(2) · y2)
y2∈Fs/22

, c2 = (φ(y2) · β(1) + u(2) · y2 + ε)
y2∈Fs/22

.

If α(1) 6= 0, β(1) 6= 0 and α(1) 6= β(1), then

wt(c1) = 2s/2−1 − 1

2
Wα(1)·φ(v(2)), wt(c2) = 2s/2−1 − 1

2
(−1)εWβ(1)·φ(u(2)),

and
wt(c1 + c2) = 2s/2−1 − 1

2
(−1)εW(α(1)+β(1))·φ(v(2) + u(2)).

Using (4.13) and rearranging,

Wα(1)·φ(v(2))− (−1)εWβ(1)·φ(u(2)) + (−1)εW(α(1)+β(1))·φ(v(2) + u(2)) = 2s/2,

which contradicts (4.12) in the de�nition of a non-covering permutation.

Now, if α(1) 6= 0, β(1) 6= 0 and α(1) = β(1), then

wt(c1) = 2s/2−1 − 1

2
Wα(1)·φ(v(2)), wt(c2) = 2s/2−1 − 1

2
(−1)εWα(1)·φ(u(2)),

and wt(c1 + c2) = 2s/2−1. Using (4.13),

Wα(1)·φ(v(2))− (−1)εWα(1)·φ(u(2)) = 2s/2,

which contradicts (4.11) in the de�nition of a non-covering permutation. A
similar argument rules out the possibility that α(1) 6= 0, β(1) = 0. This forces
α(1) = 0. Finally, using similar arguments and the fact that c2 is not the all-one
vector in Fs2, we get v(2) = 0. Therefore c1 is null, thus v = 0 and α = (0, 0), in
other words, c1 is the zero vector.

Now we are in a position to claim the minimality of the linear code in (4.10)
using a bent function g de�ned by (4.5) and its suitable derivatives in accordance
to Lemma 4.2.6.

Theorem 4.2.7 (The derivative method). Let s be an even integer at least
four. Let g ∈ Bs be a bent function in the MM class de�ned as in (4.5), i.e.

g(y1, y2) = y1 · φ(y2) for (y1, y2) ∈ Fs/22 × Fs/22 . Let C be the linear code de�ned
in (4.10), namely,

C =
⊕

i∈{0,..., s
2
}

Cgi , (4.14)

where g0 = g and gi = g + D(ei,0) for i = 1, . . . , s/2. The linear code C is a
[2s, s + s

2
+ 1, 2s/2θ]-code with θ > Nφ. Moreover, if φ is non-covering, then C

is minimal.
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Proof. Clearly, the length of C is 2s and its dimension is s+ s
2

+ 1 since the set
{g0, g1, . . . , gs/2} is linearly independent. For the minimum distance, note that,
for every y ∈ Fs2, µ ∈ F2, v ∈ Fs2 and every non-negative integer k with k 6 s/2,

µg(y)+g(y+ei1)+· · ·+g(y+eik)+v ·y = (µ+δ)g(y)+g(y+ei0 +· · ·+eik)+v ·y,

where δ is equal to k (mod 2). Hence, the minimum distance can be deduced
using Lemma 4.2.1 and expressing each codeword c ∈ C in the form

c = ((µ+ δ)g(y) + g(y + ei0 + · · ·+ eik) + v · y)y∈Fs2 .

Let us now consider two distinct codewords c1, c2 ∈ C, whose parameters are
indexed accordingly, so that ki, µi, δi correspond to ci, for i = 1, 2. Suppose that
c1 � c2. Lemma 4.2.2 implies that c1 is the zero codeword when µ1 + δ1 = 0 or
µ2 + δ2 = 0. If µ1 + δ1 = µ2 + δ2 = 1, then Lemma 4.2.6 implies that c1 is the
zero codeword since φ is non-covering. Therefore, C is minimal.

Corollary 4.2.8. Let the notation of Theorem 4.2.7 hold. Suppose that s ≡ 2
mod 4 and s/2 > 3. If φ is an AB permutation over Fs/22 with φ(0) = 0, then
C, de�ned by (4.14), is a �ve-valued minimal code with parameters [2s, s+ s

2
+

1, 2s−1 − 2
s+s/2−1

2 ] whose weight distribution is displayed in Table 4.7.

Proof. Theorem 4.2.7 implies that the code C has parameters [2s, s+s/2+1, d],
where

d > 2s/2Nφ = 2s/2(2s/2−1 − 2
s/2−1

2 ).

The minimality of C can also be inferred from Theorem 4.2.7, as AB permu-
tations are non-covering for s/2 > 3. For any β ∈ (Fs/22 )∗, λ ∈ Fs/22 such that
Wβ·φ(λ) = 2

s/2+1
2 , the codeword corresponding to the function D(β,0)g+(λ, 0) ·y

has weight 2s/2(2s/2−1−2(s/2−1)/2). This implies that d = 2s/2(2s/2−1−2(s/2−1)/2).
Since φ is an AB permutation with φ(0) = 0, the number of occurrences of 2

s/2+1
2

in the Walsh spectra of every component β ·φ is 2s/2−2 + 2(s/2−3)/2. This means
that there are (2s/2 − 1)(2s/2−2 + 2(s/2−3)/2) codewords of minimum weight. In
a similar fashion, the other weights in the weight distribution of C can be ob-
tained.
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Table 4.7: Weight distribution of C in Corollary 4.2.8.
Weight w Number of codewords Aw

2s−1 − 2
s+s/2−1

2 (2s/2 − 1)(2s/2−2 + 2(s/2−3)/2)

2s−1 − 2s/2−1 2s/2(2s−1 + 2s/2−1)

2s−1 2s/2−1(2s/2 − 1) + (2s − 2s/2)(2s/2 − 1) + (2s − 1)

2s−1 + 2s/2−1 2s/2(2s−1 − 2s/2−1)

2s−1 + 2
s+s/2−1

2 (2s/2 − 1)(2s/2−2 − 2(s/2−3)/2)
0 1

Note that when φ is an AB permutation, the code C is actually narrow since
the ratio

wmin

wmax

=
2s−1 − 2

s+s/2−1
2

2s−1 + 2
s+s/2−1

2

is larger than 1/2 when s/2 > 3. On the other hand, the use of a non-covering
permutation φ which is not AB may give rise to wide minimal codes, thus
violating the Ashikhmin-Barg bound.

Corollary 4.2.9. Let the notation of Theorem 4.2.7 hold. Suppose that s/2 > 5

and let φ be the inverse permutation over F2s/2 given by φ(y) = y2s/2−2. The
linear code C de�ned by (4.14) is an (s−2)-valued minimal code with parameters
[2s, s+ s

2
+ 1, 2s/2θ], where θ = 2s/2(2s/2−1− 2s/4) when s/2 is even and θ equals

the highest even integer bounded above by 2s/2−1 − 2s/4 when s/2 is odd.

Proof. It is well-known [57] that Nφ = minb∈F∗2s NTr(bφ) is equal to θ = (2s/2−1−
2s/4) when s/2 is even, and θ equals the highest even integer bounded above
by 2s/2−1 − 2s/4 when s/2 is odd. Theorem 4.2.7 implies that the code C has
parameters [2n, s+s/2+1, d], where d > 2s/2θ. The minimality of C follows from
Theorem 4.2.7, as the inverse permutations are non-covering for s/2 > 5. Since
the Walsh spectrum of any component of φ is given by the integers congruent to
0 mod 4 in the (real) range [−2s/4+1+1, 2s/4+1+1], selecting β ∈ (Fs/22 )∗, λ ∈ Fs/22

such that 2s/2−1 − 1
2
Wβ·φ(λ) = Nφ yields a codeword of weight 2s/2Nφ. This

then implies that d = 2s/2Nφ.

Example 4.2.10. Set s = 10. Let φ be the multiplicative inverse permutation
on F25 given by φ(y) = y25−2 = y30. Let g be a bent function in MM as in
(4.5) given by g(y1, y2) = φ(y2) · y1. The linear code

C =
⊕

i∈{0,...,5}

Cgi
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is an eight-valued minimal code with parameters [1024, 16, 320]. Moreover, its
weight enumerator is

1+31z320+155z384+310z448+16896z496+31961z512+15872z528+155z576+155z640,

hence wmin/wmax = 1
2
, so that C is also wide.

4.2.1 Non-covering permutations

In this section, we will take a closer look at the concept of non-covering permuta-
tions introduced in the previous section, which proved to be useful to construct
(wide) minimal codes with a larger dimension.

Using simple Walsh spectrum arguments and known bounds on the nonlinearity
of φ, one can show that there are no non-covering permutations φ over Fm2
for m 6 4. However, there are 32! permutations over F5

2 and many of these
permutations are non-covering.

In general, if a permutation φ : Fm2 → Fm2 satis�es max(a,b)∈Fm2 ×(Fm2 )∗ |Wb·φ(a)| <
2m/3, then φ is a non-covering permutation. In other words, if the nonlinearity
Nφ of a class of permutations is at least 2m/3, then the permutations in this
class are non-covering. For instance, when m = 2t is even and t is odd, it can be
checked by computer-based simulations that a class of permutation binomials
of the form

F (x) = x
2n−1
2t−1

+1
+ ax,

for moderately large t's, studied in [4], are non-covering. Hence, non-covering
permutations are easily obtained.

Due to the form of the de�ning conditions in De�nition 4.2.4, it can be foreseen
that the concept of a non-covering permutation is somehow related to minimal-
ity of the associated code Cφ. This is indeed the case and these two properties
are in fact equivalent. Throughout this section, it will be more convenient to
work in the �nite �eld F2m instead of in its vectorial counterpart Fm2 .

Theorem 4.2.11. Let φ : F2m → F2m be a permutation without a�ne compo-
nents such that φ(0) = 0. Consider the code Cφ de�ned by equation (2.12). The
permutation φ is non-covering if and only if Cφ is minimal.

Proof. Assume that φ is a non-covering permutation. Let cb1,a1 , cb2,a2 ∈ Cφ be
two di�erent non-zero codewords. Suppose that cb1,a1 � cb2,a2 . Note that at most
one out of the three relations cb1,a1 ∈ Sext

m , cb2,a2 ∈ Sext
m and cb1+b2,a1+a2 ∈ Sext

m

can be true, as the simplex code is minimal. By Proposition 3.1.1, we have got

wt(cb1+b2,a1+a2) = wt(cb2,a2)− wt(cb1,a1). (4.15)
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We consider now a few cases according to the values of b1 and b2. If b1 = b2

(so that a1 6= a2), then the LHS of (4.15) is equal to 2m−1 since c0,a1+a2 is a
non-zero linear function. Thus (4.15) becomes

2m−1 = 2m − 1

2
WTr(b1φ)(a2)− 2m +

1

2
WTr(b1φ)(a1).

Multiplying by two and rearranging, we obtain

2m = WTr(b1φ)(a1)−WTr(b1φ)(a2),

which is a contradiction to (4.11) in the de�nition of a non-covering permuta-
tion. A similar argument works when either b1 = 0 and b2 6= 0 or b1 6= 0 and
b2 = 0. If b1 6= b2 and b1 6= 0, b2 6= 0, then (4.15) becomes

2m − 1

2
WTr((b1+b2)φ)(a1 + a2) = 2m − 1

2
WTr(b2φ)(a2)− 2m +

1

2
WTr(b1φ)(a1).

Again, multiplying by two and rearranging, we obtain

2m = WTr(b1φ)(a1)−WTr(b2φ)(a2) +WTr((b1+b2)φ)(a1 + a2),

which is a contradiction to (4.12) in the de�nition of a non-covering permuta-
tion. This yields that every two di�erent non-zero codewords in Cφ do not cover
each other, thus Cφ is minimal. Conversely, assume that Cφ is minimal. Take
a1, a2 ∈ F2m with a1 6= a2 and b ∈ F∗2m . Consider the codewords cb,a1 , cb,a2 ∈ Cφ,
which are non-zero since φ does not have a�ne components. Now, as Cφ is
minimal, we know that

2m−1 6= wt(cb,a2)− wt(cb,a1) and wt(cb,a2) 6= 2m−1 − wt(cb,a1).

This readily implies that

2m 6= WTr(bφ)(a1)±WTr(bφ)(a2).

Similarly, minimality of Cφ applied to the codewords cb1,a1 , cb2,a2 for a1, a2,∈ F2m

and b1, b2 ∈ F∗2m with b1 6= b2, gives

2m 6= WTr(b1φ)(a1)−WTr(b2φ)(a2) +WTr((b1+b2)φ)(a1 + a2).

We have thus proved that φ is a non-covering permutation on F2m .

In the particular case of power permutations, the non-covering property (4.12)
can be reduced to b1 = b2 = 1, namely, for φ : F2m → F2m given by φ(x) = xd

with gcd(d, n) = 1,

WTr(bφ)(a) =
∑

y∈F2m (−1)Tr(byd+ay) =
∑

x∈F2m (−1)Tr(xd+aφ−1(b)−1x) = WTr(φ)(aφ
−1(b)−1).
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Thus, for a power permutation is enough to verify (4.11) and, that for every
a1, a2 ∈ F2m , b1, b2 ∈ F∗2m with b1 6= b2, we have

WTr(φ)(a1φ
−1(b1)−1)−WTr(φ)(a2φ

−1(b2)−1)+WTr(φ)((a1+a2)φ−1(b1+b2)−1) 6= 2m.
(4.16)

Example 4.2.12 (Dobbertin's APN permutation). In F25, the permutation φ
given by x 7→ x29 is an APN permutation since 24 + 23 + 22 + 2− 1 = 29 [23].
Moreover, φ is also a non-covering permutation. The Walsh spectrum of the
component de�ned by x 7→ Tr(φ(x)) is displayed in Table 4.8 The condition
(4.11) readily follows since the maximum spectral value is 12. Using computer-
based simulations, we have veri�ed that if

WTr(φ)(a1φ
−1(b1)−1) = WTr(φ)((a1 + a2)φ−1(b1 + b2)−1) = 12

for some a1, a2 ∈ F25 , b1, b2 ∈ (F25)
∗ then, necessarily, WTr(φ)(a2φ

−1(b2)−1) is
positive and its values belong to {0, 4, 8}. Hence the left hand side in (4.16)
is at most 28, so (4.16) is satis�ed. We conclude that φ is a non-covering
permutation.

Table 4.8: Walsh spectrum of the component x 7→ Tr(φ(x)) of Dobbertin's APN
permutation x 7→ x29 in F25 = {v0, . . . , v31} ordered lexicographically.

v0 0 v8 0 v16 12 v24 −4
v1 0 v9 8 v17 −4 v25 4
v2 4 v10 4 v18 8 v26 8
v3 4 v11 −4 v19 −8 v27 0
v4 0 v12 −8 v20 −4 v28 4
v5 −8 v13 −8 v21 4 v29 4
v6 −4 v14 4 v22 0 v30 8
v7 4 v15 4 v23 −8 v31 8

For m = 5, non-a�ne power permutations are either AB or they have the same
Walsh spectra of Dobbertin's permuation. As we proved earlier, the former class
of permutations is non-covering. The previous example shows that Dobbertin's
permuation is non-covering. Thus every non-a�ne power permutation over
m = 5 is non-covering.

For small dimensions, one can perform an exhaustive search over all possible
exponents d to �nd non-covering permutations. In F26 , all power permutations
have nonlinearity larger than 26

3
= 21.333 . . . (thus non-covering) except for

power permutation with Walsh values in {−8, 0, 8, 16, 24} attained, for instance,
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by d = 25 + 24 + 23 + 2. However, the code Cφ satis�es wmin = 20, wmax = 36,
hence wmin

wmax
> 1/2 and the code is narrow.

For m = 7, the nonlinearity of every power permutation is larger than 128/3 =
42.666 . . ., thus they are non-covering. In F28 , all power permutations have
nonlinearity larger than 28/3 = 85.33 . . ., except for a class of permutations
whose Walsh values belong to {−32,−16, 0, 16, 96} attained by, for instance,
d = 202. In this case the code Cφ is narrow as wmin = 80, wmax = 144.

For m > 8, the following results show that low di�erentially uniform power
permutations are non-covering since their nonlinearity is high.

Theorem 4.2.13. [14] Let φ be a power permutation over F2m with di�erential
uniformity δ. The nonlinearity Nφ of the permutation φ satis�es

Nφ > 2m−1 − 2
3m−4

4
4
√
δ.

Corollary 4.2.14. Let m > 8 be an arbitrary integer and d > 1 be a non-
power of two such that (d, 2m − 1) = 1. Every δ-di�erentially uniform power
permutation φ over F2m de�ned by φ(x) = xd is non-covering for δ ∈ {2, 4}.

Proof. By Theorem 4.2.13, it is enough to prove that 2m−1−2
3m−4

4
4
√
δ is strictly

larger than 2m/3 when m > 8 and δ = 2 or δ = 4. Note that

2m−1 − 2
3m−4

4
4
√
δ > 2m−1 − 2

3m−4
4

√
2.

Now, the number 2m−1 − 2
3m−4

4

√
2 is strictly larger than 2m/3 if and only if

3 · 2m−1 − 3 · 2
3m−4

4

√
2 > 2m. (4.17)

Rearranging equation (4.17), this happens if and only if 2m−3·2 3m−4
4

√
2 > 2m−1,

equivalently, 3 · 2 3m−4
4

√
2 < 2m−1. Hence, the assertion is true provided that

3
√

2 < 2m/4, or, equivalently, 2m > 34 · 22, which is true for m > 8.

For m > 6, all known examples of APN permutations have high nonlinear-
ity, namely, strictly larger than 2m/3, thus they are non-covering. So are 4-
di�erentially uniform permutations (without a�ne components), since most
known examples have high nonlinearity over F2m (m necessarily even). A par-
ticular instance of this fact is the case of quadratic 4-di�erentially uniform
permutations, which attain the best nonlinearity 2m−1 − 2m/2 [14]. A known
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example of a class of 4-di�erentially uniform permutations that does not attain
an optimal nonlinearity in general [46] is given by permutations of the form

x2m−2 + Tr(x(2m−2)d + (x2m−2 + 1)d),

where d = 3(2t + 1), 2 6 t 6 m/2 − 1. These permutations have algebraic
degree m − 1 and nonlinearity at least 2m−2 − 2m/2−1 − 1. Nevertheless, their
nonlinearity is still larger than 2m/3 except for some sporadic examples over
F26 , which are however non-covering as veri�ed by computer simulations. This
leads to a natural question regarding non-covering permutations, namely, we
state the following conjecture.

Conjecture 1. For δ = 2 or δ = 4, every δ-uniform permutation over Fm2
without a�ne components is a non-covering permutation.

This conjecture is closely related to the question �does every APN and 4-
di�erentially uniform permutation without a�ne components have good non-
linearity?� If the answer to this question is positive, then Conjecture 1 is true.
However, if the answer is negative, then it may happen that Conjecture 1 is
still true.

With the characterization of non-covering permutations in terms of the mini-
mality of the associated code Cφ given in Theorem 4.2.11, we can now formulate
a satisfactory generalization of this concept to non-binary alphabets.

De�nition 4.2.15. A permutation φ on Fpm with φ(0) = 0 is called a p-ary
non-covering permutation or, simply, non-covering permutation provided that
the associated linear code Cφ is a 2m-dimensional minimal code.

The following examples corroborate the existence of non-covering permutations
in odd characteristics.

Example 4.2.16. Working in F34, consider the mapping φ de�ned by φ(x) =
x11. Note that φ is a permutation since gcd(11, 34 − 1) = 1. Since φ has no
a�ne components, Cφ has dimension 8. Using computer-based simulations, we
observed that the minimum weight in Cφ is 42, whereas the maximum weight is
60. This yields

wmin

wmax

=
7

10
,

which is larger than 2
3
, hence the ternary code Cφ is minimal. This implies that

φ is a non-covering permutation.

By computer simulations, it can be observed that several (non-a�ne) power
permutations of the form φ(x) = xd over F34 give rise to narrow codes Cφ. Hence,
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we know that for d ∈ {11, 17, 19, 33, 51, 57, 59, 73}, the power permutation xd

is non-covering. Some other non-a�ne power permutations yield wide minimal
codes, for instance, d = 53, 79. Nonetheless, this is in general harder to verify
computationally.

Similar conclusions are inferred for power permutations on F35 , namely, we have
the following.

Example 4.2.17. Working in F35, consider the mapping φ de�ned by φ(x) =
x5. Note that φ is a permutation since gcd(5, 35 − 1) = 1. Moreover, φ has no
a�ne components, so Cφ is 10-dimensional. By computer-based simulations, we
observed that the minimum weight in Cφ is 144, whereas the maximum weight
is 180. This yields

wmin

wmax

=
4

5
,

which is larger than 2
3
, hence the ternary code Cφ is minimal. This implies that

φ is a non-covering permutation.

By computer simulations, one can observe that almost all (non-a�ne) power
permutations of the form φ(x) = xd over F35 give rise to narrow codes Cφ.
Indeed, for a non-power of three d such that 1 < d < 242, gcd(d, 242) = 1 and

d 6∈ {25, 71, 75, 89, 155, 185, 191, 213, 223, 225},

the power permutation xd is non-covering.

4.2.2 Revised techniques for GMM
To take up the pursuit of wide minimal codes with larger dimensions, we build
on the techniques introduced in Section 3.4, where Boolean functions in the
general Maiorana-McFarland class were considered, and apply the tools pre-
sented in 4.2. More speci�cally, adding a function f2 to a basis of the code
Cf1 , see (4.8). Thus, we combine codewords associated to functions speci�ed in
Theorem 3.4.2 with those given in Theorem 3.4.8 and consider the linear code
Cf ⊕ CDγf , which under certain conditions is a wide minimal code.

Theorem 4.2.18. Let r > 9 be an odd integer such that r 6= 11. Let κ =
(r + 1)/2 and λ = (r − 1)/2. Let U = {x ∈ Fκ2 : wt(x) > 2} and f ∈ Br be the
Boolean function de�ned in (3.6), where µ is the identically one function and φ
is an injection from Fκ2 \ U to Fλ2 \ {0} such that φ(x) = 0 for any x ∈ U . Let
γ = (1κ, 0) ∈ Fr2, where 1κ denotes the all-one vector in Fκ2 . The code Cf ⊕CDγf
is a wide minimal code with parameters [2r, r + 2, 2λ(κ+ 1)].
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Proof. We will only prove the special case when κ ≡ 1 mod 4 since the remain-
ing case are quite similar.

For odd κ (see [20, Table II]), the weight of any codeword in Cf belongs to
Sf = A ∪B, where A,B are the sets of integers de�ned by

A =
{

0, 2r−1, 2r−1 + 2λ−1, 2r−1 − 2λ−1, 2r−1 + 2λ−1(2κ − κ− 1)
}
,

B = {2r−1 + 2λ−1(1 + κ− 2i) : 1 6 i 6 κ, i 6= (κ+ 1)/2}.

For κ ≡ 1 mod 4 (see Table 3.16), the weight of any code in CDγf belongs to
SDγf = A′ ∪B′, where A′, B′ are the sets of integers de�ned by

A′ = {0, 2r−1, 2r−1 + 2λ, 2r−1 − 2λ, 2λ(κ+ 1)},

B′ = {2r−1 + 2λ(1 + κ− 2i) : 1 6 i 6 κ, i even}.

Since f(x) +Dγf(x) = f(x+ γ) for each x ∈ Fr2, the function f +Dγf satis�es
the hypotheses in Theorem 3.4.2. Thus for κ ≡ 1 mod 4 (see Table 3.8), the
weight of any codeword in Cf+Dγf belongs to Sf+Dγf = A′′ ∪ B′′ ∪ C ′′, where
A′′, B′′, C ′′ are given by

A′′ = {0, 2r−1, 2r−1 + 2λ−1, 2r−1 − 2λ−1, 2r−1 + 2λ−1(2κ − κ− 1)}

B′′ = {2r−1 + 2λ−1(1 + κ− 2i) : 1 6 i 6 κ, i 6= (κ+ 1)/2, i odd}
C ′′ = {2r−1 − 2λ−1(1 + κ− 2i) : 1 6 i 6 κ, i even}.

To prove minimality, there are three di�erent cases to consider depending on
the possible codewords.

1. Consider the codewords of the form

c1 := (f(x) + v · x)x∈Fr2
and c2 := (f(x) + f(x+ γ) + u · x)x∈Fr2

.

Assume that c1 � c2 or c2 � c1, it must be that either

wt (c1 + c2) = wt(c2)− wt(c1) ∈ Sf+Dγf

or
wt (c1 + c2) = wt(c1)− wt(c2) ∈ Sf+Dγf .

However, from the above discussion on weights

wt(c2)− wt(c1) /∈ Sf+Dγf and wt(c1)− wt(c2) /∈ Sf+Dγf .

It then holds that c1 � c2 and c2 � c1 in this case.
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2. Consider the codewords

c1 := (f(x+ γ) + v · x)x∈Fr2
and c2 := (f(x) + f(x+ γ) + u · x)x∈Fr2

.

In this case c1 + c2 belongs to Cf , however,

wt(c2)− wt(c1) /∈ Sf \ {0} and wt(c1)− wt(c2) /∈ Sf \ {0},

which is possible only if c1 � c2 and c2 � c1.

3. Lastly, consider the codewords

c1 := (f(x) + v · x)x∈Fr2
and c2 := (f(x+ γ) + u · x)y∈Fr2

.

Observe that the sum c1 + c2 belongs to CDγf , but

wt(c2)− wt(c1) /∈ SDγf \ {0} and wt(c1)− wt(c2) /∈ SDγf \ {0},

which implies that c1 � c2 and c2 � c1.

Similarly, we can prove that c1 � c2 and c2 � c1 when κ ≡ 3 mod 4, κ ≡ 0
mod 4 and κ ≡ 2 mod 4. Thus, the code Cf ⊕ CDγf is a minimal code.

By Theorem 3.4.1, Cf is wide. Clearly, the minimum weight wmin of Cf ⊕ CDγf
is smaller than or equal to the minimum weight in Cf . Likewise, the maximum
weight wmax of Cf ⊕ CDγf is at least the maximum weight of Cf . Therefore
Cf ⊕ CDγf is wide.

Since f and Dγf are two non-a�ne linearly independent functions whose sum is
non-a�ne, |Cf⊕CDγf | = 2r+2. Moreover, the minimum weight wmin in Cf⊕CDγf
equals the minimum element in (Sf∪SDγf∪Sf+Dγf )\{0}, which is clearly 2λ(κ+
1). Therefore the code Cf ⊕CDγf is a wide minimal binary [2r, r+ 2, 2λ(κ+ 1)]-
code.

4.3 A generic construction of minimal codes

For the same purpose in mind, that is, the increasing of the dimension of wide
minimal codes while preserving both wideness and minimality, we introduce a
general construction, denoted by C(γ)

h (see 4.19 below), based on the direct-sum
method (Section 4.1), which also connects the techniques introduced in Section
4.2. To achieve minimality of the construction C(γ)

h for a given Boolean function
h = f + g, the function f ∈ Br will be selected so that it has at least one non-
a�ne derivative Dγf such that Cf ⊕ CDγf is a minimal code. The increase in
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dimension is a consequence of additionally employing (suitable) derivatives of
h. The construction of wide minimal codes given in this section will heavily rely
on non-covering permutations, which are easily speci�ed in the binary case, so
we will focus on the binary case �rst. The general treatment and observations
about this technique for p > 2 are discussed in Section 4.4.

Let s be an even integer. Let f ∈ Br be an arbitrary Boolean function2 and and
g ∈ Bs be a bent function inMM as given in (4.5). Consider the direct sum
h = f + g and a non-zero element γ ∈ (Fr2)∗. De�ne the vectors cu,α,β,v ∈ F2n

2 as

cu,α,β,v := (uh(x, y) + h(x+ α, y + β) + v · (x, y))(x,y)∈Fr2×Fs2
(4.18)

for u ∈ F2, α ∈ {0, γ}, β ∈ Fs/22 ×{0}, and v ∈ Fn2 . The set of all of these vectors
will be denoted by C(γ)

h , namely,

C(γ)
h :=

{
cu,α,β,v : u ∈ F2, α ∈ {0, γ}, β ∈ Fs/22 × {0}, v ∈ Fn2

}
. (4.19)

Lemma 4.3.1. Let f ∈ Br be a non-a�ne function and γ ∈ (Fr2)∗ such that
Dγf is nona�ne. Let g be a bent function in Bs de�ned by (4.5). If h is the

direct sum of f and g, then the set C(γ)
h de�ned in (4.19) is a binary linear code

with parameters [2n, n+ s
2

+ 2].

Proof. To prove that C(γ)
h is a linear subspace of F2n

2 , take two di�erent vectors
in C(γ)

h , say, cu1,α1,β1,v1 and cu2,α2,β2,v2 Using the de�nition of g, note that the
sum g(y + β1) + g(y + β2) equals g(y) + g(y + β1 + β2). Moreover, given that
α1, α2 ∈ {0, γ}, the sum f(x+α1) +f(x+α2) is equal to f(x) +f(x+α1 +α2).
These two facts imply that

h(x+α1, y+β1)+h(x+α2, y+β2) = f(x)+g(y)+f(x+α1 +α2)+g(y+β1 +β2).

Replacing the corresponding values of f + g by h, we get

h(x+ α1, y + β1) + h(x+ α2, y + β2) = h(x, y) + h(x+ α1 + α2, y + β1 + β2).

From the last equality, the sum of the vectors cu1,α1,β1,v1 and cu2,α2,β2,v2 is equal
to

(u1 + u2 + 1)h(x, y) + h(x+ α1 + α2, y + β1 + β2) + (v1 + v2) · (x, y),

2As before, the space Fr2 × Fs2 will be identi�ed with Fn2 so that n = r + s.
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i.e. cu1,α1,β1,v1 + cu2,α2,β2,v2 = cu1+u2+1,α1+α2,β1+β2,v1+v2 . Thus, the sum of the
corresponding vectors lies in C(γ)

h . This proves that C(γ)
h is a linear subspace of

F2n

2 .

The function h is clearly non-a�ne since it is the direct sum of non-a�ne
functions. In general, for α ∈ {0, γ} and β ∈ Fs/22 × {0},

D(α,β)h is a�ne if and only if α = 0 and β = 0. (4.20)

To prove this, observe that

h(x, y) + h(x+ α, y + β) = f(x) + f(x+ α) + g(y) + g(y + β),

hence D(α,β)h is a�ne if and only if both f(x) + f(x + α) and g(y) + g(y + β)
are a�ne. Since Dγf is non-a�ne by hypothesis and Dβg = φ(y(2)) · β is a
non-a�ne Boolean function as φ does not have a�ne components, the only
possible way that these two functions are a�ne, arises when α = 0 and β = 0.
Considering again the sum of two elements in C(γ)

h and plugging the values α =
α1 +α2, β = β1 +β2 into (4.20), we conclude that cu1+u2+1,α1+α2,β1+β2,v1+v2 is the
zero codeword if and only if u1+u2 = 0, α1+α2 = 0, β1+β2 = 0 and v1+v2 = 0.
Thus, there are 2n+ s

2
+2 many di�erent elements, i.e., dim(C(γ)

h ) = n+ s
2

+ 2.

Theorem 4.3.2 (The generic construction). Let n, r, s be three integers such
that s > 2 is even and r + s = n. Let f ∈ Br be a non-a�ne function and
γ ∈ (Fr2)∗ with Dγf non-a�ne such that Cf ⊕ CDγf is a minimal code. Let
g ∈ Bs be a bent function inMM, de�ned in (4.5) so that g(y1, y2) = y1 ·φ(y2),

where φ is a non-covering permutation on Fs/22 . Consider the direct sum h of

the functions f and g. The code C(γ)
h de�ned in (4.19) is a minimal linear code

with parameters [2n, n+ s
2

+ 2]. Moreover, if CDγf is wide, then so is C(γ)
h .

Proof. Lemma 4.4.7 implies that C(γ)
h is a linear binary code with parameters

[2n, n + s
2

+ 2]. Since φ(0) is null, the image of β ∈ Fs/22 × {0} under g is null,
too. We will use this fact throughout the proof without further mentioning it.

For functions h : Fn2 → F2, corresponding to codewords in C(γ)
h , let Ah : Fr2 → F2

and Bh : Fs2 → F2 denote the restrictions of h to the x and y coordinates,
respectively. That is, for a function

h(x, y) = uh(x, y) + h(x+ α, y + β) + v · (x, y),

Ah(x) = uf(x) + f(x+ α) + v · (x, 0) and Bh(y) = ug(y) + g(y + β) + v · (0, y).
Consider two distinct non-zero codewords in C(γ)

h , say,

c1 := cu1,α1,β1,v1 = (h1(x, y))(x,y)∈Fn2
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and
c2 := cu2,α2,β2,u2 = (h2(x, y))(x,y)∈Fn2 .

If Ah1 and Ah2 are non-zero and distinct, then puncturing at the y-coordinates
gives two non-zero distinct codewords in Cf⊕CDγf , which is minimal by hypoth-
esis. Thus, neither c1 � c2 nor c2 � c1. Similarly, if Bh1 and Bh2 are non-zero
and distinct, then puncturing at x-coordinates yields distinct non-zero vectors
of the form

(u1g(x) + g(y + β1) + v1 · (0, y) + u1f(0) + f(α1))y∈Fs2

and
(u2g(x) + g(y + β2) + v2 · (0, y) + u2f(0) + f(α2))y∈Fs2 .

The fact that φ(y) is non-covering implies that these (nonzero) vectors do not
cover each other by Lemmas 4.2.2 and 4.2.6. Thus, neither c1 � c2 nor c2 � c1,
in this case.

Using the assumption that c1, c2 are distinct non-zero codewords and the above
paragraph, there are only two cases to be considered:

� Ah1 = Ah2 (non-zero), Bhi = 0 and Bh(i mod 2)+1
6= 0 for exactly one i ∈

{1, 2}, or

� Bh1 = Bh2 (non-zero), Ahi = 0 and Ah(i mod 2)+1
6= 0 for exactly one i ∈

{1, 2}.

Let us prove the �rst item only since the other case can be proved mutatis mu-
tandis. Suppose then that Ah1 = Ah2 with Ah1 6= 0, Bhi = 0 and Bh(i mod 2)+1

6= 0
for exactly one i ∈ {1, 2}. Without loss of generality, assume that i = 1. Take
x0, x

′
0 ∈ Fr2 and y0 ∈ Fs2 with Ah1(x0) = 1, Ah1(x

′
0) = 0 and Bh2(y0) = 1, which

exist as Ah1 , Bh2 are non-constant. Now, the (x0, y0) coordinate of c1 equals

Ah1(x0) +Bh1(y0) = Ah1(x0) = 1

whereas the (x0, y0) coordinate of c2 equals Ah1(x0) + Bh2(y0) = 0, this gives
c1 6� c2. The (x′0, y0) coordinate of c1 equals

Ah1(x
′
0) +Bh1(y0) = Ah1(x

′
0) = 0

whereas the (x′0, y0) coordinate of c2 equals Ah1(x
′
0) +Bh2(y0) = 1. This means

that c2 6� c1. We have proved that distinct non-zero codewords in C(γ)
h do not

cover each other, i.e., C(γ)
h is minimal.
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To show the wideness of C(γ)
h , suppose that CDγf is wide. Note that a codeword

corresponding to a function

h(x, y) = uh(x, y) + h(x+ α, y + β) + v · (x, y)

such that Bh(y) is identically zero has weight 2swt(Ah(x)). Moreover, there is
a natural correspondence between the codewords of CDγf and the codewords
of C(γ)

h with u 6= 0 and Bh(y) identically zero. If CDγf is wide, then it readily
follows that wmin

wmax
6 1

2
for C(γ)

h .

4.3.1 Explicit wide minimal codes

At this point, it is not clear that there are functions f ∈ Br and g ∈ Bs satisfying
the conditions in Theorem 4.3.2. To get explicit families of wide minimal codes
thereby, we must study the existence of suitable functions f and its derivatives
as well as the speci�cation of non-covering permutations.

A priori, these initial conditions may seem hard to satisfy, however, the results
given in Theorem 3.2.7 essentially provide classes of Boolean functions suitable
for this purpose. In fact, it can be proved that the functions given in Example
3.2.8 and 3.2.9 are instances of functions such that Cf ⊕CDγf is a minimal code
and CDγf is wide.

The importance of Theorem 4.3.2 lies in the fact that once a suitable function f
and the corresponding Dγf are speci�ed, we can de�ne a bent function g in the
MM class using an arbitrary non-covering permutation φ. Therefore, a huge
class of wide binary linear codes can be derived from a single Boolean function
f . These codes are not necessarily equivalent since one can, for instance, employ
permutations φ of di�erent algebraic degree (or Walsh spectrum). The following
example illustrates the possibility of getting non-equivalent codes using di�erent
permutations φ. Conversely, for a �xed non-covering permutation, the use of
di�erent functions f gives rise to several wide minimal codes.

For a positive integer r, let us identify the vectors in Fr2 with the integers
0, . . . , 2r − 1, via their binary representation lexicographically ordered, e.g., for
r = 6, (0, 0, 0, 0, 0, 1) ∈ F6

2 is identi�ed with 1.

Fact 1. The function f in B6, whose support is given by

∆ = {4, 7, 8, 18, 21, 22, 24, 28, 35, 36, 42, 51, 54, 60},

together with its derivative Dγf at direction γ = (1, 0, 1, 1, 0, 1) have the prop-
erty that Cf ⊕ CDγf is minimal and CDγf is wide.
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Proposition 4.3.3. Let f ∈ B6 and its derivative Dγf be as in Fact 1. Consider
any bent function g ∈ B10 of the form (4.5) whose underlying permutation φ is

non-covering. Then, the associated code C(γ)
h is a wide minimal linear code with

parameters [216, 23].

Proof. The result follows immediately from Theorem 4.4.8.

To compute the minimum distance in the resulting code of the previous propo-
sition, the permutation φ must be speci�ed. We do so in the following example.

Example 4.3.4. In Proposition 4.3.3, if we consider the cubic AB permutation
φ : F25 → F25 given by φ(y) = y7 as the underlying permutation for g, then C(γ)

h

is a wide minimal code with minimum distance wmin = 24576 = 3 · 213 and
wmax = 49152 = 3 · 214. Thus, C(γ)

h has parameters [216, 23, 3 · 213] and ratio
wmin/wmax = 1/2. On the other hand, if we consider the inverse permutation

φ : F25 → F25 given by φ(y) = y30 to de�ne g, then C(γ)
h is a wide minimal

linear code with parameters [216, 23, 5 · 212], wmax = 49152 = 3 · 214 and ratio
wmin/wmax = 5/12.

Generally speaking, since AB permutations (m odd) and the inverse permu-
tation are non-covering for m > 5, non-covering permutations exist for every
integer m with m > 5. Employing a �xed function f ∈ Br and a �xed deriva-
tive Dγf such that Cf ⊕ CDγf is minimal and CDγf is wide (e.g., the functions
in Example 3.2.8, Example 3.2.9, Fact 1, or, Fact 2 below), each of these per-
mutations speci�es a wide minimal [2r+10, 17 + r]- code C(γ)

h .

If the non-covering permutation φ has a simple Walsh spectrum (for instance
AB permutations), then the weight distribution of C(γ)

h can be obtained once
we know the Walsh spectra of the underlying functions f and Dγf . To pre-
cisely describe it, we will use the notation introduced for describing the weight
distributions of the direct sum method presented in Section 4.1, namely, the
notation introduced in (4.4) and the paragraph following it.

Since we will be dealing with two Walsh spectra, corresponding to f and Dγf ,
we will reserve the symbols Wf , W abs

f , m+
ρ , m

−
ρ and m0, to refer to the values

associated to f and the symbols WDγf , W abs
Dγf

, n+
ρ′ , n

−
ρ′ and n0, to refer to the

values attached to Dγf .

Theorem 4.3.5. Use the same notation as in Theorem 4.3.2. Suppose that s/2

is an odd integer and φ : Fs/22 → Fs/22 is an AB permutation. If the maximum
value Wmax in the Walsh spectrum of Dγf is at at least 2(2r−s/2+1)/2, then the

minimum distance of C(γ)
h is equal to 2swγmin, where w

γ
min is the minimum weight



CHAPTER 4. MINIMAL CODES WITH LARGER DIMENSIONS 89

in CDγf . In particular, if Cf ⊕ CDγf is minimal and CDγf is wide, then the code

C(γ)
h is also a wide minimal linear code with parameters [2n, n+s/2+2, 2swγmin].

Proof. To prove the claim on the minimum distance, we will derive the possible
weights of codewords in C(γ)

h . For simplicity, consider only codewords in C(γ)
h

whose underlying Boolean function is not linear. Note that each such codeword
cu,α,β,v corresponds to any of the following four types:

u = 1, β = 0, α 6= 0; u = 1, β 6= 0, α = 0; u = 1, β 6= 0, α 6= 0; u = 0.

The weights of these codewords can be easily computed using known properties
of the direct sum. These weights belong, respectively, to the sets

{2n−1±2s−1w : w ∈ WDγf}, {2n−1±2
s+s/2−1

2
+r}, {2n−1±2

s+s/2−1
2 ρ′ : ρ′ ∈ W abs

Dγf},

{2n−1 ± 2
s
2
−1ρ : ρ ∈ W abs

f }.

Within these sets, consider the elements smaller than 2n−1, that is, 2n−1 −
2
s+s/2−1

2
+r together with

2n−1 − 2s−1w, 2n−1 − 2
s+s/2−1

2 ρ′, 2n−1 − 2s/2−1ρ,

for each positive element w ∈ WDγf , ρ ∈ W abs
f and ρ′ ∈ W abs

Dγf
. Since ρ, ρ′ are

both smaller than 2r, we have that for every ρ ∈ W abs
f and ρ′ ∈ W abs

Dγf

2s/2−1ρ < 2s/2−1+r < 2(s+s/2−1)/2+r and 2(s+s/2−1)/2ρ′ < 2(s+s/2−1)/2+r.

By hypothesis, 2(s+s/2−1)/2+r 6 2s−1Wmax, so the minimum weight of C(γ)
h is

2n−1− 2s−1WDγf (uM) = 2swγmin. The last part of the statement follows directly
from Theorem 4.3.2.

A simple description of the weight distribution of the code C(γ)
h in Theorem 4.3.5

can be speci�ed knowing that the possible values for weights are distinct from
each other (otherwise, frequencies of the repeated entries in the left column
in Table 4.9 must be summed). That is, if for every w ∈ WDγf , ρ

′ ∈ W abs
Dγf

,
ρ ∈ W abs

f we have 2(s/2−1)/2w 6= ρ′, ρ′ 6= 2(2r−s/2+1)/2, 2(s/2+1)/2ρ′ 6= ρ and
ρ 6= 2s/2w, then the weight distribution of the code C(γ)

h can be fully determined
and is given in Table 4.9.

Note that the number of non-zero weights given in Table 4.9 (left column)
depends on the cardinalities of W abs

f and W abs
Dγf

. In particular, the code C(γ)
h in

Theorem 4.3.5 has at most 4|W abs
Dγf
|+ 2|W abs

f |+ 3 non-zero weights.
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Table 4.9: Weight distribution of C(γ)
h in Theorem 4.3.5 for s/2 odd and an AB

permutation φ : Fs/22 → Fs/22 , where ρ runs over W abs
f and ρ′ runs over W abs

Dγf
.

Weight w Number of codewords
2n−1 − 2s−1ρ′ n+

ρ′

2n−1 − 2
s+s/2−1

2
+r (2s/2 − 1)(2s/2−2 + 2(s/2−3)/2)

2n−1 − 2
s+s/2−1

2 ρ′ (2s/2 − 1)((2s/2−2 + 2(s/2−3)/2)n+
ρ′ + (2s/2−2 − 2(s/2−3)/2)n−ρ′)

2n−1 − 2s/2−1ρ 2s/2+1((2s−1 + 2s/2−1)m+
ρ + (2s−1 − 2s/2−1)m−ρ )

2n−1 2n + 2n−1 + 2s/2+1m0 + (2s/2 − 1)2s/2−1 + (2s/2−1 + 1)n0 − 1

2n−1 + 2s/2−1ρ 2s/2+1((2s−1 − 2s/2−1)m+
ρ + (2s−1 + 2s/2−1)m−ρ )

2n−1 + 2
s+s/2−1

2 ρ′ (2s/2 − 1)((2s/2−2 − 2(s/2−3)/2)n+
ρ′ + (2s/2−2 + 2(s/2−3)/2)n−ρ′)

2n−1 + 2
s+s/2−1

2
+r (2s/2 − 1)(2s/2−2 − 2(s/2−3)/2)

2n−1 + 2s−1ρ′ n−ρ′
0 1

Fact 2. The function f ∈ B6 whose support is given by

∆ = {3, 5, 7, 11, 12, 24, 27, 31, 34, 37, 51, 52}

and its derivative Dγf at direction γ = (0, 1, 1, 0, 1, 0) are such that the asso-
ciated codes CDγf and Cf ⊕ CDγf are wide and minimal. Moreover, the Walsh
spectra of f and Dγf satisfy

Wf (b) ∈ {−16,−12,−8,−4, 0, 4, 8, 12, 40},WDγf (b) ∈ {−24,−8, 0, 8, 24},

for every b ∈ F6
2.

Proposition 4.3.6. Let f ∈ B6 and Dγf be as in Fact 2. Consider any bent
function g ∈ B10 as in (4.5) whose underlying permutation is non-covering. The

code C(γ)
h is a wide minimal linear code with parameters [216, 23]. Moreover, if

φ is an AB permutation on F5
2, then C

(γ)
h has parameters [216, 23, 210 · 20] and

its weight distribution is displayed in Table 4.10.

Proof. The result follows at once from Theorem 4.3.2, Theorem 4.3.5 and Table
4.9.

Note that for the function f in Fact 2, the cardinalities of W abs
Dγf

and W abs
f are 2

and 5, respectively. Thus, there are at most 4|W abs
Dγf
|+2|W abs

f |+3 = 21 distinct

weights in C(γ)
h when φ is an AB on F5

2 (see Table 4.9). In this case, it can be
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Table 4.10: Weight distribution of C(γ)
h in Theorem 4.3.6 for any AB permu-

tation φ : F5
2 → F5

2.
Weight w Number of codewords Aw

215 − 210 + 25 · 26 216 · 3
215 − 210 + 25 · 28 216 · 10
215 − 210 + 25 · 30 216 · 13
215 − 210 + 25 · 34 216 · 13
215 − 210 + 25 · 36 216 · 5
215 − 210 + 25 · 38 216 · 3
215 − 210 + 25 · 12 26(29 + 24)
215 − 210 + 25 · 40 26(29 + 24)
215 + 210 − 25 · 12 26(29 − 24)
215 + 210 − 25 · 40 26(29 − 24)
215 + 28 · 20− 213 (25 − 1)((23 + 2) + (23 − 2) · 3)
215 + 28 · 28− 213 (25 − 1)((23 + 2) · 21 + (23 − 2) · 7)
215 + 28 · 36− 213 (25 − 1)((23 + 2) · 7 + (23 − 2) · 21)
215 + 28 · 44− 213 (25 − 1)((23 + 2) · 3 + (23 − 2))

210 · 20 1
210 · 28 21
210 · 36 7
210 · 44 3

215 − 213 (25 − 1)(23 + 2)
215 + 213 (25 − 1)(23 − 2)

215 5160943
0 1
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proved that all of these weights are distinct, so there are exactly 21 non-zero
weights, which is in accordance with Table 4.10.

The minimum distance of the codes built using the construction in Theorem
4.3.5 is subjected to the minimum distance of the corresponding derivative code
CDγf . In the following theorems, this constraint is removed by considering the
functions in GMM from Theorem 3.4.1 together with a suitable non-covering
φ with high non-linearity.

Theorem 4.3.7. Let r, s be three positive integers such that r > 9 is odd and
r 6= 11, s is even with s > 6. For κ = (r + 1)/2 and λ = (r − 1)/2, let f ∈ Br
be de�ned as in Theorem 3.4.1. Let g ∈ Bs be a bent function in MM, as in
(4.2.4), whose underlying permutation φ is non-covering and it satis�es

Nφ > 2
s
2
− (r+1)

2 (
r + 1

2
+ 1).

Let C(γ)
h be as in (4.19), where h is the direct sum of f and g and γ = (1κ, 0) ∈

Fr2. The linear code C(γ)
h is a wide minimal code with parameters[
2n, n+

s

2
+ 2, 2s+

r−1
2

(
r + 1

2
+ 1

)]
.

Proof. Since f is de�ned as in Theorem 3.4.1, the derivative Dγf is nona�ne.
By Theorem 4.2.18, Cf ⊕ CDγf is a minimal code. Furthermore, by Theorem
3.4.8, we have that CDγf is wide. Therefore, combining this and Theorem 4.3.2,
the linear code C(γ)

h is a wide and minimal.

For the minimum weight of C(γ)
h , there are �ve cases to consider according to

the possible values of a non-zero codeword cu,α,β,v in C(γ)
h . Let us represent each

vector v in Fn2 = Fr2 × Fs2 by v = (vx, vy) ∈ Fr2 × Fs2.

Case u = 0. Since g is a bent function in Fs2, Lemma 4.1.1 implies that
Nh > 2n−2. Hence, wt(cu,α,β,v) > Nh > 2n−2 > 2s+(r−1)/2((r+ 1)/2 + 1) for each
v ∈ Fn2 , where the last inequality holds due to r > 9.

Case u = 1, α = 0, β = 0. In this case, the underlying function of the codeword
is a non-zero linear function so that its weight is 2n−1.

Case u = 1, α = 0, β 6= 0. There are two sub-cases to analyze.

(i) If vx 6= 0, then the codeword cu,α,β,v can be written as

(g(y) + g(y + β) + vx · x+ vy · y)(x,y)∈Fn2 ,

hence its weight is 2n−1.
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(ii) If vx = 0, then the weight of cu,α,β,v can be expressed as

wt((g(y) + g(y + β) + vy · y)(x,y)∈Fn2
),

which is equal to

2rwt((g(y) + g(y + β) + vy · y)y∈Fs2
)

since there is no dependence on the variable x. This can be turned into

2rwt((φ(y2) · β + vy · y)y∈Fs2),

hence wt(cu,α,β,v) > 2r+s/2Nφ. By hypothesis, Nφ > 2
s
2
− (r+1)

2 ( r+1
2

+ 1).
This yields

wt(cu,α,β,v) > 2r+s/2(2
s
2
− (r+1)

2 (
r + 1

2
+ 1)) = 2s+(r−1)/2((r + 1)/2 + 1).

Case u = 1, α 6= 0, β = 0. Again, there are two sub-cases to consider.

(i) If vy 6= 0, then the codeword cu,α,β,v is balanced since it equals

(f(x) + f(x+ α) + vx · x+ vy · y)(x,y)∈Fn2 .

(ii) If vy = 0, then the weight of cu,α,β,v is equal to 2swt((f(x) + f(x + α) +
vx · x)x∈Fr2) so

wt(cu,α,β,v) > 2s+(r−1)/2((r + 1)/2 + 1)

since the code CDγf has minimum distance 2λ(κ + 1) by Theorem 3.4.8.
Equality holds if and only if (f(x) + f(x+ α) + vx · x)x∈Fr2 is a minimum
weight codeword in CDγf .

Case u = 1, α 6= 0, β 6= 0. From Lemma 4.1.1, the weight of cu,α,β,v can be split
into the sum

2rwt(Dβg + lvy) + 2swt(Dαf + lvx)− 2wt(Dαf + lvx)wt(Dβg + lvy).

Depending on the weight of Dβg + lvy , there are three further sub-cases to
investigate. For this last part, we will denote by wγmin the number 2λ(κ + 1),
which is the minimum distance in CDγf
(i) If wt(Dβg + lvy) = 2s−1, then the codeword cu,α,β,v is balanced, so that

wt(cu,α,β,v) = 2r+s−1.
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(ii) If wt(Dβg + lvy) < 2s−1, then the weight of the codeword cu,α,β,v, which
equals

2rwt(Dβg + lvy) + wt(Dαf + lvx)(2
s − 2wt(Dβg + lvy)),

is strictly larger than 2rwt(Dβg + lvy). Using the assumption

Nφ > 2
s
2
− (r+1)

2 (
r + 1

2
+ 1),

we get wt(cu,α,β,v) > 2s+(r−1)/2((r + 1)/2 + 1).

(iii) If wt(Dβg + lvy) > 2s−1, then the weight of the codeword cu,α,β,v, which
equals

wt(Dβg + lvy)(2
r − 2wt(Dαf + lvx)) + 2swt(Dαf + lvx),

is strictly larger than 2s+r−1 = 2n−1. Therefore, wt(cu,α,β,v) > 2s+(r−1)/2((r+
1)/2 + 1).

Putting everything together, we can conclude that the minimum weight wmin

in C(γ)
h equals 2s+(r−1)/2((r + 1)/2 + 1).

Corollary 4.3.8. Let the notation of Theorem 4.3.7 hold. If φ : Fs/22 → Fs/22 is

an AB permutation, where s/2 is odd, then the code C(γ)
h in Theorem 4.3.7 is a

wide minimal linear code with parameters [2n, n+ s
2
+2, 2s+(r−1)/2((r+1)/2+1)].

Proof. The proof follows immediately from Theorem 4.3.7 using the fact that
Nφ = 2s/2−1 − 2(s/2−1)/2 > 2

s
2
− (r+1)

2 ( r+1
2

+ 1).

The above result covers the case when s ≡ 2 mod 4, which enables the use
of AB permutations. For s ≡ 0 mod 4 (which forces s/2 even) there are no
AB permutations. In this case, we consider the inverse function over Fs/22 even
though many other permutations satisfy the condition

Nφ > 2
s
2
− (r+1)

2 (
r + 1

2
+ 1).

Corollary 4.3.9. Let the notation of Theorem 4.3.7 hold. If φ : F2s/2 → F2s/2

is the inverse permutation φ(x) = x−1, where s/2 is even, then the code C(γ)
h in

Theorem 4.3.7 is a [2n, n+ s
2

+ 2, 2s+(r−1)/2((r+ 1)/2 + 1)]-wide minimal linear
code.
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Proof. The result follows by an application of Theorem 4.3.7 using the fact that
Nφ = 2s/2−1 − 2s/4 > 2

s
2
− (r+1)

2 ( r+1
2

+ 1).

From the proof of Theorem 4.3.7, the minimum distance of C(γ)
h is governed

by the choice of f and in particular by the minimum distance of CDγf , which
must be a wide minimal linear code. Thus, increasing the minimum distance of
this family of codes is directly related to the possibility of �nding f such that
CDγf is wide minimal code with a better minimum distance than 2λ(κ+ 1) (the
minimum distance induced by functions derived in Theorem 3.4.8). This is an
interesting open problem that leads towards future research challenges.

4.4 The p-ary case

In this section, we will provide two constructions of minimal codes using bent
functions, non-covering permutations and suitable subspaces of derivatives. The
results can be seen as generalizations of the corresponding results in Chapter 4.

De�nition 4.4.1. Let m be an even integer and k be a positive integer smaller
than m. We will say that a bent function g : Fpm → Fp with g(0) = 0 and a
non-covering permutation φ : Fpk → Fpk form a k-minimal pair if there exist a
k-dimensional subspace U whose non-zero elements are nona�ne derivatives of
g, and a linear mapping Ψ : U + Lm → Cφ such that the following hold.

(i) (Coherence) The restriction of Ψ to Lm is a pm−k-to-one map onto Lk and
the restriction of Ψ to U is an isomorphism between U and Compφ, where
Compφ = {Tr(vφ(x)) : v ∈ Fpk} denotes the linear space of components of
φ.

(ii) (Weight-preserving) For each w ∈ Lk, there exists a unique vw ∈ Lm with
Ψ(vw) = w such that, for every u ∈ U ,

pm−kwt(Ψ(u) + w) = wt(u+ vw)

and wt(u + v′) = pm − pm−1 for every other v′ ∈ Lm with v′ 6= vw and
Ψ(v′) = w.

(iii) (Closure) Denote Λ0 = {vw : w ∈ Lk} and Λ1 = Lm \ Λ0.

(a) The assignation ι : Lk → Λ0 given by ι(w) = vw is a linear isomor-
phism;

(b) For each v ∈ Λ0, v
′ ∈ Λ1 and c ∈ F∗p, cv + v′, v + cv′ ∈ Λ1;
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(c) If v, v′ ∈ Λ1, then there exists at most one c ∈ F∗p such that v+ cv′ ∈
Λ0.

The concept introduced in the previous de�nition identi�es a subspace of deriva-
tives of a bent function and the components of a non-covering permutation. This
identi�cation is carried out in such a way that, when adding linear functions,
the preimages of linear parts are tacitly partitioned into two groups. The idea
of De�nition 4.4.1 is depicted in Figure 4.1 and it will be helpful to construct
examples of minimal codes. As a particular instance, we have the following
m
2
-minimal pair using theMM class.

· · ·

U

Lm

Lk

Cφ

U + Lm

Tr(a1φ) Tr(a2φ) Tr(apk−2φ)Tr(apk−1φ)

Ψ

w

u

vw

Ψ(u) + w

u+ vw

v
′

u+ v
′

pm−kwt(Ψ(u) + w) = wt(u+ vw)

wt(u+ v′) = pm − pm−1

Figure 4.1: A k-minimal pair given by a subspace of derivatives U of g and a
non-covering permutation φ.

Proposition 4.4.2. Consider an even integer m and the simplest bent functions
g : Fpm/2 × Fpm/2 → Fp in the Maiorana-McFarland class (MM), de�ned as
follows:

g(x, y) = Tr(xφ(y)) for (x, y) ∈ Fpm/2 × Fpm/2 , (4.21)

where φ : Fpm/2 → Fpm/2 is a permutation. If φ is a non-covering permutation,
then g and φ form an m

2
-minimal pair.

Proof. We will prove that the subspace of derivatives

U := {D(γ,0)g : γ ∈ Fpm/2}, (4.22)
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and the mapping Ψ : U + Lm → Cφ given by

Ψ(D(γ,0)g(x, y) + Tr(ux+ vy)) = (Tr(φ(y)γ) + Tr(vy))y∈F
pm/2

satisfy the conditions in De�nition 4.4.1. Condition (i) is easily checked�for
the restriction γ = 0, the mapping is pm/2-to-one, whereas for u = v = 0, the
mapping is clearly an isomorphism. For condition (ii), take u = 0, so that vw =
(Tr(vy))(x,y)∈Fpm for w = (Tr(vy))y∈F

pm/2
. For every derivativeD(γ,0)g(x, y) ∈ U ,

wt((D(γ,0)g(x, y) + Tr(vy))(x,y)∈Fpm ) = pm/2wt((φ(y)γ + Tr(vy))y∈F
pm/2

)

since the vector φ(y)γ+ Tr(vy) does not depend on x. For any other u 6= 0, the
vector (D(γ,0)g(x, y) + Tr(ux + vy))(x,y)∈Fpm is balanced. Condition (iii).(a) is
trivially satis�ed as the function w 7→ vw is essentially an inclusion. Let Λ0,Λ1

be as in De�nition 4.4.1. For each Tr(vy) ∈ Λ0,Tr(u′x + v′y) ∈ Λ1 (u′ 6= 0)
and c ∈ F∗p, it holds that Tr(cu′x+ (v + cv′)y),Tr(u′x+ (cv + v′)y) ∈ Λ1, hence
(iii).(b) holds. Finally, if Tr(ux + vy),Tr(u′x + v′y) ∈ Λ1 (thus u 6= 0 and
u′ 6= 0), there is at most one c ∈ F∗pm such that Tr((u+ cu′)x+ (v+ cv′)y) ∈ Λ0,
namely, if u, u′ are Fp-linearly independent, then there is no such c. Moreover,
if they are Fp-linearly dependent, this c is unique.

Theorem 4.4.3. Let g : Fpm → Fp be a bent function with g(0) = 0 and
φ : Fpk → Fpk be a non-covering permutation such that they form a k-minimal
pair. Assume that

U = {Dγg : γ ∈ I} ∪ {0},

where I = {γ1, . . . , γpk−1} ⊆ Fpm. Let B be a basis for U and B′ be a basis for
Lm. Suppose that the following conditions hold.

� For each v ∈ Fpm and for each f(x) ∈ U , the function f(x) + Tr(vx) has
weight strictly smaller than pm−pk and strictly larger than 2(p−1)(pm/2−
pm/2−1);

� The function f(x)+cg(x+γ) is bent for every f(x) ∈ U, c ∈ F∗p and γ ∈ I.

Then, the code spanned by B∪B′∪{g} punctured at zero is a [pm−1,m+k+1]-
minimal code.

Proof. Let C∗ = 〈B ∪ B′ ∪ {g}〉 and let C be the code obtained from C∗ by
puncturing the x = 0 coordinate. Note that every codeword in C can be
expressed as

cv,γ,δ := (Tr(vx) + g(x+ γ) + (δ − 1)g(x))x∈F∗pm
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for some v, γ ∈ Fpm , δ ∈ Fp. Consider two linearly independent codewords
c1 := cv,γ,δ, c2 := cv′,γ′,δ′ in C. We will show that∑

c∈F∗p

wt(c1 + cc2) 6= (p− 1)wt(c1)− wt(c2),

for all the choices of parameters v, γ, δ and v′, γ′, δ′. For this, we will break
down the proof into several cases according to the possible values of the indices.
Throughout the proof, we will denote by η the number (p− 1)(pm−1 − pm/2−1)
and θ = (p− 1)(pm−1 + pm/2−1).

Case γ = 0, δ = 1 and δ′ 6= 0: In this case, the weight wt(c1) equals pm−pm−1.
Since g(x+γ′) + (δ′−1)g(x) is bent, the codewords c1 + cc2 and c2 have weight
at least η for every c ∈ F∗p. Hence∑

c∈F∗p

wt(c1 + cc2) > (p− 1)η.

On the other hand,

(p− 1)wt(c1)− wt(c2) 6 (p− 1)(pm − pm−1)− η < pη − η = (p− 1)η.

Case γ′ = 0, δ′ = 1 and δ 6= 0: The weight wt(c2) equals pm − pm−1. Since
g(x + γ) + (δ − 1)g(x) is bent, the codewords c1 + cc2 and c1 have weight at
least η for every c ∈ F∗p. Hence∑

c∈F∗p

wt(c1 + cc2) > (p− 1)η.

On the other hand,

(p− 1)wt(c1)− wt(c2) 6 (p− 1)θ − pm + pm−1 = (p− 1)pm/2−1 < (p− 1)η.

The latter inequality holds as pm/2−1 < pm−1 − pm/2−1 for m > 2.

Case γ′ 6= 0 ∨ δ′ 6= 1 and δ 6= 0: Since g(x+ γ′) + (δ′ − 1)g(x) and g(x+ γ) +
cg(x+γ′) + (δ−1 + c(δ′−1))g(x) are bent for every c ∈ Fp, the weights wt(c2),
wt(c1 + cc2) are at least η for every c ∈ F∗p. Hence∑

c∈F∗p

wt(c1 + cc2) > (p− 1)η.

On the other hand,

(p− 1)wt(c1)− wt(c2) 6 (p− 1)wt(c1)− η.
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By assumption, wt(c1) < (pm − pk). Then, we have

(p−1)wt(c1)−η < (p−1)(pm−pk)−η = (p−1)(pm−pk−pm−1+pm/2−1) 6 (p−1)η.

Case γ 6= 0 ∨ δ 6= 1 and δ′ 6= 0: Since g(x+ γ) + (δ − 1)g(x) and cg(x+ γ) +
g(x+γ′) + (c(δ− 1) + δ′− 1))g(x) are bent for every c ∈ Fp, the weights wt(c1),
wt(c1 + cc2) are at least η for every c ∈ F∗p. Hence∑

c∈F∗p

wt(c1 + cc2) > (p− 1)η.

On the other hand,

(p− 1)wt(c1)− wt(c2) 6 (p− 1)θ − wt(c2).

By assumption, wt(c2) > 2(p− 1)(pm/2 − pm/2−1). Then, we have

(p−1)θ−wt(c2) < (p−1)(pm−pm−1+pm/2−pm/2−1−2pm/2+2pm/2−1) 6 (p−1)η.

Case δ = δ′ = 0: Let Ψ : U + Lm → Cφ be a linear map as in De�nition 4.4.1.
Let Λ0,Λ1 be as in Condition (iii) of De�nition 4.4.1. Set v := Tr(vx) ∈ Lm
and v′ := Tr(v′x) ∈ Lm. We will consider three additional subcases according
to the possible memberships in Λ1 or Λ0.

Subcase v ∈ Λ1 ∧ v′ ∈ Λ0 or v ∈ Λ0 ∧ v′ ∈ Λ1: In any of these cases, for any
c ∈ F∗p, v + cv′ ∈ Λ1, thus c1 + cc2 is balanced. Hence,

S1 :=
∑
c∈F∗p

wt(c1 + cc2) = (p− 1)(pm − pm−1).

In the �rst case, we have

S2 := (p− 1)wt(c1)− wt(c2) = (p− 1)(pm − pm−1)− wt(c2).

This implies that S1 > S2 since c2 is not zero. In the second case,

S2 := (p− 1)wt(c1)− wt(c2) = (p− 1)wt(c1)− (pm − pm−1).

If S1 = S2, then wt(c1) = pm, which is impossible as c1 has weight strictly
smaller than pm − pk. We conclude that S1 6= S2 in both cases.

Subcase v ∈ Λ1 ∧ v′ ∈ Λ1: By Condition (iii).(c), there is at most one
c0 ∈ F∗p such that v + c0v

′ ∈ Λ0. This implies that∑
c∈F∗p

wt(c1 + cc2) = (p− 2)(pm − pm−1) + wt(c1 + c0c2).
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On the other hand, (p − 1)wt(c1) − wt(c2) = (p − 2)(pm − pm−1). Putting
everything together, we conclude that S1 6= S2 since c1 + c0c2 is not the zero
codeword (by linear independence).

Subcase v ∈ Λ0 ∧ v′ ∈ Λ0: By Condition (iii).(a), for each c ∈ F∗p, v + cv′ ∈
Λ0. First we will prove that the codewords Ψ(c1),Ψ(c2) in Cφ are linearly
independent. Suppose not, that is, there exists λ ∈ Fp such that Ψ(c1) =
λΨ(c2). Note that λ 6= 0 as c1 6= 0 and Ψ is linear. From this, it is easy to see
that Dγg = λDγ′g and Ψ(v−λv′) = 0. By uniqueness of v0 = 0, it must be that
v = λv′ since v − λv′ ∈ Λ0. This yields that c1 and c2 are linearly dependent,
a contradiction. Thus we know that Ψ(c1),Ψ(c2) are linearly independent,
therefore they cannot cover each other since φ is non-covering. Hence,∑

c∈F∗p

wt(c1 + cc2) = pm−k
∑
c∈F∗p

wt(Ψ(c1) + cΨ(c2))

is di�erent from pm−k(p − 1)wt(Ψ(c1)) − pm−kwt(Ψ(c2)) = (p − 1)wt(c1) −
wt(c2).

Within this setting, the non-binary version of the derivative method (Theorem
4.2.7) is now easily obtained as a corollary.

Corollary 4.4.4 (The p-ary derivative method). For s even, let g : Fps/2 ×
Fps/2 → Fp be a bent function in the MM class de�ned as in (4.21) and φ :
Fps/2 → Fps/2 be a non-covering permutation. De�ne

U := {D(γ,0)g : γ ∈ Fps/2}. (4.23)

Let B be a basis for U and B′ be a basis for the linear functions on Fps. Then, the
code spanned by B∪B′∪{g} punctured at zero is a minimal [ps−1, s+s/2+1]-
code.

Proof. The result follows immediately from Theorem 4.4.3 and Proposition
4.4.2.

Example 4.4.5. Let s = 8. The power permutation φ : F34 → F34 de�ned by
φ(y) = y17 is non-covering since the code Cφ is an 8-dimensional narrow code
with minimum weight 42 and maximum weight 60. Using computer simulations,
we veri�ed that the code C described in Corollary 4.4.4 derived from g(x, y) =
Tr(xφ(y)) and the subspace of derivatives

U = {D(γ,0)g : γ ∈ F34},
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is a minimal ternary [6560, 13, 3402]-code, which is in accordance with Corollary
4.4.4. Moreover, its weight enumerator polynomial is

1 + 960z3402 + 720z3888 + 363042z4320 + 527840z4374 + 699840z4401 + 1920z4860,

so that C is six-valued and narrow.

The code presented in the previous example is a narrow code, thus its minimality
can be deduced by simply looking at the weight distribution. However, an
interesting feature of Corollary 4.4.4 is that wide minimal codes can be produced
as shown by the following example (cf. Example 4.2.10).

Example 4.4.6. Let s = 8. Let φ : F34 → F34 be the power permutation
de�ned by φ(y) = y79. It can be veri�ed that the code Cφ is an 8-dimensional
wide minimal code with minimum weight 42 and maximum weight 64, thus φ is
a non-covering permutation. Using computer simulations, we veri�ed that the
code C described in Corollary 4.4.4 derived from g(x, y) = Tr(xφ(y)) and the
subspace of derivatives

U = {D(γ,0)g : γ ∈ F34},

is a minimal ternary [6560, 13, 3402]-code, which is in accordance with Corollary
4.4.4. Moreover, its weight distribution is displayed in Table 4.11 so that C is
fourteen-valued and also wide since 3402

5184
= 21

32
< 2

3
.

Table 4.11: Weight distribution of the ternary code in Example 4.4.6 shown
in ascending order.

Weight w Number of codewords Aw
3402 160
3564 560
3726 320
3888 640
4050 640
4212 1120
4320 363042
4374 525360
4401 699840
4536 640
4698 400
4860 960
5022 320
5184 320
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Finally, we consider one more approach to designing minimal linear codes. In
order to avoid unnecessary notation, we will identify the elements in Fps/2×{0}
with the elements in Fps/2 without further mentioning whenever there is no
room for ambiguity.

Lemma 4.4.7. Let f : Fpr → Fp be a non-a�ne function, γ ∈ F∗pr be such that f
and Dγf are linearly independent and g(y1, y2) = Tr(y1φ(y2)) be a bent function,
where φ is a permutation on Fps/2 without a�ne components. Consider the

direct sum h(x, y) = f(x) + g(y). Denote by C(γ)
h the p-ary linear code spanned

by the linear functions on Fpn and the functions hα,β, de�ned by hα,β(x, y) =

h(x + α, y + β) for α ∈ {0, γ}, β ∈ Fps/2 × {0}. Then the set C(γ)
h is a linear

code with parameters [pn, n+ s
2

+ 2].

Proof. Set β0 := 0. Let B = {β1, . . . , βs/2} be a basis of Fps/2 × {0}. De�ne
B = B ∪ {β0}. We claim that the set {h0,β : β ∈ B} ∪ {hγ,0} is linearly
independent. Suppose that ς :=

∑s/2
i=0 λih0,βi(x, y) + λs/2+1hγ,0 = 0 for some

scalars λ0, . . . , λs/2, λs/2+1 ∈ Fp. Since the sum ς is the direct sum of the
functions

(

s/2∑
i=0

λi)f(x) + λs/2+1f(x+ γ) and
s/2∑
i=1

λig(y + βi) + (λ0 + λs/2+1)g(y),

ς equals zero if and only if
∑s/2

i=0 λig(y+βi)+(λ0 +λs/2+1)g(y) = 0,
∑s/2

i=0 λi = 0
and λs/2+1 = 0. The latter can be inferred from the linear independence of f
and Dγf . By de�nition, the sum

∑s/2
i=0 λig(y + βi) can be rewritten as

Tr(φ(y2)(y1(

s/2∑
i=0

λi) +

s/2∑
i=0

λiβi)).

Since
∑s/2

i=0 λi = 0, it holds that
∑s/2

i=0 λig(y+βi) = 0 if and only if
∑s/2

i=0 λiβi =
0. This last condition implies that λi = 0 for each 1 6 i 6 s/2 by linear
independence of B. Thus, λ0 = 0, too. Finally, note that the code C(γ)

h is equal
to the direct sum of the subspace of linear functions over Fpn and the span
〈h0,β, hγ,0〉, hence its dimension is n+ s/2 + 2.

Theorem 4.4.8. Let r be any positive integer and s be an even integer larger
than two. Let f : Fpr → Fp be a non-a�ne function with f(0) = 0 and γ ∈ F∗pr
be such that {f,Dγf} is linearly independent. Let g : Fps/2×Fps/2 → Fp be a bent
function inMM of the form g(y1, y2) = Tr(y1φ(y2)), where φ is a non-covering
permutation on Fps/2. Suppose that the following two conditions hold:
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(i) For each v ∈ Fps, β ∈ Fps/2 and a, b, c ∈ Fp such that the tuple (v, β, a, b, c)
is not zero, there exists y = (y1, y2) ∈ F∗ps that satis�es

ag(y1, y2) + g(by1 + β, y2) + lv(y) = c.

(ii) The code Cf ⊕ CDγf is an (r + 2)-dimensional minimal code.

Then, the code C(γ)
h is a minimal linear code with parameters [pn, n + s

2
+ 2].

Moreover, if CDγf is wide, then so is C(γ)
h .

Proof. The parameters of C(γ)
h can be deduced from Lemma 4.4.7. Let B =

{β1, . . . , βs/2} be a basis of Fps/2 . Note that each codeword in C(γ)
h can be

expressed as

λ(f(x)+g(y1, y2))+µf(x)+g(µy1 +β, y2)+ν(f(x+γ)+g(y1, y2))+L(x, y1, y2)
(4.24)

for some λ, ν ∈ Fp, L ∈ Ln, β =
∑s/2

i=1 µiβi ∈ Fps/2 and µ =
∑s/2

i=1 µi. First
we will show that if the underlying functions that depend on y are linearly
dependent then the corresponding codewords are linearly dependent provided
they cover each other. Let c, c′ ∈ C(γ)

h be two non-zero codewords such that c′ �
c, where the de�ning parameters of c and c′ are λ, µ, β, ν, L and λ′, µ′, β′, ν ′, L′.
Assume that

(λ′ + ν ′)g(y1, y2) + g(µ′y1 + β′, y2) + L′
y
(y1, y2)

is equal to
ξ((λ+ ν)g(y1, y2) + g(µy1 + β, y2) + Ly)

for some ξ ∈ Fp, where Ly denotes the restriction of L to the (y1, y2) coordinates.
Rearranging this equality, we get that

Tr(φ(y2)((λ′ − ξλ+ ν ′ − ξν + µ′ − ξµ)y1 + β′ − ξβ))

is a linear function. This is possible only if β′− ξβ = 0 and λ′− ξλ+ ν ′− ξν +
µ′ − ξµ = 0, so that β′ = ξβ. This implies µ′ = ξµ by linear independence of
the βi's. We also have λ′ + ν ′ = ξ(λ + ν) and L′ = ξL. By condition (i), for
each x ∈ Fpr , there exists a non-zero y(x) = (y

(x)
1 , y

(x)
2 ) such that

λf(x) + µf(x) + νf(x+ γ) + Lx(x)

is equal to

−((λ+ ν)g(y
(x)
1 , y

(x)
2 ) + g(µy

(x)
1 + β) + Ly(y

(x)
1 , y

(x)
2 )).
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Since c′ � c, for every x ∈ Fpr ,

λ′f(x) + ξµf(x) + ν ′f(x+ γ) + L′
x
(x)

is equal to −ξ((λ+ν)g(y
(x)
1 , y

(x)
2 )+g(µy

(x)
1 +β)+Ly(y

(x)
1 , y

(x)
2 )). In other words,

for every x ∈ Fpr ,

(λ′ − ξλ)f(x) + (ν ′ − ξν)f(x+ γ) + (L′ − ξLx)(x) = 0.

Since Cf ⊕ CDγf is (r + 2)-dimensional, we infer that λ′ = ξλ, ν ′ = ξν and
L′x = ξLx. Suppose that c, c′ ∈ C(γ)

h are linearly independent and c′ � c. By the
above discussion and Lemma 4.4.4, the function corresponding to the coordinate
y of either c or c′ is zero. Both of these functions cannot be zero simultaneously
by minimality of Cf ⊕ CDγf . W.L.O.G, assume that the underlying function of
c′ that depends on y is zero. In this case, using condition (i), take an element
(x, y) ∈ Fpr×Fps such that (the underlying function of) c evaluated at this point
is zero but c′ evaluated at x is non-zero. This contradicts c′ � c. Analogously,
we can rule out the case when the underlying function of c that depends on
y is zero. Hence, if c, c′ are linearly independent, then they cannot cover each
other. This proves that C(γ)

h is minimal. To prove the last part of the statement,
note that each element in CDγf can be identi�ed (up to weight-scaling) with a
codeword in C(γ)

h (take µ = 0, β = 0, ν = −λ and Ly = 0 in Equation 4.24).



Chapter 5

Conclusions

The construction of minimal codes, which are suitable for secret sharing schemes
or two-party computation protocols, has recently become one of the most active
and important research lines in Cryptography/Coding Theory. This thesis has
addressed two major mathematical and cryptographically signi�cant problems
regarding minimal codes�the construction of minimal codes that violate the
Ashikhmin-Barg's bound and the introduction of general frameworks of con-
structing minimal codes from special classes of functions over �nite �elds. The
results presented in Chapter 3 have provided a solution to the �rst problem,
whereas the contents of Chapter 4 have given a solution to the second one.

In Chapter 3, four methods for obtaining wide minimal codes in the binary
settings were presented, which we have referred as the basis method (Subsection
3.2.2), the a�ne subspace method (Subsection 3.2.3), the hyperplane method
(Section 3.3) and the general Maiorana-McFarland method (Section 3.4).

The use of a�ne subspaces and bases allowed us to exploit the geometry of Fm2 in
order to obtain wide minimal codes. Employing the characterization of minimal
codes in terms of cutting vectorial blocking sets, these two methods rely on
characteristic sets which serve as blocking sets. To construct characteristic sets
that induce wide minimal codes, some algebraic and combinatorial properties
were imposed on these sets. As we have shown, the inclusion of a basis and a
linear combination of basis vectors, as well as a suitable punctured (m−2)-a�ne
subspace take care e�ciently of the algebraic properties. On the other hand,
the size of the characteristic sets played an important role as a combinatorial
property. These two features were conveniently merged to induce the desired
wide minimal codes from Boolean functions.
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A thorough analysis of the possible weight distributions of the resulting codes
was given in Subsection 3.2.2 and Subsection 3.2.3, respectively. Their minimum
distance depends on the size of the employed characteristic set ∆. When using
a�ne subspaces, we were able to provide explicit weight distributions when the
set Γ used in the construction of ∆ has size two, see Tables 3.1-3.3.

Unlike the previous approach, the hyperplane method (Section 3.3) was not de-
rived, a priori, from the vectorial blocking set framework. Theorem 3.3.1 and
Theorem 3.3.2 were proved using a purely set theoretical/combinatorial argu-
ment on the possible weights of codewords. As a particular case, root functions
turned out to be suitable examples to plug into this setting. We provided a
complete description of the weight distribution and asymptotic behaviour of
the weight ratios of the codes based on root functions in Subsection 3.3.2.

The general Maiorana-McFarland method is based on the well-established ap-
proaches used in [20] and in [40]. The main di�erence between these approaches
and our method lies in the fact that the set U , that serves as a building block
of the function in GMM, was slightly modi�ed. This modi�cation allowed us
to introduce wide minimal codes with a larger minimum distance, whose full
weight distributions were given in Tables 3.8 - 3.15. Moreover, we were able to
provide another construction, based on the same principles, using a derivative
of a function f . These results played a crucial role for the generic construction
given in Section 4.3.

These four methods share the attribute of having an ample range of possible
initial inputs, thus leading to several wide minimal codes whose full speci�ca-
tions can be derived. Thus, a common exhibited feature is the �exibility of
inputs and resulting weight distributions. As far as we know, for the �rst time,
this property is achieved in the construction of in�nite families of wide minimal
binary linear codes.

As a second step, secondary constructions and the increase of dimension were
considered in Chapter 4. Essentially, three methods for constructing (wide)
minimal codes were devised. These approaches are based on typical operations
of Boolean functions, namely, direct sums and derivatives. Additionally, a novel
concept of non-covering permutations was introduced.

The �rst strategy, termed the direct summethod, employed an arbitrary Boolean
function f and a non-a�ne function g whose associated code is minimal. These
conditions proved to be enough to construct minimal codes. The use of bent
functions and semi-bent functions as constituent blocks was discussed, and a
deep analysis of the possible weight distributions was given in Section 4.1.
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The second technique relies on a subspace of derivatives of a bent function g
in MM. Certain non-covering properties of vectors associated to g and its
derivatives are inherited from the bentness of g, thus adjoining a basis for this
subspace of derivatives to a basis for the space of linear functions was almost
su�cient to produce minimal codes. However, derivatives of g do not necessar-
ily satisfy the non-covering property. Here is where non-covering permutations
came into play�using a non-covering permutation su�ces to give rise to min-
imal codes and, sometimes, to wide minimal codes. The gist of this approach
is that one can use any non-covering permutation to construct minimal linear
codes. As shown in Subsection 4.2.1, this is a very vast class of permutations
and several examples of such permutations were provided.

The last approach that was presented in this thesis is what we called the generic
method to obtain wide minimal codes. This approach can be thought of as a
combination of the direct sum method and the derivative method. The ingre-
dients for this construction are simple, roughly, one needs a non-covering per-
mutation φ and a function f with a suitable derivative Dγf . We have proved
that a linear code with length n = r + s can be de�ned using the direct sum
of two functions, whose dimension is n + s/2 + 2 (Lemma 4.3.1). To obtain
wide minimal codes using this generic framework, we employed a bent function
g inMM with a non-covering permutation as underlying permutation (cf. the
derivative method) and a function f with a non-a�ne derivative Dγf such that
the linear code Cf ⊕ CDγf is minimal. Moreover, a way to ensure wideness
of the resulting code is to require CDγf be wide. These results were shown in
Theorem 4.3.2. Naturally, some concrete examples of wide minimal codes using
this general framework were presented and their weight distributions completely
speci�ed (see Subsection 4.3.1). To round o� the presented results, we studied
more in detail the p-ary case, thus generalizing the results in Chapter 4 to the
non-binary setting.

Many questions, open problems and research directions have arisen from the
work in this thesis.

To start with, one could investigate how to obtain minimal codes that are
more suitable for practical applications using well-known operations on linear
codes such as puncturing, shortening, concatenating, etc. We proposed some
techniques to increase the dimension of the obtained codes, however, their rates
seem to be still quite bad, hence a natural question is how to increase the
dimension and decrease the length while preserving minimality in such a way
that the approaches are generic and �exible. Of course, an alternative approach
could be used in order to �x some of these issues, e.g., the de�ning set method
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given in Equation (2.14).

In a similar fashion, the author is intrigued about knowing how all the con-
structions interact with each other. For instance, is it possible that, say, the
a�ne subspace method and the hyperplane method are a particular case of a
more general construction? We know that minimal codes and cutting vectorial
blocking sets are equivalent objects, so, in principle, we can trace back these
objects from one another. The question is then which blocking sets correspond
to the presented constructions.

Another interesting problem is to �nd a practical application of wide minimal
codes. Thus, how can we use the fact that weights are far from each other in
real life? At this point, the interest is purely mathematical�the construction
of in�nite families of wide minimal codes has been a mathematical challenge
which essentially motivated this work.

Needless to say, generalizations of our methods to the non-binary case would
provide insight on the above questions and would give a systematic way to
construct in�nite families of non-binary minimal codes. We have successfully
stepped a bit forward in this direction with the results given in Section 4.4.
Nevertheless, we clearly expect that quite more can be said, even about the
techniques given in Chapter 3.

Non-covering permutations are interesting by their own right in both the p-ary
and the binary case. As any other class of permutations, non-covering permu-
tations deserve a deeper analysis in terms of their cryptographic properties and
their relations with other mathematical objects. Conjecture 1 is an example of
this type of properties. We have observed that low-di�erential power permu-
tations are non-covering due to its high nonlinearity, however, we do not know
anything about general low-di�erentially uniform permutations without a�ne
components. Even if there exist low-di�erentially uniform permutations with
a not-so-high nonlinearity, then these permutations could be non-covering and
give rise to wide minimal codes. This is in fact a hard problem to solve since it
includes the challenge of identifying the nonlinearity of arbitrary APN permu-
tations and 4-di�erentially uniform permutations without a�ne components,
which is a well-known open problem.
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Povzetek v slovenskem jeziku

Koda je algoritem, ki spremeni vir informacij (besede) v drugo obliko (kodne
besede). Obi£ajno je vir informacij podan s pomo£jo niza simbolov, imen-
ovanega abeceda. Koda za odpravljanje napak je koda, ki lahko zaznava in
odpravlja napake. Glavni namen kodiranja informacij je obnoviti izvorno sporo£ilo,
ki je bilo poslano prejemniku preko hrupnega komunikacijskega kanala. Prou£e-
vanja kod za odpravljanje napak sodi v matemati£no podro£je teorije kodiranja.
Teorija kodiranja sega v leto 1948, ko je Claude E. Shannon objavil svoje
pomembno delo A Mathematical Theory of Communication [51], v katerem
je predstavil koncept informacijske entropije kot merila informacijske vsebine v
sporo£ilu.

Kode za odpravljanje napak, ²e posebej linearne kode, so bile ²iroko raziskane
zaradi pomembnih aplikacij v potro²ni²ki elektroniki, varnem dvostranskem
ra£unanju [15], shemah za skupno rabo skrivnosti [11, 22, 63], avtentikaciji,
sistemih za shranjevanje podatkov, asociativnih shemah in krepko regularnih
gra�h.

V zadnjih desetletjih so minimalne kode bile deleºne veliko pozornosti krip-
tografske skupnosti zaradi svojih pomembnih aplikacij v varnostnih protokolih,
kot so sheme deljenja skrivnosti [5, 50] in varno dvostransko ra£unanje [24], ki
so bistvenega pomena v dana²njem digitalnem svetu. Za ta razred linearnih kod
je zna£ilna pokrivna lastnost, in sicer je linearna koda minimalna pod pogojem,
da nobena od njenih neni£elnih kodnih besed ni pokrita z nobeno drugo linearno
neodvisno kodno besedo.

Z matemati£nega vidika so lastnosti in konstrukcije neskon£nih druºin mini-
malnih kod postale temeljna tema na tem podro£ju. Veliko dela je bilo opravl-
jenega za popolno razumevanje kombinatori£nih in geometrijskih lastnosti teh
kod [1, 3, 6, 11, 15, 20]. Kar zadeva konstrukcije, jih je ve£ina temeljila na za-
dostnem Ashikhmin-Bargovem pogoju, ki povezuje najmanj²o in najve£jo teºo
kode [2], natan£neje, £e je koli£nik najmanj²e teºe q-arne kode nad njeno na-
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jve£jo teºo strogo ve£ji od q−1
q
, potem je koda minimalna. Z drugimi besedami,

ta pogoj zahteva, da so uteºi blizu druga drugi. Linearne kode, ki izpolnju-
jejo pogoj Ashikhmin-Barg, imenujemo ozke, kode, ki tega ne izpolnjujejo, pa
²iroke.

Konstruirati neskon£ne druºine ²irokih minimalnih kod, tudi v binarnem okviru,
je bil izziv, saj do pionirskega dela Dinga et. al. [20] nismo imeli nobenega
primera. V omenjnem £lanku so nato predstavili tri neskon£ne druºine ²irokih
minimalnih binarnih kod z uporabo nekaterih konstrukcij, ki temeljijo na Boolovih
funkcijah. Kmalu zatem je bilo uvedenih ve£ metod za konstruiranje ²irokih
minimalnih kod z uporabo velikega ²tevila tehnik: simplicialni kompleksi [13],
karakteristi£ne funkcije [20, 29, 40], projektivne ravnine [3], rezane blo£ne mnoºice
[6, 55], maksimalni loki [25], ²ibko regularne ukrivljene funkcije [37, 60] in ²ibko
regularne platojske funkcije [39, 40, 41, 42, 52], itd.

Ker je lastnost minimalnosti povezana s podporami kodnih besed, je naravno
razmi²ljati o karakterizaciji minimalnosti v smislu uteºi kodnih besed znotraj
dane linearne kode. Da je to smiselno, je bilo pokazano v [26]. Koda C je
minimalna, £e in samo £e za vsak par neni£elnih linearno neodvisnih kodnih
besed a in b v C velja∑

c∈F∗q

wt(a+ cb) 6= (q − 1)wt(a)− wt(b). (5.1)

Vse konstrukcije v doktorski disertaciji temeljijo na p-arnih funkcijah nad kon£n-
imi polji. Za pra²tevilo p lahko vektorski prostor Fmp identi�ciramo s kon£nim
poljem Fpm tako, da dolo£imo tak²no bazo, da imata ta dva objekta enake lin-
earne lastnosti. Preslikava f iz Fmp v Fp se imenuje p-arna funkcija. 2-arno
funkcijo imenujemo preprosto Boolova funkcija. Ko je vrstni red elementov Fpm
�ksiran, na primer Fpm = {α0 = 0, α1, . . . , αpm−1}, katera koli p-arna funkcija
f : Fpm → Fp enoli£no dolo£i zaporedje izhodnih vrednosti (imenovano tabela
resnice), podano kot

[f(α0), f(α1), . . . , f(αpm−1)],

na katerega lahko gledamo kot na vektor dolºine pm z vrednostmi iz polja Fp.
Funkcija f : Fpm → Fp in njena tabela resnice sta nato obravnavani kot ekviva-
lenten objekt, ko ni dvoumnosti.

Dve standardni metodi za de�niranje linearnih kod, ki izhajajo iz p-arnih funkcij,
sta dobro raziskani v literaturi [19]. Prva splo²na metoda dolo£a linearne kode
z uporabo preslikave f : Fpm → Fpm . Linearno kodo Cf ⊂ Fp

m

p namre£ de�nira

Cf = {ca,u := (Tr(af(x)) + Tr(ux))x∈Fpm : a, u ∈ Fpm}. (5.2)



120 POVZETEK V SLOVENSKEM JEZIKU

Ekvivalentno de�nicijo kode Cf je mogo£e dobiti z uporabo vektorske prostorske
predstavitve polja Fpm in s standardnim direktnim produktom. Dimenzija kode
Cf je najve£ 2m in njena dolºina je pm.

Druga splo²na konstrukcija linearnih kod iz funkcij �ksira mnoºico

D = {d1, d2, . . . , ds} ⊂ Fpm

tako imenovano de�nirno mnoºico tako, da je

CD = {(Tr(d1x),Tr(d2x), . . . ,Tr(dsx)) : x ∈ Fpm}. (5.3)

Dimenzija linearnih kod, podanih v (5.2), je 2m pod pogojem, da funkcija
f nima linearnih komponent. Poleg tega je mogo£e njihove uteºi izraziti z
Walshevo transformacijo funkcije f : Fpm → Fpm kot

wt(ca,u) = pm − 1

p

∑
ω∈Fp

WTr(ωa)(ωu). (5.4)

Namen disertacije je dvojen. Prvi£, nadaljevanje raziskovalne smeri prej²njih del
[6, 20, 38] in iskanje ve£ konstrukcij ²irokih minimalnih binarnih kod z uporabo
teorije Boolovih funkcij, s £imer pridobimo linearne kode, primerne za sheme
deljenja skrivnosti ali protokole za dvostransko ra£unanje. Te druºine imajo
zna£ilnost, da imajo tak²ne prilagodljive parametre, da pokrivajo ²irok razpon
moºnih minimalnih uteºi.

Prve neskon£ne druºine ²irokih minimalnih kod temeljijo na geometrijskem
pristopu za konstrukcijo minimalnih kod, predstavljen v [6], kjer so avtorji
pokazali mo£no povezavo med rezanimi vektorskimi blo£nimi mnoºicami in
minimalnimi kodami. Presenetljivo se izkaºe, da sta ta dva predmeta enaka
[55] (glej izrek 3.2.2). Z uporabo preluknjanih hiperravnin predlagamo novo
metodo za pridobivanje ²irokih minimalnih kod iz generi£ne konstrukcije, ki jo je
mogo£e uporabiti skupaj s tako imenovanimi korenskimi funkcijami, da bi dobili
dolo£ene neskon£ne druºine ²irokih minimalnih kod, katerih porazdelitve teºe je
mogo£e eksplicitno podati. Druºina ²irokih minimalnih binarnih linearnih kod,
ki uporabljajo Boolove funkcije, ki pripadajo splo²nemu Maiorana-McFarland
razredu, je bila podana v [20]. Predlagamo podobne metode konstrukcije in
zagotavljamo dva eksplicitna razreda ²irokih minimalnih kod, ki dosegajo bolj²e
parametre za odpravljanje napak v primerjavi s tistimi metodami, obravnava-
nimi v [20].
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Kot drugi rezultat bodo predstavljene nekatere splo²ne konstrukcije minimalnih
kod, ki temeljijo na razli£nih dobro znanih tehnikah funkcij nad kon£nimi polji,
skupaj z nekaterimi novimi koncepti, prilagojenimi konstrukciji minimalnih kod
(npr. nepokrivajo£e permutacije). Cilj teh konstrukcij je zagotoviti splo²en
okvir za generacijo minimalnih kod, ki so ²iroke, ali tudi ne, na tak na£in, da
imajo ve£jo dimenzijo glede na svojo dolºino. To je ²e posebej pomembno pri
obravnavi aplikacij, saj mora biti prakti£en varen dvostranski ra£unski protokol
(ki temelji na linearnih kodah) sestavljen iz minimalne kode z visokim razmer-
jem.

Te splo²ne okvire je mogo£e videti tudi kot sekundarne konstrukcije minimalnih
kod, kar je lahko ²e ena motivacija za njihovo ²tudije: dobro znano je [15],
da je Kroneckerjev produkt dveh minimalnih kod minimalna koda. Vendar
pa je malo znanega o nekaterih drugih sekundarnih konstrukcijah minimalnih
linearnih kod.

Direktna vsota funkcij je zelo primeren kandidat za konstrukcijo minimalnih
kod, saj je njen Walshev spekter v celoti dolo£en z Walshevimi spektri njenih
sestavnih se²tevnikov. Predlagamo preprosto metodo z uporabo direkntih vsot,
ki poda minimalne kode. Zaradi svoje preprostosti je to metodo mogo£e pri-
lagoditi za pridobitev ve£ neenakovrednih minimalnih kod. Odvodi ukrivljene
funkcije g (ker so uravnoteºene) se prav tako izkaºejo za zdruºljive z lastnostjo
minimalnosti kod Cg, saj dodajati bazo dolo£enih odvodov inducira minimalno
kodo z ve£jo dimenzijo. Kon£no sta ti dve metodi zdruºeni za re²itev predla-
ganega problema pridobivanja kod z ve£jimi dimenzijami.

Kot stranski produkt teh konstrukcij je predstaven in podrobneje preu£en kon-
cept nepokrivajo£ih permutacij. Ta razred permutacij vsebuje razred AB per-
mutacij, APN poten£nih permutacij, 4-diferencialno enakomernih permutacij in
na splo²no zelo nelinearnih permutacij.

Doktorska disertacija v splo²nem ponuja ve£ konstrukcij (²irokih) minimalnih
kod iz generi£nih konstrukcij, ki se opirajo na teorijo Boolovih in p-arnih funkcij.
Te konstrukcije so generi£ne v smislu, da lahko kot vhodni podatek vnesemo
poljubno funkcijo, ki izpolnjuje dolo£ene ²ibke predpostavke, in pridobimo ra-
zli£ne minimalne kode, ki niso ekvivalentne.

Preostali del dokumenta je organiziran na slede£i na£in. V poglavju 1 so podane
teoreti£ne osnove na²ih rezultatov skupaj z nekaj motivacije. Predstavljen je
koncept minimalne kode in poudarjen je njen pomen v kontekstu shem deljenja
skrivnosti in ve£stranskih ra£unskih protokolov. Potrebne de�nicije in prelimi-
narni rezultati o funkcijah, linearnih kodah in minimalnih kodah so predstavljeni
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v poglavju 2.

Glavni rezultati so v poglavjih 3 in 4. V poglavju 3 predstavljamo ²tiri kon-
strukcije ²irokih minimalnih binarnih linearnih kod s splo²nimi konstrukcijami z
uporabo Boolovih funkcij. Za ve£ primerov teh konstrukcij podajamo popolno
speci�kacijo njihove porazdelitve uteºi. Te tehnike so poimenovane z besedo
�metoda� in dodanim opisom najpomembnej²ega predmeta. Tako uvajamo
metodo baze (Poglavje 3.2.2), metodo a�nega podprostora (Poglavje 3.2.3),
metodo hiperravnine (Poglavje 3.3) in metodo splo²ne Maiorana-McFarland
funkcije (Poglavje 3.4).

Nazadnje so v poglavju 4 predstavljene tri metode za pridobitev ²irokih mini-
malnih kod z ve£jo dimenzijo. Ti pristopi temeljijo na standardnem delovanju
funkcij, kot so direktna vsota ali odvodi. V poglavju 4.1 so minimalne kode
sestavljene iz direktne vsote dveh Boolovih funkcij pod dolo£enimi ²ibkimi pred-
postavkami, in sicer, da je ena od povezanih kod minimalna. Za isti namen kon-
struiranja (²irokih) minimalnih kod je v poglavju 4.2 predstavljen nov koncept
�nepokrivajo£e permutacije�. Te permutacije so uporabne pri dolo£anju lin-
earnih kod, povezanih z ukrivljenimi funkcijami v razredu Maiorana-McFarland.
Zadnja konstrukcija, imenovana �splo²na konstrukcija�, je kombinirana ra-
zli£ica metode direktne vsote in metode odvodov. Podana je v poglavju 4.3
in njeni eksplicitni primeri so podani v poglavju 4.3.1. Posplo²itev rezultatov
na p-arni primer je obravnavana v poglavju 4.4.

Plod raziskave, opravljene v doktorskem delu, so ²tiri strokovni £lanki. Trije od
²tirih so ºe objavljeni v uglednih revijah, £etrti pa je ²e v pripravi. Ti £lanki so
v referencah navedeni kot [44, 48, 64, 65].

Spodaj na²tejemo in povzamemo glavne matemati£ne prispevke:

� Izrek 3.2.5 (Metoda baze). Konstrukcija ²irokih minimalnih kod iz baz s
parametri [2m,m+ 1, d] z d ∈ {m+ 1, . . . , 2m−2}.

� Izrek 3.2.7. Zadostni pogoji za dokaz minimalnosti in ²irokosti odvodov
kod CDγf

� Izrek 3.2.12 (Metoda a�nega podprostora). Konstrukcija ²irokih minimal-
nih kod iz preluknjanega (m− 2)-dimenzionalnega a�nega podprostora s
parametri [2m,m+ 1, d], kjer je d ∈ {2m−3 + 1, . . . , 2m−2 + 2m−3 − 1}.

� Izrek 3.3.1 (Metoda hiperravnine). Konstrukcija ²irokih minimalnih kod
iz preklunjanih hiperravnin s parametri [2m,m+ 1, d], kjer je d ∈ {2m−2 +
1, . . . , 2m−1}.



POVZETEK V SLOVENSKEM JEZIKU 123

� Izrek 3.3.2 (Metoda hiperravnine, komplementarna konstrukcija). Kon-
strukcija ²irokih minimalnih kod iz preluknjanih hiperravnin s parametri
[2m,m+ 1, d], kjer je d ∈ {m+ 1, . . . , 2m−2 + 1}.

� Izrek 3.3.4. �iroke minimalne kode, povezane s korenskimi funkcijami.

� Posledica 3.3.6. Asimptoti£no obna²anje kod, povezanih s korenskimi
funkcijami.

� Izrek 3.4.2 (Metoda GMM I). Za liho celo ²tevilo m > 9 in m 6= 11, kon-
strukcija ²irokih minimalnih kod iz splo²negaMM razreda s parametri

[2m,m+ 1, 2m−1 − 2
m−5

2 (m− 1)] ali [2m,m+ 1, 2m−1 − 2
m−5

2 (m− 5)],

v odvisnosti od parnosti vrednosti (m+ 1)/2.

� Izrek 3.4.5 (Metoda GMM II). Za liho celo ²tevilo m > 7, konstrukcija
²irokih minimalnih kod iz splo²negaMM razreda s parametri

[2m,m+ 1, 2m−1 − 2
m−5

2 (2
m−1

2 −m+ 5)].

� Izrek 3.4.8 (Metoda GMM III). Za liho celo ²tevilo m > 9, konstrukcija
²irokih minimalnih kod iz odvodov funkcij iz splo²nega MM razreda s
parametri

[2m,m+ 1, 2m−1 − 2
m−3

2 (m+ 3)].

� Izrek 4.1.3 (Metoda direktne vsote). Splo²en okvir za pridobivanje min-
imalnih kod, ki temelji na direktni vsoti p-arnih funkcij in poda kode
dolºine pm in dimenzije m+ 1.

� Posledica 4.1.4. Konstrukcija minimalnih kod z uporabo metode direk-
tne vsote ukrivljene funkcije s s spremenljivkami in nea�ne funkcije z r
spremenljivkami, ki poda kode s parametri [pm,m+ 1, d], kjer je

d > pm − pm−1 − pr+s/2 + pr+s/2−1.

� Lema 4.2.3. Karakterizacija minimalnosti kode Cf1 ⊕ Cf2 v smislu mini-
malnosti svojih gradnikov.

� De�nicija 4.2.4. Predstavljen koncept nepokrivajo£e permutacije.

� Izrek 4.2.7 (Metoda odvodov). Konstrukcija minimalnih kod iz ukrivljenih
funkcij z m spremenljivkami vMM razredu z nepokrivajo£o permutacijo
φ kot temeljno permutacijo. Parametri so [2m,m + m

2
+ 1, 2m/2θ], kjer je

θ ve£ji od nelinearnosti funkcije φ.
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� Posledica 4.2.8. Konstrukcija minimalnih kod iz ukrivljenih funkcij z m
spremenljivkami iz MM razreda in AB permutacijo kot temeljno per-
mutacijo. Parametri so

[2m,m+
m

2
+ 1, 2m−1 − 2

m+m/2−1
2 ].

� Posledica 4.2.9. Konstrukcija minimalnih kod iz ukrivljenih funkcij z m
spremenljivkami izMM razreda z multiplikativno inverzno permutacijo
kot temeljno permutacijo. Parametri so [2m,m + m

2
+ 1, 2m/2θ], kjer je

θ = 2m/2(2m/2−1 − 2m/4), ko je m/2 sod in je θ enaka najvi²jemu sodemu
celemu ²tevilu navzgor omejenem z 2m/2−1 − 2m/4, ko je m/2 lih.

� Posledica 4.2.14. Vsaka nizko diferencialno (δ = 2 ali δ = 4) enakomerna
poten£na permutacija je nepokrivajo£a.

� Izrek 4.2.18. Konstrukcija ²irokih minimalnih kod z uporabo funkcije v
GMM in njenega odvoda. Parametri so

[2m,m+ 1, 2m−1 − 2
m−3

2 (m+ 3)].

� Izrek 4.3.2. Splo²en okvir za konstrukcijo ²irokih minimalnih kod iz pod-
prostorov odvodov funkcije f : Fr2 → F2 in nepokrivajo£ih permutacij
φ : Fs/22 → Fs/22 , ki inducirajo kode s parametri [2r+s, r + s+ s

2
+ 2].

� Izrek 4.3.7. Primer izreka 4.3.2, pri katerem je najmanj²a razdalja induci-
ranih kod eksplicitno izra£unana kot 2s+(r−1)/2((r + 1)/2 + 1).

� De�nicija 4.4.1. Predstavljen koncept k-minimalnega para, ki je sestavljen
iz ukrivljene funkcije in nepokirvajo£e permutacije.

� Izrek 4.4.3. Konstrukcija minimalnih kod, ki temelji na k-minimalnem
paru s parametri [pm − 1,m+ k + 1].

� Posledica 4.4.4 (p-arna metoda odvodov). Primer izreka 4.4.3, kjer je
podprostor U sestavljen iz odvodov funkcije g v smereh, ki vplivajo samo
na linearni del funkcije g.

� Izrek 4.4.8. Generi£na konstrukcija minimalnih p-arnih kod, ki temelji
na metodi direktne vsote in nepokrivajo£ih permutacjiah in poda kode s
parametri [pn, n+ s

2
+ 2].
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