
D
U

K
O

V
SK

A
Z

A
K

L
JU

Č
N

A
N

A
L

O
G

A
(F

IN
A

L
PR

O
JE

C
T

PA
PE

R
)

20
22 UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

ZAKLJUČNA NALOGA

(FINAL PROJECT PAPER)

PRESLIKAVE MED SLIKAMI Z UPORABO

GENERATIVNIH NASPROTNIŠKIH MREŽ

(IMAGE-TO-IMAGE TRANSLATION THROUGH

GENERATIVE ADVERSARIAL NETWORKS)

IVANA DUKOVSKA

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

(Final project paper)

Preslikave med slikami z uporabo generativnih nasprotniških
mrež

(Image-to-Image Translation through Generative Adversarial

Networks)

Ime in priimek: Ivana Dukovska

Študijski program: Računalništvo in informatika

Mentor: izr. prof. dr. Klen Čopič Pucihar

Somentor: asist. dr. Domen Šoberl

Koper, september 2022

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 III

Ključna dokumentacijska informacija

Ime in PRIIMEK: Ivana DUKOVSKA

Naslov zaključne naloge:

Preslikave med slikami z uporabo generativnih nasprotniških mrež

Kraj: Koper

Leto: 2022

Število listov: 38 Število slik: 18

Število tabel: 2 Število referenc: 23

Mentor: izr. prof. dr. Klen Čopič Pucihar

Somentor: asist. dr. Domen Šoberl

Ključne besede: globoko učenje, globoke nevronske mreže, konvolucija, konvolucijske

nevronske mreže, generativne nasprotniške nevronske mreže

Izvleček:

V tej diplomski nalogi izvedemo temeljito študijo algoritma CycleGAN, ki se lahko

nauči pretvarjati med dvema domenama slik, pri čemer učenje poteka na neurejenih

parih slik. Najprej opišemo vse teoretične predpogoje, vključno z arhitekturami nevron-

skih mrež, konvolucijo slik, konvolucijske nevronske mreže in generativne nasprotniške

mreže, ki so potrebni, da lahko razumemo, kako algoritem CycleGAN deluje. Pri tem

predstavimo zanimive primere za pet vrst takšnih pretvorb slik — prenos sloga, preob-

likovanje objekta, preoblikovanje letnih časov, generiranje fotografij iz slik ter izboljšave

fotografij. Nato analiziramo uradno TensorFlow implementacijo algoritma CycleGAN,

napisano v programskem jeziku Python in jo primerjamo s predlagano implementacijo

v izvirnem članku. Algoritem testiramo na naboru 1068 slik konj in 1355 slik zeber, z

namenom usposobiti sistem za pretvarjanje podob konjev v podobe zeber in obratno. Pri

tem izpostavimo razlike med izvorno implementacijo ter TensorFlow implementacijo.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 IV

Key document information

Name and SURNAME: Ivana DUKOVSKA

Title of the final project paper:

Image-to-Image Translation through Generative Adversarial Networks

Place: Koper

Year: 2022

Number of pages: 38 Number of figures: 18

Number of tables: 2 Number of references: 23

Mentor: Assoc. Prof. Klen Čopič Pucihar, PhD

Co-Mentor: Assist. Domen Šoberl, PhD

Keywords: deep learning, deep neural networks, convolution, convolutional neural

networks, generative adversarial networks

Abstract:

In this thesis we conduct a study of the state-of-the-art algorithm called CycleGAN,

which is capable of learning a translation between two image domains, where learn-

ing is done on unpaired sets of images. We outline all the theoretical prerequisites, in-

cluding neural network architectures, image convolution, convolutional neural networks,

and generative adversary networks, which are necessary to understand how CycleGAN

works. We present interesting examples for five different types of image translations

— style transfer, object transfiguration, season transfer, generating photographies from

paintings, and photographic enhancements. We analyze the official TensorFlow imple-

mentation of CycleGAN, written in the Python programming language and compare it

with the implementation suggested by the original paper. We test the algorithm on a

database of 1068 images of horses and 1355 images of zebras, with the goal to train the

system how to translate the images of horses to the images of zebras, and vice versa. We

outline the differences between the original proposal and the TensorFlow implementa-

tion.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 V

Acknowledgments

I would like to thank my mentors for their professional advice, patience and encouragement

in the creation of the thesis. Sincere thanks to my parents for all their support, enormous

love and strongly believing in me. Thanks also to everyone else who has stood by me all

these years.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 VI

Contents

1 Introduction 1

2 Deep Convolutional Neural Networks 3
2.1 Neural Networks . 3

2.2 Convolution . 6

2.3 Convolutional Neural Network (CNN) 9

2.3.1 Convolutional Layer . 10

2.3.2 Pooling layer . 11

2.3.3 Fully-connected layer . 12

3 Image-to-image translation 13
3.1 Generative Adversarial Networks (GAN) 13

3.2 Cycle Consistency GAN (CycleGAN) 14

3.2.1 Applications of CycleGAN . 16

4 Analysis of the CycleGAN algorithm 19
4.1 Algorithm overview . 19

4.2 Architecture of neural networks . 20

4.3 Loss functions . 22

5 Conclusion 24

6 Povzetek naloge v slovenskem jeziku 26

7 Bibliography 28

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 VII

List of Tables
1 The architecture of the CycleGAN generator. 21

2 The architecture of the CycleGAN descriminator. 21

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 VIII

List of Figures
1 Paired and Unpaired Image to image translation. (Source: [18]) 1

2 An architecture of a feed-forward neural network. 4

3 A neuron with n inputs and activation function f. 5

4 Image convolution. (Source: [2]) . 8

5 Kernel matrix for sharpening images. 9

6 Kernel matrix for blurring images. 9

7 Kernel matrix for outlining images. 9

8 The overall architecture of the Convolutional Neural Network (CNN).

(Source: [3]) . 10

9 Outline of the convolutional layer. (Source: [21]) 11

10 Types of pooling. (Source: [16]) . 12

11 Generative Adversarial Network framework. (Source: [17]) 14

12 Image-to-image tanslaton, summer to winter. 15

13 Example of style transfer. 16

14 Example of object transfiguration. 17

15 Example of season transfer. 17

16 Example of photograph generation from paintings. 18

17 Example of photograph enhancement. 18

18 Examples of discriminator’s output. Brighter pixels represent a higher

probability that the corresponding patch belongs to a true image. . . . 22

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 1

1 Introduction

Image-to-image translation has attracted a lot interest and made significant progress in re-

cent years, because of its numerous applications in a variety of computer vision and image

processing issues, including image synthesis, segmentation, style transfer, restoration, and

posture estimation[11]. Image-to-image translation is a process of transforming images from

one domain to another, with the goal to learn the mapping between an input image and an

output image. It can be seen as a generative problem in which the input image determines

how the output image is generated.

For instance, we can take a certain picture from the source domain and “translate” it

to an image with the same content, but drawn in a different artistic style, where some col-

lection of images is taken as a reference for the target artistic style. Another known use is

transformation between animals, e.g. horses to zebras.

The transformation function can be learned through methods of supervised machine

learning, where the training sets are sets of aligned pairs of images, e.g. a particular im-

age of a horse corresponds to a particular image of a zebra. However, in many domains,

such matched pairs are not always available, typically in domains of artistic styles, where the

collection of images of a particular artist is scarce[9]. So, knowing this, we can distinguish

between two types of image-to-image translation — paired and unpaired. In paired image-

to-image translation, the input and the ground-truth image domains are aligned, although the

paired training samples may be challenging to get. On the contrary, in unpaired image-to-

image translation we do not have explicit pairs of images. This distinction is depicted in

Figure 1.

In this thesis we focus on unpaired image to image translation, more specifically on the

algorithm called CycleGAN [23], which is a special type of Generative Adversarial Net-

work(GAN), successfully used for image style transfer.

Figure 1: Paired and Unpaired Image to image translation. (Source: [18])

CycleGAN is a deep learning method where two neural networks compete against each

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 2

other. One network, called the generator, learns to generate an artistic style, while the other

one, called the discriminator, learns to discriminate between the real and the generated artis-

tic styles. Once trained, such trained function is able to transform a given image from one

artistic style to the other with a minimal effect on the content. Typical applications of this

method include transforming between styles of known painters, transforming between horses

and zebras, seasons, e.g. summer to winter, day and night [23], etc.

Image-to-image translation techniques address a wide range of issues in image process-

ing, computer graphics, computer vision, and other fields. They have been extensively used

in the creation of cartoons, object transformation, picture colorization, creation of semantic

labeling from images, image segmentation, style transfer, picture in-painting, 3D posture

estimation, image/video colorization, image super-resolution, and semantic image synthesis.

Application-specific techniques may be used to address these issues, producing models with

a high degree of specialization. However, these are all examples of the same issue, which

may be solved by simply mapping one set of pixels to another. Studying a general-purpose

approach that enables the use of the same architecture and loss function for a variety of

specialized applications is helpful for this reason [11].

In this thesis we will analyze the theoretical and practical aspect of image-to-image trans-

lation with the emphasis on the CycleGAN method. We will cover the theoretical founda-

tions of deep neural networks, convolutional networks and adversary generative methods.

We will thoroughly analyze the implementation of the CycleGAN algorithm in Python,

which is a part of the TensorFlow machine learning library. We will compare it with the

implementation from the original paper on CycleGAN.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 3

2 Deep Convolutional Neural Networks

To understand how the CycleGAN algorithm works, we must first consider the basics of deep

learning — machine learning techniques that use deep neural network architectures. Cycle-

GAN is based around a special type of neural network architecture called Convolutional

Neural Network (CNN). In this chapter we outline the basics of artificial neural networks,

image convolution and convolutional neural networks.

2.1 Neural Networks

In the machine learning community, one of the most widely used modeling paradigms are

neural networks. In traditional methods of programming, when solving a domain specific

problem, the programmer gives specific instructions to the computer what to do. The pro-

grammer must understand the domain in all its details and solve the problem by dividing

into a large number of manageable, carefully defined tasks. On the other hand, using neutral

networks, one may approach a problem with a limited domain knowledge and rely on the

neural network to learn and gain knowledge from the given or observational data, without

any particular instructions or specific commands on how to solve the problem. Neural net-

works come advantageous in the fields of speech recognition, natural language processing,

image recognition, and many more [20].

A neural network is made up of thousands or even millions of tightly connected basic

processing units (nodes) - neurons. The majority of neural networks used today are ”feed-

forward,” meaning that the data only flows through them in one direction — from the input

to the output nodes. These are arranged into layers. A single node may be linked to a number

of nodes, from which it receives data, and to which it transmits data.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 4

Figure 2: An architecture of a feed-forward neural network.

Let us consider the architecture of a neural network as shown in 2. Each line shows a

synapse (a link) between two neurons and the arrow denotes the direction of information

flow. Input neurons are the neurons that make up the input layer, which is the leftmost layer

in this network. The output neurons, or in this example, just one output neuron, are found

in the rightmost or output layer. Since the neurons in the middle layer are neither inputs nor

outputs, it is known as a hidden layer. The neural network in the figure only has one hidden

layer, but neural networks in general may contain more then one. This is especially the case

in deep learning architectures.

The nodes work in parallel and communicate with each other through connections —

synapses. Each synapse is assigned a weight. The weights are initially chosen at random, but

get refined through neural network training. Depending on the current value of the weights

and the type of activation functions in the neurons, certain output neurons get activated when

certain input data is present. This way a neural network acts as a mapping between the input

and the output data, which is encoded to comply to the input and output layer. In the case of

image-to-image translation, input and output neurons would typically be associated with pix-

els.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 5

Figure 3: A neuron with n inputs and activation function f.

So, after understanding the architecture of neural networks, let us see how exactly neural

networks work. The role of a neural network is to approximate a function, i.e. a mapping

between the input and the output data. The mapping works in the following way. An input

data is fed through the input layer of nodes. Passing through the synapses to the next layer

in the network’s architecture, these input values get multiplied by the weights assigned to

these synapses and then summed up in the receiving node, where also a real-valued bias can

be added. The node is then activated according to its activation function and the computed

output value passed on to the nodes in the next layer. Each node therefore executes the

following mathematical function:

y = f(
n∑

n=1

(xi · wi) + b), (2.1)

where xi are the input node values, wi the weights, bi biases, and f the activation function.

This process of node activation is depicted in Figure 3.

The input data activates the input neurons, which send the signals to the first hidden layer.

The neurons of the first hidden layer sum their weighted inputs and activate their outputs ac-

cording to their activation function. The process repeats to the next hidden layer. Finally, this

forward propagation process reaches the last layer — the output layer. The activated output

nodes represent the value of the function that the neural network approximates. Obviously,

the output values depend on the weights of synapses (and also the biases assigned with each

node). So in order to approximate a desired function, these values need to be adjusted ac-

cordingly. This is done through the process of training the neural network, which usually

requires a large amount of training samples.

As the training data is being fed through the network, the output values would initially

significantly deviate from the expected output values, which is considered a prediction error

and determined by the loss function. The loss function is defined by the expert. The goal

of training is to minimize the error for the given training samples. If the training data is

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 6

representative for the learning domain, we may expect the loss to remain small even for in-

stances that the network has not seen during training. The error is being minimized through

the algorithm known as back-propagation, where the output error is being propagated back-

wards, from the output layer towards the input layer, during which the weights and biases are

getting readjusted by a certain amount which is determined by the learning rate parameter.

This way, the network gets slightly more fitted to a specific learning instance (or a batch of

learning instances). To prevent overfitting to a small subset of samples, the learning rate is

usually small and the process is iterated many times through a large training dataset.

We may summarize the process of training a neural network as follows:

1. Inputs xi, arrive through the preconnected path.

2. The node’s output is computed by Equation (2.1).

3. Outputs of each layer are applied to the inputs of the next layer, until the nodes of the

output layer are being activated.

4. The output error is calculated by the loss function.

5. The error is propagated back, towards the input nodes. The weights and biases are

being readjusted to reduce the output error.

6. The process is repeated until the desired prediction accuracy is achieved.

In our particular case the training data is a large collection of images. The machine learning

algorithm, iterates through the training images many times, until a desired transformation

effect is achieved.

2.2 Convolution

Image denoising and feature extraction challenges have received a lot of attention in recent

years in the context of image processing [6]. Various methods of computer vision, such as

object detection and recognition, motion tracking, identity recognition, and variety of other

challenges connected to autonomous picture and video processing, rely on the process of

feature extraction [23]. One of the fundamental methods of feature extraction is convolution.

A convolution, in pure mathematics, is the merging of two functions, f(x) and g(x),

while one glides over the other. The corresponding points of the first function f(x) and the

mirror image of the second function g(t − x) are multiplied together and added for each

minute sliding displacement (dx). As we can see in the following formula, two functions are

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 7

combined to get the outcome, which is denoted by the phrase [f ∗ g](t) [19]:

[f ∗ g](t) :=
∫ ∞

−∞
f(x)g(t− x)dx (2.2)

In image processing, a discrete version of convolution[4] is used as a technique to pro-

duce all-purpose filter effects like edge detection, embossing, sharpening, and more. It is

also an effective method for extracting image features, which lowers data dimension and

provides a less redundant data set, also known as a feature map.

To understand how convolution works on images, we must first understand that digital

images are made up of pixels, which are represented numerically. Higher pixel counts result

in higher-quality images. Each pixel is typically represented by three color components, and

each color component has a brightness value between 0 and 255. Value 0 means a complete

absence of this color, while 255 represents the most intense color. All other values in between

represent a linear transition between both extremes.

Convolution is performed by sequentially moving a small two-dimensional array of num-

bers, often a matrix of size [3 × 3] or [5 × 5], over the image. This matrix is usually called

filter or kernel. At each convolution step the filter values and the corresponding pixel values

are multiplied and summed up. The resulting value then replaces the original value of the

central pixel. This way, an output feature matrix is produced.

The mathematical expression for image convolution is:

g(x, y) = ω ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

ω(dx, dy)f(x− dx, y − dy) (2.3)

where g(x, y) is the filtered image, f(x, y) is the original image, ω is the kernel and (−a, a), (−b, b)

the dimensions of the filter (4).

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 8

Figure 4: Image convolution. (Source: [2])

An example of image convolution is given in Figure 4. A 3 × 3 kernel is layered on top

of a 7× 7 source image. In this two 3× 3 matrices, the first one is the kernel, and the second

one a part of the image. The kernel’s central element is positioned above the source pixel.

The output pixel is a weighted sum of the input pixels of the image matrix, where weights

are determined by the kernel. The process is repeated for all output pixels [2].

The size of the Kernel can be changed to influence the convolution’s effect, just as the

values of the Kernel can be adjusted for various levels of effects and changes. Figures 5, 6

and 7 show various possible effects by using different types of kernels, respectively image

sharpening, blurring, and outlining. Many other effects are also possible, such as embossing,

edge detection, noise reduction, etc.

As we can see in the examples, the sharpening kernel highlights differences in nearby

pixel values, which results in the picture appearing bigger. The blur kernel minimizes the

impact of variations in nearby pixel values. Large disparities in pixel values are brought to

light using an outline kernel, often known as the “edge” kernel. In the new image, a pixel

adjacent to a neighboring pixel with almost same intensity will seem black, while a pixel

next to a neighboring pixel with significantly different intensity would appear white. These

examples are taken from [15].

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 9

Figure 5: Kernel matrix for sharpening images.

Figure 6: Kernel matrix for blurring images.

Figure 7: Kernel matrix for outlining images.

2.3 Convolutional Neural Network (CNN)

Convolutional neural networks (CNN) are the variety of deep neural networks that have been

the subject of an extensive research in convolutional neural network has produced state-of-

the-art results on a variety of tasks by taking use of the sharp increases in the amount of

annotated data and the power of graphics processing units [10].

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 10

Convolutional neural network is a class of artificial neural network (ANN), designed to

process the data coming in the form of multiple arrays, for example a color image composed

of three 2D arrays which contain pixel intensity of the three-color channels. Convolutional

networks have three types of layers, which are shown in Figure 8:

• Convolutional layer

• Pooling layer

• Fully-connected (FC) layer

Figure 8: The overall architecture of the Convolutional Neural Network (CNN). (Source: [3])

A convolutional network’s initial layer is the convolutional layer. A neural network may

contain more than one convolutional layer. Typically, low-level characteristics like color,

borders, gradient direction, etc. are captured by the first layer.With additional convolutional

layers CNN becomes more capable, which allows it to detect more complex features. The

architecture adjusts to high-level characteristics as well, giving us a network that compre-

hends the dataset’s pictures holistically, much like we people do. So as a result, we can have

two outcomes. The first is when the dimensionality of the convolved feature is decreased as

compared to the input, and the other one is where it is either increased or stays the same [8].

The bigger features or forms are first recognized when the visual data moves through the

CNN layers, and eventually the desired object is recognized by the later layers(pooling and

fully-connected layer). We will briefly describe the three types of layers, in the reminder of

this section.

2.3.1 Convolutional Layer

The purpose of this layer is to learn convolutional filters (or kernels) and their weights, so

that they become capable of extracting the important features for the given problem. The

architecture of the convolutional layer determines the following parameters: the number of

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 11

filters (kernels), the size of the filters and the stride. Convolutional layer works by having

each filter perform a convolution over the entire input image, while it moves horizontally and

vertically with the given stride, shown in the Figure 9. The size of the filter and the stride

determine the height and width of the output data, while the number of filters determines its

depth.

Figure 9: Outline of the convolutional layer. (Source: [21])

2.3.2 Pooling layer

The pooling layer is mainly used to reduce the size of the input image in order to give the

neural network invariance and robustness. It is also known as a down-sampling layer. The

pooling operation distributes a filter across the entire input, similarly as the convolutional

layer, with the exception that this filter does not use or learn weights.

There exist two types of pooling. One is maximum pooling and the other one is average

pooling. The most used sub-sampling module in image processing is maximum pooling

(max pooling) [16]. With this type of pooling, the image is first divided into blocks. As the

filter goes through the input, the pixel with the highest value is taken as the pixel value of the

output image. On the other hand, average pooling takes the average value of all the values as

the pixel value in the output image. An example is given in Figure 10.

Max pooling is used to downsize the picture(if too big) and to extracts the most impor-

tant features for e.g edges. While on the other hand average pooling extracts features more

smoothly than maximum pooling.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 12

Figure 10: Types of pooling. (Source: [16])

2.3.3 Fully-connected layer

A fully connected layer is usually added for classification purposes and input it into a stan-

dard neural network. It serves as a link between a convolutional or pooling layer and the

output layer. Every node in a fully-connected layer is directly connected to every node in the

next layer. This way the output from the convolutional layers is flatten down, so it can be

connected to the simple layout of the output neurons. In Figure 8, the fully connected layer

is depicted under the “classification” tag.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 13

3 Image-to-image translation

Image-to-Image Translation aims to translate images from one domain to another by learning

a mapping between the input and output pictures using a training dataset of aligned or un-

aligned cross-domain image pairings. With aligned cross-domain image pairings, the input

and the ground-truth image domains are pared,contrary, in unaligned image-to-image trans-

lation we do not have explicit pairs of images. Traditionally, this activity has been completed

using a training set of aligned picture pairings. However, for many applications, paired train-

ing data is not available, and preparing them frequently requires a lot of labor from trained

workers to gather thousands of paired picture data-sets, particularly with sophisticated im-

age translations. CycleGAN is an architecture that can solve this problem, because it learns

image translations without explicitly using pairings of images [18].

3.1 Generative Adversarial Networks (GAN)

To understand how CycleGAN works, we first have to undersand Generative adversarial net-

works (GANs). Those are algorithmic architectures that use two neural networks, competing

one against the other (thus the “adversarial”) in order to generate new, synthetic instances of

data that can pass as real data. They are used widely in image generation, video generation

and voice generation [23]. Given that they may be trained to replicate any data distribu-

tion, GANs have enormous potential for both good and bad. In other words, GANs may

be trained to construct worlds that closely resemble our own in every area, including visu-

als, music, speech, and literature. In a way, they might be thought of as robot artists, and

their work is often impressive. However, they may also be employed to create fake media

material. [17]

GANs are an example of unsupervised machine learning. This means that the training

data is not labeled with the expected output as in the case of supervised machine learning. In

supervised machine learning the output (prediction) is compared with the expected results.

This way it is determined how to improve the model to provide better outputs based on the

expected output and the actual projected outcome. On the other hand, the architecture of a

GAN is composed of two neural networks. The first one is called generator and the second

one discriminator. The generator’s task is to provide fake input (samples). The discrimina-

tor’s task is to determine if a given sample is authentic or false. The adversarial nature of this

lies in the fact that these two networks compete among each other. The generator is learning

how to fool the discriminator and the discriminator is learning how to not be fooled by the

generator. The final goal of this process is to make the generator good enough to eventually

“fool” the human, which means to generate content that is as realistic as possible.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 14

Figure 11: Generative Adversarial Network framework. (Source: [17])

The competition between the generator and the discriminator is a zero sum game. There

is always a winner and a loser. The winner gets to stay the same, while the loser must update

its model. Therefore, if the discriminator identified the item on the photo as a phony image,

the discriminator is unaffected. But in order to produce better fakes, the generator will

need to modify its model. The discriminator model will consequently need to be updated

in order to be able to recognize the more realistic looking fake images. In contrast, if the

opposite is true and the generator is producing something that deceives the discriminator, the

discriminator model will need to be updated. Both networks are attempting to maximize an

opposing and different objective function, or loss function. Their losses conflict with one

another. [17]

As an example, let us assume we have a type of a low-quality image. By determining

what each individual pixel is and then constructing a higher resolution version of that, we

can use a GAN to build a much better resolution version of that image.

Some examples of GAN usage are: generating examples for image datasets, generating

photographs of human faces, generating realistic photographs, generating cartoon characters,

image-to-image translation, text-to-image translation, semantic-image-to-photo translation,

face frontal view generation, generate new human poses, photos to emojis, photograph edit-

ing, face aging, photo blending, super resolution, clothing translation, video prediction, 3D

object generation [5].

3.2 Cycle Consistency GAN (CycleGAN)

In this section we aim to understand what exactly CycleGAN is. We summarize the theory

and present some examples from paper [23]. All the photos presented in this section are also

taken from this paper.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 15

In image-to-image translation, a new synthetic form of an existing image is created with

a particular modification. A large dataset of matched samples is often needed when training

a model for image-to-image translation. That is, a large collection of numerous instances of

input photos X (for instance shown in Figure 12, summer landscapes) and the same image

modified in the desired way that may be used as an anticipated output image Y (e.g. winter

landscapes).

Figure 12: Image-to-image tanslaton, summer to winter.

Such datasets, like an images of artworks by long-dead painters, can be difficult, costly,

and in some cases impossible to produce. Using the CycleGAN method, image-to-image

translation models are automatically trained without the use of paired samples. Unsupervised

learning is used to train the models using a set of images from the source and target domains

that are not related in any way.

Before we start describing the architecture of CycleGAN, let’s briefly recall the archi-

tecture of GAN. There are two models that create the GAN architecture, a generator model

and a discriminator model. The discriminator takes a picture as input and determines if it is

real (from a dataset) or fake, whereas the generator takes a point from a latent space as input

and creates new plausible images from the domain (generated). In order to improve both the

generator’s ability to deceive the discriminator and the discriminator’s ability to recognize

created pictures, both models are trained against each other.

The extension of the GAN architecture is CycleGAN, which involves training two gen-

erator models and two discriminator models at the same time. Cycle consistency is an addi-

tional extension to the architecture that is used by the CycleGAN. If an image produced by

the first generator is given as the input for the second generator, its output must resemble the

original image. The opposite is also true, meaning that if the output from the second genera-

tor is fed into the first generator as input, the output should resemble the second generator’s

input. An interesting analogy from [23] is the following: if we have a sentence in English,

and this sentence is translated from English to French, when translated back from French to

English, the resulting sentence should be exactly the same. This is called cycle consistency.

By including an extra loss to calculate the difference between the output of the second gen-

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 16

erator and the original picture, and vice versa, the CycleGAN promotes cycle consistency.

As a result, the generator models are regularized, directing picture production in the new

domain in the direction of image translation.

3.2.1 Applications of CycleGAN

There are numerous implementations of the CycleGAN. Paper [23] examines five such ap-

plications. So, let us briefly describe them.

1. Style transfer

Style transfer is the process of taking an aesthetic approach from one domain — often

paintings — and applying it to another domain, e.g. photographies of landscapes. To

the images in Figure 13 are applied the aesthetics of Monet, Van Gogh, Cezanne, and

Ukiyo-e.

Figure 13: Example of style transfer.

2. Object transfiguration

Transfiguration of objects from one class to another is referred to as object transfigu-

ration. Figure 14 shows transformations of images of horses to images to zebras, and

vice versa.

3. Season transfer

Season transfer is the process of converting photos captured in one season, e.g. in the

summer, to a different season, e.g. the winter. Some examples are shown in Figure 15.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 17

Figure 14: Example of object transfiguration.

Figure 15: Example of season transfer.

4. Generating photographies from paintings

Photography generation from paintings is a process of transforming a painting, gener-

ally by a well-known artist or an iconic scene, to a photo-realistic image. Figure 16

shows some paintings by Monet, translated to images of plausible photographic style.

5. Photographic enhancement

The term “photographic enhancement” describes changes that make the original image

better. Figure 17 shows examples of photos where the depth of field is enhanced.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 18

Figure 16: Example of photograph generation from paintings.

Figure 17: Example of photograph enhancement.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 19

4 Analysis of the CycleGAN algorithm

In this chapter we analyze and describe the Python implementation of the CycleGAN algo-

rithm, which can be found in the official repository [7] of the TensorFlow machine learning

library [1]. As an example data the program code uses images of horses and zebras from

the tensorflow_datasets package, which is accessible through the PIP Python package

manager. The package contains 1068 images of horses and 1355 images of zebras. These

two sets can easily be replaced with any images of choice, so instead of horses and zebras

domains we will here refer to image domains A and B.

4.1 Algorithm overview

Training of the CycleGAN takes place over numerous epochs. An epoch refers to one com-

plete cycle through all the testing instances, where each instance is processed once. The

training process can be stopped after finishing any epoch, but waiting for more epoch yields

better final results. After each epoch an example image of a horse being transformed to a ze-

bra is output for the user to visually evaluate the training progress. This Tensorflow example

trains the neural networks for 40 epochs, while the original paper [23] proposes 200 epochs.

Each epoch iterates through the same set of randomly generated pairs of images (aT , bT),

where aT ∈ A, bT ∈ B are considered true images, as opposed to aF , bF , which are false

images, respectively generated by generators Gb and Ga. The sets of true images are limited,

so to prevent overfitting to this specific database, training images are preprocessed — each

image is slightly enlarged and then randomly cropped to size 256× 256 pixels.

The most complex part of the algorithm is the implementation of the loss functions. This

includes computation of 4 distinct loss components — the generator loss, the cycle loss,

the identity loss, and the discriminator loss. After the loss values are computed, the Adam

optimizer [13] is applied to train the generators and discriminators. The optimizer’s learning

parameters are the same as suggested in the original paper.

The complete algorithm can be summarized as follows:

1. Load the sets A, B of training images for domains A and B respectively.

2. Shuffle and apply a random jitter to sets A and B.

3. Construct the generators Ga, Gb and the discriminators Da, Db.

4. Repeat for each epoch:

4.1. For each (aT , bT) from (A, B):
4.1.1. Generate the cycle A → B → A for true image aT :

bF = Ga(aT), aC = Gb(bF)

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 20

4.1.2. Generate the cycle B → A → B for true image bT :

aF = Gb(bT), bC = Ga(aF)

4.1.3. Compute the loss values for generators Ga and Gb:

loss(Ga) = bce(ones, Db(bF))

loss(Gb) = bce(ones, Da(aF))

4.1.4. Compute the cycle loss value:

cycle loss = (mae(aT , aC) +mae(bT , bC))

4.1.5. Compute the identity loss values for generators Ga and Gb:

identity loss(Ga) = mae(bT , Ga(bT))

identity loss(Gb) = mae(aT , Gb(aT))

4.1.6. Compute the total loss values for generators Ga and Gb:

total loss(Ga) = loss(Ga) + λ · cycle loss + 0.5 · λ · identity loss(Ga)

total loss(Gb) = loss(Gb) + λ · cycle loss + 0.5 · λ · identity loss(Gb)

4.1.7. Compute the loss values for discriminators Da and Db:

loss(Da) = (bce(ones, Da(aT)) + bce(zeros, Da(aF))) /2

loss(Db) = (bce(ones, Db(bT)) + bce(zeros, Db(bF))) /2

4.1.8. Apply the Adam optimizer to Ga, Gb, Da, Db :

adam(Ga, total loss(Ga), lr = 0.0002, β1 = 0.5, β2 = 0.999)

adam(Gb, total loss(Gb), lr = 0.0002, β1 = 0.5, β2 = 0.999)

adam(Da, loss(Da), lr = 0.0002, β1 = 0.5, β2 = 0.999)

adam(Db, loss(Db), lr = 0.0002, β1 = 0.5, β2 = 0.999)

4.2. Output an example translation (aT , Ga(aT)).

4.2 Architecture of neural networks

The architecture of generators and discriminators somewhat differ from the one proposed

by the original authors [23], who adopted it from an earlier work by Johnson et al. [12] on

neural style transfer and super resolution. The implementation that we here consider rather

adopts its neural network architecture from the work of Isola et al. [11], who proposed an

algorithm for image-to-image translation with conditional GAN, that was implemented as

the pix2pix program, which is available in the official TensorFlow examples repository [14].

The architecture of the generators is given in Table 1. The first 8 layers sample down the

input image to a single pixel and from there on the image is upsampled back to 256 × 256

pixels. These layers that upscale data are called deconvolutional layers [22] and perform an

operation, which is the reverse of convolution.

Layers are not connected in a strict linear order, but pairwise — the output of a downsam-

pling layer is concatenated with the output of the upsampling layer of the same dimension,

before input to the next layer in the sequence. So, the output of layer 1 with dimensions

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 21

Table 1: The architecture of the CycleGAN generator.

Layer Input dimension Num. of filters Filter size Stride Activ. function
1 (256, 256, 3) 64 4× 4 2× 2 LeakyReLu
2 (128, 128, 64) 128 4× 4 2× 2 LeakyReLu
3 (64, 64, 128) 256 4× 4 2× 2 LeakyReLu
4 (32, 32, 256) 512 4× 4 2× 2 LeakyReLu
5 (16, 16, 512) 512 4× 4 2× 2 LeakyReLu
6 (8, 8, 512) 512 4× 4 2× 2 LeakyReLu
7 (4, 4, 512) 512 4× 4 2× 2 LeakyReLu
8 (2, 2, 512) 512 4× 4 2× 2 LeakyReLu
9 (1, 1, 512) 512 4× 4 2× 2 ReLu
10 (2, 2, 1024) 512 4× 4 2× 2 ReLu
11 (4, 4, 1024) 512 4× 4 2× 2 ReLu
12 (8, 8, 1024) 512 4× 4 2× 2 ReLu
13 (16, 16, 1024) 256 4× 4 2× 2 ReLu
14 (32, 32, 512) 128 4× 4 2× 2 ReLu
15 (64, 64, 256) 64 4× 4 2× 2 ReLu
16 (128, 128, 128) 64 4× 4 2× 2 Tanh

Output (256, 256, 3)

Table 2: The architecture of the CycleGAN descriminator.

Layer Input dimension Num. of filters Filter size Stride Activ. function
1 (256, 256, 3) 64 4× 4 2× 2 LeakyReLu
2 (128, 128, 64) 128 4× 4 2× 2 LeakyReLu
3 (64, 64, 128) 256 4× 4 2× 2 LeakyReLu
4 Zero padding (32, 32, 256) → (34, 34, 256)
5 (34, 34, 256) 512 4× 4 1× 1 LeakyReLu
6 Zero padding (31, 31, 256) → (33, 33, 256)
7 (33, 33, 256) 1 4× 4 1× 1 LeakyReLu

Output (30, 30, 1)

(128, 128, 64) and the output of layer 15 with dimensions (128, 28, 64) are concatenated to

data with dimensions (128, 128, 128) and input to layer 16. In the same way, layers 2 and

14 output to layer 15, layers 3 and 13 output to 14, etc. The last such pairing is performed

with layers 7 and 9 that output to layer 10. The output of layer 8 (the single pixel data) in

not paired with the output of any other layer.

The architecture of the discriminator is more straightforward. Its description is given

in Table 2. The output of a discriminator is an image of dimension 30 × 30 pixels and a

single color channel, normalized to real-value interval [0, 1]. Each pixel of the output image

corresponds to a patch of size 70 × 70 pixels of the input image. The value of the pixel is

the probabilistic estimate for that patch to be a part of the real image, i.e. the value 0 means

that the patch is surely false, while 1 means that the patch is surely true. Two examples of

discriminator’s outputs are given in Figure 18.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 22

Figure 18: Examples of discriminator’s output. Brighter pixels represent a higher probability that the
corresponding patch belongs to a true image.

4.3 Loss functions

CycleGAN defines four distinct loss functions to train the neural networks:

• Generator loss function,

• Discriminator loss function,

• Cycle loss function,

• Identity loss function.

The generator loss function determines how well did the current generator ‘fool’ the discrim-

inator. A false image generated by the generator is given to the discriminator and the more

the discriminator finds this image to be true, the lower the loss value. The discriminator’s

30 × 30 array output is compared with the array of 30 × 30 ones. Ideally for the generator

is that there is no difference between the two, which would mean a zero-loss. On the other

hand, an output of all zeros is the worst case for the generator, with the higher possible loss

value. The binary cross entropy function for probability of class 1 is therefore used as the

loss function for generators:

loss(G) = BCE(ONES, D(false image)) = − 1

N

N∑
i=1

log(xi), (4.1)

where x1, . . . , xN ∈ (0, 1] is the discriminator’s output. A quick verification of the above

equation would confirm that if xi = 1 for all i, loss(Ga/b) = 0, and that loss(Ga/b) increases

rapidly when all xi are close to 0.

The discriminator must be successful in two ways — detecting false images as false and

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 23

also detecting true images as true. The discriminator loss function is therefore defined as:

loss(D) = (BCE(ONES, D(true image)) + BCE(ZEROS, D(false image))) /2, (4.2)

where

BCE(ZEROS, D(false image)) = − 1

N

N∑
i=1

log(1− xi), (4.3)

and BCE(ONES, D(true image)) as in (4.1).

The cycle loss represents the distortion of the original image when passed through both

generators. Ideally, both generators work as inverters, one translating a horse to a zebra,

and the other one the translated zebra back to the original horse, and vice-versa. The more

the original image gets distorted in such a cycle, the higher the loss value. The cycle loss

function is defined simply as the Mean Absolute Error (MAE) of the image difference:

cycle loss = MAE
(
true image, Ga/b(Gb/a(true image))

)
=

1

N

n∑
i=1

|xi − x̂i|, (4.4)

where xi are pixels of the original image and x̂i the corresponding pixels of the cycled image.

Finally, the identity loss function helps train the generator in such a way, that when given

a target image as an input, it changes it as little as possible. Suppose that we give to a zebra

generator a picture with a horse and a zebra standing together. Ideally, the generator would

turn the horse into a zebra, while leaving the zebra as is. Needless to say, a picture with just

zebras on it should remain intact. The identity loss function is therefore defined as:

identity loss(G) = MAE (target image, G(target image)) =
1

N

n∑
i=1

|xi − x̂i|, (4.5)

where xi are pixels of the original target image and x̂i the corresponding pixels of the gener-

ated image.

The generators are trained using the weighted sum of the generator loss function, the

cycle loss function and the identity loss function:

total loss(G) = loss(G) + λ · cycle loss + 0.5 · λ · identity loss(G), (4.6)

where the parameter λ was set to 10 in the implementation that we here consider. The

discriminators are trained with the discriminator loss function.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 24

5 Conclusion

In this thesis we made a thorough study of the recent advances in Generative Adversary Net-

works for image-to-image translation, which is a subfield of deep neural network learning

— a machine learning discipline which became extremely popular in the last decade, due to

the rise and accessibility of CPU and GPU computation power. We outlined all the theoret-

ical prerequisites, including neural network architectures, image convolution, convolutional

neural networks, and generative adversary networks, which are necessary to understand how

machine learning is used to achieve translations between different image domains. We then

summarized the original paper on the state-of-the-art algorithm called CycleGAN, which is

able to learn such translations on the training sets of unpaired images. We presented inter-

esting examples of such translations for five different types of applications — style transfer,

object transfiguration, season transfer, generating photographies from paintings, and photo-

graphic enhancements. We then tested and analyzed the official TensorFlow implementation

of CycleGAN, written in the Python programming language and compared it with the im-

plementation suggested by the original paper. We analyzed the architecture of the generator

and the discriminator neural networks, including the types, dimensions, activation functions,

and connectedness of each layer; definitions of all 4 types of loss functions and the parame-

ters used; and the overall training algorithm. We tested the algorithm on a database of 1068

images of horses and 1355 images of zebras, with the goal to train the system how to trans-

late the images of horses to the images of zebras, and vice versa. We discovered that there

are some slight differences between the original proposal and the TensorFlow implementa-

tion, which we studied, mainly in the architecture of neural networks. TensorFlow adopted

the architectures from another project called pix2pix, which is also a part of the TensorFlow

examples repository and implements a GAN approach for synthesizing and reconstructing

photographies. However, the differences seem to be minor and should have little or no vis-

ible impact on the final results. Moreover, the TensorFlow implementation suggest training

for 40 epochs, while the original paper suggests 200 epochs.

There were many ideas in which directions to continue this study, which have to be

postponed to a later time, due to the lack of resources and the limited time to finish this

thesis. The TensorFlow CycleGAN implementation could be tested out on various images

domains, including the landscapes in different seasons, paintings of known painters, photos

of different kind of animals, flowers, etc. Performance of the algorithm could be measured

when executed on a CPU vs. GPU with different sizes of training sets and different sizes

and qualities of images. The number of needed training epochs could be evaluated before

the results are not anymore distinguishable by the human eye. Since the training is very

time consuming — one epoch can take hours to finish — such en estimate for different types

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 25

and quality of images could be useful. However, because training a CycleGAN is so time

consuming, such a project should probably demand a few more months of work.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 26

6 Povzetek naloge v slovenskem jeziku

Prevajanje slika-v-sliko (angl. image-to-image) je proces pretvorbe slik iz ene domene slik

v drugo, npr. iz domene slik konjev v domeno slik zeber. Učenje pretvarjanja iz slike v

sliko je v bistvu učenje preslikave med vhodnimi in izhodnimi slikami, kjer so nabori učnih

primerov slik lahko urejeni ali neurjeni. Pri urejenih meddomenskih parih slik je izhodna

slika dejanski rezultat preslikave vhodne slike, pri neurejenih parih pa sta vhodna in izhodna

slika lahko poljubna elementa svoje domene. Tradicionalno je bilo učenje izvedeno nad nizi

urejenih parov slik. Vendar pa v mnogih primerih takšni urejeni pari niso znani oz. ne obsta-

jajo. Če na primer želimo pretvarjati med dvema slikarskima stiloma, zelo verjetno ne bomo

imeli na voljo nabora parov slik, kjer je popolnoma enaka vsebina narisana v dveh različnih

stilih. Algoritem CycleGAN lahko reši ta problem. To je oblika generativne nasprotniške

nevronske mreže (angl. Generative Adversial Network, GAN), kjer dve nevronski mreži

tekmujeta druga proti drugi. Ena nevronska mreža se imenuje generator, druga pa diskrimi-

nator. Naloga generatorja je, da pretvori dano sliko iz ene slikovne domene v drugo, naloga

diskriminatorja pa, da razlikuje med pravimi in generiranimi slikami. Obe nevronski mreži

med učenjem tekmujeta. Generator se uči preslepiti diskriminator, diskriminator pa se uči

prepoznati ponaredke generatorja. Generator lahko sčasoma postane tako dovršen, da lahko

preslepi človeško oko. Naučimo ga lahko preoblikovanja slik iz enega umetniškega sloga

v drugega z minimalnim vplivom na samo vsebino, preoblikovanja med različnimi objekti,

npr. med konji in zebrami, preoblikovanja med letnimi časi, npr. med poletjem in zimo, med

dnevom in nočjo, itd.

V tej diplomski nalogi smo izvedli temeljito študijo nedavnega napredka v generativnih

nasprotniških nevronskih mrežah za prevajanje slika-v-sliko, kar spada v področje globokega

učenja nevronskih mrež — disciplino strojnega učenja, ki je postala izjemno priljubljena

v zadnjih desetletjih, predvsem zaradi porasta in dostopnosti računalniške procesne moči

CPE in GPE. V nalogi smo najprej povzeli vse potrebne teoretične osnove, vključno z

arhitekturami nevronskih mrež, konvolucijo slik, konvolucijskimi nevronskimi mrežami ter

teorijo generativnih nasprotniških nevronskih mrež. Nato smo predstavili vsebino izvornega

članka o algoritmu CycleGAN ter predstavili zanimive primere slikovnih pretvorb za pet ra-

zličnih načinov uporabe tega algoritma — prenos sloga, preoblikovanje objekta, pretvorba

letnih časov, generiranje fotografij iz slik ter izboljšave fotografij. Preizkusili in analizirali

smo uradno TensorFlow implementacijo algoritma CycleGAN, napisano v programskem

jeziku Python ter jo primerjali s predlagano implementacijo izvornega članka. Analizirali

smo arhitekturo generatorskih in diskriminatorskih nevronskih mrež, vključno z vrstami

posameznih plasti, njihovimi dimenzijami, aktivacijskimi funkcijami in povezanostjo. Anal-

izirali smo definicije vseh štirih tipov funkcij izgube (angl. loss functions) in uporabljene

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 27

parametre. Preučili smo tudi algoritem treniranja nevronskih mrež. Algoritem smo nato te-

stirali na podatkovni bazi 1068 slik konjev in 1355 slik zeber, z namenom usposobiti sistem

za pretvarjanje podob konjev v podobe zeber in obratno. Ugotovili smo, da obstaja nekaj

manjših razlik med prvotnim predlogom implementacije in izvedbo TensorFlow. Razlike so

predvsem v arhitekturi nevronskih mrež, saj je TensorFlow prevzel arhitekturo po nekem

drugem projektu, ki se imenuje pix2pix in je prav tako del repozitorija primerov knjižnice

TensorFlow. Razlike so sicer majhne in menimo, da ne bi smele imeti vidnega vpliva na

končne rezultate. Poleg tega implementacija TensorFlow predlaga, da treniranje izvajamo

40 epoh, medtem ko izvorni članek predlaga 200 epoh.

Diplomska naloga se osredotoča predvsem na teoretično plat študije algoritma Cycle-

GAN, obstaja pa še veliko praktičnih možnosti za nadaljevanje dela. Algoritem CycleGAN

bi lahko preizkusili na različnih domenah slik, npr. slik pokrajin v različnih letnih časih

ali ob različnih delih dneva, slik znanih slikarjev, fotografij različnih vrst živali, rož, itd.

Lahko bi izmerili hitrost učenja pri izvajanju algoritma na CPU v primerjavi s hitrostjo pri

izvajanju na GPE. Pri tem bi lahko uporabili različne velikosti učnih množic, ob različnih

velikostih in kakovostih slik. Ugotavljali bi tudi lahko, najmanj koliko epoh učenja je potreb-

nih, da človeško oko več ne zazna razlike med generiranimi slikami. Zaradi visoke računske

zahtevnosti algoritma CycleGAN predvidevamo, da bi za izvedbo takšne praktične študije

verjetno potrebovali nekaj mesecev.

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 28

7 Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-

jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, David Fagan, Ahmed Kattan,

Anthony Brabazon, and Kathleen Curran. Deep evolution of image representations for

handwritten digit recognition. In 2015 IEEE Congress on Evolutionary Computation

(CEC), pages 2452–2459, May 2015.

[3] Md. Zahangir Alom, Tarek Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike,

Mst Nasrin, Mahmudul Hasan, Brian Essen, Abdul Awwal, and Vijayan Asari. A State-

of-the-Art Survey on Deep Learning Theory and Architectures. Electronics, 8, March

2019.

[4] Amidi S. Amidi A. Deep Learning: Convolutional Neural Networks. Stanford Univer-

sity, 2019. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet

-convolutional-neural-networks.

[5] Jason Brownlee. 18 Impressive Applications of Generative Adversarial Networks

(GANs), June 2019. https://machinelearningmastery.com/impressive-

applications-of-generative-adversarial-networks/.

[6] Capobianco, Giovanni Cerrone, Carmine Di Placido, Andrea Durand, Daniel Pavone,

Luigi Russo, Davide Donato Sebastiano, and Fabio. Image convolution: a linear pro-

gramming approach for filters design. Soft Computing, 25(14):8941–8956, 2021.

[7] CycleGAN notebook at Google Colab. https://colab.research.google.com/gi

thub/tensorflow/docs/blob/master/site/en/tutorials/generative/cycl

egan.ipynb. Accessed: 2022-08-02.

[8] IBM Cloud Education. Convolutional neural networks. https://www.ibm.com/cl

oud/learn/convolutional-neural-networks. Accessed: 2022-07-19.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cyclegan.ipynb
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cyclegan.ipynb
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cyclegan.ipynb
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 29

[9] Aashutosh Ganesh and Koshy George. Chapter 11 - generative adversarial networks

for histopathology staining. In Arun Solanki, Anand Nayyar, and Mohd Naved, ed-

itors, Generative Adversarial Networks for Image-to-Image Translation, pages 263–

287. Academic Press, 2021.

[10] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai,

Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, and Tsuhan Chen. Recent advances

in convolutional neural networks. Pattern Recognition, 77:354–377, 2018.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image trans-

lation with conditional adversarial networks, 2016. doi: 10.48550/arXiv.1611.07004.

[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style

transfer and super-resolution, 2016. doi: 10.48550/arXiv.1603.08155.

[13] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In-

ternational Conference on Learning Representations, 12 2014.

[14] TensorFlow official examples repository. https://github.com/tensorflow/exam

ples. Accessed: 2022-08-05.

[15] Victor Powell. Image kernels. https://setosa.io/ev/image-kernels/, 2019.

Accessed: 2022-07-11.

[16] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way. https://towardsdatascience.com/a-comprehensive-guide-to-conv

olutional-neural-networks-the-eli5-way-3bd2b1164a53, 2018. Accessed:

2022-07-22.

[17] Thalles Silva. An intuitive introduction to generative adversarial networks (gans). http

s://www.freecodecamp.org/news/an-intuitive-introduction-to-generat

ive-adversarial-networks-gans-7a2264a81394, 2018. Accessed: 2022-07-28.

[18] Patricia L. Suárez, Angel D. Sappa, and Boris X. Vintimilla. Chapter 9 - deep learning-

based vegetation index estimation. In Arun Solanki, Anand Nayyar, and Mohd Naved,

editors, Generative Adversarial Networks for Image-to-Image Translation, pages 205–

234. Academic Press, 2021.

[19] Convolution — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/i

ndex.php?title=Convolution&oldid=1099917634. Accessed: 2022-08-19.

[20] Wikipedia contributors. Neural network — Wikipedia, the free encyclopedia, 2022.

[Online; accessed 19-August-2022].

https://github.com/tensorflow/examples
https://github.com/tensorflow/examples
https://setosa.io/ev/image-kernels/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
https://en.wikipedia.org/w/index.php?title=Convolution&oldid=1099917634
https://en.wikipedia.org/w/index.php?title=Convolution&oldid=1099917634

Dukovska I. Image-to-Image Translation through Generative Adversarial Networks.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 30

[21] Hiromu Yakura, Shinnosuke Shinozaki, Reon Nishimura, Yoshihiro Oyama, and Jun

Sakuma. Malware Analysis of Imaged Binary Samples by Convolutional Neural Net-

work with Attention Mechanism. In CODASPY ’18: Proceedings of the Eighth ACM

Conference on Data and Application Security and Privacy, pages 127–134, March

2018.

[22] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolu-

tional networks. In 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 2528–2535, 2010.

[23] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Un-

paired image-to-image translation using cycle-consistent adversarial networks.

10.48550/arXiv.1703.10593, 2017.

