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Izvleček: Kanonični dvojni krov grafa X je definiran kot graf BX := X ×K2. Grupa

Aut(BX) vsebuje podgrupo, izomorfno Aut(X) × S2, ki jo generirajo avtomorfizmi

faktorjev X in K2 dvojnega krova BX. V primeru Aut(BX) ∼= Aut(X) × S2, se

graf X imenuje stabilen. V nasprotnem primeru je graf X nestabilen. Če je X do-
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najpomembneǰse rezultate o stabilnosti grafov in avtomorfizmih njihovih kanoničnih
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Abstract: The canonical bipartite double cover of a graph X is defined to be the graph

BX := X ×K2. The group Aut(BX) contains a subgroup isomorphic to Aut(X)×S2,

which is generated by the automorphisms coming from the factors X and K2 of the

double cover BX. In case Aut(BX) ∼= Aut(X)× S2, the graph X is said to be stable.

Otherwise, X is unstable. If X is additionally connected, non-bipartite and distinct

vertices have distinct sets of neighbours, it is called non-trivially unstable. In this

thesis, we examine some of the most important results on stability of graphs and

automorphisms of their canonical double covers. The majority of the results we discuss

fall into one of the following categories: results implying (in)stability of graphs, results

characterizing non-trivially unstable members of a particular family of vertex-transitive

graphs, or results for constructing unstable graphs with various prescribed properties.

We present original results in each of these categories.
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1 INTRODUCTION

1.1 MOTIVATION AND RELATED WORK

The canonical bipartite double cover BX of a graph X is defined to be the graph

X ×K2, where × denotes the direct product of graphs and K2 is the complete graph

on two vertices. It is immediate from its definition that BX is a bipartite graph with

the vertex set V (BX) = V (X)×{0, 1} and a bipartition given by the sets V (X)×{0}
and V (X)× {1}, which we will often refer to as colour classes of BX. Moreover, each

edge {x, y} of X induces two edges of BX, namely {(x, 0), (y, 1)} and {(x, 1), (y, 0)}
for x, y ∈ V (X).

This concept has been first introduced by Marušič, Scapellato and Zagaglia Salvi in

their work on compatible (0, 1)-matrices [21]. The authors have studied the canonical

double covers in terms of their adjacency matrices. Since then, canonical double covers

have proven to play an important role in algebraic graph theory and have been studied

by multiple groups of authors from a variety of perspectives [6, 16, 24,32,36].

Canonical double covers are fundamental in the study of symmetries of the direct

product of graphs. In [9], Hammack and Imrich prove that a direct product X × Y of

a non-bipartite graph X and a bipartite graph Y is vertex-transitive if and only if BX

and Y are vertex-transitive.

One of the consequences of how we construct the canonical double cover is that

Aut(BX) contains a subgroup isomorphic to Aut(X)×S2. This subgroup is generated

by the automorphisms (x, i) 7→ (φ(x), i) for x ∈ V (X), i ∈ {0, 1} with φ ∈ Aut(X) and

the automorphism τ swapping pairs of vertices (x, 0) and (x, 1) for each x ∈ V (X).

In [34], Wilson refers to the subgroup Aut(X) × S2 as the subgroup of expected

automorphisms of BX. In the previously cited article [21], Marušič, Scapellato and

Zagaglia Salvi refer to the graphs for which all automorphisms of BX are expected,

that is, Aut(BX) is isomorphic to Aut(X) × S2, as stable graphs. If a graph fails

to satisfy this condition i.e., the automorphism group of the double cover contains

additional automorphisms, called unexpected automorphisms, the graph is said to be

unstable. Stable graphs include odd cycles and complete graphs Kn with n ≥ 3, while

even cycles are unstable.

Stability of a graph is an important property. For instance, Morris [23] explains

that for a connected non-bipartite graph X and a bipartite graph Y (satisfying some
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mild conditions), it holds that Aut(X×Y ) ∼= Aut(X)×Aut(Y ), if X is stable. In [24],

the authors provide a method for obtaining all orientable regular maps which are

embeddings of the graph BX, given that X is a stable graph and that all of its regular

embeddings are known.

It is not difficult to show that graphs which are disconnected, bipartite (with a

non-trivial automorphism group) or contain distinct vertices with the same sets of

neighbours (such vertices are called “twins”) are unstable. This is why Wilson [34]

defines an unstable graph to be non-trivially unstable if it is connected, non-bipartite

and twin-free.

Non-trivially unstable graphs have received considerable attention. In [17], a close

connection between two-fold automorphisms of graphs and unstable graphs is estab-

lished. The search for non-trivially unstable graphs has lead to the introduction of

Generalized Cayley graphs in [22] and extended Generalized Cayley graphs in [11].

In this thesis, we will discuss several natural questions regarding canonical double

covers and their (unexpected) automorphisms. We will provide an overview of the

results available in the literature that provide at least partial answers to these questions.

All original results, excluding the ones that have been discovered over the course of

working on this thesis, can be found in the following two articles on double covers

of circulant graphs [12] and [13], that the student and supervisor are co-authors of

together with Prof. Dave Witte Morris.

The differences between stable and unstable graphs will be studied and exploited

when we will be considering a number of criteria for establishing stability or instability

of graphs. Once sufficiently many results have been obtained, we will attempt to

characterize non-trivially unstable members of various graph families. Often, we will

be working with different subfamilies of circulant graphs, which are probably the most

well-studied family of graphs from the point of view of stability theory. We will discuss

the classifications of Cayley graphs of abelian groups of odd order and arc-transitive

circulants as well as the newly obtained classifications of non-trivially unstable circulant

graphs of order 2p (obtained in [13]) and circulant graphs of low valency (obtained

in [12]). We will also consider strongly regular graphs, Andrásfai graphs, Kneser graphs

and Johnson graphs and investigate their stability properties.

Similarly, we will be interested in the differences between expected and unexpected

automorphisms. In order to describe what an unexpected automorphism can look like,

we will study the characterization of non-trivially unstable graphs obtained by Wilson

in [34].

In order to understand the relation between instability and other graph theoretic

and symmetry properties, we will work with several constructions, each producing a

family of non-trivially unstable graphs with surprising properties. These families were

often constructed as counterexamples to various conjectures in the field. In [13], we
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constructed an infinite family of non-trivially unstable circulant graphs with no Wilson

type (this shows that Wilson’s conjecture from [34] is false).

1.2 STRUCTURE OF THE THESIS

In Chapter 2, we recall results and terminology from permutation group theory and

algebraic graph theory that will be used throughout the thesis. We introduce several

notions of graph products. We define Cayley graphs and discuss normal Cayley graphs

and Paley graphs. We close the section with a selection of results on twin-free graphs

and Cartesian skeletons that will be used in the following sections.

In Chapter 3, we introduce our main objects of study: canonical bipartite double

covers, stable and unstable graphs, expected and unexpected automorphisms as well

as the index of instability. We prove that if a graph is disconnected, bipartite (with

a non-trivial automorphism group) or not twin-free, it is necessarily unstable. This

leads to the definition of non-trivially unstable graphs. In Example 3.23 we describe

the smallest non-trivially unstable graph, namely the Bowtie graph W .

In Chapter 4, we collect stability criteria coming from various sources in the liter-

ature. We show that all, but the first, Andrásfai graphs are stable. Towards the end

of the section, we discuss two results of Surowski [30]. Proposition 4.15 is a correction

of his first result, while Proposition 4.18 is a generalization of the second. Using these

results we are able to classify all unstable Johnson graphs in Theorem 4.30. We also

show that infinitely many Kneser graphs are stable (see Corollary 4.23 and Corollary

4.24).

In Chapter 5, we introduce four criteria for instability of general graphs formulated

by Wilson in [34]. These are described in Theorem 5.5, Theorem 5.14, Theorem 5.20

and Theorem 5.28. The main result of Wilson’s article [34] is that every non-trivially

unstable graph satisfies at least one of the mentioned conditions (see Theorem 5.35).

Applying these results to the family of circulant graphs, one obtains the four Wilson

types described in Theorem 5.48. We conclude the section by discussing generalizations

of Wilson types, namely Theorem 5.52, Proposition 5.56 and Proposition 5.58, that we

have introduced in [13] together with Prof. Dave Witte Morris.

In Chapter 6, we study the results on stability of Cayley graphs of abelian groups.

We will cover two results of Qin, Xia and Zhou from [26]: Theorem 6.1 showing that

there are no non-trivially unstable circulants of prime order, and Theorem 6.22 showing

that there are no non-trivially unstable arc-transitive circulants. We then prove the

analogous result of Hujdurović and Fernandez from [7] for circulants of odd order in

Theorem 6.8. The result of Morris from [23], given in Theorem 6.11, is the final

generalization of the previously mentioned results to Cayley graphs of abelian groups
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of odd order. We conclude the section with Theorem 6.18, where we characterize all

non-trivially unstable circulants of order 2p, with p a prime, using Wilson types.

Chapter 7 is dedicated to the classification of non-trivially unstable circulant graphs

of valency at most 7, which we have obtained in [12] together with Prof. Dave Witte

Morris. For each valency, an explicit list of all non-trivially unstable graphs is given.

Moreover, instability of each obtained graph is explained by one of the original four

Wilson types. The corresponding results are Proposition 7.6 (valency 3), Theorem 7.7

(valency 4), Theorem 7.8 (valency 5), Theorem 7.11 (valency 6) and Theorem 7.12

(valency 7).

In Chapter 8, we discuss several constructions, each producing a family of non-

trivially unstable graphs with different additional properties. In Section 8.1, we de-

scribe the Swift graph SG (see Example 8.3), constructed by Wilson in [34], and an

infinite family of non-trivially unstable asymmetric graphs Uk (see Example 8.10), first

constructed by Lauri, Mizzi and Scapellato in [18] using TF-automorphisms. In Sec-

tion 8.2, we discuss the infinite family of vertex-intransitive unstable graphs X (n) (see

Theorem 8.22), introduced in [22], whose canonical double cover is a Cayley graph. In

Section 8.3, we discuss the infinite family of non-trivially unstable arc-transitive graphs

constructed by Surowski in [30] as double graphs of Paley graphs (see Theorem 8.34).

We also briefly mention another construction introduced in the same article, which

produces a non-trivially unstable family with an arbitrarily large index of instability.

Finally, in Section 8.4, we discuss Example 8.41 from [13], which describes an infinite

family of non-trivially unstable circulants with no Wilson type.
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2 PRELIMINARIES

2.1 BASICS OF PERMUTATION GROUP THEORY

As we will mostly be concerned with graphs and their symmetries, majority of our

arguments and results are best expressed in the language of group actions and per-

mutation group theory. In this section, we recall some of the basics of this theory,

establish notation and terminology. Standard reference is [3].

Definition 2.1. Let X be a non-empty set.

1. A bijection f : X → X is called a permutation of X.

2. The symmetric group of X, denoted Sym(X), is the group of all permutations

on X together with function composition. If X is finite with n elements, we will

sometimes denote this group by Sn and call it the symmetric group on n letters.

3. A permutation group on X is any subgroup of the group Sym(X).

Definition 2.2. Let G be a group and X a non-empty set. We say that G acts on the

set X (from the left) if there exists a function

G×X → X

(g, x) 7→ xg

such that

1. x1 = x for all x ∈ X (where 1 denotes the identity element of the group G),

2. (xg)h = xgh for all g, h ∈ G, x ∈ X.

If X is a set and G ≤ Sym(X) is a permutation group on X, then the natural action

of G of X is given by evaluating elements of G (the permutations) at elements of X

(the points).

The following objects are of fundamental importance in the study of permutation

groups.

Definition 2.3. Let G be a group acting on a non-empty set X. Let x ∈ X be a

point.
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1. The subgroup Gx := {g ∈ G | xg = x} of G is called the stabilizer of the point x.

It consists of all elements g ∈ G that fix the point x.

2. The subset xG := {xg | g ∈ G} is called the orbit of the point x with respect to

the action of G. It consists of all elements y ∈ X for which there exists a g ∈ G

such that xg = y. We will sometimes denote the orbit of x by OG(x), or just by

O(x), if the group G is clear from context.

We state the following observations without proof.

Observation 2.4. Let G be a group acting on a non-empty set X.

1. Orbits of G form a partition of X.

2. If x, y ∈ G lie in the same orbit of G i.e., if there exists a g ∈ G such that y = xg,

then the corresponding point stabilizers Gx and Gy are conjugate subgroups of G.

In particular, Gy = gGxg
−1.

Now that we have introduced orbits and stabilizers, we can talk about particularly

nice group actions that will play a prominent role in our study of graph automorphisms

(especially when we will be talking about Cayley graphs).

Definition 2.5. Let G be a group acting on a non-empty set X. Then the action of

G is called

1. transitive - if G has only one orbit on X, that is, for every x, y ∈ X there exists

a g ∈ G such that xg = y.

2. semi-regular - if for all x ∈ X, the corresponding point stabilizer Gx is trivial.

This means that if g ∈ G fixes a point of X, it is automatically trivial.

3. regular - if it is both transitive and semi-regular. Note that, in this case, given

x, y ∈ X, there exists a unique element g ∈ G such that xg = y.

So far, we have not made any assumptions on the set X. When X is finite, a

number of nice results becomes available right away. The following fundamental result,

which follows by a simple double-counting argument, establishes a connection between

point stabilizers and orbits of a finite group acting on a finite set.

Lemma 2.6 (Orbit-Stabilizer lemma, [3, Theorem 1.4A(iii)]). Let G be a finite group

acting on a finite set X. Let x ∈ X be arbitrary. Then the following equality holds

|G| = |xG||Gx|.

The following concept is one of the main tools in the study of permutation groups

and their actions, as it provides a way of reducing an action of a group to an action of

the same group on a smaller set, which might be easier to understand.
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Definition 2.7 ([3, pp. 12–13]). Let G be a group acting on a non-empty set X. Let

B ⊆ X be a non-empty subset of X. Then B is called a block for the action of G if,

for every g ∈ G, we have that

either g(B) = B or g(B) ∩B = ∅.

The following observations can be derived directly from the definition of a block.

Observation 2.8. Let G be a group acting on a non-empty set X. Let B ⊆ X be a

block for the action of G.

1. For every g ∈ G, g(B) is a block for the action of G. Two blocks B and B′ related

by an element of g ∈ G such that B′ = g(B) are called conjugate blocks.

2. Suppose that G is transitive in its action on X. The set P = {g(B) | g ∈ G} of

all conjugates of B under G is a partition of X. Such a partition is called a block

system for the action of G.

3. The group G has an obvious action on P, given by (g,B) 7→ g(B). This defines

a group homomorphism γ : G → Sym(P). The kernel ker γ consists of all g ∈ G

that fix every block B in P set-wise.

2.2 BASICS OF ALGEBRAIC GRAPH THEORY

In this section, we recall some of the basic definitions and results from algebraic graph

theory. For the concepts from graph theory not defined here, we suggest the following

references [8, 33].

Unless stated otherwise, all graphs are finite, simple (no loops or multiple edges)

and undirected. The notation we will be using is standard. When the group G is clear

from context, the identity element 1G of G will often be denoted by 1.

Graphs will usually be denoted by capital letters X, Y, Z. The vertex set, edge set

and the automorphism group of a graphX will be denoted by V (X), E(X) and Aut(X),

respectively. Automorphisms of graphs will usually be denoted by Greek letters such

as α, β, γ and φ.

The neighbourhood of a vertex x in a graph X will be denoted by NX(x). The

complement of X is the graph X with V (X) := V (X) and x, y ∈ V (X) adjacent in X

if and only if they are not adjacent in X.

The distance between x and y, that is, the length of the shortest path from x

to y in X, will be denoted by dX(x, y) or just d(x, y) if the graph X is clear from

context. For a finite graph X, a positive integer i ≥ 0 and a vertex x ∈ V (X),

Xi(x) := {y ∈ V (X) | dX(x, y) = i} denotes the distance sets of X with respect to i.

Recall that these sets form the distance partition of X with respect to x.
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A lot of our work will have to do with graphs of different types and degrees of

symmetry. Here we define some of the most common types of symmetric graphs we

will be encountering.

Definition 2.9. Let X be a graph and Aut(X) its automorphism group. Note that

Aut(X) is a permutation group on the vertex set V (X). We will call X

1. Vertex-transitive - if Aut(X) is transitive in its natural action on the set of vertices

V (X) of X,

2. Edge-transitive - if Aut(X) is transitive in its induced action on the edge set

E(X) of X, where α({x, y}) := {α(x), α(y)} for x, y ∈ V (X), α ∈ Aut(X),

3. Arc-transitive - if Aut(X) is transitive in its induced action on the set of arcs

of X. By an arc of X, we mean an order pair of adjacent vertices (x, y) with

x, y ∈ V (X). The induced action is given by α(x, y) := (α(x), α(y)) for all

x, y ∈ V (X), α ∈ Aut(X).

4. Distance-transitive - Aut(X) is transitive on the set of pairs of equidistant ver-

tices. This means that for all vertices x, y, z, w ∈ V (X) such that d(x, y) =

d(z, w), there exists an α ∈ Aut(X) such that α(x) = z and α(y) = w. Note

that this implies that for all x ∈ V (X), the stabilizer Aut(X)x is transitive on

the distance set Xi(x) for all i ≥ 1.

Remark 2.10. It is easy to see that arc-transitivity implies both vertex and edge-

transitivity. The converse fails in general, as explained in [8, p.36-37].

The following characterization of arc-transitivity is often useful.

Lemma 2.11. Let X be a vertex-transitive graph. Then X is arc-transitive if and only

if the point stabilizer Aut(X)x is transitive on the set of neighbours NX(x) of x for

some (equivalently, every) x ∈ V (X).

By noting that for a graphX and its vertex x ∈ V (X), it holds thatNX(x) = X1(x),

we obtain the following corollary of Lemma 2.11.

Corollary 2.12. Distance-transitive graphs are arc-transitive.

Recall the definitions of a block and a block system from the previous section (see

Definition 2.7 and Observation 2.8).

Lemma 2.13. Let X be a bipartite graph. If X is connected, then its bipartition is

unique. Consequently, if V (X) = A∪B is the unique bipartition of X and α ∈ Aut(X)

is an automorphism of X, then

either α(A) = A,α(B) = B or α(A) = B,α(B) = A.
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Moreover, if X is vertex-transitive, A and B are conjugate blocks and {A,B} is a

block system for the action of Aut(X).

Lemma 2.14. Let X be a connected vertex-transitive graph of odd order. Then X is

non-bipartite.

Proof. Assume for contradiction that X is bipartite with bipartition V (X) = A ∪ B.

Then by Lemma 2.13, it follows that A and B are conjugate blocks with respect to the

action of Aut(X). In particular, B = α(A) for some α ∈ Aut(X). Hence, |A| = |B|
and |V (X)| = 2|A|. This is a contradiction with X being a graph of odd order.

We will often be working with quotient graphs. We give a precise definition that

we will be using below.

Definition 2.15. Let X be a graph. Let P be a partition of its vertex set. The

quotient graph of X with respect to P is the simple (so loop-less) graph X/P with

• V (X/P) := P ,

• E(X/P) consisting of {B1, B2} with B1, B2 ∈ P such that there exist x ∈ B1, y ∈
B2 with {x, y} ∈ E(X).

A particular instance of this construction that we will encounter is when the par-

tition P is formed by the orbits of a group ⟨γ⟩ with γ ∈ Aut(X). In this case, the

corresponding quotient graph will be denoted by X/γ.

2.3 GRAPH PRODUCTS

The following products will be of great importance in the following sections.

Definition 2.16 ([10, p. 35, 36, and 43], [7, p. 53]). Let X and Y be graphs.

1. The direct product X × Y is the graph with V (X × Y ) = V (X) × V (Y ), such

that (x1, y1) is adjacent to (x2, y2) if and only if

(x1, x2) ∈ E(X) and (y1, y2) ∈ E(Y ).

2. The Cartesian product X□Y is the graph with V (X ×Y ) = V (X)×V (Y ), such

that (x1, y1) is adjacent to (x2, y2) if and only if either

• x1 = x2 and (y1, y2) ∈ E(Y ), or

• y1 = y2 and (x1, x2) ∈ E(X).

3. The wreath product X ≀ Y is the graph with V (X ≀ Y ) = V (X)× V (Y ) such that

(x1, y1) and (x2, y2) are adjacent if and only if either
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• {x1, x2} ∈ E(X), or

• x1 = x2 and {y1, y2} ∈ E(Y ).

Note that X ≀Y can be obtained by replacing each vertex of X with a copy of Y .

(Vertices in two different copies of Y are adjacent in X ≀ Y if and only if the

corresponding vertices of X are adjacent in X.) This product is sometimes called

the lexicographic product (see [10, p. 43]).

4. The deleted wreath product of X and Kn is the graph X ≀dKn with V (X ≀dKn) =

V (X)×V (Kn), such that (x, i) and (y, j) are adjacent if and only if {x, y} ∈ E(X)

and i ̸= j. Note that X ≀dKn can be obtained from X ≀Kn by removing n vertex-

disjoint copies of X. This is why we sometimes write X ≀d Kn = X ≀Kn − nX.

Remark 2.17 ([10, p. 36]). In the literature, the direct product appears under various

other names, including “tensor product,” “Kronecker product,” “cardinal product,” and

“conjunction.”

There is a number of results about interactions of these products and their auto-

morphism groups. A standard reference is [10]. The results coming from other sources

in the literature, that will be useful to us, are listed here.

The following is a direct consequence of [4, Theorem 5.3] derived in [7]. We define

what it means for a graph to be “twin-free” in Definition 2.41.

Lemma 2.18 ([7, Lemma 2.9], [4, Theorem 5.3]). Let d ≥ 3. Let Y be a twin-free,

vertex-transitive graph whose order is not divisible by d. Then it holds that

Aut(Y ≀d Kd) ∼= Aut(Y )× Sd.

Lemma 2.19 (Dobson-Miklavič-Šparl [4, Proposition 4.5]). Let X be a graph and let

m,n ≥ 2 be integers. Then it holds that

(X ≀Km) ≀d Kn
∼= (X ≀d Kn) ≀Km.

Lemma 2.20 (Qin-Xia-Zhou [26, Example 2.1]). Let X be a graph and d > 1 an

integer. Then it holds that

X ×Kd
∼= X ≀Kd − dX ∼= X ≀d Kd.

2.4 CAYLEY GRAPHS

We now introduce Cayley graphs, a class of vertex-transitive graphs of pivotal impor-

tance. Most problems we will be considering, we will also consider in the context of

Cayley graphs or particular families of Cayley graphs.
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Definition 2.21. Let G be a group. A subset of S ⊆ G is called inverse-closed if

s ∈ S implies that s−1 ∈ S for all s ∈ S

Definition 2.22. Let G be a group with identity element 1. Let S be an inverse-closed

subset of G and assume that 1 ̸∈ S. The Cayley graph of G with respect to S is the

graph Cay(G,S) with

• V (Cay(G,S)) := G,

• E(Cay(G,S)) := {{g, gs} | g ∈ G, s ∈ S}.

The definition of the edge set of Cay(G,S) implies that g, h ∈ G are adjacent if

and only if g−1h ∈ S (or equivalently, as S is inverse-closed, h−1g ∈ S).

We refer to S as the connection set of Cay(G,S).

Definition 2.23. (M.-Y.Xu [35, Definition 1.4]) For each g ∈ G, define the left trans-

lation by g to be the map gL : G→ G given by x 7→ gx for x ∈ G.

It is clear that this is a permutation of G, with (gL)
−1 = (g−1)L. The set

GL = { gL | g ∈ G }

is a subgroup of Sym(G) and it is often called the (left) regular representation of G.

Note that g 7→ gL is a group isomorphism between G and GL.

Definition 2.24. Let X = Cay(G,S) be a Cayley graph of a group of G. We define

Aut(G,S) := {φ ∈ Aut(G) | φ(S) = S}.

Cayley graphs are well-studied in the literature, so all of the following properties

are well known. We make a concrete list of the properties that we will be using in the

rest of the thesis for easy reference.

Proposition 2.25. Let X = Cay(G,S) be a Cayley graph of a group G with a con-

nection set S. Then X has the following properties.

1. The left regular representation GL = {gL | g ∈ G} is a regular subgroup of Aut(X)

isomorphic to G.

2. X is vertex-transitive.

3. X is regular with valency |S|. Moreover, for g ∈ G, it holds that NX(g) = gS :=

{gs | s ∈ S}.

4. The group Aut(G,S) is a subgroup of Aut(X)1.

5. X is connected if and only if S generates G.
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6. The complement of X is given by X = Cay(G, (G \ {1}) \ S).

Proof. The first five items are obvious. For part (6), note that it follows from definitions

of X and the graph complement that x, y ∈ V (X), x ̸= y are adjacent in X if and

only if they are not adjacent in X, which happens if and only if x−1y ̸∈ S. Then

x−1y ∈ G \ S, but x−1y is not the identity, as x and y were assumed to be distinct.

Hence, x−1y ∈ (G\{1})\S. Finally, note that as S is inverse-closed and 1 is self-inverse,

the set (G \ 1) \ S is also inverse-closed.

As we have seen in Proposition 2.25(1), there is a strong connection between the

automorphism group of a Cayley graph and the group it is constructed from. As a

matter of a fact, this property characterizes Cayley graphs and the result is known as

the Sabidussi’s theorem.

Theorem 2.26 (Sabidussi [27]). A graph X is a Cayley graph of a group G if and only

if Aut(X) contains a regular subgroup isomorphic to G.

We now derive the following properties of Cayley graphs using the results we already

considered in Section 2.1.

Corollary 2.27. Let X = Cay(G,S) be a connected Cayley graph. If |G| is odd, then

X is non-bipartite.

The blocks and block systems for the natural action of the automorphism group of

a Cayley graph of an abelian group can be described in the following two ways.

Lemma 2.28 ([12, Definition 2.7]). Let G be an abelian group and X = Cay(G,S) a

Cayley graph of G. Let B ⊆ G be a block for the natural action of Aut(X) and denote

by P the block system consisting of conjugate blocks of B. Then there exists a subgroup

H of G such that

1. B is a coset of H in G. Moreover, the partition of G into cosets of H coincides

with the partition P.

2. B is an orbit of the subgroup HL of GL ≤ Aut(X). Moreover, the partition of G

into orbits of HL coincides with the partition P.

3. The quotient graph X/P can be identified with Cay(G/H, {sH | s ∈ S}).

Proof. (1) Let H denote the conjugate block of B that contains the identity 1 of G.

This shows that h ∈ H if and only if hL(H) = H. As (gh)L = gLhL, this shows that H

is closed under product operation of G. As G is abelian, the inversion map ι : g 7→ g−1

is an automorphism of X that fixes the identity. It follows that ι(H) = H, so H is

closed under taking inverses. Hence, H is a subgroup of G.
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Moreover, note that H ∈ P , so some block is a conjugate block of B if and only if

it is a conjugate block of H. Therefore, as the group GL is transitive, every block in

P can be obtained as gL(H) = gH for some g ∈ G.

(2) As HL ≤ GL acts on X by translations by elements of H, it is clear that the

orbit of g ∈ G under HL is just gH. We have already shown that P coincides with the

set of cosets of H, so the conclusion follows.

(3) By (1), we can identify the vertex set P of the quotient graph X/P with the

quotient group G/H (which is just the set of cosets ofH in G). Note that two cosets xH

and yH are adjacent in X/P (after possibly choosing a different coset representative)

if and only if x−1y ∈ S. This is equivalent to (xH)−1(yH) = (x−1y)H = sH for some

s ∈ S. It follows that X/P is just Cay(G/H, {sH | s ∈ S}), as desired.

By far the most important example of Cayley graphs is given by circulant graphs,

which we will be studying intesively in the following chapters.

Definition 2.29. A circulant graph is a Cayley graph of a cyclic group.

Circulants form a wide and diverse class of graphs that includes cycles, Möbius

ladders, odd prisms and complete graphs.

2.4.1 Normal Cayley graphs

We now consider a special type of Cayley graphs with a particularly nice and easy to

describe automorphism group.

Definition 2.30. Let X = Cay(G,S) be a Cayley graph of a group G. From Propo-

sition 2.25(1), we know that Aut(Cay(G,S)) contains the subgroup GL, which is iso-

morphic to G. If this subgroup is normal in Aut(X), then X is called a normal Cayley

graph.

The following result offers several characterizations of normal Cayley graphs.

Proposition 2.31. Let X = Cay(G,S) be a Cayley graph. Then the following are

equivalent.

1. X is normal,

2. Aut(X) ∼= GL ⋊ Aut(G,S),

3. Aut(X)1 = Aut(G,S),

4. |Aut(X)| = |G||Aut(G,S)|.
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The property of being normal is not preserved by all graph isomorphisms (note

that, it is preserved by graph isomorphism coming from isomorphisms of underlying

groups). For example, both of the following Cayley graphs

X1 = Cay(Z3
2, {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

and

X2 = Cay(Z4 × Z2, {(1, 0), (3, 0), (0, 1)})

are isomorphic to the 3-dimensional cube Q3.

However, X1 is a normal Cayley graph, while X2 is not. Note that they are defined

on non-isomorphic groups.

While determining whether a particular Cayley graph is normal is difficult in gen-

eral, the following result works well for Cayley graphs of abelian groups.

Lemma 2.32 (Baik-Feng-Sim-Xu, [1, Theorem 1.1]). Let Cay(G,S) be a connected

Cayley graph on an abelian group G. Assume, for all s, t, u, v ∈ S

st = uv ̸= 1 =⇒ {s, t} = {u, v}.

Then the Cayley graph Cay(G,S) is normal.

Lemma 2.33 (Qin-Xia-Zhou [26, Lemma 2.10]). Let G = H ×K be a group, where

H is a subgroup and K is a characteristic subgroup of order at least 5. Suppose that

S = T × (K \ {1}) is inverse-closed, where T ⊆ H. Then Cay(G,S) is non-normal.

The following result is a direct corollary of the classification of non-normal Cayley

digraphs of order 2p given in [5, Theorem 1.6].

Lemma 2.34. Let p be a prime. Let X be a non-normal connected, bipartite circulant

of order 2p of valency at most p−2. Then X is isomorphic to Y ≀K2 for some connected

graph Y .

Proof. We inspect the table of 19 examples of non-normal Cayley digraphs given in [5,

Theorem 1.6] by Du, Wang and Hu.

• Only the entries in the rows 3-11 are circulants.

• Entries in rows 3, 4 and 5 are not connected.

• Entries in rows 7, 8 and 11 are non-bipartite.

• Entries in rows 9 and 10 have the valency at least p− 1.

This leaves us with row 6, where X ∼= Y ≀K2 for some digraph Y ̸= pK1.

As X is a connected graph, Y must be as well. Note that this makes the remark

that Y ̸= pK1 superfluous. We have arrived at the desired result.
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Finally, we recall an important classification result for arc-transitive circulants, that

we will be using often in later sections.

Theorem 2.35 (Kovács, [15, Theorem 1]). Let n ≥ 1 be a positive integer. Let X be

a connected, arc-transitive circulant graph of order n. Then one of the following holds:

1. X = Kn,

2. X is normal,

3. X = Y ≀Kd where n = md, d > 1 and Y is a connected arc-transitive circulant

of order m,

4. X = Y ≀ Kd − dY , where n = md, d > 3, gcd(m, d) = 1 and Y is a connected

arc-transitive circulant of order m.

2.4.2 Paley graphs

Paley graphs are a family of Cayley graphs enjoying several nice properties, such as

being self-complementary and strongly regular. They will be the key ingredient of the

construction we will discuss in Section 8.3.

We now define Paley graphs and derive some of their many properties.

Definition 2.36. Let GF(q) be the Galois field of prime power order q. Assume that

q ≡ 1 (mod 4). Let S denote the set of non-zero squares of GF(q), that is, the set

of elements x ∈ GF (q), x ̸= 0 for which there exists an element y ∈ GF(q) such that

x = y2.

The Paley graph of order q is the graph P(q) with

• V (P(q)) = GF(q),

• E(P(q)) = {{a, b} | a− b ∈ S}.

Remark 2.37. Note that the Paley graph P(q) is just the Cayley graph of the additive

group of the field GF(q) with S, the set of non-zero squares, as its connection set i.e.,

P(q) = Cay(GF(q), S). The assumption that q ≡ 1 (mod 4) implies that −1 is a square.

As the product of non-zero squares is a non-zero square, the fact that −1 is a square

ensures that S is closed under additive inverses. Furthermore, note that the inverse of

a non-zero square is a non-zero square, so S is also closed under multiplicative inverses

(moreover, it is a subgroup of the multiplicative group GF(q)∗).

We recall the following definitions from graph theory.

Definition 2.38. A graph X is called self-complementary if it is isomorphic to its

complement X.
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Definition 2.39. A graph X is called strongly regular with parameters (v, k, λ, µ) if

1. X has v vertices,

2. X is k-regular,

3. every two adjacent vertices of X have λ neighbours in common,

4. every two non-adjacent vertices of X have µ neighbours in common.

It turns out that Paley graphs enjoy both of these properties.

Proposition 2.40. Let q be a prime power such that q ≡ 1 (mod 4). The Payley graph

P(q) has the following properties.

1. P(q) is vertex-transitive.

2. P(q) is arc-transitive.

3. P(q) is self-complementary.

4. P(q) is strongly regular with parameters
(
q, q−1

2
, q−5

4
, q−1

4

)
.

Proof. (1) By Remark 2.37, P(q) is a Cayley graph, so it is automatically vertex-

transitive by Proposition 2.25(2). Given a non-zero element γ ∈ GF(q), define γ∗(x) =

γx for x ∈ GF(q). Note that γ∗ is a group automorphism of the additive group of the

field GF(q).

(2) The conclusion follows by noting that the maps of the form γ∗ for γ ∈ S lie in

Aut(P(q))0.

(3) By Proposition 2.25(6), it holds that P(q) = Cay(GF(q), (GF(q) \ {0}) \ S). If
γ ∈ GF(q) is a non-square, γ∗ is an isomorphism of P(q) and P(q).

(4) The fact that P(q) is strongly regular follows from the fact that it is arc-transitive

and self-complementary. Its parameters can be calculated by counting the number of

edges between the sets of non-zero squares and non-squares in GF(q) and by noting

that the inversion map ι : x 7→ x−1 swaps these edges and non-edges.
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2.5 TWIN-FREE GRAPHS

The following property will be of great importance when we will be discussing “trivially

unstable” graphs in Section 3.2.

Definition 2.41 (Kotlov-Lovász [14]). In a graph X, two distinct vertices x and y

are called twins if NX(x) = NX(y). A graph X is twin-free if it does not contain any

twins.

Remark 2.42. Synonymous terms for “twin-free” include “irreducible” [7], “vertex-

determining” [26] and “R-thin” [10, p. 91].

We will now list several results about the property of being twin-free. Their role

will be clearer when we move onto more central topics of the thesis, such as canonical

double covers and stability of graphs.

Lemma 2.43 (Qin-Xia-Zhou [26, Lemma 2.3]). Let X and Y be graphs. Then X × Y

is twin-free if and only if X and Y are twin-free.

Proof. The conclusion follows immediately from the following observation coming from

the definition of the direct product of graphs (see Definition 2.16(1)).

NX×Y (x, y) = NX(x)×NY (y),∀x ∈ X, ∀y ∈ Y.

Lemma 2.44 (Qin-Xia-Zhou [26, Lemma 2.4]). Let X be a graph with at least one

edge and d > 1 an integer. Then the graph X ≀Kd is not twin-free.

Proof. As X has at least one edge, we can find x ∈ V (X) so that NX(x) is non-empty.

For u ∈ V (Kd), the neighbourhood of (x, u) in X ≀ Kd is NX(x) × V (Kd). Thus, for

distinct vertices u and v of Kd, (x, u) and (x, v) have the same neighbourhood in X ≀Kd

and are twins by Definition 2.41. Therefore, X ≀Kd is not twin-free.

Lemma 2.45. Let X = Cay(G,S) be a connected Cayley graph of an abelian group G.

The following are equivalent.

1. X is not twin-free.

2. There exists a non-trivial subgroup H of G, such that the connection set S of X

is a union of cosets of H in G.

3. X ∼= Y ≀Km for some m ≥ 2 and a connected, twin-free graph Y . Note that the

vertex sets of copies of Km in X coincide with the sets of twins in X.
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Moreover, in part ( 3), the copies of Km in X are the cosets of some subgroup H

of G of order m, such that the graph Y is isomorphic to a Cayley graph of the group

G/H and S is a union of cosets of H.

Proof. (1) ⇔ (2) If X not twin-free, by vertex-transitivity of X, we can let h ∈ G be

a twin of the identity 1. Then h ̸= 1 and S = NX(1) = NX(h) = hS. Let H be the

cyclic subgroup of G generated by h. Then it holds that

S =
⋃
s∈S

Hs.

Conversely, if S is a union of cosets of a non-trivial group H, it holds that NX(h) =

hS = S = NX(1) for all h ∈ H.

(1) ⇔ (3) If X can be decomposed as Y ≀ Km with m ≥ 2, it is not twin-free by

Lemma 2.44. Furthermore, by definition of the wreath product, it is clear that every

two vertices of the same copy of Km in X are twins. Vertices of X lying in distinct

copies of Km correspond to distinct vertices of Y and are therefore not twins, as Y is

assumed to be twin-free.

Assume that X is not twin-free. Let ∼ be the relation of “being twins” on X. Then

∼ is an equivalence relation and for all α ∈ Aut(X), it holds that x ∼ y if and only

if α(x) ∼ α(y) (in the language of [3], this means that ∼ is an Aut(X)-congruence).

This shows that the partition P of G into equivalence classes of ∼, that is, the sets of

twins in X, is a block system for the action of Aut(X). By Lemma 2.28(3), G has a

subgroup H such that the blocks in P are cosets of H and Y := X/P is a Cayley graph

of the group G/H. Moreover, Y is connected, since X is connected. As its vertices

correspond to distinct equivalence classes of twins in X, it follows that Y is twin-free.

As all blocks in P are conjugate, they are all of the same fixed size m and as X is

not twin-free, m ≥ 2. Recall that twins are non-adjacent vertices. Therefore, elements

of P are independent sets of size m in X. Moreover, if x and y are adjacent, every

twin x′ of x is adjacent to every twin y′ of y. This shows that two vertices of X are

adjacent if and only if they lie in distinct equivalence classes of ∼, which are adjacent

as vertices of Y . Hence, X ∼= Y ≀Km.

Moreover, note that if we start with the decomposition Y ≀ Km, by identifying

the copies of Km in X with equivalence classes of twins, we can repeat the previous

argument and reproduce Y as the Cayley graph of G/H. Furthermore, S = NX(1) is

a union of copies Km i.e., the equivalence class of twins. As they correspond to cosets

of H, it follows that S is a union of cosets of H.

Lemma 2.46. Let X = Cay(Zn, S) be a connected circulant graph of order n such that

X is not twin-free, and let d be the valency of X.

1. There is a connected circulant graph Y and some m ≥ 2, such that X ∼= Y ≀Km

and d = δm, where δ is the valency of Y .
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2. If d is prime, then X ∼= Kd,d.

3. If d = 4, then X is isomorphic either to K4,4 or to Cℓ ≀ K2 with ℓ = |V (X)|/2.
Moreover, the unique twin of 0 in the second case is n/2.

Proof. (1) Note that quotients of cyclic groups are cyclic. The desired conclusion

follows immediately by applying Lemma 2.45(3).

(2) By (1), we then represent X as Y ≀Km, where Y is m-regular and connected,

and m ≥ 2. As d = δm, and d is prime, it follows that m = d and δ = 1. In particular,

Y = K2 and X = K2 ≀ Kd
∼= Kd,d. (Conversely, it is clear that Kd,d is a connected

circulant graph, but is not twin-free.)

(3) By (1), we then represent X as Y ≀Km, where Y is m-regular and connected,

and m ≥ 2. As 4 = δm and m ≥ 2, it follows that m ∈ {2, 4}. If m = 4, then δ = 1

and consequently X ∼= K2 ≀K4
∼= K4,4. If m = 2, then Y is connected and 2-regular,

so it is isomorphic to the cycle Cℓ with ℓ = |V (X)|/2. It follows that X ∼= Cℓ ≀K2. By

Lemma 2.45(3), it is clear that two vertices of X are twins if and only if they lie in the

same copy of K2, that is, the same coset of some subgroup H of Zn of order 2. As H

is necessarily {0, n/2}, the conclusion follows.

Corollary 2.47. Let X = Cay(Zp, S) be a circulant of odd prime order p. Then either

• X = Kp, or

• X is connected, non-bipartite and twin-free.

Proof. Assume that X ̸= Kp. In particular, X contains at least one edge. Then S ̸= ∅.
Let s be an arbitrary element of S. By definition, S does not contain the identity of

the group, so s ̸= 0. Then s is a generator of Zp. It follows that S is a generating set

of Zp, so Proposition 2.25(5) implies that X is connected.

Since X is a connected Cayley graph of odd order p, Corollary 2.27 implies that X

is non-bipartite.

Finally, assume for contradiction that X is not twin-free. It follows by Lemma

2.46(1), that there exists a connected circulant graph Y and an integer m ≥ 2 such

that X = Y ≀Km. Note that

p = |V (X)| = |V (Y ≀Km)| = |V (Y )||V (Km)| = m|V (Y )|.

Then m ≥ 2 is a divisor of a prime p, so it must hold that m = p. Consequently,

|V (Y )| = 1 and Y = K1. It follows that X ∼= Kp, a contradiction.

2.6 CARTESIAN SKELETON

In this section, we briefly introduce and discuss the properties of the Cartesian skeleton

of a graph. The idea behind it, is that it allows one to translate questions about other
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graph products, in particular the direct product, into questions about the Cartesian

product (to recall relevant definitions, see Definition 2.16)).

Lemma 2.51 will be particularly important when we will be proving results about

canonical double covers of circulants and more general Cayley graphs of abelian groups

of odd order in Chapter 6.

Definition 2.48 ([10, Section 8.3]). Let X be a graph. The Boolean square of X is

the graph B(X) with

• V (B(X)) := V (X),

• E(B(X)) := {{x, y} | x, y ∈ V (X), x ̸= y,NX(x) ∩NX(y) ̸= ∅}.

Definition 2.49 ([10, Section 8.3]). Let X be a graph and B(X) its Boolean square.

An edge {x, y} ∈ E(X) is called dispensable with respect to X if there exists a vertex

z ∈ V (X) such that

NX(x) ∩NX(y) ⊊ NX(x) ∩NX(z) or NX(x) ⊊ NX(z) ⊊ NX(y)

and

NX(y) ∩NX(x) ⊊ NX(y) ∩NX(z) or NX(y) ⊊ NX(z) ⊊ NX(x).

The Cartesian skeleton of X is then the graph S(X) obtained from B(X) by re-

moving all of the dispensable edges.

Remark 2.50. The definition of B(X) given above is the same as the one used in [26].

It differs from the one given in [10], where B(X) is required to have a loop at each

vertex. However, this modification will not affect the results that follow nor their proofs.

The definition of S(X) matches the ones used in [10] and [26].

We collect several facts about Cartesian skeletons of graphs that will be used in

the proofs of some of the important results we will consider (mostly coming from [26]

and [23]). Their proofs can be found in [10]. We give precise statements and references

in the following lemma.

Lemma 2.51. Let X and Y be connected graphs.

1. Every automorphism of X×Y is also an automorphism of S(X×Y ) [10, Propo-

sition 8.11, p. 97].

2. If X and Y are twin-free and have more than one vertex, then S(X × Y ) =

S(X)□S(Y ) [10, Proposition 8.10, p. 96].

3. If |V (X)| is relatively prime to |V (Y )|, then Aut(X□Y ) = Aut(X)×Aut(Y ) [10,

Corollary 6.12, p. 70].
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4. If X is non-bipartite, then S(X) is connected [10, Proposition 8.13(i), p. 98].

5. If Y is bipartite, then S(Y ) has precisely two connected components, and their

vertex sets are the bipartition sets of Y [10, Proposition 8.13(ii), p. 98].

Lemma 2.52 (Qin-Xia-Zhou [26, Lemma 4.2]). Let X be a graph and α and β two

permutations of V (X) such that {α(x), β(y)} ∈ E(X) if and only if {x, y} ∈ E(X).

Then the following statements hold.

1. NX(α(x)) = β(NX(x)) and NX(β(x)) = α(NX(x)) for all vertices x ∈ V (X).

2. α, β ∈ Aut(B(X)).

3. α, β ∈ Aut(S(X)).
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3 CANONICAL BIPARTITE DOUBLE

COVERS

3.1 BASIC DEFINITIONS AND PROPERTIES

We are now in position to define the main object of our study, the canonical bipartite

double cover of a graph.

Definition 3.1. Let X be a graph. Denote by K2 the complete graph on two vertices.

Then BX := X ×K2 is called the canonical bipartite double cover of X. Note that by

the definition of the direct product of graphs, it holds that

• V (BX) := V (X)× {0} ∪ V (X)× {1},

• E(BX) := {{(x, 0), (y, 1)} | x, y ∈ V (X), {x, y} ∈ E(X)}.

We see from Definition 3.1 that, for vertices (x, i), (y, j) ∈ V (BX), with x, y ∈ V (X)

and i, j ∈ {0, 1}, it holds that

{(x, i), (y, j)} ∈ E(BX) if and only if {x, y} ∈ E(X), i ̸= j.

From here, as we are only considering finite graphs, it follows that to show that

some permutation α ∈ Sym(V (BX)) is an automorphism of BX, it suffices to check

that

{α(x, 0), α(y, 1)} ∈ E(BX) for all {x, y} ∈ E(X).

For simplicity, we will often call BX the “bipartite double cover”, or just the

“double cover” of a graph X. It will always be clear from context to which object we

are referring to.

It is clear from its definition, that the double cover BX is a bipartite graph, with

the bipartition consisting of sets V (X)× {0} and V (X)× {1}.
Moreover, note that these are two copies of the vertex set V (X) of X, and that

every edge {x, y} ∈ E(X) induces two edges in BX, in particular {(x, 0), (y, 1)} and

{(x, 1), (y, 0)}.
Finally, BX comes equipped with a natural covering projection

π : V (BX) → V (X)

(x, i) 7→ x
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The following observations are a consequence of the properties of the direct product

used to define the bipartite double cover.

Lemma 3.2 ([2, Theorem 3.4]). Let X be a graph.

1. The bipartite double BX of X is connected if and only if X is connected and

non-bipartite.

2. If X is bipartite with bipartition V (X) = A ∪ B, then BX consists of two iso-

morphic copies X1 and X2 of X with vertex sets V (X1) = A×{0}∪B×{1} and

V (X2) = B × {0} ∪ A× {1}.

Another corollary of the fact that BX is defined in terms of the direct product

is that it inherits all symmetries of its two factors, X and K2, as explained in the

following result.

Definition 3.3. Let X be a graph and BX its bipartite double cover. Let φ be an

automorphism of X. For x ∈ V (X) and i ∈ {0, 1} define φ, called the lift of φ, by

φ : V (BX) → V (BX)

(x, i) 7→ (φ(x), i)

We also define the following map.

τ : V (BX) → V (BX)

(x, i) 7→ (x, i+ 1)

In the definition of τ , we consider the second coordinate modulo 2 (as V (BX) =

V (X)× Z2). In particular, τ(x, 0) = (x, 1) and τ(x, 1) = (x, 0) for all x ∈ V (X).

The reason φ is called the lift of φ is because it projects onto φ along the covering

projection π, which means it satisfies the equation πφ = φπ. Note that τφ satisfies

the same equation and can also be considered a lift of φ. The important distinction is

that φ does not reverse the colour classes of BX.

Note that τ is the lift of the identity automorphism of X that reverses colour classes

of BX. The relation between τ and other automorphisms of BX will dictate a lot of

its properties as we will establish by the end of this section.

We collect the important observations on BX we made so far in the following lemma

for easy reference. We also provide proofs of all statements.

Lemma 3.4. Let X be a graph and BX its canonical bipartite double cover. Let

φ ∈ Aut(X) be an automorphism of X.

1. The lift φ : (x, i) 7→ (φ(x), i) for x ∈ V (X), i ∈ {0, 1} is an automorphism of BX.

Moreover, the map φ 7→ φ is an injective group homomorphism from Aut(X) into

Aut(BX).
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2. The map τ : (x, i) 7→ (x, i+ 1) is an order 2 automorphism of BX. Moreover, τ

commutes with all lifts φ for φ ∈ Aut(X).

3. The group Aut(BX) contains a subgroup isomorphic to Aut(X)× S2.

Proof. (1) As φ is invertible and φ−1 is also an automorphism of X, it follows by an

easy computation that

φ−1 = φ−1.

Let x, y ∈ V (X). Using the fact that φ is an automorphism of X, we obtain that

{(x, 0), (y, 1)} ∈ E(BX) ⇐⇒ {x, y} ∈ E(X) ⇐⇒ {φ(x), φ(y)} ∈ E(X)

⇐⇒ {(φ(x), 0), (φ(y), 1)} ∈ E(BX)

⇐⇒ {φ(x, 0), φ(y, 1)} ∈ E(BX).

It follows that φ ∈ Aut(BX). Consequently, the map φ 7→ φ is well-defined. To

show it is a group homomorphism let φ, ψ ∈ Aut(X), x ∈ V (X) and i ∈ {0, 1}.

φψ(x, i) = ((φψ)(x), i) = (φ(ψ(x)), i) = φ(ψ(x), i) = (φψ)(x, i)

Finally, if φ = idBX , then φ(x, i) = (φ(x), i) = (x, i) for all x ∈ V (X), i ∈ {0, 1}.
This proves that φ(x) = x for all x ∈ V (X) i.e., the homomorphism mapping φ 7→ φ

has a trivial kernel and is consequently injective.

(2) We first note that τ is a permutation of V (BX), since it is its own inverse. As

it is clearly non-trivial, it is of order 2.

Let x, y ∈ V (X). Then by the definition of BX, {x, y} being an edge of X is

equivalent to {(x, 0), (y, 1)} and {(x, 1), (y, 0)} = {τ(x, 0), τ(y, 1)} both being edges of

BX. This shows that τ is an automorphism of BX.

Finally, let x ∈ V (X), i ∈ {0, 1} and φ ∈ Aut(X).

(τφ)(x, i) = τ(φ(x), i) = (φ(x), i+ 1) = φ(x, i+ 1) = (φτ)(x, i)

This shows that τφ = φτ , so τ commutes with φ for each φ ∈ Aut(X).

(3) Let Aut(X) denote the image of Aut(X) under the homomorphism mapping

φ 7→ φ for φ ∈ Aut(X). Then by (1), Aut(X) is a subgroup of Aut(BX) and it is

isomorphic to Aut(X). Consider the subgroup G := ⟨Aut(X), τ⟩ generated by τ and

elements φ with φ ∈ Aut(X).

By (2), it follows that both Aut(X) and ⟨τ⟩ are normal subgroups of G. Moreover,

their intersection is trivial as all elements of Aut(X) preserve the colour classes of BX

and τ reverses them. It follows that G is isomorphic to the direct product Aut(X)×⟨τ⟩.
Note that τ is of order 2 by (2).

Putting everything together, we obtain that

Aut(BX) ≥ G ∼= Aut(X)× ⟨τ⟩ ∼= Aut(X)× S2.

This completes the proof.
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Remark 3.5. In the rest of the thesis, we will treat Aut(X) × S2 as an actual sub-

group of Aut(BX), while we will be define everything in terms of G = ⟨Aut(X), τ⟩ ≤
Aut(BX) defined in the proof of Lemma 3.4( 3), since it satisfies G ∼= Aut(X)× S2.

Lemma 3.4(3) implies that BX inherits the automorphisms of X via the subgroup

Aut(X) × S2 of Aut(BX). A direct corollary of this is that BX also inherits the

symmetry properties of X, as explained by the following result.

Corollary 3.6. Let X be a graph.

1. If X is vertex-transitive, then BX is vertex-transitive.

2. If X is edge-transitive, then BX is edge-transitive.

3. If X is arc-transitive, then BX is arc-transitive.

As we see from Lemma 3.4, presence of the subgroup Aut(X) × S2 in Aut(BX)

does not depend on the structure of the graph X, but is a mere consequence of the

definition of BX and properties of the direct product.

This motivates the following definition.

Definition 3.7 ([34]). Let X be a graph and BX its bipartite double cover. The

automorphisms of BX lying in the subgroup Aut(X) × S2 are called expected auto-

morphisms. If an automorphism α ∈ Aut(BX) is not an element of Aut(X)× S2, it is

called unexpected.

Unexpected automorphisms will be one of our main topics of interest. In particular,

we will be interested in distinguishing graphs whose double covers have no unexpected

automorphism from the ones that do. With this in mind, we introduce the following

terminology.

Definition 3.8 ([21]). Let X be a graph. If BX has no unexpected automorphisms

i.e., if Aut(BX) ∼= Aut(X)× S2, then X is called stable. Otherwise, X is unstable.

It turns out that there is a very simple way to reformulate the property of being

unstable. The following lemma will be one of the main tools in our work with unstable

graphs.

Lemma 3.9 ([17, Theorem 3.2], [21, Proposition 4.2]). Let X be a graph. If there exist

permutations α and β of V (X), such that α ̸= β and, for every edge {x, y} of X, the

vertex α(x) is adjacent to β(y), then X is unstable.

The converse holds if X is connected and non-bipartite.
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Proof. (⇒) Define the following map

φ(x, i) =


(
α(x), 0

)
, if i = 0,(

β(x), 1
)
, if i = 1.

Then φ is a permutation of V (BX), since α and β are permutations of V (X). Moreover,

the condition that α and β satisfy, implies that φ is an automorphism of BX.

Note that φ preserves the colour classes of BX. If φ was an expected automorphism,

it would follow that it is actually a lift of some automorphism of Aut(X). However,

this is a contradiction, as the permutations φ induces on the colour classes V (X)×{0}
and V (X)× {1} of BX are α and β, respectively, and we have assumed that α ̸= β.

It follows that φ is an unexpected automorphism of BX and consequently, X is

unstable.

(⇐) Assume that X is connected and non-bipartite graph. If it is also unstable, it

has an unexpected automorphism φ ∈ AutBX, such that φ /∈ AutX × S2.

Since X is connected and non-bipartite, it follows by Lemma 2.13 that φ either

preserves or reverse the colour classes of BX. Therefore, possibly after composing φ

with τ , we may assume φ
(
V (X)×{i}

)
= V (X)×{i} for i ∈ {0, 1}. So we may define

permutations α and β of V (X) by

φ(x, 0) =
(
α(x), 0

)
and φ(y, 1) =

(
β(y), 1

)
.

Then the condition that φ is an automorphism of BX, implies that {α(x), β(y)} ∈
E(X) for all {x, y} ∈ E(X). Finally, if α = β then α would be an automorphism

of X, implying that φ = α ∈ Aut(X) × S2, which is a contradiction with φ being

an unexpected automorphism of BX. Hence, we conclude that α ̸= β, finishing the

proof.

We consider our first examples of infinite families of stable and unstable graphs.

In both cases, the proof will be based on a counting argument. We will generalize the

unstable example later in Proposition 3.16 and give a description of an unexpected

automorphism.

Example 3.10. Let n ≥ 1 be an integer. Let C2n+1 be the cycle of odd length 2n+1.

Then the automorphism group of C2n+1 is the dihedral group D4n+2 of order 4n + 2

i.e.,

|Aut(C2n+1)| = 4n+ 2.

Odd cycles are connected, non-bipartite and 2-regular graphs. By applying Lemma

3.2(1), we see that BC2n+1 is connected and 2-regular. As it is of order 4n+2, it follows

that it is isomorphic to the cycle graph C4n+2. The same conclusion can be derived by

applying the definition of the bipartite double cover to C2n+1.
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It follows that Aut(BX) is just D8n+4 i.e.,

|Aut(BC2n+1)| = 8n+ 4.

Putting everything together, we get that

|Aut(BC2n+1)|
|Aut(C2n+1)× S2|

=
8n+ 4

2(4n+ 2)
= 1.

In particular, Aut(BC2n+1) = Aut(C2n+1)×S2 and we can conclude that odd cycles

are stable.

Example 3.11. Let n ≥ 2 be an integer. Let C2n be the cycle of even length 2n. Then

we know that the automorphism group of C2n is the dihedral group D4n of order 4n

i.e.,

|Aut(C2n)| = 4n.

As C2n is bipartite, Lemma 3.2(2) implies that BC2n consists of two disjoint cycles

of length 2n. It follows that Aut(BX) is given by the wreath product of groups

Aut(C2n)≀S2. This follows from the definition of the wreath product of groups [3, p. 46]

or by rewriting BX as K2 ≀ C2n and applying a result of Sabidussi [28].

In particular, it follows that

|Aut(BX)| = |Aut(C2n) ≀ S2| = |Aut(C2n)|2 · 2! = (4n)2 · 2 = 32n2.

Hence, the index Aut(C2n)× S2 in Aut(BC2n) is

|Aut(BC2n)|
|Aut(C2n)× S2|

=
32n2

8n
= 4n > 1.

It follows that Aut(C2n) × S2 is a proper subgroup of Aut(BC2n), so BC2n must

have a non-zero number of unexpected automorphisms. In particular, even cycles are

unstable.

As we have seen in Example 3.10 and Example 3.11, when checking for existence of

unexpected automorphisms of BX, it is natural to consider the index of the subgroup

Aut(X)× S2 in Aut(BX). We now give this quantity a name.

Definition 3.12 ([34]). Let X be a graph. The index of instability of X is the index

of the subgroup Aut(X)× S2 in Aut(BX). For finite graphs X, we can define this as

the quotient
|Aut(BX)|

|Aut(X)× S2|
=

|Aut(BX)|
2|Aut(X)|

.

Note that a graph is stable if and only if its index of instability is equal to 1.

In Chapter 6, we will be studying canonical double covers of Cayley graphs. The

following simple observations will greatly simplify some of the proofs.
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Lemma 3.13. Let X = Cay(G,S) be a Cayley graph of a group G. Let BX be the

canonical double cover of X. Then BX is also a Cayley graph. Moreover, it holds that

BX = Cay(G× Z2, S × {1}).

Proof. As V (X) = G, it follows that BX and Cay(G × Z2, S × {1}) have the same

vertex set. Therefore, the claim follows by definitions of adjacency relations of BX

and Cay(G× Z2, S × {1}).
For x, y ∈ G, we have the following equivalence.

{(x, 0), (y, 1)} ∈ E(BX) ⇐⇒ x−1y ∈ S

⇐⇒ (x, 0)−1(y, 1) = (x−1y, 1) ∈ S × {1}

⇐⇒ {(x, 0), (y, 1)} ∈ E(Cay(G× Z2, S × {1})).

Recall from Definition 3.3 that τ : V (BX) → V (BX) is the automorphism of BX

mapping (x, i) 7→ (x, i + 1) for ∈ V (X) and i ∈ {0, 1}. When X is a Cayley graph,

Lemma 3.13 allows us represent τ in another form.

Corollary 3.14. Let X = Cay(G,S) be a Cayley graph of a group G. The automor-

phism τ equals to the translation automorphism tL for t = (1G, 1).

Proof. As X is a Cayley graph, Lemma 3.13 implies that BX = Cay(G×Z2, S×{1}).
Then as t ∈ G× Z2, we know that tL ∈ (G× Z2)L ≤ Aut(BX).

For x ∈ G and i ∈ {0, 1}, we have that

tL(x, i) = (1G, 1)(x, i) = (1Gx, 1 + i) = (x, i+ 1) = τ(x, i).

This is exactly what we wanted to prove.

3.2 TRIVIALLY UNSTABLE GRAPHS

In this subsection, we discuss the following three classes of graphs:

• disconnected graphs,

• bipartite graphs with non-trivial automorphism group,

• graphs that are not twin-free.

We will show that elements of each of these three classes are unstable. However, we

will treat them as trivial examples of unstable graphs, and later, we will be interested

in finding and constructing unstable graphs that are connected, non-bipartite and twin-

free.
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Proposition 3.15. Assume that X is not connected. Then X is unstable.

Proof. As X is disconnected, we can decompose it into two sugraphs X1 and X2 with

smaller, disjoint vertex sets, where X1 is a connected component of X. It follows that

BX consists of subgraph BX1 and BX2. Note that the vertex sets of BX1 and BX2

are disjoint and that there are no edges connecting them.

Let τj denote the automorphism of BXj swapping V (Xj) × {0} and V (Xj) × {1}
for j ∈ {1, 2}. Clearly, τj is an automorphism of BX, as Aut(BXj) ≤ Aut(BX) for

j ∈ {0, 1}. Note that τj swaps colours on a proper subset V (Xj) × {0, 1} of V (BX)

and preserves them on the complement. However, from their definition, it is clear that

all expected automorphisms of BX either preserve or reverse the colour classes of BX.

From here, τj ̸∈ Aut(X) × S2 is an unexpected automorphism of BX. Hence, X is

unstable.

We will give two proofs of the following statement. The first one will be a counting

argument generalizing Example 3.11 and for the second one, we will construct an

explicit unexpected automorphism in order to establish instability.

Proposition 3.16. Let X be a bipartite graph such that Aut(X) ̸= 1. Then X is

unstable.

Proof. Let V (X) = A ∪ B be a bipartition of X. Note that we can assume that X is

connected, otherwise Proposition 3.15 applies. As X is bipartite, Lemma 3.2(2) implies

that BX consists of two isomorphic copies of X, denoted X1 and X2, with vertex sets

V (X1) = A× {0} ∪B × {1} and V (X2) = A× {1} ∪B × {0}.
We start with the counting argument. As X is connected, X1 and X2 are actually

connected components of BX. As both are isomorphic to X, we get that Aut(BX) ∼=
Aut(X) ≀ S2. In particular, we have that

|Aut(BX)| = |Aut(X) ≀ S2| = |Aut(X)|2|S2| = 2|Aut(X)|2.

By assumption, Aut(X) is non-trivial, so we know that |Aut(X)| > 1. We can now

estimate the index of instability of X.

|Aut(BX)|
2|Aut(X)|

=
2|Aut(X)|2

2|Aut(X)|
= |Aut(X)| > 1.

Hence, the subgroup Aut(X) × S2 of expected automorphisms of BX is a proper

subgroup of Aut(BX), implying that BX has a non-zero number of unexpected auto-

morphisms, proving that X is unstable.

We now present an alternative proof. As Aut(X) ̸= 1, we can find a non-trivial

automorphism α ∈ Aut(X). We can define a map α∗ on BX by applying α to X1 and

fixing every vertex of X2. Note that E(BX) is a disjoint union of E(X1) and E(X2).
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As both α and the identity permutation are automorphisms of X, it is clear that the

map α∗ is an automorphism of BX.

Note that the automorphism τ swaps the copies X1 and X2 in BX. Hence, τα∗τ

acts trivially on X1 and non-trivially on X2. In particular, it is not equal to α∗, so

α∗ and τ do not commute. However, by Lemma 3.4(2), all lifts φ with φ ∈ Aut(X)

commute with τ , and consequently, so do all expected automorphisms in Aut(X)×S2.

It follows that α∗ must be an unexpected automorphism, so X is unstable.

Remark 3.17. Note that even cycles are bipartite graphs with non-trivial automor-

phism group, so indeed, Example 3.11 is just a special case of Proposition 3.16 with

X = C2n, n ≥ 2. Proposition 3.16 implies that all non-trivial path graphs as well as all

complete bipartite graphs Kn,n with n ≥ 1 are unstable.

Note that the counting argument given in the proof of Proposition 3.16 shows that,

when X is connected and bipartite, its index of instability is equal to |Aut(X)|. From
here, we obtain the following corollary.

Corollary 3.18. Let X be a connected bipartite graph. Then X is stable if and only

if Aut(X) = 1.

The last condition we consider is existence of twins (recall Definition 2.41). We

start with the following observation.

Lemma 3.19. Let X be a graph. Let x, y ∈ V (X) be twins in X. Then the map φ

swapping x and y, but fixing all other vertices of X, is an automorphism of X.

Proof. We observe that φ is its own inverse. Moreover, note that φ

• swaps the edges {x, z} and {y, z} for z ∈ NX(x) = NX(y),

• fixes all other edges of X.

This shows that φ preserves the set of edges of X. In particular, φ is an automorphism

of X.

Proposition 3.20. Let X be a graph. If X is not twin-free, then it is unstable.

Proof. Assume that X is not twin-free. Let x, y ∈ V (X) be twins. Then x ̸= y and

NX(x) = NX(y). By definition of BX, it holds that

NBX(x, 1) = NX(x)× {0} = NX(y)× {0} = NBX(y, 1).

Hence, (x, 1) and (y, 1) are twins in BX.
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Define the following map

α : V (BX) → V (BX)

α(z, i) =


(x, 1), (z, i) = (y, 1)

(y, 1), (z, i) = (x, 1)

(z, i), otherwise

In other words, α swaps the twins (x, 1) and (y, 1) but fixes all other vertices of

BX. By Lemma 3.19, α is an automorphism of BX. However, note that

(ατ)(x, 0) = α(x, 1) = (y, 1)

(τα)(x, 0) = τ(x, 0) = (x, 1)

As x ̸= y, we conclude that α does not commute with τ . It follows by Lemma 3.4(2)

and the same arguments as in the proof of Proposition 3.16, that α is an unexpected

automorphism of BX. In particular, X is unstable.

We have seen in the proof of Proposition 3.20 that if X contains twins, then so

does its double cover BX. The converse also turns out to be true. We record this as

a corollary.

Corollary 3.21. Let X be a graph. Then BX is twin-free if and only if X is twin-free.

Proof. By definition, BX = X × K2. As K2 is twin-free, the conclusion follows by

Lemma 2.43.

In conclusion, we have seen three very simple conditions that imply that a graph is

unstable. However, as we will see later, there are much more interesting examples of

unstable graphs, whose instability stems from deeper structural properties and sym-

metries that a graph might posses. Motivated by this search for more exotic examples,

we introduce the following piece of terminology.

Definition 3.22 ([34, p. 360]). Let X be an unstable graph. Then X is non-trivially

unstable if it is connected, non-bipartite and twin-free. Otherwise, we say that X is

trivially unstable.

We close the subsection by giving an example of a non-trivially unstable graph,

which we will revisit briefly in Chapter 4.

Example 3.23. Let W be the Bowtie graph shown on the left in Figure 1. From the

picture, it is clear that W is connected, non-bipartite and twin-free.

It is easy to see that Aut(W) has two orbits on V (W), namely {1} and {2, 3, 4, 5}.
Moreover, the only non-trivial element of Aut(W)4 is the transposition (2, 3). Applying

Lemma 2.6, we obtain that

|Aut(W)| = |4Aut(W)||Aut(W)4| = 4 · 2 = 8.
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1

24

5 3

(1, 0)

(1, 1)

(5, 1)(2, 1)

(3, 0)

(2, 0) (5, 0)

(4, 1)(3, 1)

(4, 0)

Figure 1: The Bowtie graph W and its canonical double cover BW

Alternatively, we can note that W = C4 ∪ K1, and from here, it is obvious that

Aut(W) ∼= Aut(C4) ∼= D8, the dihedral group of order 8.

The canonical double cover BW is shown on the right in Figure 1. Note that the

orbit of (1, 0) with respect to Aut(BW) is {(1, 0), (1, 1)}, since τ(1, 0) = (1, 1) and

these are the only vertices of valency 4 in BW . Moreover, as each of the neighbours of

(1, 0) has a unique neighbour at distance 2 from (1, 0), it is clear that any permutation

of neighbours of (1, 0) can be extended uniquely to an automorphism of BX. In

particular, Aut(BW)(1,0) is of size 4! = 24. Applying Lemma 2.6 one more time, we

obtain that

|Aut(BW)| = |(1, 0)Aut(BW)||Aut(BW)(1,0)| = 2 · 24 = 48.

Finally, we obtain that the index of instability of W is 3. It follows that W is non-

trivially unstable. In fact, a simple case-by-case study shows that W is a non-trivially

unstable graph of smallest possible order. The only graphs of order at most 2 are K1,

K2 and K2, none of which are non-trivially unstable. The only non-bipartite graph on

three vertices is C3, which is stable by Example 3.10. Because a non-bipartite graph

on four vertices must contain a 3-cycle, up to isomorphism, we have three candidates:

a graph obtained by joining a vertex to a triangle, C4 with a chord and K4. First and

third graph are stable, while the second one is not twin-free. In particular, none of

them are non-trivially unstable. A bit more work will show that W is actually unique

up to isomorphism (that is, any non-trivially unstable graph of order 5 is isomorphic

to W).

Corollary 3.24. Up to isomorphism, the Bowtie graph W is the smallest non-trivially

unstable graph.
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4 CONDITIONS IMPLYING

STABILITY

We discuss several important conditions that imply that a graph X satisfying them

is stable. We will revisit and precisely formulate some of the ideas that were already

used when we were studying trivial instability of graphs in Section 3.2. Results of

this section also cast some light on the differences between unexpected and expected

automorphisms. The automorphism τ of BX, defined in Definition 3.3 and given by

τ : (x, i) 7→ (x, i + 1) will play a crucial role. Recall that an element of a group G is

central if it commutes with all elements of G.

Lemma 4.1. Let X be a graph and BX its canonical double cover. If X is stable, then

τ is central in Aut(BX).

Proof. By Lemma 3.4(2), τ commutes with all lifts φ for φ ∈ Aut(X). As X is stable,

the lifts φ and τ generate Aut(BX), since Aut(BX) ∼= Aut(X)× S2. Consequently, τ

commutes with all elements of Aut(BX) i.e., τ is central in Aut(BX), as desired.

Lemma 4.1 shows that if a graphX is stable, then all elements of Aut(BX) commute

with τ . Hence, to show that X is unstable, it suffices to find at least one α ∈ Aut(BX)

which does not commute with τ (this is exactly what we did in the proofs of Proposition

3.16 and Proposition 3.20).

However, much more is true. When X is connected and non-bipartite, the subgroup

Aut(X)×S2 ≤ Aut(BX) consists exactly of the automorphisms of BX that commute

with τ . We now prove this.

Proposition 4.2. Let X be a connected, non-bipartite graph. Let α ∈ Aut(BX). Then

α commutes with τ if and only if α ∈ Aut(X)× S2.

Proof. (⇐) If α ∈ Aut(X)×S2, then α is generated by τ and lifts φ with φ ∈ Aut(X).

As τ commutes with both by Lemma 3.4(2), it follows that α and τ commute.

(⇒) Assume that α ∈ Aut(BX) commutes with τ . As X is connected and non-

bipartite, Lemma 2.13 implies that every automorphism of BX either preserves or

reverses the colour classes of BX. Therefore, we have the following cases.

Case 1. α preserves colour classes of BX

Let φ ∈ Sym(V (X)) be defined by α(x, 0) = (φ(x), 0) (the fact that φ is a permu-

tation of V (X) follows from the fact that α is a permutation V (BX) = V (X)×{0, 1}).
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Since α commutes with τ , we get that

α(x, 1) = (ατ)(x, 0) = (τα)(x, 0) = τ(φ(x), 0) = (φ(x), 1)

We conclude that for x ∈ V (X), i ∈ {0, 1}, it holds that α(x, i) = (φ(x), i).

Let {x, y} ∈ E(X). Then {(x, 0), (y, 1)} ∈ E(BX) and as α is an automor-

phism of BX, also {(φ(x), 0), (φ(y), 1)} = {α(x, 0), α(x, 1)} ∈ E(BX). It follows

that {φ(x), φ(y)} ∈ E(X), proving that φ is an automorphism of X. Hence, α = φ ∈
Aut(X)× S2.

Case 2. α reverses colour classes of BX

Then ατ ∈ Aut(BX), does not reverse colours and still commutes with τ . By

the previous case, ατ ∈ Aut(X) × S2 and as τ ∈ Aut(X) × S2, it follows that α ∈
Aut(X)× S2, finishing the proof.

From Proposition 4.2, it follows that, when X is non-trivially unstable, every auto-

morphism of BX not lying in Aut(X)× S2 fails to commute with τ . In particular, for

connected and non-bipartite graphs, we obtain the following converse to Lemma 4.1.

Corollary 4.3 (Fernandez-Hujdurović, [7, Lemma 2.2]). Let X be a connected, non-

bipartite graph, and let BX be its canonical double cover. Then X is stable if and only

if τ is central in AutBX.

Proof. (⇒) This direction follows by Lemma 4.1 and does not require any additional

assumptions on X.

(⇐) Assume that τ is central in Aut(BX). If X is unstable, BX has unexpected

automorphisms. Because X is connected and non-bipartite, Proposition 4.2 implies

that these unexpected automorphisms of BX do not commute with τ , contradicting

the assumption that τ is central in Aut(BX). Hence, X must be stable.

We remark that the advantage of Corollary 4.3 is that it only requires the graph

to be connected and non-bipartite in order to be applied. By Proposition 3.15 and

Proposition 3.16, being connected and non-bipartite are already prerequisites to being

stable anyway. We will use this criteria many times in our proofs. However, its big

disadvantage is that it is hard to check for concrete examples, as it requires substantial

knowledge about the automorphism group of BX. At the point when we know enough

about Aut(BX) to apply Corollary 4.3, it might be easier to determine whether X

is stable or unstable directly, by studying the automorphisms of BX or by simply

counting them.

We continue our study of criteria for stability of graphs. The following results make

use of the point stabilizers of Aut(BX) in its natural action on V (BX).

Lemma 4.4. Let X be a graph. If X is stable, then Aut(BX)(x,0) = Aut(BX)(x,1) for

all x ∈ V (X).
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Proof. By Lemma 4.1, since X is stable, the automorphism τ is central in Aut(BX).

Let x ∈ V (X) be arbitrary. Let α ∈ Aut(BX)(x,0). Then we have that

α(x, 1) = (ατ)(x, 0) = (τα)(x, 0) = τ(x, 0) = (x, 1).

This shows that Aut(BX)(x,0) ⊆ Aut(BX)(x,1). Given β ∈ Aut(BX)(x,1), we have an

analogous computation

β(x, 0) = (βτ)(x, 1) = (τβ)(x, 1) = τ(x, 1) = (x, 0).

This shows that Aut(BX)(x,1) ⊆ Aut(BX)(x,0), finishing the proof.

Note that point stabilizers Aut(BX)(x,0) and Aut(BX)(x,1) are always conjugate

subgroups of Aut(BX). Indeed, since by Lemma 3.4(2), τ is an order 2 automorphism

of BX swapping (x, 0) and (x, 1), we know that

Aut(BX)(x,0) = τ Aut(BX)(x,1)τ and Aut(BX)(x,1) = τ Aut(BX)(x,0)τ.

This can be used to give an alternative proof of Lemma 4.4, as the action of conju-

gation by central elements is trivial.

Moreover, if X is a finite graph, establishing only one containment already suffices

to conclude that these stabilizers are equal. In proofs, we will often assume that an

automorphism α ∈ Aut(BX) fixes (x, 0) and then derive that it also fixes (x, 1).

It turns out that, when X is vertex-transitive, Lemma 4.4 has a converse.

Lemma 4.5 (Fernandez-Hujdurović, [7, Lemma 2.4]). Let X be a connected, non-

bipartite, vertex-transitive graph. Then X is stable if and only if Aut(BX)(x,0) =

Aut(BX)(x,1) for some (equivalently, every) vertex x ∈ V (X).

Proof. (⇒) This direction follows by Lemma 4.4. Note that it does not require any

additional assumptions on X.

(⇐) Assume that Aut(BX)(x,0) = Aut(BX)(x,1) for some x ∈ V (X). We claim that

the same holds for all y ∈ V (X). To show this, fix y ∈ V (X) and, as X is vertex-

transitive, let φ be an automorphism of X mapping x to y. Then φ ∈ Aut(BX) and

φ(x, i) = (φ(x), i) = (y, i) for i ∈ {0, 1}. We conclude that

Aut(BX)(y,0) = φAut(BX)(x,0)φ
−1 = φAut(BX)(x,1)φ

−1 = Aut(BX)(y,1).

All that is left to prove is that X is stable. By Corollary 4.3, it suffices to prove

that τ is central in Aut(BX). Let α ∈ Aut(BX) be arbitrary. As X is connected and

non-bipartite, by Lemma 3.2(1), α either preserves or reverses colour classes of BX.

Case 1. α preserves the colour classes of BX.

Let x ∈ V (X) be arbitrary. As α fixes the colour classes, there exists y ∈ V (X)

such that α(x, 0) = (y, 0). Because X is assumed to be vertex-transitive, we can
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find φ ∈ Aut(X) such that φ(y) = x. Then φ ∈ Aut(X) × S2 ≤ Aut(BX) and

φ(y, i) = (φ(y), i) = (x, i) for i ∈ {0, 1}. We calculate:

(φα)(x, 0) = φ(y, 0) = (x, 0) =⇒ φα ∈ Aut(BX)(x,0).

By assumption, Aut(BX)(x,0) = Aut(BX)(x,1), so (φα)(x, 1) = (x, 1). This we can

rewrite as

α(x, 1) = φ−1(x, 1) = φ−1(x, 1) = (φ−1(x), 1) = (y, 1).

Finally, we have that

• (ατ)(x, 0) = α(x, 1) = (y, 1) = τ(y, 0) = (τα)(x, 0),

• (ατ)(x, 1) = α(x, 0) = (y, 0) = τ(y, 1) = (τα)(x, 1).

As x ∈ V (X) was arbitrary, we conclude that ατ = τα. In particular, α commutes

with τ .

Case 2. α reverses colour classes of BX.

In this case, τα preserves colours classes of BX. By the previous case, we know

that τα commutes with τ . Using the fact that τ 2 = 1 (see Lemma 3.4(2)), we obtain

that

τα = τ(τ(τα)) = τ((τα)τ) = ατ.

We conclude that τ commutes with all α ∈ Aut(BX). In particular, τ is central in

Aut(BX), as desired.

Remark 4.6. Let X be a finite vertex-transitive graph with at least two vertices (so

Aut(X) is non-trivial). If we wish to show that X is stable, we need to check that it is

connected, non-bipartite and twin-free (otherwise, at least one of the Proposition 3.15,

Proposition 3.16 or Proposition 3.20 applies, implying that X is trivially unstable).

If X satisfies these conditions, then to show it is stable, by Corollary 4.3, it suffices

to show that for some x ∈ V (X), Aut(BX)(x,0) and Aut(BX)(x,1) are equal. As already

discussed, these stabilizers are conjugate and consequently have the same number of

elements, so it suffices to show that

∃x ∈ V (X) s.t. ∀α ∈ Aut(BX), α(x, 0) = (x, 0) =⇒ α(x, 1) = (x, 1).

In the particular case when X is a Cayley graph Cay(G,S), we will usually work

with x = 1G.

Finally, we wish to remark that the assumption that X is vertex-transitive in Lemma

4.5 is crucial. We recall the Bowtie graph W from Example 3.23. From Figure 1, we see

that (1, 0) and (1, 1) are the only two vertices of valency 4 in BW, so an automorphism

of BW fixes (1, 0) if and only if it fixes (1, 1). In particular, the condition of Lemma
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4.5 is satisfied for x = 1. However, in Example 3.23, we have already established that

W is non-trivially unstable.

In Section 8.1, we will construct examples of non-trivially unstable graphs with

trivial automorphism group (we will call such graph asymmetric, see Definition 8.1).

In particular, in Example 8.3, we will discuss the Swift graph SG, which is a non-

trivially unstable graph such that Aut(SG) is trivial and Aut(B(SG)) is semi-regular.

Therefore, all stabilizers Aut(B(SG))(x,i) with x ∈ V (SG), i ∈ {0, 1} are trivial and

consequently equal, so the condition of Lemma 4.5 is satisfied by every vertex x ∈
V (SG), but SG still fails to be stable.

We now show that all complete graphs Kn, except K2, are stable. Recall that

Aut(Kn) = Sn is transitive on V (Kn) making Kn a vertex-transitive graph for all

n ≥ 1.

Example 4.7 (Qin-Xia-Zhou, [26, Example 2.2]). The complete graph Kn is unstable

if and only if n = 2.

Proof. Note that for x ∈ V (Kn), the vertex (x, 0) of BKn is adjacent to all vertices

in V (Kn) × {1} except (x, 1). It follows that BKn is actually Kn,n − nK2 i.e., the

complete bipartite graph Kn,n with a perfect matching removed.

We study the following cases:

• If n = 1, then BK1 = K2 and Aut(BK1) = S2
∼= Aut(K1) × S2. It follows that

K1 is stable.

• If n = 2, the following calculation shows that K2 is unstable.

|Aut(BK2)| = |Aut(2K2)| = |Aut(2K2)| = |Aut(C4)| = |D8| =

= 8 > 4 = |S2 × S2| = |Aut(K2)× S2|.

Alternatively, K2 is bipartite and Aut(K2) ̸= 1, so K2 is trivially unstable by

Proposition 3.16.

• Assume that n ≥ 3. Then Kn is connected, non-bipartite and vertex-transitive.

Note that for every x ∈ V (Kn), it holds that:

1. dBKn((x, 0), (y, 1)) = 1 for all y ∈ V (Kn), y ̸= x,

2. dBKn((x, 0), (y, 0)) = 2 for all y ∈ V (Kn), y ̸= x,

3. dBKn((x, 0), (x, 1)) = 3.

In particular, (x, 1) is the unique vertex at distance 3 from (x, 0). Consequently,

automorphisms of BX fix (x, 0) if and only if they fix (x, 1). Applying Lemma

4.5, we obtain that Kn with n ≥ 3 is stable, proving the desired.
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Remark 4.8. Alternatively, one can note that by Lemma 2.20, for n ≥ 3 it holds that

Kn ×K2
∼= K2 ×Kn

∼= K2 ≀Kn − nK2
∼= K2 ≀d Kn

∼= Kn,n − nK2

Then we have that

Aut(BKn) = Aut(Kn ×K2) ∼= Aut(Kn,n − nK2) = Sn × S2 = Aut(Kn)× S2.

It turns out that the same idea can be used to establish the stability of a much

more interesting class of vertex-transitive graphs.

Definition 4.9 ([8, Chapter 6.10]). Let n ≥ 1 be a positive integer. The n-Andrásfai

graph is the circulant graph

And(n) := Cay(Z3n−1, S) with S := {1 ≤ i ≤ 3n− 2 | i ≡ 1 (mod 3)}.

Note that And(1) = Cay(Z2, {1}) is isomorphic to K2. In particular, it is bipartite

and trivially unstable. It turns out that this is the only unstable Andrásfai graph.

Proposition 4.10. Let n ≥ 2 be a positive integer. The n-Andrásfai graph And(n) is

stable.

Proof. Fix an n ≥ 2 and write X := And(n) = Cay(Z3n−1, S). As already noted, our

strategy will be to apply Lemma 4.5. Note that 1 is always contained in S. It follows

by Proposition 2.25(5) that X is connected. As n ≥ 2, 4 is also in S. The vertices

0, 1, 2, 3 and 4 then lie on a 5-cycle, so X is non-bipartite.

The elements of Z3n−1 represent classes of congruent integers modulo 3n− 1. How-

ever, because 3 does not divide the order of the group 3n− 1, different representatives

of the same class in Z3n−1 may not be congruent modulo 3 (for instance, when n = 3,

−2 and 6 are congruent modulo 8 and define the same element of Z8, but are not

congruent modulo 3). This is why given a class i ∈ Z3n−1, we define c(i) to be its

canonical representative satisfying

0 ≤ c(i) ≤ 3n− 2 and c(i) ≡ i (mod 3n− 1).

For j ∈ {0, 1, 2} define

Nj := {i ∈ Zn \ {0} | c(i) ≡ j (mod 3)}.

Then we see that S = N1 and moreover, {0} ∪
⋃2

j=0Nj is a partition of the vertex

set of X.

Let x ∈ Nj be arbitrary. Then given s ∈ S, we see that
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• c(x+ s) = x+ s ≡ j + 1 (mod 3), or

• c(x+ s) = x+ s− (3n− 1) = x+ s+ 1− 3n ≡ j + 2 (mod 3).

This shows that neighbours of elements of N0 are in N1 and N2, while neighbours of

elements of N2 are in N0 and N1. In particular, N0 and N2 are independent sets in X

and they induce a bipartite subgraph ofX with a bipartition N0∪N2. Applying Lemma

3.2(1), it follows that the double cover of this subgraph is an induced disconnected

bipartite subgraph of BX with a bipartition given by N0×{j}∪N2×{j} for j ∈ {0, 1}.
By the same argument as before, the non-zero neighbours of elements of N1 lie in

N0 and N2. It follows that all neighbours of elements N1 × {1} distinct from (0, 0) lie

in N0×{0}∪N2×{0}, while all neighbours of elements of N1×{0} distinct from (0, 1)

lie in N0×{1}∪N2×{1}. Note that N1×{1} is exactly the set of neighbours of (0, 0),

while N1 × {0} is exactly the set of neighbours of (0, 1).

Previous observations let us write down the distance partition of BX with respect

to (0, 0).

1. (BX)1(0, 0) = N1 × {1},

2. (BX)2(0, 0) = N0 × {0} ∪N2 × {0},

3. (BX)3(0, 0) = N0 × {1} ∪N2 × {1},

4. (BX)4(0, 0) = N1 × {0},

5. (BX)5(0, 0) = {(0, 1)}.

It follows that (0, 1) is the unique vertex in BX at distance 5 from (0, 0). Hence,

an automorphism of BX fixes (0, 0) if and only if it fixes (0, 1). The conclusion follows

by Lemma 4.5.

The next two stability criteria are specialized to Cayley graphs of abelian groups.

The first one illustrates that normality of the double cover, under appropriate assump-

tions, can force the graph to be stable. The other one shows that if if the connection set

of a Cayley graph is sufficiently nice, stability can be deduced by looking at a special

type of cycles in the double cover.

Lemma 4.11 (Fernandez-Hujdurović [7, Lemma 2.6]). Let G be an abelian group of

odd order, and let X = Cay(G,S) be a connected Cayley graph on G. If BX is a

normal Cayley graph, then X is stable.

Proof. Our strategy will be to apply Lemma 4.3. We note that X is assumed to be

connected. Because it is a Cayley graph of odd order |G|, Corollary 2.27 implies that it
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is non-bipartite. We now need to establish that the automorphism τ(x, i) = (x, i + 1)

is central in Aut(BX).

As remarked in Corollary 3.14, τ corresponds to the left translation automorphism

of BX induced by t := (1G, 1), that is, τ = tL. By Lemma 3.13, we know that

BX = Cay(G × Z2, S × {1}). Because BX is normal, Lemma 2.31(2) implies that

every automorphism of BX is a product of an element of (G×Z2)L and some element

of Aut(G×Z2). So to show that τ = tL is central, it suffices to show it commutes with

all elements of (G× Z2)L and Aut(G× Z2).

The first part is obvious as τ = tL ∈ (G × Z2)L and G is abelian. For the second

part, we first note that the element t has order 2 in G× Z2. Because |G× Z2| = 2|G|
is even but not divisible by 4, it follows that this is the unique element of order 2 in

the abelian group G × Z2 (indeed, if s and s′ were two distinct elements of order 2

in G × Z2, then G × Z2 would contain a subgroup of order 4, namely {1, s, s′, ss′}, a
contradiction). Because group automorphisms preserve the order of an element, this

shows that every φ ∈ Aut(G× Z2) fixes t i.e., φ(t) = t.

The following calculation shows that τ also commutes with all elements of Aut(G×
Z2). Let φ ∈ Aut(G× Z2) and x ∈ G× Z2. Then

(φτ)(x) = (φtL)(x) = φ(tx) = φ(t)φ(x) = tφ(x) = tL(φ(x)) = (τφ)(x).

We can now conclude that τ commutes with all elements of Aut(BX), so τ is central

in Aut(BX), proving the desired.

Lemma 4.12 (Hujdurović-Mitrović-Morris [12, Lemma 3.5]). Let X = Cay(G,S) be

a connected Cayley graph of an abelian group G, and let k ∈ Z+, such that k is odd.

Suppose there exists c ∈ S, such that

1. |c| = k,

2. c2 ̸= st, for all s, t ∈ S \ {c}, and

3. for all a ∈ S of order 2k, there exist s, t ∈ S \ {a}, such that a2 = st.

Then X is stable.

Proof. Let us say that a cycle in BX is exceptional if, for every pair xi, xi+2 of vertices

at distance 2 on the cycle, the unique path of length 2 from xi to xi+2 is xi, xi+1, xi+2.

It is clear that every automorphism of BX must map each exceptional cycle of length k

to an exceptional cycle of length k.

Let c ∈ S be any element satisfying the conditions. Note that X is connected by

assumption and that it is non-bipartite, since c ∈ S is of odd order and generates an

odd cycle (1G, s, s
2, . . . , sk−1, sk = 1G).
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Let α be an automorphism of BX fixing (1G, 0). Note that Lemma 3.13 implies that

BX = Cay(G×Z2, S×{1}). The cycle generated by (c, 1) ∈ S×{1} is an exceptional

cycle of length 2k in BX. Furthermore, every exceptional cycle of length 2k is of this

form. Since (c, 1)k = (1G, 1), it follows that (1G, 1) lies at every exceptional cycle of

length 2k through (0, 0) and is the unique vertex at distance k from (1G, 0) in each of

these cycle. This implies that α fixes (1G, 1). Hence, X is stable by Lemma 4.5.

Next, we discuss a stability criterion, first introduced by Surowski in [30], for graphs

whose every edge lies on a triangle. This result has has been subsequently shown not

to hold by Lauri, Mizzi and Scapellato in their article [17] on two-fold automorphisms

of graphs.

We will first give the original statement of Surowski. Next, we will examine a

small counterexample coming from an infinite family constructed by Lauri, Mizzi and

Scapellato. Finally, we will point out the mistake in the original proof and fix it by

introducing additional assumptions, obtaining a valid stability criterion.

Proposition 4.13 (Surowski (original false statement) [30, Proposition 2.1]). Let X

be a connected, vertex-transitive graph of diameter d ≥ 4. If every edge is contained in

a triangle in X, then X is stable.

Example 4.14 (Lauri-Mizzi-Scapellato [17, Theorem 5.1, Figure 10,p.130]). Let X =

C8 ≀C8. Then clearly, X is connected. Its diameter equals to the diameter of C8, which

is 4. Assume for contradiction that X is not twin-free and that x, y ∈ V (X) are twins.

Then x and y are distinct and non-adjacent.

• If x and y lie in the same copy of C8, then they also need to have the same

neighbours inside that copy. This is impossible, since C8 is twin-free.

• Otherwise, x and y have to correspond to distinct, non-adjacent elements x′ and

y′ of C8. It follows that x
′ and y′ are twins in C8, which is again a contradiction

with C8 being twin-free.

Finally, all edges of X lie on a triangle. If an edge has both endpoints in one copy

of C8, we can pick any of the vertices of either of the two adjacent copies to produce

a triangle containing the original edge. If an edge has its endpoints in distinct copies

of C8, we can look at one of the endpoints and pick one of its two neighbours in the

same copy to produce a triangle containing the original edge. This also shows that X

is non-bipartite.

This means that X satisfies all of the conditions of Proposition 4.13. However, by

MAGMA calculations, X is unstable with index of instability 16777216.

The original proof Surowski presents uses the assumptions to describe a part of the

distance partition of BX with respect to a fixed vertex (x, 0). In particular, Surowski
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shows that the vertex (x, 1) is at distance 3 from (x, 0). The author then attempts to

show that (x, 1) is the unique vertex at distance 3 from (x, 0) in BX with no neighbours

lying at distance 4 from (x, 0). This would imply that any automorphism of BX fixing

(x, 0) must also fix (x, 1) and X is then stable by Lemma 4.5.

However, this claim is false in general. In fact, if we fix a vertex x of the graph

X = C8 ≀ C8 discussed in Example 4.14, then any of the other 5 vertices lying in the

same copy of C8 that are distinct from x and are not adjacent to it, induce vertices

of BX at distance 3 from (x, 0), all of whose neighbours are at distance at most 3

from (x, 0). In particular, it is not possible to distinguish (x, 1) from other elements of

(BX)3(x, 0) in the manner proposed by Surowski.

We remedy this situation by adding additional assumptions on X.

Proposition 4.15. Let X be a non-trivial connected graph. Assume that X satisfies

that following conditions.

1. Every edge of X lies on a triangle.

2. For every x ∈ V (X), it holds that

(a) If y ∈ V (X) is at distance 2 from x, then y has a neighbour z ∈ V (X) at

distance 3 from x, and

(b) If y ∈ V (X) is at distance 3 from x, then it has a neighbour z ∈ V (X) at

distance 4 from x.

Then X is stable.

Proof. Let x ∈ V (X) be arbitrary. Note that X1(x) is non-empty as X is connected

and non-trivial.

If X2(x) is empty, then x is adjacent to all other vertices of X. In particular,

if y ∈ V (X) is distinct from x, every vertex of X is at distance at most 2 from y.

However, if X2(y) is non-empty, we arrive at a contradiction with (2a). It follows that

X is complete. As it contains triangles, it is non-bipartite and stable by Example 4.7.

We can now assume that X2(x) is non-empty for all x ∈ V (X). Conditions (2a)

and (2b) then imply that also X3(x) and X4(x) are non-empty for all x ∈ V (X).

Let x ∈ V (X) be arbitrary. We analyze the distance partition of BX with respect to

the vertex (x, 0). For simplicity, we will write Xi for Xi(x) when we will be performing

calculations.

1. (BX)1(x, 0) = X1(x)× {1}

This follows by the definition of BX.
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2. (BX)2(x, 0) = X1(x)× {0} ∪X2(x)× {0}

(⊆) Clearly, (BX)2(x, 0) ⊆ V (X)×{0}. Let (y, 0) ∈ (BX)2(x, 0). Then we have

a path (x, 0) ∼ (z, 1) ∼ (y, 0) in BX for some z ∈ V (X). By the definition of

BX, x ∼ z ∼ y is a path in X. If x ∼ y, it follows that (y, 0) ∈ X1 × {0}.
Otherwise, x ̸∼ y implies that y ∈ X2 and (y, 0) ∈ X2 × {0}.

(⊇) Let y ∈ X1. As (BX)1(x, 0) ⊆ V (X) × {1}, it is clear that (y, 0) ̸∈
(BX)1(x, 0). By assumption (1), the edge {x, y} is on a triangle in X, so there

exists z ∈ V (X) such that x ∼ z, z ∼ y. It follows that (x, 0) ∼ (z, 1) ∼ (y, 0) is

a path in BX. Consequently, (y, 0) ∈ (BX)2(x, 0)

If y ∈ X2, we know a common neighbour z ∈ V (X) of x and y exists, so the same

argument applies.

3. (x, 1) ∈ (BX)3(x, 0),

Clearly, (x, 1) ̸∈ (BX)1(x, 0) ∪ (BX)2(x, 0), so d((x, 0), (x, 1)) ≥ 3. As X is

connected and non-trivial, x must have a neighbour. Let y ∈ X1. By assumption

(1), we can find z ∈ V (X) such that x, y and z form a triangle. Then (x, 0) ∼
(y, 1) ∼ (z, 0) ∼ (x, 1) is a path of length 3 in BX. Hence, (x, 1) ∈ (BX)3(x, 0),

as desired.

4. (BX)3(x, 0) ⊆ X2(x)× {1} ∪X3(x)× {1} ∪ {(x, 1)}

Clearly, (BX)3(x, 0) ⊆ V (X)×{1}. If (w, 1) ∈ (BX)3(x, 0), we know that there

exist y, z ∈ V (X) such that (x, 0) ∼ (y, 1) ∼ (z, 0) ∼ (w, 1) is a path in BX.

Consequently, x ∼ y ∼ z ∼ w in X. If w = x, there is nothing to prove, so we

may assume w ̸= x. It follows that 1 ≤ d(x,w) ≤ 3. If d(x,w) = 1, then (w, 1) ∈
(BX)1(x, 0), a contradiction. Hence, either d(x,w) = 2 and (w, 1) ∈ X2 ×{1} or

d(x,w) = 3 and (w, 1) ∈ X3 × {1}.

Note that (x, 1) ∈ (BX)3(x, 0) has no neighbours in BX4(x, 0). Indeed, since

BX4(x, 0) ⊆ V (X)×{0}, if (x, 1) ∼ (y, 0), it follows that x ∼ y and y ∈ X1. But then

(y, 0) ∈ X1 × {0} ⊆ (BX)2(x, 0) as previously established, a contradiction.

We now show that (x, 1) is the unique element of (BX)3(x, 0) with this property,

that is, we will show that every element of (y, 1) ∈ (BX)3(x, 0) \ {(x, 1)} does have a

neighbour in (BX)4(x, 0).

If y ∈ X2, then by assumption (2a), it has a neighbour z ∈ V (X) such that z ∈ X3.

Then (z, 0) ∈ V (BX) is a neighbour of (y, 1) and, by the formulas we derived, it is

not contained in (BX)i(x, 0) for i ∈ {1, 2, 3}. As (y, 1) ∈ (BX)3(x, 0), it follows that

(z, 0) ∈ (BX)4(x, 0).

If y ∈ X3, then by assumption (2b), it has a neighbour z ∈ V (X) such that z ∈ X4.

By the same arguments as before, it follows that (z, 0) ∈ (BX)4(x, 0) is a neighbour of

(y, 1).
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Let α ∈ Aut(BX) and x ∈ V (X). As X is connected and non-bipartite (as it

contains triangles), Lemma 2.13 implies that, possibly after composing α with τ , we

can assume that α(V (X)× {i}) = V (X)× {i} for i ∈ {0, 1}. Let y ∈ V (X) such that

α(x, 0) = (y, 0).

As α is an automorphism, it follows that α((BX)i(x, 0)) ⊆ (BX)i(y, 0) for all i ≥ 0.

Then (x, 1) ∈ (BX)3(x, 0) will be mapped onto the vertex α(x, 1) ∈ (BX)3(y, 0),

which will not have any neighbours in (BX)4(y, 0), as (x, 1) has no neighbours in

(BX)4(x, 0). But the only element with this property in (BX)3(y, 0) is (y, 1). It

follows that α(x, 1) = (y, 1).

This shows that we can find a permutation φ ∈ Sym(V (X)) such that α(x, i) =

(φ(x), i) for all x ∈ V (X), i ∈ {0, 1}. The fact that α is an automorphism of BX,

implies that φ is an automorphism of X. In particular, α = φ ∈ Aut(X) × S2. It

follows that X is stable, as desired.

Remark 4.16. As already hinted at in the proof, the updated assumptions rule out the

possibility of X being trivially unstable. By assumption X is connected and by (1), X

contains triangles and is consequently non-bipartite. If x and y are twins, then y lies

in X2(x). But then the assumption (2a) implies that y has a neighbour z at distance

3 from x. Clearly, z is a neighbour of y, but not a neighbour of x, contradicting the

assumption that x and y are twins. It follows that X must be twin-free to begin with.

Our updated criterion has the following corollary.

Lemma 4.17. Let X be a connected distance-transitive graph of diameter d ≥ 4 that

contains a triangle. Then X is stable.

Proof. Note that X is edge-transitive. In particular, since X contains a triangle, each

of its edges lies on a triangle. Moreover, since X has diameter at least 4, we can find

two vertices in X and a path of length at least 4 between them. As X is also vertex-

transitive and Aut(X)x is transitive on the distance sets Xi(x) for all i ∈ {1, . . . , d}, by
translating the obtained path, we can show that X satisfies conditions (2a) and (2b).

Proposition 4.15 implies that X is stable.

In the same article, Surowski discusses another stability criterion [30, Proposi-

tion 2.2], this time for strongly regular graphs. Before discussing it, we prove the

following generalization, of which the original result is just a corollary.

Proposition 4.18. Let X be a connected, twin-free graph such that every edge of X

lies on a triangle. If for every edge {x, y} ∈ E(X) and non-edge {z, w} ̸∈ E(X) with

x, y, z, w ∈ V (X), it holds that

|NX(x) ∩NX(y)| ≠ |NX(z) ∩NX(w)|, (4.1)

then X is stable.
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Proof. We look at the distance partition of BX with respect to (x, 0), where x ∈ V (X)

is arbitrary. Note that the analysis of it in the proof of Proposition 4.15 only depended

on the assumption that every edge of the graph lies on a triangle. It follows that

1. (BX)1(x, 0) = X1(x)× {1},

2. (BX)2(x, 0) = X1(x)× {0} ∪X2(x)× {0}.

Let α ∈ Aut(BX) and x ∈ V (X). As X is connected and non-bipartite (as it

contains triangles), it follows by Lemma 2.13 that automorphisms of BX either preserve

or reverse the colour classes of BX. Hence, after possibly composing α with τ , we may

assume that α(V (X)× {i}) = V (X)× {i}. Let z ∈ V (X) such that α(x, 0) = (z, 0).

Then as α is an automorphism, α((BX)i(x, 0)) ⊆ (BX)i(z, 0) for all i ≥ 0. Let

y ∈ X1(x). Then (y, 0) ∈ (BX)2(x, 0). Denote α(y, 0) = (w, 0) for w ∈ V (X). If

α(y, 0) ∈ X2(z)× {0} ⊆ (BX)2(z, 0), then it holds that

|NX(x) ∩NX(y)| = |NBX(x, 0) ∩NBX(y, 0)| =

= |α(NBX(x, 0) ∩NBX(y, 0))| =

= |α(NBX(x, 0)) ∩ α(NBX(y, 0))| =

= |NBX(α(x, 0)) ∩NBX(α(y, 0))| =

= |NBX(z, 0) ∩NBX(w, 0)| =

= |NX(z) ∩NX(w)|.

However, as (w, 0) ∈ X2(z)× {0}, it follows that z and w are not adjacent, so this

contradicts Eq. (4.1).

We conclude that α(X1(x) × {0}) ⊆ X1(z) × {0}. As α is an automorphism, it

follows that (x, 0) and (z, 0) are of the same valency, that is |X1(x)×{0}| = |X1(x)| =
|X1(z)| = |X1(z)× {0}|. Hence, we have in fact proven that

α(X1(x)× {0}) = X1(z)× {0}.

Let y ∈ V (X) be such that α(x, 1) = (y, 1). Then

NBX(y, 1) = NBX(α(x, 1)) = α(NBX(x, 1)) = α(X1(x)× {0}) =

= X1(z)× {0} = NBX(z, 1).

Hence, (y, 1) and (z, 1) are twins in BX. However, as X is twin-free, it follows by

Corollary 3.21 that BX is twin-free as well. We conclude that (y, 1) = (z, 1).

This shows that α(x, i) = (φ(x), i), x ∈ V (X), i ∈ {0, 1} for some permutation

φ of V (X). It is not hard to see that since α is an automorphism of BX, φ is an

automorphism of X. In particular, α = φ ∈ Aut(X) × S2. It follows that X is

stable.
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We can now obtain the original criterion as a corollary of the one we just established.

Proposition 4.19 (Surowski [30, Proposition 2.2]). Let X be a strongly regular graph

with parameters (v, k, λ, µ). If k > µ ̸= λ ≥ 1, then X is stable.

Proof. First we note that X must be connected, since vertices in distinct connected

components would have no neighbours in common, which contradicts the fact that

µ > 0. Next, X is twin-free, as twins are non-adjacent vertices and would have k

neighbours in common, which contradicts that assumption that k > µ. Every edge of

X lies on a triangle since λ ≥ 1.

Finally, let x, y, z, w ∈ V (X) be such that {x, y} ∈ E(X) and {z, w} ̸∈ E(X). Then

|NX(x) ∩NX(y)| = λ ̸= µ = |NX(z) ∩NX(w)|.

It follows that X satisfies all conditions of Proposition 4.18. Hence, X is stable, as

desired.

Remark 4.20. In [30], Surowski constructs an infinite family of strongly regular graphs

with λ = µ.

Surowski’s original proof distinguishes (x, 1) as the unique element of (BX)3(x, 0)

which has no neighbours in X2(x)× {0} ⊆ (BX)2(x, 0). As the diameter of a strongly

regular graph is 2, it follows that (BX)3(x, 0) \ {(x, 1)} = X2(x)× {1} and each of its

elements has k − µ > 0 neighbours in X2(x) × {0}. What Surowski actually proves is

that, Aut(BX)(x,0) = Aut(BX)(x,1) for all x ∈ V (X). However, as X is not necessarily

vertex-transitive, the converse of Lemma 4.4 (given in Lemma 4.5) does not necessar-

ily apply (as illustrated by the Bowtie graph in Example 3.23 and the Swift graph in

Example 8.3). Hence, while the statement of his result is true, the proof is somewhat

incomplete.

A strongly regular graph is said to be a conference graph, if its parameters are(
v, v−1

2
, v−5

4
, v−1

4

)
. Note that Proposition 2.40(4) implies that Paley graphs are confer-

ence graphs. The following is an immediate corollary of Corollary 4.19.

Corollary 4.21. Every conference graph is stable. In particular, every Paley graph is

stable.

We now consider the family of Kneser graphs K(n, k) and prove, that these graphs

are stable under appropriate assumptions on their parameters n and k.

Definition 4.22. Let n ≥ k ≥ 1 be positive integers. The Kneser graph is the

graph K(n, k) with k-element subsets of the set [n] := {1, . . . , n} as vertices, which are

adjacent if and only if they are disjoint as sets.
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Corollary 4.23. Let n, k ≥ 1 be positive integers such that n ≥ 3k. Then the Kneser

graph K(n, k) is stable.

Proof. Let x ∈ V (K(n, k)). We claim that

[n] \ x =
⋃

y∈NK(n,k)(x)

y

Indeed, if x and y are adjacent, then x ∩ y = ∅, so y ⊂ [n] \ x. Conversely, if

a ∈ [n] \ x, as |[n] \ x| = n− k ≥ 2k > k, we can find a k-subset y disjoint from x and

containing a. Then a ∈ y ∈ NK(n,k)(x).

Hence, if NK(n,k)(x) = NK(n,k)(y), then the claim implies that [n] \ x = [n] \ y. In

particular, x = y and K(n, k) is twin-free.

Let x, y ∈ V (K(n, k)) be distinct vertices and let r := |x∩y|. By Inclusion-exclusion

principle we have that

|[n] \ (x ∪ y)| = n− |x ∪ y| = n− (|x|+ |y| − |x ∩ y|) = n− 2k + r. (4.2)

Note that common neighbours of x and y are exactly the k-element subsets of

[n] \ (x ∪ y).

• If x and y are adjacent in K(n, k), then they are disjoint and r = 0. In particular,

by Eq. (4.2), x and y have
(
n−2k

k

)
common neighbours. As n ≥ 3k, this number

is positive and it shows that every edge of K(n, k) lies on a triangle.

• If x and y are not adjacent, then 1 ≤ r ≤ k − 1. Hence, by Eq. (4.2), x and y

have
(
n−2k+r

k

)
common neighbours. Note that this number is also positive. This

also shows that K(n, k) is connected.

Moreover, when x and y are not adjacent, as r ≥ 1, we get that
(
n−2k+r

k

)
>
(
n−2k

k

)
,

proving that K(n, k) satisfies the condition from Eq. (4.1).

In particular, Proposition 4.18 implies that K(n, k) is stable.

Note that we have also proven that if n ≥ 3k ≥ 1, it holds that

• K(n, k) is of diameter 2 (so Proposition 4.15 does not apply), and

• When k ≥ 3, K(n, k) is not strongly regular, as the number of common neigh-

bours of two non-adjacent vertices depends on the size of their intersection as

subset of [n] and is consequently not constant (so Proposition 4.19 does not ap-

ply).

It is worth noting that the Kneser graphK(n, 2) is strongly regular with parameters((
n
2

)
,
(
n−2
2

)
,
(
n−4
2

)
,
(
n−3
2

))
. When n ≥ 6, Proposition 4.19 applies. Note that K(2, 2) ∼=

K1, K(3, 2) ∼= K3, K(4, 2) ∼= 3K2 and that K(5, 2) is the Petersen graph. Putting

these observations together, we obtain the following.
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Corollary 4.24. The Kneser graph K(n, 2) is unstable if and only if n ∈ {3, 4}.
Moreover, K(3, 2) ∼= K3 and K(4, 2) ∼= 3K2 are trivially unstable.

We are now in position to derive a complete classification of unstable Johnson

graphs.

Definition 4.25 ([8, p. 9]). Let n ≥ k ≥ 1 be positive integers. The Johnson graph

is the graph J(n, k) with k-element subsets of [n] := {1, . . . , n} as vertices, which are

adjacent if and only if the size of their intersection as sets is k − 1.

The following result lists several well known properties of Johnson graphs, which

we will need for their classification.

Lemma 4.26 ([8, Chapter 1.6]). Let n ≥ k ≥ 1 be positive integers. The Johnson

graph J(n, k) has the following properties.

1. J(n, k) ∼= J(n, n− k), where the isomorphism is induced by the complementation

map assigning to each k-element subset of [n] its (n− k)-element complement.

2. J(n, k) is connected.

3. J(n, k) is k(n− k)-regular.

4. J(n, k) is distance-transitive.

5. The diameter of J(n, k) is given by min(k, n− k).

Lemma 4.27. Let n and k be positive integers such that n ≥ k + 4 and k ≥ 4. Then

the Johnson graph J(n, k) is stable.

Proof. It follows from Lemma 4.26 that J(n, k) is a connected, distance-transitive graph

with diameter d = min(k, n − k). Note that n − k ≥ (k + 4) − k = 4 and k ≥ 4, so

d ≥ 4. Moreover, the following vertices form a triangle

{1, . . . , k − 1, k}, {1, . . . , k − 1, k + 1} and {1, . . . , k − 1, k + 2}.

Lemma 4.17 implies that J(n, k) is stable.

We now deal with the remaining non-trivial cases.

Lemma 4.28. Let n ≥ 2 be a positive integer. Then J(n, 2) is unstable if and only if

n ∈ {4, 6}. Moreover, J(4, 2) is not twin-free and is therefore trivially unstable. The

graph J(6, 2) is non-trivially unstable with index of instabiliy 28.
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Proof. (⇒) Note that J(2, 2) ∼= K1 and J(3, 2) ∼= K3 are stable by Example 4.7.

Hence, we may assume that n ≥ 4. We observe that J(n, 2) is strongly regular with

parameters

(v, k, λ, µ) =

(
n(n− 1)

2
, 2(n− 2), n− 2, 4

)
.

To prove this, we could note that J(n, 2) is the triangular graph T (n) i.e., the line

graph of the complete graph Kn, which is known to be strongly regular with above

parameters. Alternatively, note that two distinct 2-subsets of [n] are non-adjacent

in J(n, 2) if and only if they have an empty intersection. This shows us that the

complement J(n, 2) is just the Kneser graph K(n, 2). Using the fact that K(n, 2) is

strongly regular with parameters
((

n
2

)
,
(
n−2
2

)
,
(
n−4
2

)
,
(
n−3
2

))
, we again obtain that J(n, 2)

is strongly regular with above parameters.

Note that, as n ≥ 4, we have that k > λ > 0. Next, k > µ > 0, unless n = 4,

when we get that k = µ. Finally, note that λ ̸= µ, unless n = 6. It follows that for

n ̸∈ {4, 6}, J(n, 2) is stable by Proposition 4.19.

(⇐) As J(4, 2) is strongly regular with parameters (6, 4, 2, 4), we conclude that it

is not twin-free. Consequently, it is trivially unstable (note J(4, 2) is the octahedral

graph). Finally, MAGMA calculations show that J(6, 2) is non-trivially unstable with

index of instability equal to 28. The desired conclusion follows.

Lemma 4.29. Let n ≥ 3. The Johnson graph J(n, 3) is unstable if and only if n = 6.

Moreover, J(6, 3) is non-trivially unstable with index of instability 2.

Proof. (⇐) Calculations in MAGMA show that J(6, 3) is non-trivially unstable with

index of instability equal to 2.

(⇒) Assume that J(n, 3) is unstable. Our strategy will be to apply Proposition

4.18 and then handle the remaining cases separately.

Case 1. n ≥ 7.

Note that the vertices {1, 2, 3}, {1, 2, 4} and {1, 2, 5} form a triangle in J(n, 3). As

J(n, 3) is distance-transitive by Lemma 4.26(4), it follows that its every edge lies on a

triangle.

Let A,B ∈ V (J(n, 3)) be distinct vertices of J(n, 3). We calculate the number of

common neighbours of A and B.

• If A and B are adjacent, then A = {x, y, a} and B = {x, y, b} with pair-wise

distinct elements x, y, a, b ∈ [n]. Note that common neighbours of A and B are

{x, a, b}, {y, a, b} and vertices of the form {x, y, z} with z ∈ [n] \ {x, y, a, b}. It

follows that there is a total of 2 + (n− 4) = n− 2 of them.

• If A and B are not adjacent, they are either disjoint as subsets of [n], or they

intersect in precisely one element. It is not hard to see that if they are disjoint,
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they have no common neighbours in J(n, 3). If they intersect in exactly one

element, then A = {a, a′, x} and B = {b, b′, x} with pair-wise distinct elements

a, a′, b, b′, x ∈ [n]. Note that in this case, the common neighbours of A and B are

precisely the vertices {a, b, x}, {a′, b, x}, {a, b′, x} and {a′, b′, x}. In total, there is

4 of them.

In conclusion, vertices A and B share n − 2 neighbours if adjacent and 0 or 4

neighbours if they are not adjacent. As n ≥ 7, J(n, 3) satisfies the condition Eq. (4.1)

of Proposition 4.18.

By Lemma 4.26(3), the valency of a vertex of J(n, 3) is at least 3 · (7− 3) = 12. In

particular, it is twin-free (as non-adjacent vertices share at most 4 neighbours). Finally,

by Lemma 4.26(2) J(n, 3) is connected.

We conclude by Proposition 4.18 that J(n, 3) is stable.

Case 2. n ∈ {3, 4, 5, 6}.
Note that J(3, 3) ∼= K1 and J(4, 3) ∼= K4 are stable by Example 4.7. Lemma 4.26(1)

implies that J(5, 3) ∼= J(5, 5− 3) = J(5, 2), which is stable by Lemma 4.28.

Hence, the only possibility is that n = 6, and indeed, we have already established

that J(6, 3) is unstable.

Putting all of the results so far together, we obtain the following result.

Theorem 4.30. Let n ≥ k ≥ 1 be positive integers. The Johnson graph J(n, k) is

unstable if and only if it is one of the following

1. the complete graph J(2, 1) = K2,

2. the octahedral graph J(4, 2),

3. J(6, 2) ∼= J(6, 4) or

4. J(6, 3).

Moreover, J(2, 1) is bipartite, while J(4, 2) is not twin-free, so both are trivially un-

stable. Graphs J(6, 2) ∼= J(6, 4) and J(6, 3) are non-trivially unstable with indices of

instability 28 and 2, respectively.

Proof. (⇐) The graph J(2, 1) ∼= K2 is bipartite, so trivially unstable. Statements

about J(4, 2) and J(6, 2) have been proven in Lemma 4.28 (note that Lemma 4.26(1)

shows that J(6, 2) ∼= J(6, 6−2) = J(6, 4)). Statements about J(6, 3) have been proven

in Lemma 4.29.

(⇒) Assume that J(n, k) is unstable. We consider the following cases depending

on the value of k.

Case 1. k ∈ {1, 2, 3}.
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If k = 1, then J(n, 1) ∼= Kn for all n ≥ 1. In particular, by Example 4.7, it follows

that n = 2 and J(2, 1) ∼= K2. Note that this graph is bipartite and therefore trivially

unstable. Hence, (1) holds.

If k = 2, then Lemma 4.28 shows that n ∈ {4, 6}, so (2) or (3) applies.

If k = 3, then Lemma 4.29 shows n = 6, so (4) holds.

Case 2. k ≥ 4.

From Lemma 4.27 we conclude that n ∈ {k, k + 1, k + 2, k + 3}. We consider each

case separately and apply Lemma 4.26(1).

• J(k, k) ∼= K1 is stable.

• J(k + 1, k) ∼= J(k, 1) ∼= Kk. As k ≥ 4, this graph is stable by Example 4.7.

• J(k + 2, k) ∼= J(k + 2, 2). By Lemma 4.28, this graph is unstable if and only if

k+2 ∈ {4, 6}, that is, k ∈ {2, 4}. As k ≥ 4, we obtain the graph J(6, 4) ∼= J(6, 2),

so (3) applies.

• J(k + 3, k) ∼= J(k + 3, 3). As k ≥ 4, it follows by Lemma 4.29 that this graph is

stable.

This finishes the proof.

We will discuss [12, Lemma 3.6] (in this thesis, it appears as Corollary 7.2) in Chap-

ter 7, as it plays a major role in the classification of non-trivially unstable circulants

of low valency that we will discuss. The following result is a generalization of it. We

first introduce some additional terminology.

Definition 4.31. Let X = Cay(G,S) be a Cayley graph of a group G. For g ∈
G, we say that an edge {x, y} of the complete graph on G × Z2 is a g-edge if y ∈
{x(g, 1), x(g−1, 1)}. Note that {x, y} is an edge of BX if and only if it is an s-edge for

some s ∈ S.

Lemma 4.32. Let X = Cay(G,S) be a connected, non-bipartite Cayley graph of a

group G. Let S0 be a subset of G \ {1G} such that S−1
0 = S0. If every automorphism of

BX maps S0-edges to S0-edges, and some (equivalently, every) connected component

of Cay(G,S0) is a stable graph, then X is a stable graph.

Proof. Let X ′
0 := Cay(⟨S0⟩, S0) denote the connected component of X0 := Cay(G,S0)

containing the identity 1G. As S0 is non-empty, X ′
0 is a non-trivial, vertex-transitive,

connected graph. In particular, Aut(X ′
0) ̸= 1 and as X ′

0 is assumed to be stable, it

follows that it must be non-bipartite, as otherwise Lemma 3.16 would apply. Hence,

by Lemma 3.2(1), BX ′
0 is the connected component of BX0 containing both (1G, 0)

and (1G, 1).
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Suppose that α ∈ Aut(BX) fixes the vertex (1G, 0) of BX. Assumptions imply

that α is also an automorphism of BX0. Moreover, as it fixes (1G, 0) it reduces to an

automorphism of the connected component BX ′
0. As X ′

0 is assumed to be stable, it

follows by Lemma 4.4 that α also fixes (1G, 1). We conclude that X is stable by Lemma

4.5.
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5 UNEXPECTED AUTOMORPHISMS

OF UNSTABLE GRAPHS

In his article [34], Wilson studies unstable graphs and the unexpected automorphisms

of their canonical double covers. Most of his article is dedicated to formulating different

conditions that imply that a graph is unstable. The four instability criteria he derives

are among the most general results we have for establishing instability of an arbitrary

graph. We will discuss them in detail in Section 5.1.

It turns out that these results are also sufficient to characterize unstable graphs.

This is the main result of Wilson’s article and we will consider it in Section 5.2 (see

Theorem 5.35).

Finally, in the appendix of his article, Wilson considers four families of graphs and

applies the four general theorems in an attempt to characterize the unstable members of

each family. We will study the conditions he derives for the family of circulant graphs,

called Wilson types, in Section 5.3. In Section 5.4 we study their generalizations

introduced in [13].

5.1 WILSON’S INSTABILITY CRITERIA

We discuss the four general results of Wilson (see Theorem 5.5, Theorem 5.14, Theorem

5.20 and Theorem 5.28), each of which implies that a graph satisfying certain conditions

is unstable.

5.1.1 Sub-components

Let X be a graph and let γ ∈ Aut(X) be its non-trivial automorphism. Consider the

orbits of ⟨γ⟩ on V (X). We define the following colouring of the edges of the graph X.

• An edge {x, y} ∈ E(X) is blue with respect to γ if

1. x and y lie in distinct orbits O1 and O2 of ⟨γ⟩, and

2. every two vertices z ∈ O1 and w ∈ O2 are adjacent in X.

• All other edges of X are red with respect to γ.
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When the automorphism γ is clear from context, we will often refer to the edges of

X as just “blue” or “red” without making a reference to γ.

Observation 5.1. We make the following observations on the above construction.

1. The group ⟨γ⟩ fixes each of its own orbits set-wise.

2. The map γ is an automorphism of X, so all elements of ⟨γ⟩ preserve both edges

and non-edges of X. Furthermore, as ⟨γ⟩ preserves its own orbits, it also pre-

serves the sets of edges between every two orbits.

3. By construction, only the edges connecting vertices in distinct orbits can be blue.

It follows that every edge connecting two vertices in the same orbit of ⟨γ⟩ is

automatically red.

4. Let O1 and O2 be two distinct orbits of ⟨γ⟩. Let x ∈ O1, y ∈ O2 be two adjacent

vertices of X.

• If {x, y} is blue, from the definition of the colouring, it follows that every

edge {z, w} ∈ E(X) with z ∈ O1, w ∈ O2 is also blue.

• If {x, y} is red, then there exist z ∈ O1 and w ∈ O2 such that {z, w} ̸∈ E(X).

In particular, all edges with one endpoint in O1 and the other in O2 are red.

5. Combining the two previous items, it is clear that γ preserves the set of blue

edges. Consequently, it preserves the set of red edges as well.

6. Denote by Xb and Xr the subgraphs of X consisting of blue and red edges, respec-

tively. We will call Xb the blue subgraph of X and Xr the red subgraph of X. Note

that V (Xb) = V (Xr) = V (X). Previous item implies that γ is an automorphism

of both Xb and Xr.

We will state the following observation as a lemma for easy reference.

Lemma 5.2. Let X be a graph and γ ∈ Aut(X) its non-trivial automorphism. Assume

that x ∈ V (X) is fixed by γ, that is, γ(x) = x. Then every edge of the form {x, y} for

y ∈ V (X) is blue with respect to γ.

Proof. Note that since x is fixed by γ, the orbit of x with respect to ⟨γ⟩ is just the

singleton set {x}. If NX(x) = ∅, that is, if x is not incident with any edge of X, there

is nothing to prove.

Assume that NX(x) ̸= ∅ and let y ∈ NX(x) be arbitrary. Then since {x, y} ∈ E(X),

by induction, it follows that {x, γk(y)} = {γk(x), γk(y)} ∈ E(X) for all k ∈ Z. In

particular, x is adjacent to every element of the orbit of y under the action of ⟨γ⟩ and
all edges of the form {x, γk(y)}, including {x, y}, are blue.
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We now define the key concept for Wilson’s first instability criteria.

Definition 5.3. Let X be a graph and γ its non-trivial automorphism. Colour the

edges of X as previously described. A non-trivial connected component H of the red

subgraph Xr is called a γ sub-component of X if it is bipartite, with bipartition V1∪V2,
and

1. γ(H) ̸= H, or

2. γ(H) = H and γ preserves the sets V1 and V2.

We will show that existence of a γ sub-component implies instability. For this, we

need X to have at least some red edges. As our overall goal is to explain non-trivial

instability, it turns out we can always assume red edges exist as the following lemma

explains.

Lemma 5.4. Let X be a graph and γ ∈ Aut(X) a non-trivial automorphism of X. If

all edges of X are blue with respect to γ, then X is trivially unstable.

Proof. Let X and γ be as above and assume all edges of X are blue with respect to γ.

Note that we can assume that X is connected, as otherwise it is trivially unstable.

Recall that by Observation 5.1(3), any edge between two vertices lying in the same

orbit of ⟨γ⟩ is automatically red. As we have assumed that all edges are blue, it follows

that each orbit of ⟨γ⟩ is an independent set in X. This shows that ⟨γ⟩ must have at

least two orbits on V (X), as otherwise X would be a non-trivial empty graph, which

is in contradiction with X being connected.

As γ is non-trivial, it must also have a non-trivial orbit, that is, an orbit O of size

at least 2. Let x, y ∈ O be distinct vertices. Note that x and y are not adjacent.

Because X is connected, we know that NX(x) is non-empty. Let z ∈ NX(x) be

arbitrary. Because O is an independent set, z is an element of an orbit of ⟨γ⟩ distinct
from O. As the edge {x, z} is blue, it follows that z is adjacent with every element

of O, in particular z ∈ NX(y). By symmetry, it follows that NX(x) = NX(y). We

conclude that X is not twin-free. Consequently, X is trivially unstable.

Theorem 5.5 (Wilson [34, Theorem 1]). Let X be a graph. If there exists a non-

trivial automorphism γ ∈ Aut(X) such that X contains a γ sub-component, then X is

unstable.

Proof. Let X be a graph, γ ∈ Aut(X) its non-trivial automorphism and H a γ sub-

component of X. Then by Definition 5.3, H is a connected component of the red

subgraph Xr of X. Moreover, by Observation 5.1(6) γ is an automorphism of Xr. It

follows that γ either fixes H, or H and γ(H) are two distinct, vertex-disjoint connected

components of Xr.
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We study the following cases.

Case 1. γ(H) ̸= H

Let Y := H ∪ γ(H). Then Y is a subgraph of Xr and H and γ(H) are exactly

its connected components. Note that BY is a subgraph of BX. Moreover, BY =

BH ∪ Bγ(H) and as H is bipartite and γ(H) ∼= H (with bipartition γ(V1) ∪ γ(V2)),

BY consists of 4 connected components each of which is isomorphic to H (see Lemma

3.2(2)).

Recall that V (H) = V1 ∪ V2. We enumerate the connected components of BY by

H1, H2, H3 and H4 so that

1. V (H1) = V1 × {0} ∪ V2 × {1},

2. V (H2) = V1 × {1} ∪ V2 × {0},

3. V (H3) = γ(V1)× {0} ∪ γ(V2)× {1},

4. V (H4) = γ(V1)× {1} ∪ γ(V2)× {0}.

We define the following map.

γ∗ : V (BX) → V (BX)

γ∗(x, i) =


(γ(x), i), (x, i) ∈ V (H1)

(γ−1(x), i), (x, i) ∈ V (H3)

(x, i), otherwise

Note that γ∗ swaps the vertex sets of H1 and H3, but leaves all of the other vertices

fixed. From here, it follows that γ∗ is a permutation of V (BX). We check that it is

also an automorphism of BX. Let {(x, 0), (y, 1)} ∈ E(BX). Then {x, y} ∈ E(X).

Subcase 1.1. The edge {x, y} is blue.

Then by definition of the colouring, all elements of the orbit of x under ⟨γ⟩ are adja-
cent to all elements of the orbit of y under ⟨γ⟩. In particular, for all z ∈ {x, γ±1(x)} and
w ∈ {y, γ±1(y)}, {z, w} is an edge of X. Therefore, whether (x, 0) and (y, 1) lie in any

of the components Hi, i ∈ {1, 2, 3, 4} is irrelevant and it holds that {γ∗(x, 0), γ∗(y, 1)} ∈
E(BX).

Subcase 1.2. The edge {x, y} is red.

In this case, x and y are adjacent in Xr and consequently, they lie in the same

connected component of Xr. As H and γ(H) are distinct connected components of

Xr, it follows that x and y are either both in V (H), both in V (γ(H)) or x, y ̸∈
V (H) ∪ V (γ(H)).

Subsubcase 1.2.1. x, y ∈ V (H) = V1 ∪ V2
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As H is bipartite, x and y lie in opposite colour classes of H.

If x ∈ V1, y ∈ V2, then (x, 0), (y, 1) ∈ V (H1). In particular, since γ is an automor-

phism of X, we get that {γ∗(x, 0), γ∗(y, 1)} = {(γ(x), 0), (γ(y), 1)} ∈ E(BX).

If x ∈ V2, y ∈ V1, then (x, 0), (y, 1) ∈ V (H2), so γ
∗ fixes both of them. In particular,

{γ∗(x, 0), γ∗(y, 1)} = {(x, 0), (y, 1)} ∈ E(BX).

Subsubcase 1.2.2. x, y ∈ V (γ(H)) = γ(V1) ∪ γ(V2)
As V (γ(H)) = γ(V1) ∪ γ(V2) is a bipartition of γ(H) and x, y are adjacent in Xr,

they again lie in opposite colour classes.

If x ∈ γ(V1), y ∈ γ(V2), then (x, 0), (y, 1) ∈ V (H3). In particular, since γ−1 is also

an automorphism of X, we get that {γ∗(x, 0), γ∗(y, 1)} = {(γ−1(x), 0), (γ−1(y), 1)} ∈
E(BX).

If x ∈ γ(V2), y ∈ γ(V1), then (x, 0), (y, 1) ∈ V (H4) and both are fixed by γ∗. It then

follows that {γ∗(x, 0), γ∗(y, 1)} = {(x, 0), (y, 1)} ∈ E(BX).

Subsubcase 1.2.3. x, y ̸∈ V (H) ∪ V (γ(H))

By definition, γ∗ fixes both (x, 0) and (y, 1). We obtain that {γ∗(x, 0), γ∗(y, 1)} =

{(x, 0), (y, 1)} ∈ E(BX).

This shows that γ∗ is an automorphism of BX. Finally, assume for contradic-

tion that X is stable. If x ∈ V2, then (x, 0) ∈ V (H2) and (x, 1) ∈ V (H1). Then

γ∗(x, 0) = (x, 0) and γ∗ ∈ Aut(BX)(x,0). As X is stable, Lemma 4.4 implies that

γ∗ ∈ Aut(BX)(x,0) = Aut(BX)(x,1). Hence, it follows that γ∗(x, 1) = (x, 1). However,

as (x, 1) ∈ V (H1), by definition of γ∗, we have that γ∗(x, 1) = (γ(x), 0). We conclude

that γ(x) = x. Since H is a connected component of Xr and γ ∈ Aut(Xr), the fact that

γ fixes a vertex of H implies that it must fix H set-wise i.e., γ(H) = H, a contradiction.

Case 2. γ(H) = H and γ(Vi) = Vi for i ∈ {1, 2}
Then BH is a subgraph of BX consisting of two connected components, each of

which is isomorphic to H (again, see Lemma 3.2(2) for details). Denote them by H1

and H2 so that

1. V (H1) = V1 × {0} ∪ V2 × {1},

2. V (H2) = V1 × {1} ∪ V2 × {0}.

Define the following map.

γ∗ : V (BX) → V (BX)

γ∗(x, i) =

{
(γ(x), i), (x, i) ∈ V (H1)

(x, i), otherwise

Note that γ∗ fixes all vertices of BX, except possibly the vertices of H1, where it

preserves the bipartition into V1 × {0} ∪ V2 × {1} and induces the permutation γ on

each colour class. From here, it is clear that γ∗ is a permutation of V (BX).
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We now show it is also an automorphism of BX. Let {(x, 0), (y, 1)} ∈ E(BX).

Then {x, y} ∈ E(X).

Subcase 2.1. The edge {x, y} is blue.

Similarly as in the proof of Theorem 5.5, we conclude that all z ∈ {x, γ(x)} and

w ∈ {y, γ(y)} are adjacent in X, proving that {γ∗(x, 0), γ∗(y, 1)} ∈ E(BX).

Subcase 2.2. The edge {x, y} is red.

As before, it follows that x and y are adjacent in Xr and as H is a connected

component of Xr, either both x and y are in H or neither is.

Subsubcase 2.2.1. x, y ∈ V (H) = V1 ∪ V2
As H is bipartite and x and y are adjacent, they have to lie in opposite colour

classes of H.

If x ∈ V1, y ∈ V2, then (x, 0), (y, 1) ∈ V (H1). Because γ is an automorphism of X,

we get that {γ∗(x, 0), γ∗(y, 1)} = {(γ(x), 0), (γ(y), 1)} ∈ E(BX).

If x ∈ V2, y ∈ V1, then (x, 0), (y, 1) ∈ V (H2) and both are fixed by γ∗, so we have

that {γ∗(x, 0), γ∗(y, 1)} = {(x, 0), (y, 1)} ∈ E(BX).

Subsubcase 2.2.2. x, y ̸∈ V (H) = V1 ∪ V2
In this case, (x, 0), (y, 1) ̸∈ V (H1), so by definition, they are both fixed by γ∗, again

resulting in the same conclusion that {γ∗(x, 0), γ∗(y, 1)} = {(x, 0), (y, 1)} ∈ E(BX).

This shows that γ∗ is an automorphism of BX.

Assume for contradiction that X is stable. Let x ∈ V2. Then (x, 0) ∈ V (H2)

and by definition γ∗(x, 0) = (x, 0). As X is stable, Lemma 4.4 implies that γ∗ ∈
Aut(BX)(x,0) = Aut(BX)(x,1) and γ∗(x, 1) = (x, 1). However, (x, 1) ∈ V (H1), so by

its definition γ∗(x, 1) = (γ(x), 1). It follows that γ(x) = x. Lemma 5.2 implies that

all edges incident with x are blue. In particular, x is an isolated vertex in Xr and its

own connected component i.e., H = {x}. This is contradiction as, by definition, H is

a non-trivial connected component of Xr.

Theorem 5.5 allows us to define the following construction.

Proposition 5.6. Let X be a graph. Let A and B be subsets of V (X). Let ΓX denote

the graph with

• V (ΓX) := V (X)∪{a1, a2, b1, b2}, where a1, a2, b1 and b2 are four distinct vertices

with property that a1, a2, b1, b2 ̸∈ V (X), and

• E(ΓX) := E(X)∪{{a1, b1}, {a2, b2}}∪{{a1, a}, {a2, a} | a ∈ A}∪{{b1, b}, {b2, b} |
b ∈ B}.

In particular, ΓX is obtained from X by adding two new edges {a1, b1} and {a2, b2} to

X, and then joining a1 and a2 with every vertex in A and b1 and b2 with every vertex

in B.
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The obtained graph ΓX is unstable.

Proof. Define γ := (a1, a2)(b1, b2). Then γ is a permutation of V (ΓX). Moreover, note

that

• γ fixes all edges {x, y} ∈ E(ΓX) with x, y ∈ V (X),

• if A ̸= ∅, γ swaps edges {a1, a} and {a2, a} for all a ∈ A,

• if B ̸= ∅, γ swaps edges {b1, b} and {b2, b} for all b ∈ B,

• γ swaps the edges {a1, b1} and {a2, b2}.

It follows that γ is an automorphism of ΓX. Moreover, the orbits of γ are precisely

{a1, a2}, {b1, b2}, {x} with x ∈ V (X). It follows that all edges of ΓX are blue with

respect to γ except {a1, b1} and {a2, b2} which are red (for example, we can apply

Lemma 5.4 and note that {a1, b2}, {a2, b1} ̸∈ E(X)). As γ swaps these edges, it follows

that they are both γ sub-components of ΓX. In particular, ΓX is unstable by Theorem

5.5.

Remark 5.7. Note that if a graph X is connected and twin-free and at least one of

the sets A,B contains a pair of adjacent vertices, the graph ΓX defined in Proposition

5.6 is connected, non-bipartite and twin-free. In particular, it is non-trivially unstable.

Note that the Bowtie graph W defined in Example 3.23 is ΓK1 with both A,B

non-empty.

The following condition we derive, given in Theorem 5.10, is a special instance of

the idea used to formulate Theorem 5.5.

Definition 5.8. Let X be a graph. An automorphism γ ∈ Aut(BX) is called a

half-action if, for all x ∈ V (X), γ fixes exactly one of the vertices (x, 0) and (x, 1).

Remark 5.9. Note that if there exist an automorphism γ ∈ Aut(BX) and a vertex

x ∈ V (X) such that γ fixes exactly one of the vertices (x, 0) and (x, 1), then X is

unstable by Lemma 4.4.

In particular, if BX has a half-action, then X is unstable.

Theorem 5.10 (Wilson [34, p. 361]). Let X be a graph and γ ∈ Aut(X) its non-trivial

automorphism. Assume that there exists a partition {A,B} of V (X) such that

1. γ preserves this partition, that is, γ(A) = A and γ(B) = B,

2. for every edge {x, y} ∈ E(X) with x, y ∈ A or x, y ∈ B, it holds that {x, γ(y)} ∈
E(X) (equivalently, {γ(x), y} ∈ E(X)).

Then X is unstable.
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Proof. Define the following map.

γ∗ : V (BX) → V (BX)

γ∗(x, i) =



(x, 0), x ∈ A, i = 0

(γ(x), 1), x ∈ A, i = 1

(γ(x), 0), x ∈ B, i = 0

(x, 1), x ∈ B, i = 1

Notice that in the definition of γ∗, we have partitioned V (BX) into A × {0, 1} ∪
B × {0, 1}. Since γ(A) = A, γ(B) = B, γ∗ preserves each of these parts and induces

either the identity permutation or γ on them. As both of these are permutations of A

and B, it follows that γ∗ is a permutation of V (BX). Let {(x, 0), (y, 1)} ∈ E(BX).

Then {x, y} ∈ E(X).

Case 1. x, y ∈ A

The condition (2) implies that {x, γ(y)} ∈ E(X). It follows that

{γ∗(x, 0), γ∗(y, 1)} = {(x, 0), (γ(y), 1)} ∈ E(BX).

Case 2. x ∈ A, y ∈ B

In this case, both vertices are fixed by γ∗ and {γ∗(x, 0), γ∗(y, 1)} = {(x, 0), (y, 1)} ∈
E(BX).

Case 3. x ∈ B, y ∈ A

As γ is an automorphism of X, we know that {γ(x), γ(y)} ∈ E(X). We obtain that

{γ∗(x, 0), γ∗(y, 1)} = {(γ(x), 0), (γ(y), 1)} ∈ E(BX).

Case 4. x, y ∈ B

The condition (2) implies that {γ(x), y} ∈ E(X). It follows that

{γ∗(x, 0), γ∗(y, 1)} = {(γ(x), 0), (y, 1)} ∈ E(BX).

This shows that γ∗ is an automorphism of BX. As γ is non-trivial, we can find

x ∈ V (X) such that γ(x) ̸= x.

If x ∈ A, then γ∗(x, 0) = (x, 0), so γ∗ ∈ Aut(BX)(x,0), but γ
∗(x, 1) = (γ(x), 1) ̸=

(x, 1), and γ∗ ̸∈ Aut(BX)(x,1).

If x ∈ B, then γ∗(x, 1) = (x, 1), so γ∗ ∈ Aut(BX)(x,1), but γ
∗(x, 0) = (γ(x), 0) ̸=

(x, 0), and γ∗ ̸∈ Aut(BX)(x,0).

In either case, we conclude that X is unstable, as otherwise we would obtain a

contradiction with Lemma 4.4.

Remark 5.11. As we want to establish that X is unstable, by Lemma 5.4, we are free

to assume that X contains edges that are red with respect to γ. In particular, the red

subgraph Xr has at least one non-trivial connected component.

Note that the condition (2) implies that all edges of X with both endpoints in A or B

are blue. In particular, all of red edges of X have one endpoint in A and one endpoint
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in B. This implies that Xr is bipartite and so are all of its connected components. We

conclude that any non-trivial connected component H of Xr is a γ sub-component of

X - either γ(H) ̸= H, and Definition 5.3(1) applies, or γ(H) = H and then Definition

5.3(2) applies, because bipartition sets of H are subsets of A and B, which γ preserves

by assumption (1).

Remark 5.12. In [34], Wilson claims that the automorphism γ∗ of BX constructed

in the proof of Theorem 5.10 is a half-action. This is not necessarily true. In fact,

γ∗ is a half-action if and only if γ has no fixed points. But as shown in the proof, the

instability of X follows from a much weaker assumption that γ is non-trivial.

5.1.2 Anti-symmetry

Definition 5.13. Let X be a graph. A permutation α ∈ Sym(V (X)) is an anti-

symmetry of X if there exists an automorphism γ ∈ Aut(X) of X of order 2 such

that

1. α commutes with γ, and

2. {α(x), (αγ)(y)} ∈ E(X) for all edges {x, y} ∈ E(X).

Theorem 5.14 (Wilson [34, Theorem 2]). Let X be a graph. If X has an anti-

symmetry, then X is unstable.

Proof. Let γ ∈ Aut(X) be an automorphism of X of order 2 for which there exists an

anti-symmetry α ∈ Sym(V (X)). Define the following map

α∗ : V (BX) → V (BX)

α∗(x, i) =

{
(α(x), 0), i = 0

((αγ)(x), 1), i = 1

(5.1)

We check that α∗ is an automorphism. Because both α and αγ are permutations

of V (X), it is clear that α∗ is a permutation.

Let {(x, 0), (y, 1)} ∈ E(BX) be arbtrary. Then {x, y} ∈ E(X). Since α is an anti-

symmetry with respect to γ, it follows that {α(x), (αγ)(y)} ∈ E(X). Consequently,

α∗({(x, 0), (y, 1)}) = {(α(x), 0), ((αγ)(y), 1)} ∈ E(BX).

Finally, suppose for contradiction that X is stable. Then by Lemma 4.1, the au-

tomorphism τ is central in Aut(BX), so in particular, α∗τ = τα∗. Let x ∈ V (X) be

arbitrary. Then we obtain that

(α∗τ)(x, 0) = α∗(x, 1) = ((αγ)(x), 1),

(τα∗)(x, 0) = τ(α(x), 0) = (α(x), 1).
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We conclude that α(γ(x)) = α(x) for all x ∈ V (X). As α is a injective, it follows

that γ(x) = x for all x ∈ V (X). Hence, γ is trivial, which is a contradiction, as it was

assumed to be of order 2.

Remark 5.15. We can give an alternative proof of Theorem 5.14 by using Lemma

3.9. In particular, we can set β(x) := α(γ(x)). Then β is a permutation of V (X).

Moreover, using the condition (2) and the fact that X is finite, we can conclude that

{x, y} ∈ E(X) if and only if {α(x), β(y)} = {α(x), (αγ)(y)} ∈ E(X). Finally, note

α ̸= β because γ is assumed to be non-trivial.

Remark 5.16. Note that the assumptions that γ is an automorphism and that α and

γ commute are unnecessary and have not been used in the proof of Theorem 5.14, nor

in the proof given in the Remark 5.15. As a matter of a fact, we only needed the facts

that γ is a non-trivial permutation of V (X) and that the condition (2) holds.

The extra conditions arise from the context of Wilson’s original construction. He

first observes the quotient graph X/γ and constructs the anti-symmetry α as a

covering permutation of an automorphism α1 of X/γ, that additionally satisfies the

condition (2).

This just means that, if µ : X → X/γ is the projection map mapping x 7→ {x, γ(x)},
then for all x ∈ V (X) we have that µ(α(x)) = α1(µ(x)). Note that when α is obtained

in this manner the condition (1) follows from the definition of α as a covering permu-

tation.

In conclusion, in case we can realize X as a covering graph of X/γ for some

γ ∈ Aut(X) of order 2, the search for anti-symmetry can be reduced to covering per-

mutations of automorphisms of X/γ (which is a smaller graph).

It turns out that Theorem 5.14 can explain instability of all non twin-free graphs.

Corollary 5.17. Let X be a graph and assume it is not twin-free. Then X has an

anti-symmetry and is unstable.

Proof. As X is not twin-free, we can find a pair of twins x, y ∈ V (X). Let γ be a

map that swaps x and y and fixes all other vertices of X. Then by Lemma 3.19, γ is

an automorphism of X of order 2. It is not hard to check directly that the identity

permutation α on V (X) is an anti-symmetry of X with respect to γ. Instability of X

then follows by Theorem 5.14.

Remark 5.18. That graphs which are not twin-free are unstable, we already knew from

Proposition 3.20. If we apply the construction from the proof of Theorem 5.14, we would

obtain an automorphism α∗ of BX, that swaps (x, 1) and (y, 1). This is exactly the

map we constructed in the proof of Proposition 3.20, which we used to conclude that X

is unstable.
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5.1.3 Cross-covers

Definition 5.19. Let X be a graph and n ≥ 3 a positive integer. Let s : E(X) → Zn

be a function. The n-cross-cover of X is a graph CC(n,X, s) with

• V (CC(n,X, s)) = V (X)× Zn,

• E(CC(n,X, s)) = {{(x, i), (y, a− i)} | {x, y} ∈ E(X), s({x, y}) = a, i ∈ Zn}}.

Note that the map π : V (CC(n,X, s)) → V (X) given by π(x, i) = x is a covering

projection from CC(n,X, s) onto X.

Theorem 5.20 (Wilson [34, Theorem 3]). Every graph that is a cross-cover of some

other graph is unstable.

Proof. Let X be a graph and n ≥ 3 a positive integer. Let Y := CC(n,X, s) be an

n-cross-cover of X for some assignment s : E(X) → Zn.

Consider the following function

α : V (BY ) → V (BY )

α(x, i, j) =

{
(x, i+ 1, 0), j = 0

(x, i− 1, 1), j = 1

Notice that since the second coordinate is considered modulo n, αn = 1. In partic-

ular, α is a permutation of V (BY ).

Let {(x, i, 0), (y, j, 1)} ∈ E(BY ) be arbitrary. Then {(x, i), (y, j)} is an edge of

Y = CC(n,X, s)). By definition of a cross-cover, it follows that {x, y} ∈ E(X) and that

j = s({x, y})− i, that is, s({x, y}) = i+ j. Since, s({x, y}) = i+ j = (i+1)+(j−1), it

follows that {(x, i+1), (y, j−1)} ∈ E(Y ) and consequently, {(x, i+1, 0), (y, j−1, 0)} ∈
E(BY ). This exactly means that {α(x, i, 0), α(y, j, 1)} ∈ E(BY ). It follows that

α ∈ Aut(BY ).

Finally, suppose for contradiction that Y is stable. Then Lemma 4.1 implies that τ

is central in Aut(BY ) and in particular, it commutes with α. Then for x ∈ V (X) and

i ∈ Zn, we have that

(ατ)(x, i, 0) = α(x, i, 1) = (x, i− 1, 1),

(τα)(x, i, 0) = τ(x, i+ 1, 0) = (x, i+ 1, 1).

It follows that i − 1 ≡ i + 1 (mod n) i.e., 1 ≡ −1 (mod n). This is clearly a

contradiction, as we have assumed that n ≥ 3. Hence, Y = CC(n,X, s) is unstable, as

desired.

The following construction generalizes cross-covers. Unlike cross-covers, which re-

quire 3 elements (namely the graph X, the group Zn and the assignment s : E(X) →
Zn), the following idea is based on a single permutation of the vertices of a graph

satisfying certain conditions.
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Definition 5.21. Let X be a graph. Suppose that there exists a permutation f ∈
Sym(V (X)) of order at least 3, such that

{x, y} ∈ E(X) =⇒ {f(x), f−1(y)} ∈ E(X), ∀x, y ∈ V (X).

Then X is called a generalized cross-cover of the quotient graph X/f .

Corollary 5.22 (Wilson [34, p. 369]). Every graph that is a cross-cover of another

graph is also a generalized cross-cover of the same graph.

Proof. Let X be a graph, n ≥ 3 a positive integer. Let Y = CC(n,X, s) be an n-

cross-cover of X for some s : E(X) → Zn. Define f ∈ Sym(V (X) × Zn) by setting

f(x, i) = (x, i+ 1). Then f is a permutation of order n ≥ 3.

Let {(x, i), (y, j)} ∈ E(Y ) for x, y ∈ V (X), i, j ∈ Zn. Then {x, y} ∈ E(X) and

s({x, y}) = i + j. Note that f(x, i) = (x, i + 1) and f−1(y, j) = (y, j − 1). Because

s({x, y}) = i+ j = (i+ 1) + (j − 1), it follows that {f(x, i), f−1(y, j)} ∈ E(Y ) as well.

Hence, f satisfies all of the condition listed in Definition 5.21 and Y is a generalized

cross-cover of the graph Y/f .

The orbits of ⟨f⟩ on V (Y ) are the sets {(x, i) | i ∈ Zn} with x ∈ V (X). In

particular, the quotient graph Y/f is clearly isomorphic to X. Hence, Y = CC(n,X, s)

is a generalized cross-cover of X.

Theorem 5.23 (Wilson [34, p. 369]). Every graph that is a generalized cross-cover of

another graph is unstable.

Proof. Let X be a generalized cross-cover of X/f with f ∈ Sym(V (X)).

Define the following map

α : V (BX) → V (BX)

α(x, i) =

{
(f(x), 0), i = 0

(f−1(x), 1), i = 1

Note that α has an obvious inverse, namely the map β : V (BX) → V (BX) mapping

(x, 0) 7→ (f−1(x), 0) and (x, 1) 7→ (f(x), 1) for x ∈ V (X).

Let {(x, 0), (y, 1)} ∈ E(BX). Then {x, y} ∈ E(X). By assumptions on f , it follows

that {f(x), f−1(y)} ∈ E(X). In particular, {α(x, 0), α(y, 1)} = {(f(x), 0), (f−1(y), 1)}
∈ E(BX), proving that α is an automorphism of BX.

Assume for contradiction thatX is stable. Then Lemma 4.1 implies that τ is central

in Aut(BX). In particular, τ and α commute. Hence, for all x ∈ V (X), the following

expressions are equal.

(ατ)(x, 0) = α(x, 1) = (f−1(x), 1)

(τα)(x, 0) = τ(f(x), 0) = (f(x), 1)
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Comparing the first coordinates, we obtain that f(x) = f−1(x) for all x ∈ V (X). In

particular, f = f−1. However, this implies that f is of order at most 2, a contradiction.

It follows that X is unstable, as desired.

Remark 5.24. Theorem 5.20 can be obtained from Corollary 5.22 and Theorem 5.23.

Moreover, the map α defined in the proof of Theorem 5.20 is just a particular case of

the map with the same name from the proof of Theorem 5.23, where f is taken to be

the permutation of V (CC(n,X, s)) described in the proof of Corollary 5.22.

Remark 5.25. We can also derive Theorem 5.23 from Lemma 3.9. In particular, we

can set α = f and β = f−1. Then α and β are permutations of V (X) and as X is

finite, the condition on f given in Definition 5.21 implies that {x, y} ∈ E(X) if and

only if {α(x), β(x)} = {f(x), f−1(y)} ∈ E(X). Finally, α ̸= β as otherwise, f would

be of order at most 2.

5.1.4 Twist

Let X be a graph and H a group. We will refer to H as the voltage group.

Let L, called a system of labels for X, be a map that assigns to each vertex x ∈ V (X)

a subgroup L(x) of H.

Let d, called a system of weights for X, be a map assigning to each edge e ∈ E(X)

an inverse-closed subset d(e) of H. The value d(e) is called the weight of an edge e.

With this data, we define the following crucial concept.

Definition 5.26. Let X be a graph, H a voltage group. Let L and d be systems of

labels and weights for X with respect to H, respectively.

Define the generalized voltage graph of X, denoted GV(X,H,L, d), by setting

• V (GV(X,H,L, d)) = {(x, L(x)h) | x ∈ V (X), h ∈ H},

• E(GV(X,H,L, d)) = {{(x, L(x)h), (y, L(y)ah)} | {x, y} ∈ E(X), a ∈ d({x, y}),
h ∈ H}.

Remark 5.27. In the original paper [34], Wilson considers directed graphs for the

purposes of this construction. In the original construction, there is a requirement that

reversed arcs are assigned inverse weights with respect to the group structure of H, that

is, the following condition holds

d(y, x) = {h−1 | h ∈ d(x, y)} for all directed edges (x, y) ∈ E(X).

Actually, if X has the property that (x, y) ∈ E(X) implies (y, x) ∈ E(X) for all

x, y ∈ V (X), then, due to the original requirement, the directed graph GV(X,H,L, d)

will have the same property.
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Indeed, since a ∈ d(x, y), then a−1 ∈ d(y, x) and by setting h′ := ah ∈ H, we obtain

a directed edge

((y, L(y)h′), (x, L(x)a−1h′)) = ((y, L(y)ah), (x, L(x)h)).

Recall that every graph can be thought of as a directed graph by substituting each

of its edges by a pair of opposite arcs. Then the generalized voltage (di)graph can be

thought of as an undirected graph by the reverse process of identifying these pairs of

arcs with an undirected edge.

To simplify this process, we have changed the requirement so that d must assign only

inverse-closed subsets to edges of X, ensuring, by the same proof, that the adjacency

relation is symmetric and making GV(X,H,L, d) a graph.

Theorem 5.28 (Wilson [34, Theorem 4]). Let X be a graph and n ≥ 2 a positive inte-

ger. Let H the group Zn
2 (written additively). Suppose that there exist γ ∈ Aut(X), φ ∈

Aut(H) and systems of labels L and weights d for X with respect to H, such that

1. for all x ∈ V (X), L(γ(x)) = φ(L(x)),

2. there exists an element t ∈ H such that

(a) t ̸∈
⋂

x∈V (X) L(x), and

(b) for all x, y ∈ V (X), if {x, y} ∈ E(X), then

d({γ(x), γ(y)}) = φ(d({x, y})) + t.

Then the graph GV(X,H,L, d) is unstable.

Proof. For convenience, write Y := GV(X,H,L, d). Define the following map.

α : V (BY ) → V (BY )

α(x, L(x) + h, i) =

{
(γ(x), φ(L(x) + h), 0), i = 0

(γ(x), φ(L(x) + h) + t, 1), i = 1

We will first check that α is a well-defined permutation of V (BY ) (this is not

immediate due to how α acts on the second coordinate). Note that since φ is an

automorphism, it holds that φ(L(x) + h) = φ(L(x)) +φ(h). Applying (1), we get that

this if further equal to L(γ(x)) + φ(h). In particular, we have shown that

α(x, L(x) + h, 0) = (γ(x), L(γ(x)) + φ(h), 0). (5.2)

This is a valid element of the vertex set of BY . By the same argument, we also

obtain

α(x, L(x) + h, 1) = (γ(x), L(γ(x)) + φ(h) + t, 1). (5.3)
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This shows that α is well-defined. To prove its a permutation, it suffices to show that

its surjective (as it maps between finite sets of the same cardinality). Let (y, L(y)+g, i)

be an arbitrary vertex of BY with y ∈ V (X), g ∈ H, i ∈ Z2. Set x := γ−1(y) ∈ V (X).

If i = 0, set h := φ−1(g). If i = 1, set h := φ−1(g − t). Then a simple computation

shows that α(x, L(x) + h, i) = (y, L(y) + g, i), proving that α is surjective.

Let {(x, L(x) + h, 0), (y, L(y) + a + h, 1)} ∈ E(BY ) be arbitrary with x, y ∈
V (X), h ∈ H, a ∈ d({x, y}). Note that this implies that {x, y} ∈ E(X).

By Eq. (5.2), α maps the first vertex to (γ(x), L(γ(x)) + φ(h), 0).

By Eq. (5.3), α maps the second vertex to

(γ(y), L(γ(x)) + φ(a+ h) + t, 1) = (γ(y), L(γ(x)) + φ(a) + φ(h) + t, 1) =

= (γ(y), L(γ(y)) + (φ(a) + t) + φ(h), 1).

Because {x, y} ∈ E(X) and γ ∈ Aut(X), it follows that {γ(x), γ(y)} ∈ E(X).

Since a ∈ d{x, y}, condition (2b) implies that

φ(a) + t ∈ φ(d({x, y})) + t = d({γ(x), γ(y)}).

In particular, we have that

{(γ(x), L(γ(x)) + φ(h)), (γ(y), L(γ(y)) + (φ(a) + t) + φ(h))} ∈ E(Y )

and

{(γ(x), L(γ(x)) + φ(h), 0), (γ(y), L(γ(y)) + (φ(a) + t) + φ(h), 1)} ∈ E(BY ),

proving that α is an automorphism of BY .

Finally, assume for contradiction that Y is stable. Then Lemma 4.1 implies that τ

is central in Aut(BY ). In particular, it must commute with α. For x ∈ V (X), h ∈ H,

by applying Eq. (5.2) and Eq. (5.3) again, we obtain that

(ατ)(x, L(x) + h, 0) = α(x, L(x) + h, 1) = (γ(x), L(γ(x) + φ(h) + t, 1),

(τα)(x, L(x) + h, 0) = τ(γ(x), L(γ(x)) + φ(h), 0) = (γ(x), L(γ(x)) + φ(h), 1).

Comparing the two expressions, in particular their second coordinates, we obtain

that

L(γ(x)) + φ(h) + t = L(γ(x)) + φ(h)

L(γ(x)) + t = L(γ(x))

t ∈ L(γ(x))

(5.4)

As this holds for all x ∈ V (X) and γ is a permutation of V (X), we obtain that

t ∈ ∩x∈V (X)L(x). This is a contradiction with (2a). Hence, Y = GV(X,H,L, d) must

be unstable.
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Definition 5.29. Let X be a graph. The generalized voltage graph GV(X,Zn
2 , L, d)

of X defined in Theorem 5.28 will be called the twist of X.

Remark 5.30. With terminology from Defintion 5.29, we can reformulate Theorem

5.28 by saying that the twist of every graph is an unstable graph.

Note that in this case, the requirement that d(e) ⊆ H is inverse-closed for all

e ∈ E(X) is redundant as H is an elementary abelian 2-group, so every element h ∈ H

is of order 2 and in particular, its own inverse.

Moreover, all subgroups are normal, which justifies our computations with cosets in

Eq. (5.4).

5.2 CHARACTERIZATION OF NON-TRIVIALLY UNSTA-

BLE GRAPHS

Via a series of lemmas, we will gradually prove that non-trivial instability of any graph

can be explained by (at least one of) the criteria discussed in Section 5.1. We will

provide a sketch of the proof for each of the auxiliary lemmas and then in Theorem

5.35, we will show that every non-trivially unstable graph has an anti-symmetry, or is

a (generalized) cross-cover or a twist of some smaller graph.

Recall from Definition 3.3 that τ is an automorphism of BX given by τ : (x, i) 7→
(x, i + 1) for x ∈ V (X), i ∈ {0, 1}. Our main idea is to look at how τ behaves under

conjugation by unexpected automorphisms of BX.

Lemma 5.31 (Wilson [34, Lemma 6.1]). Let X be a non-trivially unstable graph. Let

α ∈ Aut(BX) be an unexpected automorphism. Define τ ∗ := ατα−1 and γ := τ ∗τ . If

γ is of order at least 3, then X is a generalized cross-cover of some smaller graph.

Proof. Note that γ does not reverse the colour classes of BX. This allows us to define

f ∈ Sym(V (X)) such that

γ(x, 0) = (f(x), 0), ∀x ∈ V (X).

As both τ and τ ∗ are of order 2, a direct computation shows that

γ(x, 1) = (f−1(x), 1),∀x ∈ V (X).

The fact that γ is an automorphism of BX of order at least 3 implies that X is a

generalized cross cover of X/f .

Lemma 5.32 (Wilson [34, Lemma 6.2]). Let X be a non-trivially unstable graph. Let

α ∈ Aut(BX) be an unexpected automorphism and define τ ∗ := ατα−1. Suppose that
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1. τ ∗ and τ commute, and

2. ατ ∗α−1 = τ .

Then X has an anti-symmetry.

Proof. As X is non-trivially unstable, Lemma 2.13 implies that, after possibly com-

posing α with τ , we can assume that α preserves the colour classes of BX. This allows

us to define a permutation α′ ∈ Sym(V (X)) by

α(x, 0) = (α′(x), 0),∀x ∈ V (X).

By Proposition 4.2, the condition (1) is equivalent to τ ∗ being an expected automor-

phism of BX. It follows that γ := τ ∗τ is an expected automorphism of BX of order 2

preserving the colour classes of BX. Hence, we can find an automorphism φ ∈ Aut(X)

of order 2 such that γ = φ.

A direct computation using conditions (1) and (2) shows that α′ and φ commute

and moreover, it holds that

α(x, 1) = ((α′φ)(x), 1),∀x ∈ V (X).

In particular, α′ is an anti-symmetry of X with respect to φ.

Lemma 5.33 (Wilson [34, Lemma 6.3]). Let X be a non-trivially unstable graph. Let

α ∈ Aut(BX) be an unexpected automorphism. Suppose that all conjugates of τ by

elements of ⟨α⟩ lie in Aut(X) × S2 and that there is an even number of them. Then

X has an anti-symmetry.

Proof. Let the number of distinct conjugates of τ by elements of ⟨α⟩ be 2k. It is not

hard to see that then conjugating τ by elements of ⟨αk⟩ produces exactly two distinct

elements, both of which are expected automorphisms of BX. It follows that we can

apply Lemma 5.32 to αk.

Lemma 5.34 (Wilson [34, Lemma 6.4]). Let X be a non-trivially unstable graph.

Suppose that for every unexpected automorphisms α ∈ Aut(BX), all conjugates of τ

by elements of ⟨α⟩ lie in Aut(X) × S2 and that there is an odd number of them (for

each α). Then X is a twist of some smaller graph.

Proof. In order to prove this statement, we will follow the strategy below.

1. We let α denote a colour-preserving unexpected automorphism of BX of minimal

possible order. This also allows us to define a permutation δ ∈ Sym(V (X)) such

that

α(x, 0) = (δ(x), 0),∀x ∈ V (X).
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Note that αk is an expected automorphism if and only if gcd(k, a) > 1. Here a

denotes the order of α. This observation and the assumption that the number of

distinct conjugates of τ by powers of α is odd imply that the orders of α and δ

are powers of some fixed odd prime p.

2. As all conjugates of τ by elements of ⟨α⟩ are expected automorphisms of BX of

order 2, it follows by Proposition 4.2, that they generate an elementary abelian

2-group H+ ≤ Aut(X) × S2. For our voltage group, we choose the sugroup

H ≤ Aut(X) characterized by

φ ∈ H if and only if φ ∈ H = H+ ∩ Aut(X).

Note that H ∼= H is an elementary abelian 2-group (in particular, H ∼= Zn
2 for

some n ∈ N).

3. Note that the quotient graphs Y ′ = BX/H+ and Y = X/H are isomorphic. In

particular, the map µ : V (Y ) → V (Y ′) given by xH 7→ (x, 0)H
+
is a well-defined

graph isomorphism.

Conjugation by α preserves the generating set of H+ and consequently, α nor-

malizes H+. This implies that α has a well-defined action on the orbits of H+

on V (BX) and therefore, the map

(x, i)H
+ 7→ α(x, i)H

+

is a well-defined automorphism of Y ′. If we let π : V (X) → V (Y ) be the covering

projection of Y by X given by x 7→ xH , then the identification of Y and Y ′ via

µ shows that the map α∗ defined below is an automorphism of Y corresponding

to the previously mentioned automorphism of Y ′.

α∗ : V (Y ) → V (Y )

π(x) 7→ π(δ(x))

4. Note that H+ = ⟨H, τ⟩ and that H+ is exactly the subgroup of colour-preserving

elements of H+. In particular, since α normalizes H+, it also normalizes H and

induces a group automorphism of H. The isomorphism H ∼= H lets us translate

this automorphism to the group automorphism φ : H → H, where for h ∈ H

φ(h) is the unique element of H such that φ(h) = αhα−1.

Evaluating the left and right side of this equation at vertices of BX shows that

φ is given by

φ(h) = δhδ−1,∀h ∈ H.
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5. As H is an abelian group, the point stabilizers of every two vertices of X lying in

the same orbit of H are equal. This implies that the following is a well-defined

system of labels for Y with respect to H

L(y) = L(π(x)) := Hx ≤ H,∀x ∈ V (X).

6. We let y ∈ V (Y ) be arbitrary and let N denote the size of its orbit under the

action of ⟨α∗⟩ ≤ Aut(Y ). Note that y = π(x) for some x ∈ V (X) and as H is an

elementary abelian 2-group, size of π(x) is a power of 2 (we use Lemma 2.6). As

δ normalizes H, it has a well-defined action on each of its orbits, in particular y.

A counting argument using Lemma 2.6 will then show that δN must have a fixed

point on y. We define r(y) = r(π(x)) to be some fixed point of δN on y = π(x).

We extend r to the orbit of y under ⟨α∗⟩ by setting

r(α∗iy) := δi(r(y)), that is, r(π(δi(x))) = δi(r(π(x))).

This defines a map r : V (Y ) → V (X) satisfying

r(π(x)) ∈ π(x),∀x ∈ V (X).

We think of r(π(x)) as the canonical representative of the orbit π(x) of x under

the action of H.

7. We define an auxiliary map f by setting

f(x) := L(π(x))H with h ∈ H mapping r(π(x)) to x.

Note that f(x) is a right coset of L(π(x)) in H and it is exactly the set of elements

in H that map r(π(x)) to x. The following key properties of f follow by direct

computation for all x ∈ V (X), h ∈ H.

• f(δ(x)) = φ(f(x)),

• f((hδ)(x)) = f(δ(x))h,

• f(h(x)) = f(x)h.

8. The following defines a system of weights for Y with respect to H. For an edge

{y1, y2} ∈ E(Y ), we set

d({y1, y2}) :=
⋃

{u,v}∈E(X)
u∈π−1(y1),v∈π−1(y2)

f(u)f(v).

Notice that this is a union of double cosets of L(y1) and L(y2).
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9. We are now able to define X∗ = GV(Y,H, L, d). We define the following map.

Φ: V (X) → V (X∗)

x 7→ (π(x), f(x))

A counting argument using Lemma 2.6 shows that Φ is invertible. That Φ is in

fact a graph isomorphism of X and X∗ can be checked directly.

10. We prove that X∗ is a twist of Y . That X∗ satisfies condition (1) of Theorem

5.28 follows by definitions of α∗, φ and L, after noting that

Hδ(x) = δHxδ
−1 = φ(Hx).

We can define τ ∗ = ατα−1 and γ = ττ ∗. Our assumptions imply that γ ∈ H ≤
H+, so we can find an element t ∈ H such that γ = t. Note that

t ∈
⋂

y∈V (Y )

L(y) =
⋂

x∈V (X)

L(π(x)) =
⋂

x∈V (X)

Hx

implies that t = 1 i.e., γ = 1. As this is a contradiction with α being unexpected,

we conclude that t ̸∈
⋂

y∈V (Y ) L(y) and the condition (2a) is satisfied. Condition

(2b) follows by a direct computation, where we use the previously established

identities for f . We conclude that X ∼= X∗ is a twist of Y , finishing the proof.

Theorem 5.35 (Wilson [34, Theorem 5]). Let X be a non-trivially unstable graph.

Then

1. X has an anti-symmetry (and its instability is explained by Theorem 5.14), or

2. X is a generalized cross-cover of some smaller graph (and its instability is ex-

plained by Theorem 5.23), or

3. X is a twist of some smaller graph (and its instability is explained by Theorem

5.28).

Proof. We consider the conjugates ατα−1 of τ by unexpected automorphisms α of BX.

Case 1. There exists an unexpected automorphism α ∈ Aut(BX) such that ατα−1 is

unexpected.

In this case, we can define τ ∗ := ατα−1 and γ := τ ∗τ . As τ ∗ is unexpected, it does

not commute with τ by Proposition 4.2, so the order of γ is at least 3. Then Lemma

5.31 applies and X is a generalized cross-cover of some smaller graph. In particular,

case (2) holds.



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 73

Case 2. All conjugates ατα−1 with α ∈ Aut(BX) are expected.

We consider the number of distinct conjugates of τ produced by every unexpected

α ∈ Aut(BX).

Subcase 2.1. There exists an unexpected automorphism α ∈ Aut(BX) such that the

number of distinct conjugates of τ by elements of ⟨α⟩ is even.
In this case, Lemma 5.33 applies and we conclude that X has an anti-symmetry.

In particular, (1) holds.

Subcase 2.2. For all unexpected automorphisms α ∈ Aut(BX), the number of distinct

conjugates of τ by elements of ⟨α⟩ is odd.

In this case, Lemma 5.34 applies and we conclude that X is a twist of some smaller

graph. In particular, (3) holds.

5.3 WILSON TYPES

We now come to one of the most important parts of this thesis. Recall that a circulant

graph of order n is a Cayley graph of the cyclic group Zn.

In his article on unexpected automorphisms of unstable graphs, see [34], Wilson

attempts to characterize unstable members of four different families of graphs, namely

circulants, generalized Petersen graphs, Rose-Window graphs and toroidal graphs. His

strategy is to come up with conditions on the defining parameters for each family, that

enable one to apply some of the criteria from Section 5.1 (recall that these include

sub-components, half-actions, anti-symmetries, (generalized) cross-covers and twists of

graphs).

In this subsection, we will discuss the conditions Wilson defined for the family of

circulant graphs. It turns out some of these conditions contained errors, and we discuss

their corrected versions introduced in [13] and [26]. In Theorem 5.48, we collect the

four updated conditions, each implying that a circulant graph satisfying it is unstable,

which we will call Wilson types.

In Section 8.4, we will see that there are infinitely many non-trivially unstable

circulant graphs, which have no Wilson type (contrary to conjecture of Wilson made

in [34]). This is why in Section 5.4, we introduce generalizations of Wilson types coming

from [13].

Theorem 5.36 (Wilson [34, Theorem C.1.]). Let n be an even integer. Let X =

Cay(Zn, S) be a circulant. Suppose there exists an even integer a ∈ Zn such that

a+ s ∈ S for all even s ∈ S. Then X is unstable.

Proof. Define γ := aL, that is, γ : Zn → Zn is a map given by γ(x) = a + x. Then by

Proposition 2.25(1), γ is an automorphism of X.
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Define A and B to be sets of even and odd sets of integers in Zn, respectively. Then

{A,B} is a partition of Zn and, since a is assumed to be even, γ preserves it (that is,

γ(A) = A, γ(B) = B).

Next, assume that {x, y} ∈ E(X) such that x, y ∈ A or x, y ∈ B. In either case, x

and y have the same parity, so y − x is an even element of S. Then by assumption, it

follows that y−x+a = (a+y)−x ∈ S. In particular, {x, a+y} = {x, γ(y)} ∈ E(X). As

γ has no fixed points, it follows by Theorem 5.10 that X is unstable due to existence

of a half-action.

The following equivalent to Theorem 5.36 for odd integers has been shown to be

false. We start by stating the original version of the result.

Theorem 5.37 (Wilson - original false statement [34, Theorem C.2.]). Let n be an

integer divisible by 4. Let X = Cay(Zn, S) be a circulant. Suppose there exists an odd

integer b ∈ Zn such that s+ 2b ∈ S for all odd s ∈ S. Then X is unstable.

The following example, due to Qin, Xia and Zhou, shows that the statement of

Theorem 5.37 is false.

Example 5.38 (Qin-Xia-Zhou [26, p.156]). Let X = Cay(Z12, {3, 4, 8, 9}). Take b = 3.

As 3 + 2 · 3 ≡ 9 (mod 12) and 9 + 2 · 3 ≡ 3 (mod 12) are both in S, X satisfies all

assumptions of Theorem 5.37. However, MAGMA calculations show that X is stable.

We also provide an infinite family of counterexamples to the original statement of

Theorem 5.37.

Example 5.39. Define Xn := K4n for n ≥ 1. Then Xn = Cay(Z4n, S) with S =

Z4n \ {0}. Note that 4 divides the order of Xn. Moreover, S contains all odd integers

in Z4n, so X satisfies the condition of Theorem 5.37 for any odd b ∈ Z4n. However, by

Example 4.7, Xn is stable for all n ≥ 1.

Qin, Xia and Zhou have proposed an alternative version of Theorem 5.37, which

we now state.

Theorem 5.40 (Qin-Xia-Zhou [26, p. 156]). Let n be a positive integer divisible by 4.

Let X = Cay(Zn, S) be a circulant graph. Suppose there exists an odd b ∈ Zn such that

1. s+ 2b ∈ S for all odd s ∈ S, and

2. for each s ∈ S such that s ≡ 0 or −b (mod 4), it holds that s+ b ∈ S.

Proof. Define the following map:

γ : Zn → Zn

γ(x) =

{
x+ b, x is even

x− b, x is odd
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Note that if y ∈ Zn is even, then x = y+ b is odd and γ(x) = y. Similarly, if y ∈ Zn

is odd, then x = y− b is even and γ(x) = y. This shows that γ is surjective. As it is a

map between finite sets of same cardinality, it follows that it is invertible.

Let x, y ∈ Zn. If x and y are of opposite parity, then without loss of generality,

assume that y even and x is odd. Then γ(y)− γ(x) = (y+ b)− (x− b) = (y− x) + 2b.

Then if {x, y} ∈ E(X), it follows that y − x ∈ S and is odd. By assumption (1),

y − x+ 2b ∈ S. In particular, γ(y)− γ(x) ∈ S, proving that {γ(x), γ(y)} ∈ E(X).

If x and y are of the same parity, then regardless of whether they are both even or

both odd, it holds that then γ(y)− γ(x) = y − x. In particular, {x, y} ∈ E(X) if and

only if {γ(y), γ(x)} ∈ E(X).

It follows that γ is an automorphism of X.

We will construct a partition of Zn that, together with γ, satisfies the assumptions

of Theorem 5.10. It will then follow that BX has a half-action automorphism proving

that X is unstable, as desired.

As b is odd, it follows that b ≡ 1 (mod 4) or b ≡ 3 (mod 4). Note that, −b ∈ Zn is

still odd (because n is even) and moreover:

1. If s ∈ S is odd, then −s is also odd (since n is even) and in S (since S is inverse-

closed). It follows by (1) that −s + 2b ∈ S. As S is inverse-closed, this further

implies that s+ 2(−b) ∈ S.

2. Let s ∈ S.

(a) If s ≡ 0 (mod 4), then −s ≡ 0 (mod 4) as well. It follows by (1) that

−s+ b ∈ S. As S is inverse-closed, we get that s+ (−b) ∈ S.

(b) If s ≡ b (mod 4), then −s ≡ −b (mod 4). Then (2) implies that −s+ b ∈ S.

As S is inverse-closed, this further implies that s+ (−b) ∈ S.

It follows that b and −b both satisfy conditions (1) and (2) and can be interchanged

for the purposes of the proof. Hence, we can assume without loss of generality that

b ≡ 1 (mod 4). Define

A := {x ∈ Zn | x ≡ 0 or 1 (mod 4)} and B := {x ∈ Zn | x ≡ 2 or 3 (mod 4)}.

Then {A,B} is a partition of Zn. Moreover, it is easily checked that γ(A) = A

and γ(B) = B. Let {x, y} ∈ E(X). Then y − x ∈ S and as S is inverse-closed, also

x− y ∈ S. We again consider cases.

Case 1. x, y ∈ A

Depending on their residues modulo 4, we have the following.

Subcase 1.1. x ≡ y ≡ 0 (mod 4)
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Note that in this case, both x and y are even and y − x ≡ 0 (mod 4). Then (2)

implies that (y − x) + b ∈ S. Since γ(y) − x = (y + b) − x = (x − y) + b ∈ S, we get

that {x, γ(y)} ∈ E(X).

Subcase 1.2. x ≡ y ≡ 1 (mod 4)

It follows that x and y are both odd and y − x ≡ 0 (mod 4). It follows by (2)

that (y − x) + b ∈ S. We obtain that γ(y) − x = (y + b) − x = (y − x) + b ∈ S and

{x, γ(y)} ∈ E(X).

Subcase 1.3. x and y are not congruent modulo 4.

In this case, we can assume, without loss of generality, that x ≡ 1 (mod 4) and

y ≡ 0 (mod 4). Then x is odd and y is even and y − x ≡ −1 ≡ −b (mod 4), so (2)

implies that (y − x) + b ∈ S. We have that γ(y)− x = (y + b)− x = (y − x) + b ∈ S

and {x, γ(y)} ∈ E(X).

Case 2. x, y ∈ B

We have the following cases.

Subcase 2.1. x ≡ y ≡ 2 (mod 4)

It follows that they are both even and that y − x ≡ 0 (mod 4). We obtain that

(y−x)+ b ∈ S. Hence, γ(y)−x = (y+ b)−x = (y−x)+ b ∈ S and {x, γ(y)} ∈ E(X).

Subcase 2.2. x ≡ y ≡ 3 (mod 4)

It follows that both x and y are odd and that x − y ≡ 0 (mod 4). Hence, by (2),

we have that (x − y) + b ∈ S and S is inverse-closed, also (y − x) − b ∈ S. Finally,

γ(y)− x = (y − b)− x = (y − x)− b ∈ S and {x, γ(y)} ∈ E(X).

Subcase 2.3. x and y are not congruent modulo 4.

Without loss of generality, we may assume that x ≡ 3 (mod 4) and y ≡ 2 (mod 4).

Then x is odd and y is even, while y − x ≡ −1 ≡ −b (mod 4). It follows by (2)

that (y − x) + b ∈ S. We get that γ(y) − x = (y + b) − x = (y − x) + b ∈ S and

{x, γ(y)} ∈ E(X).

The desired conclusion now follows by Theorem 5.10.

Remark 5.41. We proved that Example 5.38 and Example 5.39 pose counterexamples

to Theorem 5.37. We now check that none of the graphs described in these examples

satisfy all conditions of Theorem 5.40, in particular, the condition (2).

If X = Cay(Z12, {3, 4, 8, 9}), then the odd integer b satisfying (1) must lie in {3, 9}.
If b = 3, then 8 ≡ 0 (mod 4), but 8 + 3 ≡12 11 ̸∈ S. If b = 9, then 8 ≡ 0 (mod 4), but

8 + 9 ≡12 17 ≡12 5 ̸∈ S. Hence, no such b can exist.

Let X = Cay(Zn, S) with S = Zn \ {0}. Suppose that b ∈ Zn is odd and satisfies

the condition (1). Then b ̸= 0 and b,−b ∈ S. Then −b ≡ −b (mod 4) and (2) implies

that (−b) + b = 0 ∈ S, a contradiction.
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The next criterion also turned out to be false. We proceed in the same manner as

last time. We will first state the original version of the result, provide a counterexample

to it and afterwards introduce the updated version of the result.

Theorem 5.42 (Wilson - original false statement [34, Theorem C.3.]). Let n be an

even positive integer. Let X = Cay(Zn, S) be a circulant. Let e ∈ Zn such that e > 1.

Let B = {j ∈ S | j+ke ∈ S,∀k ∈ Z} and let R = S \B. Let D be the greatest common

divisor of elements in R. Suppose that D > 1 and that j/D is odd for all j ∈ R. Then

X is unstable.

The following example shows that Theorem 5.42 is false.

Example 5.43 (Hujdurović-Mitrović-Morris [13, Remark 3.14]). Let n be an even

integer. Define Xn := Kn. Then Example 4.7 shows that Xn is stable for all n ≥ 3.

Note that Xn = Cay(Zn, S) with S = Zn \ {0}.
Let e := n/2. Then for j ∈ S, we have that:

ke ≡n

{
0, k even

n/2, k odd
=⇒ j + ke ≡n

{
j, k even

j + n/2, k odd

It follows that B = Zn \ {0, n/2} and consequently, R = {n/2}. Then R is non-

empty and D = n/2 > 1. As R has only one element, the last condition is also satisfied.

It follows that Xn satisfies all of the conditions of Theorem 5.42, but is stable.

We now state and prove the corrected version of the result.

Theorem 5.44 (Hujdurović-Mitrović-Morris [13, Remark 3.14]). Let n be an even

integer. Let X = Cay(Zn, S) be a circulant. Suppose that there is a subgroup H of Zn,

such that the set

R = { s ∈ S | s+H ̸⊆ S },

is non-empty and has the property that if we let d = gcd
(
R ∪ {n}

)
, then n/d is even,

r/d is odd for every r ∈ R, and either H ⊈ dZn or H ⊆ 2dZn.

Then X is unstable.

Proof. As R is non-empty, H is non-trivial. Let h ̸= 0 be a generator of H. Define

γ := hL, that is, γ : Zn → Zn is given by γ(x) = x + h. Then γ is a non-trivial

automorphism of X (see Proposition 2.25(1)). Our goal is to show that X has a γ

sub-component. The conclusion that X is unstable then follows by Theorem 5.5.

An edge {x, x+ s} ∈ E(X) with x ∈ Zn, s ∈ S is blue with respect to γ if and only

if {x + kh, (x + s) + ℓh} ∈ E(X) for all k, ℓ ∈ Z, which means that s + (ℓ − k)h ∈ S.

This is equivalent to s + H ⊆ S, that is, s ̸∈ R. In particular, an edge of X is red

with respect to γ if and only if it is induced by s ∈ R ⊆ S. This shows that the
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red subgraph Xr is exactly Cay(Zn, R). As R is assumed to be non-empty and Xr is

vertex-transitive, it follows that connected components of Xr are all non-trivial.

Let X0 be the connected component of Xr containing 0. Note that then X0 =

Cay(⟨d⟩, R). Conditions that n/d is even and r/d odd for all r ∈ R imply that X0 is

a connected, bipartite graph of even order n/d with the bipartition given by the two

cosets of ⟨2d⟩ in ⟨d⟩. Note that ⟨d⟩ = dZn and ⟨2d⟩ = 2dZn.

Case 1. H ̸⊆ dZn.

As V (X0) = dZn, this implies that γ does not preserve the connected componentX0.

In particular, X0 satisfies the condition (1) of Definition 5.3 and is a γ sub-component

of X.

Case 2. H ⊆ dZn.

It follows that γ preserves the connected componentX0 and thatH ⊆ 2dZn. Hence,

γ preserves 2dZn and its unique coset in dZn. In conclusion, γ preserves the bipartition

sets of X0 and X0 is a γ sub-component of X fulfilling the condition (2) of Definition

5.3.

Remark 5.45 ([13, Remark 3.14]). The reformulated definition of the set R given

in Theorem 5.44 is equivalent to that given in Theorem 5.42, but is more compact,

as working with generators of the same subgroup makes no difference. Moreover, the

condition that d > 1 is unnecessary, as Theorem 5.5 does not require the red subgraph

Xr to be disconnected. As we have seen in the proof of Theorem 5.44, the condition that

n/d is even is necessary for Xr to have bipartite components and conditions H ̸⊆ dZn

and H ⊆ 2dZn correspond to conditions (1) and (2) of Definition 5.3, respectively.

Remark 5.46. We saw that Example 5.43 is a counterexample for Theorem 5.42. Let

us check that the graphs described there do not satisfy all of the conditions of Theorem

5.44.

Let n be even and Xn = Kn = Cay(Zn,Zn \ {0}). Suppose that H is a subgroup of

Zn and R is the subset defined in Theorem 5.44. We show that R = H \ {0}.
If s ∈ R, then s ̸= 0 and s + H ̸⊆ S = Zn \ {0}, so 0 ∈ s + H. It follows that

−s ∈ H and as H is a subgroup, s ∈ H \ {0} as well. Conversely, if s ∈ H \ {0}, then
s ̸= 0, so s ∈ S and −s ∈ H. It follows that 0 = s + (−s) ∈ s +H ̸⊆ S, proving that

s ∈ R.

As Zn is cyclic, so is H. Let h be a generator of H. Then d = gcd(R ∪ {n}) =

gcd(H \ {0} ∪ {n}) = gcd({hk, n | k ∈ Z, k ̸= 0}) = gcd(h, n). Note that then H must

be of even order |H| = n
d
. In particular, H contains n/2. It follows that n/2 ∈ R, so

n
2d

is an odd integer. Hence, 2d is a divisor of n.

Note that dZn is a subgroup of Zn of order n
gcd(n,d)

= n
d
= |H|. As subgroups of Zn

are characterized by their order, it follows that H = dZn (in particular, H ⊆ dZn).

The subgroup 2dZn is of order n
gcd(n,2d)

= n
2d

= 1
2
|H|. It follows that H ̸⊆ 2dZn.
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In conclusion, H fails the newly introduced condition of Theorem 5.44.

The following is the final instability criterion for circulants that Wilson introduced.

Theorem 5.47 (Wilson [34, Theorem C.4.]). Let n = 2k be an even positive integer.

Let X = Cay(Zn, S) be a circulant. Let g ∈ Z×
n . If gs+ k ∈ S for all s ∈ S, then X is

unstable.

Proof. Define γ := kL, that is, γ : Zn → Zn is given by γ(x) = k + x. Then by Propo-

sition 2.25(1), γ is an automorphism of X. Moreover, γ is non-trivial (for example,

γ(0) = k ̸= 0) and of order 2 (as n = 2k ≡ 0 (mod n)).

We will show that X has an anti-symmetry with respect to γ. The conclusion then

follows by Theorem 5.14.

Since g ∈ Z×
n , the map α(j) = gj for j ∈ Zn is actually a group automorphism of

Zn. In particular, α is a permutation of Zn. Because k ∈ Zn is the unique element of

order 2, every automorphism of Zn fixes it. In particular, α(k) = gk = k.

Let x ∈ Zn. The following calculation shows that α and γ commute proving that

α satisfies condition (1) in Definition 5.13.

(αγ)(x) = α(k + x) = g(k + x) = gk + gx = k + α(x) = (γα)(x)

Next, let x, y ∈ V (X). Note that

(αγ)(y)− α(x) = g(k + y)− gx = g(y − x) + gk = g(y − x) + k. (5.5)

If {x, y} ∈ E(X), then y − x ∈ S. By assumption g(y − x) + k ∈ S. In particular,

due to Eq. (5.5), it follows that {α(x), (αγ)(y)} ∈ E(X). This shows that α satisfies

the condition (2) in Definition 5.13.

It follows that α is an anti-symmetry of X (with respect to γ), as desired.

We now collect all of the previously proven results and introduce new notation that

will be used for the rest of the thesis.

Theorem 5.48 (Wilson [34, Appendix A.1] (and [26, p. 156])). Let X = Cay(Zn, S)

be a circulant graph, such that n is even. Let Se = S ∩ 2Zn and So = S \ Se. If any of

the following conditions is true, then X is unstable.

1. There is a non-zero element h of 2Zn, such that h+ Se = Se.

2. n is divisible by 4, and there exists h ∈ 1 + 2Zn, such that

(a) 2h+ So = So, and

(b) for each s ∈ S, such that s ≡ 0 or −h (mod 4), we have s+ h ∈ S.
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3. There is a subgroup H of Zn, such that the set

R = { s ∈ S | s+H ̸⊆ S },

is non-empty and has the property that if we let d = gcd
(
R ∪ {n}

)
, then n/d is

even, r/d is odd for every r ∈ R, and either H ⊈ dZn or H ⊆ 2dZn.

4. There exists m ∈ Z×
n , such that (n/2) +mS = S.

Definition 5.49 ([13, Definition 1.6], [12, Definition 1.6]). We say that X has Wil-

son type (C.1), (C.2′), (C.3′), or (C.4), respectively, if it satisfies the corresponding

condition of Theorem 5.48.

Remark 5.50 ([12, Remark 1.7]). Wilson type of a graph needs not be unique, that

is, a graph may satisfy more than one condition from Theorem 5.48. For example, for

every odd integer k with gcd(k, 3) = 1, the graph

Cay(Z8k, {±2k,±3k})

has Wilson type (C.1) (with h = 4k) as well as Wilson types (C.3′) (with H =

{0, 4k}, R = {±3k} and d = k) and (C.4) (with g = 3).

Example 5.51. While each of the Wilson types implies that the circulant graph sat-

isfying it is unstable, the converse is not true. The following example has already been

observed in [26, p. 156].

Cay(Z24, {±2,±3,±8,±9,±10})

The above graph is non-trivially unstable but has no Wilson type. Additional five

examples of order 24 have been found by a computer search in [13, Observation 6.1].

In Example 8.41, we will construct an infinite family of non-trivially unstable cir-

culants with no Wilson type.

5.4 GENERALIZATIONS OF WILSON TYPES

As we have already discussed in Section 5.3, Wilson types cannot explain instability of

all non-trivially unstable circulants. This is why further generalizations are necessary.

We present three results first proven in [13].

• Theorem 5.52, which generalizes Wilson types (C.1),(C.2′) and (C.3′),

• Proposition 5.56, which generalized Wilson type (C.4), and

• Proposition 5.58.
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The proofs of all of these results will be based on Lemma 3.9.

Theorem 5.52 (Hujdurović-Mitrović-Morris [13, Theorem 3.2]). Let X = Cay(Zn, S)

be a circulant graph. Choose non-trivial subgroups H and K of Zn, such that |K| is
even, and let Ko = K \ 2K. If either

1. S +H ⊆ S ∪ (Ko +H) and H ∩Ko = ∅, or

2. (S \Ko) +H ⊆ S ∪Ko and either |H| ≠ 2 or |K| is divisible by 4,

then X is unstable.

Proof. Let h be a generator of H. We will define permutations α and β of Zn, such

that Lemma 3.9 applies.

(1) Define

α(x) =

x+ h if x ∈ 2K +H;

x otherwise;
β(x) =

x+ h if x ∈ Ko +H;

x otherwise.

Note that 0 /∈ Ko+H (because H ∩Ko = ∅), so β(0) = 0. Since α(0) = h, this implies

α ̸= β.

Given an edge {x, y} of X, we wish to show that α(x) is adjacent to β(y). We may

assume that either x is moved by α or y is moved by β. In fact, we may assume that

exactly one of the vertices is moved, for otherwise,

β(y)− α(x) = (y + h)− (x+ h) = y − x ∈ S.

This means we may assume that either x ∈ 2K + H or y ∈ Ko + H, but not both.

Letting s = y − x ∈ S, this implies s /∈ Ko +H.

Also, we have

β(y)− α(x) ∈ (y +H)− (x+H) = (y − x) +H = s+H,

so we may write β(y)−α(x) = s+h′, for some h′ ∈ H. By the first assumption of (1),

we know s+ h′ ∈ S ∪ (Ko +H). Since s /∈ Ko +H, this implies s+ h′ ∈ S, so α(x) is

adjacent to β(y).

(2) If h ∈ 2K, then Ko +H = Ko, so

(S ∩Ko) +H ⊆ Ko +H = Ko.

Since, by the first assumption of (2), we also have (S \Ko) +H ⊆ S ∪Ko, this implies

that (1) applies. Therefore, we may assume

h /∈ 2K.



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 82

Define

α(x) =


x+ h if x ∈ 2K;

x− h if x ∈ 2K + h;

x otherwise

β(x) =


x+ h if x ∈ Ko;

x− h if x ∈ Ko + h;

x otherwise.

We claim that α ̸= β. Note that α(0) = h. Therefore, if α = β, then we must

have β(0) = h. Since 0 /∈ Ko, this implies that 0 ∈ Ko + h (which means h ∈ Ko) and

−h = h (which means |h| = 2). Since |h| = 2 and h ∈ Ko, we see that |H| = 2 and

that |K| is not divisible by 4. This contradicts the second half of assumption (2), so

the proof of the claim is complete.

Given an edge {x, y} of X, we wish to show that α(x) is adjacent to β(y). That is,

we wish to show β(y)−α(x) ∈ S. We have y = x+ s for some s ∈ S. We may assume

β(y)− α(x) ̸= y − x.

In particular, we cannot have both α(x) = x and β(y) = y. Therefore,

either x ∈ 2K ∪ (2K + h) or y ∈ Ko ∪ (Ko + h).

Case 1. Assume x ∈ 2K∪(2K+h) and y ∈ Ko∪(Ko+h). We consider two different

possibilities, but both of the arguments are very similar.

Subcase 1.1. Assume x ∈ 2K. Then α(x) = x + h. Since β(y) − α(x) ̸= y − x, this

implies β(y) ̸= y+h, so y /∈ Ko. By the assumption of Case 1, this implies y ∈ Ko+h,

so β(y) = y − h. Hence, β(y)− α(x) = s− 2h.

We have x ∈ 2K and y ∈ Ko + h, so s = y − x ∈ Ko + h, which means s− h ∈ Ko.

Since h /∈ 2K, this implies s /∈ Ko and s− 2h /∈ Ko. Since s /∈ Ko, the first assumption

of (2) tells us s+H ⊆ S ∪Ko. Since s− 2h /∈ Ko, this implies s− 2h ∈ S. So α(x) is

adjacent to β(y).

Subcase 1.2. Assume x ∈ 2K +h. We have α(x) = x−h. Since β(y)−α(x) ̸= y−x,

this implies β(y) ̸= y − h, so y /∈ Ko + h. By the assumption of Case 1, this implies

y ∈ Ko, so β(y) = y + h. Hence, β(y)− α(x) = s+ 2h.

We have x ∈ 2K + h and y ∈ Ko, so s = y − x ∈ Ko − h, which means s+ h ∈ Ko.

Since h /∈ 2K, this implies s /∈ Ko and s+2h /∈ Ko. Since s /∈ Ko, the first assumption

of (2) tells us s+H ⊆ S ∪Ko. Since s+ 2h /∈ Ko, this implies s+ 2h ∈ S. So α(x) is

adjacent to β(y).

Case 2. Assume Case 1 does not apply. As in Case 1, we consider two different

possibilities, but both of the arguments are very similar.

Subcase 2.1. Assume x ∈ 2K ∪ (2K + h). Choose δ ∈ {0, 1}, such that x ∈ 2K + δh.

We have α(x) = x + ϵh, where ϵ = 1− 2δ, and we also have y /∈ Ko ∪ (Ko + h), since
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Case 1 does not apply, so β(y) = y. Since x ∈ 2K + δh, but x + s = y /∈ Ko + δh, we

have s /∈ Ko. So the first assumption of (2) tells us s+H ⊆ S∪Ko, so s− ϵh ∈ S∪Ko.

Since β(y) − α(x) = s − ϵh, then we may assume s − ϵh ∈ Ko (otherwise, α(x) is

adjacent to β(y), as desired), so s ∈ Ko + ϵh. Then

y = x+ s ∈ (2K + δh) + (Ko + ϵh) = Ko + (δ + ϵ)h = Ko + (1− δ)h.

Since 1− δ ∈ {0, 1}, but y /∈ Ko ∪ (Ko + h), this is a contradiction.

Subcase 2.2. Assume y ∈ Ko ∪ (Ko + h). Choose δ ∈ {0, 1}, such that y ∈ Ko + δh.

We have β(y) = y + ϵh, where ϵ = 1− 2δ, and we also have x /∈ 2K ∪ (2K + h), since

Case 1 does not apply, so α(x) = x. Since y ∈ Ko + δh, but y − s = x /∈ 2K + δh, we

have s /∈ Ko. So the first assumption of (2) tells us s+H ⊆ S∪Ko, so s+ ϵh ∈ S∪Ko.

Since β(y) − α(x) = s + ϵh, then we may assume s + ϵh ∈ Ko (otherwise, α(x) is

adjacent to β(y), as desired), so s ∈ Ko − ϵh. Then

x = y − s ∈ (Ko + δh)− (Ko − ϵh) = 2K + (δ + ϵ)h = 2K + (1− δ)h.

Since 1− δ ∈ {0, 1}, but x /∈ 2K ∪ (2K + h), this is a contradiction.

Wilson types (C.1), (C.2′), and (C.3′) are special cases of Theorem 5.52(2):

Proposition 5.53 (Hujdurović-Mitrović-Morris [13, Proposition 3.4]). If Cay(Zn, S)

has Wilson type (C.1), (C.2′), or (C.3′), then there are non-trivial subgroups H and K

of Zn that satisfy the conditions given in part (2) of Theorem 5.52 (and |K| is even).

Proof. (C.1) Let K = Zn and H = ⟨h⟩. Then

(S \Ko) +H = Se + ⟨h⟩ = Se ⊆ S,

so the first condition of Theorem 5.52(2) is satisfied. Also, since h ∈ 2Zn = 2K, it

must be true that either |H| ≠ 2 or |K| is divisible by 4.

(C.2′) Let H = ⟨h⟩ and K = 2Zn. (Note that |H| > 2, since h is odd and n is

divisible by 4.) Then

Ko = {x ∈ Zn | x ≡ 2 (mod 4) }.

We will show that (S \Ko) +H ⊆ S ∪Ko.

We may assume h ≡ 1 (mod 4), by applying the graph automorphism x 7→ −x if

necessary. Fix some s ∈ S \Ko.

Suppose, first, that s ̸≡ 0 (mod 4) (and recall that s /∈ Ko, so s ̸≡ 2 (mod 4)), so s

is odd. This means s ∈ So, so we see from C.2′(a) that s + 2kh ∈ S for all k ∈ Z. If

s + 2kh ≡ 3 (mod 4), then s + (2k + 1)h ∈ S (by C.2′(b)). If s + 2kh ≡ 1 (mod 4),

then s+ (2k + 1)h ∈ Ko. Thus, we have s+H ⊆ S ∪Ko.
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Now, suppose s ≡ 0 (mod 4). Then s + h ∈ S (by C.2′(b)). Now, since s + h ̸≡
0 (mod 4), the previous case tells us that s+ h+H ⊆ S ∪Ko. Since h+H = H, this

means s+H ⊆ S ∪Ko.

(C.3′) Let K = ⟨R⟩ = ⟨d⟩. Since n/d is even, we know that K has even order.

Then, since r/d is odd for every r ∈ R, we see that R ⊆ Ko. By the definition of R,

this means (S \Ko) +H ⊆ S, so the first condition of Theorem 5.52(2) is satisfied.

Also, since either H ⊈ dZn or H ⊆ 2dZn, we know that either H ⊈ K or H ⊆ 2K.

If H ⊈ K and |H| = 2, then it is clear that H ∩K = {0} ⊆ 2K. Thus, in both cases,

we have H ∩ K ⊆ 2K, which easily implies that either |H| ̸= 2 or |K| is divisible

by 4.

There is a strong converse to Proposition 5.53 when n is not divisible by 4:

Proposition 5.54 (Hujdurović-Mitrović-Morris [13, Proposition 3.5]). Let X be a

circulant graph Cay(Zn, S). If X,H and K satisfy the conditions of Theorem 5.52(2),

and n is not divisible by 4, then X has Wilson type (C.1).

Proof. Since n is not divisible by 4, it is not possible for |K| to be divisible by 4, so the

second half of Theorem 5.52(2) tells us that |H| > 2. This implies that He := H ∩ 2Zn

is non-trivial. Also, since n is not divisible by 4, we know that Ko ∩ 2Zn = ∅, so

Se +He = (S ∩ 2Zn) +He ⊆ (S \Ko) +H ⊆ S ∪Ko ⊆ S ∪ (Zn \ 2Zn).

Since He ⊆ 2Zn, we also know that Se + He ⊆ 2Zn. Therefore, we conclude that

Se +He ⊆ Se, so X has Wilson type (C.1).

Remark 5.55 (Hujdurović-Mitrović-Morris [13, Remark 3.6]). By combining Propo-

sition 5.53 and Proposition 5.54, we see that if X has a Wilson type, and n is not

divisible by 4, then X must have Wilson type (C.1) or (C.4).

Proposition 5.56. Assume X = Cay(Zn, S) is a circulant graph of even order. If

X ∼= Cay
(
Zn, S + (n/2)

)
, then X is unstable.

Proof. Let α be an isomorphism from Cay(Zn, S) to Cay(Zn, S+(n/2)). Define β(x) :=

α(x) + (n/2). Then α and β are distinct permutations of Zn.

Let {x, y} ∈ E(X). From the isomorphism property of α, it follows that we can

find an s ∈ S such that α(y)− α(x) = s+ (n/2). We obtain that

β(y)− α(x) = α(y) + (n/2)− α(x) = (α(y)− α(x)) + (n/2) = s ∈ S.

In particular, {α(x), β(y)} ∈ E(X). Lemma 3.9 implies that X is unstable.
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Remark 5.57 (Hujdurović-Mitrović-Morris [13, Proposition 3.8]).

Proposition 5.56 is a generalization of Wilson type (C.4). If X has Wilson type (C.4),

we can find m ∈ Z×
n inducing a group automorphism of Zn such that (n/2) +mS = S.

Then mS = S+(n/2) and Cay(Zn, S) ∼= Cay(Zn,mS). We conclude that Cay(Zn, S) ∼=
Cay(Zn, S + (n/2)), so Proposition 5.56 applies.

Proposition 5.58 (Hujdurović-Mitrović-Morris [13, Proposition 3.12]). Assume X =

Cay(Zn, S) is a circulant graph of even order. If there exist permutations α and β

of 2Zn, and a subgroup H of 2Zn, such that:

1. α ̸= β,

2. if the vertices x, y ∈ 2Zn are adjacent, then the vertices α(x) and β(y) are also

adjacent,

3. s+H ⊆ S, for all odd s ∈ S, and

4. α(x)− x ∈ H and β(x)− x ∈ H, for all x ∈ 2Zn,

then X is unstable.

Proof. We define the following permutations of Zn.

α∗(x) :=

{
x, x is odd

α(x), x is even
and β∗(x) :=

{
x, x is odd

β(x), x is even

As α ̸= β, we conclude that α∗ ̸= β∗. Let {x, y} ∈ E(X). Then we can find an

s ∈ S such that y = x+ s. We consider the following cases.

Case 1. x and y are both odd.

Then {α∗(x), β∗(y)} = {x, y} ∈ E(X).

Case 2. Exactly one among x and y is odd.

We will assume that x is odd and y is even. By (4), β(y) − y ∈ H. Then,

as s = y − x is odd, it follows by (3) that (β(y) − y) + s ∈ S. We obtain that

β∗(y)− α∗(x) = β(y)− x = (β(y)− y) + s ∈ S. In particular, {α∗(x), β∗(y)} ∈ E(X).

An analogous proof applies to the case when x is even and y is odd.

Case 3. x and y are both even.

It this case, it follows by (2) that {α∗(x), β∗(y)} = {α(x), β(y)} ∈ E(X).

Lemma 3.9 now implies that X is unstable.
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6 STABILITY OF CAYLEY GRAPHS

OF ABELIAN GROUPS

In this section, we will be studying stability of Cayley graphs of abelian groups, with a

particular emphasis on circulant graphs. We will tend to consider and prove results in

their chronological order of appearance in the literature, from the least general to the

most general. This will show the development of the stability theory of Cayley graphs

and the gradual strengthening of the results and techniques applied.

For the case of abelian groups of odd order, we will proceed according to the fol-

lowing list of results.

• In Section 6.1, we will show that there are no non-trivially unstable circulants of

prime order. This result has first been proven by Qin, Xia and Zhou in [26]. In

this thesis, it appears as Theorem 6.1.

• In Section 6.2, we will generalize the previous result to circulants of an arbitrary

odd order. This is a result of Fernandez and Hujdurović from [7]. We have it as

Theorem 6.8.

• In Section 6.3, we will prove that there are no non-trivially unstable Cayley

graphs on abelian groups of odd order. This is Theorem 6.11, which has been

first proven by D.W. Morris in [23].

Having resolved the issue of stability of circulant graphs of odd order, we move onto

circulants of even order. It turns out that, in the even case, the behaviour of these

graphs is a lot more exotic and difficult to describe. For example, in Section 7, we

will see that even when the valency is assumed to be low, there are infinitely many

examples of non-trivially unstable circulant graphs. This is why in Section 6.4, we

consider the easiest even case, namely unstable circulants of order twice a prime. We

will derive a complete classification of these graphs, which is one of the main results

of [13] by Hujdurović, Mitrović and Morris.

Finally, in Section 6.5, we will also consider another result of Qin, Xia and Zhou

from [26], proving that there are no non-trivially unstable arc-transitive circulants.

Note that this is the only result from this section that does not make any assumptions

on the order of the graphs it considers.
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6.1 CIRCULANTS OF PRIME ORDER

We begin with the first non-trivial result on stability of circulant graphs. Note that

the only simple graphs of order 2 are K2 and its complement K2, both of which are

trivially unstable. Therefore, in the following result, we only consider odd primes.

Theorem 6.1 (Qin-Xia-Zhou [26, Theorem 1.6]). A circulant of odd prime order p

is either stable or isomorphic to Kp. In particular, there is no non-trivially unstable

circulant of odd prime order.

Proof. Let X = Cay(Zp, S) be a circulant of odd prime order p. Assume that X is not

isomorphic to Kp. It follows by Corollary 2.47, that X is connected, non-bipartite and

twin-free.

By Lemma 3.13, we have that

BX = B Cay(Zp, S) = Cay(Zp × Z2, S × {1}).

Because p is odd, it holds that Zp ×Z2
∼= Z2p, and BX is isomorphic to a circulant

of order 2p.

Case 1. BX is a normal Cayley graph.

As X is connected, Lemma 4.11 applies proving that X is stable.

Case 2. BX is non-normal.

Note that S is non-empty, as X is assumed not to be isomorphic with Kp. If

S = Zp \ {0}, then X ∼= Kp and it is stable by Example 4.7. Hence, we can assume

S ̸= Zp \ {0}. Then as p is odd, Zp has no self-inverse elements and |S| is an even

integer between 1 and p−2. As X is connected and non-bipartite, Lemma 3.2(1) shows

that BX is connected.

It follows that BX is a non-normal, connected, bipartite circulant of order 2p and

valency at most p−2. Then Lemma 2.34 implies that BX = Y ≀K2 for some connected

graph Y . From Lemma 2.44, we conclude that BX is not twin-free. However, Corollary

3.21 then implies that X is also not twin-free, a contradiction.

Remark 6.2. The original version of this result, given in [26], claims that every cir-

culant of odd prime order is stable. We have chosen to reformulate this result, because

by our definition of a Cayley graph (see Definition 2.22), it could happen that S is the

empty set, so Kp is a circulant. However, Kp is disconnected and therefore trivially

unstable by Proposition 3.15.

6.2 CIRCULANTS OF ODD ORDER

We start by considering Corollary 4.3 and Lemma 4.5 in the context of circulant graphs

of odd order, in order to obtain simpler formulations of these results, which will greatly
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simplify the arguments that follow.

Let X = Cay(Zn, S) be a circulant graph of odd order n. By Lemma 3.13, we have

that

BX = B Cay(Zn, S) = Cay(Zn × Z2, S × {1}).

Since n is assumed to be odd, the map ψ(k, i) = 2k + ni for (k, i) ∈ Zn × Z2, is a

group isomorphism between Zn ×Z2 and the cyclic group Z2n. This allows us to think

of BX as the circulant graph Cay(Z2n, ψ(S × {1})). We conclude that

BX ∼= Cay(Z2n, 2S + n).

As X is a Cayley graph, Corollary 3.14 shows that the automorphism τ equals to

the translation automorphism tL induced by t = (0, 1) (since G = Zn in this case).

Under the above identification, this automorphism corresponds to

ψ(t)L = (2 · 0 + n · 1)L = nL.

We can now reformulate Corollary 4.3.

Lemma 6.3 (Fernandez-Hujdurović [7, Lemma 2.3]). Let X = Cay(Zn, S) be a con-

nected circulant of odd order n. Then X is stable if and only if the permutation nL is

central in the automorphism group of BX = Cay(Z2n, n+ 2S).

Note that the group isomorphism ψ identifies vertices (0, 0) and (0, 1) of BX with

0 and n in Z2n, respectively. Using this conclusion and letting x = 0 in Corollary 4.5,

lets us reformulate it as follows.

Lemma 6.4 (Fernandez-Hujdurović [7, Lemma 2.5]). Let X = Cay(Zn, S) be a con-

nected circulant of odd order n and let BX = Cay(Z2n, n + 2S) be its canonical

double cover represented as a Cayley graph on Z2n. Then X is stable if and only if

Aut(BX)0 = Aut(BX)n.

We refer the reader to the original papers for further details on the following two

results.

Lemma 6.5 ([7, Lemma 2.12]). Let X = Cay(G,S), A = Aut(X) and let K ⊆ S such

that φ(K) = K for every φ ∈ A1. Then φ(⟨K⟩) = ⟨K⟩ for every φ ∈ A1. Moreover, if

K is inverse-closed, then φ induces an automorphism of Cay(⟨K⟩, K).

Lemma 6.6 (Fernandez-Hujdurović [7, Lemma 3.1]). Let X = Cay(Zn, S) be a non-

trivially unstable circulant of odd order n. Then BX is not arc-transitive.

Lemma 6.7 (Fernandez-Hujdurović [7, Lemma 3.2]). Let n be an odd positive integer,

and let X be a connected bipartite arc-transitive circulant of order 2n and even valency.

Then one of the following holds.



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 89

1. Aut(X)0 = Aut(X)n, or

2. X ∼= Y ≀Kd where Y is a twin-free arc-transitive circulant of even order 2m and

Aut(Y )0 = Aut(Y )m.

Proof. AsX is a circulant of order 2n and even valency, we know thatX ∼= Cay(Z2n, S),

where S is inverse-closed and does not contain 0 nor n. Then [25, Proposition 2.4]

implies that X is isomorphic to the canonical double cover BZ of a graph Z, obtained

as the quotient graph X/nL. Because it is a quotient of a connected circulant X, Z is

a connected circulant itself. Moreover, as Z is of odd order n, by Corollary 2.27, it is

also non-bipartite.

Case 1. Z is stable.

Then the conclusion of Lemma 6.4 exactly translates to the case (1).

Case 2. Z is unstable.

As Z is a circulant of odd order n with an arc-transitive double cover X, Lemma 6.6

implies that Z cannot be non-trivially unstable. It follows that Z is trivially unstable.

As we have already established that it is connected and non-bipartite, it follows that

Z is not twin-free.

By Lemma 2.46(1), there exists a connected twin-free circulant W of order m and

an integer d ≥ 2 such that Z ∼= W ≀ Kd. Note that since n = |V (Z)| = md and n is

odd, m and d are both odd.

We then have

X ∼= BZ = Z ×K2
∼= (W ≀Kd)×K2

∼= (W ×K2) ≀Kd.

Let Y := BW = W ×K2. Then X ∼= Y ≀Kd and Y is of even order 2m. Moreover,

as W is twin-free, it follows by Corollary 3.21 that Y is twin-free. Because X is an

arc-transitive circulant, so is Y (see [20, Remark 1.2]).

As W is a circulant of odd order m with an arc-transitive double cover Y , Lemma

6.6 implies that W is not non-trivially unstable. As it is also connected, non-bipartite

and twin-free, it is not trivially unstable either. It follows that W is stable. Then

Lemma 6.4 implies that Aut(Y )0 = Aut(Y )m, finishing the proof.

We have arrived to the main result of the subsection.

Theorem 6.8 (Fernandez-Hujdurović, [7, Theorem 1.2]). Every connected, twin-free

circulant of odd order is stable.

Proof. Let X = Cay(Zn, S) be a connected, twin-free circulant of odd order n. By

Corollary 2.27, X is non-bipartite. In particular, X is not trivially unstable.

As discussed before, we can identify BX with the circulant Cay(Z2n, S
′) with S ′ =

n+ 2S. Denote by A := Aut(BX). We consider the following cases.



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 90

Case 1. A0 is transitive on S ′.

It follows by Lemma 2.11 that BX is arc-transitive. Lemma 6.6 then implies that

X is not non-trivially unstable, so it must be stable.

Case 2. A0 is not transitive on S ′.

Let the orbits of A0 on S ′ be S1, . . . , Sk. Note that S ′ is inverse-closed and does

not contain 0. As (0, 1) ∈ Zn × Z2 is identified with n ∈ Z2n, it also follows that S ′

does not contain n, since S does not contain 0.

Because S ′ is the union of S1, . . . , Sk, it follows that none of the sets Si contain

0 nor n. Observe that each Si is inverse-closed, since the inversion map x 7→ −x on

Z2n lies in A0. This shows that |Si| is even for all i ∈ {1, . . . , k}. As all elements in

S ′ are odd, they are of even order in Z2n, so |⟨Si⟩| is even and ⟨Si⟩ contains n (the

unique element of order 2 in Z2n). We define Xi := Cay(⟨Si⟩, Si). Then each Xi is a

connected circulant graph of even valency and even order not divisible by 4. Each Xi

is a subgraph of BX, so they are all bipartite.

Because each Si is an orbit of A0, it is invariant under all elements of A0. It follows

by Lemma 6.5 that every element of A0 induces an automorphism of Xi fixing 0, that

is, A0 ≤ Aut(Xi)0 ≤ Aut(Xi) for all i ∈ {1, . . . , k}. This also shows that Aut(Xi)0 is

transitive on Si, so by Lemma 2.11, we conclude that each Xi is arc-transitive.

We can now apply Lemma 6.7 to each Xi.

Subcase 2.1. There exists an i ∈ {1, . . . , k} such that Aut(Xi)0 = Aut(Xi)n.

As A0 ≤ Aut(Xi)0 = Aut(Xi)n, it follows that if α ∈ Aut(BX) fixes 0, then it must

also fix n. We conclude that A0 = An. Hence, X is stable by Lemma 6.4.

Subcase 2.2. For every i ∈ {1, . . . , k}, it holds that Aut(Xi)0 ̸= Aut(Xi)n.

In this case, each Xi must satisfy the condition (2) of Lemma 6.7. In particular,

for each i ∈ {1, . . . , k} we can find a twin-free, arc-transitive circulant Yi of even order

satisfying the condition (1) of Lemma 6.7 such that Xi = Yi ≀Kdi .

Because Yi is twin-free, we can apply Lemma 2.45 to conclude that there exists a

subgroup Hi of ⟨Si⟩ of order di, such that

• the copies of Kdi in Xi are exactly the cosets of Hi,

• Yi is a quotient graph of X and it is isomorphic to a Cayley graph on the quotient

group ⟨Si⟩/Hi, and

• Si is a union of cosets of Hi.

Observe that the unique element of order 2 in the quotient group ⟨Si⟩/Hi is m+Hi.

Then since Yi satisfies Lemma 6.7(1), it follows that Aut(Yi)Hi
= Aut(Yi)m+Hi

. Let

α ∈ Aut(Xi). If α fixes 0, it must also fix the coset Hi. Therefore, α induces an
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automorphism of Yi that fixes the vertex Hi. It follows that α also fixes the coset

m+Hi.

Define d := gcd(d1, . . . , dk). Then H =
⋂k

i=1Hi is of order d.

Subsubcase 2.2.1. d > 1

As Si is a union of cosets of Hi, it is also a union of cosets of H. It follows that

S ′ =
⋃k

i=1 Si is a union of cosets of a non-trivial group H. In particular, by Lemma

2.45(2), BX is not twin-free. By Corollary 3.21, it follows that X is not twin-free, a

contradiction.

Subsubcase 2.2.2. d = 1

It follows that H = {0}. Since every element of A0 fixes m + Hi, it must also fix

their intersection
k⋂

i=1

(m+Hi) = m+
k⋂

i=1

Hi = {m}.

It follows by Lemma 6.4 that X is stable. This finishes the proof.

6.3 CAYLEY GRAPHS OF ABELIAN GROUPS OF ODD

ORDER

The following elementary lemma on isomorphisms between Cayley graphs of abelian

groups will be the main ingredient of the proof of one of the main results of this

subsections, namely Theorem 6.11. It also has some interesting corollaries that we will

consider in Chapter 7.

Lemma 6.9 (Morris, [23, Lemma 2.2], [13, Lemma 4.2]). Let m ∈ Z+, and let X1 =

Cay(G1, S1) and X2 = Cay(G2, S2) be Cayley graphs, such that

1. G1 and G2 are abelian groups (written additively), and

2. for j ∈ {1, 2}, we have ms ̸= mt for all s, t ∈ Sj, such that s ̸= t.

If φ is any isomorphism from X1 to X2, then φ is also an isomorphism of graphs

Cay(G1,mS1) and Cay(G2,mS2), where mSj = {ms | s ∈ Sj }.

Proof. Write m = p1p2 . . . pr as a product of primes. Define mi := p1 . . . pi with 0 ≤
i ≤ r. We will prove by induction on i that φ is an isomorphism from Cay(G1,miS1)

to Cay(G2,miS2).

As m0 = 1 and m0Sj = Sj for j ∈ {1, 2}, the claim holds by assumption.

Given x, y ∈ Gj, let Wi(x, y) be the set of all walks of length pi from x to y in

Cay(Gj,mi−1Sj). We will define #i(x, y) to be the number of such walks, that is,

#i(x, y) = |Wi(x, y)|.
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As every edge of a Cayley graph is induced by an element of its connection set,

it follows that the elements of Wi(x, y) can be identified with pi-tuples (s1, . . . , spi) of

elements si ∈ mi−1Sj satisfying s1+. . .+spi = y−x. However, since Gj is abelian, cyclic

rotations of the entries of such a pi-tuple do not affect the total sum. In particular,

any cyclic rotation of (s1, . . . , spi) also corresponds to a walk of length pi from x to y

in Cay(Gj,mi−1Sj).

It follows that the cyclic group Zp
∼= ⟨(1, 2, . . . , pi)⟩ ∈ Spi has an action on Wi(x, y),

understood as the set of pi-tuples, by permuting the indices of the entries of pi-tuples.

Given t ∈ Wi(x, y), it follows by Lemma 2.6 that p = |Zp| = |tZp||(Zp)t|.
In particular, the orbit of t has size p, unless t is fixed by every cyclic permutation

in Zp. In this case, t = (s, . . . , s) for some s ∈ mi−1Sj and y = x + pis. Note

that since s ∈ mi−1Sj, then pis ∈ pimi−1Sj = miSj and x and y are adjacent in

Cay(Gj,miSj). Moreover, note that if s′ ∈ miSj had the same property, it would

follow that pis = pis
′ = y − x and consequently, ms = ms′. This contradicts our

second assumption, unless s = s′.

Hence, we have proven that Wi(x, y) contains an element whose orbit is of size 1

if and only if {x, y} ∈ E(Cay(Gj,miSj)). Moreover, if such an element exists, it is

unique. It follows that

#i(x, y) ̸≡ 0 (mod pi) ⇐⇒ {x, y} ∈ E(Cay(Gj,miSj)).

By the inductive hypothesis, it holds that φ is an isomorphism of Cay(G1,mi−1S1)

and Cay(G2,mi−1S2). Then φ maps the elements of Wi(x, y) onto the elements of

Wi(φ(x), φ(y)). As φ is bijective, we get that it also preserves the value of the function

#i(·, ·) i.e., we have that

#i(φ(x), φ(y)) = #i(x, y),∀x, y ∈ G1.

Putting everything together, we obtain that

{φ(x), φ(y)} ∈ E(Cay(G2,miS2)) ⇐⇒ #i(φ(x), φ(y)) ̸≡ 0 (mod pi)

⇐⇒ #i(x, y) ̸≡ 0 (mod pi)

⇐⇒ {x, y} ∈ E(Cay(G1,miS1)).

Hence, φ is an isomorphism between Cay(G1,miS1) and Cay(G2,miS2), proving

the desired.

Lemma 6.10 (Hujdurović-Mitrović-Morris [13, Corrolary 4.3]). Let X = Cay(Zn, S)

be a circulant graph of even order, let φ be an automorphism of BX, and let

S ′ = { s ∈ S | s+ (n/2) /∈ S }.

Then φ is an automorphism of Cay(Zn × Z2, 2S
′ × {0}).
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Proof. We apply a similar idea to that used in the proof of Lemma 6.9. Note that by

Lemma 3.13, we know that

BX = B Cay(Zn, S) = Cay(Zn × Z2, S × {1}).

For x, y ∈ V (BX), let #(x, y) be the number of walks of length 2 from x to y in

BX. These walks are in one-to-one correspondence with the elements of

Wx,y := { (s1, s2) ∈ S × S | (s1, 1) + (s2, 1) = y − x },

so

#(x, y) = |Wx,y|.

Since Zn × Z2 is abelian, the map π : (s1, s2) 7→ (s2, s1) is a permutation of W . Let

Fx,y := { (s, s) | s ∈ S, 2(s, 1) = y − x }

be the set of fixed points of π in its action on Wx,y.

Since the cardinality of every orbit of π is either 1 or 2, we see that

|Wx,y| ≡ |Fx,y| (mod 2).

We claim that |Fx,y| is either 0, 1, or 2. (So |Fx,y| is odd if and only if |Fx,y| = 1.)

To see this, suppose (s, s) and (t, t) are two different elements of Fx,y. This means

that s ̸= t and 2(s, 1) = y − x = 2(t, 1), so 2s = 2t. Then t − s must be an element

of order 2, so t = s + n/2 (because n/2 is the only element of order 2 in Zn). This

completes the proof of the claim. Furthermore, the argument establishes that

|Fx,y| = 1 ⇐⇒ y − x ∈ 2(S ′ × {1}).

So

|Fx,y| is odd ⇐⇒ y − x ∈ 2(S ′ × {1}).

Combining the above facts implies that

#(x, y) is odd ⇐⇒ x− y ∈ 2(S ′ × {1}).

Since every automorphism of BX must preserve the value of #(x, y), and 2(S ′ ×
{1}) = 2S ′ ×{0}, this implies that every automorphism of BX is an automorphism of

Cay
(
Zn × Z2, 2S

′ × {0}
)
.

Theorem 6.11 (Morris, [23, Theorem 1.1]). Every connected, twin-free Cayley graph

of an abelian group of odd order is stable.



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 94

Proof. Let G be an abelian group of odd order. Let X = Cay(G,S) be a Cayley graph

of the group G. Assume that X is connected and twin-free.

As X is of odd order |G|, it follows by Corollary 2.27 that it is non-bipartite.

By Lemma 3.13, we know that

BX = Cay(G× Z2, S × {1}).

As X is connected and non-bipartite, Lemma 3.2(1) implies that BX is connected.

Then Lemma 2.13 shows that automorphisms of BX either preserves or reverses the

colour classes G×{i}, i ∈ {0, 1} of BX. Hence, if we let φ ∈ Aut(BX), after potentially

multiplying φ by τ from Aut(X) × S2, we may assume that φ(x, i) ∈ G × {i} for all

x ∈ G, i ∈ {0, 1}.
Let now m := |G| + 1. Then m is even and m ≡ 1 (mod |G|). It follows that

m(s, 1) = (s, 0), so in particular m(s, 1) ̸= m(t, 1) for s, t ∈ S, s ̸= t. We can now apply

Lemma 6.9 with G1 = G2 = G and S1 = S2 = S, to conclude that

φ ∈ Aut(Cay(G× Z2,m(S × {1}))) = Aut(Cay(G× Z2, S × {0})).

Note that the graph Cay(G×Z2, S×{0}) consists of two disjoint copies of X with

vertex set G×{0} and G×{1}. As φ(G×{i}) = G×{i}, we conclude that φ restricts

to automorphisms of these copies of X. By multiplying φ by the inverse of the lift

of the automorphism induced on the copy of X with the vertex set G × {0}, we can

assume φ(v) = v for all v ∈ G× {0}.
Let x ∈ G be arbitrary and let y ∈ G be such that φ(x, 1) = (y, 1). We have the

following.

NX(x)× {0} = φ(NX(x)× {0})

= φ(NBX(x, 1))

= NBX(φ(x, 1))

= NBX(y, 1)

= NX(y)× {0}

(φ(v) = v for all v ∈ G× {0})

(definition of BX)

(φ ∈ Aut(BX))

(φ(x, 1) = (y, 1))

(definition of BX)

From here, we obtain that NX(x) = NX(y). However, X has been assumed to be

twin-free, meaning that the above is possible if and only if x = y. We conclude that

φ(x, 1) = (y, 1) = (x, 1) for all x ∈ V (X) and φ is the identity on V (BX).

Hence, after multiplying φ by elements of Aut(X) × S2, we obtained the identity

automorphism of BX. It follows that φ ∈ Aut(X)× S2 to begin with. In conclusion,

Aut(BX) = Aut(X)× S2, proving that X is stable.

Remark 6.12 ([23, Example 1.3]). Theorem 6.11 does not generalize to non-abelian

groups of odd order as the following example shows.
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Let G denote the non-abelian group of order 21 with presentation

G = ⟨a, x | a3 = x7 = 1, a−1xa = x2⟩.

Let X := Cay(G,S) be the Cayley graph of G with S := {a±1, x±1, (ax)±1}. As S

contains generators a and x, it generates G, so X is connected by Proposition 2.25(5).

As it is of odd order, X is non-bipartite by Corollary 2.27. Finally, MAGMA calcula-

tions show that X is twin-free, |Aut(X)| = 42 and |Aut(BX)| = 252.

It follows that X is non-trivially unstable.

Theorem 6.11 can be used to derive the automorphism group of the double cover of

an arbitrary Cayley graph of an abelian group of odd order. To achieve this we need

the already mentioned wreath product of groups, denoted by H ≀K for two groups H,K

(see [3, p. 46] for more details).

Proposition 6.13 ([23, Remark 1.4], [7, Remark 1.3]). Let X be a Cayley graph on an

abelian group of odd order. Then there exist a connected, twin-free Cayley graph Y of

an abelian group of odd order and integers c, d ≥ 1 that satisfy the following conditions:

1. X is connected if and only if c = 1,

2. X is twin-free if and only if d = 1,

3. X ∼= Kc ≀ (Y ≀Kd),

4. BX ∼= Kc ≀ (BY ≀Kd).

Moreover, it holds that

Aut(BX) ∼= Sc ≀ ((Aut(Y )× S2) ≀ Sd).

Proof. Let X = Cay(G,S) be a Cayley graph on an abelian group G of odd order.

Let X have c ≥ 1 connected components. By definition, X is connected if and only

if c = 1, so (1) is satisfied. As X is vertex-transitive by Proposition 2.25(2), all of

its connected components are isomorphic. Let X0 be the connected component of X

containing the identity of G. Then X ∼= cX0
∼= Kc ≀ X0. Moreover, X0 is the graph

Cay(H,S) with H := ⟨S⟩. Note that the group H is abelian and of odd order.

Using the proof of Lemma 2.45, we conclude that there exists a subgroup N of H,

such that we can decompose X0 as Y ≀Kd, where Y is a connected, twin-free Cayley

graph on the quotient group H/N and d is the size of each equivalence class of twins

of X0. Note that then d = 1 if and only if X0 is twin-free (when this decomposition is

trivial), which is equivalent to X being twin-free, so the condition (2) is satisfied.

Since H is an abelian group of odd order, the group H/N is also an abelian group

of odd order.
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Hence, we have the following decomposition of X.

X ∼= Kc ≀ (Y ≀Kd).

Here, Y is a connected, twin-free Cayley graph on an abelian group of odd order.

Hence, (3) holds.

From here, we obtain (4) by a direct computation.

BX = X ×K2
∼= Kc ≀ ((Y ×K2) ≀Kd) = Kc ≀ (BY ≀Kd).

Note that Y is stable by Theorem 6.11, so Aut(BY ) ∼= Aut(Y ) × S2. By a well-

known theorem of Sabidussi [28] on the automorphism group of the wreath product of

graphs, we obtain that

AutBX ∼= Sc ≀ ((AutBY ) ≀ Sd) ∼= Sc ≀ ((Aut(Y )× S2) ≀ Sd).

This finishes the proof.

The following well known theorem describes the automorphism group of a direct

product of two non-bipartite graphs satisfying mild regularity conditions.

Theorem 6.14 (Dörfler [10, Theorem 8.18, p. 103]). Let X and Y be connected, non-

bipartite, twin-free graphs of relatively prime orders. Then

Aut(X × Y ) = AutX × AutY.

The case when at least one of the factors is bipartite is much more complicated.

However, Theorem 6.11 can be used to calculate the automorphism group of this type

of a direct product in the case of Cayley graphs.

Using the facts on Cartesian skeletons listed in Lemma 2.51, we first prove a general

lemma about automorphism groups of direct products of graphs, where exactly one of

the factors is bipartite.

Proposition 6.15 (Morris [23, Proposition 5.6]). Let X and Y be twin-free, connected

graphs that have at least one edge, such that:

1. X is not bipartite,

2. Y is bipartite, with bipartition V (Y ) = Y0 ∪ Y1, such that

(a) |Y0| and |Y1| are relatively prime to |V (X)|, and

(b) either Y has an automorphism that interchanges Y0 and Y1, or |Y0| ̸= |Y1|,
and

3. AutBX = AutX × S2 (that is, X is stable).



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 97

Then Aut(X × Y ) = AutX × AutY .

Proof. Let φ ∈ Aut(X × Y ). As Aut(X)× Aut(Y ) ≤ Aut(X × Y ), it suffices to show

that φ ∈ Aut(X)× Aut(Y ).

As both X and Y are connected, we can apply statements from Lemma 2.51. As Y

is bipartite, Lemma 2.51(5) implies that S(Y ) has two connected components C0 and

C1 such that V (Ci) = Yi for i ∈ {0, 1}.
By Lemma 2.51(1), it follows that φ ∈ Aut(S(X × Y )). Lemma 2.51(2) implies

that S(X × Y ) = S(X)□S(Y ). Putting everything together, we conclude that

φ ∈ Aut(S(X × Y )) = Aut(S(X)□S(Y )) = Aut(S(X)□(C0 ∪ C1)).

Note that S(X) is connected by Lemma 2.51(4) as X is non-bipartite. It follows

that connected components of S(X)□S(Y )) = S(X)□(C0 ∪C1) are exactly S(X)□Ci

for i ∈ {0, 1}.
If |V (C0)| = |Y0| ̸= |Y1| = |V (C1)|, then components S(X)□C0 and S(X)□C1

are of different orders. If |Y0| = |Y1|, then by (2b), Y has an automorphism that

interchanges C0 and C1. This induces an automorphism of X×Y that swaps S(X)□C0

and S(X)□C1.

In either case, we can assume that φ fixes S(X)□Ci set-wise for i ∈ {0, 1}. Hence,
φ restricts to an automorphism φi of S(X)□Ci (for i ∈ {0, 1}).

Assumption (2a) and the fact that |V (S(X))| = |V (X)| allow us to apply Lemma

2.51(3) to conclude that for i ∈ {0, 1}

Aut(S(X)□Ci) = Aut(S(X))× Aut(Ci).

From here, we obtain that for i ∈ {0, 1} there exist αi ∈ Sym(V (X)) and βi ∈
Sym(Yi) such that

φ(x, y) = φi(x, y) = (αi(x), βi(y)), x ∈ V (X), y ∈ Yi.

By assumption, Y has at least one edge so there exist yi ∈ Yi for i ∈ {0, 1} such

that {y0, y1} ∈ E(Y ).

Let x0, x1 ∈ V (X). Then

{x0, x1} ∈ E(X) =⇒ {(x0, y0), (x1, y1)} ∈ E(X × Y )

=⇒ {φ(x0, y0), φ(x1, y1)} ∈ E(X × Y )

=⇒ {(α0(x0), β0(y0)), (α1(x1), β1(y1))} ∈ E(X × Y )

=⇒ {α0(x0), α1(x1)} ∈ E(X).

(6.1)

Conversely, assume that {α0(x0), α1(x1)} ∈ E(X). Let n be the least common

multiple of orders of α0 and α1 as permutations of V (X). Applying Eq. (6.1) n − 1

times to the edge {α0(x0), α1(x1)} ∈ E(X), we obtain that

{x0, x1} = {αn
0 (x0), α

n
1 (x1)} ∈ E(X).
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In particular, we have shown that

{x0, x1} ∈ E(X) ⇐⇒ {α0(x0), α1(x1)} ∈ E(X).

As X is connected, non-bipartite and stable (by assumption (3)), it follows from

Lemma 3.9 that α0 = α1 = α. Note that then α ∈ Aut(X).

As X also contains an edge, we can apply an analogous argument to Y . It follows

that β1 = β2 = β ∈ Aut(Y ). In particular, φ = (α, β) ∈ Aut(X) × Aut(Y ), as

desired.

We can now derive the following result for the case when one of the factors of the

direct product is a Cayley graph of a finite abelian group of odd order.

Corollary 6.16 (Morris [23, Corollary 1.5]). Let X be a twin-free, connected Cayley

graph on a finite abelian group of odd order, and let Y be any twin-free, connected

graph, such that either:

1. Y is not bipartite, and |V (Y )| is relatively prime to |V (X)|, or

2. Y is bipartite, with bipartition V (Y ) = Y0 ∪ Y1 , such that

(a) |Y0| and |Y1| are relatively prime to |V (X)|, and

(b) either |Y0| = |Y1|, or Y has an automorphism that interchanges Y0 and Y1.

Also assume that neither X nor Y is the one-vertex trivial graph. Then

Aut(X × Y ) = AutX × AutY.

Proof. Note that since neitherX nor Y are trivial, but both are connected, each of them

contains at least one edge. Moreover, Corollary 2.27 implies that X is non-bipartite.

(1) In this case, the conclusion follows by Theorem 6.14.

(2) Theorem 6.11 implies that X is stable. The conclusion follows by Proposition

6.15.

Corollary 6.16 has an even nicer form when both factors are Cayley graphs of

abelian groups.

Corollary 6.17 (Morris [23, Corollary 1.6]). Let X and Y be twin-free, connected

Cayley graphs on abelian groups, such that |V (X)| is relatively prime to |V (Y )|. Also

assume that neither X nor Y is the one-vertex trivial graph. Then

Aut(X × Y ) = AutX × AutY.
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Proof. As |V (X)| and |V (Y )| are relatively prime, at least one of them is odd. There-

fore, after possibly interchaning X and Y , we can assume that |V (X)| is odd.
If Y is non-bipartite, we can apply Corollary 6.16(1).

We can now assume that Y is bipartite. As it is connected by assumption and

vertex-transitive (by Proposition 2.25(2)), Lemma 2.13 implies that Y0 and Y1 are

conjugate blocks for the action of Aut(Y ). In particular, we have that

• |Y0| = |Y1| = |V (Y )|/2, so the condition (2a) of Corollary 6.16 is satisfied, since

|V (X)| and |V (Y )| are assumed to be relatively prime.

• Y has an automorphism interchaning Y0 and Y1, so the condition (2b) of Corollary

6.16 is satisfied as well.

The desired conclusion now follows by Corollary 6.16(2).

6.4 CIRCULANTS OF ORDER TWICE A PRIME

Theorem 6.18 (Hujdurović-Mitrović-Morris [13, Theorem 5.1]). If p is a prime num-

ber, then every non-trivially unstable circulant graph of order 2p has Wilson type (C.4).

Proof. Let X = Cay(Z2p, S) be a non-trivially unstable, circulant graph of order n =

2p. Note that X is connected, non-bipartite and twin-free.

If p = 2, X is of order 4. As it is non-bipartite, it must contain a 3-cycle. Because it

is also connected and regular, it must be isomorphic to K4 and consequently, it is stable

by Example 4.7. As this is a contradiction, we conclude that there are no non-trivially

unstable circulants of order 4, so p is odd and n = 2p is square-free.

Let

S ′ := S \ (S + p) = {s ∈ S|s+ p ̸∈ S}.

Since X is twin-free, we know that S + p ̸= S, which means that 2S ′ is non-empty.

Case 1. 2S ′ ̸= {0}.

Since 2Z2p has order p, which is prime, every non-zero element is a generator. It fol-

lows that 2S ′ generates 2Z2p. We also know from Lemma 6.10 that every automorphism

of BX is an automorphism of

Cay
(
Z2p × Z2, 2S

′ × {0}
)
.

As ⟨2S ′ × {0}⟩ = 2Z2p × {0} is a connected component of this graph, we conclude

that it is a block for the action of AutBX. Therefore, [13, Corollary 5.6(3)] applies

and X has Wilson type (C.1) or (C.4).

Assume that X has Wilson type (C.1). Then we can find a non-zero a ∈ 2Z2p such

that a + Se = Se. As 2Z2p is of order p, the element a generates it. Note that Se is
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non-empty (otherwise, X would be bipartite), so it follows that we can find an s ∈ Se

such that 0 = ka+ s ∈ Se ⊆ S, a contradiction.

Therefore, X must have Wilson type (C.4), which is exactly what we needed to

prove.

Case 2. 2S ′ = {0}.
This means that S ′ = {p}, so p ∈ S. Since X is unstable, we may let α be an

automorphism of BX, such that α(0, 1) = (t, 1) with t ̸= 0. From [13, Corollary 4.7],

we obtain that for x ∈ Zn, |x| = |t| implies that x /∈ S. Since we already know that

p ∈ S, it follows that |t| ≠ 2. So |t| is either p or 2p. Therefore, either S does not

contain any element of order p, or S does not contain any element of order 2p.

However, since 2S ′ = {0}, we also know that s + p ∈ S for all s ∈ S \ {p}. Also

note that

|s| = p ⇐⇒ |s+ p| = 2p.

This implies that S contains an element of order p if and only if it contains an

element of order 2p.

The only possibility is that S = {p}. This contradicts the fact that the non-trivially
unstable graph X must be connected.

We can now characterize non-trivially unstable circulants of order 2p.

Corollary 6.19 (Hujdurović-Mitrović-Morris [13, Corollary 5.7]). Let X = Cay(Z2p, S)

be a circulant graph of order 2p, where p is an odd prime, and let Se = S ∩ 2Z2p. The

graph X is unstable if and only if either it is trivially unstable, or there exists m ∈ Z×
2p,

such that m2Se = Se, mSe ̸= Se, and S = Se ∪
(
(n/2) +mSe

)
.

Proof. (⇐) Assume that X is not trivially unstable. Let m ∈ Z×
2p an element satisfying

above conditions. Note that m(n/2) = (n/2) as (n/2) is the unique element of order 2

in Z2p.

(n/2) +mS = (n/2) +m
(
Se ∪

(
(n/2) +mSe

))
= (n/2) +

(
mSe ∪

(
(n/2) +m2Se

))
=
(
(n/2) +mSe)

)
∪ Se = S

It follows that X has Wilson type (C.4).

(⇒) Assume X is non-trivially unstable. We conclude from Theorem 6.18 that X

has Wilson type (C.4), so there is some m ∈ Z2p, such that S = mS + p. As both m

and p are odd, this implies that mSe + p = S \ Se = So and mSo + p = Se. This shows

that

S = Se ∪ So = Se ∪ (p+mSe).
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Moreover, as mp = p, we obtain that

m2Se = m(So + p) = mSo + p = Se.

If mSe = Se, then So = Se + p, so S = S + p, which contradicts the fact that X

is non-trivially unstable and, in particular, twin-free. Hence, mSe ̸= Se, finishing the

proof.

Corollary 6.20 (Hujdurović-Mitrović-Morris [13, Corollary 5.8]). For n ∈ Z+, there

does not exist a non-trivially unstable circulant graph of order n if and only if either

n is odd, or n < 8, or n = 2p, for some prime number p ≡ 3 (mod 4).

Proof. (⇒) If n/2 is not prime, then 2Zn
∼= Zn/2 has a non-trivial, proper subgroup A.

Choose some b ∈ 2Zn \ A, and let S = {±1} ∪ (±b + A), so Se := S ∩ 2Zn = ±b + A.

Then X = Cay(Zn, S) has Wilson type (C.1), so it is unstable.

If n/2 is prime, and n/2 ̸≡ 3 (mod 4) (and n ≥ 8), then n/2 ≡ 1 (mod 4), so there

exists m ∈ Z×
n , such that m2 = −1. Let S = {±1, n/2 ± m}, so Se := S ∩ 2Zn =

{±m + n/2} and S = mS + n/2. Then X = Cay(Zn, S) has Wilson type (C.4), so it

is unstable.

In either case, X is also connected (because 1 ∈ S) and non-bipartite (because

Se ̸= ∅). Hence, if X is not non-trivially unstable, then it must not be twin-free, so

there is a nonzero h ∈ Zn, such that h + S = S. Note that in both cases, So = {±1}
and since n > 4 and h is nonzero, it cannot happen that {±1}+ h = {±1}. It follows
that So + h = Se and Se + h = So (and h is odd).

Since So + 2h = So (and S0 = {±1}), we must have 2h = 0, which means h = n/2,

so Se = So + n/2 = {n/2± 1}.
If n/2 is not prime, then, since {n/2± 1} = Se = ±b + A, we must have ⟨2⟩ ⊆ A.

Since n > 4, this implies |b+ A| = |A| ≥ n/2 > 2, which is a contradiction.

If n/2 is prime, we must have m = ±1 (since Se = {n/2 ±m}, which contradicts

the fact that m2 = −1.

(⇐) We prove the contrapositive: supposing there does exist a non-trivially unstable

circulant graph of order n, we will show that n is odd, that n ≥ 8, and that n/2 is not

a prime number that is congruent to 3 (mod 4).

The fact that n is odd is immediate from Theorem 6.8. Also, it is easy to see, by

inspection, that there are no non-trivially unstable circulant graphs of order 2 or 4; so

n ≥ 6.

Now suppose X = Cay(Z2p, S) is a non-trivially unstable circulant graph of or-

der 2p, where p is prime, and p ≡ 3 (mod 4). (This includes the case where n = 6.)

We will show that this leads to a contradiction. By Theorem 6.18, we know that X

has Wilson type (C.4), so there is some m ∈ Z×
2p, such that S = mS + n/2. Write

m = mom2, where mo has odd order (as an element of the group Z×
2p), and the order of



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 102

m2 is a power of 2. Since Z×
2p is cyclic of order p−1 ≡ 2 (mod 4), there are no elements

of order 4 in Z×
2p, so m2 ∈ {±1}. Since S = −S, this implies S = m2S, so we conclude

that S = moS + n/2. After repeatedly multiplying both sides of this equation by mo,

we see that S = mk
oS+n/2 for any odd number k, including k = |mo|. Hence, we have

S = S + n/2. This contradicts the fact that X is twin-free.

6.5 ARC-TRANSITIVE CIRCULANTS

We start with the following lemma that will be needed for the proof of the main result

of this subsection (see Theorem 6.22), but it is an interesting result on its own.

Lemma 6.21 (Qin-Xia-Zhou [26, Lemma 4.3]). Let X be a graph of order m. Let d > 2

such that gcd(m, d) = 1. If X × Kd is non-trivially unstable, then X is non-trivially

unstable.

Proof. Let Y := X×Kd. As Y is non-trivially unstable, it follows that it is connected,

non-bipartite and twin-free. As Y is connected, X must be connected. As Y is non-

bipartite, it contains an odd cycle. The definition of the direct product (see Definition

2.16(1)) then implies that this produces an odd cycle in X, so X is non-bipartite. As

both Y and Kd are twin-free, Lemma 2.43 implies that X is also twin-free.

As Y is connected, non-bipartite and unstable, Lemma 3.9 implies that there exist

two distinct permutations α, β ∈ Sym(V (Y )) such that {y1, y2} ∈ E(Y ) if and only

if {α(y1), β(y2)} ∈ E(Y ). It follows by Lemma 2.52(3) that α, β ∈ Aut(S(Y )). Note

that as d > 2, it follows that B(Kd) = Kd, because every two distinct vertices have a

common neighbour. Moreover, no edge ofKd is dispensable and S(Kd) = Kd. Applying

Lemma 2.51(2) we conclude that

S(Y ) = S(X ×Kd) ∼= S(X)□S(Kd) = S(X)□Kd.

As X is connected and non-bipartite, Lemma 2.51(4) implies that S(X) is con-

nected. Note that

gcd(|V (S(X))|, d) = gcd(|V (X)|, d) = gcd(m, d) = 1.

We can then apply Lemma 2.51(3) to obtain that

Aut(S(Y )) = Aut(S(X)□Kd) ∼= Aut(S(X))× Aut(Kd).

Consequently, since α, β ∈ Aut(S(Y )), we can find α1, β1 ∈ Sym(V (X)) and

α2, β2 ∈ Sym(V (Kd)) such that α = (α1, α2) and β = (β1, β2).
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Let x, x′ ∈ V (X). As d ≥ 3, we can find distinct i, j ∈ V (Kd). Then {i, j} ∈ E(Kd).

We have the following.

{x, x′} ∈ E(X) =⇒ {(x, i), (x′, j)} ∈ E(X ×Kd) = E(Y )

=⇒ {α(x, i), β(x′, j)} ∈ E(Y )

=⇒ {(α1(x), α2(i)), (β1(x
′), β2(j)} ∈ E(Y )

=⇒ {α1(x), β1(x
′)} ∈ E(X).

As d ≥ 3, we can always find i, j ∈ V (Kd) such that α2(i) ̸= β2(j). Then

{α2(i), β2(j)} ∈ E(Kd) and we have the following

{α1(x), β1(x
′)} ∈ E(X) =⇒ {(α1(x), α2(i)), (β1(x

′), β2(j))} ∈ E(Y )

=⇒ {α(x, i), β(x′, j)} ∈ E(Y )

=⇒ {(x, i), (x′, j)} ∈ E(Y )

=⇒ {x, x′} ∈ E(X).

Therefore, we have proven that

{x, x′} ∈ E(X) ⇐⇒ {α1(x), β1(x
′)} ∈ E(X). (6.2)

Note that X is not K1 (as the assumptions would then imply that X ×Kd
∼= Kd

is unstable with d ≥ 3, a contradiction with Example 4.7). Therefore, X has at least

two vertices and as it is connected, it must contain an edge. Fixing {x, x′} ∈ E(X),

lets us repeat the previous argument for i, j ∈ V (Kd). We conclude that

{i, j} ∈ E(Kd) ⇐⇒ {α2(i), β2(j)} ∈ E(Kd). (6.3)

If α2 ̸= β2, then Eq. (6.3) and Lemma 3.9 would imply that Kd is unstable. As

d ≥ 3, this is a contradiction with Example 4.7. It follows that α2 = β2. As α ̸= β by

assumption, it must hold that α1 ̸= β1. Then Eq. (6.2) and Lemma 3.9 imply that X

is unstable.

As we have already shown that X is connected, non-bipartite and twin-free, we

conclude that it is non-trivially unstable, as desired.

We are now ready to prove the main result of this subsection. The main ingredient

of this proof is the Theorem 2.35 that classifies arc-transitive circulants.

Theorem 6.22 (Qin-Xia-Zhou [26, Theorem 1.6]). There is no arc-transitive non-

trivially unstable circulant. In other words, a connected arc-transitive circulant is stable

if and only if it is non-bipartite and twin-free.

Proof. Let X = Cay(Zn, S) be a connected circulant graph.
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(⇒) Assume that X is stable. Then it must be non-bipartite by Proposition 3.16

and twin-free by Proposition 3.20.

(⇐) Suppose that X is arc-transitive and non-trivially unstable and choose is it so

it is a circulant of minimal possible order with these properties. Then it is connected,

non-bipartite and twin-free. As it is arc-transitive, Theorem 2.35 implies that we have

the following cases.

Case 1. X is complete.

By Example 4.7, the only unstable graph among the complete graphs is K2, hence

X ∼= K2. This is a contradiction with X being non-bipartite.

Case 2. X ∼= Y ≀Kd where n = md, d > 1 and Y is a connected arc-transitive circulant

of order m.

As d > 2, Lemma 2.44 implies that X is not twin-free, a contradiction.

Case 3. X ∼= Y ≀dKd
∼= Y ≀Kd − dY , where n = md, d > 3, gcd(m, d) = 1 and Y is a

connected arc-transitive circulant of order m.

By Lemma 2.20, X ∼= Y ≀d Kd
∼= Y ×Kd. Then as X is non-trivially unstable and

d ≥ 4, Lemma 6.21 implies that Y is also non-trivially unstable. However, then Y is a

non-trivially unstable, arc-transitive circulant of order strictly smaller than X, which

is a contradiction with minimality of X.

Case 4. X is a normal Cayley graph.

As X is normal, Proposition 2.31(3) implies that Aut(X)0 = Aut(Zn, S). Moreover,

as X is also arc-transitive, it follows by Lemma 2.11 that this group is transitive on S.

Subcase 4.1. n is even.

Every automorphism of Zn is given by multiplication by an integer coprime to n.

As n is even, all of them are odd. If S contained only even integers, ⟨S⟩ ≤ 2Zn would

be a proper subgroup of Zn. By Proposition 2.25(5), this is a contradiction with X

being connected. Hence, S contains an odd integer. But then all elements of S are odd

by transitivity of Aut(Zn, S) on S. It follows that X is bipartite (with bipartition sets

2Zn and 1 + 2Zn), a contradiction.

Subcase 4.2. n is odd.

As X is arc-transitive, it follows by Corollary 3.6(3) that BX is also arc-transitive.

As X is a circulant, by applying Lemma 3.2(1) we obtain that

BX = B Cay(Zn, S) = Cay(Zn × Z2, S × {1}).

Moreover, as n is odd, there is a group isomorphism Zn ×Z2
∼= Z2n. From here, we

conclude that BX is isomorphic to a circulant of order 2n.

In conclusion, BX is an arc-transitive circulant, so Theorem 2.35 applies.

Subsubcase 4.2.1. BX is complete.
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As BX is bipartite and of even order, it follows that BX ∼= K2. But then 2n =

|V (BX)| = 2 and therefore, n = 1, so X ∼= K1. This is a contradiction with X being

unstable (see Example 4.7).

Subsubcase 4.2.2. BX is normal.

In this case, Lemma 4.11 implies that X is stable, a contradiction.

Subsubcase 4.2.3. BX ∼= Y ≀ Kd with 2n = md, d > 1 and Y is a connected arc-

transitive circulant of order m.

It follows by Lemma 2.44 that BX is not twin-free. However, then Corollary 3.21

implies that X is not twin-free, a contradiction.

Subsubcase 4.2.4. BX ∼= Y ≀Kd−dY ∼= Y ≀dKd, where 2n = md, d > 3, gcd(m, d) = 1

and Y is a connected arc-transitive circulant of order m.

By Lemma 2.20, we know that BX ∼= Y ×Kd. As BX is bipartite and Kd is not

(note that d > 3), it follows that Y has to be bipartite. As Y is a circulant (so in

particular, a Cayley graph), Corollary 2.27 implies that m = |V (Y )| is even.
Write Y = Cay(Zm, S1) and Kd = Cay(Zd, S2) with S2 = Zd \ {0}. Generalizing

Lemma 3.13, we get that

BX = Y ×Kd = Cay(Zm, S1)× Cay(Zd, S2) = Cay(Zm × Zd, S1 × S2). (6.4)

As n is odd, it is easy to check that the map (x, y) 7→ (1 − n)x + ny is a group

isomorphism between Zn ×Z2 and Z2n. Moreover, as 2n = md and gcd(m, d) = 1, the

map t 7→ (t (mod m), t (mod d)) is a group isomorphism between Z2n and Zm × Zd.

By composing these two maps, we obtain the following group isomorphism.

φ : Zn × Z2 → Zm × Zd

(x, y) 7→ ((1− n)x+ ny (mod m), x (mod d))

We have used the fact that d = 2n
m

divides n to simplify the second coordinate,

which follows from the fact that m is even.

The group isomorphism φ induces a graph isomorphism.

BX = Cay(Zn × Z2, S × {1}) ∼= Cay(Zm × Zd, φ(S × {1})). (6.5)

It then follow from Eq. (6.4) and Eq. (6.4) that

BX ∼= Cay(Zm × Zd, S1 × S2) ∼= Cay(Zm × Zd, φ(S × {1})).

As BX is an arc-transitive circulant, it has the Cayley Isomorphism property by

a result from [19, Defn. 3.1]. This means that we can find a group automorphism

σ = (σ1, σ2) ∈ Aut(Zm × Zd) ∼= Aut(Zm)× Aut(Zd) such that

φ(S × {1}) = σ(S1 × S2) = σ1(S1)× σ2(S2) = σ1(S1)× S2. (6.6)
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In the last step, we have used the fact that every automorphism of Zd fixes 0 and

consequently preserves S2 = Zd \ {0}.
Define

T := {t (mod m/2) | t ∈ σ1(S1)} ⊆ Zm/2.

As m is even, we can write n = md
2

= m
2
d. Moreover, gcd(m, d) = 1 implies that

gcd(m/2, d) = 1, so we have another group isomorphism

ψ : Zn → Zm/2 × Zd

x 7→ (x (mod m/2), x (mod d))

Let s ∈ S. Then Eq. (6.6) implies that

((1− n)s+ n (mod m), s (mod d)) = φ(s, 1) ∈ φ(S, 1) = σ1(S1)× S2.

We conclude that (1−n)s+n ∈ σ1(S1). Because m/2 divides n, the first coordinate

of ψ(s), which is s (modm/2), can be rewritten as (1−n)s+n (mod n/2). We conclude

that (1− n)s+ n ∈ T and obtain that

ψ(s) = ((1− n)s+ n (mod m/2), s (mod d)) ∈ T × S2.

It follows that ψ(S) ⊆ T × S2. As φ and ψ are isomorphisms and T ⊆ σ1(S1), we

also conclude that

|ψ(S)| = |S| = |S × {1}| = |φ(S × {1})| = |σ(S1)× S2| = |σ1(S1)||S2| ≥ |T ||S2|.

In particular, ψ(S) = T × S2. As S is inverse-closed and ψ is group isomorphism,

this shows that T × S2 = T × (Zd \ {0}) is inverse-closed. Finally, note that as m is

even and by assumptions d > 3 and gcd(m, d) = 1, it follows that d ≥ 5.

We can now apply Lemma 2.33 with H = Zm/2, K = Zd and T ⊂ H to conclude

that Cay(Zm/2×Zd, T × (Zd \ {0}) = Cay(Zm/2×Zd, T ×S2) is non-normal. However,

as ψ(S) = T × S2, this graph is isomorphic to X via the graph isomorphism induced

by ψ. We conclude that X is non-normal, a contradiction.

Remark 6.23 (Qin-Xia-Zhou [26, Remark 4.4]). Theorem 6.22 fails for Cayley graphs

of general abelian groups. Calculations in MAGMA prove that the following graph is

arc-transitive and non-trivially unstable.

Cay(Z4 × Z4, {±(1, 3),±(0, 1), (0, 2), (2, 2)}).
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7 UNSTABLE CIRCULANTS OF LOW

VALENCY

In [12], Hujdurović, Mitrović and Morris showed that every non-trivially unstable cir-

culant graph of valency at most 7 has a Wilson type. Moreover, for each valency, an

explicit list of non-trivially unstable circulants, along with their Wilson types, has been

derived. These classifications are discussed in Section 7.2.

The main corollary of these classifications is the following result.

Theorem 7.1 (Hujdurović-Mitrović-Morris [12, Theorem 1.9]). Every non-trivially

unstable circulant graph of valency at most 7 has Wilson type (C.1), (C.2′), (C.3′),

or (C.4).

7.1 MAIN IDEAS AND METHODS

We will start by stating some technical lemmas that were intensively used in the proof

of the classifications.

Recall the definition of an s-edge (see Definition 4.31). The first result we will

discuss is a particular case of Lemma 4.32, when the graph X is a circulant (so G = Zn

for some n ∈ N) and S0 ⊆ S.

Let X = Cay(Zn, S) be a circulant graph. The idea is that we look at proper, non-

empty inverse-closed subsets of the connection set S and the subgraphs of X that these

sets induce. Suppose we are able to find a subset S0 ⊆ S, such that every automorphism

α ∈ Aut(BX) maps S0-edges to S0-edges. Note that then its complement in S i.e., the

set S1 := S \ S0 has the same property. This allows us to define two subgraphs of X

X0 = Cay(Zn, S0) and X1 = Cay(Zn, S1).

Hence, we have split X into X1 and X2. Note that X1 and X2 are circulants and

that E(X) is a disjoint union of E(X0) and E(X1). Similarly, BX1 and BX2 are

subgraphs of BX and E(BX) is a disjoint union of E(BX1) and E(BX2).

The crucial property of X0 and X1 is that for i ∈ {0, 1}, it holds that

α ∈ Aut(BX) =⇒ α ∈ Aut(BXi),∀α ∈ Aut(BX).

Therefore, by studying properties of BXi and in particular, stability of Xi and its

connected components, we are able to derive conclusions about stability of X, as the
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following results will show. Two particularly nice cases are when X is of odd valency

and S0 can be taken to be {n/2} and when X0 or X1 turn out to have a connected

component that is a stable graph (see Corollary 7.2 for details).

One of the advantages of this approach is that the obtained circulant graphs X1

and X2 are of lower valency than X and have fewer edges. Often, they are easier to

study. Moreover, results on circulants of valency lower than X become available.

Corollary 7.2 (Hujdurović-Mitrović-Morris [12, Lemma 3.4]). Let n be a positive in-

teger and X = Cay(Zn, S) a connected, non-bipartite circulant graph of order n. Let S0

be a non-empty subset of Zn \ {0} such that S0 = −S0. If every automorphism of BX

maps S0-edges to S0-edges, and some (or, equivalently, every) connected component of

Cay(Zn, S0) is a stable graph, then X is stable.

The two following results are an extension of this idea.

Lemma 7.3 (Hujdurović-Mitrović-Morris [12, Lemma 3.6]). Let X := Cay (Zn, S) be

a circulant graph of even order and odd valency. Let S0 ⊆ S be non-empty such that

n/2 ∈ ⟨S0⟩. Assume that the set of S0-edges is invariant under the elements of AutBX

(and S0 = −S0). If some (equivalently every) connected component X ′
0 of Cay(Zn, S0)

is non bipartite and has the property that BX ′
0 is normal, then X is stable.

Proof. We can take X ′
0 to be the connected component of Cay(Zn, S0) containing 0.

Then X ′
0 = Cay(⟨S0⟩, S0) and all other connected components of Cay(Zn, S0) are iso-

morphic to X ′
0. Because X is of odd valency, we know n/2 ∈ S. By assumption

n/2 ∈ ⟨S0⟩, so n/2 is a vertex of X ′
0. As X ′

0 is connected and assumed to be non-

bipartite, BX ′
0 is connected.

Let α ∈ Aut(BX)(0,0). Then by our assumptions, α ∈ Aut(BX0). Because α

fixes (0, 0), it also fixes the connected component of BX0 containing it, which is BX ′
0.

As BX ′
0 is normal, by Proposition 2.31(3), the restriction of α onto BX ′

0 is a group

automorphism of ⟨S0⟩ × Z2.

Note that as (0, 1), (n/2, 0), (n/2, 1) are the only elements of order 2 in ⟨S0⟩×Z2, it

follows that α must permute them among themselves. As α fixes the colours of BX ′
0,

it follows that α fixes (n/2, 0) because this is the unique element of order 2 in the set

⟨S0⟩ × 0. By definition, 0 /∈ S and the only element of order 2 in the connection set of

BX, which is S × {1}, is (n/2, 1). Since α fixes NBX(0, 0) = S × {1} set-wise, it must

hold that α fixes (n/2, 1) and consequently, it also fixes (0, 1). It follows by Lemma

4.5 that X is stable.

Corollary 7.4 (Hujdurović-Mitrović-Morris [12, Corollary 4.5]). Let X = Cay(Zn, S)

be a circulant graph of even order and odd valency, and let S0 ⊆ S with |S0| = 4. Let

X0 := Cay(Zn, S0) and let X ′
0 be a connected component of X0. Assume that the set of

S0-edges is invariant under Aut(BX). If either
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1. |V (X ′
0)| is odd, or

2. X0 is twin-free and non-bipartite,

then X is stable.

Proof. Let us first assume that |⟨S0⟩| = |V (X ′
0)| is odd. Note that then X ′

0 is twin-free,

as otherwise, because it is 4-valent, Lemma 2.46(3) would imply that X ′
0 is isomorphic

to K4,4 or Cℓ ≀K2, both of which are of even order. It follows that X ′
0 is a connected,

twin-free, circulant graph of odd order, so, by Theorem 6.8, it must be stable. It follows

by Corollary 7.2 that X is stable.

We can now assume that |V (X ′
0)| is even. In this case, assumption (2) must hold, so

X0 is twin-free and non-bipartite. As all of its connected components are isomorphic to

X ′
0, it follows that X

′
0 is twin-free and non-bipartite. In particular, X ′

0 is not trivially

unstable. If it is stable, we conclude that X is stable by Corollary 7.2. If it is not

stable, it is non-trivially unstable, and as |⟨S0⟩| = |V (X ′
0)| being even implies that

n/2 ∈ ⟨S0⟩, [12, Corollary 4.4] shows that BX ′
0 is normal. Applying Lemma 7.3, we

conclude that X is stable.

The previously described strategy is not always successful. Even if we are able

to find a subset S0 ⊆ S with the desired property, the resulting subgraphs X0 =

Cay(Zn, S0) may not provide us with enough useful information. The following result

is meant to simplify this situation. It turns out that, under appropriate assumptions,

existence of automorphisms of BX not preserving the edge type can still tell us a lot

about the connection set of X.

Lemma 7.5 (Hujdurović-Mitrović-Morris [13, Corollary 4.6], [12, Proposition 2.18]).

Let α be an automorphism of BX, where X = Cay(Zn, S) is a circulant graph, and let

s, t ∈ S. If α maps some s-edge to a t-edge, and either gcd(|s|, |t|
)
= 1, or S contains

every element that generates ⟨s⟩ (e.g., if |s| ∈ {1, 2, 3, 4, 6}), then S contains every

element that generates ⟨t⟩.

Proof. Let ℓt be a generator of ⟨t⟩, so gcd
(
ℓ, |t|

)
= 1. It suffices to find k ∈ Z+, such

that

ks ∈ S, k ≡ ℓ (mod gcd
(
|s|, |t|

)
), and gcd

(
k, |s|

)
= 1,

for then [12, Corollary 6.1] tells us that ℓt ∈ S.

If gcd(|s|, |t|
)
= 1, we may let k = 1.

Since gcd
(
ℓ, |t|

)
= 1, we know that ℓ is relatively prime to gcd

(
|s|, |t|

)
, so there is

some k ∈ Z+, such that

k ≡ ℓ (mod gcd
(
|s|, |t|

)
) and gcd

(
k, |s|

)
= 1.

(For example, we could take k to be a large prime.) If S contains every element that

generates ⟨s⟩, then ks ∈ S.
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If S contains a non-trivial element s of order 2, 3, 4 or 6 (which implies that s and

−s are the only generators of ⟨s⟩), then Lemma 7.5 shows that no automorphism of BX

can map an s-edge onto a t-edge, if ⟨t⟩ with t ∈ S has more than |S| − |s| generators.
This observation has been used several times to find subsets S0 ⊆ S to which Corollary

7.2 can be applied.

The last result we want to point out has already been introduced as Lemma 2.32 in

Section 2. It enables us to derive additional relations satisfied by the elements of the

connection set of a circulant graph in the case when the graph is not a normal Cayley

graph.

7.2 CLASSIFICATIONS OF NON-TRIVIALLY UNSTABLE

CIRCULANT GRAPHS OF VALENCY AT MOST 7

In this section, we discuss the classifications of non-trivially unstable circulants of

valency at most 7.

Proposition 7.6 (Hujdurović-Mitrović-Morris [12, Proposition 4.2]). There are no

non-trivially unstable circulant graphs of valency at most 3.

Proof. Let X be a connected, non-bipartite, twin-free circulant graph of valency d with

d ≤ 3. We consider the following cases.

• If d = 0, then X = K1 is stable by Example 4.7.

• If d = 1, it follows that X = K2, which is bipartite.

• If d = 2, X is connected and 2-regular, so it is isomorphic to a cycle. As it is also

non-bipartite, it is of odd order. At this point, both Theorem 6.8 and Example

3.10 can be used to show that X is stable.

• Assume that d = 3. Using Theorem 6.8, we can assume that X is of even order n.

Write X = Cay(Zn, S) with S = {±a, n/2}. As X is connected, ⟨a, n/2⟩ = Zn.

From here, a either generates Zn or it generates a proper subgroup 2Zn of index

2, in which case n/2 must be odd.

By applying appropriate group automorphisms of Zn, we can conclude that X

is isomorphic to Cay(Zn, {±1, n/2}) with n/2 even (otherwise, the graph is bi-

partite) or Cay(Zn, {±2, n/2}) with n/2 odd (otherwise, the graph is discon-

nected). In particular, X is isomorphic to a non-bipartite Möbius ladder or an

odd prism. In either case, |Aut(X)| = n and BX is an even prism of order 2n

with |Aut(BX)| = 4n.

In either case, we see that the index of instability of X is 1, that is, X is stable.
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Theorem 7.7 (Hujdurović-Mitrović-Morris [12, Theorem 4.3]). A circulant graph X =

Cay(Zn, {±a,±b}) of valency 4 is unstable if and only if either it is trivially unstable,

or one of the following conditions is satisfied (perhaps after interchanging a and b):

1. n ≡ 2 (mod 4), gcd(a, n) = 1, and b = ma+ (n/2), for some m ∈ Z×
n , such that

m2 ≡ ±1 (mod n), or

2. n is divisible by 8 and gcd
(
|a|, |b|

)
= 4.

In both of these cases, X has Wilson type (C.4).

Proof. (⇐) A direct computation shows that the condition (1) implies that mS +

(n/2) = S, so X has Wilson type (C.4).

We can therefore assume that (2) applies. As X is connected, we can assume that

a is odd. Then n/|a| is odd. As gcd(|a|, |b|) = 4, we conclude that |b| = 4n/|a|. Write

|a| = 2rℓ, where ℓ is an odd integer. Since ℓ and n/|a| are odd, we have gcd(2r, ℓ) =

gcd(2r, n/|a|) = 1. Also note that

4 = gcd
(
|a|, |b|

)
= gcd

(
2rℓ, 4n/|a|

)
= 4gcd

(
2r−2ℓ, n/|a|

)
.

Therefore 2r, ℓ, and n/|a| are pairwise relatively prime, so we may choose m ∈ Z×
n ,

such that

m ≡ 2r−1 + 1 (mod 2r), m ≡ 1 (mod ℓ), and m ≡ −1 (mod n/|a|).

It can be checked that mS + (n/2) = S, proving that X has Wilson type (C.4).

(⇒) Assume that X is non-trivially unstable. Note that n must be even (see

Theorem 6.8). Since X is connected and non-bipartite, it follows that exactly one of

the elements of {a, b} is even.

Let α be an unexpected automorphism of BX that fixes (0, 0). Without loss of

generality, after possibly composing α with τ , we may assume that α preserves the

colour classes of BX, that is, α(Zn × {i}) = Zn × {i} for i ∈ {0, 1}.

Case 1. Assume α is a group automorphism. Since Zn × {0} is α-invariant, this

implies there is some m ∈ Z×
n , such that α(x, 0) = (mx, 0) for all x ∈ Zn. Note

that α fixes (n/2, 0). Since α(0, 1) is an element of order 2 contained in Zn × {1}, we
must have α(0, 1) ∈ {(0, 1), ((n/2), 1)}. If α(0, 1) = (0, 1), then α(x, i) = (mx, i), which

contradicts the assumption that α /∈ AutX×S2. Therefore, we have α(0, 1) = (n/2, 1).

So

α(x, i) =
(
mx+ i(n/2), i

)
for all (x, i) ∈ BX.

Since S × {1} is α-invariant, this implies that mS + (n/2) = S, so X is of Wilson

type (C.4).
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Subcase 1.1. Assume that (n/2) is odd. Since X is connected, we may assume,

without loss of generality, that a is odd and b is even. Then ma + (n/2) is an even

element of S, so we must have α(a, 1) ∈ {(±b, 1)}. Therefore b = ma+(n/2) (perhaps

after composing α with the group automorphism x 7→ −x, which replaces m with −m).

Now, we have α(a, 1) = (ma + (n/2), 1) = (b, 1), so α(±a, 1) = (±b, 1). Since α is

a group automorphism that preserves the set S × {1}, this implies α(±b, 1) = (±a, 1),
so we may write α(b, 1) = (ϵa, 1) with ϵ ∈ {±1}. Then we have m2(a, 1) = α2(a, 1) =

ϵ(a, 1) and m2(b, 1) = α2(b, 1) = ϵ(b, 1), so m2x = ϵx for all x ∈ Zn × Z2. This implies

m2 ≡ ϵ ≡ ±1 (mod n). So X is as described in (1).

Subcase 1.2. Assume that (n/2) is even. Then ma + a has the same parity as a

(and mb + b has the same parity as b), so we must have α(a, 1) ∈ {(±a, 1)} and

α(b, 1) ∈ {(±b, 1)}. There is no harm in assuming α(a, 1) = (a, 1) (by replacing m with

−m if necessary). Then, since α is not the identity map, we must have α(b, 1) = (−b, 1).
Therefore (

ma+ (n/2), 1
)
= α(a, 1) = (a, 1), so (m− 1)a = (n/2),

and (
mb+ (n/2), 1

)
= α(b, 1) = (−b, 1), so (m+ 1)b = (n/2).

Since m − 1 and m + 1 are even (and (n/2) has order 2), this implies that |a| and |b|
are divisible by 4.

This also implies that 2(m − 1)a = 0 and 2(m + 1)b = 0, so |a| is a divisor

of 2(m − 1) and |b| is a divisor of 2(m + 1). Therefore gcd
(
|a|, |b|

)
is a divisor of

gcd
(
2(m− 1), 2(m+ 1)

)
≤ 4. By combining this with the conclusion of the preceding

paragraph, we conclude that gcd
(
|a|, |b|

)
= 4. Then, since X is not bipartite, we must

have n ≡ 0 (mod 8). This establishes that conclusion (2) holds.

Case 2. Assume 2s ̸= 2t, for all s, t ∈ S, such that s ̸= t. We may assume α is not

a group automorphism. Then by Proposition 2.31(3), BX is not normal. Lemma 2.32

implies there exist s, t, u, v ∈ S such that s+t = u+v ̸= 0 and {s, t} ≠ {u, v}. From the

assumption of this case, we see that this implies 3a = ±b (perhaps after interchanging
a with b). This implies that a and b have the same parity, which contradicts the

assumption that X is connected and non-bipartite.

Case 3. The remaining case.

We have 2s = 2t, for some s, t ∈ S, such that s ̸= t. We may assume s = a.

Subcase 3.1. Assume that t = −s = −a.
Then |a| = 4. If n is divisible by 8, then |b| must be divisible by 8, so gcd

(
|a|, |b|

)
=

4. It follows that the condition (2) is satisfied. So we may assume n = 4k, where k is

odd. Since X is non-bipartite, we know that |b| is not divisible by 4, so the fact that

|a| = 4 implies |⟨a⟩ ∩ ⟨b⟩| ≤ 2. Hence, there is an automorphism of Zn that fixes a, but
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inverts b. Together with the inversion map ι : x 7→ −x, these automorphisms generate

a subgroup of order 4 in Aut(X)0. If follows by Lemma 2.6 that

|AutX| = |V (X)||Aut(X)0| = |Zn||Aut(X)0| ≥ 4n.

Also, since k is odd and X is non-bipartite, we must have kb ̸= ±a. Since 4kb =

nb = 0, this implies k(b, 1) ∈ {(0, 1), (2a, 1)}. Since (2a, 1) /∈ ⟨(a, 1)⟩, this implies that

⟨(a, 1)⟩∩⟨(b, 1)⟩ = {(0, 0)}, so BX ∼= C4□Cn/2. Therefore, by Lemma 2.51(3), we have

|AutBX| = |Aut(C4□Cn/2)| = |AutC4 × AutCn/2|

= |AutC4| · |AutCn/2| = 8 · n = 2 · 4n ≤ 2 · |AutX|.

This contradicts the assumption that X is unstable.

Subcase 3.2. Assume that t ̸= −s.
Therefore, we may assume s = a and t = b, so 2a = 2b. This means that a− b has

order 2, and must therefore be equal to (n/2), so S + (n/2) = S. This contradicts the

fact that Cay(Zn, S) is twin-free.

Theorem 7.8 (Hujdurović-Mitrović-Morris [12, Theorem 5.1]). A circulant graph

Cay(Zn, S) of valency 5 is unstable if and only if either it is trivially unstable, or it is

one of the following:

1. Cay(Z12k, {±s,±2k, 6k}) with s odd, which has Wilson type (C.1),

2. Cay(Z8, {±1,±3, 4}), which has Wilson type (C.3′).

Proof. (⇐) For any member of the infinite family listed under (1), it holds that Se =

{2k, 6k, 10k}. Hence, 4k + Se = Se and the graph has Wilson type (C.1). The graph

Cay(Z8, {±1,±3, 4}) listed under (2) has Wilson type (C.3′) with parameters H =

⟨2⟩ = {0, 2, 4, 6}, R = {4}, and d = 4. (Then n/d = 2 is even, r/d = 1 for the unique

element r of R, and H = 2Z8 ̸⊆ 4Z8 = dZ8.)

(⇒) Let X = Cay(Zn, {±a,±b, (n/2)}) be a non-trivially unstable circulant graph

of valency 5. The proof proceeds in two steps. We first assume that (n/2)-edges are

not invariant under automorphisms of BX and later, we address the case when every

automorphism of BX maps (n/2)-edges to (n/2)-edges.

Assume that (n/2)-edges are not invariant. Without loss of generality, we can

assume that some automorphism of BX maps an (n/2)-edge to an a-edge (perhaps

after interchanging a and b).

Then Lemma 7.5 shows that every generator of ⟨a⟩ is in S \{(n/2)}. So the number

of generators of ⟨a⟩ is ≤ 4 (and |a| > 2), so |a| ∈ {3, 4, 5, 6, 8, 10, 12}.

Case 1. Assume |a| ∈ {5, 8, 10, 12}. The four generators of ⟨a⟩ are in S, so they

must coincide with ±a and ±b. Therefore, ⟨a, (n/2)⟩ = ⟨a, b, (n/2)⟩ = Zn. We have

the following cases.
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• If |a| = 5, then n = 10 and X = Cay(Z10, {±2,±4, 5}). This graph is stable.

• If |a| = 8, then n = 8 and X ∼= Cay(Z8, {±1,±3, 4}). This graph appears in The-

orem 7.8, however, its (n/2)-edges are actually invariant, so it is not permissible

in this case.

• If |a| = 10, then n = 10 and X ∼= Cay(Z10, {±1,±3, 5}). This graph is bipartite.

• If |a| = 12, then n = 12 and X ∼= Cay(Z12, {±1,±5, 6}). This graph is stable.

Case 2. Assume |a| ∈ {3, 4, 6}. Note that then ±a are the only generators of ⟨a⟩.
Because all elements of S are pairwise distinct, it follows that ⟨a⟩ ≠ ⟨b⟩. Therefore,

|a| ≠ |b|.

Subcase 2.1. Assume |b| ∈ {3, 4, 6}. We consider each of the three possibilities for

{|a|, |b|} ∈ {{3, 4}, {3, 6}, {4, 6}}. The only unstable graph we obtain is

X = Cay(Z12, {±2,±3, 6}).

This graph appears in part (1) of the statement of Theorem 7.8 with parameters

s = 3 and k = 1.

Subcase 2.2. Assume |b| ̸∈ {3, 4, 6}. From here, we see from Lemma 7.5 that no

automorphism of BX can map an (n/2)-edge to a b-edge (because S cannot contain

more than 2 generators of ⟨b⟩, in addition to ±a). Hence, the set of b-edges is invariant
under all automorphisms of BX. Now, we see that every automorphism of BX is also

an automorphism of the graphs

BX1 := Cay
(
Zn × Z2, {(±a, 1), ((n/2), 1)}

)
and BX2 := Cay

(
Zn × Z2, {(±b, 1)})

which are the canonical double covers of

X1 := Cay
(
Zn, {±a, (n/2)}) and X2 := Cay

(
Zn, {±b}),

respectively. Note that BX1 is arc-transitive (because a-edges and (n/2)-edges are in

the same orbit of AutBX).

If |a| = 3, then every connected component of BX1 is isomorphic to a 6-prism, which

is not arc-transitive. If |a| = 4, then every connected component of X1 is isomorphic

to K4, which is a stable graph by Example 4.7, so it follows from Corollary 7.2 that X

is stable, a contradiction. Therefore, we must have |a| = 6.

The connected components of X2 are |b|-cycles. If |b| is odd, then these are stable

(by Theorem 6.8 or Example 3.10). By another application of Corollary 7.2, it follows

that X is stable, a contradiction.

So we can now assume that |a| = 6 and |b| is even. Write n = 6ℓ. From here

n/2 = 3ℓ and {±a} = {ℓ, 5ℓ}.
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Note that if ℓ is odd, then a and b must both be odd (since |a| and |b| are even).

Since n/2 = 3ℓ is also odd, this means that all elements of S are odd, so X is bipartite,

a contradiction.

Therefore, we know that ℓ is even, so we may write ℓ = 2k. Then n = 12k, n/2 = 6k

and {±a} = {±2k}. In particular, ±a and n/2 are all even. So b must be odd (since X

is connected). This means that X appears in part (1) of the statement of the Theorem

7.8 with parameter s = b. This finishes the first case.

Assume that (n/2)-edges are invariant. This implies that every automorphism

of BX is an automorphism of BX0, where

X0 = Cay(Zn, {±a,±b}).

If X0 is stable, then by Corollary 7.2 it follows that X is stable, a contradiction. So

we may assume now that X0 is unstable.

Case 1. Assume X0 is non-trivially unstable.

In this case, [12, Corollary 4.4] and [12, Corollary 2.11] show that this leads to a

contradiction.

Case 2. Assume X0 is trivially unstable.

There are three possibilities to consider:

Subcase 2.1. Assume X0 is not connected. Then a and b generate a proper subgroup

of Zn, while a, b and n/2 generate the whole group. From here, n = 2k, where k is odd,

and ⟨a, b⟩ = 2Zn has order k. The connected components of X0 then have order k,

and therefore have odd order. By applying [12, Corollary 4.5(1)] we conclude that X

is stable, a contradiction.

Subcase 2.2. Assume X0 is connected, but is not twin-free.

By Lemma 2.46(1), we can represent X0 as a wreath product Y ≀Km, where Y is a

δ-regular connected graph and m > 1 is an integer such that δm = 4.

Subsubcase 2.2.1. Assume m = 4. Then δ = 1, so we get that X0 = K2 ≀K4 = K4,4.

Hence, X0 is a connected, 4-valent Cayley graph on Z8 and its connection set can only

contain odd numbers, because it is also bipartite. This uniquely determines X0 as

Cay(Z8, {±1,±3}). From here, X = Cay(Z8, {±1,±3, 4}), so X is the graph listed in

the part (2) of Theorem 7.8.

Subsubcase 2.2.2. Assume m = 2. Then δ = 2 and

|V (Y )| = |V (X)|/m = 2k/2 = k,

so Y is a k-cycle, so X0
∼= Ck ≀ K2. Consequently, X ∼= Ck ≀ K2. It can be checked

directly that this graph is only unstable when k = 4, i.e., X ∼= C4 ≀K2. It is easy to see
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that this implies X = Cay(Z8, {±1,±3, 4}). Hence, X is the graph appearing under

(2).

Subcase 2.3. Assume X0 is bipartite, connected and twin-free.

In this case, if follows that [12, Lemma 2.12] and [12, Lemma 5.3] that X0 =

Cay(Z10, {±1,±3}), meaning thatX = Cay(Z10, {±1,±3, 5}). But thenX is bipartite,

a contradiction.

The following is a corollary of the proof of Theorem 7.8.

Corollary 7.9 ([12, Lemma 5.4]). Let X = Cay(Zn, S) be a non-trivially unstable

circulant graph of valency 5. If every automorphism of BX maps (n/2)-edges to (n/2)-

edges, then X = Cay(Z8, {±1,±3, 4}).

Remark 7.10. Note that we can obtain the graph Cay(Z8, {±1,±3, 4}) listed under

(2) of Theorem 7.8 via Proposition 5.6 as Γ(2K2) where A = B = V (2K2).

Similar ideas can be applied when studying circulants of valency 6 or 7. However,

the number of subcases that emerge is a lot bigger and significant effort is needed to

analyze all of them. Often, local analysis of particular examples is necessary in order

to determine their stability. We refer the reader to the original article [12] for complete

proofs and give only the final results that have been obtained.

Theorem 7.11 (Hujdurović-Mitrović-Morris [12, Corrolary 6.8]). A circulant graph

X = Cay(Zn, {±a,±b,±c}) of valency 6 is unstable if and only if either it is trivially

unstable, or it is one of the following:

1. Cay(Z8k, {±a,±b,±2k}), where a and b are odd, which is of Wilson type (C.1).

2. Cay(Z4k, {±a,±b,±b + 2k}), where a is odd and b is even, which is of Wilson

type (C.1).

3. Cay
(
Z4k,

{
±a,±(a + k),±(a − k)

})
, where a ≡ 0 (mod 4) and k is odd, which

is of Wilson type (C.2′).

4. Cay(Z8k, {±a,±b,±b + 4k}), where a is even and |a| is divisible by 4, which is

of Wilson type (C.3′).

5. Cay(Z8k, {±a,±k,±3k}), where a ≡ 0 (mod 4) and k is odd, which is of Wilson

type (C.3′).

6. Cay(Z4k, {±a,±b,±mb+ 2k}), where

gcd(m, 4k) = 1, (m− 1)a ≡ 2k (mod 4k), and

either m2 ≡ 1 (mod 4k) or (m2 + 1)b ≡ 0 (mod 4k),

which is of Wilson type (C.4).
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7. Cay(Z8k, {±a,±b,±c}), where there exists m ∈ Z, such that

gcd(m, 8k) = 1, m2 ≡ 1 (mod 8k), and

(m− 1)a ≡ (m+ 1)b ≡ (m+ 1)c ≡ 4k (mod 8k),

which is of Wilson type (C.4).

Theorem 7.12 (Hujdurović-Mitrović-Morris [12, Theorem 7.1]). A circulant graph

Cay(Zn, S) of valency 7 is unstable if and only if either it is trivially unstable, or it is

one of the following:

1. Cay(Z6k, {±2t,±2(k − t),±2(k + t), 3k}), with k odd, which has Wilson type

(C.1).

2. Cay(Z12k, {±2k,±b,±c, 6k}), with b and c odd, which has Wilson type (C.1).

3. Cay(Z20k, {±t,±2k,±6k, 10k}), with t odd, which has Wilson type (C.1).

4. Cay(Z4k, {±t,±(k − t), 2k ± t, 2k}), with k odd and t ≡ k (mod 4), which has

Wilson type (C.2′).

5. Cay(Z8k, {±4t,±k,±3k, 4k}), with k and t odd, which has Wilson type (C.3′).

6. Cay(Z12k, {±t,±(4k−t),±(4k+t), 6k}), with t odd, which has Wilson type (C.3′).
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8 CONSTRUCTIONS OF UNSTABLE

GRAPHS

8.1 ASYMMETRIC NON-TRIVIALLYUNSTABLEGRAPHS

We first recall the following definition from algebraic graph theory.

Definition 8.1. A graph X is called asymmetric if its automorphism group is trivial.

This means X has no non-trivial automorphisms.

At first, it might seem that asymmetric graphs are rare, especially since we have

been focusing on highly symmetric graphs so far. However, the following result illus-

trates just how wrong this intuition is.

Corollary 8.2 ([8, Corollary 2.3.3]). Almost all graphs are asymmetric.

More formally, what the above result states is that, the proportion of graphs on n

vertices that are asymmetric goes to 1 as n tends to ∞.

In this section, we will construct some examples of non-trivially unstable graphs

that are asymmetric. The first one has been constructed by Wilson in [34].

Recall that neither the cross-cover construction (see Definition 5.19) nor Theorem

5.20, which shows that every graph that is a cross-cover of another graph is unstable,

assume any symmetries of the underlying graph. This is what enables the following

construction.

Example 8.3 (Wilson [34, p. 369]). Let X be a graph in Figure 2. The labels of the

edges define a map s : E(X) → Z3.

0

0

0 0

0

1

0

Figure 2: The base graph X with the edge labelling s : E(X) → Z3
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Define the Swift graph to be SG := CC(3, X, s), that is, it is the 3-cross-cover of X

with respect to s. This graph is shown in Figure 3.

3

8

18

12

14

6

5 7

161

11

15

10

13

17

2

4
9

Figure 3: The Swift graph SG

The Swift graph SG has the following properties.

1. SG is connected, non-bipartite and twin-free.

2. SG is non-trivially unstable.

3. SG is asymmetric.

4. Aut(B(SG)) is a group of order 6 acting semi-regularly on V (B(SG)).

5. The index of instability of SG is 3.

Proof. (1) It can be seen from Figure 3 that SG is connected and twin-free. It has two

obvious odd cycles formed by the vertices 3, 6, 8 and 4, 7, 10, so SG is also non-bipartite.

(2) As SG is constructed as a cross-cover of the graph X (see Figure 2), SG is

unstable by Theorem 5.20. Since it is also connected, non-bipartite and twin-free, SG

is non-trivially unstable.

(3) Let γ ∈ Aut(SG). We will show that γ fixes all vertices of SG and is conse-

quently trivial. We use the labelling given in Figure 3.

Note that 9 is the unique vertex of valency 4 that does not lie on a 3-cycle. Conse-

quently, it must be fixed by γ. Vertices 17 and 2 are unique neighbours of 9 of valencies

1 and 2, respectively. It follows that both are fixed. The remaining neighbours of 9 are

5 and 11, both of valency 3, but 11 has a neighbour of valency 1, namely vertex 15,

while 5 does not. It follows that 5, 11 and 15 are all fixed. As the only other neighbour

of 2, namely the vertex 9, is fixed, vertex 3 must also be fixed. By the same argument,

we conclude that 6 is fixed. Neighbours of 6 are 3 and 8 and they are of different

valencies, so both are fixed. It follows that 18 is fixed as well. As all other neighbours

of 8 are fixed, 12 must be fixed as well and therefore, also 14. By applying the same
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argument to 5, we get that 1 is fixed. The same argument applied to 1 shows that 7 is

fixed. The remaining neighbours of 7 are 10 and 16, but they have different valencies,

so both are fixed. Finally, since 10 is fixed, so is 13.

This concludes the argument and shows that γ fixes all vertices of SG. Equivalently,

γ = 1, as desired.

Statements (4) and (5) can be checked by MAGMA.

The Swift graph serves as a very important counterexample, as it shows that the

converse of Lemma 4.4 does not hold for general graphs. Indeed, as Aut(B(SG))

is semi-regular by Example 8.3(4), the condition of Lemma 4.4 is satisfied trivially.

However, SG is unstable by Example 8.3(2). In particular, the assumption on vertex-

transitivity in Lemma 4.5 cannot just be dropped (it would need to be substituted by

additional assumptions).

The Swift graph SG is our first example of a non-trivially unstable asymmetric

graph. It is quite a small example, as its order is only 18 (see Figure 3). However, it

turns out this is not the smallest asymmetric non-trivially unstable graph.

In [18], Lauri, Mizzi and Scapellato construct an infinite family of asymmetric non-

trivially unstable graphs of arbitrary large index of instability using TF-automorphisms

(here “TF” stands for two-fold). They also proved the following lower bound on the

order of an unstable asymmetric graph, which is achieved by the smallest member of

their infinite family.

Theorem 8.4 (Lauri-Mizzi-Scapellato [18, Theorem 2.4]). Every asymmetric unstable

graph has at least 12 vertices.

We first describe the minimal example.

Example 8.5 (Lauri-Mizzi-Scapellato [18]). Let U denote the graph depicted in Fig. 4.

The following properties of U can be checked by MAGMA.

1. U is non-trivially unstable of order 12.

2. |Aut(BU)| = 6 and the index of instability of U is 3.

3. U is asymmetric.

By Theorem 8.4, it follows that U is an asymmetric non-trivially unstable graph of

minimal possible order.

In order to explain how the graph U has been constructed, we briefly introduce the

concepts of mixed graphs and TF-automorphisms.
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Figure 4: The asymmetric unstable graph U of order 12

Definition 8.6 ([18, p. 85-86]). A mixed graph X is a graph with both directed edges,

also called arcs, and undirected edges, where we identify the undirected edge {x, y}
with the union of two arcs {(x, y), (y, x)}. Note that digraphs are mixed graphs and

that every graph is just a mixed graphs that contains only undirected edges.

We will denote the set of all edges (both directed and undirected) of a mixed graph

X by A(X).

Definition 8.7 ([18, p. 85-86]). Let X be a mixed graph. Given two permutations α

and β of V (X), we say that (α, β) is a TF-automorphism of X if for all x, y ∈ V (X)

(x, y) is an arc of X if and only if (α(x), β(y)) is an arc of X.

If α ̸= β, the TF-automorphism (α, β) is called non-trivial.

Definition 8.8 ([18, p. 85-86]). Let Y be a mixed graph. The underlying graph of Y

is the graph X with

• V (X) := V (Y ), and

• E(X) := {{x, y} | (x, y) ∈ A(Y ) or (y, x) ∈ A(Y )}.

To understand the construction of Example 8.5, we will need the following facts on

TF-automorphisms discussed in [18].

Facts 8.9. Let Y be a graph, understood as a mixed graph containing only undirected

edges. Let γ be a permutation of V (Y ).

1. Y is unstable if and only if it it has a non-trivial TF-automorphism ( [18, Theo-

rem 2.1]).



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 122

2. If (γ, γ−1) is a TF-automorphism of Y , then (γ, γ−1) is also a TF-automorphism

of the underlying graph X of Y ( [18, Proposition 2.3]).

The main idea of the construction is the following. We start with a finite set V ,

that will become the vertex set of our graph. We pick a permutation γ ∈ Sym(V ) of

order at least 3 (so that γ ̸= γ−1). Then we let (γ, γ−1) act on the set V × V in the

obvious way.

We pick an ordered pair (u, v) of elements of u, v ∈ V and consider its orbit Oγ(u, v)

under the action of (γ, γ−1). We then consider a digraph Y with the vertex set V

and set of arcs equal to the orbit Oγ(u, v). The important thing to note is that, by

construction, (γ, γ−1) is a non-trivial TF-automorphism of Y . Then by Facts 8.9(2),

(γ, γ−1) is also a non-trivial TF-automorphism of the underlying graph X of Y . Hence,

Facts 8.9(1) implies that X is unstable.

We can now keep on choosing ordered pairs of elements of V and adding their

orbits under (γ, γ−1) to the arc set of Y . The key observation is that (γ, γ−1) will still

be a non-trivial TF-automorphism of the obtained digraph, so the previous argument

applies and the underlying graph of the constructed digraph is unstable.

Our goal is to keep on adding arcs, in order to produce a digraph whose underlying

graph is not only unstable, but also asymmetric, connected, non-bipartite and twin-

free.

The Example 8.5 has been obtained in this manner.

• Let V := {1, . . . , 12}.

• Let γ := (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12).

• Let Y be the digraph with V (Y ) := V and arc set equal to the union of orbits of

pairs (1, 5), (6, 1), (6, 7), (12, 1), (12, 6) and (12, 7) under (γ, γ−1).

• The underlying graph X is then exactly the graph U shown in Figure 4.

The success of the above strategy obviously depends on how we choose the pairs of

elements of V whose orbits we are going to include into the arc set of our digraph. A

priori, there is no guarantee that by continuously adding arcs we will end up with a

graph having all of the desired properties. Although, instability is guaranteed, as we

have seen, and connectedness and non-bipartiteness are likely to also be achieved as

they require that the graph has more edges anyway.

The authors were able to come up with the following recipe for choosing these pairs,

which generalizes the construction of Example 8.5 we just explained.

Example 8.10 (Lauri-Mizzi-Scapellato [18, p.88-91]). Let k ≥ 3 be a positive integer.

Define the following permutation of {1, . . . , 4k}.

γ = (1, . . . , k)(k + 1, k + 2, . . . , 2k)(2k + 1, . . . , 3k)(3k + 1, . . . , 4k)
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Consider the digraph Gk with

• V (Gk) := {1, . . . , 4k},

• A(Gk) consisting of the orbits of pairs (1, 2k−1), (1, 2k), (1, 4k), (k+1, 3k), (2k, 4k)

and (2k + 1, 4k) under the action of (γ, γ−1).

Let Uk be the underlying graph of Gk. Then Uk is a non-trivially unstable and

asymmetric graph with a non-trivial TF-automorphism (γ, γ−1).

Remark 8.11. Every non-trivial TF-automorphism of a graph corresponds to an un-

expected automorphism of its double cover (this is how Facts 8.9(1) is proved).

Note that γ from Example 8.10 is of order k. Then each (γj, γ−j) with 1 ≤ j ≤ k−1

induces an unexpected automorphism of BUk, if γ
j ̸= γ−j.

In particular, the index of instability of Uk is at least k for odd k and at least k− 1

for even k (we have to exclude the case j = k/2).

Remark 8.12. Note that U is just U3. Indeed, by setting k = 3 in Example 8.10 we

obtain the same γ and the same ordered pairs we used to construct U .

8.2 GENERALIZED CAYLEY GRAPHS

As Lemma 3.13 shows, the double cover BX of a Cayley graphX is also a Cayley graph.

However, the converse does not hold (see for example [11, Example 3.4, Example 4.4]).

Generalized Cayley graphs have been first introduced in [22] in attempt to characterize

graphs whose canonical double cover is a Cayley graph.

Definition 8.13 ([22, p. 281], [11, Definition 2.1]). Let G be a group, S ⊆ G a non-

empty subset and α ∈ Aut(G) an automorphism of the group G such that

1. α2 = 1,

2. for x ∈ G, α(x−1)x ̸∈ S,

3. for x, y ∈ G, if α(x−1)y ∈ S, then α(y−1)x ∈ S.

The Generalized Cayley graph GCay(G,S, α) is the graph given by the following

parameters:

• V (GCay(G,S, α)) := G,

• E(GCay(G,S, α)) := {{x, y} | x, y ∈ G,α(x−1)y ∈ S}.
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Remark 8.14. Let G,S and α be as in Definition 8.13 and write X := GCay(G,S, α)

the corresponding Generalized Cayley graph. The condition (2) ensures that X has no

loops. The condition (3) ensures that the relation of adjacency is symmetric i.e., X is

an undirected graph.

Remark 8.15. Let X = Cay(G,S) be a Cayley graph on a group G with a connection

set S. Let α = 1 be the trivial automorphism of G.

Then α2 = 1, so (1) is satisfied. By definition of a Cayley graph, S is does not

contain the identity, so (2) holds. Finally, if α(x−1)y ∈ S, then as S is inverse-closed,

it holds that y−1x = α(y−1)x ∈ S, proving that (3) also holds.

In conclusion, X is exactly the Generalized Cayley graph GCay(G,S, 1).

Lemma 8.16 ([22, p. 281]). Let G,S and α be as in Definition 8.13. Let X =

GCay(G,S, α). Then the following hold.

1. α(S) = S−1, and conversely

2. if α ∈ Aut(G) such that α2 = 1, then α(S) = S−1 implies that α satisfies the

condition 8.13(3).

3. For x ∈ V (X), NX(x) = α(x)S = {α(x)s | s ∈ S}.

Proof. (1) Let y ∈ S. Then by setting x = 1 in Definition 8.13(3), we get that

α(y−1)x = α(y−1) ∈ S. Using Definition 8.13(1), we get that y−1 ∈ α(S). Hence,

S−1 ⊆ α(S) and as α is a bijection, the desired conclusion follows.

(2) Assume that α ∈ Aut(G) such that α2 = 1 and α(S) = S−1. Then if

α(x−1)y ∈ S, we know that α(α(x−1)y) ∈ α(S) = S−1. In particular, x−1α(y) ∈ S−1

and consequently, (α(y))−1x = α(y−1)x ∈ S. This is exactly the condition Definition

8.13(3).

(3) Let x, y ∈ G. Then by definition, x and y are adjacent if and only if α(x−1)y ∈ S

if and only if α(y) ∈ xα(S). Applying (1), we get that this is further equivalent to

y ∈ α(x)S. It follows that NX(x) = α(x)S, as desired.

In [22, Theorem 3.1], the authors claimed that for a connected, non-bipartite graph

X, it holds that BX is a Cayley graph if and only if X is a generalized Cayley graph.

This statement has been proven to be false in [11]. To compensate for this, an even

wider class of graphs, named extended Generalized Cayley graphs has been introduced

in [11, Definition 4.1]. The author then proves that for a connected, non-bipartite

graph X, the canonical double cover BX is a Cayley graph if and only if X is an

extended Generalized Cayley graph.

However, we will only need the following weaker result, that serves as a correction

of [22, Theorem 3.1].
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Recall that for a graph X, τ : V (BX) → V (BX) is an automorphism of BX given

by τ(x, i) = (x, i+ 1) for x ∈ V (X), i ∈ Z2.

Theorem 8.17 (Hujdurović [11, Theorem 3.2]). Let X be a connected, non-bipartite

graph. Then BX is a Cayley graph with a regular subgroup containing τ if and only if

X is a generalized Cayley graph.

We are now ready to introduce the main tool of this section for producing unstable

graphs. The proof of this result given in [22] uses the result [22, Theorem 3.1] which

contains an error, but only when concluding that for a generalized Cayley graph X,

its canonical double cover BX is a Cayley graph as well. As this is true by Theorem

8.17, we present both the result and the original proof below.

Proposition 8.18 ([22, Proposition 3.3]). Let X be a Generalized Cayley graph. If X

is stable, then X is a Cayley graph.

Proof. Assume that BX is a Cayley graph. Then by Proposition 2.25(1), Aut(BX)

contains a regular subgroup, which we will denote by G. As X is stable, we know

that Aut(BX) ∼= Aut(X) × S2. Define H := {φ | φ ∈ G}. As φ 7→ φ is an injective

homomorphism from Aut(X) to Aut(BX) (see Lemma 3.4(3)), it follows that H ∼=
H = Aut(X) ∩G.

As H = Aut(X)∩G has exactly two orbits on V (BX), given by the colours classes

of BX, and is semi-regular (because G is semi-regular), it follows that H is a regular

subgroup of Aut(X). By Theorem 2.26, this is equivalent to saying that X is a Cayley

graph (on H).

It follows from Proposition 8.18 that graphs that are Generalized Cayley graphs, but

not Cayley, are necessarily unstable. Moreover, since [11, Theorem 4.3] states that for a

connected, non-bipartite graphX, BX is a Cayley graph ifX is an extended generalized

Cayley graph, the same argument as in the proof of Proposition 8.18 applies. Therefore,

we conclude that connected, non-bipartite extended generalized Cayley graphs that are

not Cayley, are also unstable.

We will use the Proposition 8.18 to show that the following family contains non-

trivially unstable graphs.

Definition 8.19. Let n ≥ 4 and denote by X (n) the Generalized Cayley graph

GCay(G,S, α) with

• G = Zn × Zn,

• S = {(1, 0), (0, n− 1), (1, 1), (n− 1, n− 1)},

• α(i, j) = (j, i) for i, j ∈ Zn.
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Remark 8.20. We show that parameters given in Definition 8.19 indeed define a

Generalized Cayley graph.

It is clear that α is an automorphism of G and moreover, α2 = 1. Hence, (1) is

satisfied.

Condition (2) holds because none of the elements of S are of the form (k,−k) for

k ∈ Zn.

To prove that condition(3) holds, we note that α(S) = S−1 by a direct computation

and apply Lemma 8.16(2).

Lemma 8.21. Let n ≥ 5 be a positive integer such that gcd(n, 4) = 1. Let X (n) be the

graph defined in Definition 8.19. Then

1. X (n) is not vertex-transitive,

2. X (n) is connected, non-bipartite and twin-free.

Proof. (1) Let (i, j) ∈ V (X (n)). Then by Lemma 8.16(3), it holds that

NX (n)(i, j) = α(i, j)S = (j, i)S =

= {(j + 1, i), (j, i− 1), (j + 1, i+ 1), (j − 1, i− 1)}.
(8.1)

Note that this implies that

NX (n)(0, 0) = {(1, 0), (0, n− 1), (1, 1), (n− 1, n− 1)} = S,

NX (n)(1, 0) = {(1, 1), (0, 0), (1, 2), (n− 1, 0)}.

A direct computation will show that (1, 0) only lies on one triangle, namely the one

formed by vertices (0, 0), (1, 0) and (1, 1).

However, since α(−(0, n−1))+(n−1, n−1) = (1, 0)+(n−1, n−1) = (0, n−1) ∈ S,

it follows that (0, 0) also lies on a triangle formed by the vertices (0, 0), (0, n− 1), (n−
1, n− 1).

In particular, there cannot exist an automorphism of X (n) that would map (0, 0)

to (1, 0), proving that X (n) is not vertex-transitive.

(2) Connectedness of X (n) follows from a more general result given in [22, Propo-

sition 3.5].

As we have already established that X (n) contains triangles, we know it is non-

bipartite.

Note that from Eq. (8.1), it follows that sum of all elements in NX (n)(i, j) equals

(4j + 1, 4i + 1). Hence, if NX (n)(i, j) = NX (n)(k, ℓ) for i, j, k, ℓ ∈ Zn, it follows that

4j + 1 = 4ℓ + 1 and 4i + 1 = 4k + 1. As gcd(n, 4) = 1, 4 has a multiplicative inverse

modulo n and it follows that j = ℓ, i = k. In particular, X (n) is twin-free.



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 127

Theorem 8.22. The graphs X (n) are non-trivially unstable for all n ≥ 5, gcd(n, 4) =

1. Moreover, the canonical double cover BX (n) is a Cayley graph.

Proof. As X (n) is not vertex-transitive by Lemma 8.21(1), it cannot be isomorphic to

a Cayley graph, which are always vertex-transitive (see Proposition 2.25(2)). It follows

by Proposition 8.18 that X (n) is unstable. By Lemma 8.21(2), X (n) is also connected,

non-bipartite and twin-free. Therefore, X (n) is non-trivially unstable. Finally, each

X (n) is a Generalized Cayley graph, so BX (n) is a Cayley graph by Theorem 8.17.

8.3 DOUBLE GRAPHS OF PALEY GRAPHS

In his article [30], Surowski constructs three infinite families of arc-transitive unstable

graphs. These constructions are surprising, because at the time the article appeared,

it was thought that most arc-transitive graphs are stable, with the dodecahedron as

one of the only non-trivially unstable examples available.

The three constructions Surowski describes are based on the hyperbolic space

Ω+(2n, 2), double graphs of self-complementary graphs and complex character theory

of the finite simple group PSL2(q), respectively. We will study the second construction

in detail and provide brief remarks on the third one at the end of the subsection. We

start by describing the second construction. The following idea is based on the work

of E. Shult in [29].

We start with a graph X. Let X ′ denote an isomorphic copy of X with the under-

lying graph isomorphism being the map x 7→ x′ for x ∈ V (X). We construct a new

graph which we denote by X∗.

• V (X∗) := {+∞}∪ V (X)∪ V (X ′)∪ {−∞}, where +∞ and +∞ are new vertices

satisfying ±∞ ̸∈ V (X) ∪ V (X ′).

• We define the edges of X∗ in the following manner.

E(X∗) := E(X) ∪ E(X ′)∪

∪ {{+∞, x} | x ∈ V (X)} ∪ {{−∞, x′} | x′ ∈ V (X ′)}∪

∪ {{x, y′} | x, y ∈ V (X), x ̸= y, {x, y} ̸∈ E(X)}.

In words, E(X∗) is defined via the following incident relations:

1. +∞ is adjacent to every x ∈ V (X) and no other vertices.

2. Two vertices x, y ∈ V (X) are adjacent in X∗ if and only if they are adjacent

in X. This is to say that X is the subgraph of X∗ induced by V (X) ⊆
V (X∗).
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3. Two vertices x ∈ V (X) and y′ ∈ V (X ′) are adjacent in X∗ if and only if

x ̸= y and x and y are non-adjacent in X i.e., {x, y} ̸∈ E(X).

4. Two vertices x′, y′ ∈ V (X ′) are adjacent inX∗ if and only if they are adjacent

in X ′. This is to say that X ′ is the subgraph of X∗ induced by V (X ′) ⊆
V (X∗).

5. −∞ is adjacent to every x′ ∈ V (X ′) and no other vertices.

Definition 8.23. The graph X∗ constructed above is called the double graph of X.

Proposition 8.24. Let X be a graph. Then its double graph X∗ has the following

properties:

1. If X is not a complete graph, then X∗ is connected.

2. If X is not an empty graph, then X∗ is non-bipartite.

3. X∗ is twin-free.

4. The map γ : V (X∗) → V (X∗) that swaps +∞ and −∞ as well as x and x′ for

all x ∈ V (X) is an automorphism of X∗ of order 2.

Proof. (1) We first note that NX∗(+∞) = V (X) and NX∗(−∞) = V (X ′), so X∗ has at

most two connected components, namely C, with vertex set {+∞}∪V (X) and C ′, with

vertex set {−∞}∪V (X ′). Since X is not a complete graph, it follows that X contains

a pair of distinct non-adjacent vertices x, y ∈ V (X). By definition, {x, y′} ∈ E(X∗)

with x ∈ V (C) and y′ ∈ V (C ′). It follows that X has exactly one connected component

C ∪ C ′ and is connected.

(2) Note that, if X is not an empty graph, it must contain at least one edge

{x, y} ∈ E(X). Then x, y and +∞ form a 3-cycle in X∗. Hence X∗ is non-bipartite.

(3) Note that the vertices +∞ and −∞ do not have twins. Furthermore, if x ∈
V (X) ⊆ V (X∗) and y ∈ V (X ′) ⊆ V (X∗), then +∞ is a neighbour of x, but not y. In

particular, x and y are not twins.

The only remaining case is when x, y ∈ V (X) ⊆ V (X∗) (the case x, y ∈ V (X ′) ⊆
V (X∗) is entirely symmetric). If x and y are twins, then they are not adjacent. Hence,

x is adjacent to y′ ∈ V (X ′), while y is not, a contradiction.

(4) We first note that γ is clearly a non-trivial permutation of V (X∗) and is its own

inverse. Hence, it is of order 2.

Note that

• γ swaps the edges {+∞, x} and {−∞, x′} for x ∈ V (X),

• γ swaps the edges {x, y} and {x′, y′} with x, y ∈ V (X), and
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• γ swaps the edges {x, y′} and {x′, y} for x, y ∈ V (X), x ̸= y and {x, y} ̸∈ E(X).

This shows that γ preserves the set of edges of X and is consequently an automor-

phism of X.

Corollary 8.25. Let X be a graph that is neither empty nor complete. Then X∗ is

either stable or non-trivially unstable.

It follows from Corollary 8.25 that to produce non-trivially unstable graphs via this

construction, we just need to ensure that X∗ is unstable.

It turns out that when X is a self-complementary graph, this is exactly what hap-

pens. Recall that a graph is self-complementary if it is isomorphic to its complement

- see Definition 2.38.

Definition 8.26 ([30, p. 103]). Let X be a self-complementary graph. A graph au-

tomorphism t : V (X) → V (X) = V (X) between X and its complement X is called a

complementing permutation.

Note that complementing permutations are characterized by the following property:

{x, y} ∈ E(X) if and only if {t(x), t(y)} ̸∈ E(X),∀x, y ∈ V (X).

In turns out that we can use Wilson’s criteria from Section 5.1 to establish that

double graphs of self-complementary graphs are unstable.

Theorem 8.27. Let X be a self-complementary graph with at least two vertices. Then

X∗ is non-trivially unstable with an anti-symmetry. In particular, instability of X∗ can

be explained by Theorem 5.14.

Proof. Let γ be the map swapping +∞ and −∞ as well as all x and x′ of X∗ for

x ∈ V (X). Then by Proposition 8.24(4), γ is an automorphism of X∗ of order 2.

As X is self-complementary, there exists a complementing permutation t : V (X) →
V (X). Recall that this means that

{x, y} ∈ E(X) if and only if {t(x), t(y)} ̸∈ E(X). (8.2)

Define the following map.

α : V (X∗) → V (X∗)

α(y) =



+∞, y = +∞

t(x)′, y = x, x ∈ V (X)

t(x), y = x′, x ∈ V (X)

−∞, y = −∞
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As t is permutation of V (X), it follows that α is a permutation of V (X). We will

show that α is anti-symmetry of X∗ with respect to γ by proving they satisfy both

conditions listed in Definition 5.13.

Let y ∈ V (X∗). We will show that (αγ)(y) = (γα)(y). If y ∈ {±∞}, the claim

clearly holds as α fixes both of these vertices, while γ swaps them.

Let y = x ∈ V (X) ⊆ V (X∗). Then (αγ)(x) = α(x′) = t(x), while (γα)(x) =

γ(t(x)′) = t(x). Similarly, if y = x′, x ∈ V (X), then (αγ)(x′) = α(x) = t(x)′, while

(γα)(x′) = γ(t(x)) = t(x)′. In conclusion, α and γ commute, so they satisfy condition

(1) of Definition 5.13.

Let {x, y} ∈ E(X∗). We show that {α(x), (αγ)(y)} ∈ E(X∗).

Case 1. x = +∞ and y ∈ V (X) ⊆ V (X∗) (or vice-versa)

Then α(x) = +∞ and (αγ)(y) = α(y′) = t(y). As t(y) ∈ V (X), the condition is

satisfied.

Case 2. x, y ∈ V (X) ⊆ V (X∗)

Then α(x) = t(x)′ and (αγ)(y) = α(y′) = t(y). Because {x, y} ∈ E(X), we

conclude that t(x) ̸= t(y) (as x ̸= y) and by Eq. (8.2), also {t(x), t(y)} ̸∈ E(X).

Hence, {t(x)′, t(y)} ∈ E(X∗).

Case 3. x ∈ V (X) ⊆ V (X∗), y ∈ V (X ′) ⊆ V (X∗) (or vice-versa).

We can find z ∈ V (X) such that y = z′. Note that then x ̸= z and {x, z} ̸∈ E(X).

It follows that α(x) = t(x)′ and (αγ)(y) = (αγ)(z′) = α(z) = t(z)′. As {x, z} ̸∈ E(X)

and t is a complementing permutation, it follows by Eq. (8.2) that {t(x), t(z)} ∈ E(X).

In particular, {t(x)′, t(z)′} ∈ E(X∗).

Case 4. x, y ∈ V (X ′) ⊆ V (X∗)

Then we can find z, w ∈ V (X) such that x = z′ and y = w′ and {z, w} ∈ E(X).

It follows that α(x) = α(z′) = t(z) and (αγ)(y) = (αγ)(w′) = α(w) = t(w)′ As x ̸= y,

also z ̸= w and consequently, t(z) ̸= t(w). Moreover, as {z, w} ∈ E(X) and t is

a complementing permutation, Eq. (8.2) implies that {t(z), t(w)} ̸∈ E(X). Hence,

{t(z), t(w)′} ∈ E(X∗).

Case 5. x = +∞, y ∈ V (X ′) ⊆ V (X∗) (or vice-versa)

We can find z ∈ V (X) such that y = z′. Then α(x) = +∞ and (αγ)(y) =

(αγ)(z′) = α(z) = t(z)′. As t(z) ∈ V (X), the condition is clearly satisfied.

It follows that α and γ satisfy condition (2). Hence, X∗ has an anti-symmetry and

is unstable by Theorem 5.14. Moreover, it is non-trivially unstable by Corollary 8.25.

This finishes the proof.

Remark 8.28. In [30, Proposition 4.1], Surowski shows that the double graph X∗ of

a self-complementary graph X with a complementing permutation t : V (X) → V (X) is
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unstable by constructing an unexpected automorphism T : V (BX∗) → V (BX∗) of BX∗

given by

a) T (+∞, 0) = (+∞, 0), T (−∞, 0) = (−∞, 0);

b) T (x, 0) = (t(x)′, 0), T (x′, 0) = (t(x), 0), x ∈ V (X);

c) T (x, 1) = (t(x), 1), T (x′, 1) = (t(x)′, 1), x ∈ V (X);

d) T (+∞, 1) = (−∞, 1), T (−∞, 1) = (+∞, 1).

It is easy to see that T is actually of the following form, where α and γ are permu-

tation of V (BX∗) defined in the proof of Theorem 8.27.

T (y, i) =

{
(α(y), 0), i = 0

((γα)(y), 1), i = 1

Corollary 8.29. Let X be a self-complementary graph with at least two vertices. Then

X∗ is non-trivially unstable.

Proof. Note that the complement of the complete graph Kn is the empty graph Kn.

Furthermore, these graphs are isomorphic if and only if n = 1 (for example, E(Kn) = ∅,
while E(Kn) is non-empty when n ≥ 2).

As X is not K1 and is assumed to be self-complementary, it follows that X is

neither complete nor empty. Then by Corollary 8.25, X∗ is either stable or non-trivially

unstable.

As X is self-complementary, Theorem 8.27 implies that X∗ is unstable.

In conclusion, X∗ is non-trivially unstable, as desired.

Example 8.30. Let X be a 3-edge path. Then X is self-complementary on 4 ver-

tices, so by Corollary 8.29, its double graph X∗ is non-trivially unstable. However,

calculations in MAGMA show that it is not arc-transitive.

Example 8.30 shows that even though double graphs of self-complementary graphs

are always non-trivially unstable (by Corollary 8.29), they are not necessarily arc-

transitive. Therefore, we need to impose further structural restrictions on X, so that

X∗ will be arc-transitive. The following proposition suggests one such condition.

Proposition 8.31 (Surowski [30, Proposition 4.2]). Let X be a vertex-transitive graph,

and assume that given some vertex x ∈ V (X) there exist bijections h1 : X1(x) → X1(x)

and h2 : X1(x) → X1(x) such that h1 and h2 are automorphisms of subgraphs of X

induced by X1(x) and X1(x), respectively, and that

{y, z} ∈ E(X) if and only if {h1(y), h2(z)} ̸∈ E(X), y ∈ X1(x), z ∈ X1(x).

Then X∗ is arc-transitive.
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All that is left now is to find examples of self-complementary, vertex-transitive

graphs that satisfy the condition in Proposition 8.31.

Luckily, Paley graphs come to our rescue. Let q be a prime power such that q ≡
1 (mod 4) and let S and NS denote the sets of non-zero squares and non-squares of

the Galois field GF(q), respectively.

Lemma 8.32. The Paley graph P(q) satisfies the condition listed in Proposition 8.31

for x = 0 and h1, h2 being restrictions of the inversion map ι : y 7→ y−1 to P(q)1(0) and

P(q)1(0), respectively.

Proof. Let x, y ∈ GF(q) be non-zero. Then an easy computation shows that

y−1 − x−1 = (xy)−1(x− y). (8.3)

Note that P(q)1(0) = S and P(q)1(0) = (GF(q) \ {0}) \ S = NS (compare with

Proposition 2.40(3)). Since for x ∈ GF(q), x ̸= 0 it holds that x is a square if and only

if x−1 is a square, it follows that the maps h1 : P(q)1(0) → P(q)1(0) and h2 : P(q)1(0) →
P(q)1(0) are well-defined.

Let {x, y} ∈ E(X) be an edge of X. Then y−x is a square. If x, y are both squares

or both non-squares, it follows that (xy)−1 is a square. It follows by Eq. (8.3) that

y−1 − x−1 is a square, equivalently {ι(x), ι(y)} = {x−1, y−1} ∈ E(X). This proves that

h1 and h2 are automorphisms of the subgraphs ofX induced by S and NS, respectively.

Finally, if x ∈ S and y ∈ NS are adjacent, then h1(x) = x−1 and h2(y) = y−1 are

not adjacent, again by Eq. (8.3), since (xy)−1 is a non-square. The converse holds by

an analogous argument.

Definition 8.33. The double Paley graph, denoted P∗(q), is the double graph (P(q))∗

of the Paley graph P(q).

Theorem 8.34 (Surowski, [30, Theorem 4.3]). Let q be a prime power such that

q ≡ 1 (mod 4). Then the double Paley graph P∗(q) is arc-transitive and non-trivially

unstable.

Proof. By Definition 8.33, P∗(q) is just the double graph of P(q). By Proposition

2.40(3), P(q) is self-complementary and as its order is at least 5, Corollary 8.29 implies

that P∗(q) is non-trivially unstable. By Proposition 2.40(1) and Lemma 8.32, we can

apply Proposition 8.31 to P(q) to conclude that P∗(q) is arc-transitive.

In [31], Surowski actually computes the automorphism group of P∗(q) and its bi-

partite double cover.

Theorem 8.35 (Surowski [31, Theorem 1.5]). Let q ≡ 1 (mod 4) be a prime power.

Let P(q) be the Paley graph of order q and P∗(q) its double graph.
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Then it holds that

Aut(P∗(q)) = Z2 × PΣL2(q).

Moreover, the automorphism group of the double cover of P∗(q) has the following

form.

Aut(B(P∗(q))) = (Z2 × Z2)⋊ PΓL2(q)

Here PΣL2(q) centralizes Z2 × Z2 and any element of PΓL2(q) \ PΣL2(q) acts as

the non-trivial involutary automorphism of Z2 × Z2.

Corollary 8.36 (Surowski [31, p. 4]). The double Paley graph P∗(q) is non-trivially

unstable with index of instability 2.

Proof. We know that P∗(q) is non-trivially unstable by Theorem 8.34. By Theorem

8.35, it follows that the index of instability of P∗(q) equals to the index of PΣL2(q) in

PΓL2(q), which is 2.

We now comment on one additional constructions Surowski considers in [30].

Definition 8.37 (Surowski [30, p. 105]). Let q a power of an odd prime p. Let C

be the conjugacy class of the element represented by the matrix

(
1 1

0 1

)
in the finite

simple group PSL2(q). We define the graph Γ(q) with the vertex set V (Γ(q)) := C and

x, y ∈ C adjacent if and only if xy has an order 3.

Note that conjugation by a fixed element of PSL2(q) induces an automorphism of

Γ(q).

Proposition 8.38 (Surowski [30, Proposition 5.2]). Let q be a power of an odd prime

such that q ≡ 5 or 7 (mod 12). Then the graph Γ(q) is q-regular and arc-transitive.

Theorem 8.39 (Surowski [30, Theorem 5.6]). Let q be a power of an odd prime such

that q ≡ 5 or 7 (mod 12). Then the graph Γ(q) is (non-trivially) unstable.

In [31], Surowski describes the automorphism groups of Γ(q) and BΓ(q), as well as

determines the index of instability of Γ(q), for the case when q = p is an odd prime.

Theorem 8.40 (Surowski [31, Theorem 2.2]). Let p be an odd prime and consider the

graph Γ(p). Then it holds that

Aut(Γ(p)) ∼=

{
Z2 × PSL2(q), p ≡ 5 (mod 12)

PGL2(q), p ≡ 7 (mod 12)

Moreover, in either case, it holds that

• the structure of Aut(BΓ(q)) is isomorphic to PGL2(q) acting on the dihedral

group Dp−1 of order p− 1, and

• the index of instability of Γ(p) is p−1
2
.
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8.4 NON-TRIVIALLY UNSTABLE CIRCULANT GRAPHS

WITH NO WILSON TYPE

We recall that Example 5.51 shows that the Wilson types are not sufficient for explain-

ing instability of all non-trivially unstable circulants. In the following example, we will

construct an infinite family of non-trivially unstable circulant graphs, that do not have

a Wilson type, but whose instability can be explained by the generalizations of Wilson

types introduced in Section 5.4.

Example 8.41 (Hujdurović-Mitrović-Morris [13, Example 3.9]). Let n = 2p2, where

p is prime and p ≡ 1 (mod 4), and choose c ∈ Z, such that c2 ≡ −1 (mod p). Fix some

a ∈ Zn of order p, and let S = Se ∪ So, where

Se =
(
±2 + ⟨a⟩

)
∪ {±a} ⊆ 2Zn,

S ′
o =

(
±2 + ⟨a⟩

)
∪ {±ca} ⊆ 2Zn,

So = n/2 + S ′
o ⊆ 1 + 2Zn.

Then

1. Cay(Zn, S) ∼= Cay
(
Zn, S+(n/2)

)
, so Proposition 5.56 implies that Cay(Zn, S) is

(non-trivially) unstable, but

2. Cay(Zn, S) does not have a Wilson type.

Proof. (1) Choose a setR of coset representatives for ⟨a⟩ in Zn, such thatR+n/2 = R,

and define α : Zn → Zn by

α(r + x) = r + cx for r ∈ R and x ∈ ⟨a⟩.

It suffices to show that if v, w ∈ Zn, such that v−w ∈ S, then α(v)−α(w) ∈ S +n/2.

First, consider two vertices v = r + x and w = r + y that are in the same coset of

⟨a⟩. Then the definition of S implies that v − w = ±a, so y = x± a, so

α(v)− α(w) =
(
r + cx

)
−
(
r + c(x± a)

)
= ±ca ∈ S ′

o = So + n/2.

Next, suppose v ∈ w+n/2+⟨a⟩. Assume, without loss of generality, that v ∈ 1+2Zn

and w ∈ 2Zn. Write v = r + n/2 + x and w = r + y with r ∈ R and x, y ∈ ⟨a⟩. The

definition of S implies that v − w = n/2 ± ca, so y = x ± ca, so (using the fact that

c2 ≡ −1 (mod p)) we have

α(v)− α(w) =
(
r + n/2 + cx

)
−
(
r + c(x± ca)

)
= n/2± c2a = n/2∓ a ∈ n/2 + Se.

We may now assume that v and w are in two different cosets of ⟨a, n/2⟩. Then,

from the definition of S, we see that every vertex in v+ ⟨a⟩ is adjacent to every vertex
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in w + ⟨a⟩. Since α(v) ∈ v + ⟨a⟩ and α(w) ∈ w + ⟨a⟩, it is therefore obvious that α(v)

is adjacent to α(w).

(2) The proof is by contradiction.

Suppose, first, that Cay(Zn, S) has Wilson type (C.1), (C.2′), or (C.3′). Then

Remark 5.55 tells us that the graph actually has Wilson type (C.1), so h+Se = Se for

some non-zero h ∈ 2Zn. Since 2Zn
∼= Zp2 , we know that |h| is divisible by p. Since Se

is a union of cosets of ⟨h⟩, this implies that |Se| is divisible by p, which contradicts the

fact that |Se| = 2|a|+ 2 = 2p+ 2.

We may now assume that the graph is of Wilson type (C.4). Then we can find

m ∈ Z×
2p2 , such that mS + n/2 = S. Since n/2 is odd, this implies mSe + n/2 = So,

so mSe = S ′
o. By passing to the quotient group 2Zn/⟨a⟩, we conclude that m ≡

±1 (mod p). So ma = a /∈ S ′
o. This contradicts the fact that mSe = S ′

o.

As we already remarked, we have seen in Chapter 7 that every non-trivially unstable

circulant graph of valency at most 7 has a Wilson type, so the following examples have

minimal valency among those that do not have a Wilson type. Their instability follows

by Proposition 5.56.

Example 8.42 (Hujdurović-Mitrović-Morris [13, Example 3.10]). Let n := 3·2ℓ, where
ℓ ≥ 4 is even, and let

S :=
{
±3,±6,± n

12
,
n

2
± 3
}
.

Then the circulant graph X := Cay(Zn, S) has valency 8 and is non-trivially unstable,

but does not have a Wilson type.
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9 CONCLUSION

In this thesis, we reviewed known and developed new results on canonical bipartite

double covers of graphs and their automorphisms. A graph is said to be stable if all

automorphisms of its canonical double cover are expected (that is, inherited from its

factors). If the canonical double cover has additional automorphisms, referred to as

unexpected automorphisms, the graph is called unstable. We have paid special atten-

tion to non-trivially unstable graphs, which are not only unstable but also connected,

non-bipartite and twin-free.

New results establishing stability of graphs have been discussed in Chapter 4 (in

particular, Proposition 4.15, Proposition 4.18 and Lemma 4.32). Besides the results on

stability of Cayley graphs of abelian groups of odd order and arc-transitive circulants,

that have already been known, we discussed the classifications of non-trivially unstable

circulants of order 2p (see Theorem 6.18) and non-trivially unstable circulants of low

valency (in Chapter 7). We were able to classify unstable Andrásfai graphs (Proposition

4.10) and Johnson graphs (Theorem 4.30). We proved infinitely many Kneser graphs

are stable (Corollary 4.23 and Corollary 4.24). We also considered strongly regular

graphs.

We gave a summary of Steve Wilson’s results on unexpected automorphisms. In

particular, we have studied his characterization of non-trivially unstable graphs in

terms of graphs with anti-symmetry, (generalized) cross-covers and twists of graphs.

We have derived Wilson types and demonstrated some of their limitations. New results

in this area include the generalizations of Wilson types (Theorem 5.52, Proposition 5.56

and Proposition 5.58).

Finally, we have presented different methods from the literature, borrowing ideas

from the theory of TF-automorphisms, double graphs and Generalized Cayley graphs,

for generating non-trivially unstable graphs with surprising properties such as asym-

metry or arc-transitivity. In Example 8.41 and Example 8.42, we constructed infinite

families of non-trivially unstable circulants whose instability can be explained by gen-

eralizations of Wilson types, but not by the original four types.

Despite the progress that has been made, many of the questions regarding unstable

graphs and their canonical double covers still remain open. Even in the most well-

studied case of circulant graphs, the classification of all non-trivially unstable members

is incomplete. It seems likely that additional conditions explaining instability remain

to be discovered.
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10 DALJŠI POVZETEK V

SLOVENSKEM JEZIKU

V tem magisterskem delu smo pregledali znane in razvili nove rezultate o kanoničnih

dvojnih krovih grafov in njihovih avtomorfizmih.

Na začetku magisterske naloge, v poglavju 2, smo se spomnili različnih pomembnih

pojmov iz teorije permutacijskih grup in (algebraične) teorije grafov. Predstavili smo

produkte grafov, Cayleyjeve grafe, Paleyeve grafe, grafe brez dvojčkov in kartezične

skelete grafov ter določili nekatere njihove lastnosti.

V poglavju 3 smo kanonični dvojni krov grafa X definirali kot graf BX := X ×K2.

Opazili smo nekaj njegovih pomembnih lastnosti. Na primer, BX je povezan, če

in samo če je X povezan in ni dvodelen. Poleg tega smo pokazali, da je podgrupa

Aut(BX), ki jo generirajo dvigi avtomorfizmovX in avtomorfizem τ : (x, i) 7→ (x, i+1),

izomorfna Aut(X)×S2. Elemente te podgrupe smo imenovali pričakovani avtomorfizmi

BX. Stabilne grafe smo definirali kot grafe, za katere so vsi avtomorfizmi pričakovani,

to je Aut(BX) ∼= Aut(X)×S2. Za grafe, katerih kanonični dvojni krov ima dodatne av-

tomorfizme, imenovane nepričakovani avtomorfizmi, pravimo, da so nestabilni. Indeks

nestabilnosti je definiran kot indeks podgrupe pričakovanih avtomorfizmov Aut(X)×S2

v grupi avtomorfizmov dvojnega krova BX. Opazili smo, da je indeks nestabilnosti 1

takrat in samo takrat, ko je graf stabilen, in navedli smo primere stabilnih in nestabilnih

grafov. Ugotovili smo, da je graf nestabilen, če je nepovezan, dvodelen (z netrivialno

grupo avtomorfizmov) ali vsebuje različne točke z enakimi množicami sosedov. To nas

je pripeljalo do definicije netrivialno nestabilnih grafov kot nestabilnih grafov, ki so

tudi povezani, niso dvodelni in nimajo dvojčkov.

Obravnavali smo več zadostnih pogojev za stabilnost različnih vrst grafov, ki so na

voljo v literaturi. Ti pogoji so segali od algebrskih lastnosti skupine avtomorfizmov

dvojnega krova do kombinatoričnih omejitev, ki jih izpolnjuje sam graf. Poleg tega

nam je uspelo posplošiti nekatere prej pridobljene rezultate, kar je privedlo do novih

močneǰsih rezultatov, zlasti za grafe z lastnostjo, da je njihova vsaka povezava vsebo-

vana v trikotniku. Ti rezultati so bili uporabljeni za preučevanje stabilnosti različnih

družin grafov. V poglavju 4 smo se ukvarjali z krepko regularnimi grafi. Klasificirali

smo tudi vse nestabilne Johnsonove grafe in pokazali, da je neskončno veliko Kneser-

jevih grafov stabilnih.

V poglavju 5 smo povzeli rezultate Steva Wilsona o nepričakovanih avtomorfizmih



Mitrović D. Canonical double covers of graphs and their automorphisms.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 138

grafov. Obravnavali smo vsakega od njegovih štirih kriterijev nestabilnosti za splošne

grafe. Še posebej smo preučili njegovo karakterizacijo netrivialno nestabilnih grafov

v smislu grafov z anti-simetrijo, (posplošenih) križnih krovov in zasukov grafov. Z

uporabo teh rezultatov smo izpeljali Wilsonove tipe za cirkulante. Nato smo obrav-

navali popravke Wilsonovih tipov. Njihove omejitve smo pokazali s primeri netriv-

ialno nestabilnih cirkulantov brez Wilsonovega tipa. Nato smo preučili posplošitve

Wilsonovih tipov.

V poglavju 6 smo, začenši s cirkulantimi praštevilskega reda in prehajajoč na cirku-

lante poljubnega lihega reda, na koncu pokazali, da ni netrivialno nestabilnih Cayley-

jevih grafov na abelskih grupah lihega reda. Enak rezultat smo ugotovili za ločno-

tranzitivne cirkulante. V istem poglavju smo dobili popolno klasifikacijo netrivialno

nestabilnih cirkulantov reda 2p, za vsa praštevila p.

V poglavju 7 pa smo klasificirali vse netrivialno nestabilne cirkulante z valenco

največ 7.

Nazadnje smo predstavili štiri različne metode za generiranje netrivialno nesta-

bilnih grafov s presenetljivimi lastnostmi. Z uporabo TF-avtomorfizmov smo ustvarili

neskončno družino netrivialno nestabilnih asimetričnih grafov. S konstrukcijo dvojnega

grafa smo zgradili dvojne Paleyeve grafe, ki so netrivialno nestabilni ločno-trazitivni

grafi z indeksom nestabilnosti, enakim 2. Konstruirali smo tudi družino netrivialno

nestabilnih posplošenih Cayleyjevih grafov, kateri niso točkovno-trazitivni ampak imajo

dvojni krov ki je Cayleyjev graf, ter družino netrivialno nestabilnih cirkulantov brez

Wilsonovega tipa.

Kljub doseženemu napredku so številna vprašanja v zvezi z nestabilnimi grafi in

njihovimi kanoničnimi dvojnimi krovi še vedno odprta. Celo v najbolj raziskanem

primeru cirkulantov je klasifikacija vseh netrivialno nestabilnih členov nepopolna. Zdi

se verjetno, da je treba odkriti še dodatne pogoje, ki pojasnjujejo nestabilnost.
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deleted wreath products. Mediterranean Journal of Mathematics, 16(6):1–27,

2019.

[5] Shao-Fei Du, Ru-Ji Wang, and Ming-Yao Xu. On the normality of cayley digraphs

of groups of order twice a prime. Australasian Journal of Combinatorics, 18:227–

234, 1998.

[6] Yan-Quan Feng, Klavdija Kutnar, Aleksander Malnič, and Dragan Marušič. On
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[20] Caiheng Li, Dragan Marušič, and Joy Morris. Classifying arc-transitive circulants

of square-free order. Journal of Algebraic Combinatorics, 14(2):145–151, 2001.
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