
UNIVERSITY OF PRIMORSKA
FACULTY OF MATHEMATICS, NATURAL SCIENCES AND

INFORMATION TECHNOLOGIES

DOKTORSKA DISERTACIJA
(DOCTORAL DISSERTATION)

ZASEBNOST IN VARNOST PODATKOV ZA
DECENTRALIZIRANI SPLET STVARI

(DECENTRALIZED DATA PRIVACY AND
SECURITY FOR THE WEB OF THINGS)

SIDRA ASLAM

KOPER, 2022

UNIVERSITY OF PRIMORSKA
FACULTY OF MATHEMATICS, NATURAL SCIENCES AND

INFORMATION TECHNOLOGIES

DOKTORSKA DISERTACIJA
(DOCTORAL DISSERTATION)

ZASEBNOST IN VARNOST PODATKOV ZA
DECENTRALIZIRANI SPLET STVARI

(DECENTRALIZED DATA PRIVACY AND
SECURITY FOR THE WEB OF THINGS)

SIDRA ASLAM

KOPER, 2022 MENTOR: PROF. DR. MICHAEL MRISSA

Acknowledgement

I would like to express my deepest gratitude to my mentor Prof. Michael Mrissa,
who always supported, encouraged, and motivated me during my Ph.D. His guidance
helped me throughout my Ph.D. research. I am truly grateful to him for his patience,
guidance, discussions, and immense knowledge.

I would like to acknowledge the European Commission for funding the InnoRenew
project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming
program and the Republic of Slovenia (Investment funding of the Republic of Slovenia
and the European Regional Development Fund). I would like also to acknowledge
the Slovenian Research Agency ARRS for funding the project J2-2504.

I would like to acknowledge the European Cooperation in Science and Technology
(COST) Action CA19126—Positive Energy Districts European Network (PED-EU-
NET) for the financial support during my Short Term Scientific Mission (STSM) in
Hungary.

Last, but not the least, my family deserves endless gratitude. Special thanks
to my parents, husband, and siblings for their endless courage and motivation. My
Ph.D. would not have been possible without their support all along the way. Fur-
thermore, I would like to express my gratitude to my friends for their support and
valuable time.

Abstract

Decentralized data privacy and security for the Web of things

The wood supply chain (WSC) involves several actors to store, process and trans-
port wood, from raw logs, to lumber, to final products. Nowadays, the need for trace-
ability in the WSC has become crucial. From a societal perspective, an improved
quality of traceability enables limiting fraud and illegal logging in protected areas and
preservation of our ecosystem. While traceability provides end users with complete
transparency concerning the provenance of the wood products they are buying, it also
provides a means for the other WSC actors to improve the management of their
assets, guarantee the origin for the wood production, and optimize their operation.
Typical solutions for traceability rely on embedded technology combined with sensors
to track the items through the WSC and gather data in a central database. As most
existing solutions to maintain product traceability depend on such a centralized in-
frastructure that acts as a Trusted Third Party (TTP), they suffer from single point
of failure, security, and privacy issues. Over the past few years, blockchain technol-
ogy has gained popularity due to its decentralized design, which overcomes some of
these limitations, therefore providing an interesting alternative to existing centralized
solutions.

However, relying on blockchain technology brings up new limitations related to
data privacy, access control, and data updates. In this dissertation, we explore a
range of solutions to address these limitations, according to the following research
questions: 1) how to provide decentralized security, privacy, and traceability for data
storage? 2) how to efficiently manage data updates when blockchain is involved in
the process? 3) what is the best way to use distributed ledgers to provide decentralized
trust for secure data storage? 4) how to protect users’ privacy-sensitive information
on a decentralized data storage solution?

To contribute to the above research questions this dissertation describes the de-
sign and development of a Web-based decentralized storage framework that provides
data privacy, security, and mutability as well as traceability for the WSC. To do
so, it explores, through literature review and original contributions, how to combine
blockchain with a distributed hash table, access control ontology, and multiple en-
cryption mechanisms. We design a decentralized framework in which each peer offers
REST (Representational State Transfer) APIs (Application Programming Interfaces)
to operate, thus ensuring interoperability over the Web. We rely on a metadata struc-
ture stored on the blockchain in combination with a distributed hash table to offer a

strong decoupling between data access and storage. We propose several algorithms to
address the security and privacy issues we are facing, so that data owners keep con-
trol of their data. We present the operation of our framework and demonstrate how
it enables run-time data protection. Concerning data updates, we propose a solution
that uses a pointer system to connect the different versions of the data together. The
proposed solution allows actors to access their update history. To provide end users
with complete traceability, we propose an algorithm that enables the actors of the
WSC to trace the data and verify product origin. Besides this, we design an access
control ontology to manage role hierarchies as well as relationships between actors and
handle complex permissions for data access. To navigate data, we propose a generic
Web client that relies on the Hypermedia As The Engine Of Application State (HA-
TEOAS) constraint. We design a proxy that is available as a REST service, and
that injects links into the response messages and forwards them to the client. Our
solution includes a REST API that enables the management of templates to gener-
ate HATEOAS links. We evaluate the performance of all our contributions with a
proof-of-concept prototype and batteries of tests that implement time measurements
to show their applicability, scalability, their advantages and limitations, with different
numbers of actors.

Key words: Distributed ledger, Security, Privacy, Blockchain.

Izvleček

Zasebnost in Varnost Podatkov za Decentralizirani Splet Stvari

Dobavna veriga lesa (DVL) vključuje več akterjev kateri urejajo shranjevanje,
predelavo in transport lesa, od surovih hlodov lesa, do končnih izdelkov. Dandanes
je potreba po sledljivosti v DVL postala ključna. Iz družbenega vidika, sledljivost
omogoča omejevanje goljufij in nezakonite sečnje lesa na zavarovanih območjih ter
ohranjanje našega ekosistema. Sledljivost zagotavi končnim uporabnikom popolno
preglednost v zvezi s poreklom lesnih izdelkov, in omogoči akterjem DVL, da izboljšajo
upravljanje svojih sredstev, zagotovijo izvor lesa in optimizirajo njihovo delovanje.
Tipična rešitev za sledljivost, se zanaša na vgrajeno tehnologijo (RFID čipi) v kombi-
naciji s senzorji za sledenje predmetov skozi DVL in zbiranje podatkov v centralni bazi
podatkov. Ker je večina obstoječih rešitev za ohranjanje sledljivosti izdelkov odvisna
od tako centralizirane infrastrukture, ki deluje kot zaupanja vredna tretja oseba, so
taki sistem podvrženi problemu kritične točke odpovedi. V zadnjih letih je tehnologija
veriženja blokov pridobila na popularnosti zaradi svoje decentralizirane zasnove, ki
predstavlja zanimivo alternativo obstoječim centraliziranim rešitvam.

Vendar pa uporaba blockchain tehnologije prinaša nove omejitve, povezane z za-
sebnostjo podatkov, nadzorom dostopa in posodabljanjem podatkov. V tej disertaciji
raziskujemo vrsto rešitev za odpravo teh omejitev glede na naslednja raziskovalna
vprašanja: 1) kako zagotoviti decentralizirano varnost, zasebnost in sledljivost za
shranjevanje podatkov? 2) kateri je najboljši način za uporabo tehnologije razpršene
evidence za zagotavljanje decentraliziranega zaupanja za varno shranjevanje podatkov?
3) kako ravnati z dostopom do podatkov in zaščititi informacije, občutljive na za-
sebnost uporabnikov, s decentralizirano rešitvijo za shranjevanje podatkov? 4) kako
učinkovito upravljati posodobitve podatkov na blockchainu?

Da bi prispeval k zgornjim raziskovalnim vprašanjem, ta disertacija opisuje zas-
novo in razvoj decentraliziranega RESTful ogrodja za shranjevanje podatkov, ki zago-
tavlja zasebnost, varnost, spremenljivost in sledljivost za DVL. V ta namen s pre-
gledom literature in izvirnimi prispevki se raziskuje, kako združiti blockchain z po-
razdeljeno zgoščeno tabelo, ontologijo nadzora dostopa in več mehanizmov šifriranja.
V enem samem ogrodju oblikujemo več algoritmov in strukturo metapodatkov, shran-
jenih v verigi blokov in v kombinaciji z porazdeljeno zgoščeno tabelo, da ponudimo
močno ločitev med dostopom do podatkov in shranjevanjem, hkrati pa nudimo priložnost
za reševanje vprašanj varnosti in zasebnosti. Vsak enakovrednik v našem ogrodju
ponuja API-je RESTful za delovanje in tako zagotavlja interoperabilnost prek spleta.

V disertaciji, predstavljamo delovanje našega ogrodja in prikazujemo, kako omogoča
zaščito podatkov med izvajanjem. V zvezi s posodabljanjem podatkov predlagamo
rešitev, ki uporablja sistem kazalcev za povezovanje različnih različic podatkov. Pred-
lagana rešitev omogoča akterjem dostop do svoje zgodovine posodobitev. Da bi končnim
uporabnikom zagotovili popolno sledljivost, predlagamo algoritem, ki akterjem DVL
omogoča sledenje podatkom in preverjanje izvora izdelka. Poleg tega oblikujemo on-
tologijo nadzora dostopa za upravljanje hierarhij vlog, pa tudi odnosov med akterji in
upravljanje kompleksnih dovoljenj za dostop do podatkov. Predlagamo generičnega
odjemalca HATEOAS za krmarjenje po podatkih z uporabo API-jev RESTful.

V disertaciji predstavimo proxy, ki je na voljo kot REST storitev, in vnese povezave
v povratno sporočilo in jih posreduje odjemalcu. Naša rešitev vključuje REST API,
ki omogoča upravljanje predlog za ustvarjanje povezav HATEOAS. Učinkovitost vseh
naših prispevkov ocenjujemo s prototipom za dokaz koncepta in serijo testov, ki izva-
jajo meritve časa, da pokažejo njihovo uporabnost, razširljivost, njihove prednosti in
omejitve, z različnim številom akterjev.

Ključne besede: tehnologija razpršene evidence, Varnost, Zasebnost, Blockchain

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Motivating Scenario . 3
1.2 Research Problems . 6
1.3 Research Questions and Hypotheses 7
1.4 Thesis Goals . 8
1.5 Research Methodology . 8

1.5.1 Literature Review . 9
1.5.2 Critical Evaluation of Existing Methodologies 9

1.6 Scientific Contribution . 9
1.7 Dissertation Outline . 12

2 Background Knowledge and Literature Review 14
2.1 Introduction . 14
2.2 Background Knowledge . 14

2.2.1 Blockchain Technology . 15
2.2.2 Distributed Hash Table . 18
2.2.3 Role-based Access Control . 20
2.2.4 Semantic Web . 21
2.2.5 The REST Architectural Style 25

2.3 Literature Review . 27
2.3.1 Decentralized Data Storage 27
2.3.2 Decentralized Identity Privacy 34
2.3.3 Semantic Approaches to Access Control 35
2.3.4 REST and HATEOAS . 44
2.3.5 Comparative Analysis . 45

2.4 Discussion and Conclusion . 48

3 Decentralized Web Framework for Data Management 52
3.1 Introduction . 52
3.2 Framework Overview . 53

3.2.1 API and Algorithm for Actor Registration 55
3.2.2 Execution Flow . 56

CONTENTS vii

3.3 Framework Components . 61
3.3.1 Access Control Ontology Component 62
3.3.2 Blockchain Component . 63
3.3.3 DHT Component . 64
3.3.4 Encryption Manager Component 64

3.4 Implementation and Discussion . 65
3.5 Chapter Summary . 65

4 Decentralized Mutable Data Storage 67
4.1 Introduction . 67
4.2 Metadata Structure . 68
4.3 Algorithm for the Data Write Operation 68
4.4 Management of Data Operations . 71
4.5 Traceability Algorithm . 72
4.6 Results and Implementation . 73

4.6.1 Experimental Setup and Implementation 73
4.6.2 Security Analysis . 74
4.6.3 Performance Evaluation . 75

4.7 Chapter Summary . 78

5 Semantic Role-based Access Control 80
5.1 Introduction . 80
5.2 Access Control Ontology Component 81

5.2.1 Ontology Classes and Instances 81
5.2.2 Relations using Object Properties 83
5.2.3 Semantic Description of Non-Hierarchical Relationships . . . 84
5.2.4 Access Control Rules . 84

5.3 Implementation and Evaluation . 87
5.3.1 Implementation . 87
5.3.2 Evaluation . 87

5.4 Conclusion . 87

6 HATEOAS Client with REST APIs 89
6.1 Introduction . 89
6.2 HATEOAS Client . 90
6.3 Proxy as a Resource . 91
6.4 Proxy Template Management . 92
6.5 Results and Evaluation . 93

6.5.1 Experimental Setup and Implementation 93
6.5.2 Evaluation . 93

6.6 Chapter Summary . 94

7 Conclusion and Future Work 96
7.1 General Conclusion . 96
7.2 Future Work . 97

Bibliography 99

viii CONTENTS

Index 115

Povzetek v slovenskem jeziku 116
7.3 Uvod . 116
7.4 Raziskovalni Prispevki in Zaključki 117

7.4.1 Decentralizirano Spletno Ogrodje: 117
7.4.2 Decentralizirano Spremenljivo Shranjevanje Podatkov: 117
7.4.3 Semantični Nadozor Dostopa na podlagi Vlog: 118
7.4.4 HATEOAS Odjemalec z REST APIs: 118

Kazalo 120

Stvarno kazalo 121

List of Figures

1.1 Simplified overview of the wood supply chain and its actors. 4

2.1 Merkle tree of blockchain. 16

3.1 Overview of a peer architecture. 53
3.2 Overview of the proposed APIs using Swagger. 54
3.3 High-level representation of actors actions on the data. 57
3.4 Execution flow of forest manager actor in the framework. 58
3.5 Execution flow of transporter actor in the framework. 59
3.6 Execution flow of sawmill actor in the framework. 60
3.7 Execution flow of product assembler actor in the framework. 61
3.8 Execution flow of product seller actor in the framework. 62
3.9 Execution flow of customer in the framework. 62

4.1 Metadata structure on the blockchain 69
4.2 Time overhead using asymmetric encryption 76
4.3 Time overhead using symmetric encryption 77
4.4 Average time consumption under different number of actors 79

5.1 Classes hierarchy of the ontology . 82
5.2 The ontology object properties . 83
5.3 Average time comparison between different reasoners 88

6.1 Swagger interface of the proposed proxy APIs. 92
6.2 Overview of overall time needed to answer REST requests and create

links on different numbers of clients 95

List of Tables

2.1 Summary of related work analysis . 38
2.1 Continued . 39
2.1 Continued . 40
2.1 Continued . 41
2.1 Continued . 42
2.2 Features comparison of our proposed work with existing solutions . . 50
2.2 Continued . 51

4.1 Detailed results under different number of actors 78

6.1 Timing statistics to answer REST requests and create links 94

Chapter 1

Introduction

Over the last decades, the Internet, and then the Web, have been providing a
reliable protocol stack to support various applications, from data storage to live
streaming. The Internet acts as a global network that enables devices to commu-
nicate with each other all over the world, mostly thanks to the Internet Protocol
(IP1), which provides identifiers for devices [6]. Concerning message transport, the
Transmission Control Protocol (TCP2) supports reliable communication to exchange
data between client and server and the User Datagram Protocol (UDP3) is suitable
for applications such as live streaming [31].

A diverse range of applications and services are provided over the Internet such as
communication services (e.g e-mail), file exchange services, peer-to-peer networks,
and last but not least, the Web. These services are supported by various protocols
such as e-mail, relying on the Simple Mail Transfer Protocol (SMTP4) and Post Office
Protocol (POP35), file exchange services depending on the File Transfer Protocol
(FTP6), and peer-to-peer networks such as Kademlia [113].

As a service that operates over the Internet, the Web, since its first itera-
tion, provides access to static HyperText Markup Language (HTML7) pages linked
through hypermedia and easily located through Uniform Resource Identifiers (URI8)
[129,170]. The HyperText Transfer Protocol (HTTP9) is responsible for the commu-
nication between a Web client (e.g browser) and a Web server using HTTP messages
(request and response) [5].

Thanks to this protocol stack, the Web facilitates access and sharing of informa-
tion. The first implementation of the Web was mostly read-only, meaning that it
consisted of static pages with predefined contents [5]. At this stage, the purpose of
Web clients was mostly to read and search for information. However, at the beginning
of this century, the Web became dynamic, driven by the development of applications

1https://datatracker.ietf.org/doc/html/rfc791
2https://www.ietf.org/rfc/rfc793.txt/
3https://datatracker.ietf.org/doc/html/rfc8085
4https://datatracker.ietf.org/doc/html/rfc5321/
5https://datatracker.ietf.org/doc/html/rfc1081/
6https://datatracker.ietf.org/doc/html/rfc959/
7https://www.w3.org/html/
8https://datatracker.ietf.org/doc/html/rfc3986
9https://datatracker.ietf.org/doc/html/rfc2616

https://datatracker.ietf.org/doc/html/rfc791
https://www.ietf.org/rfc/rfc793.txt/
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc5321/
https://datatracker.ietf.org/doc/html/rfc1081/
https://datatracker.ietf.org/doc/html/rfc959/
https://www.w3.org/html/
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2616

2

like YouTube, Twitter, Facebook, Instagram, etc [120]. Becoming dynamic means
that Web servers were able to host not only contents, but programs (mostly scripts
in languages like PHP, ASP.NET, JSP, or compiled server-side components like Java
Servlets) that allowed users to interact with Web pages [5]. This development made
it possible for users to contribute to Web contents [173].

At the same time, the industry started to see the benefit for business-to-business
interactions over the Web through software clients. Following this trend, the devel-
opment of the Web service protocol stack, enabled software clients to call remote
applications using the Web, with complete abstraction of the underlying operating
systems, protocols and programming languages. The Web service protocol stack con-
sists of the Simple Object Access Protocol10 (SOAP), the Web Service Description
Language11 (WSDL) and the Universal Description, Discovery, and Integration12

(UDDI) registry. SOAP is based on the Extensible Markup Language (XML) data
format and provides strict rules to exchange data between client and server indepen-
dently of the transport protocol [48]. WSDL is used to provide for service description,
which helps the client application to understand how to use the functionality of the
service [45]. UDDI is a centralized registry that supports service discovery. However,
this protocol stack did not receive long-term adoption, due to several design issues.

First, SOAP, while transport protocol agnostic, is in practice (mis)using HTTP
as a de facto standard for data transfer, without properly exploiting the different
features that HTTP offers as an application-level protocol [106,119,142,184]. WSDL
describes functionalities in a way that is similar to performing Remote Procedure
Calls (RPC) over HTTP, and UDDI was never widely adopted when users simply
find services online using search engines [19, 184].

Due to these limitations, amongst others, the design of Web services has evolved
towards the guidelines from the REST architectural style, that properly exploits
the Web and its HTTP protocol [85]. REST is useful to allow developers to de-
sign their Application Programming Interface (APIs), in this case Web APIs, by
following some well-defined principles that enable, amongst others, generic clients
using resource-oriented calls that make proper usage of the HTTP verbs or methods
(mainly GET/POST/PUT/DELETE), better decoupling between clients and servers
through stateless communication, in turn guaranteeing better scalability [61]. The
HTTP verbs allow communication between client and server. The GET HTTP verb
is used to retrieve the representation of the specific resource. The POST verb sends
data to be processed on the server side, which may create a sub-resource. The PUT
verb is used to record the contents of the request at a specific location, which might
create or update an existing resource. Finally, the DELETE verb deletes the resource
on the server [144]. The REST resources are identified through Uniform Resource
Identifier (URI) [164]. HTTP status codes help to identify whether HTTP request is
successfully completed or not. Unlike SOAP, REST is not restricted to the XML for-
mat and supports different data formats such as JavaScript Object Notation (JSON),
which can be agreed on using the HTTP content negotiation mechanism [70]. JSON
is a human-understandable language that is used to interchange data and it presents

10https://www.w3.org/TR/soap/
11https://www.w3.org/TR/wsdl/
12http://www.uddi.org/pubs/uddi_v3.htm

https://www.w3.org/TR/soap/
https://www.w3.org/TR/wsdl/
http://www.uddi.org/pubs/uddi_v3.htm

Introduction 3

several advantages, such as a much reduced verbosity, as compared to XML [70].
While Web services started to be widely used, the need for large-scale infras-

tructures to support them and offer seamless access to applications became crucial,
thus motivating the development of cloud computing [34,171]. By centralizing hard-
ware resources into a homogeneous infrastructure and decoupling the management
of hardware resources from the software operation through virtualization techniques,
cloud computing brings large scale savings and facilitates the scalability of appli-
cations as it allows hardware to be allocated at run-time to the applications that
require more resources than others.

However, one of the most critical issues related to cloud infrastructures is their
centralized design, which is subject to security weaknesses as they become a single
point of failure [172], more likely to be the target of attacks. Indeed, the cloud
acts as a Trusted Third Party (TTP) to provide highly sensitive services such as
authentication or storage of privacy-sensitive data and can be an interesting focus
point due to the large amount of data available.

In this context, decentralized approaches offer an interesting alternative to pro-
vide users with the same services than the cloud provides, without the aforementioned
limitations. However, algorithms for data management, processing and storage need
to be redesigned to suit this new context.

In particular over the past few years, blockchain as a distributed ledger technology
has gained much attention to enable trust between different parties without any
TTP [121]. Due to its decentralized and transparent nature supported by verifiable
cryptographic mechanism, blockchain eliminates the risks associated to the single
point of failure and facilitates users’ trust [166]. As such, blockchain technology has
a significant impact on society with many applications related to business, healthcare,
supply chain, etc. However, despite the advantages of decentralization, transparency,
and trust, the blockchain technology also raises several limitations that hamper its
capacity to be integrated into a solution. In this thesis, we investigate some of these
limitations related to data immutability, privacy, and security.

The rest of this chapter is organized as follows. First, we describe the motivat-
ing use case that we use throughout this dissertation. We show how this use case
raises the research challenges that we address in our work. Then, we detail our re-
search challenges into specific research questions and hypotheses. We present our
thesis goals and show how they cover the identified research questions. Finally, we
detail our research methodology, scientific contributions, and outline the plan of the
dissertation.

1.1 Motivating Scenario

Our motivating scenario takes place in the context of the wood supply chain (WSC).
More specifically, we study the traceability problem in the context of massive wood
furniture production, where the WSC transforms raw wooden logs into a final product
to be delivered to the end customer. Traceability in the WSC involves keeping track
of every piece of massive wood along its path through the chain to avoid frauds,
for instance, during the transportation process replacing high-quality wood with

4 1.1 Motivating Scenario

low-quality wood is very common. Therefore, it is of primordial importance that
the involved stakeholders can monitor the location of their assets over time and
jointly guarantee the origin of the wood. At the physical level, to tackle this issue,
Radio Frequency Identification (RFID) chips are typically inserted into the wood
to maintain product traceability [78]. However, concerning the digital level, many
challenges remain, which we motivate in the following. Figure 1.1 gives a simplified
overview of the different steps in the WSC and the actors involved, from the raw log
that is being cut, transported, processed into logs, assembled into a final product,
stored, to reach the last step where the final product is ready for sale.

Forest manager

Transporter

Sawmill Customers

logs

logs

lumbers

lumbers

Transporter

Product assembler

product

product

Transporter

Product seller

product

Figure 1.1: Simplified overview of the wood supply chain and its actors.

In the following, we describe the different activities of the identified actors that
are involved in the process of massive wood furniture production:

• The forest manager manages the forest and answers the demand for wood,
provides its clients with logs.

• The transporter conveys any product (in our example logs, lumber or furni-
ture) from one location to another.

• The sawmill processes and cuts logs into lumbers and stores them temporarily.

• The product assembler cuts lumbers into specific dimensions and assembles
them into a final product (e.g. furniture).

• The product seller exposes assembled wood product and organises marketing
strategies (e.g. discount operations) to sell it.

• Customers order and purchase wooden products and should be able to track
their product origin.

The scenario discussed above is generally realized upon a sufficient number of
customer orders. Please note that for the sake of simplicity, in order to focus on
the problems at stake, our scenario relies on a simplified version of the WSC with a
limited number of actors, leaving aside the large scale aspects that occur when the
different actors of the WSC connect with each other to obtain large scale benefits.
Therefore, upon customer order, the product seller needs to provide for the ordered

Introduction 5

furniture and asks the furniture assembly company to deliver assembled furniture.
The furniture assembly company needs lumber to assemble final products, and in
turn requires the sawmill to provide them with it. As a consequence, the sawmill
company needs logs from the forest manager. The transporter is responsible for
conveying the goods (logs, lumber or products) from an actor’s location to another.

All these actors are involved in the WSC, they collaborate to realize a joint
workflow and they need to exchange data about the goods they process in order
to fulfil the customers’ needs for traceability. To illustrate our example, the forest
manager will record provenance and quality information about the logs it sends to
the sawmill, this latter will in turn generate new data for lumber that needs to be
connected to the logs they come from, and in turn the lumber pieces that will be
assembled in a piece of furniture need to be identified as well, and so on until the
final product reaches the customer. At this stage, we explain traceability to allow
a customer to visualize exactly what the furniture is composed of and from which
location each piece of it comes from.

As explained in the previous section, due to the limitations that typical central-
ized architectures show (i.e. cloud-based), our motivating example highlights the
need to design a decentralized framework to support the WSC. The proposed frame-
work must ensure interoperability, permanent trusted data storage, and guarantee of
privacy between actors. It then comes as natural option to rely on the Web for inter-
operability, due to the multiplicity and diversity of actors. We develop a Web-based
set of APIs to support our framework in Chapter 3. We also extend our framework
with a generic client and proxy solution that extends HTTP messages to support
HATEOAS in Chapter 6.

With respect to trusted decentralized data storage, typically, existing solutions
rely on a centralized database to manage and store RFID data, which leads to a
single point of failure, thus motivating research towards decentralized solutions. We
need to look for a solution that provides data security, privacy, traceability, trust,
and supports data updates [168]. Concerning decentralized trust, blockchain is worth
exploring nowadays as a decentralized ledger technology that stores transactions in
such a way that all participants can easily access them without requiring any TTP.
It indeed comes as an interesting technology for solving the single point of failure
issue. It is completely decentralized to manage the data where no single authority
is controlling the whole network, which also eliminates the need for TTP [89]. Its
decentralized nature increases the transparency where everyone on the network can
access the transactions [89]. In addition, it ensures trust because each participant
has the same copy of the transactions that are stored in the distributed ledger [174].
Participants may have to trust the distributed ledger instead of trusting each other.
In the blockchain, each block stores the hash to its previous block to avoid the
modification of stored data and ensure immutability [92,131]. It means that, once the
data has been stored on the blockchain, it cannot be modified. However, blockchain is
not designed to support data updates because of its immutability feature as discussed
above [145]. It is also not adapted to store large amount of data because its nodes
have limited storage size to store the data [57, 89]. In our scenario, when a log is
transported from one point to another, its recorded current location must change,
and the history of its previous location must be preserved as well. Other decentralized

6 1.2 Research Problems

solutions like Distributed Hash Table (DHT) are in this case better adapted than
blockchain due to their design that does not necessarily entail complete replication
of the data (DHTs are actually quite flexible in this respect). Our work explores how
to combine them in a single design to gain the best of both worlds. This aspect is
developed in Chapter 4.

In this context, actors do not want to disclose their business information publicly
due to security and privacy concerns. There is a need to develop a solution that
overcomes the immutability feature of blockchain to allow actors to perform update
operations on recorded data. At the same time, the designed solution needs to guar-
antee data protection from malicious actors and ensures data access depending on the
actor’s permission. In the WSC, the authorizations for data access between different
actors can be complex and dynamically evolve with the business relationships, thus
justifying the use of ontologies to model them. Such aspect is develop in Chapter 5.

Overall, our WSC scenario motivates the design of a decentralized data storage
and management solution that ensures data updates, manages transactions history,
provides an acceptable level of security and privacy, allows data owners to control
their data, and supports complex relationships between actors. All these features
need to be smoothly integrated into a single framework to eventually provide a
decentralized system for product traceability. While designing our contribution, we
will make sure that it remains application domain-agnostic so that it can be widely
applicable to any other supply chain scenario. The motivating use case discussed
above highlights following research problems.

1.2 Research Problems

Existing work explored the use of blockchain as distributed ledger technology to
support decentralized data storage and management, which eliminates the need for
TTP to avoid the single point of failure issue [7, 66, 103, 175]. In the following we
discussed the research problems (RP), that we address in the dissertation.

• RP1: Data immutability and blockchain: According to our scenario,
actors may want to update their data (for example product location for the
transporter). However, blockchain stores data permanently and does not allow
to update and delete the data once it has been stored in the chain, because of its
immutability feature [92]. The challenge consists in overcoming this limitation
while keeping the main property that makes the blockchain interesting, the
verifiable trust in data immutability. There is a need to develop a solution that,
while respecting the immutability characteristic of blockchain, also enables
update and delete operations on stored data.

• RP2: Data privacy: Blockchain stores data publicly [26, 117]. This is an
issue when it comes to privacy-sensitive data. However, data privacy issues rise
when unauthorized parties reveal privacy-sensitive information of actors. Ad-
ditionally, a data privacy breach occurs when data is stored on a decentralized
platform where data owners have no control over their data and are unable
to decide who can have access to their data, and which part of the data can

Introduction 7

be accessed. The research problem is about including a privacy management
system into the blockchain operation in a decentralized way, without breaking
the blockchain design.

• RP3: Data security: There is a need to enforce data security: 1) confiden-
tiality to protect data from unauthorized access, 2) integrity to guarantee that
data remains unaltered, 3) availability to make sure that an authorized actor
can always access data when needed, 4) non-repudiation to ensure that the
actor cannot deny a data operation once it has been performed.

As well, the multiplicity of needs depending on the context in which the solution
is utilized makes it interesting to develop different solutions for security. The
research challenge is to integrate different security mechanisms that can be
utilized together with the previously studied research problems to provide for
different levels of data protection.

• RP4: Complex and dynamic access control: The typical Role-based ac-
cess control (RBAC) model is static in nature and does not support complex
relationships between actors [60, 66, 152]. There is a need to develop models
that separate concepts and individuals and enable describing fine-grained ac-
cess control rules between specific individuals, and not only hierarchical as in
RBAC. Therefore, the research problem is about studying the most appropri-
ate usage of ontologies to enable fine-grained access control over relationships
that cannot be modeled with RBAC.

1.3 Research Questions and Hypotheses

In the following, we list a set of research questions and hypotheses that we defined
according to the above research problems. These questions and hypothesis will con-
tribute in turn to define the thesis goals that follow.

• RQ-1: How to provide decentralized security, privacy, and traceability for data
storage?

• H-1: The joint use of distributed hash table for storage, distributed ledger
technology for immutable storage of meta-data, and RBAC can provide a com-
pletely decentralized platform.

• RQ-2: How to efficiently manage data updates when blockchain is involved in
the process?

• H-2: Reducing the use of blockchain to handling metadata enables tracking
history and decoupling the log of data operations from the data itself.

• RQ-3: What is the best way to use distributed ledger to provide decentralized
trust for secure data storage?

• H-3: A distributed ledger can be designed to efficiently keep immutable records
of data operations on the data storage support.

8 1.4 Thesis Goals

• RQ-4: How to protect users’ privacy-sensitive information on a decentralized
data storage solution?

• H-4: It is possible to combine a decentralized data storage framework with
RBAC to handle privacy for data access in a decentralized way.

1.4 Thesis Goals

According to the above research questions, this thesis aims at designing and im-
plementing a RESTful decentralized storage framework that features data privacy,
security, and mutability, to support traceability for the WSC. We take into con-
sideration different technologies such as distributed ledger technology (in particular
blockchain), Distributed Hash Table (DHT), symmetric and asymmetric encryption,
and ontology-based access control. We integrate these technologies into a single
framework to provide a secure and privacy-aware decentralized solution. We criti-
cally examine the methodologies and limitations of existing work to deliver a com-
parative analysis with respect to our work (H-1). This work has been published in
these articles [10,12,14,118].

Within our proposed framework, we design a distributed ledger as a blockchain to
store our metadata (immutable record of the data operations) and DHT key (a hash
pointer refer to the data in the DHT), while actual encrypted data is managed on the
DHT. This design supports data updates and enables participants’ trust by storing
metadata as a record of immutable data operations on the blockchain. It enables the
data owner to control and trace their data, who wants to access it, and which parts
of the data are requested. We investigate managing both previous pointer (a hash
key of the previous version of the data) and new DHT key in case of data updates,
that allows data owners to access their transaction history (H-2, H-3). This work
has been published in these articles [10,14,118].

We build our solution over the Web to ensure interoperability, so our proposed
framework enables authorized participants to manage their data through Represen-
tational State Transfer (RESTful) Application Programming Interface (APIs). Our
decentralized platform manages multi-level (class and individual level) data access
control based on ontological descriptions that support reasoning thanks to the Se-
mantic Web Rule Language (SWRL). Our SWRL rules enable fine-grained data
access, and as the framework operates over RESTful APIs, the rules rely on HTTP
verbs (GET, POST, PUT, DELETE) to define the permissions that different actors
have on the data (H-4). This work has been published in these articles [11,14].

1.5 Research Methodology

We have structured our research methodology through a systematic approach that
consists in identifying the concerned research domains related to decentralized sys-
tems (Web framework/API design, trust, data storage, privacy and security), re-
viewing existing work in the different research domains, first individually, and then
exploring works that combine them, to identify the most recent advances and their

Introduction 9

limitations. Based on this literature review, partially summarized in [16], we could
clearly identify the research contributions developed in this thesis.

1.5.1 Literature Review

To start with the research, we have gathered articles to get a deep understanding
of blockchain, distributed hash table, encryption mechanisms, access control, and
semantic Web technologies. Our research was carried out by using the following
search engines and databases: Google Scholar, Science Direct, ACM Digital Library,
IEEE Explore, and Google Search.

We searched research papers relevant to our thesis topic using the following
keywords, “blockchain”, “distributed ledger”, and “decentralized data management”.
We analyzed the retrieved research papers based on title, abstract, and keywords.
Then, we read research papers to gather knowledge and obtain an understanding of
blockchain design, structure, and its usage. In the next step of our research, we re-
fined the search phrases by using more keywords such as: “access control”, “security”,
“privacy”, “distributed hash table”, “encryption” “cryptography” and “semantics” to
find out more papers related to our topic. In the next step, we excluded those papers
that were already considered or not completely relevant to our thesis topic. Articles
resulting from this search are examined individually and we selected the papers that
are relevant to our topic.

1.5.2 Critical Evaluation of Existing Methodologies

After getting a thorough understanding of the domain of study, the gaps in the lit-
erature were more visible, which helped us to provide a critical comparative analysis
and evaluation of existing work with our proposed work. We presented the identified
gaps of existing literature in Table 2.1 of Chapter 2, which we summarized in the
following.

Most existing data storage solutions are suffering from security, privacy, im-
mutability, and scalability issues. A range of solutions do not take into account
privacy-sensitive data and rely on the blockchain for storage without additional en-
cryption techniques. In addition, data stored on the blockchain is immutable which
does not allow to make any modification after storing it. As well, it presents a scala-
bility issue as the blockchain is designed to provide decentralized trust and not data
storage. While some solutions address data access control, in general they do not
address complex permissions to access data and one-to-one relationships between
actors. This critical comparative analysis helped us to answer our research questions
and build our scientific contributions.

1.6 Scientific Contribution

The results of this dissertation contribute to the research investigating decentralized
privacy-aware data storage, in particular the integration aspects of decentralized
data storage, data mutability with blockchain technology, data security and privacy,

10 1.6 Scientific Contribution

multi-level ontology-driven data access, and Web client. We explained the following
set of contributions of this dissertation:

• We propose a decentralized Web framework that enables data owners to control
their data and manage fine-grained data access without a TTP. This frame-
work builds on RESTful APIs to ensure interoperability over the Web. The
proposed RESTful APIs are designed in such a way that the different actors of
the WSC can query each other’s data if they are allowed to, thus opening the
way to automate those exchanges through semantic annotations. To enable
our framework to operate, we combine blockchain with distributed hash table,
ontology-driven access control, and encryption mechanisms into a single frame-
work. This work has been published in the in the Workshop of MADEISD in
the European Conference on Advances in Databases and Information Systems
in August 2021 [14], SCI Journal of Energies, MDPI in October 2021 [10], and
Conference of SWST International Society of Wood Science and Technology in
July 2020 [12].

• We propose a decentralized data storage solution. In this solution we have
following set of contributions:

– We demonstrate a solution that combines blockchain and DHT to man-
age data updates. Our solution stores metadata and DHT key on the
blockchain, whereas actual encrypted data is managed on the DHT. Our
proposed solution allows actors to keep track of and update their data
without disclosing their private information on the public ledger. This re-
sult has been published in the SCI Journal of Energies, MDPI in October
2021 [10], Conference of InnoRenew CoE International, in June 2021 [13],
and SCI Journal of Applied Sciences, MDPI in January 2022 [118].

– We provide and develop a decentralized system that supports different
types of encryption to ensure data protection at run time. It enables ac-
tors to choose between different types of encryption methods while stor-
ing and querying data. This security design ensures data authenticity
and protects data against spoofing, linking, eavesdropping, modification,
and sybil attacks. This result has been published in the SCI Journal of
Energies, MDPI in October 2021 [10].

– We propose a metadata structure that extends the metadata discussed
in [7] to enable trust between actors. The proposed metadata structure
maintains immutable record of each operation performed on the data.
This result has been published in the SCI Journal of Energies, MDPI in
October 2021 [10] and SCI Journal of Applied Sciences, MDPI in January
2022 [118].

– We propose a pointer system to connect the different versions of the data
together. One metadata structure contains a pointer to the previous ver-
sion of the data, as well as the DHT key of the data on the DHT. It allows
authorized actors to navigate through different versions of the data in our
framework. This result has been published in the SCI Journal of Energies,
MDPI in October 2021 [10].

Introduction 11

– We propose a traceability algorithm that allows actors to keep track of
their data and verify the origin of the final product in a decentralized
ledger, thus showing the applicability of our solution to the scenario that
motivates our work. This result is submitted to the SCI Journal of Com-
puter Science and Information Systems in January 2022 [15].

• We propose an ontology-driven role-based access control component to manage
relationships between actors and handle complex permissions for data access
through REST APIs. This result has been published in the SCI Journal of
Energies, MDPI in October 2021 [10] and conference of sustainability in energy
and buildings in July 2021 [11].

• We develop a generic HATEOAS client with proxy to navigate through data
using REST APIs. Our proxy processes the response message and offers rele-
vant links to the client with the help of REST APIs. We propose a REST API
that enables actors to add, update, read, and delete templates with links.

• We provide details of a proof-of-concept implementation with security anal-
ysis and performance evaluation to show the feasibility of our solution. We
evaluate the performance of our solution in terms of scalability with a proof-of-
concept prototype, by implementing time measurements with different numbers
of clients. This result has been published in these articles [10,11,14,118].

The results of our dissertation are published in the following papers:

• Aslam, S., Tošic, A., Mrissa, M.: Secure and Privacy-Aware Blockchain De-
sign: Requirements, Challenges and Solutions. Journal of Cybersecurity and
Privacy, 1(1), 164-194, 2021

• Aslam, S., Bukovszki, B., Mrissa, M.: Decentralized Data Management Privacy-
aware Framework for Positive Energy Districts. Energies, 14(21), 7018, 2021

• Aslam, S., Mrissa, M.: A RESTful Privacy-Aware and Mutable Decentralized
Ledger. European Conference on Advances in Databases and Information Sys-
tems (pp. 193-204). Springer, Cham, 2021

• Aslam, S., Bukovszki, B., Mrissa, M.: Multi-level Data Access Control in Pos-
itive Energy Districts. Sustainability in Energy and Buildings 2021 (pp. 553-
565). Springer, Singapore, 2021

• Aslam, S., Mrissa, M.: Privacy-aware Distributed Ledger for Product Trace-
ability in Supply Chain Environments. Conference of SWST International
Society of Wood Science and Technology, 2020

• Aslam, S., Mrissa, M.: Mutable and Privacy-aware Decentralized Ledger for
Data Management in Wood Supply Chain Environments. InnoRenew CoE
International Conference (IRIC2021), 2021

• Mrissa, M., Tošić, A., Hrovatin, N., Aslam, S., Dávid, B., Hajdu, L., Krész,
M., Brodnik, A., Kavsek, B., : Privacy-aware and Secure Decentralized Air
Quality Monitoring. Applied Sciences, 12(4), 2147, 2022

One paper has been submitted and is currently under review:

12 1.7 Dissertation Outline

• Aslam, S., Mrissa, M.: A Framework for Privacy-aware and Secure Decen-
tralized Data Storage. Computer Science and Information Systems (ComSIS),
June 2022

1.7 Dissertation Outline

The rest of this dissertation is structured as follows:

Chapter 2 provides background knowledge of the main concepts that we use in
this thesis. Then, it details the related work of existing technologies that are relevant
to our research. After that, it highlights the advantages and limitations of the work
identified in the literature review. It presents a feature comparison of the proposed
solution with existing solutions.

Chapter 3 describes the design of the proposed decentralized Web framework
and its components. We design RESTful APIs of our decentralized Web framework
to ensure interoperability over the Web. The use of our framework components is
illustrated with our example of the WSC. Then, it details the algorithm that shows
actor registration process to the proposed decentralized framework using our REST
APIs. It presents the interaction of each actor with the proposed framework using
REST APIs. After that, it provides the implementation details and comparison of
the proposed REST APIs with the Hyperledger APIs.

Chapter 4 explains the secure decentralized data storage, metadata structure,
management of data updates, and traceability contributions. It presents the meta-
data structure to maintain the actor’s trust in a decentralized framework. Then,
it explains the algorithm for the data write (without pre-existing data) and flexible
encryption design to enforce security on data. After that, it details a data update
(with pre-existing data) solution that allows data owners to modify their data and
access their update history. It also describes the data read and delete operations on
a decentralized ledger. It discuss the proposed traceability algorithm that enables
actors to keep track of the data in the chain. Then, it describes implementation
details with security analysis and performance evaluation of our solution.

Chapter 5 presents an ontology-based access control solution to ensure data
privacy and manage complex relationships between actors. It explains the proposed
access control ontology component including ontology classes, object properties and
semantic description of non-hierarchical relationships. After that, it describes the ac-
cess control rules using HTTP verbs to manage authorized access to the data through
Web APIs. Then, it details the experimental results of the proposed solution.

Chapter 6 discusses our generic HATEOAS client that navigates through differ-
ent hyperlinks. After that, it details the proposed proxy as a resource that processes
the responses and offers relevant links to the client with the help of our designed
REST APIs. Then, it discusses the proposed proxy template management solution
to update the proxy with templates and links. It explains the implementation details

Introduction 13

and performance evaluation of the proposed solution.

Chapter 7 summarizes the results we obtained during the work related to this
dissertation and presents directions for future work.

Chapter 2

Background Knowledge and
Literature Review

The Result of this chapter is published in the following article:

• Aslam, S., Tošic, A., Mrissa, M.: Secure and Privacy-Aware Blockchain De-
sign: Requirements, Challenges and Solutions. Journal of Cybersecurity and
Privacy, 1(1), 164-194, 2021

2.1 Introduction

This chapter aims to provide an understanding of existing technologies and discuss
relevant work related to our identified research challenges presented in Chapter 1.
First, we provide the background knowledge of relevant technologies that we used
throughout this dissertation. We categorize the background knowledge section into
the following sub-sections: blockchain technology, Distributed Hash Table (DHT),
Role-based Access Control (RBAC), semantic Web, and the Representational State
Transfer (REST) architectural style.

Afterward, we provide the literature review of existing solutions that are relevant
to our research. We categorize the related review section into the following sub-
sections: decentralized data storage, decentralized user identity privacy, semantic
approaches to RBAC, and Hypermedia as the Engine of Application State (HA-
TEOAS) with REST. We highlight the advantages and limitations of existing work.
Then, We provide a features comparison of our proposed solution with state of art
approaches. Finally, we summarize the outcomes of this chapter and highlight limi-
tations of existing solutions.

2.2 Background Knowledge

In this section, we provide the background knowledge to blockchain technology, DHT,
RBAC, Semantic Web, REST Web services, and HATEOAS client because the con-
tribution of this dissertation rely on those.

Background Knowledge and Literature Review 15

2.2.1 Blockchain Technology

A blockchain is a decentralized data structure, secured with cryptography mecha-
nisms to ensure the integrity of its transactions [122]. A blockchain is a chain of
blocks linked to each other. A block is composed of block header and the trans-
actions. The block header is based on block version, the Merkle tree,timestamp,
nonce, and previous block hash. Transactions contain information such as transac-
tion amount, sender, receiver address, etc. and any participant of the network can
verify the content of the transactions. Transactions are shared between peers of the
network and are stored in a block after a process known as mining.

Concretely, a consensus mechanism such as proof of work is used to validate
the transactions in a block and then add validated block to the blockchain [183].
It secures the blockchain against a double-spending attack. Miners obtain rewards
such as new coin for their block validation.

To add each block to the chain, the proof of work algorithm needs miners to solve
difficult mathematical puzzle that should be approved by all the miners. Once trans-
actions are validated by the miners, a block is inserted to the end of the blockchain
network. It helps to prevent an malicious user to take control on the more than half
of the hashing power on the network. The process to to verify the proof and its
correctness is easy and quick.

In the following, we elaborate the structure of the blockchain: block, Merkle tree,
and digital signature.

• Block: The verified transaction are recorded in a block. Any peer of the
blockchain can initiate a transaction and transfer a copy to all participating
nodes on the network. Once participating peers verify the correctness of trans-
actions in the block, then a block is added to the blockchain.

Each block is comprised of specific information such as transaction time, num-
ber of occurred transactions, etc. In a blockchain, each block is connected to
its parent block through the hash value of its previous block to avoid the alter-
ation of stored data [155]. If a malicious user tries to modify the block, then a
new generated hash of the current block would not match the hash of the next
block. This ensures the immutability feature of the blockchain, which does not
allow to change the stored data after adding it to the blockchain [92].

The first block of the blockchain has no previous block and is known as the
genesis block. Each block of the blockchain has a unique hash value generated
by a hash function such as SHA-256 to make them unique in the blockchain.

• Merkle Tree: It is a binary hash tree where nodes are connected to each
other via cryptography hash pointers. It stores a blockchain transactions as a
tree structure. The hashes of all nodes are grouped in a root node to make the
Merkle tree [115], where hash of two child nodes are grouped into its parent
node as depicted in Figure 2.1. This procedure is repeated from bottom to top
until it reaches the root node of the tree. All transaction are verified by the
root node of the merkle tree. Merkle tree enables peers to confirm the integrity
and validity of data. If an attacker tries to modify the transaction then it is
required to modify all the block hashes.

16 2.2 Background Knowledge

Figure 2.1: Merkle tree of blockchain.

• Digital Signature: It is based on three algorithms such as key generation,
signing, and verification. Th key generation algorithm is used to creates a key
pair such as a private key and public key. The private key is not disclosed
to anyone and is used to sign a transaction, while the public key is publicly
available and is used to verify the transaction. Then, signing algorithm signs
the input transaction using given private key. The verification algorithm takes
signature, a transaction, and public key as a input and validates the transaction
signature with the help of public key. The digital signature has an advantages
in terms of data validity and prevention against non-repudiation so users on
the blockchain network cannot decline their own activities.

Development of Blockchain Implementations

Over time, it has been observed that the development of blockchain can be organized
into the following three generations [33,44,179].

• First Generation: Digital Currency. The decentralized digital currency
(e.g., bitcoin or digital coin) is the first generation of blockchain that enables
actors to make transactions without any intermediate party [33]. The first gen-

Background Knowledge and Literature Review 17

eration of blockchain solved major problems to generate decentralized currency,
this generation mainly depended on a proof-of-work consensus mechanism.

This generation has an advantage in terms of decentralized storage, enables
nodes to share data directly, and ensure transparency during transaction pro-
cessing [179]. The main limitations are the energy consumption of consensus
mechanisms and the fact that proof-of-work provides rewards to the partici-
pants who already have the most computation power, which could be a security
issue.

• Second Generation: Smart Contracts. The second generation of blockchain
is a smart contract that enables programs to execute autonomously when spe-
cific conditions are fulfilled [160]. The smart contract is stored on a blockchain
and cannot be modified. A contract has the following three main parts: a
unique contract address to find them on the public ledger, private storage, and
amount of balance (e.g, Ethereum the first implementation to provide smart
contracts uses the Ether cryptocurrency). The solidity programming language
(high-level language) is used to write an Ethereum based smart contract and it
can compile into low-level bytecode for the Ethereum virtual machine (EVM)
code [30].

The main advantages of smart contracts are to ensure tamper-proof fraud pre-
vention and minimize verification costs. It is important to highlight that some
blockchain implementations do not fully, or at all, implement a smart con-
tract. The main drawbacks of this second generation are performance and
scalability, as witnesses, for instance, the low number to process transactions
per second [44].

• Third Generation: Scalability. The third generation of blockchain im-
proves the scalability issue that highlighted in previous generations. Most dis-
advantages relate to mining delay, energy consumption, low number of trans-
actions, mostly related to the use of proof-of-work type of consensus and appli-
cation of smart contracts. We have also examined growth in the number and
different applications, for instance, e-Health [56] and supply chain management
systems [169]. This generation of blockchain platforms includes Dfinity [71] and
NEO [55], which support various programming languages and the development
of mobile-based applications [179].

Generally, blockchain has different types depending on data availability and on
what actions are permitted to perform on data by the actor [59]. Thus, the available
types of blockchains are as follows: public, private and consortium.

• Public Blockchain: The public blockchain is also known as a permissionless
ledger that is accessible publicly and anyone can view, read and write data
on the blockchain [178]. Ethereum and bitcoin are an example of the public
blockchain [93].

• Private Blockchain: The private blockchain is a permissioned blockchain,
which enables only specific actors to verify and insert transaction blocks to

18 2.2 Background Knowledge

the blockchain [49]. Examples of private blockchain include monax and multi-
chain [93].

• Consortium Blockchain: The consortium blockchain is also called federated
or public permission blockchain, which enables only a group of organizations to
verify and write data to the blockchain. It can be an open ledger or restricted
to a particular group. Examples of consortium blockchain include R3 and
Corda [133].

2.2.2 Distributed Hash Table

The main idea behind Distributed Hash Table (DHT) is to represent a single logical
key-value namespace across multiple computers. To do so, a hash function (such as
SHA 256) is applied to the data value to generate a unique identifier called a key.
Hash tables store the hash keys and corresponding values. A DHT takes a hash table
and distributes it over a large number of peers [113].

Two main methods are used in a DHT to store and retrieve the data. New data
can be stored on a DHT node by using the PUT (key, value) method. Whereas,
DHT enables participating nodes to get the value associated with a given key using
Get (key) method. Each peer in the network knows about a small number of other
peers to make a query and exchange data. Nodes store routing tables that keep the
identifier of the neighbor’s nodes. A requesting node contact with other nodes to
find the (key, value) pair in the network. The process to find the data is quick.

DHT is scalable to handle a large amount of data. In addition, it is fault-
tolerance because (key, value) pairs are copied on various nodes in the network,
which guarantees data availability [185].

Distributed Hash Table Implementations

In the following, we discuss the existing DHT implementations, such as Kadem-
lia [113], Chord [158], Pastry [156] , and Tapestry [181] . Kademlia and Chord are
the two main algorithms of the DHT.

• Kademlia: The Kademlia [113] is a balanced binary tree representation of
the nodes. In Kademlia, each node has an address (e.g IP address, port), and
this address is used by other nodes in the network to connect to this node.
Data stores as key-value pair on the k nodes which IDs are the nearest to the
key. Therefore, in Kademlia, k is used as key parameter to define the data
redundancy. Each node contains a routing table, which is a data structure,
where each node keeps the information about other nodes to contact them
later. Each routing table contains a list of k-buckets, and these buckets are
used to store information of other nodes.

Let us develop an example, node 0 is alive in the network that is known as
the bootstrap node. To join the second node e.g node 1, it should know the
address of node 0. Node 1 sends a request to node 0 and asks for the list of
closest nodes. Node 0 adds node 1 to its routing table and sends a response

Background Knowledge and Literature Review 19

to node 1. Then, one more node that is node 2 wants to join the network and
sends a request to node 0. Node 0 adds node 2 to its routing table and returns
the list of closest nodes that also contains node 1. Now, node 2 has both node
0 and 1 in its routing table. Node 2 sends the ping request to node 1 to make
sure it is alive in the network. As node 1 receives the request from node 2,
then its add node 2 to its routing table.

Kademlia routing is based on the XOR distance function, which determines the
distance between nodes. This function has symmetric property, which means
that the distance from 0 to 1 and 1 to 0 are the same. In addition, the sym-
metric feature allows both movements such as clockwise and counterclockwise.
Kademlia has an advantage to prevent loss of data, as if a node fails or shutdown
then data is still accessible from the closest nodes. Noticeably, the main dis-
advantage of Kademlia is also that necessary data replication on nearest nodes.

• Chord: The Chord is an algorithm of DHT introduced by Stoica et al. in
2003 [158]. It forms a logical ring of circles, and each of the different circle is
a node in the network. The key idea behind the Chord is that it is the closest
successor node that stores the data and ID. To retrieve the data, it makes a
query to its successor node. It is based on consistent hashing, in which a flat
keyspace map between the nodes and data. The node ID can be the IP address
of the machine or a unique number called key generated by the hash function.
It forms a logical ring with finger tables to reduce the access time.

Each node in the network contains the finger table that allows them to access
data through directly connected edges between nodes instead of going through
all nodes one by one in the circle. The Chord has advantages in terms of
distribution, scalability, and load balancing. When a node joins or leaves the
network, only a few keys need to be moved from one node to another. However,
it is static and needs to continuously update finger tables, keys, and successors.

• Pastry: The Pastry [156] is similar to Chord, the main aim is to generate
completely centered, structured Peer to peer networks, and efficient message
routing. In Pastry, nodes are arranged in ascending order in a ring. Node
IDs can be a public key or IP address that is generated by the cryptography
hash function. Pastry identifier space is different from than Chord ring, as its
routing is based on the numerical identifier. The basic idea of routing is, it
goes through the nodes in the ring and finds that node ID which is numerically
closest to the hash value of the given key. The identified node is responsible to
store the key, value pair of the given key. The advantage of Pastry is scalable.
However, it is time-consuming to search the node IDs in the ring.

• Tapestry: Like other DHT algorithms, nodes in Tapestry also have their IDs
such as IP addresses generated using a hash function. In Tapestry [181], a root
node stores the references or identifies the nodes that have an object. A node

20 2.2 Background Knowledge

can be chosen as a root node if it shares the leftmost prefix numbers with the
hash value of the object. Each node contains a routing table that has refer-
ence to the subset of nodes, which enable the node to search object stored by
other nodes. The Tapestry network is fault tolerant to some extent, however
its fault tolerance is limited due to its structure. The main disadvantage of the
Tapestry network is loss of root node data as root node shut down, which is
mitigated with redundancy on the network.

2.2.3 Role-based Access Control

Access control is used to restrict unauthorized access to the data. It defines which
data a user would access, and if the user has access to the data then what type of
access is. Access control maintains data confidentiality by ensuring that only data
is disclosed to the authorized user.

The Role-based Access Control (RBAC) model was introduced to manage and
enforce security in large-scale systems. It simplifies security management because it
allows users to access data according to their role within an organization.

The basic RBAC is comprised of user, role, permission, and object. In RBAC,
a user is a person that accesses the system. Roles are generated to perform specific
jobs within a system or organization such as woodcutter. Each user can have more
than one role. A Permission is an authorization to access an object within the
system [24]. Each role can have more than one permission at the same time. In
RBAC, permissions are given to the roles, and then roles are assigned to the users.
The objects are resources that can be accessed by role according to their given
permissions.

The RBAC is an alternative to discretionary and mandatory access control mod-
els and ensures that only authorized users have permission to access data or resources.
In particular, it allows pre-determine the role-permission relationships, which makes
it simple to associate users to the pre-determined roles.

RBAC is based on the following three basic rules, which include role assignment,
role authorization, role execution.

• Role Assignment: A user can perform a task only if the role is assigned to
the user.

• Role Authorization: A user can have only those roles for which they are
authorized.

• Role Execution: A user can only have a permission to execute a task if the
permission is assigned to the role.

Without RBAC, it is hard and time-consuming to define what permissions should
be given to which users. With RBAC, it is easy to change a user’s permissions without
making any modification in the access structure by simply inserting or removing
actors to the roles [108]. The main advantage of RBAC is to prevent data leakage
because only authorized users can access the data.

Background Knowledge and Literature Review 21

The RBAC model contains the following components, such as hierarchical RBAC,
static separation of duty, and dynamic separation of duty.

• Hierarchical RBAC: It is an extension of the basic RBAC model that sup-
ports role hierarchy [147]. It is a tree representation of roles where the senior
role is a root node and juniors roles are at the bottom. The hierarchical RBAC
defines the inheritance relationship between roles.

For instance, the senior role would have all permissions of their junior role in
the role hierarchy. The main advantage of hierarchical RBAC is its flexible
structure and it is easy to understand. However, it does not support horizontal
relationships.

• Static Separation of Duty: The static separation of duty is also known as
strong exclusive which means that one user is only authorized for one role at
a time [150]. In other words, two roles would not have any shared principle.
Static separation of duty enforces constraint, which controls the role mem-
bership to a single user. The main advantage of static separation of duty is
simplicity. However, it is not practical in real organizations because one user
may need to have two roles at the same time [154].

• Dynamic Separation of Duty: The dynamic separation of duty is also
known as weak exclusive which means that one user is allowed to have two or
more roles but both roles could not be active at the same time [150]. If one
role has the same permission as the other role then it can become a conflicting
role. In this case, the system would maintain the record of each action that
has been performed. The dynamic separation of duty is flexible and practical
for organizations. However, it is a time-consuming process to assign the non-
conflicting permissions of junior roles to the senior roles [67].

2.2.4 Semantic Web

The concept of the semantic Web was proposed by Berners-Lee et al.in 2001 [23].
The semantic Web is an extension of the World Wide Web (WWW). The aim of the
semantic Web is to describe the meaning of information on the Web and to make it
accessible by both human users and machines. In fact, both the semantic Web and
Web services are relying on Web resources, which are identified through URIs.

In the following, we discuss the main layers of semantic Web architecture [161].

• URI and Unicode: The first layer of the semantic Web is uniform Resource
identifiers (URIs) and Unicode. The URIs are used to identify resources on the
Web. It assigns a unique name to each resource that differentiates one resource
from others. Unicode is the standard code language on the Web and it enables
all user’s languages can be read and written over the Web in one standardized
form.

• Extensible Markup Language (XML): It is a second layer of the semantic
Web. The XML is a markup language that aims to represent structured doc-
uments. It provides a flexible data format instead of vocabulary. It contains

22 2.2 Background Knowledge

a set of tags and allows user to write their own tags. It is machine-readable
and allows to exchange of several types of data on the Web. Each document
contains the XML namespace that assigns a unique name to each element and
attribute in an XML document.

• The Resource Description Framework (RDF): The third layer is RDF
which is used to link and represent resources over the Web. It is based on URIs
to identify Web resources and represents the relations between these resources,
through triples such as subject, object, property. These triples are modeled in a
directed graph, where resources are nodes and connected through the property.

• RDF Schema (RDF-S): As part of the third layer RDF-S provides the
possibility to declare classes that allow to group RDF statements and structure
data. RDF-S allows therefore developers to check conformity of data against a
RDF-S schema. Outside of class declaration, RDF-S remains on purpose very
limited to describing the basic structure of data.

• Web Ontology Language (OWL): The Web Ontology Language (OWL) is
a language to represent domain knowledge in ontologies. An ontology is useful
to describe and share domain knowledge between organizations and people [91].
It defines the concepts, properties and relationships between classes and con-
cepts [28]. It is comprised of classes, objects, data type properties, individuals,
etc. In an ontology, the parent class is known as a super-class and other child
classes are called subclasses. It enables users to check the consistency of data
and to use a reasoner to infer new implicit facts from explicit existing ones.

An ontology can be constructed using different languages such as RDF and
OWL. OWL is the knowledge representation language of the semantic Web
that defines the meaning of data in vocabularies and the relationships between
the data elements. OWL is declined in different subsets (OWL Lite, OWL DL,
and OWL Full), that we discuss in the following.

– OWL Lite: It is a least-expressive OWL subset and extension of RDF.
It supports expressing a simple hierarchy and few constraints. It supports
fixed cardinality values such as 0 or 1. It does allow to define classes as
an instance of other classes. It supports only the IntersectionOf class
description.

– OWL DL: It has more expressiveness as compared to OWL Lite. It is
based on the Description Logic (DL) which is used to reason the domain
knowledge. It is flexible to define cardinality and max-cardinality values
equal to or greater than 0. In OWL DL, a class, instance, and property
name must be distinguished to each other for better compatibility with
reasoners. It allows UnionOf, ComplementOf, and IntersectionOf class
descriptions. It has an advantage in terms of reasoning support. In ad-
dition, OWL DL is compatible with OWL 21 because both guarantees to

1https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

Background Knowledge and Literature Review 23

complete computations within a time.

– OWL Full: It is the most expressive OWL language. It supports UnionOf,
ComplementOf, IntersectionOf class descriptions. It also allows using car-
dinality and max-cardinality values as 0 or greater than 0. It does not
have restrictions to use the different class and instance names and facil-
itates the integration of RDF(S). A class can be similar to an instance.
However, a decidable reasoning procedure might not exist for some OWL
Full ontologies, thus making it difficult to utilize [9].

• Logic and Proof: The logic layer allows to write the rules wheres the proof
layer enables execution of the rules. A reasoner is used to identify and resolve
inconsistency and the duplication of the concepts.

• Trust: The final layer of the semantic Web is trust. It depends on the rules
available in the data which can avoid unauthorized users to access this data.

Rule Languages

Knowledge representation languages (e.g RDF and OWL) are used to describe the
application domain. Typically, they define concepts, properties, individuals, and
relationships. In contrast, rule languages are used to define data transformation
rules that are able to generate new facts from the existing data.

In the following, we discuss the most famous rule languages such as Datalog, the
Rule Markup Language (RuleML), the Semantic Web Rule Language (SWRL), and
TRIPLE.

• Datalog: It is a simple form of logic programming in which function symbols
are not used [38]. It is a query-based rule language for a relational database.
Logic programming is based on facts and rules. A fact is a declarative statement
such as Bob is the father of Alice. A rule infers facts from the knowledge
base. For instance, If A is the father of B and if B is the father of C, then A
is the grandfather of C.

In Datalog, both facts and rules are described as Horn clauses [151]. The fact
discussed above can be written in the Datalog as follows:

mother (Tina, Alice)

The rule represented above can be written in Datalog as follows:

grandmother(C, A) : - mother(B, A), mother(C, B)

Here, mother and grandmother are known as a predicate, Tina and Alice are
constants, and A, B, and C are variables. In the rule discussed above, the left
Datalog clause is known as its head and the right side is known as its body.
The main advantage of Datalog is its simple syntax which is easy to understand
and learn. However, Datalog is limited to domain-specific descriptions.

24 2.2 Background Knowledge

• RuleML: It is a semantic Web language. It defines the rules in XML syntax
for Datalog [114]. It also allows both top-down and bottom-up rules in XML.
Rules are defined within open and closing tags such as <implies>, <head>,
<body>. In RuleML, <rel>, <var>, and <ind> are written within the open
and closing tags know as Atom.

Let us develop an example, Datalog clause such as JPaper (Security): - Pa-
per(Security, Journal, IEEE) can be written in the RuleML as follows: todo
make shorter

<Implies>
<head>
<Atom>

<Rel>Jpaper</Rel>
<Var>Security</Var>

</Atom>
</head>
<body>

<Atom>
<Rel>Paper</Rel>
<Var>Security</Var>
<Var>Journal</Var>
<Ind>IEEE</Ind>

</Atom>
</body>
</Implies>

Here, <Rel> tag defines the predicate symbol, <Ind> tag defines as constant,
and <Var> tag indicate variable. RuleML is easy to understand. However, it
is complex to manage nested tags for large documents.

• SWRL: It stands for Semantic Web Rule Language that follows the OWL
syntax to write the rules [20]. It infers new facts from the knowledge base. It
is comprised of the following two parts such as antecedent and consequent.

antecedent → consequent

In SWRL, the consequent part depends on the antecedent part, such as, if
atoms in the antecedent are positive, then the consequent will also be positive.

In the following, we present the example of the SWRL rule that shows the
inference such as a person with a female sibling has a sister.

Person(?a) ∧ hasSibling(?a, ?b) ∧ Female(?b)
→ hasSister(?a, ?b)

It is different from RuleML because it works with both unary atoms such as
Person(a) and binary atoms such as hasSibling (a, b). In unary atom Person(a),

Background Knowledge and Literature Review 25

a is an instance of OWL class or data range. Similarly, in atom Female (b), b
is an OWL class instance or data range. While, in binary atoms hasSibling (a,
b), a is linked with the b through property hasSibling. An atom hasSister (a,
b), where a is linked with b through property hasSister.

SWRL rule has an advantage in terms of flexibility because it allows using a
class name in rules. In addition, it accepts arithmetic operators. However, in
SWR rules, users need to follow the proper syntax to avoid errors.

• TRIPLE: It is based on namespaces, RDF statements, and first-order logic
rules. A namespace contains names that are identified using a URI reference.
An RDF statement is based on the Triple such as (s, p, o) where, s is a subject,
p is a predicate, and o indicates an object. A predicate defines the relationship
between subject and object. Let us consider an example, a female hasSibling
sister. In this example, female indicates the subject, hasSibling indicates pred-
icate, and sister indicates an object. Here, the female is linked to her sister
using hasSibling property. TRIPLE rules are easy to understand. However, it
is difficult to infer the fact if the statement is not written in the form of triple
such as (s, p, o).

2.2.5 The REST Architectural Style

REST is an architecture style for distributed hypermedia systems introduced by
Fielding in 2000 [61], that allows distributed components to communicate with each
other through a network. REST offers several advantages: it is data format agnostic
(although JSON and XML are nowadays the most commonly adopted data formats,
it can rely on the HTTP content negotiation mechanism to potentially support any
data format), it enables loose coupling between clients and servers through uniform
interface, it support caching techniques and in general offers more scalability as
the resource-oriented paradigm separates the different resources of applications into
distinct elements behind different URIs.

To gain the most benefits of REST, some constraints need to be respected, as
explained in the following:

Client-Server: A client can request services exposed by the server. The prin-
ciple behind the client-server architecture is the separation of concerns where the
same machine can act both as a client and as a server. The advantage of client-
server separation is that both can act independently. The client does not need to
know anything about the data which is used to process the request. Similarly, the
server does not need to know anything about the user interface.

Stateless: The communication between client and server is stateless. The server
would not store any session related to the client data in main memory. This means
that everything that server needs to understand about the particular resource has to
be contained within the particular request. The server would only understand the
request and send a response back to the client. While the client would store and
provide the information regarding the current state of the session. This constraint
improves the scalability of the system because the server is not required to store

26 2.2 Background Knowledge

any state between requests. For example, when various servers are offering the same
functionality, if one of the server fails, then any other server is able to process the
client’s request. One disadvantage of this constraint is that it can increase network
usage because all the information needs to be included in a request to the server. It
means that the server has no control over the system, so the server is depending on
the right implementation of the client.

Cache: The cache constraints state that when a server sends a response to the
client, so, in its response, it should indicate whether the response can be cached or
not. If the response is cacheable, then the client can reuse that data for further
requests and does not need to send the request again to fetch the same data which
improves the network efficiency and optimization.

Uniform Interface: The uniform interface constraint is a key constraint to
differentiate REST APIs from non-REST APIs. This constraint allows any client
to communicate with any server using the same limited set of possible actions. The
concept of uniform interface has been successful in operating systems where every
device is accessed as a file with a limited set of low-level functions (open, read, write,
close). The uniform interface constraint brings this principle to the Web where
everything is accessible as a resource with a limited set of functions (HTTP verbs:
GET, POST, PUT, DELETE. . .). In the following, we discuss the four key elements
or sub-constraints of the uniform interface.

• Identification of Resources: Each resource has its unique global identifier
known as a Uniform Resource Identifier (URI). This facilitates the modularity
of applications, better readybility of code, and easier maintenance through the
applicaiton lifecycle.

• Manipulation of Resources through Representations: When a client
sends a request to the server, they can receive different representations of a
resource such as HTML, JSON, and XML response. According to these repre-
sentations and metadata a client can also delete or update the resource.

• Self-descriptive Messages: When a client is sending any request to the
server, they need to include all the details (e.g resource URI, context, content,
preferred format) in their request so the server would completely understand
the nature of the request. To do this, messages or requests should be self-
descriptive. Self-descriptive messages are needed to support the statelessness
constraint of REST.

• HATEOAS: This acronym stands for Hypermedia As The Engine Of Appli-
cation State. It is one of the constraints of REST that follows the principle of
Web browsing to drive the interactions between servers and clients. According
to the HATEOAS principle, where users are going from one Web page to an-
other Web page through hypermedia links [128], each response message coming
from a Web resource must contain links that enable the client to perform the
next possible actions. HATEOAS makes APIs self-descriptive, in such way
that the client does not need to know anything about an API before using it.
HATEOAS enables APIs to evolve independently of consuming applications

Background Knowledge and Literature Review 27

without breaking the client. Indeed, in case of changes, only the links provided
in the response message will change, thus enabling loosely-coupled interactions
between clients and servers.

Layered System: The layered system constraint is that the architecture is need
to be composed of multiple layers, where each layer is responsible for the specific
function and only interacts with the layer next to it. So, each layer does not know
anything about the rest of the layers other than the one next to it. It limits the
complexity of the system because layers are completely decoupled. One disadvantage
of this constraint is latency because, for the particular request, the request has to
travel through several different layers to generate a response.

Code-On-Demand: This is a final constraint of the REST. Usually, the client
would extend their functionality by downloading the data from the server. The aim
is to simplify clients as implementation work on the client is minimized. This is an
optional constraint of the REST because it increases the system complexity.

2.3 Literature Review

In this section, we review the existing work on decentralized data storage including
data security, decentralized user’s identity privacy, access control models to control
access to the data, and HATEOAS with REST to navigate through the data. We
summarize the advantages and limitations of related work in Table 2.1. We also
provide a features comparison of our proposed solution with state of art approaches
in Table 2.2.

2.3.1 Decentralized Data Storage

We discuss existing literature on blockchain, DHT, and other data storage ap-
proaches. The authors in [185], present the decentralized personal data management
framework. The proposed framework uses DHT to store encrypted data (with sym-
metric key) and corresponding hash key is sent to the blockchain. However, this
solution uses only one type of encryption, as symmetric key for both encryption and
decryption. Additionally, they did not consider symmetric key protection for data
access or the question of the key storage location. They used fine-grained access
control to manage access to blockchain. However, access control permissions are
recorded on blockchain, thus making permission immutability a concern.

The authors in [152] present a blockchain-based data management and access
control framework. The proposed framework stores hash pointer and fine-grained
access control permissions on the blockchain, while actual data is stored on the
DHT. The main limitation of this work is the public visibility of permissions on
the blockchain, which is subject to privacy concerns. In addition, access control
permissions stored on the blockchain is immutable and could not change later.

A blockchain-based data storage for Ping-ER (Ping End-to-End Reporting) is
presented in [7]. A permissioned blockchain is used to store metadata of Ping-ER files
while original data references are recorded on DHT. Additionally, this solution stores
monitoring agent names and file locations on the blockchain, which is immutable

28 2.3 Literature Review

and shared with other users on the network. In addition, they did not manage the
previous pointer in case of data updates.

The authors in [72], presents a blockchain-based Light Chain framework that
replicates transactions and blocks within the nodes of DHT. The proposed framework
enables all nodes to access transactions and blocks through a skip graph. However,
transactions and blocks are publicly available, which raises data security and privacy
issues.

A blockchain-based software connector framework is presented to share data be-
tween stakeholders of supply chain and companies [103]. A MySQL database is used
to store the original data, while a hash sum of this data is sent to the blockchain.
However, a MySQL database is centralized and forms a single point of failure due to
its design. It is therefore not scalable as a DHT to deal with large number of data
and users [87].

The authors in [40] present a blockchain-based framework called u-share, that
maintains data traceability. The proposed framework enables data owners to share
their data with their circle of friends and family. A software client is used to encrypt
the shared data using public key of the circle, distribute the private keys to the circle
members, and keep the record of shared keys. However, sharing private key is subject
to security problems. Key management is also raising security and performance issues
because of the blockchain size increase with circles and family. Additionally, the u-
share framework is based on one type of encryption only and does not offer much
flexibility for data protection.

The authors in [175], present a decentralized supply chain system to maintain
traceability of goods and recipe ingredients. A smart contract is used to exchange
the information of goods on a distributed ledger. However, product data is publicly
accessible and immutable, thus making privacy and data modification issues.

A blockchain-based agri-food supply chain traceability framework is proposed
in [163]. The proposed framework in based on RFID (Radio-Frequency Identification)
technology to automatically detect objects using radio frequency signals. The main
limitation of this work is that the data is stored directly on the blockchain, which is
a problem in terms of scalability.

The authors in [97] proposed a blockchain-based access control framework called
CapChain. The proposed framework enables users to share their access rights to IoT
devices. A blockchain is used to store the access rights that are encrypted using a
secret key. However, this work shares secret keys between owners and devices, which
raises security issues.

The authors in [76] present a blockchain-based food traceability framework. In
the proposed framework, hash pointers are stored on the blockchain whereas cor-
responding data are managed on off-chain storage called IPFS (InterPlanetary File
System). IPFS is a peer-to-peer network to store and share data in a distributed file
system [109]. However, this solution in [76] is based on a manufacturer node server
to manage all components of the framework, which leads to a single point of failure.

In [182], the authors use a a IOTA Tangle and IPFS to share Internet of Things
(IoT) data. In the proposed framework, a centralized data handling unit (local
server) is used to fetch the data and then encrypt it with asymmetric encryption,
which is subject to a single point of failure problem. The IOTA Tangle is used to

Background Knowledge and Literature Review 29

manage the hash pointer and metadata, whereas corresponding encrypted data is
stored on the IPFS. However, the IPFS network does not allow to update file and its
content once it has been stored, because of its immutability nature [98]. Additionally,
this work did not explain the content of metadata.

The authors in [22] present a distributed cloud storage system known as Storj.
It is a trust-based storage system among host and client, where user offer their free
storage hardware space and earn money. Data is encrypted at client side (using
AES256-CTR) before uploading it on the network. Storj enables the data owner to
control and access their data on the network. The main limitation of Storj is high cost
to store the data and it is relying on a centralized architecture to conclude storage
data and payments [46, 74]. Also, Storj uses one type of encryption mechanism to
maintain trust between client and host [176].

In paper [139] authors present a decentralized data storage framework that inte-
grates Solid Pods with blockchain. Solid (Social Linked Data) is based on RDF and
semantic Web to handle data. Solid allows users to store their personal data in Pods
(Personal online data stores) hosted at the location where users want. The proposed
work considers the following two cases to guarantee data confidentiality. First, they
use blockchain to manage file hash whereas data is stored on the Solid Pods. Second,
smart contracts are used to manage the data on a Blockchain while software wallets
(public and private key pair) are stored on the solid pods. Users can access their
data through the software wallet. However, Solid Pods itself does not ensure data
verification and trust [51]. In addition, it could not handle large amounts of data as
DHT does [116].

In [1], the authors propose a decentralized edge-computing framework to man-
age IoT data. The proposed framework used blockchain to store data and ensures
data security. However, data stored on the blockchain is immutable and cannot be
modified later.

The authors in the paper [3] discuss the cloud-based personal data storage frame-
work called mydex. It stores encrypted data by default and only the metadata is
visible to the service provided that includes data type of the profile (such as a history
of credit card transactions, phone calls, bank transactions) and associated permis-
sion. The personal data can be shared with third parties such as organizations after
signing the contract with mydex. The contract contains the conditions to share the
data. However, mydex is a centralized personal data storage that is managed by the
owner of the company. Also, it is not free of cost, and it charges a fee to offer its
services.

The authors in [165] presented a framework for on-chain data management for
ONTOCHAIN called graph chain. The proposed framework provides collaboration
between ontology and blockchain. Data is stored in the semantic format, and it can
be used through a smart contract. However, graph chain does not encrypt the data
before storing it, which raises security and data leakage issues.

Similarly, another work based on the graph chain framework is presented to
manage semantic data on the blockchain called onto space [157]. ONTOCHAIN is
an ecosystem of different blockchains that are connected to the main chain of the
system called onto space. An Ethereum smart contract is used to store the semantic
data objects and enable the user to access the graph data. However, this work did not

30 2.3 Literature Review

discuss any solution to manage unauthorized access to the data. Also, all blockchains
and graph chains are managed by the centralized mainchain component, which is a
single point of failure. In addition, It is immutable and does not allow to update and
delete the stored graph data.

Furthermore, DECODE (Decentralized Citizens Owned Data Ecosystem) en-
ables users to keep control of their personal data [35]. DECODE is combined with
blockchain technology that enables the data owner to keep track of their data ac-
cessed and used. A smart contract is used to write the rules to manage data sharing
and allows users to decide on which personal data they would like to share publicly.
DECODE enables public users to contribute, access, and use the data shared by
the data owner. They combine Ontology with DECODE to allow modification of
parameters. However, a smart contract is immutable and does not allow updating
rules once it has been written. Also, this work did not provide any specific solution
to prevent attacks such as Linking attack, modification attack, and eavesdropping
attack.

The authors in [2], propose a decentralized data management and access control
framework. The proposed framework used a smart contract to manage access control
rules to access the IoT data. Different storage services such as cloud and MQTT
are used to store the data. They used oracles as an interface between blockchain,
data hosts, and users to ensure trust. The main limitation of the smart contract is
immutability that stores access control rules permanently.

Another framework is introduced to manage personal data and record data pro-
cessing activities (e.g data create, use, share) called ROPA (Record of Personal Data
Processing Activity) [143]. It enables any user, company, or public organization to
process personal data according to the rules enforced by the GDPR (General Data
Protection Regulation). ROPA is based on ontology and blockchain to ensure trust
and easy access. SPARQL queries are used to query the ROPA. However, it does
not fulfil the security aspects and prevents attacks.

In [186], the authors present an Enigma: a decentralized framework that allows
users to control their personal data. A DHT is used to store the data while access
control rules and identities are managed on the blockchain. However, access control
rules stored on the blockchain are immutable and publicly available, which leads to
privacy issues.

BOWLER (Blockchain-Oriented Warehouse & Low-Code Engine and Reasoner)
framework is introduced that allows developers to tackle the smart contract mod-
eling complexity by using a low code environment [105]. The Web IDE (integrated
development environment) to make the development of smart contracts easy and low
cost [75] However, the content written on the smart contract is publicly accessible
and immutable, which raises data privacy and modification issues.

Furthermore, decentralized CARECHAIN (Supporting CARE through micro-
insurance using blockchains) is proposed to create a platform to execute a smart
contract [162]. The proposed project is based on the blockchain and tangle tech-
nologies that use smart contracts to manage micro-insurance. Blockchain is used to
store the encrypted transactions and run smart contracts automatically once certain
conditions are met and read/verified by the oracle. CARECHAIN ensures security
and transparency while managing smart contracts and micro-insurance. However,

Background Knowledge and Literature Review 31

the proposed solution stores transactions on the blockchain that is subject to im-
mutability concerns.

The authors in [63] proposed a decentralized application called Copyright. The
proposed application is based on the blockchain and ontology to ensure copyright
management of social media such as YouTube. It allows video owner to store their
content off-chain and generate a hash of this content. The authorship claim of
that hash will be added to the on-chain transaction. The hash is also stored in
the video explanation. Reuser can use the hash to check the authorship claim,
reuse conditions, and register agreement on-chain. It enables users to reuse the
videos uploaded on YouTube. Ontology is used to model and reason about the
reuse conditions. However, the hash stored on-chain is publicly accessible, which
leaves information about original content and data owner, thus making data security
concerns.

Furthermore, In [94] DESMO-LD (Decentralized Smart Oracles for Trusted Linked
Data) is presented. Ethereum smart contract is used to collect and manage off-chain
LD (Linked Data) information using decentralized smart oracles. End-user is allowed
to read the data using SPARQL queries. However, this work did not encrypt the
data before storing it, which is vulnerable to security breaches and attacks.

Another project, DART (Distributed-Oracles Framework for Privacy-Preserving
Data Traceability) is proposed to manage data storage and traceability on the
blockchain [43]. In the proposed project, users’ data will be stored on the smart con-
tract and managed on the blockchain through the oracles. The proposed framework
allows end user to receive the data from the blockchain and maintain traceability to
verify the original content of the data. However, data stored on the smart contract
is publicly visible, which raises data security issues.

In [18] presents a DKG (Decentralized and Scalable Knowledge Graph Economy
Tools) to support the trusted, traceable, and transparent ontological knowledge on
the blockchain. The proposed work used blockchain to discover and analyze data
and data sources indexed are managed using knowledge graphs such as ontology. It
ensures data integrity and privacy. However, permissionless Ethereum blockchain is
used to ensure data immutability, which stores data permanently.

In [125] proposed a DW-marking (Data Watermarking) to ensure the off-chain
data ownership for data trade in the distributed data marketplace. A data market-
place, in which data sellers make sure the availability of the data to buy by the data
buyer [123]. Oracle is used to enable off-chain data marketplace to store transactions
on the blockchain. However, this work did not encrypt the data before storing it,
thus making data privacy and attacks risks.

Furthermore, Gimly ID is introduced that is based on the set of software appli-
cations (such as mobile and Web) to manage the self-sovereign identity and secure
data sharing [37]. It allows developers to create and verify the decentralized identi-
fiers (DID) and Verifiable Credentials (VC) into their systems. A DID is a unique
identifier of the user and associated with a DID document, which maintains the infor-
mation about an identity (such as creation time, public keys linked to the identity).
The DID document is immutable, owned, and managed by the DID owner. VCs are
used to store and manage machine-readable credentials such as name, age, date of
birth. A VC is linked to identity [32].

32 2.3 Literature Review

Gimly ID enables users to securely share and verify identity and credentials. It
enables a company to manage the sovereign of the data and permissions through ID
management Web portal. A user can manage their sovereign identity by creating
a Gimly ID account in the mobile app and storing their personal data Gimly ID
app. A user can share their personal data with companies and then companies can
choose a user as an employee and assign them credentials such as role and access
authorizations. A user can access company services through the Gimly ID app.
However, this work mentions personal data sharing or disclosure such as name, age,
date of birth, which is a major privacy risk that could lead to data leakage issues.
This work also does not allow the data owner to delete their information.

In [111, 140] a blockchain-based identity system called HIBI (Human Identity
Blockchain Initiative) is presented. HIBI is used to manage users’ identities on the
blockchain and ensure trust to generate knowledge in the semantic Web by link-
ing electronic identification and trust services (eIDAS) to identities. An eIDAS is
used to verify the identity of the user and authenticate the electronic document [52].
The proposed HIBI is based on smart distributed key recovery (key management
tool) which maps the blockchain keys to eIDAS identities to maintain the backup
and recovery. Blockchain transactions are signed with eID and authenticate via eI-
DAS. Users can use an eID app such as "AusweisApp2" that allows to access the
European eID servers to obtain data from it. The proposed work ensures informa-
tion provenance. The major disadvantage of the proposed solution is blockchain’s
immutability.

The authors in [84] proposed the ISLAND (Interlinked Semantically enriched
Blockchain Data) framework which allows users to gain access to unstructured data
from the blockchain, annotate with metadata using ontology, and represent as RDF
(Resource Description Framework). A smart contract is used to process the transac-
tions on the blockchain and to monitor the ISLAND framework, while RDF graphs
are stored on the off-chain storage called IPFS. This framework allows users to query
the data using SPARQL queries. However, this framework did not discuss any solu-
tion to protect data from unauthorized access, which rises data privacy and security
issues that could lead to data leakage. In addition, smart contracts and IPFS network
are immutable and store data permanently.

In [80] proposed an NFTWATCH framework to collect, store, analyze the non-
fungible token (NFT) information. NFT is a digital token that is permanently linked
with the piece of data stored on the blockchain. It ensures the piece of data owner-
ship. An RDF ontology is used to represent the NFT information and enable users
to query the domain knowledge. However, this work did not discuss any solution to
prevent data from unauthorized access.

In [21] presented a POC4COMMERCE (Practical ONTOCHAIN for Commerce)
that facilitates a semantic representation of ONTOCHAIN stakeholders and their
activities. The proposed work enables providers to store products and services in
the Ethereum blockchain. End-users are allowed to search for products and services
using the search engine. The smart contract is used to create and exchange the
digital token of the user. However, this work did not discuss any solution to prevent
attacks.

The authors in [95, 104] integrate the Data Agreement (DA) protocol with data

Background Knowledge and Literature Review 33

provenance to keep track of the data origin. A DA is a set of rules for an organization
or company to process personal data according to privacy law (such as GDPR). Data
is stored on an ONTOCHAIN. A smart contract is used to exchange personal data
between organizations and enforce GDPR requirements. The proposed work ensures
trust and transparency while data sharing. However, the proposed work did not
discuss a solution to enforce security on data and prevent attacks.

The authors in [83,110] propose a provenance-aware decentralized reputation sys-
tem to ensure the trustworthiness of off-chain services (e.g third-party Web services).
The proposed framework is designed to gather, process, and store users’ feedback.
A blockchain is used to store the reputation data of off-chain services through the
execution of smart contract, while reputation metadata is stored and managed on
off-chain storage called IPFS. However, data stored on the blockchain is publicly
visible, which raises data privacy issues. In addition, blockchain is not scalable to
store a large amount of data.

In [50, 132] authors present a decentralized SEIP (Service for Encrypted Infor-
mation Provider) framework to ensure confidentiality while data exchange. The
proposed framework combined symmetric key cryptography with attribute-based
encryption to manage data access and enforce security on data. Attribute-based
encryption encrypts the data according to the access policies defined by the user and
the data requester must meet those conditions to decrypt the data [65]. The pro-
posed SEIP framework allows users to request an attribute-based encryption private
key by giving a set of verifiable credentials. The key will provide them with access
policies and data will be decrypted once conditions are satisfied. However, the work
mentions private key sharing, which is a major security risk that could lead to key
leakage issues. In addition, this work did not support data updates.

The authors in [96] present a framework called UniProDaPI (Universal Proven
Data & Process Interchange). The proposed framework allows authorized users to
access the user’s metadata stored on the sidechain, while actual data is stored on
the blockchain. It enables users to trace their product (e.g parcel, medicine) through
ID. However, this work did not provide any solution to prevent data from attacks.

The authors in [101], propose a decentralized framework to store IoT data. The
proposed framework used DHT to store the IoT data while the address of the cor-
responding data is managed on the blockchain. To ensure privacy, they encrypted
the data with the IoT device’s public key before storing it. They used certificateless
cryptography to authenticate the system. However, this solution does not consider
transaction history support, spoofing, and eavesdropping attacks aspects.

The authors in [153], propose a blockchain-based framework that allows users
to share their data with other users. The proposed framework used smart contract
to manage data access control policies. Multi-chain as off-chain storage is used to
store the users’ private data. However, policies recorded on the smart contract are
immutable.

In summary, existing data management and storage solutions are subject to secu-
rity, privacy, immutability, pointer management, and scalability issues. Most existing
solutions store data publicly which leads to data loss and privacy leakage or are not
flexible with the encryption solutions they offer. Although, existing solutions are not
scalable to manage a large amount of data. In addition, data mutability and data

34 2.3 Literature Review

privacy management are big challenges for blockchain. Thus, motivating research
towards decentralizing data storage, data mutability, managing access to privacy-
sensitive data, enforcing data security, and multiple types of encryption in a single
solution is a challenging task.

2.3.2 Decentralized Identity Privacy

In this section, we explore the most relevant existing work on decentralized user’s
identity privacy management. In [88], the authors propose a blockchain-based dis-
tributed framework for anonymized trading of datasets. The proposed work used
blockchain to store all transactions of anonymized data. The main limitation of this
work is a third party that deals with privacy policy management.

Another work presented a blockchain-based dynamic identity management frame-
work that also depends on a third party [17]. The proposed framework guarantees
the confidentiality of the user’s data and enables a user to control their identities in
a public network.

The authors in [29] used a zero-knowledge mechanism and smart contract to en-
sure identity management in the blockchain. However, this work could not deal with
malicious verifiers and thus other cryptographic mechanisms need to be combined
with it to attain better security.

In [54] the authors discussed privacy issues in blockchain-based IoT. The proposed
work used ring signature to ensure anonymity on the healthcare blockchain. The
main limitation of this work is a denial of service and modification attacks, where a
attacker can prevent a user to use the services and insert falsified transactions in a
network.

The authors in [107] proposed an Ethereum blockchain-based uPort platform.
A smart contract is used to manage transactions and enable a user to access their
identity in case they are lost. However, transaction data stored on the smart contract
is publicly visible which raises security and privacy issues.

In paper [8] the authors presented a blockchain-based self-sovereign identity man-
agement framework. The proposed framework uses a smart contract that allows user
to manage their identities based on the attributes such as name, age, and profes-
sion. Service providers enable users to access their services based on the validated
attributes. However, data stored on the smart contract is immutable.

Furthermore, the authors in [4,99] proposed a self-sovereign identity authentica-
tion for users and applications. Blockchain technology is used to store authenticated
data and to ensure data transparency and immutability. An Authcoin protocol
(blockchain-based validation and authentication) is used to ensure identity security.
This work generates a new key pair (public and private key) for each new user and
maintains the binding between keys and the key’s owner. An Authcoin protocol is
implemented using Colored Petri Nets (CPNs) [81] to identify and eliminate design
flaws, security, and privacy issues. However, this work did not allow updating data
and transaction history support.

In paper [53] discussed decentralized identity management using uPort, Sovrin,
and ShoCard. An uPort is a blockchain-based framework that provides identities for
services such as email and bank. It is based on the smart contract that maps uPortID

Background Knowledge and Literature Review 35

with identity attributes. The registry component is used to store the hashes of the
JSON attributes, while original data is stored on the IPFS. However, the registry is
centralized, and data can be compromised. In addition, uPort does not authenticate
the identities of the owner. A user on the network could not identify that initiated
claim is valid.

On the other hand, Sovrin is a permissioned-based identity network that allows
only trusted parties (e.g bank, university) to run the node. Sovrin has control over
users’ identity and allows users to decide about attributes they would like to share
with other parties. However, it does not verify the party with whom data is shared.

ShoCard is a blockchain-based identity authentication framework that gives a
trusted identity by protecting users’ identity. The main limitation of ShoCard is a
centralized design that comes due to its central server to exchange the encrypted
identity information between a user and a relying party. Therefore, ShoCard stores
data in encrypted form, but data could be linked with both ShoCardIDs and relying
on parties, which raises privacy.

In summary, most of the existing work is based on the centralized third party to
control and manage identity privacy, which raises privacy issues.

2.3.3 Semantic Approaches to Access Control

We explore the most relevant work on role hierarchy, the relationship between roles,
access control permissions, and rules using ontology. Access control is used to restrict
unauthorized access to the data. Several access control models have been presented
to enforce security on data such as relation-based access control model [64], rule-
based access control model [112], attribute-based access control model [135, 136],
mandatory access control model [58,137], discretionary access control model [69,148],
and role-based access control model [147,149].

In the following, we discuss the access control models.

Relation-based Access Control Model:

The relation-based access control model allows access to the data based on the rela-
tion a user has. With Relation-based access control model, permissions are modeled
depending on the relationship between subject and object. For instance, on the
Facebook, a user’s friends have permission to read the post. The authors in [64],
present a relation-based access control model that defined permissions depending on
the relation between subject (e.g user) and object (e.g data). The proposed solution
used ontology to represent subject and object in the form of classes.

For instance, permission ‘use’ is modelled to define the relationship between sub-
ject and object, such as ‘student use PC’. They defined access control rules such as
all students must have access to at least one PC among all available PCs. Pellet
reasoner is used to reason the developed ontology. However, it is complex to model
permissions for each subject and object. In addition, this work did not use any query
language to enable end users to access the domain knowledge.

In paper [180] authors use description logic with relation-based access control
model to control data access. The description logic [39, 62]. is used to define access

36 2.3 Literature Review

control policies. The proposed work manages user’s access to the resources based on
the permission between them. They defined access control policies such as David has
a permission to modify the data. However, description logic reasoning is not efficient
as it could not detect all instance relationships represented in hierarchical form.

Rule-based Access Control Model:

The rule-based access control model manage user’s access to the resources according
to the pre-defined set of rules. It ensures that user can access only to the resources
they are allowed. It compares the user’s access request with the access rules to
make access granted or denied decision. In paper [112] the authors extend a rule-
based access control model with semantic Web. The proposed solution defines access
control rules (such as insert, read, delete) to determine which user has permission to
access which resource. SWRL (Semantic Web Rule Language) is used to write access
control rules. Ontology is used to represent the resources. However, this solution did
not use HTTP verbs to design the rules.

The authors in [100] discuss rule-based access control policies as rules in the
ontology. Ontology is used to represent users and resources in the form of classes
and used object properties between classes such as permit and deny. SWRL is used
to write rules and grant access to the resources based on these rules. For example, a
group leader defines a access control policy such as only PhD student are permitted
to access published resources. However, this work did not use reasoner to reason the
rules and ontology.

Attribute-based Access Control Model:

This model grant access to the data based on the attributes, instead of the subject
and role [135, 136]. The aim of Attribute-based access control is to prevent data
from an unauthorized user, those have not defined by organization. With Attribute-
based access control, access decisions are done according to the attributes of the
subject, resource, and environment. A subject is a user who makes the request to
access the data. Users’ attributes include user’s identity such as ID, name, job title,
organization name etc. Resource is an object or data that user wants to access.
Resource attributes are data creation date, name, and type etc. Environmental
attributes contain the access time and data location. However, management of access
control policies based on the attributes are complex and time consuming.

In authors in paper [134] discuss the attribute-based access control model in
the context of semantic Web. Ontology is used to map different attributes with
attribute’s conditions such as age > 18. The proposed work used XACML to write
access control policies. For instance, a user with age attribute (age > 18) has read
access to the data. However, this work did not define level of permissions. In
addition, the authors define only one policy to access data based on the age and
email attribute.

The authors in [42] proposed a domain-specific framework that extends the role-
based access control model with an attribute-based access control model using OWL
ontology. The proposed work defined roles to identify the user within the system.
The OWL ontology expresses the components of the access control model such as

Background Knowledge and Literature Review 37

roles, resource, attribute, and permission. They represent the classification of access
control roles and resources using OWL ontology.

For example, in the university domain, all subclasses of role Student will be
classified as Role and will be allowed to use the privileges of Student. Privilege is
comprised of actions and resources. A SPARQL query is used to query the ontology
knowledge. However, they assigned the same permission to the role and classified
roles. In addition, they did not define the level of permissions according to classified
roles to access the data.

Role-based Access Control Model:

Other access control models such as Mandatory Access Control (MAC) and Discre-
tionary Access Control (DAC) are used to control access to the database [58, 137].
In DAC, the data owner decides who can access the data [69, 148]. DAC is a access
control model for operating systems and relational databases. It is easy to under-
stand. However, it does not ensure full security on the data and difficult to maintain
for large number of users. In addition, it is time consuming and complex to define
same permissions individually for several users performing the same actions. MAC
is based on the hierarchical approach to grant access to the resources [36].

In MAC, operating system controls the access to the resources. It is based on the
strict rules such as ‘write-up’ and read-down’, where user is only allowed to write to
data in their upper level of classification and is allowed only to read data in the down
level of classification. However, it does not allow users to alter the access control of
resources and users must make request to access for each new data [146].

Therefore, the RBAC is a famous security method that assigns permissions to
the roles and then roles are assigned to the users [147, 149]. RBAC model supports
both DAC and MAC [46]. It ensures security by preventing data from unauthorized
access. RBAC is comprised of four parameters: user, role, object, and permission.
The role defines user’s rights or identity to retrieve the resources based on the given
permission. The object can be any resource that can be accessed by a role depending
on their assigned permissions. A permission defines access to different levels of data
within the same domain [82,86].

The authors in [68] focus on a university ontology that defines the concept of
classes, subclasses, and object property. In this work, the authors explain the class
hierarchy by splitting classes into sub-classes, such as, the class ‘course’ has two
subclasses ‘GraduateCourse’ and ‘UnderGraduateCourse’. The relationship between
two classes is represented using object property, for instance, Department has a head
Chair. In this example, ’Department’ and ’Chair’ are two classes, and ’has head’ is
a relationship between them. However, this work did not consider roles and access
control permissions to manage access to the data.

In [41] the authors develop a project management ontology that restricts access
to the data. The ontology is used to represent roles and permissions hierarchy to
access the data. For instance, the role ‘project member’ has permissions to ‘read’ and
’write’ the ‘document’. On the other hand, role ‘visitor’ has permission to just ‘read’
the ‘document’. The proposed ontology is implemented using a protégé. However,
this work did not explain role hierarchies and relationships between them.

38 2.3 Literature Review

T
ab

le
2.

1:
Su

m
m

ar
y

of
re

la
te

d
w

or
k

an
al

ys
is

R
ef

n
o

C
h
al

le
n
ge

A
d
d
re

ss
ed

A
p
p
ro

ac
h

A
d
va

nt
ag

es
L
im

it
at

io
n
s

[7
7]

H
A
T

E
O

A
S

re
al

iz
at

io
n

H
A
T

E
O

A
S

w
it

h
at

tr
ib

ut
e-

ba
se

d
ac

ce
ss

co
nt

ro
l

m
od

el

E
ns

ur
e

au
th

or
iz

ed
da

ta
ac

ce
ss

C
om

pl
ex

it
y;

T
im

e-
co

ns
um

in
g

[9
0]

D
ev

el
op

a
cl

ie
nt

to
su

pp
or

t
na

vi
ga

ti
on

H
A
T

E
O

A
S

w
it

h
op

en
A

P
Is

O
ffe

rs
lin

ks
to

pe
rf

or
m

tr
an

si
ti
on

Id
en

ti
fie

d
tr

an
si

ti
on

s
ar

e
in

co
rr

ec
t;

P
ri

va
cy

ri
sk

re
m

ai
ns

[1
02

]
H

A
T

E
O

A
S

cl
ie

nt
H

A
T

E
O

A
S

w
it

h
R

E
ST

A
P

Is

O
ffe

rs
lin

ks
to

pe
rf

or
m

tr
an

si
ti
on

;
St

at
el

es
s

O
nl

y
X

M
L

fo
rm

at
is

ac
ce

pt
ab

le
;

C
om

m
un

ic
at

io
n

ov
er

he
ad

[1
03

]
E

na
bl

e
tr

us
t

be
tw

ee
n

su
pp

ly
ch

ai
n

us
er

s

B
lo

ck
ch

ai
n-

ba
se

d
so

ft
w

ar
e

co
nn

ec
to

r
fr

am
ew

or
k

D
ec

en
tr

al
iz

at
io

n;
E

nh
an

ce
tr

us
t

be
tw

ee
n

st
ak

eh
ol

de
rs

N
ot

sc
al

ab
le

to
m

an
ag

e
la

rg
e

am
ou

nt
of

da
ta

[4
0]

M
ai

nt
ai

n
ow

ne
r’

s
da

ta
tr

ac
ea

bi
lit

y
B

lo
ck

ch
ai

n
ba

se
d

U
-s

ha
re

fr
am

ew
or

k

D
at

a
ow

ne
r

ha
s

co
nt

ro
l
ov

er
th

ei
r

da
ta

;
T
ra

ns
pa

re
nc

y

P
ri

va
te

ke
y

le
ak

ag
e:

P
ri

va
cy

ri
sk

re
m

ai
ns

;
P
er

fo
rm

an
ce

;
B

lo
ck

ch
ai

n
sc

al
ab

ili
ty

[1
75

]
M

ai
nt

ai
n

pr
od

uc
t

tr
ac

ea
bi

lit
y

Sm
ar

t
co

nt
ra

ct
C

om
pl

et
el

y
de

ce
nt

ra
liz

ed
;

T
ra

ns
pa

re
nt

da
ta

D
at

a
is

pu
bl

ic
ly

av
ai

la
bl

e;
Im

m
ut

ab
le

[1
85

]
D

ec
en

tr
al

iz
ed

pe
rs

on
al

da
ta

m
an

ag
em

en
t

B
lo

ck
ch

ai
n;

D
is

tr
ib

ut
ed

ha
sh

ta
bl

e

R
em

ov
e

tr
us

te
d

th
ir

d
pa

rt
y;

E
ns

ur
e

da
ta

pr
iv

ac
y

N
ee

d
to

se
cu

re
sy

m
m

et
ri

c
ke

y
fr

om
un

au
th

or
iz

ed
ac

ce
ss

;
P
er

m
is

si
on

s
ar

e
im

m
ut

ab
le

[7
]

D
ec

en
tr

al
iz

ed
da

ta
m

an
ag

em
en

t

P
er

m
is

si
on

ed
bl

oc
kc

ha
in

;
D

is
tr

ib
ut

ed
ha

sh
ta

bl
e

D
ec

en
tr

al
iz

at
io

n;
D

at
a

tr
an

sp
ar

en
cy

;
R

em
ov

e
tr

us
te

d
th

ir
d

pa
rt

y

N
ee

d
se

cu
ri

ty
an

d
pr

iv
ac

y;
St

or
e

da
ta

on
a

di
st

ri
bu

te
d

ha
sh

ta
bl

e
w

it
ho

ut
en

cr
yp

ti
on

;
P

ri
va

cy
-s

en
si

ti
ve

da
ta

is
pu

bl
ic

ly
av

ai
la

bl
e

Background Knowledge and Literature Review 39

T
ab

le
2.

1:
C

on
ti

nu
ed

R
ef

.
n
o

C
h
al

le
n
ge

A
d
d
re

ss
ed

A
p
p
ro

ac
h

A
d
va

nt
ag

es
L
im

it
at

io
n
s

[7
6]

M
ai

nt
ai

n
pr

od
uc

t
tr

ac
ea

bi
lit

y

B
lo

ck
ch

ai
n;

In
te

rP
la

ne
ta

ry
F
ile

Sy
st

em

E
ns

ur
e

tr
ac

k
of

th
e

da
ta

Si
ng

le
po

in
t

of
fa

ilu
re

[1
82

]
D

ec
en

tr
al

iz
ed

da
ta

m
an

ag
em

en
t

IO
T
A

T
an

gl
e;

B
lo

ck
ch

ai
n;

In
te

rP
la

ne
ta

ry
F
ile

Sy
st

em

E
ns

ur
e

se
cu

ri
ty

on
da

ta

Si
ng

le
po

in
t

of
fa

ilu
re

;
Im

m
ut

ab
ili

ty

[2
1]

D
is

tr
ib

ut
ed

da
ta

st
or

ag
e

St
or

j
D

at
a

ow
ne

r
ha

s
co

nt
ro

l
ov

er
th

ei
r

da
ta

D
ep

en
d

on
ce

nt
ra

liz
ed

ar
ch

it
ec

tu
re

to
co

nc
lu

de
st

or
ag

e
an

d
pa

ym
en

t

[1
39

]
D

ec
en

tr
al

iz
ed

da
ta

st
or

ag
e

So
lid

po
ds

;
B

lo
ck

ch
ai

n
E

ns
ur

e
da

ta
co

nfi
de

nt
ia

lit
y

N
ee

d
to

m
ai

nt
ai

n
tr

us
t;

Sc
al

ab
ili

ty

[3
]

P
er

so
na

l
da

ta
st

or
ag

e
M

yd
ex

E
ns

ur
e

se
cu

ri
ty

on
da

ta
H

ig
h

co
st

;
C

en
tr

al
iz

ed

[1
65

]
D

ec
en

tr
al

iz
ed

da
ta

m
an

ag
em

en
t

O
N

T
O

C
H

A
IN

;
Sm

ar
t

co
nt

ra
ct

;
O

nt
ol

og
y

M
ai

nt
ai

n
tr

us
t;

D
ec

en
tr

al
iz

at
io

n
R

eq
ui

re
se

cu
ri

ty
sc

he
m

es

[1
57

]
D

ec
en

tr
al

iz
ed

da
ta

m
an

ag
em

en
t

O
N

T
O

C
H

A
IN

;
Sm

ar
t

co
nt

ra
ct

;
O

nt
ol

og
y

U
se

r
ca

n
ke

ep
tr

ac
k

of
th

e
da

ta

N
ee

d
to

pr
ev

en
t

da
ta

fr
om

un
au

th
or

iz
ed

ac
ce

ss
;
Im

m
ut

ab
le

[3
5]

D
ec

en
tr

al
iz

ed
da

ta
m

an
ag

em
en

t
Sm

ar
t

co
nt

ra
ct

;
O

nt
ol

og
y

U
se

r
ca

n
ke

ep
tr

ac
k

of
th

e
da

ta

R
eq

ui
re

se
cu

ri
ty

sc
he

m
es

;
Im

m
ut

ab
le

[1
43

]
P
er

so
na

l
da

ta
m

an
ag

em
en

t
G

D
P

R
;

Se
m

an
ti

c
w

eb
E

ns
ur

e
da

ta
pr

iv
ac

y
N

ee
d

to
en

su
re

da
ta

se
cu

ri
ty

;

[8
4]

D
ec

en
tr

al
iz

ed
da

ta
m

an
ag

em
en

t

Sm
ar

t
co

nt
ra

ct
;

O
nt

ol
og

y;
In

te
rP

la
ne

ta
ry

F
ile

Sy
st

em

D
at

a
in

te
ro

pe
ra

bi
lit

y

N
ee

d
to

pr
ev

en
t

da
ta

fr
om

un
au

th
or

iz
ed

da
ta

ac
ce

ss
;

Se
cu

ri
ty

ri
sk

re
m

ai
ns

;
Im

m
ut

ab
le

40 2.3 Literature Review

T
ab

le
2.

1:
C

on
ti

nu
ed

R
ef

.
n
o

C
h
al

le
n
ge

A
d
d
re

ss
ed

A
p
p
ro

ac
h

A
d
va

nt
ag

es
L
im

it
at

io
n
s

[9
5,

10
4]

M
ai

nt
ai

n
tr

ac
k

of
th

e
da

ta

Sm
ar

t
co

nt
ra

ct
;

G
D

P
R

E
ns

ur
e

tr
us

t;
T
ra

ns
pa

re
nc

y
N

ee
d

to
en

su
re

da
ta

se
cu

ri
ty

[5
0,

13
2]

D
ec

en
tr

al
iz

ed
da

ta
sh

ar
in

g

Sy
m

m
et

ri
c

ke
y

cr
yp

to
gr

ap
hy

;
A

tt
ri

bu
te

-b
as

ed
ac

ce
ss

co
nt

ro
l

E
ns

ur
e

da
ta

co
nfi

de
nt

ia
lit

y
an

d
in

te
gr

it
y

Im
m

ut
ab

le

[8
3,

11
0]

M
an

ag
em

en
t

of
da

ta
sh

ar
in

g

Sm
ar

t
co

nt
ra

ct
;

In
te

rP
la

ne
ta

ry
F
ile

Sy
te

m
Sy

st
em

D
at

a
in

te
ro

pe
ra

bi
lit

y
D

at
a

is
pu

bl
ic

ly
av

ai
la

bl
e;

Sc
al

ab
ili

ty

[8
8]

A
no

ny
m

iz
ed

da
ta

se
t

B
lo

ck
ch

ai
n

D
ec

en
tr

al
iz

at
io

n;
D

at
a

ow
ne

r
ca

n
tr

ac
e

th
ei

r
da

ta

N
ee

d
th

ir
d

pa
rt

y
to

m
an

ag
e

pr
iv

ac
y

po
lic

y;
P

ri
va

cy
ri

sk
re

m
ai

n

[1
7]

E
ns

ur
e

id
en

ti
ty

in
bi

tc
oi

n
bl

oc
kc

ha
in

Z
er

o-
kn

ow
le

dg
e

pr
oo

f
D

yn
am

ic
up

da
te

of
id

en
ti

ti
es

N
ee

d
th

ir
d

pa
rt

y

[2
9]

A
no

ny
m

it
y

of
us

er
da

ta
ov

er
bl

oc
kc

ha
in

Z
er

o-
kn

ow
le

dg
e

pr
ot

oc
ol

;
Sm

ar
t

co
nt

ra
ct

E
ns

ur
e

da
ta

pr
iv

ac
y;

R
em

ov
e

th
ir

d
pa

rt
y

R
eq

ui
re

m
or

e
se

cu
ri

ty
sc

he
m

es
;

U
na

bl
e

to
w

or
k

w
he

n
ve

ri
fie

r
is

m
al

ic
io

us

[5
4]

Se
cu

re
da

ta
m

an
ag

em
en

t

R
in

g
si

gn
at

ur
e;

Sm
ar

t
co

nt
ra

ct
;

C
ry

pt
og

ra
ph

ic
te

ch
ni

qu
es

R
ed

uc
e

bl
oc

kc
ha

in
ba

nd
w

id
th

an
d

co
m

pu
ta

ti
on

al
po

w
er

Sc
al

ab
ili

ty

[1
07

]
D

ec
en

tr
al

iz
ed

di
gi

ta
l

Id
en

ti
ty

m
an

ag
em

en
t

uP
or

t;

Sm
ar

t
co

nt
ra

ct

C
om

pl
et

el
y

de
ce

nt
ra

liz
ed

;
E

ns
ur

e
da

ta
tr

an
sp

ar
en

cy
N

ee
d

to
en

su
re

da
ta

se
cu

ri
ty

[8
]

D
ec

en
tr

al
iz

ed
di

gi
ta

l
Id

en
ti

ty
m

an
ag

em
en

t
Sm

ar
t

co
nt

ra
ct

C
om

pl
et

el
y

de
ce

nt
ra

liz
ed

;
E

ns
ur

e
da

ta
tr

an
sp

ar
en

cy
Im

m
ut

ab
ili

ty

[4
,9

9]
D

ec
en

tr
al

iz
ed

di
gi

ta
l

Id
en

ti
ty

m
an

ag
em

en
t

B
lo

ck
ch

ai
n

E
ns

ur
e

da
ta

tr
an

sp
ar

en
cy

;
E

ns
ur

e
tr

us
t

Im
m

ut
ab

ili
ty

Background Knowledge and Literature Review 41

T
ab

le
2.

1:
C

on
ti

nu
ed

R
ef

.

n
o

C
h
al

le
n
ge

A
d
d
re

ss
ed

A
p
p
ro

ac
h

A
d
va

nt
ag

es
L
im

it
at

io
n
s

[6
4]

M
an

ag
e

un
au

th
or

iz
ed

da
ta

ac
ce

ss
R

el
at

io
n-

ba
se

d
ac

ce
ss

co
nt

ro
l
m

od
el

E
ns

ur
e

da
ta

ac
ce

ss
co

nt
ro

l

C
om

pl
ex

to
m

od
el

pe
rm

is
si

on
s;

U
na

bl
e

to
ch

an
ge

po
lic

ie
s

at
ru

n
ti

m
e

[1
80

]
M

an
ag

e
un

au
th

or
iz

ed
da

ta
ac

ce
ss

D
es

cr
ip

ti
on

lo
gi

c
an

d
re

la
ti

on
-b

as
ed

ac
ce

ss
co

nt
ro

l
m

od
el

E
as

y
to

un
de

rs
ta

nd
;

E
ns

ur
e

au
th

or
iz

ed
da

ta
ac

ce
ss

N
ot

effi
ci

en
t

re
as

on
in

g;
U

na
bl

e
to

id
en

ti
fy

in
st

an
ce

s
in

hi
er

ar
ch

ie
s

[1
12

]
M

an
ag

e
un

au
th

or
iz

ed
da

ta
ac

ce
ss

R
ul

e-
ba

se
d

ac
ce

ss
co

nt
ro

l
m

od
el

an
d

se
m

an
ti

c
W

eb

E
ns

ur
e

au
th

or
iz

ed
ac

ce
ss

to
th

e
da

ta
D

iffi
cu

lt
to

m
an

ag
e

ru
le

s
fo

r
ea

ch
us

er

[1
34

]

M
an

ag
em

en
t

of
at

tr
ib

ut
e-

ba
se

d
ac

ce
ss

co
nt

ro
l

po
lic

y

U
se

X
A

C
M

L
w

it
h

at
tr

ib
ut

e-
ba

se
d

ac
ce

ss
co

nt
ro

l
m

od
el

E
as

y
to

us
e

po
lic

y
ed

it
or

L
im

it
ed

to
ag

e
an

d
em

ai
l
at

tr
ib

ut
es

;
D

iffi
cu

lt
to

m
an

ag
e

at
tr

ib
ut

es

[4
2]

St
at

ic
R

B
A

C

U
se

on
to

lo
gy

to
re

pr
es

en
t

cl
as

se
s

an
d

re
la

ti
on

s
co

rr
es

po
nd

in
g

to
R

B
A

C

E
nd

us
er

ca
n

qu
er

y
th

e
da

ta

N
ot

de
fin

ed
le

ve
l

of
pe

rm
is

si
on

s
to

ac
ce

ss
da

ta

[6
0]

D
at

a
ac

ce
ss

co
nt

ro
l

In
te

gr
at

e
O

w
l
on

to
lo

gy
w

it
h

R
B

A
C

U
se

fu
l
to

sh
ar

e
in

fo
rm

at
io

n;
R

ed
uc

e
sy

st
em

de
si

gn
co

m
pl

ex
it
y

F
ix

ed
ro

le
s,

re
so

ur
ce

s
an

d
pe

rm
is

si
on

s;
L
im

it
ed

to
on

e
do

m
ai

n;
N

ot
de

fin
e

co
m

pl
ex

pe
rm

is
si

on
s

be
tw

ee
n

us
er

s

[1
38

]
M

an
ag

e
ac

ce
ss

to
th

e
re

so
ur

ce
s

C
om

bi
ne

ro
le

-b
as

ed
ac

ce
ss

co
nt

ro
l

m
od

el
w

it
h

on
to

lo
gy

A
dd

re
ss

ed
ro

le
hi

er
ar

ch
ie

s;
F
le

xi
bl

e
to

ad
d

su
b-

ro
le

s

N
ot

de
fin

ed
le

ve
l

of
pe

rm
is

si
on

s

[8
6]

A
ut

ho
ri

ze
d

ac
ce

ss
to

th
e

re
so

ur
ce

s
In

te
gr

at
e

R
B

A
C

w
it

h
on

to
lo

gy

A
dd

re
ss

ed
ro

le
hi

er
ar

ch
ie

s
an

d
pe

rm
is

si
on

s;

N
ot

de
fin

ed
co

m
pl

ex
re

la
ti

on
sh

ip
s

be
tw

ee
n

us
er

s

[6
8]

O
rg

an
iz

e
un

st
ru

ct
ur

ed
da

ta
O

W
L

O
nt

ol
og

y
R

ep
re

se
nt

su
bc

la
ss

es
hi

er
ar

ch
ie

s
N

ee
d

to
de

fin
e

ac
ce

ss
co

nt
ro

l
pe

rm
is

si
on

s

42 2.3 Literature Review

T
ab

le
2.

1:
C

on
ti

nu
ed

R
ef

n
o

C
h
al

le
n
ge

A
d
d
re

ss
ed

A
p
p
ro

ac
h

A
d
va

nt
ag

es
L
im

it
at

io
n
s

[1
52

]
D

ec
en

tr
al

iz
ed

da
ta

m
an

ag
em

en
t

an
d

ac
ce

ss
co

nt
ro

l

B
lo

ck
ch

ai
n;

D
is

tr
ib

ut
ed

ha
sh

ta
bl

e;
F
in

e-
gr

ai
ne

d
ac

ce
ss

co
nt

ro
l

D
ec

en
tr

al
iz

at
io

n;
E

ns
ur

e
da

ta
se

cu
ri

ty

P
ri

va
cy

ri
sk

re
m

ai
ns

;

P
er

m
is

si
on

s
ar

e
im

m
ut

ab
le

[6
3]

D
ec

en
tr

al
iz

ed
da

ta
m

an
ag

em
en

t
B

lo
ck

ch
ai

n;
O

nt
ol

og
y

M
ai

nt
ai

n
tr

us
t

Se
cu

ri
ty

ri
sk

re
m

ai
ns

;
Im

m
ut

ab
le

[7
2]

D
ec

en
tr

al
iz

ed
da

ta
st

or
ag

e

B
lo

ck
ch

ai
n;

D
is

tr
ib

ut
ed

ha
sh

ta
bl

e

D
ec

en
tr

al
iz

at
io

n;
E

ffi
ci

en
t

st
or

ag
e

D
at

a
is

pu
bl

ic
ly

av
ai

la
bl

e;
N

ee
d

to
en

su
re

da
ta

se
cu

ri
ty

[1
63

]
M

ai
nt

ai
n

pr
od

uc
t

tr
ac

ea
bi

lit
y

B
lo

ck
ch

ai
n;

R
ad

io
-F

re
qu

en
cy

Id
en

ti
fic

at
io

n

E
ns

ur
e

tr
ac

k
of

th
e

da
ta

D
at

a
is

im
m

ut
ab

le
;

Sc
al

ab
ili

ty

[5
3]

D
ec

en
tr

al
iz

ed
di

gi
ta

l
Id

en
ti

ty
m

an
ag

em
en

t
So

vr
in

,
U

po
rt

an
d

Sh
oC

ar
d

C
om

pl
et

el
y

de
ce

nt
ra

liz
ed

;
E

ns
ur

e
da

ta
tr

an
sp

ar
en

cy
;

U
se

r
ca

n
co

nt
ro

l
da

ta
tr

an
sa

ct
io

ns

N
ee

d
to

m
an

ag
e

cr
yp

to
gr

ap
hi

c
ke

ys

[1
59

]
R

ep
re

se
nt

s
ro

le
co

nc
ep

t
an

d
ro

le
hi

er
ar

ch
y

O
nt

ol
og

y-
ba

se
d

fr
am

ew
or

k
R

ep
re

se
nt

s
ro

le
hi

er
ar

ch
ie

s

R
el

at
io

ns
hi

p
be

tw
ee

n
ro

le
s

is
ve

ry
si

m
pl

e;
N

ot
de

fin
ed

pe
rm

is
si

on
s

to
re

st
ri

ct
un

au
th

or
iz

ed
da

ta
ac

ce
ss

[4
1]

M
an

ag
e

ac
ce

ss
to

th
e

re
so

ur
ce

s

O
nt

ol
og

y-
ba

se
d

ac
ce

ss
co

nt
ro

l
fr

am
ew

or
k

D
efi

ne
th

e
le

ve
l

of
pe

rm
is

si
on

s;
H

an
dl

e
ac

ce
ss

to
th

e
re

so
ur

ce
s

N
ot

de
fin

ed
ro

le
hi

er
ar

ch
ie

s

[1
67

]
M

an
ag

e
un

au
th

or
iz

ed
da

ta
ac

ce
ss

E
xt

en
d

R
B

A
C

us
in

g
O

nt
ol

og
y

R
ep

re
se

nt
ro

le
hi

er
ar

ch
y

D
id

no
t

m
an

ag
e

co
m

pl
ex

pe
rm

is
si

on
s

be
tw

ee
n

in
di

vi
du

al
s

Background Knowledge and Literature Review 43

The authors in [167] integrate the RBAC model with a role ontology to ensure
security on the data. The proposed work represents the role hierarchy by converting
an ontology into a tree structure (such as parent and child). They assigned permis-
sions to the roles to access and read the data. The proposed ontology allows only
authorized users to access the data based on their roles. However, this work did not
define the permissions hierarchy according to the levels of roles. Additionally, this
work did not manage complex permissions between individuals.

The authors in [86] describe a domain specific RBAC model with an ontology
approach. The ontology is used to represent and manage the RBAC roles as a class
having permissions given to them. Role hierarchies of the RBAC model can easily
be managed and represented in the ontology as classes and subclasses. The proposed
solution assigns a role to the user if the user id and password entered by the user
are matched with pre-stored entries in the knowledge base. However, this solution
is unable to handle complex permissions. In addition, this work did not define the
relationships between users.

In [159] the authors propose an ontology-based framework that represents the
role hierarchy and relationship between them. For instance, a ’teacher’ is a role
and has a hierarchy: a ‘high school teacher’ and ‘elementary school teacher’. In
the proposed framework, the ’is-a’ relation is used between roles that belong to the
same hierarchy, such as ‘high school teacher’ is-a ‘teacher’ represents the relationship
between two roles. Role hierarchy and the relationship between them are represented
using the Hozo tool. However, the proposed framework did not define access control
permissions to manage data access. In addition, they use a very simple relationship
between roles.

The authors in [60] proposed a framework that integrates ontology with XACML
(Extensible Access Control Markup Language) policies to extend the existing RBAC
model. XACML is used to manage the authorization policies called a set of rules.
Rules are assigned to the roles to perform actions. Ontology is used to represent
the role hierarchies of RBAC and XACML policies. The authors represent the role
hierarchies of the university domain, for example, Dean role has a role hierarchy such
as a full professor, Associate professor, and Assistant professor. Based on these roles,
they define policies such as every professor, except assistant professors, can review a
project. The proposed framework has advantages in terms of flexibility and easy to
use. However, this solution did not define complex permissions between users.

In [138] the authors extend the role-based access control model using ontology.
The proposed work used ontology to represent the role hierarchies and policies that
restrict access to the resources according to the given permissions. The proposed
ontology has an advantage in terms of flexibility to add new roles in the role hierarchy.
However, the authors did not assign permissions to each role in the hierarchy.

The authors in [177] proposed an ontology-based RBAC that represents the con-
cepts and relationships. The proposed ontology is defined classes based on the con-
cept of RBAC such as users, roles, permissions, and sessions. Relationships between
these classes are defined using an object property. For instance, property ‘hasRole’
and ‘hasPermission’ is used to define the relationship between classes user, role, and
permission. However, this work assigned the same permission to the senior role and
junior role.

44 2.3 Literature Review

The authors in [27] proposed the ontology for the wood supply chain. The pro-
posed ontology represents the class hierarchy and object properties and defines the
relationship between classes. For instance, a class ‘size’ is further categorized into
two sub-classes such as ‘height’ and ‘width’ to show the class hierarchy. They define
object property ‘represent’ between two classes such as ‘size’ and ‘meter’. It shows
a relationship between two classes such as size can represent in meter. Protégé is
used to develop the ontology. This work used Racer reasoner to check the ontology
consistency. However, the authors did not allow an end-user to query the data. In
addition, they did not define permission to manage unauthorized access to the data.

In summary, existing access control models are complicated to manage permis-
sions for each user, object, rules, and attributes, where the number of users is very
high, and some users are not known in advance. In addition, it needs a lot of time
and resources. If access rights for the users and data are required to be altered in
the organization, then it is complex to make changes for each subject, object, and
attributes in that organization. Therefore, RBAC model assigns permissions to the
roles and then roles are assigned to the users and management of roles are easy as
compared to management of each user’s rights and attributes.

However, the complexity of the RBAC model remains to manage and represents
non-hierarchical relationships between actors. Also, it is static in nature and could
not adopt changes at run time. Therefore, ontology is useful to support both hi-
erarchical and non-hierarchical relationships due to its graph representation. It is
flexible to add roles, objects, and permissions at run time. Most existing solutions
did not manage complex relationships between users. In addition, existing solutions
did not handle complex permissions to access data. Thus, motivating research to-
wards developing an access control framework that manages access to data using
ontology.

2.3.4 REST and HATEOAS

In this section, we explore the existing literature on HATEOAS with REST APIs.
The authors in [47] discuss the framework based on REST and HTTP requests
to enable communication between users. The proposed framework uses Petri Net
Markup Language (PNML) [25] as a formal model to describe the execution process
of RESTful services. However, this work does not support the concept of HATEOAS,
nor authorization aspects to restrict unauthorized access to the resources.

In [130] the authors extend the Business Process Modeling (BPM) using graphical
syntax and semantics to support REST. The proposed solution presents a simple
process to connect with external resources (e.g REST APIs). However, this work did
not address hypermedia or HATEOAS. In addition, it could not identify resource
identifiers dynamically.

The authors in [102] introduce the concept of HATEOAS. The proposed approach
uses the wrapper between the client and API that generates hyperlinks. This wrap-
per processes the client request and sends it to the actual server. It receives the
server response and sends back to the client. However, this wrapper might change
the request and response content, which increase the security issues. However, the
proposed wrapper is based on the manually created model that explains the states

Background Knowledge and Literature Review 45

of the wrapped application. Additionally, the proposed approach use XPath2 (XML
Path Language) that point to values in the server response and only handle the
services based on the XML messages.

In [77] the authors present a HATEOAS that enables only authorized clients to
request the data. The RestACL (REST Access Control Language) is used to manage
access to the data. The RestACL is based on the concept of an attribute-based access
control model that restricts access based on the user’s attributes e.g name. However,
the management of access control policies according to the attributes is complex
and time-consuming. In addition, the proposed approach is based on customized
resources that work only with computer to computer and do not work with a Web
browser.

The authors in [90] discuss the HATEOAS principle using API. The proposed ap-
proach uses a proxy application that returns hyperlinks in the client’s response. The
authors in [90] claim that the proposed approach shows high false positives, where it
identifies incorrect transitions. However, the proposed solution supports only those
APIs that contain only one path parameter e,g id. Additionally, unauthorized data
access aspects are not investigated.

The authors in [127] discuss the HATEOAS based AProPro (Adapting Processes
via Processes) framework. The proposed framework is based on an adaptation pro-
cess that adapts to changes in other processes. However, the adaptation process
could change the active node that does not provide the next possible actions. In
addition, this work is not optimized because it shows high overhead while increasing
the number of actions.

In summary, most of the existing solutions are subject to scalability, time over-
head, and security issues. Some solutions use a wrapper between client and server
which can modify the actual message and response content. Existing solutions are
based on static link templates and do not allow the client to add and modify the
templates.

2.3.5 Comparative Analysis

In this section, we present a features comparison of the proposed solution with the
other existing solutions discussed in Section 2.3. The features that distinguish our
work are decentralization, data privacy, security properties, multiple types of encryp-
tion, attacks prevention, data updates and transaction history support.

Table 2.2 provides a global overview of existing solutions with respect to these
features. In the following, we analyze in detail each solution of Table 2.2, including
their main advantages and limitations.

Decentralization shows if the solution stores or manages data without any trusted
third party. Data privacy determines if it ensures the data owner’s access control
on the data. Security properties reflect to enforce security on data such as confi-
dentiality, integrity, availability, and non-repudiation. Multiple types of encryption
determine whether the solution provides different options between encryption mecha-
nisms to encrypt the data. Attacks prevention shows if it prevents data from attacks
such as linking, eavesdropping, and modification. Data updates determine if data
owner can modify their data. Transaction history support shows if data owner can

46 2.3 Literature Review

access their update history.
The table shows that the mydex solution [3], ensures the privacy of the data and

provides security properties (e.g confidentiality and integrity). However, centralized
data storage and attacks risks are drawbacks because it is managed by a single
authority.

The on-chain data management solution [165] is decentralized which ensures data
privacy and supports data updates. However, this solution stores data without en-
crypting it, which is subject to security and attack risks.

DECODE (Decentralized Citizens Owned Data Ecosystem) as proposed in [35],
enforces security on data such as confidentiality, integrity, and availability. It enables
users to update the data in the decentralized platform. However, it does not pro-
tect against attacks such as Linking attack, modification attack, and eavesdropping
attack.

In [143], ROPA is presented to manage personal data. This solution is decen-
tralized and ensures privacy on data according to the GDPR rules. However, it does
not provide security properties and attacks risk are also possible.

In [105], the authors proposed a BOWLER (Blockchain-Oriented Warehouse &
Low-Code Engine and Reasoner) framework that ensures security property such as
availability. However, it does not protect data from unauthorized access, thus making
data privacy major concerns. In addition it does not support data updates and
transaction history.

CARECHAIN (Supporting CARE through micro-insurance using blockchains)
as proposed in [162], achieves both decentralization and data privacy. The proposed
solution is unable to support security properties, attacks prevention, data updates,
and transaction history.

In [63], the authors proposed a copyright solution to manage data and ensures
data privacy in a decentralized platform. However, it does not enforce security prop-
erties (e.g confidentiality, integrity, and availability, and non-repudiation). In addi-
tion, multiple types of encryption, data updates, attacks prevention, and transaction
history aspects are also not considered.

The authors in [43], proposed a data storage solution that ensures decentraliza-
tion, data privacy and integrity. However, this solution stores data publicly, which
leads to data security and attacks issues. In addition, it is unable to support data
updates and transaction history due to the immutability feature of the blockchain-
based smart contract.

In [94], the authors presented a decentralized data management solution that
only ensures data availability security property. However, it stores data without
encrypting it, which leads to security breach and attacks.

In [18], the authors discussed a solution to manage data on blockchain. It ad-
dressed data privacy and availability security property. However, it does not support
data updates due to immutability property of blockchain. In addition, multiple types
of encryption, attacks prevention and transaction history support aspects are also
not considered.

The authors in [125] presented a solution that manages data storage and owner’s
control in a decentralized platform. This solution only achieves integrity and avail-
ability security properties. The proposed solution is unable to ensure data privacy

Background Knowledge and Literature Review 47

and prevent against attacks because data is not encrypted before storing it.
In [37], the authors proposed a self-sovereign identity management and data

sharing solution which does not enforce security on data. This solution enables data
owner to share their personal data which is subject to data privacy concerns. It does
not enable users to update their data and maintain transactions history. In addition,
attacks prevention aspect is also not addressed.

The authors in [7], presented a framework to manage data without a trusted
third party. They ensure the integrity and availability of data in a decentralized
framework. However, data is available to everyone on the network, which is subject
to data privacy and attacks risks. In addition, they did not address encryption
mechanisms, data updates, and transaction history support features.

In [101], the authors combined blockchain with DHT to store IoT data. They
ensure data privacy and updates in a decentralized platform. However, they do
not address security properties such as confidentiality, integrity, availability, and
non-repudiation. In addition, the transaction history support aspect is also not
considered.

The authors in [84], presented a decentralized ISLAND (Interlinked Semantically
enriched Blockchain Data) framework. The proposed framework achieves security
properties such as availability and integrity. However, privacy risks remain an issue
because data is not prevented from unauthorized access. Another drawback of this
framework is data update due to the permanent storage of data on the smart contract
and IPFS.

In [99], the authors proposed a self-sovereign identity management solution that
ensures identity privacy without any trusted third party. It addresses security prop-
erties such as confidentiality, integrity, and availability. However, attacks prevention,
data updates, and transaction history support are not considered.

NFTWATCH framework, as presented in [80], manages digital tokens associated
with data in a blockchain. It enables data owner to control their data and make
queries in a decentralized platform. This solution is unable to ensure data security,
privacy, data updates, and transaction history. In addition, this solution did not use
any encryption technique to encrypt the data before storing it.

The authors in [157], presented a solution to manage semantic data in the
blockchain. However, blockchain is managed by a centralized mainchain compo-
nent which becomes a single point of failure. Another drawback of this solution is
security, privacy, and attacks risks due to public accessibility of data. In addition,
data update and transaction history aspects remain an issue.

In [21], the authors proposed a solution to store data without any trusted third
party. The major disadvantage of this solution is data privacy, security, and attacks.

The authors in [104], presented a solution that maintains track of data in a de-
centralized platform. It prevents unauthorized access to the data which ensures data
privacy. However, security properties attack prevention. data updates, transaction
history, and queries to read data are not provided in this solution.

In [110], the authors presented a solution to manage data in a decentralized
platform. It address security properties such as (confidentiality, integrity, availability,
and non-repudiation) and allows authorized users to update the data. However, it
does not support transaction history. Another disadvantage of this solution is public

48 2.4 Discussion and Conclusion

accessibility of data which increases privacy risks.
The authors in [132] proposed a decentralized data sharing framework which

ensures data privacy and security using symmetric key cryptography. However, it
does not allow user to update their data and maintain transaction history.

In [96], the authors proposed a decentralized data management framework which
enforce security on data (such as confidentiality and integrity). They ensures data
privacy by limiting unauthorized access to the data. However, it does not allow
to update data and maintain transaction history. Additionally, attacks prevention
remains an issue.

The authors in [102], discussed HATEOAS with REST APIs solution which allows
user to read the data. The major drawback of this solution is their centralized design
which makes single point of failure issue and vulnerable to privacy, security and
attacks risks. In addition, data updates and transaction history are not addressed.

Another solution [77], presented a HATEOAS solution which ensures data privacy
using RestACL. However, this solution is centralized, thus making data security and
attacks major concerns.

In [90], discussed HATEOAS client which is not decentralized. They did not
investigate data privacy, security and attacks aspects. In addition, this solution does
not allow HATEOAS client to update their data and maintain transaction history.

As we can see from the analysis presented above, existing solutions do not com-
pletely fulfill the features presented in Table 2.2. Our proposed solution is more
reliable and secure due to the following reasons:

• The proposed solution is completely decentralized to store and manage the
data without any centralized party.

• Our solution ensures data privacy by protecting data from unauthorized access.
The data owner has control over their data and the data owner decides who
may access their data.

• Our solution ensures the following security properties: confidentiality, integrity,
availability, and non-repudiation.

• It is flexible to use different types of encryption to ensure data security.

• It protect data against attacks such as linking, eavesdropping, sybil, spoofing,
and modification attacks.

• Our solution enables actors to modify their data and maintains their transac-
tion history.

2.4 Discussion and Conclusion

In this chapter, we provided the key concepts of the main research areas that are
relevant to this dissertation. We also described the existing literature dealing with
the research challenges identified in Chapter 1. Based on our literature review, we

Background Knowledge and Literature Review 49

identified the research gaps in available knowledge. Moreover, we compared the fea-
tures of our proposed solution with existing solutions and showed the position of
this dissertation. Based on our previous analysis, these features are decentralization,
data privacy, security properties, multiple types of encryption, attacks prevention,
data updates, and transaction history support.

In summary, based on the literature review, we observed that existing solutions
are suffering from the following issues:

• Some existing solutions are based on centralized storage design, thus making
single point of failure major concerns [3, 76, 182].

• Most existing data storage and management solutions store data publicly in a
decentralized ledger. However, public availability of data in such ledgers does
not take data privacy requirements into account [72,84,175]. In addition, some
solutions are not scalable to handle large amount of data since the data is
replicated on each node of the ledger [110,163].

• Some existing solutions provide security and privacy to store and manage the
data. However, they did not offer flexible encryption design to encrypt the
data. Additionally, they did not provide any solution to update data and
transaction history support [3, 99].

• Most solutions are suffering from lack of data access control in a decentralized
ledger [83, 84, 157]. In addition, some solutions did not address complex rela-
tionships and permissions between actors [60, 86, 159]. Most of the solutions
did not design access control rules and permissions using HTTP verbs such as
POST, GET, PUT, and DELETE [41,112].

• Some solutions address only availability and integrity security properties. How-
ever, they did not to ensure confidentiality and non-repudiation to enforce
security on data [7, 84,132].

• Some solutions use a proxy to process the client’s request and send it to the
actual server. Then it receives the actual server’s response and sends it back
to the client. However, it increases the chance of modification in the actual
request and response content [102].

The goal of this thesis is to provide a solution that overcome the limitations
discussed above. In the next chapter, we detail our first contribution dealing with
data management using REST APIs without any trusted third party.

50 2.4 Discussion and Conclusion

T
ab

le
2.

2:
Fe

at
ur

es
co

m
pa

ri
so

n
of

ou
r

pr
op

os
ed

w
or

k
w

it
h

ex
is

ti
ng

so
lu

ti
on

s

R
ef

.n
o/

ye
ar

D
ec

en
tr

al
iz

at
io

n
D

at
a

p
ri

va
cy

S
ec

u
ri

ty
p
ro

p
er

ti
es

M
u
lt

ip
le

ty
p
es

of
en

cr
yp

ti
on

A
tt

ac
ks

p
re

ve
nt

io
n

D
at

a
u
p
d
at

es

T
ra

n
sa

ct
io

n
h
is

to
ry

su
p
p
or

t

[3
],

20
18

N
o

Y
es

C
on

fid
en

ti
al

it
y;

In
te

gr
it
y

N
o

N
o

N
o

N
o

[1
65

],
20

21
Y

es
Y

es

C
on

fid
en

ti
al

it
y;

In
te

gr
it
y;

A
va

ila
bi

lit
y;

N
on

-r
ep

ud
ia

ti
on

N
o

N
o

Y
es

Y
es

[3
5]

,2
01

7
Y

es
Y

es
C

on
fid

en
ti

al
it
y;

In
te

gr
it
y;

A
va

ila
bi

lit
y

N
o

N
o

Y
es

N
o

[1
43

],
20

21
Y

es
Y

es
N

o
N

o
N

o
Y

es
N

o
[1

05
],

20
20

Y
es

N
o

A
va

ila
bi

lit
y

N
o

N
o

N
o

N
o

[1
62

],
20

20
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o
[6

3]
,2

01
9

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

[4
3]

,2
02

0
Y

es
Y

es
In

te
gr

it
y

N
o

N
o

N
o

N
o

[9
4]

,2
02

0
Y

es
N

o
A
va

ila
bi

lit
y

N
o

N
o

N
o

N
o

[1
8]

,2
02

0
Y

es
Y

es
In

te
gr

it
y

N
o

N
o

N
o

N
o

[1
25

],
20

20
Y

es
N

o
A
va

ila
bi

lit
y;

In
te

gr
it
y

N
o

N
o

N
o

N
o

[3
7]

,2
01

9
Y

es
N

o
N

o
N

o
N

o
N

o
N

o
[7

],
20

17
Y

es
N

o
In

te
gr

it
y;

A
va

ila
bi

lit
y

N
o

N
o

N
o

N
o

[1
01

],
20

18
Y

es
Y

es
N

o
N

o
N

o
Y

es
N

o

Background Knowledge and Literature Review 51

T
ab

le
2.

2:
C

on
ti

nu
ed

R
ef

.n
o/

ye
ar

D
ec

en
tr

al
iz

at
io

n
D

at
a

p
ri

va
cy

S
ec

u
ri

ty
p
ro

p
er

ti
es

M
u
lt

ip
le

ty
p
es

of
en

cr
yp

ti
on

A
tt

ac
ks

p
re

ve
nt

io
n

D
at

a
u
p
d
at

es

T
ra

n
sa

ct
io

n
h
is

to
ry

su
p
p
or

t
[1

40
],

20
21

Y
es

Y
es

In
te

gr
it
y

N
o

N
o

N
o

N
o

[8
4]

,2
02

1
Y

es
N

o
A
va

ila
bi

lit
y;

In
te

gr
it
y

N
o

N
o

N
o

N
o

[9
9]

,2
01

7
Y

es
Y

es
C

on
fid

en
ti

al
it
y;

In
te

gr
it
y;

A
va

ila
bi

lit
y

Y
es

N
o

N
o

N
o

[8
0]

,2
02

0
Y

es
N

o
N

o
N

o
N

o
N

o
N

o
[1

57
],

20
22

Y
es

N
o

N
o

N
o

N
o

Y
es

Y
es

[2
1]

,2
02

1
Y

es
N

o
N

o
N

o
N

o
N

o
N

o
[1

04
],

20
21

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

[1
10

],
20

21
Y

es
N

o

C
on

fid
en

ti
al

it
y;

In
te

gr
it
y;

A
va

ila
bi

lit
y;

N
on

-r
ep

ud
ia

ti
on

N
o

Y
es

Y
es

N
o

[1
32

],
20

17
Y

es
Y

es
C

on
fid

en
ti

al
it
y;

In
te

gr
it
y

Y
es

N
o

N
o

N
o

[9
6]

,2
02

0
Y

es
Y

es
C

on
fid

en
ti

al
it
y;

In
te

gr
it
y

N
o

N
o

N
o

N
o

[1
02

],
20

11
N

o
N

o
N

o
N

o
N

o
N

o
N

o
[7

7]
,2

01
8

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

[9
0]

,2
02

0
N

o
N

o
N

o
N

o
N

o
N

o
N

o

O
u
r

p
ro

p
os

ed
so

lu
ti

on
Y

es
Y

es

C
on

fid
en

ti
al

it
y;

In
te

gr
it
y;

A
va

ila
bi

lit
y;

N
on

-r
ep

ud
ia

ti
on

Y
es

Y
es

Y
es

Y
es

Chapter 3

Decentralized Web Framework for
Data Management

The Results of this chapter are published in the following articles:

• Aslam, S., Mrissa, M.: A RESTful Privacy-Aware and Mutable Decentralized
Ledger. European Conference on Advances in Databases and Information Sys-
tems (pp. 193-204). Springer, Cham, 2021

• Aslam, S., Bukovszki, B., Mrissa, M.: Decentralized Data Management Privacy-
aware Framework for Positive Energy Districts. Energies, 14(21), 7018, 2021

• Aslam, S., Mrissa, M.: Privacy-aware Distributed Ledger for Product Trace-
ability in Supply Chain Environments. Conference of SWST International
Society of Wood Science and Technology, 2020

3.1 Introduction

As explained in the previous chapters, the need for a decentralized framework is
crucial to overcome the limitations of cloud-based approaches. In this chapter, we
propose a Web-based framework that eliminates the need for a trusted third party
to manage data. To do so, we combine blockchain technology with Distributed Hash
Table (DHT), access control ontology, and multiple encryption mechanisms. Those
contributions, detailed in the following chapters of this dissertation, are supported
by a set of RESTful APIs that we designed to support our decentralized solution and
ensure interoperability over the Web. Each peer of the framework exposes the same
set of APIs, so that they are easy to maintain and enable smooth communication
over HTTP between peers. The proposed RESTful APIs are fully compliant with the
REST architectural style, they enable loosely-coupled interactions between network
peers using HTTP calls, appropriate usage of the HTTP verbs, and decentralized
management of the data in the wood supply chain (WSC).

This chapter is structured as follows. First, we provide an overview of our frame-
work. Then, we explain the actor registration algorithm using our REST APIs. After

Decentralized Web Framework for Data Management 53

that, we detail each actor’s interaction with the framework to manage their data ac-
cording to our motivating scenario. We explain in detail how our APIs support those
interactions. After that, we detail framework components including the access con-
trol ontology component, blockchain component, DHT component, and encryption
manager component. Then, we present the implementation and discussion of the
proposed solution. Finally, we summarize this chapter.

3.2 Framework Overview

Our framework enables authorized actors to write, read, update, delete data and
interact with other actors via HTTP calls. Figure 3.1 depicts the framework overview
and its components organized around a main program. In our framework, actors are
the nodes or peers of the framework and they are running the main program and
they call the registry_server component to receive the list of connected peers and
connect with each other through their APIs.

Verify permission
to read/write/update/delete data

Independent registry server

Encryption manager component

Encryption with data
owner's public key

Symmetric encryption

Encrypt symmetric key
with data owner's

public key

Data storage component

Send request

Return available
 peer list

Access Control Ontology response
Client

Send request to read/write
pointer and metadata

Blockchain response

Store data

DHT response

Encrypt dataDecrypt data

Encryption with data
requester's public key

DHT
component

Blockchain
component

Access Control
Ontology component

Figure 3.1: Overview of a peer architecture.

Let us consider our running motivating use case: a forest manager actor logs in
our framework to some details about the trees cut on this day. The forest manager
program will call the /peers resource with the ‘POST’ method of the registry server
to add its URL (Uniform Resource Locator) and public key to the list of available
peers. Then, it will receive the list of connected peers by calling /peers resource
with method ‘GET’. After that, it will call the /chain resource using the method

54 3.2 Framework Overview

’GET’ to receive or copy the last 40 transactions of blockchain from other connected
peers (please note that, if an actor wants to see more blocks then here is a possible
option to do it using HATEOAS links. To do so, we can provide the first block of
the blockchain and then links to the other blocks. This way an actor can access the
blocks of the blockchain using links until it gets the required data).

Upon request, the main component will call the access control ontology com-
ponent to authenticate the permissions of the current actor, for example, a current
actor such as a forest manager actor is authorized to write, read, update, and delete
data or not. The proposed access control ontology component is responsible
to manage relationships between actors and handle complex permissions for data
access. In our access control ontology component, we define actors’ rules and
permissions to manage access to the data.

After verifying the permission of the actor, our encryption manager component
allows the authorized actor to select between different types of encryption methods
to store and read the data. It is also responsible to create a public and private key,
or symmetric key of the actors. To store the data, the main component will call
the encryption manager component to encrypt the entered data with the current
actor’s public key or symmetric key depending on the encryption method selected
by the actor. Then, this encrypted data will be stored on the off-chain (key, value)
storage known as the DHT component, while the corresponding DHT key (hash of the
data) and metadata will be sent to the blockchain component. An authorized actor
is allowed to create, read, update and delete their data using the DHT key stored on
the blockchain component.

Accordingly, an actor will send a ‘POST’ request to the /chain resource to create
a new block. Our framework enables authorized actor to update their data on the
chain. To update the data, it will make a ‘PUT’ request to the /chain/<id> resource.
Accordingly, a request to (/chain/<id>, method ‘DELETE’), will delete the data. To
read the data, an actor will call the resource /chain/<id> using ‘GET’ method. A
request to the resource /public_key with method ‘GET’ will return the public key
of the actor. Figure 3.2 depicts the swagger user interface that allows authorized
actors to use the APIs discussed above.

Figure 3.2: Overview of the proposed APIs using Swagger.

Decentralized Web Framework for Data Management 55

3.2.1 API and Algorithm for Actor Registration

Algorithm 1 presents the actor registration process using our designed APIs. It
allows actors to connect to the proposed framework and receives the information of
available peers.

Lines 1-3 represent that, the actor uses the /peers resource with ’GET’ method
to retrieve the list of available peers list (PL). The new actor calls the /peers resource
with ’POST’ method to insert its endpoint PE or address to the list of available peers
and successfully connects with the registry server (lines 4 and 10). Then it iterates
peers in the peer list and sends a request to other available peers to acknowledge
the connected peer (/peers resource, ’POST’ method) in lines 6-8. Then, lines 11-17
represent if it’s already in the peer list then disconnect it from the list using the
/peers resource with ’DELETE’ method. The request will send to other available
peers to acknowledge the disconnected peer in line 14.

Algorithm 1 Actor registration algorithm
Input: ca: current actor
Output: boolean value

▷ GET: HTTP verb GET request (constant)
▷ POST: HTTP verb POST request (constant)
▷ PE: endpoint of the peer (constant)
▷ req.method: identify request type (variable)
▷ PL: peer list (variable)
▷ p: peer in loop (variable)

1: if req.method == GET then
2: return PL
3: end if
4: if req.method == POST then
5: PL.Append(ca)
6: for each p ∈ PL do
7: RequestsPost(p(PE), ca)
8: end for
9: return true

10: end if
11: if req.method == DELETE then
12: PL.Remove(ca)
13: for each p ∈ PL do
14: RequestsDelete(p(PE), ca)
15: end for
16: return true
17: end if

56 3.2 Framework Overview

3.2.2 Execution Flow

In our framework, the actors participate to perform different actions on the data
depending on their permissions and roles. Figure 3.3 represents the overview of
each actor’s actions (such as GET, POST, PUT and DELETE) on the data in the
framework. In Section 3.2, we develop a detailed discussion of the internal operation
of a peer and explain to it interacts with the framework components using RESTful
APIs and HATEOAS links.

In the following, we develop a detailed execution flow of our framework that
illustrates the interaction between each actor and the framework using RESTful
APIs. Our solution maintains the id’s references to ensure traceability. It allows
actors to verify the origin of the product in the chain.

Figure 3.4 shows the execution flow between the forest manager actor and the
framework. We assume that every actor is already registered on the framework. A
forest manager actor makes a ‘POST’ request to the /chain resource to write log data
in the framework. The code sample below illustrates what the data that describes a
log may contain:

{
"id": "RFID_number",
"resource": "log",
"woodtype": "oak",
"datetime": "2022-03-16, T-19:20:30.45+01:00",
"location":
{

"lat": "38,3951",
"long": "-77,0364"

}
}

Our solution assigns a unique data id (RFID_number) to the log that enables au-
thorized actors to trace the log in the chain. In the successful response (HTTP code
201), it returns the links including the id in the response. Our framework stores the
DHT key of this generated data in the metadata. Therefore, this DHT key points to
the location of the log data on the DHT. The actor can use these links to perform
further actions on the log data by sending another HTTP request as described in
the links.

To read the data, a forest manager actor would use the GET link that would call
the /chain/<id> resource with method ‘GET’ to retrieve the representation of the
log data. In the successful response (HTTP code 200), our framework returns the
representation of the log data.

Decentralized Web Framework for Data Management 57

W
ood Supply C

hain D
ecentralized Storage

Actors

Forest manager
actor

Records data
about log

Reads log
data

Transporter
actor

Records data about log Updates location of log

Sawmill manager
actor

Records lumber
data from log data

Reads lumber
data

Updates lumber
data

Delete lumber
data

Product
assembler actor

Records assembly
product data from

lumber data

Reads assembly
product data

Updates assembly
product data

Delete assembly
product data

Records product location Reads product data
Product seller

actor

Customer
Records product, log data

Actors perform actions on the data
in the framework

Updates log
data

Delete log
data

Figure 3.3: High-level representation of actors actions on the data.

In case a forest manager actor wants to update their data, then they use the PUT
link that makes a ’PUT’ request to the (/chain/<id> resource). To update the data,
our access control rules verify the actor’s permission, for instance, if a current actor
such as a forest manager is authorized to update the data or not. We develop the
details of access control rules in Chapter 5. It will then writes new data against the
same id. Then, a new metadata structure creates on the blockchain that contains
the new DHT key of this updated data and the previous pointer of the old version
of the data (more details develop in Chapter 4). In the successful case, it updates
the log data.

Similarly, to delete the data, a forest manager actor may follow the DELETE link
(/chain/<id> resource, method ’DELETE’). Our framework allows the authorized
actor to delete the specific data based on the id. After verifying the permission
of the forest manager actor, it will delete the data. In this case, a new metadata
structure creates on the blockchain that has a new DHT key with a NULL value. In
the successful response, it receives log data deleted.

Figure 3.5 shows the execution flow between the transporter actor and the frame-
work. Transporter actor will call the /chain/<id> resource with method ‘GET’ to
retrieve the representation of the log data. In response, the framework returns the
representation of the log data and links to perform further actions on the data. Then,
the transporter actor follows the link to modify the location of the log (/chain/<id>
resource, method ’PUT’).

58 3.2 Framework Overview

Forest manager

JSON-LD structure of the data on DHT:

{
 "@context": {
 "resource": "https://.../AccessControl/log#",
 },

 "id": "RFID_number",
 "resource": "log",
 "woodtype": "oak",
 "datetime": "2022-03-16, T-19:20:30.45+01:00",
 "location": {"lat": "38,3951",long": "-77,0364"}
}

Received links in the response
"links": {
 "GET": "http://127.0.0.1:8001/chain/<id>",
 "PUT": "http://127.0.0.1:8001/chain/<id>",
 "DELETE": "http://127.0.0.1:8001/chain/<id>",
 "POST": "http://127.0.0.1:8001/chain"
}

Framework

Response: 200 - Log data updated

Response: 200 - Log data deleted

POST '/chain' - Create new log data

DELETE '/chain/<id>' - Delete log data

PUT '/chain/<id>' - Update log data

Response: 201 - Log data created, links

GET '/chain/<id>' - Retrieve a representation of log data

Response: 200 - Return representation of log

Figure 3.4: Execution flow of forest manager actor in the framework.

Decentralized Web Framework for Data Management 59

Transporter Framework

Response: 200 - Return representation of log

GET '/chain/<id>' - Retrieve a representation of log data

Response: 200 - Location of log updated

PUT '/chain/<id>' - Update location of log

Figure 3.5: Execution flow of transporter actor in the framework.

Figure 3.6 depicts the interaction of the sawmill manager with the framework. A
sawmill actor makes a ‘POST’ request to the /chain resource to write lumber data
in the framework as presented below:

{
"id": "RFID_number",
"resource": "lumber",
"datetime": "2022-05-18, T-17:10:35.45+01:00",
"location":
{

"lat": "33,3242",
"long": "-56,0413"

},
"log":
{

"id": "RFID_number"
}

}

As shown in this data, lumber has an reference id such as RFID_number of the log
that was cut before. Therefore, it enables sawmill manager to verify the origin of
the log. In the successful case, sawmill manager will receive the links of this lumber
data and DHT key will be stored in the metadata.

The sawmill manager can use these links to perform further actions on the data
such as read, update, and delete the lumber data.

The execution flow between the product assembler actor and the framework is
presented in Figure 3.7. As we can see from Figure 3.7, an actor will call the /chain
resource (‘POST’ method) to write assembly product data in the framework, as shown
below:

60 3.2 Framework Overview

{
"id": "RFID_number",
"resource": "product",
"datetime": "2022-07-22, T-15:13:13.45+01:00",
"location":
{

"lat": "23,1242",
"long": "-43,1245"

},
"lumber":
{

"id": "RFID_number"
}

}

The product assembler actor has the unique data id such as RFID_number of the
product. It also has a reference of lumber id (such as RFID_number) that is
used to build the furniture. This lumber id has the reference of the log (such as
RFID_number). In the successful case, it receives the links in the response, and the
DHT key of this data will be sent to the metadata. To read the data, the product
assembler actor would make a ‘GET’ request to the /chain/<id> resource. In the
response, the framework returns the representation of product assembly. Similarly,
product assembler actor can update and delete their data using links.

FrameworkSawmill manager

POST '/chain' - Create new lumber data

Response: 201 - Lumber data created, links

Response: 200 - Return representation of lumber

GET '/chain/<id>' - Retrieve a representation of lumber data

Response: 200 - Lumber data updated

PUT '/chain/<id>' - Update lumber data

Response: 200 - Lumber data deleted

DELETE '/chain/<id>' - Delete lumber data

Figure 3.6: Execution flow of sawmill actor in the framework.

Decentralized Web Framework for Data Management 61

FrameworkProduct assembler

POST '/chain' - Create new product assembly data

Response: 201- Product assembly data created, links,

Response: 200 - Return representation of product assembly

GET '/chain/<id>' - Retrieve a representation of product assembly data

Response: 200 - Product assembly data updated

PUT '/chain/<id>' - Update product assembly data

Response: 200 - Product assembly data deleted

DELETE '/chain/<id>' - Delete product assembly data

Figure 3.7: Execution flow of product assembler actor in the framework.

Figure 3.8 shows the execution flow between a product seller actor and the frame-
work. The product seller actor calls the /chain resource with method ‘POST’ to write
the product data in the framework. In the response, it receives the links that allow
them to perform read action on the data. To do so, it use the GET link that return
the representation of the product data(/chain/<id> resource, method ’PUT’).

Accordingly, customer will call the /chain/<id> resource with method ‘GET’ to
retrieve the representation of product data and log as presented in Figure 3.9. In a
successful case, the framework returns the representation of the product and log data.
This way, customer can use product id to trace the product origin by using reference
ids. In the following subsections, we discuss the components of our framework.

3.3 Framework Components

In the following, we discuss the components of our framework that support privacy-
aware decentralized data storage and management, multi-level data access, and data
security.

62 3.3 Framework Components

FrameworkProduct seller

POST '/chain' - Create new product data

Response: 201 - Product location created, links

Response: 200 - Return representation of product

GET '/chain/<id>' - Retrieve a representation of product data

Figure 3.8: Execution flow of product seller actor in the framework.

FrameworkCustomer

Response: 200 - Return representation of log, product data

GET '/chain/<id>' - Retrieve a representation of log, product data

Figure 3.9: Execution flow of customer in the framework.

3.3.1 Access Control Ontology Component

In our access control ontology component, we extend the Role-based Access Control
(RBAC) model with an ontology to ensure data privacy by preventing unauthorized
access to the data in the decentralized storage framework. The RBAC model contains
the following four parameters: user, role, resource, and object. The RBAC users
are actors within the application. A role is the application’s function that enables
access to the resources according to the allocated permissions. A Permission is an
authorization to access data within the same application [24].

For our WSC use case, we presented the users, roles, resources, and permissions
in the following.

In our framework, we define the RBAC users according to our WSC scenario.

• Users: RBAC users are the actors that we define according to our WSC
scenario. Therefore, users are as follows: Alice, Bob, David, John and Eric.

• Roles: We define the roles that assign to the actors to perform different op-
erations on the data according to their assigned permissions. We define the

Decentralized Web Framework for Data Management 63

following roles: forest manager, transporter, sawmill manager, product assem-
bler, product seller, and customer. Each actor has different permission to access
the data according to their role. For example, with RBAC, we define that the
product assembler actor is a data owner and has permission to perform write,
read, update, and delete actions on their data, while the product seller actor
is a business partner of the product assembler actor and can only read their
data without updating and deleting it.

• Resources: The framework enables actors to access a resource according to
their roles and permissions. Each data unit stored at a specific location on the
DHT is a resource and has a blockchain hash key pointing to it.

• Rules and Permissions: Rules give restriction criteria to gain access to
resources. Rules provide permissions to restrict actions to the data. Our
CheckPermission (actor, role, verb) function called by the main component is
responsible to verify that if the “current actor” is allowed to perform write,
read, update, and delete actions on the data or resource according to their role
and HTTP verb permissions.

We develop detail discussion of our access control ontology component includ-
ing rules and permissions in Chapter 5.

3.3.2 Blockchain Component

In our framework, we use a blockchain component to manage metadata and the
DHT key (a hash pointer refers to the data in the DHT) of the encrypted data. Our
blockchain component is comprised of block transactions, consensus mechanism, and
metadata structure. We develop a detailed discussion of the blockchain component
including the proposed metadata structure in Chapter4. In the following, we discuss
the block transactions and consensus mechanism.

• Block and Transactions: Each block of the blockchain includes a block
header, consensus signature, hash of the previous block, validated metadata,
and data hash key. Each block includes a unique hash value, that guarantees
the integrity of the entire blockchain including the first block known as the
genesis block to the last block [126]. Our framework allows actors to take
the copy of the blockchain’s transactions by calling the /chain resource with
method ’GET’ if any other actor will be available on the network, if not then,
the genesis block will be generated on the blockchain.

In the blockchain, each block may have many transactions [126]. Each new
transaction is broadcast across nodes of the network to verify it. Miners used
a proof of work consensus mechanism to validate the transaction and then
the verified transaction is added to the block of the blockchain. After storing
metadata and DHT key in the block, our framework enables data owners to
read or access their data by calling (/chain/<id>, method ’GET’). Then, the
data owner can perform different operations such as read, update, and delete
on their stored data.

64 3.3 Framework Components

• Consensus Mechanism: It plays an important role in our blockchain com-
ponent, where peers agree on the same copy of the data in the network. It
guarantees that all nodes of the blockchain have the same copy of the data.
Furthermore, it prevents the attacker nodes to make any changes in the data
on the network. Our blockchain component uses a proof of work mechanism
for transactions validation and creating a new block to the blockchain. To do
so, proof of work needs miners to solve hard calculations that must be accepted
by other miners on the network. Once miners validate the block transactions,
they receive a reward such as a new coin. After completing the block validation
process, a validated block inserts into the chain. The proof of work mechanism
has an advantage in terms of preventing malicious nodes to compromise more
than 51% hashing power of the blockchain. In addition, it is easy and quick to
verify the proof.

3.3.3 DHT Component

In the framework, we use off-chain (key, value) storage called the DHT component to
store the encrypted data of the actors. We use the Kademlia library to implement the
DHT component of our framework. Authorized actors can write, read, update, and
delete their data associated with the DHT key. Actors’ data are replicated across the
nodes on the network to eliminate the risk of data loss and a single point of failure.
Our solution records the date and time of each new transaction to keep the track of
the data. In Chapter 4 we discuss the process to write data on the DHT.

3.3.4 Encryption Manager Component

Our framework design is flexible to choose multiple types of encryption mechanisms
to enforce security on the data. In the proposed solution, the encryption component
enables authorized actors to choose between multiple types of encryption methods
such as symmetric encryption or asymmetric encryption to write and read data in a
decentralized storage framework.

Symmetric encryption is useful where a large amount of data requires to be stored
and is needed to be shared with many actors. Symmetric encryption mechanism
contains one key to encrypt and decrypt the data. If an actor as a data owner selects
the symmetric encryption then data will be encrypted with a symmetric key. Our
encryption component is responsible to encrypt this symmetric key with the data
owner’s public key to ensure the security of the symmetric key. Both encrypted
key and encrypted data will be stored on the DHT component. If an actor such as
transporter requests to read the forest manager’s data, then the data owner such as
the forest manager would decrypt this key and then will be encrypted this key with
the data requester’s public key. This way only the data requester can access it to
decrypt and read the data.

On the other hand, asymmetric encryption is useful for a small amount of data
that are not required to share with other actors. Asymmetric encryption mechanism
is based on two keys known as a public and private key. A public key is available
to everyone for data encryption while the private key is only known to the owner of
the key for data decryption.

Decentralized Web Framework for Data Management 65

Let us consider our running example, if an actor as a forest manager selects the
asymmetric encryption method, then forest manager actor’s data will be encrypted
with their public key. Later, the only forest manager actor can decrypt or access
their encrypted data using the corresponding private key. Asymmetric encryption
mechanism makes sure that only the forest manager can access their data. In our
case, asymmetric encryption is required to identify actors, and symmetric encryption
is used to share the data.

3.4 Implementation and Discussion

We used Python 3 to implement the REST APIs. We used JSON library1 to receive
the response message. We used a Python-based Web framework such as Flask2 to
manage HTTP requests and REST APIs. We used Flask due to the following reasons:

• It is simple and easy to learn and use. Its documentation helps us to use the
application.

• It is an open framework and easily accessible under an open-source license.

We evaluated the proposed REST APIs on 64-bit Microsoft Windows Operating
System, with 16GB of RAM, Intel core i-7 processor system with a clock cycle of
1.80 GHz.

In the following, we provided the comparative analysis of our APIs with the
Hyperledger APIs 3. For comparison, we choose Hyperledger because it is widely
adaptable solution to the industry.

The Hyperledger framework relies on JSON_RPC (Remote Procedure Call)
which is a different protocol. JSON_RPC does not allow the usage of a generic
client because a software client must know the server’s code or method names, and
parameters to communicate with it. If some modification has occurred on the server’s
side then the client must know about them and update accordingly, making update
management a tedious task, especially when the number of clients is large. In con-
trast, we used REST APIs that promote uniform interfaces, thus enabling a generic
client which are easy to manage because a client does not need to know about method
names and parameters. In addition, we used HTTP verbs and status codes according
to the REST principle.

The Hyperledger framework do not follow HTTP verbs completely as it does not
use PUT and DELETE HTTP verbs. In contrast to this work, we used all HTTP
verbs (such as POST, GET, PUT, DELETE) to follow the principle of REST.

3.5 Chapter Summary

In this chapter, we give a global overview of our framework and its components,
together with the Web APIs that support peer and data management. We designed

1https://docs.python.org/3/library/json.html
2https://flask.palletsprojects.com/en/2.0.x/
3https://github.com/hyperledger/fabric/blob/v0.6/docs/source/API/CoreAPI.rst/

https://docs.python.org/3/library/json.html
https://flask.palletsprojects.com/en/2.0.x/
https://github.com/hyperledger/fabric/blob/v0.6/docs/source/API/CoreAPI.rst/

66 3.5 Chapter Summary

simple RESTful APIs to allow authorized actors to write, read, update and delete
data in a decentralized fashion. We provided a comparative analysis of our APIs
with existing Hyperledger framework APIs and showed where our design choices
differ. As our solution provides for data security and privacy through multi-level
data access control, our framework integrates the blockchain with DHT, ontology-
based access control, and different types of encryption mechanisms. Therefore, we
structured it into a set of components that interact with each other upon request.
We described the functionality of each component of our framework. We presented
actors’ interactions with the framework using RESTful APIs, and we showed how
our solution allows actors to communicate with other actors through HTTP calls and
realize the tasks defined in our use case. We discussed the implementation details of
the proposed solution, that we kept as generic as possible for better re-usability in
other scenarios and application domains.

Chapter 4

Decentralized Mutable Data
Storage

The Results of this chapter are published in the following articles:

• Aslam, S., Mrissa, M.: Mutable and Privacy-aware Decentralized Ledger for
Data Management in Wood Supply Chain Environments. InnoRenew CoE
International Conference (IRIC2021), 2021

• Aslam, S., Bukovszki, B., Mrissa, M.: Decentralized Data Management Privacy-
aware Framework for Positive Energy Districts. Energies, 14(21), 7018, 2021

• Mrissa, M., Tošić, A., Hrovatin, N., Aslam, S., Dávid, B., Hajdu, L., Krész,
M., Brodnik, A., Kavsek, B., : Privacy-aware and Secure Decentralized Air
Quality Monitoring. Applied Sciences, 12(4), 2147, 2022

One paper has been submitted and is currently under review:

• Aslam, S., Mrissa, M.: A Framework for Privacy-aware and Secure Decen-
tralized Data Storage. Computer Science and Information Systems (ComSIS),
June 2022

4.1 Introduction

Our motivating scenario discussed in Chapter 1 highlights the need for a decentralized
solution to manage data at each point of the WSC. Indeed, the WSC actors need
to store and update the characteristics of data describing the wood as it is being
processed, transported, and assembled into a final product. For example, the location
of each item changes from one step to another. Over time, a large quantity of data
items related to the produced goods must be stored, their security and integrity must
be guaranteed, and updates need to be realized when needed. On the one hand,
typical solution for decentralized data storage provide some guarantee in terms of
security and reliability, and on the other hand, blockchain provides the necessary
support to build decentralized trust, but is not designed to handle large amounts

68 4.2 Metadata Structure

of data nor updates, which makes a combination of both technologies an interesting
choice to meet the requirements of the WSC.

In this chapter, we explain how we combine blockchain and Distributed Hash
Table (DHT) into a secure decentralized data storage solution that features flexible
encryption, meaning that different encryption methods can be chosen at run-time
to ensure data protection. Our solution relies on the RESTful APIs that support
our framework discussed in Chapter 3. It ensures actors’ trust by storing metadata
on the blockchain, as an immutable record of the data operations. We propose a
metadata structure that extends existing work [7] by providing DHT key, previous
pointer, data id (RFID_number), data owner’s id, date and time of each piece of
data. The elements that compose our metadata structure allow the blockchain to
keep record of all the operations performed on the data storage, through a system of
pointers that actually refer to the index of the data in the DHT. In order to exploit
this metadata structure, we developed algorithms that support data updates and
traceability. Upon data update, a new transaction is created on the blockchain, that
contains a reference to the previous block describing that piece of data. The WSC
actors need to trace all id’s that are used to compose the certain product. To do so,
we rely on a traceability algorithm that allows the actors of our scenario to trace the
data in the chain and verify product origin.

In the following sections, we discuss the details of the proposed metadata struc-
ture. Then, we describe an algorithm for the data write on secure decentralized
storage. After that, we discuss the management of data operations including data
update, read, and delete on a decentralized ledger. We discuss the detail of the
proposed traceability algorithm. Then, we provide implementation details with se-
curity analysis and performance evaluation of our proposed solution. A conclusion
summarizes the results obtained in this chapter.

4.2 Metadata Structure

In order to maintain the trust of the WSC actors, our framework needs to record the
date and time of each action on the data, so that actors are able to keep track of the
data. We propose a metadata extension inspired by the authors in [7], to manage
access restrictions on the data. Therefore, our solution encrypts the actor’s data
through encryption mechanisms (illustrated in Algorithm 2), and sent this encrypted
data to the DHT. We store metadata and the DHT key of this encrypted data on
the blockchain. Our metadata structure on blockchain contains DHT key, previous
pointer, data owner’s id, date, time, and RFID_number as depicted in Figure 4.1.

4.3 Algorithm for the Data Write Operation

In this section, we present the workflow that our system follows when a write opera-
tion is requested from the API. Let us consider our running example: an actor has a
role "forest manager" and issues an HTTP POST request to the API to store data
about available wood, as presented below:

Decentralized Mutable Data Storage 69

DHT key

DateTime

Metadata Structure

Previous Pointer

Data Owner ID

RFID_number

Figure 4.1: Metadata structure on the blockchain

{
"id": "RFID_number",
"datetime": "2022-01-15, T-13:15:20.45+01:00",
"woodtype": "maple",
"location":
{

"lat": "38,3951",
"long": "-77,0364"

}
}

Algorithm 2 shows how our system handles the data write operation. Lines 1-2
check if the current actor is authorized to store their data or not according to their
role and HTTP verbs permissions (more details about that part in Chapter 5). This
algorithm allows the authorized actor to choose between multiple types of encryption
methods (em) to encrypt their data before storing it on the decentralized platform
to enforce security on the data, as shown in lines 3 to 9. The authorized actor has
an option to choose asymmetric to encrypt the data if it is not required to share
the data with many other actors. Asymmetric encryption involves two keys called
public and private keys. Lines 3-4 show if an actor chooses an asymmetric encryption
method then data will be encrypted using the public key of the data owner. Later,
an authorized actor can use their private key to decrypt the data.

The authorized actor also has a choice to select symmetric to encrypt the data, if
he wants to share their data with other actors. Symmetric encryption uses a single
key for data encryption and decryption. We use the Fernet1 library to generate the
symmetric key. If the data owner selects symmetric em, then data will be encrypted
with the symmetric key as represented in line 6. Then, line 7 encrypts this symmetric
key (sk) with the data owner’s public key (PK) to protect the key from unauthorized
usage and to make sure that only the data owner can access or read this key. Upon

1https://cryptography.io/en/latest/fernet/

https://cryptography.io/en/latest/fernet/

70 4.3 Algorithm for the Data Write Operation

data read request, the data owner will encrypt this symmetric key with the requester’s
public key to allow the authorized actor to read the data. Line 8 shows the encrypted
data and encrypted symmetric key. A DHT key (dk) will be generated for this
encrypted data (ed) on line 10. Our framework stores this ed including encrypted
key (ek) on DHT (line 11). Then, on line 12, the function FindLastTransaction
returns previous pointer (pp) if it exists otherwise it returns 0. Line 13 stores the dk
and metadata on the blockchain. The metadata contains pp, datetime, data owner
id (DOID), and data id (rfid_number). We develop the detail of previous pointer in
section 4.4.

Algorithm 2 Algorithm for the data write operation
Input: d: data, actor: current actor, role: role of the actor, v: HTTP verb

POST, PUT, em: encryption method, pp: pointer of previous transaction when
data is updated

Output: boolean value: if true we use asymmetric and if false then it is
symmetric
▷ PK: public key of data owner (constant)
▷ DOID: id of the data owner (constant)
▷ ed: variable to store the encrypted data, encrypted symmetric key
▷ sk: symmetric key (variable)
▷ encrypd: variable to store the encrypted data using sk
▷ ek: encrypted symmetric key (variable)
▷ dht: variable to store the ed and ek
▷ dk: dht key points to the data in dht (variable)
▷ rfid_number: data id (variable)
▷ datetime: timestamp (variable)
▷ pp: previous pointer (variable)

1: if Authenticate(actor, role) then
2: if CheckPermission(actor, role, v) then
3: if em == true then ▷ if true we use asymmetric encryption)
4: ed← Encrypt(d, PK)
5: else ▷ if false we use symmetric encryption)
6: encrypd← Encrypt(d, sk)
7: ek← Encrypt(sk, PK)
8: ed← encrypd, ek
9: end if

10: dk← Digest(ed)
11: dht ← SetValue(ed)
12: pp ← FindLastTransaction(rfid-number)
13: AddTransaction(dk, pp, datetime, DOID, rfid_number)
14: end if
15: end if

Decentralized Mutable Data Storage 71

4.4 Management of Data Operations

The proposed metadata structure connects the different values attached to a specific
piece of data to maintain its history. Let us explain using our running example, if
an actor as a forest manager writes log data such as:

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-02-11, T-13:15:20.45+01:00",
"location":
{

"lat": "38,3951",
"long": "-77,0364"

}
}

Then, the new transaction that contains a DHT key and data id such as RFID_number
of this data will be stored in the metadata (illustrated in Algorithm 2). Later the
data owner (such as the forest manager actor) can perform different operations (such
as update, read and delete) on their data for the specific RFID_number. Our so-
lution allows only authorized actors to perform these operations on the data using
HATEOAS links discussed in Chapter 6. We manage actors’ write, read, update,
and delete actions on data through a proposed access control ontology discussed in
Chapter 5. Later, an authorized actor wants to update some part of the data, then
he will write a new data value against the same RFID_number such as:

{
"id": "RFID_number",
"resource": "log",
"woodtype": "oak",
"datetime": "2022-12-16, T-16:11:10.45+01:00",
"location":
{

"lat": "38,3951",
"long": "-77,0364"

}
}

In this case, new metadata will be created on the blockchain that contains a new
DHT key of this updated version of the data and the previous pointer that points to
the previous version of the data that is stored on the DHT. Our metadata structure
also records the new datetime of the updated version of the data. In case of data
update, the DHT key of the previous version of the transaction becomes the previous
pointer which is stored in the new version of the transaction in the metadata. Later,
if the forest manager actor wants to access his previous version of the data then he

72 4.5 Traceability Algorithm

will use the FindLastTransaction (did) function that returns the latest version
of the data against this did (data id as RFID_number) including DHT key of new
data and previous pointer of the updated data. This way an actor can access their
update history.

Upon data read, our solution enables the authorized actor to decrypt and access
their data in a decentralized platform. If data is encrypted using the data owner’s
public key then a data owner can decrypt this encrypted data using his private key.
In case, if data is encrypted using a symmetric key then the authorized actor will first
decrypt the symmetric key with their private key and then this decrypted symmetric
key will use to access the data which is stored on the DHT.

Similarly, the delete data operation works as an update where a new DHT key
generates with a NULL value. If an authorized actor wants to delete their data
against a specific RFID_number, then a new transaction creates on the blockchain
that contains a new metadata structure. This metadata contains a new DHT key
that points to the Null value on the DHT.

4.5 Traceability Algorithm

In this section, we explain the process to trace the data in the WSC as presented
in Algorithm 3. Let us develop an example, a customer buys a product such as a
table and he wants to trace where this product comes from. Then, he will use the
product id as a data id (such as RFID_number) to trace their origin. The proposed
algorithm allows actors to identify the origin of the final product based on the data
id’s references.

In Algorithm 3, line 1 initialize item (I) to empty set. In line 2, the did is an
RFID_number of the item that goes through the wood supply chain, and data (such
as location) of this item changes against the same did. Therefore, on the blockchain,
we can have many transactions against this did. Whenever the location of the item
changes then metadata of this did is stored on the blockchain, and data is sent to
the DHT. Our FindLastTransaction function finds the last transaction from this
did, which is a RFID_number (line 2). For example, if we have did of the log then
it returns the last transaction of this log. Now, we can access the metadata from this
transaction t and can request to access the data from the DHT. In the metadata,
we have a DHT key that points to the data stored on the DHT.

After that, it checks if the current data requester has permission to read the data
or not according to their role and HTTP verbs permission ’GET’ on line 3. We define
access control rules that limit unauthorized access to the data stored on the DHT
(more details in Chapter 5). In line 4, the function GetReferences takes the t and
extract the did of the items. Then, it finds the previous references of this did. For
example, if the input did is product id then it gets the previous references such as
RFID_number of the lumbers.

Line 5 checks the list of references (I) is not empty. Then, it iterates items in
the item list e.g it checks lumbers in the list (line 7). Line 8 add items (e.g lumbers
references) in the output list (O). The Traceability function takes i such as lumber
as input and call recursively to find log and return them in output list (O) in line 9.

Decentralized Mutable Data Storage 73

Then, line 11 returns the final output (O). In case the list is empty then it means we
are applying traceability of the log and the log does not have any previous reference
so then it returns nothing (line 14).

Algorithm 3 Traceability algorithm
Input: did: data id (DHT key)

actor: requester actor, role: requester role, v: HTTP verb GET
Output: O: DHT keys of tracked items

▷ I: items list (variable)

1: I ̸= ∅ ▷ Initialize I to empty set
2: t ← FindLastTransaction(did) ▷ Find the last transaction from this RFID
3: if CheckPermission (actor, role, v) then ▷ Verify permission of the requester
4: I ← GetReferences (t) ▷ Get the RFID of the items
5: if I ̸= ∅ then ▷ If there are items
6: O ← ∅ ▷ Initialize output
7: for each i ∈ I do ▷ For each item
8: O.append(i) ▷ Add it to the output list
9: O.append(Traceability(i)) ▷ Find item recursively

10: end for
11: return O ▷ Return the final output
12: end if
13: end if
14: return ∅ ▷ If the list was empty then return nothing, end of the recursion

4.6 Results and Implementation

In the following, we discuss the results of our decentralized data storage and up-
date solution. Section 4.6.1 presents the experimental setup and implementation
details. In section 4.6.3 we discuss the qualitative security analysis and quantitative
performance evaluation.

4.6.1 Experimental Setup and Implementation

We used Python 3 to perform all experimental processes because it is a scalable and
dynamic language. We used an open-source blockchain library2 to implement the
blockchain component. We used the blockchain library to achieve consensus on a
distributed network, generate new transactions and blocks, and mine them through
a consensus mechanism (proof-of-work). We implemented a DHT component using
a Kademlia library3. The DHT is used to input and retrieves data link with a hash
key on the peer-to-peer network. We used the cryptography RSA library to create
encryption/decryption keys and sign/verify signatures.

2https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
3https://github.com/bmuller/kademlia

https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
https://github.com/bmuller/kademlia

74 4.6 Results and Implementation

We evaluated our framework components on a Windows 10 operating system
with 16 GB of RAM. The Central Processing Unit (CPU) architecture used in the
64-bit operating system was x64 Core i7 processor system with a clock cycle of 1.80
GHz.

In the following, we discuss the security analysis of our proposed solution, which
is based on security properties and attacks. Moreover, in the performance evaluation,
we computed time cost and scalability.

4.6.2 Security Analysis

In our solution, to protect the data from unauthorized access, we offer multiple types
of encryption to enforce security on the data. Our solution allows data owners to
own and control their data in a decentralized platform. Before sharing data with
other actors, we encrypt the data with the requester’s public key to ensure data
protection from an malicious actor who might try to read or access the data. Our
framework encrypts the data before storing it on the DHT. Even if an unauthorized
actor obtains access to the DHT nodes, then only cipher-texts are visible to them
and they could not gain any information about the data. Furthermore, we used
blockchain and DHT due to their decentralized and distributed design. This would
eliminate the risk of the single point failure issue, and ensure data replication and
availability.

Our framework design addressed the following main security properties:

• To achieve confidentiality, we use asymmetric and symmetric encryption.

• Our framework encrypts the data using the data owner’s public key to achieve
integrity such that the data can only be decrypted or updated using the cor-
responding private key.

• Our framework achieves availability using the access control ontology.

• To achieve non-repudiation, we store metadata in the chain and maintain data
traceability. Our proposed metadata structure contains the date and time of
data storage, due to this the data owner could not deny the data’s existence
on the chain.

We evaluated the security of our solution under the following attacks:
Modification attack: A modification attack happens when a malicious actor

tries to change the data content. Our solution design enables data owners to en-
crypt the data with their public key and manage the corresponding DHT key on the
blockchain. The proposed metadata design keep the track of data entry date and
time to identify the modification in the data. A malicious actor cannot update the
data because data can only be decrypted using a data owner’s private key that is
only known to the data owner.

Spoofing attack: A spoofing attack occurs when an attacker uses the ID of
someone else and might try to access the data. In our solution, an attacker could
not spoof the ID of other actors because they could not spoof its private key. In our
solution, each actor has their secrete private key that will not be shared with anyone.

Decentralized Mutable Data Storage 75

Linking attack: In a linking attack, a malicious actor tries to link different
transactions or data with the corresponding public key. To prevent this attack, our
framework design uses different types of encryption mechanisms such as data owner’s
public key, symmetric key, and requester’s public key. Our proposed encryption
component is responsible to generate public, private, and symmetric keys on run
time according to the actor’s encryption method selection.

To protect the symmetric key from unauthorized access, we encrypt the sym-
metric key with the data owner’s public key and store it on the DHT. Later, only
the authorized actor can use this symmetric key to access their data. This way a
malicious actor will not be able to link different transactions to the same public key,
because our framework encrypts the data through different encryption mechanisms
and public keys.

Eavesdropping attack: An eavesdropping attack occurs when a malicious actor
listens to privacy-sensitive information on the network. To prevent this attack, our
framework encrypts privacy-sensitive data using the public key of the requester upon
data read request. Later, only authorized actors are allowed to access and read the
data using the corresponding private key.

Sybil attack: An attack occurs when an attacker attacks data redundancy.
Malicious nodes act as many nodes by generating multiple identities in the peer-
to-peer network. To protect against this attack, our framework assigns only one
identity such as data owner id and public key to each actor. Each time when the
data is stored, then the data owner id will be recorded in the metadata to identify
the owner of the data.

In case an actor connects and is authorized to perform actions and then becomes
malicious later and disconnected. In this case, the data of the disconnected actor or
node will not be available anymore. In our framework, actors need to be connected
or online because data is encrypted with their public key and only they can decrypt
it and allow other actors to read it upon request. This problem is not currently
addressed as the purpose of the DHT is to not replicate the data on all nodes, the
tolerance to a 51% (or more) attack is still a problem in general as in this case. This
opens the door for future work to design a solution to mitigate this issue.

4.6.3 Performance Evaluation

We obtained results based on the evaluation parameters, such as time consumption
and scalability. We evaluated the time consumption of our solution based on the
following parameters, such as: check permission of an actor, data encryption, and
decryption using the asymmetric or symmetric method, DHT access, and blockchain
access. We computed the time cost while performing data write, data update, data
read, data delete and traceability.

Figure 4.2 and 4.3 outline the time cost for both asymmetric encryption and
symmetric encryption. We compared the results of using asymmetric encryption
and symmetric encryption.

As we can see from the results, for write data operation, blockchain access time
for symmetric encryption is less than the blockchain access time for asymmetric en-
cryption. The DHT access time to write data for asymmetric encryption is less than

76 4.6 Results and Implementation

Figure 4.2: Time overhead using asymmetric encryption

the DHT access time of symmetric encryption. Total time to check permission and
encryption/decryption does not show much difference for both symmetric encryption
and symmetric encryption while performing a data write operation.

For update data, the overall DHT access time for symmetric encryption is slightly
higher than the total DHT access time for asymmetric encryption. The total time
to check permission, encryption/decryption, and blockchain access time is not much
affected for both figures 4.2 and 4.3.

For data read and delete, the total time to check permission, encryption/decryption,
blockchain access time, and DHT access time does not show much difference for both
symmetric encryption and asymmetric encryption.

For data traceability, the DHT access time for asymmetric encryption is slightly
higher than the DHT access time for symmetric encryption. Total time to check
permission, encryption/decryption, and blockchain access time is not much affected
for both asymmetric and symmetric encryption.

Moreover, we tested the scalability of our solution with an increasing number of
actors such as 1, 50, 89, and 110 and get a reasonable performance with 110 actors.
We have designed our framework in the context of Positive Energy Districts (PED),
where we model a different number of actors depending on the energy community,
hence explaining the chosen numbers of actors 50, 89 and 110 as they relate to the
proportion of actors for PEDs. Details of these numbers and the associated research
are given in the published paper.

We tested our prototype 100 times for each operation including write data, update
data, read data, delete data, and traceability, and then calculated the average time,
Standard Deviation (SD), min, and max values in seconds for accurate results of
operations. Detailed results statistics are summarized in Table 4.1. We computed

Decentralized Mutable Data Storage 77

Figure 4.3: Time overhead using symmetric encryption

the average time consumption of our solution with an increasing number of actors
as presented in Figure 4.4. As we can observe from Figure 4.4 and Table 4.1, in the
case of 1 actor, write data has an average of 0,5712 seconds and update data takes an
average time of 0,0024 seconds. Data read gives a SD of 0,0113 seconds and delete
data gives a SD of 0,0012 seconds. The traceability data operation provides an min
value of 0,0112 seconds and max value of 0,0312 seconds.

For the case of 50 actors, the write operation takes an average of 0,6068 seconds
which is slightly less than the average time to write data with 89 actors and 110
actors. The update operation provides an average time of 0,0052 seconds which
is slightly higher than the average time to updates time with 1 actor. The delete
operation gives an average time of 0,0013 seconds which is slightly less as compared
to 1 actor. The traceability algorithm provides an average time of 0,0345 seconds
which is less than the average time for 89 and 110 actors.

In the case of 89 actors, the write operation takes an average of 0,6305 seconds
which is slightly higher than the average time to write data for the case of 1 actor
and 50 actors. The update operation has an SD of 0,0046 seconds and delete data
provides an SD of 0,0021 seconds. The read operation gives an average time of
0,0623 seconds which is higher as compared to case of 1 and 50 number of actors.
The delete operation provides min value of 0,0023 seconds which is slightly close to
the min value for 110 actors. The traceability data operation has a min value of
0,0346 seconds and the data read provides a min value of 0,0572 seconds.

Similarly, with the number of 110 actors, the write operation takes an average
time of 0,6653 seconds and the read operation has an average of 0,0644 seconds. The
update gives a min value of 0,0055 seconds which is close to the min value for the
number of 89 actors. The average time to update operation does not show much

78 4.7 Chapter Summary

Table 4.1: Detailed results under different number of actors
Number of Actors Data Operations Average Time St Deviation Min Max

1

Write data 0,5712 0,4321 0,4635 0,6564
Update data 0,0024 0,0021 0,0022 0,0064
Read data 0,0254 0,0113 0,0124 0,0456
Delete data 0,0014 0,0012 0,0013 0,0234
Traceability 0,0201 0,0101 0,0112 0,0312

50

Write data 0,6068 0,5427 0,5846 0,7653
Update data 0,0052 0,0024 0,0044 0,0097
Read data 0,0471 0,0312 0,0336 0,0556
Delete data 0,0013 0,0010 0,0012 0,0326
Traceability 0,0345 0,0232 0,0246 0,0472

89

Write data 0,6305 0,5342 0,5601 0,8541
Update data 0,0057 0,0046 0,0053 0,0071
Read data 0,0623 0,0531 0,0572 0,0843
Delete data 0,0024 0,0021 0,0023 0,0032
Traceability 0,0436 0,0334 0,0346 0,0521

110

Write data 0,6653 0,5451 0,5542 0,7792
Update data 0,0057 0,0053 0,0055 0,0072
Read data 0,0644 0,0531 0,0552 0,0712
Delete data 0,0032 0,0022 0,0024 0,0043
Traceability 0,0478 0,0401 0,0421 0,0645

difference as compared to the average time to update operation for 50 actors. The
read operation provides a max value of 0,0712 seconds which is less as compared to
the max value of read data for the number of 89 actors. The delete operation has
a min value of 0,0024 seconds which is close to the min value for 89 actors. The
traceability algorithm gives an average time of 0,0478 seconds which is higher than
the average time for 89 actors.

We can see from the experimental results that our solution is scalable to handle
many actors at the same time. The results demonstrate that, with an increasing
number of actors, each data operation (such as write, update, read, delete) gives an
average time less than 1 second. Therefore, we can conclude that our solution gives
a reasonable time overhead.

4.7 Chapter Summary

In this chapter, we detailed our decentralized data storage and update solution. We
proposed a data write algorithm that combines blockchain with DHT to allow for
secure data storage. Our algorithm allows an authorized actor to store the data using
RESTful APIs. It enables an actor to choose between multiple types of encryption to
secure their data in a decentralized ledger. Our proposed metadata structure ensures
trust between actors by recording metadata on the blockchain. To update the data,
our pointer management system maintains the history of the values that are stored
in the DHT for a single piece of data. The proposed traceability algorithm allows
actors to keep track of their data according to our WSC scenario. We illustrated the
use of the proposed algorithms to show their applicability with our WSC example.

Decentralized Mutable Data Storage 79

Figure 4.4: Average time consumption under different number of actors

We detailed the security analysis of our solution and evaluated its performance
in terms of time cost and scalability. The results show that the proposed solution
is scalable to manage many actors at the same time and provides an average time
cost less than 1 second while performing data operations. Therefore, our solution
achieves an acceptable time overhead.

Chapter 5

Semantic Role-based Access
Control

The Results of this chapter are published in the following articles:

• Aslam, S., Bukovszki, B., Mrissa, M.: Decentralized Data Management Privacy-
aware Framework for Positive Energy Districts. Energies, 14(21), 7018, 2021

• Aslam, S., Bukovszki, B., Mrissa, M.: Multi-level Data Access Control in Pos-
itive Energy Districts. Sustainability in Energy and Buildings 2021 (pp. 553-
565). Springer, Singapore, 2021

5.1 Introduction

As blockchain stores data publicly by design, the privacy requirements of data need
to be handled with an additional component that integrates with blockchain in a
way that it preserves it operation, and at the same time in a way that guarantees
fine-grained privacy management, meaning that it should be possible to control what
data is made available to whom and with what rights.

Typically, the Role-based Access Control (RBAC) model is useful to define and
enforce permissions to access data. However, RBAC is static and unable to adopt
changes such as adding new roles, objects, and permissions at run time. In addition,
the RBAC model does not handle complex relationships between actors that go be-
yond a hierarchical representation of roles, to enable individual relationship between
actors. The ideal solution should manage unauthorized access to the data not only
according to the roles but also according to the individuals. Our contribution builds
on the literature review provided in Section 2.3.3 of Chapter 2 where we highlight
the limitations of existing solutions. In a summary, most existing solutions do not
consider the non-hierarchical relationships between actors. In addition, most of the
solutions do not focus on unauthorized data access control in a decentralized ledger.
Some other solutions do not define rules for each role and also at the individual level
in a single solution. Most of the solutions do not use Web APIs to access the data
and do not design rules and permissions using HTTP verbs.

Semantic Role-based Access Control 81

In this chapter, we propose an access control ontology to address these shortcom-
ings. The proposed access control ontology is exploited with our access control com-
ponent based on the framework discussed in Chapter 3. We integrate an ontology-
driven approach with RBAC to support both hierarchical and non-hierarchical rela-
tionships. As explained in Chapter 3, our decentralized solution allows authorized
actors to access data through Web APIs. Therefore, we structure our access control
rules according to the HTTP verbs GET, POST, PUT, and DELETE. We define
access control rules to determine if a specific ’role’ or ’individual’ has permission to
access the ’resource’ and perform specific ’actions’ on it or not. Our solution ensures
data privacy by restricting unauthorized access to the data.

We use a simple subset of OWL-DL (Description Logic) because it supports
reasoning and allows us to model classes, instances, and properties so that they
can support RBAC with non-hierarchical relationships between both classes and
instances. The combination of our access control rules and a subset of OWL-DL are
necessary to enhance the OWL’s expressivity to express actor relationships as well
as to handle data access in our decentralized platform [138]. They are sufficient to
ensure computational efficiency and we do not need more expressive language such
as OWL Full because it does not support full reasoning. Also, it does not guarantee
to complete all computations in a limited time [9]. In addition, OWL full allows
using the same class as an individual, which increases the complexity.

As an illustrative motivating example, we refer to the wood supply chain (WSC)
scenario presented in Chapter 1. We design our solution according to our WSC
actors, roles, and resources.

In the following sections, we provide the detail of our access control ontology com-
ponent including ontology classes, instances, relationships through object properties,
semantic description of non-hierarchical relationships, and access control rules. After
that, we discuss the implementation and evaluation of our solution, before concluding
the chapter with a summary of the results obtained.

5.2 Access Control Ontology Component

In the following, we discuss the detail of our access control ontology component
that manages relationships between actors and handles complex permissions for data
access. This component includes an ontology that describes the actors, resources,
etc., a set of rules and a reasoner that enable inferring permissions from given facts
in the ontology.

5.2.1 Ontology Classes and Instances

Figure 5.1 depicts the class hierarchy of our access control ontology. In our work,
we define the instances (e.g individuals) of the OWL classes according to our WSC
scenario, as follows:

• The ’Thing’ class is also known as a superclass, It represents the root of the
classes hierarchy that include the sub classes, namely ’Actor’, ’Role’, ’Re-
source’, and ’SpatialThing’.

82 5.2 Access Control Ontology Component

Figure 5.1: Classes hierarchy of the ontology

• The ’Actor’ class defines the number of actors in the proposed framework. For
the sake of simplicity we defined instances of the ’Actor’ class with usual names
such as Alice, Bob, David, Eric, and John. In our scenario, actors are actually
company representatives who participate in the WSC, they connect to each
other through our solution and can have one or several roles in the WSC.

• The ’Role’ class defines to which actor and permission should be assigned. We
define the instances of the ’Role’ class as follows: ForestManager, Transporter,
SawmillManager, ProductAssembler, ProductSeller, and Customer. Our WSC
actors can perform different actions on the data based on their roles and per-
missions.

• The ’Resource’ class represents the data schema parameters such as log, lum-
ber, free storage space, product, quantity, wood type, and size. The actual
data values of these parameters are stored on the DHT component. Autho-
rized actors can access these resources according to their assigned role and
permission.

• The ’SpatialThing’ class has a further subclass such as ’Point’ to define a
geographical location. Instances of the ’Point’ class have ’Latitude’ and ’Lon-
gitude’ attributes to represent the geographical location of the resources that
we manipulate in the WSC. To do so, we reused the geo ontology from the
W3C semantic Web interest group1. Let us explain through an example, the
actor has a role transporter who picks up a log in Izola and delivers it to Koper.
We assume that wooden logs, lumber, and products are monitored and traced
from the start until the end of the WSC with RFID chips that are integrated
into the trees and then into the intermediary and final products.

1https://www.w3.org/2003/01/geo/

Semantic Role-based Access Control 83

5.2.2 Relations using Object Properties

We use object properties to define the relationship and semantics between the classes,
so that they apply to their instances as well. As depicted in Figure 5.2, we use the
HTTP verbs to define the permissions of the ’Role’ such as hasPostPermission, has-
GetPermission, hasPutPermission, hasDeletePermission. In the following, we define
the domain and range that link ObjectProperty to the classes:

Figure 5.2: The ontology object properties

<owl:ObjectProperty rdf:about = hasGetPermission">
<rdfs:domain rdf:resource = Role"/>
<rdfs:range rdf:resource = Resource"/>

</owl:ObjectProperty>

The ObjectProperty hasGetPermission; its domain is Role and range is Resource,
such as Role hasGetPermission to the Resource. In our solution, we assign an RBAC
’Role’ to the ’Actor’ through hasRole ObjectProperty that allows them to perform
actions on the Resource based on their role. In the following, we define the domain
and range that connects the property to the class, such as the Actor hasRole a Role.
For instance, Alice ’hasRole’ ForestManager.

<owl:ObjectProperty rdf:about = hasRole">
<rdfs:domain rdf:resource = Actor"/>
<rdfs:range rdf:resource = Role"/>

</owl:ObjectProperty>

Our WSC actors can request to access or read the data of other actors based on
their business partner relationships. Therefore, we define the relationship between
actors using object property hasBusinessPartner such as:

84 5.2 Access Control Ontology Component

<owl:ObjectProperty rdf:about=hasBusinessPartner">
<rdfs:domain rdf:resource=Actor"/>
<rdfs:range rdf:resource=Actor"/>

</owl:ObjectProperty>

The object property hasBusinessPartner; its domain and range is actor, which
shows the relationship between two instances that belong to the same class ’Actor’
For instance, Bob hasBusinessPartner relationship with Alice. In this example, Alice
and Bob are actors in our WSC scenario.

5.2.3 Semantic Description of Non-Hierarchical Relationships

Typical RBAC does not support non-hierarchical relationships because RBAC roles
follow a tree structure. Therefore, we add semantics to RBAC to support both
hierarchical and non-hierarchical relationships between classes as explained below.
Hierarchical relationships enable classes to link to their parent class as shown in
Figure 5.1. In OWL, the root class is typically named the ’Thing’ class and is the
superclass of all other classes in ontology. Non-hierarchical relationships allow classes
or individuals to link each other through properties, and do not necessarily follow
the class hierarchy. In our solution, we design ’Actor’, ’Role’, and ’Resource’ classes
based on the concept of RBAC and define non-hierarchical relationships between
them based on the ObjectProperty property.

In the following, we show some examples of non-hierarchical relationships between
actors using OWL objectProperty.

• We define the business partner relationship between Alice as a forest manager
and Bob as a transporter via object property hasBusinessPartner. Therefore,
the forest manager actor and transporter actor have a non-hierarchical rela-
tionship because the forest manager actor has a ’GET’ permission to access the
resource of the transporter actor, which is basically outside of their hierarchy.

• Eric as a product assembler is linked to John as a sawmill manager via ob-
ject property hasBusinessPartner. Therefore, the product assembler actor and
sawmill manager actor have a non-hierarchical relationship because the product
assembler actor has a ’GET’ permission to access the resource of the sawmill
manager actor.

• We define the business partner relation between Eric as a product assembler
and David as a product seller. Therefore, the product assembler actor and
product seller actor have a non-hierarchical relationship, because the product
assembler actor has a ’GET’ to the resources of the product seller actor that
is basically outside of their hierarchy.

5.2.4 Access Control Rules

RBAC is based on the roles and allows actors to access the data according to their
assigned roles. However, it does not allow to access data based on the individuals.
There is a need to define the rules at the individual level that allow actors to access

Semantic Role-based Access Control 85

the data according to their relationship with other actors without depending on their
role.

Therefore, we write the access control rules in SWRL (Semantic Web Rule Lan-
guage) language that gives permission to perform actions on the resources (such as
data) depending on both roles or individuals. In our work, we define the SWRL rules
using HTTP verbs such as GET, POST, PUT, and DELETE to manage authorized
access to the data.

In our decentralized framework, data owner maintains their OWL file including
these access control rules and this file will not be disclosed to others to prevent secu-
rity risks. Our access control ontology component verifies if the current role or actor
has permission to perform read, write, update, and delete actions on the resource.
We achieve access control by increasing the expressivity of OWL through the SWRL
inference process and HermiT. SWRL infers new knowledge such as ObjectProperty
while executing the rules. To do so, our designed ontology and SWRL rules are
transferred to the reasoner. Then, we run the reasoner to reason rules and inferred
knowledge, which is sent back to, and enrich the OWL.

In the following, we categorized rules into two levels: class level rules and indi-
vidual level rules.

• Class level access control rules: We define the class level rules based on
the roles that are involved in our motivating scenario. In the following, we
define the rules to control access to the data.

– Rule 1: A forest manager has permission to make a ’POST’ request to
their resource wood type.

Role (?ForestManager) ∧
hasPostPermission (ForestManager, ?w) ∧
WoodType (?w)
→ hasPostPermission (ForestManager, ?w)

– Rule 2: A transporter has permission to make a ’PUT’ request to their
resource location.

Role (Transporter) ∧
hasLocation (Transporter, ?p) ∧
Point (?p)
→ hasPutPermission (Transporter, ?p)

– Rule 3: A sawmill manager has permission to make a ’POST’ request to
their resource lumber.

Role (?SawmillManager) ∧
hasPostPermission (SawmillManager, ?l) ∧
Lumber (?l)
→ hasPostPermission (SawmillManager, ?l)

– Rule 4: A product seller is allowed to make a ‘DELETE’ request to their
resources product.

86 5.2 Access Control Ontology Component

Role (ProductSeller) ∧
hasDeletePermission (ProductSeller, ?r) ∧
Product (?r)
→ hasDeletePermission (ProductSeller, ?r)

– Rule 5: A customer has ’GET’ request permission to verify the origin of
product.

Role (Customer) ∧
hasOrigin (?k, ?p) ∧
point (?p) ∧
Product(?k)
→ hasGetPermission (Customer, ?k)

• Individual level access control rules: In the following, we define the rules
between individuals based on their business partner relationship to restrict
unauthorized access to the data.

– Rule 6: If Bob ’hasBusinessPartner’ relationship with Alice then Bob is
allowed to make a ’GET’ request to the resource wood type of Alice.

Actor (Bob) ∧ hasBusinessPartner (Bob, Alice) ∧
Actor(Alice) ∧ WoodType(?t) ∧
hasGetPermission (Alice, ?t)
→ hasGetPermission (Bob, ?t)

– Rule 7: If Eric ‘hasBusinessPartner’ relationship with John then Eric
can make a ’GET’ request to the resource lumber of John.

Actor (Eric) ∧ hasBusinessPartner (Eric, John) ∧
Actor(John) ∧ Quantity(?d) ∧ lumber(?l) ∧
hasValue (?l, ?d) ∧ hasGetPermission (John, ?l)
→ hasGetPermission (Eric, ?l)

– Rule 8: If Eric ‘hasBusinessPartner’ relationship with David then Eric
has a ’GET’ request permission to the resource product of David.

Actor (Eric) ∧ hasBusinessPartner (Eric, David) ∧
Actor(David) ∧ Product (?r) ∧
hasGetPermission (David, ?r)
→ hasGetPermission (Eric, ?r)

The rules discussed above infer the knowledge to identify who has permission and
which type of permission to access the resource. In Rule 1, left side is based on the
OWL classes such as Role and WoodType, and permission is defined using Object-
Property hasPostPermission. We execute Rule 1 and it infers that ForestManager
hasPostPermission to the resource ’w’ which is wood type as mentioned on the right
side. The rest of the rules show the same results. SWRL rules have an advantage in
terms of human-readable syntax. Our solution allows authorized actors to add more
rules, update, and delete existing rules.

Semantic Role-based Access Control 87

5.3 Implementation and Evaluation

In the following, we detail the implementation and evaluation of our access control
ontology solution. We discuss the performance evaluation of the proposed solution
in terms of check permission based on the access control rules in Chapter 4.

5.3.1 Implementation

We used Python 3 and Protégé 5.5.0 to implement our access control ontology so-
lution. We model classes, class hierarchy, object properties, instances, and SWRL
rules in Protege. We used owlready22 library to load OWL ontology in Python. We
describe the relationships between actors (who is the partner of whom) and rules to
control authorized access to the privacy-sensitive data. We evaluated the proposed
solution on a PC with a Core i7 CPU at 1.80 GHz, 16 GB RAM, and Windows 10.

5.3.2 Evaluation

We used the HermiT reasoner to ensure the consistency of our ontology. It also
verifies the classification of ontology such as classes and subclasses is correct. During
the process of developing our ontology, we continuously used a reasoner to avoid
any errors. It highlights the unsatisfiable classes with red color to show the errors.
Once the reasoning process is completed, the identified errors in the whole ontology
including hierarchy are listed.

In our work, we compared the HermiT reasoning time with other reasoners such
as Pellet, Drools, and RACER. Figure 5.3 depicts the average time cost comparison
while using different reasoners. As we can see from the figure, the HermiT reasoner
takes 163 milliseconds to verify the consistency of our ontology. In the case of the
Pellet reasoner, it gives an average time of 214 milliseconds which is higher than the
average time of the HermiT reasoner and less than the Drools average time. For the
Drools reasoner, it takes an average time of 227 milliseconds which is higher than
the average time of both HermiT and Pellet. Similarly, RACER provides an average
time of 239 milliseconds which is slightly higher than the Drools average time.

The results demonstrate that HermiT reasoning time is faster as compared to
other reasoners. Our experimental results show that all reasoners take an average
time of less than 1 second which is acceptable for the end-user.

5.4 Conclusion

In this chapter, we discuss our access control ontology solution. Our solution com-
bines the RBAC with OWL ontology and SWRL rules to manage unauthorized access
to the data. The main aim of using the semantic web approach is to support complex
permissions and relationships between actors. Our solution is flexible to add more
resources, actors, roles, and rules. For instance, a new actor can be easily added as an
instance of the actor class without affecting the existing classes, instances, resources,
and properties. We discuss the implementation details and evaluate the overhead of

2https://owlready2.readthedocs.io/en/latest/install.html

88 5.4 Conclusion

Figure 5.3: Average time comparison between different reasoners

our solution. Our implementation shows that the reasoning times necessary to grant
or deny a permission are negligible, under one second for our sample scenario, with
different reasoners, and our results allow to recommend a specific reasoner.

Chapter 6

HATEOAS Client with REST
APIs

6.1 Introduction

While Representational State Transfer (REST) is an architectural style that plays an
important role to design scalable and distributed systems, Hypermedia as the Engine
of Application State (HATEOAS) is the constraint that probably receives the least
attention. HATEOAS, as its name indicates, and as described in Section 2.3.4 of
Chapter 2 promotes using hyperlinks to drive the interactions between a (generic)
client and an application.

However, the concrete implementation of the HATEOAS principle is challeng-
ing. Typically, the inclusion of hyperlinks within HTTP response messages is the
responsibility of the developer of the RESTful service. Such a process is manual and
tedious as the links must be added to responses according to specific rules, which
require the developer to have a clear overview of the processes the application fol-
lows, or participates to. As a result, most Web-based APIs do not implement the
HATEOAS constraint, rather limiting their compliance to REST to the other con-
straints [124,141]. Rather than providing links to responses, developers of Web-based
APIs provide API documentation for developers to read (e.g open API) [73]. This
situation shows the need to facilitate the implementation of HATEOAS into Web
APIs with a new solution.

In this chapter, we propose a simple proxy-based solution that enables HATEOAS
navigation. We develop a generic HATEOAS client that supports any REST API.
We design a proxy that acts as a middleware between the client and the APIs. Our
proxy embeds hyperlinks into the APIs response to provide clients with possible
transitions to further application states. It enables clients to interact with REST
APIs through the server’s responses. It does not require the client to know any prior
information to use it except the URL to go to the next state. The client is able to
follow URIs to make the transition without building the URIs by itself. We propose
the REST API that enables a client to add, modify, and delete templates and links
in the proxy. As an illustrative example, we consider our wood supply chain use case

90 6.2 HATEOAS Client

discussed in Chapter 1.
This chapter is structured as follows. First, we discuss the detail of the proposed

HATEOAS client that navigates through different hyperlinks. Then, we discuss
our proxy as a resource solution that processes the responses and extends them by
injecting hyperlinks. After that, we detail the proposed proxy template management
solution that allows for updating the proxy with templates and links. Then, we
detail the results and performance evaluation of the proposed solution. Finally, we
summarize the results obtained in this chapter.

6.2 HATEOAS Client

The proposed HATEOAS client sends a request to the actual server endpoint and
receives the response message. Then, it sends the response message to the proxy
endpoint and receives the extended response with links. The client can use these
links to make GET, PUT, and DELETE requests. Our proposed solution allows the
client to keep original requests and response messages and prevents modification in
the request message content, whereas the response message is simply extended with
relevant HATEOAS links.

First, the HATEOAS client (such as the forest manager client) calls the /chain
resource with method ’POST’ actual server endpoint to create the data and also
provide the encryption type (e.g symmetric or asymmetric). The data contains the
following parameters:

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-20, T-17:20:33.45+01:00",
"location":
{

"lat": "32,3351",
"long": "-63,0561"

}
}

In case of successful response (HTTP code 201), it receives the data id of the
created resource. Then, client calls the proxy endpoint with the ’GET’ method,
passing the previous response message (including the data id that is useful for the
proxy to generate the links) as a parameter, and receives the extended version of the
response, that includes HATEOAS links. The client can use these links to perform
further actions such as data read, update, and delete the specific data.

After that, the forest manager client may use the GET link that calls /chain/<id>
to get the data of that specific id. In the successful response, it receives the repre-
sentation of the data. The proxy is called again to get an extended response with
additional links. To update the data forest manager client uses the PUT link that
calls the /chain/<id> resource and provides the data and encryption type to the

HATEOAS Client with REST APIs 91

actual server to update their data. It also has an option to delete their data using
the DELETE link, To do so, it calls /chain/<id> to delete their data for the specific
id. All responses involve an additional call to the proxy and extended responses are
provided with HATEOAS links.

6.3 Proxy as a Resource

In this section, we explain the proxy that guides the client regarding the possible
transitions after processing that particular response. We design a proxy as a resource,
a RESTful service, that can be utilized by any client and is configurable through its
Web API. The idea to develop the concept of "proxy as a resource" comes from
the fact that most RESTful APIs implement the REST architectural style but are
missing the part related to HATEOAS. Implementing the HATEOAS part as a proxy
allows to progressively build a knowledge base of templates that helps recognize
specific (parts of) data schema contained in a given response message and generate
adequate links to extend the message with. Therefore, when our proxy receives a
response message forwarded from a client, it generates hyperlinks and inserts them
into the response, and forwards that response back to the HATEOAS client. The
client sends the actual response message (such as data id) to the proxy (/chain/<id>
resource, ’POST’ method). To create the links, the proxy must know the content of
the response. The proxy creates the following links such as GET, PUT and DELETE
for the specific data id. In the links, the client also has an option to make a new
POST request to add new data.

links = [
{

"href": "http://localhost:8888/chain/<id>",
"type": "GET"

},
{

"href": "http://localhost:8888/chain/<id>",
"type": "PUT"

},
{

"href": "http://localhost:8888/chain/<id>",
"type": "DELETE"

},
{

"href": "http://localhost:8888/chain",
"type": "POST"

}
]

In these links, the href represents the URL of the resource and the type is an HTTP
verb that indicates what the client can do using the specific link. The proxy forwards
an extended response message with links to the client.

92 6.4 Proxy Template Management

We automate the management of proxy links and responses according to the
data. To do so, we design link templates where the first part is the actual proxy
endpoint that is known and the second part is data id that can be changed according
to the response message. We provide the unique id of the data in the link template
to point to the relevant data. Our proxy stores link templates and generate different
types of links (such as GET, PUT, DELETE) for specific data id. We use headers
that contain the content type (such as JSON data format) in HTTP requests and
responses. This proxy has an advantage in terms of that we do not need to change
actual APIs and HATEOAS client for navigational support.

6.4 Proxy Template Management

We propose a proxy that manages links. These links might need to be changed over
time that is hard to add them manually in the code. It is also a time-consuming
process. Therefore, we propose a REST APIs to manage these links and the client
does not have to go into code to do it. The proposed REST APIs allows clients to
add new templates, add new links, and update and delete existing templates and
links at run time. The proposed APIs enables the client to update the proxy with
templates and links.

Let us consider our running example, forest manager client cuts logs and stores
data in the framework. In the response, the proposed proxy returns links with log id.
The forest manager actor can use these links to perform GET, PUT, and DELETE
on log data. Later, if the forest manager client wants to add a new template with
only two links such as GET and PUT. Then, it will send a POST request to the
/templates resource of proxy to create a new template. In the successful response
(HTTP code 201), it returns the links including template id in the response. To
update the template, it will make a PUT request to the /templates/<id> resource.
The proposed API will update the template for specific template id on the proxy.

Later, if the forest manager client wants to read the all templates that they
created or updated, then it will send a GET request to the /templates resource.
In the response, he will receive the all existing templates. Accordingly, to read
the specific template based on template id, an actor will call the /templates/<id>
resource with method GET. A request to the /templates/<id> resource with method
DELETE will delete the template for the specific template id.

Figure 6.1 shows the swagger user interface of the proposed APIs discussed above.

Figure 6.1: Swagger interface of the proposed proxy APIs.

HATEOAS Client with REST APIs 93

6.5 Results and Evaluation

In the following, we discuss the results and performance evaluation of our proposed
HATEOAS client with REST APIs solution. In Section 6.5.1, we describe the exper-
imental setup and implementation details. The quantitative performance evaluation
of our proposed solution is detailed in Section 6.5.2.

6.5.1 Experimental Setup and Implementation

We used Python 3 to implement the proposed solution. We used the JSON library1

to receive and represent information in human-readable form. We used Flask2, which
is a Python-based Web framework that enabled us to manage HTTP requests and
RESTful APIs.

We conducted our experiments on 64-bit Windows operating systems with 16 GB
of RAM, x64 Core i7 processor system clock cycle at 1.80 GHz.

6.5.2 Evaluation

To highlight the advantages of our solution, we provide a comparative analysis of
the non-HATEOAS client with our HATEOAS client solution.

The limitation of creating a non-HATEOAS client solution that would not offer
links is that the client requires to know about the services in advance. It also requires
having a knowledge which requests are permitted and how these requests are created.
The second issue is to design a client that discovers all resources, the developer needs
to do a lot of work to implement it [79]. Third, they need to build all URIs by
themselves. These issues might increase the chance of errors during the development
phase.

In contrast, the proposed HATEOAS client that uses hyperlinks from the proxy
response only requires knowing the link type and href of the possible links. These
link types are added to the hyperlinks. The proposed client requires to follow the
URI to go to the next stage without building the URI by themselves. Our proposed
solution enables HATEOAS for services and the client does not need to enable them
itself.

We calculated the time cost for POST, GET, PUT, DELETE, and links. We
summarized the detailed results statistics of our proposed solution in Table 6.1.
Figure 6.2 depicts the overall average time needed to request REST commands and
creates links for an increasing number of clients.

We tested our solution 100 times for each operation including requests and cre-
ate links and then calculated the various statistics such as average time, Standard
Deviation (SD), min, and max values in seconds. For the experiments, we observed
the time that is required to answer REST requests and create links.

As we can see from the results, in the case of 1 client, the POST request gives an
average time of 0,0423 seconds, and an overhead of 5% which is used to create the
links. The GET request has an SD of 0,0343 seconds and the PUT provides an SD

1https://docs.python.org/3/library/json.html
2https://flask.palletsprojects.com/en/2.0.x/

https://docs.python.org/3/library/json.html
https://flask.palletsprojects.com/en/2.0.x/

94 6.6 Chapter Summary

Table 6.1: Timing statistics to answer REST requests and create links
No.clients Requests Avg Time Overhead St Deviation Min Max

1

POST 0,0423 5% 0,0301 0,0354 0,0675
GET 0,0417 5% 0,0343 0,0371 0,0551
PUT 0,0352 6% 0,0234 0,0314 0,0597
DELETE 0,0254 8% 0,0201 0,0233 0,0474
Links 0,0023 - 0,0011 0,0021 0,0046

40

POST 0,0532 4% 0,0504 0,0523 0,0703
GET 0,0424 5% 0,0311 0,0347 0,0543
PUT 0,0436 5% 0,0325 0,0352 0,0613
DELETE 0,0341 6% 0,0302 0,0324 0,0452
Links 0,0024 - 0,0021 0,0022 0,0047

80

POST 0,0573 4% 0,0432 0,0553 0,0795
GET 0,0456 5% 0,0403 0,0431 0,0561
PUT 0,0479 4% 0,0421 0,0443 0,0594
DELETE 0,0335 6% 0,0313 0,0322 0,0431
Links 0,0024 - 0,0021 0,0023 0,0046

of 0,0234 seconds. The GET request provides an overhead of 5% which is similar to
the POST request. The DELETE request gives an average time of 0,0254 seconds
and has a min value of 0,0233 seconds.

For the case of 40 clients, the POST request time gives an overhead of 4% which
is slightly less than the case of 1 client. The GET request time has an average of
0,0424 seconds which is close to the average GET time of 1 client. The overhead of
GET requests is 5% which is similar to the case of 1 and 80 clients. The PUT gives
an SD of 0,0325 seconds and has a max value of 0,0613 seconds which is slightly
higher than the case of 1 client. The DELETE request has a min value of 0,0324
seconds and creates links that give a min value of 0,0021 seconds.

Similarly, In the case of 80 clients, the POST overhead is 4% which is similar to
the POST overhead of 40 clients. The POST request has an SD of 0,0432 seconds
which is slightly less than the SD of 40 clients. The GET gives a max value of 0,0561
seconds which is close to the max value of GET for 1 client. The average request
time of PUT does not show much difference for both cases 40 and 80 clients. The
DELETE provides a max value of 0,0431 seconds which is less than the max value
for clients 1 and 40. The create links average time is 0,0024 seconds which is similar
to the create links average time of 40 clients.

The results demonstrate that our proposed solution gives a reasonable time over-
head. The average time to answer REST requests and create links is not affected
much by increasing the number of clients.

6.6 Chapter Summary

In this chapter, we design a solution that interacts with the REST APIs, processes
the response message, and offers relevant links to the client, so the client would

HATEOAS Client with REST APIs 95

Figure 6.2: Overview of overall time needed to answer REST requests and create
links on different numbers of clients

perform further operations on the data such as POST, GET, PUT, and DELETE.
It allows the client to navigate through data using RESTful APIs. It is complex
to do it manually because it is a lot of work on the implementation side. To do
so, a developer needs to know responses from every server. It increases the chance
of errors during the development phase. Our solution allows a client to add new
templates and links and also to update and delete the existing templates using our
designed APIs.

We also discussed the results and evaluation of our proposed solution. The per-
formance of our solution is evaluated in terms of time cost. The proposed solution
is flexible to deal with an increasing number of clients, as the results demonstrate
an acceptable overhead, in average 5% of additional processing time is required to
extend the HTTP responses with HATEOAS links.

Chapter 7

Conclusion and Future Work

In this chapter, we first summarize the main contributions of this dissertation,
our Web framework, data storage and update solution, semantic access control and
Web client. Then, we provide directions for future work, mainly related to keys
management, HATEOAS, rule management and blockchain.

7.1 General Conclusion

In this Ph.D. thesis, we propose a decentralized solution for secure and privacy-
aware data storage, multi-level ontology-driven access control, and support for data
mutability without any third party. We detail, in each chapter of this dissertation,
the following contributions:

• A Decentralized Web Framework: In chapter 3, we propose a decentral-
ized Web framework that allows data owners to control and manage their data
without any trusted third party. We design the RESTful APIs that demon-
strate our solution applicability on the Web, with all the benefits that this
architectural style brings. We provide the comparative analysis of our APIs
with existing Hyperledger’s APIs.

• A Decentralized Mutable Data Storage: In chapter 4, we propose a decen-
tralized solution that allows authorized actors to write, read, delete, update
their data and access the history of previous versions. Our solution stores
metadata and DHT keys (hash pointer of the data) on the blockchain, while
encrypted data is managed on the DHT, which enables the storage of large data
contents. We propose a pointer system that allows data owners to access their
update history. To ensure data security, we propose an encryption design that
allows actors to choose between different types of encryption mechanisms to
store and read data in a decentralized framework. We design a metadata struc-
ture that keeps an immutable record of data operations on the blockchain to en-
sure actors’ trust. In addition, we propose a traceability algorithm that enables
product traceability in a decentralized ledger. The design of the proposed so-
lution ensures security properties such as confidentiality, integrity, availability,

Conclusion and Future Work 97

and non-repudiation. It protects data against linking, eavesdropping, spoof-
ing, and modification attacks. We evaluate the performance of our solution in
terms of scalability with a proof-of-concept prototype, by implementing time
measurements with different numbers of actors. The experimental results show
that our proposed solution handle a large number of actors and achieved ac-
ceptable time overhead.

• Semantic Role-based Access Control: In chapter 5, we combine the Role-
Based Access Control (RBAC) model with an OWL ontology to control access
to the data through RESTful APIs. We define access control rules using HTTP
verbs that allow authorized actors to perform POST, GET, PUT, and DELETE
on data. The proposed solution manages complex permissions to access data
and manage relationships between actors. We model OWL classes (such as
roles, actors, and resources) and individuals according to our wood supply
chain motivating scenario. We discuss implementation details and provide an
average time comparison of our solution using different reasoners.

• Web Client and HATEOAS proxy: In chapter 6, we develop a proxy
that enables HATEOAS navigation. The proposed proxy processes the API’s
response and offers relevant links to the client with the help of REST APIs. It
manages the updates of links and responses according to the data. We design
a HATEOAS client to navigate through data using REST APIs. The proposed
HATEOAS client is generic and supports any Web-based REST APIs. We
also propose a proxy template management solution that enables a client to
update the proxy with templates and links using our designed REST APIs. We
provide implementation details and evaluate its performance in terms of time
overhead.

7.2 Future Work

In the following, we provide the directions for future research including key man-
agement, proposed solution applicability to large scale complex scenarios, ontology
management REST API, semantic-based natural language rules, and semantic HA-
TEOAS proxy.

• Key Management: Today, most security solutions, such as for example ring
signature, depend on asymmetric cryptography. Therefore, public and private
keys are required for each involved actor. Key management is an issue for
large scale solutions where large number of keys are involved and need to be
managed. It is also important to manage the private key that should not be
disclosed. According to the literature, key management issue is not new, this
problem is constant and an efficient solution is still required as the number of
required keys grows over time and with the increasing number of applications
requiring them.

• Solution Applicability to Large Scale Complex Scenarios: In this dis-
sertation, we tested our solution according to wood supply chain, with a limited

98 7.2 Future Work

number of actors and a rather low diversity of data. A direction for future re-
search is to explore the applicability the proposed solution with different real
life scenarios, increase the number of actors with diverse data, and improve its
performance for large-scale networks.

• Ontology Management REST API: In this thesis, we used Protégé to
model our ontology. It is difficult for non-experts to design an ontology using
Protégé without having expertise in it. This opens the door for future work
to design a REST API combined with user-friendly Web interfaces to manage
ontologies at run time. The REST API should enable actors to add and update
classes, instances, and object properties in the ontology without learning to use
a complex tool such as Protégé. A generic user-friendly interface for ontology
edition that connects to a RESTful API to enable domain-specific edits would
require a configuration driven by domain knowledge. We believe that it would
be an interesting contribution to facilitate the use of ontologies in different
domains with such a tool.

• Semantic-based Natural Language Rules: Semantic Web Rule Language
(SWRL) allows actors to perform actions on data according to constraints or
conditions. It has more expressive power to define rules which means com-
plex rules can be written in OWL. To write rules in SWRL, actors need to
understand and follow the syntax properly. One future direction is to design
a natural language rule interface that allows actors to write rules in human
language. This interface should be integrated with OWL and natural language
rules should be converted to SWRL at the back end.

• Semantic HATEOAS Proxy: The HATEOAS proxy developed in this thesis
could be improved so it would be able to understand the context of the data
it receives. To do so, semantic annotations to the data should be added, as
well as contextual annotations, for the proxy to improve the selection of best
applicable templates for each request. Another possibility is to give an overview
of previous requests, so that the HATEOAS proxy can apply its algorithm over
a view of a partial set of already executed calls, to facilitate the selection of the
next actions to suggest to the client. This evolution would connect our work
on this aspect to the research work related to fragments of business processes.

Bibliography

[1] Oluwashina Joseph Ajayi, Joseph Rafferty, Jose Santos, Matias Garcia-
Constantino, and Zhan Cui. Beca: A blockchain-based edge computing ar-
chitecture for internet of things systems. IoT, 2(4):610–632, 2021.

[2] Hamda Al Breiki, Lamees Al Qassem, Khaled Salah, Muhammad Habib Ur
Rehman, and Davor Sevtinovic. Decentralized access control for iot data using
blockchain and trusted oracles. In 2019 IEEE International Conference on
Industrial Internet (ICII), pages 248–257. IEEE, 2019.

[3] Marco Alessi, Alessio Camillo, Enza Giangreco, Marco Matera, Stefano Pino,
and Davide Storelli. Make users own their data: A decentralized personal data
store prototype based on Ethereum and IPFS. In 3rd International Conference
on Smart and Sustainable Technologies (SpliTech), pages 1–7. IEEE, 2018.

[4] Norta Alexander, Udokwu Chibuzor, and Leiding Benjamin. Mfssia: Multi-
factor self-sovereign identity authentication. https://ontochain.ngi.eu/
content/mfssia, 2017. Accessed: 2021-12-05.

[5] Abdulelah A Algosaibi, Saleh Albahli, Samer F Khasawneh, and Austin
Melton. Web evolution-the shift from information publishing to reason-
ing. International Journal of Artificial Intelligence and Applications (IJAIA),
8(6):11–28, 2017.

[6] Rawaa Ahmed Ali and S StatPearls Nagalli. Internet. British Muslims in
Number. Muslim Council of Britain, 2015.

[7] Saqib Ali, Guojun Wang, Bebo White, and Roger Leslie Cottrell. A blockchain-
based decentralized data storage and access framework for pinger. In 2018 17th
IEEE International Conference on Trust, Security and Privacy in Computing
and Communications/12th IEEE International Conference on Big Data Sci-
ence and Engineering (TrustCom/BigDataSE), pages 1303–1308. IEEE, 2018.

[8] Jamila Alsayed Kassem, Sarwar Sayeed, Hector Marco-Gisbert, Zeeshan Per-
vez, and Keshav Dahal. Dns-idm: A blockchain identity management system
to secure personal data sharing in a network. Applied Sciences, 9(15):2953,
2019.

[9] Grigoris Antoniou and Frank van Harmelen. Web ontology language: Owl. In
Handbook on ontologies, pages 67–92. Springer, 2004.

https://ontochain.ngi.eu/content/mfssia
https://ontochain.ngi.eu/content/mfssia

100 BIBLIOGRAPHY

[10] Sidra Aslam, Viktor Bukovszki, and Michael Mrissa. Decentralized data
management privacy-aware framework for positive energy districts. Energies,
14(21):7018, 2021.

[11] Sidra Aslam, Viktor Bukovszki, and Michael Mrissa. Multi-level data access
control in positive energy districts. In Sustainability in Energy and Buildings,
pages 553–565. Springer, 2021.

[12] Sidra Aslam and Michael Mrissa. Privacy-aware distributed ledger for prod-
uct traceability in supply chain environments. In 63rd SWST International
Convention, pages 3–10, 2020.

[13] Sidra Aslam and Michael Mrissa. Mutable and privacy-aware decentralized
ledger for data management in wood supply chain environments. In InnoRenew
CoE International Conference 2021 (IRIC2021), 2021.

[14] Sidra Aslam and Michael Mrissa. A restful privacy-aware and mutable de-
centralized ledger. In European Conference on Advances in Databases and
Information Systems, pages 193–204. Springer, 2021.

[15] Sidra Aslam and Michael Mrissa. A framework for privacy-aware and secure
decentralized data storage. Computer Science and Information Systems, 2022.

[16] Sidra Aslam, Aleksandar Tošić, and Michael Mrissa. Secure and privacy-aware
blockchain design: Requirements, challenges and solutions. Journal of Cyber-
security and Privacy, 1(1):164–194, 2021.

[17] Daniel Augot, Hervé Chabanne, Olivier Clémot, and William George. Trans-
forming face-to-face identity proofing into anonymous digital identity using the
bitcoin blockchain. In 2017 15th Annual Conference on Privacy, Security and
Trust (PST), pages 25–2509. IEEE, 2017.

[18] Rakić B and Kotlar M. Dkg: Decentralised and scalable knowledge graph
economy tools supporting the trusted, traceable and transparent ontological
knowledge on blockchain. https://ontochain.ngi.eu/content/dkg, 2020.

[19] Sujata Banerjee, Sujoy Basu, Shishir Garg, Sukesh Garg, Sung-Ju Lee, Pramila
Mullan, and Puneet Sharma. Scalable grid service discovery based on uddi. In
Proceedings of the 3rd international workshop on Middleware for grid comput-
ing, pages 1–6, 2005.

[20] Dizza Beimel and Mor Peleg. Using OWL and SWRL to represent and reason
with situation-based access control policies. Data & Knowledge Engineering,
70(6):596–615, 2011.

[21] Giampaolo Bella, Domenico Cantone, Cristiano Longo, Marianna Nicolosi As-
mundo, and Daniele Francesco Santamaria. Semantic representation as a key
enabler for blockchain-based commerce. In International Conference on the
Economics of Grids, Clouds, Systems, and Services, pages 191–198. Springer,
2021.

https://ontochain.ngi.eu/content/dkg

BIBLIOGRAPHY 101

[22] Nazanin Zahed Benisi, Mehdi Aminian, and Bahman Javadi. Blockchain-based
decentralized storage networks: A survey. Journal of Network and Computer
Applications, 162:102656, 2020.

[23] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web. Scien-
tific american, 284(5):34–43, 2001.

[24] Elisa Bertino. RBAC models - concepts and trends. Computers & Security,
22(6):511–514, 2003.

[25] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber.
The petri net markup language: Concepts, technology, and tools. In Inter-
national Conference on Application and Theory of Petri Nets, pages 483–505.
Springer, 2003.

[26] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. De anonymisation
of clients in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 15–29, 2014.

[27] Jaqueline Blake and Wayne Pease. Development of an ontology to improve
supply chain management (scm) in the australian timber industry. In Semantic
Web Technologies and E-Business: Toward the Integrated Virtual Organization
and Business Process Automation, pages 360–383. IGI Global, 2007.

[28] Marcelo Blois, Maurício Escobar, and Ricardo Choren. Using agents and on-
tologies for application development on the semantic Web. Journal of the
Brazilian Computer Society, 13(2):35–44, 2007.

[29] Yogita Borse, Anushka Chawathe, Deepti Patole, and Purnima Ahirao.
Anonymity: A secure identity management using smart contracts. In Pro-
ceedings of International Conference on Sustainable Computing in Science,
Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-
India, 2019.

[30] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vin-
cent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981, 2018.

[31] N Brindha, S Deepa, and S Balamurugan. Security protocol for multimedia
streaming. Design and Analysis of Security Protocol for Communication, pages
155–170, 2020.

[32] Clemens Brunner, Ulrich Gallersdörfer, Fabian Knirsch, Dominik Engel, and
Florian Matthes. Did and vc: Untangling decentralized identifiers and verifiable
credentials for the Web of trust. In 2020 the 3rd International Conference on
Blockchain Technology and Applications, pages 61–66, 2020.

[33] Kyle Burgess and Joe Colangelo. The promise of bitcoin and the blockchain.
Consumers’ Research, 2015.

102 BIBLIOGRAPHY

[34] Rodrigo N Calheiros, Rajiv Ranjan, César AF De Rose, and Rajkumar Buyya.
Cloudsim: A novel framework for modeling and simulation of cloud computing
infrastructures and services. arXiv preprint arXiv:0903.2525, 2009.

[35] Antonio Calleja López, Arnau Monterde Mateo, and Xabier E Barandiaran.
Framework for democratic governance of distributed architectures: Decen-
tralised citizens owned data ecosystem. Technical report, The DECODE con-
sortium, 2017.

[36] Roy H Campbell and M Dennis Mickunas. Building a dynamic interopera-
ble security architecture for active networks. Technical report, Illinois univ
champaign grants and contracts administration, 2002.

[37] Roelofs Caspar and Tanner Jack. Gimly id: an ssi application suite. https:
//ontochain.ngi.eu/content/gimly-id, 2019. Accessed: 2021-12-15.

[38] Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. What you always wanted to
know about datalog(and never dared to ask). IEEE transactions on knowledge
and data engineering, 1(1):146–166, 1989.

[39] Jung Hwa Chae and Nematollaah Shiri. Formalization of RBAC policy with
object class hierarchy. In International Conference on Information Security
Practice and Experience, pages 162–176. Springer, 2007.

[40] Antorweep Chakravorty and Chunming Rong. Ushare: user controlled social
media based on blockchain. In Proceedings of the 11th international conference
on ubiquitous information management and communication, pages 1–6, 2017.

[41] Mohammad MR Chowdhury, Josef Noll, and Juan Miguel Gomez. Enabling ac-
cess control and privacy through ontology. In 2007 Innovations in Information
Technologies (IIT), pages 168–172. IEEE, 2007.

[42] Lorenzo Cirio, Isabel F Cruz, and Roberto Tamassia. A role and attribute
based access control system using semantic Web technologies. In OTM Con-
federated International Conferences" On the Move to Meaningful Internet Sys-
tems", pages 1256–1266. Springer, 2007.

[43] Kumar G Conti M, Brighente A and Saha R. Dart: A distributed-oracles
framework for privacy-preserving data traceability. https://ontochain.ngi.
eu/content/dart, 2020. Accessed: 2021-12-13.

[44] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh Kalyanaraman,
et al. Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-10):71,
2016.

[45] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the Web services Web: an in-
troduction to soap, wsdl, and uddi. IEEE Internet computing, 6(2):86–93,
2002.

https://ontochain.ngi.eu/content/gimly-id
https://ontochain.ngi.eu/content/gimly-id
https://ontochain.ngi.eu/content/dart
https://ontochain.ngi.eu/content/dart

BIBLIOGRAPHY 103

[46] Sammy de Figueiredo, Akash Madhusudan, Vincent Reniers, Svetla Nikova,
and Bart Preneel. Exploring the storj network: a security analysis. In Pro-
ceedings of the 36th Annual ACM Symposium on Applied Computing, pages
257–264, 2021.

[47] Gero Decker, Alexander Lüders, Hagen Overdick, Kai Schlichting, and Math-
ias Weske. RESTful petri net execution. In International Workshop on Web
Services and Formal Methods, pages 73–87. Springer, 2008.

[48] Kiran Devaram and Daniel Andresen. Soap optimization via parameterized
client-side caching. In Proceedings of the IASTED International Conference
on Parallel and Distributed Computing and Systems (PDCS 2003), pages 785–
790. Citeseer, 2003.

[49] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and
Kian-Lee Tan. Blockbench: A framework for analyzing private blockchains.
In Proceedings of the 2017 ACM International Conference on Management of
Data, pages 1085–1100, 2017.

[50] Rotondi Domenico, Saltarella Marco, Azzara Pietro, and Riccobene Michelan-
gelo. Seip: Service for encrypted information provider. https://ontochain.
ngi.eu/content/seip, 2020. Accessed: 2021-12-08.

[51] John Domingue, Allan Third, and Manoharan Ramachandran. The fair trade
framework for assessing decentralised data solutions. In Companion Proceed-
ings of The 2019 World Wide Web Conference, pages 866–882, 2019.

[52] Jos Dumortier and Niels Vandezande. Critical observations on the proposed
regulation for electronic identification and trust services for electronic transac-
tions in the internal market. ICRI research paper, 9, 2012.

[53] Paul Dunphy and Fabien AP Petitcolas. A first look at identity management
schemes on the blockchain. IEEE security & privacy, 16(4):20–29, 2018.

[54] Ashutosh Dhar Dwivedi, Gautam Srivastava, Shalini Dhar, and Rajani Singh.
A decentralized privacy-preserving healthcare blockchain for iot. Sensors,
19(2):326, 2019.

[55] Jesse Eisses, Laurens Verspeek, Chris Dawe, and Sjoerd Dijkstra. Effect net-
work: Decentralized network for artificial intelligence. http://effect.ai/
download/effectwhitepaper.pdf, 2018. Accessed: 2020-02-01.

[56] Ariel Ekblaw, Asaph Azaria, John D Halamka, and Andrew Lippman. A
case study for blockchain in healthcare:“medrec” prototype for electronic health
records and medical research data. In Proceedings of IEEE open & big data
conference, volume 13, page 13, 2016.

[57] Xing Fan, Baoning Niu, and Zhenliang Liu. Scalable blockchain storage sys-
tems: research progress and models. Computing, 104(6):1497–1524, 2022.

https://ontochain.ngi.eu/content/seip
https://ontochain.ngi.eu/content/seip
http://effect. ai/download/effect whitepaper. pdf
http://effect. ai/download/effect whitepaper. pdf

104 BIBLIOGRAPHY

[58] Yanfang Fan, Zhen Han, Jiqiang Liu, and Yong Zhao. A mandatory access
control model with enhanced flexibility. In 2009 international conference on
multimedia information networking and security, volume 1, pages 120–124.
IEEE, 2009.

[59] Tiago M Fernández-Caramés and Paula Fraga-Lamas. A review on the use of
blockchain for the internet of things. Ieee Access, 6:32979–33001, 2018.

[60] Rodolfo Ferrini and Elisa Bertino. Supporting RBAC with XACML+OWL.
In Proceedings of the 14th ACM symposium on Access control models and tech-
nologies, pages 145–154, 2009.

[61] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[62] Tim Finin, Anupam Joshi, Lalana Kagal, Jianwei Niu, Ravi Sandhu, William
Winsborough, and Bhavani Thuraisingham. ROWLBAC: representing role
based access control in owl. In Proceedings of the 13th ACM symposium on
Access control models and technologies, pages 73–82, 2008.

[63] Roberto García and Rosa Gil. Social media copyright management using se-
mantic Web and blockchain. In Proceedings of the 21st International Confer-
ence on Information Integration and Web-based Applications & Services, pages
339–343, 2019.

[64] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Relbac: Relation based
access control. In 2008 Fourth International Conference on Semantics, Knowl-
edge and Grid, pages 3–11. IEEE, 2008.

[65] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings
of the 13th ACM conference on Computer and communications security, pages
89–98, 2006.

[66] G Guy Zyskind, O Oz Nathan, and AS Alex’Sandy’Pentland. Decentraliz-
ing privacy: using blockchain to protect personal data. In Proceedings of the
Security and Privacy Workshops (SPW). San Jose, USA: IEEE, 2015.

[67] Muhammad Asif Habib, Nasir Mahmood, Muhammad Shahid, Muham-
mad Umar Aftab, Uzair Ahmad, and C Muhammad Nadeem Faisal. Permission
based implementation of dynamic separation of duty (DSD) in role based ac-
cess control (RBAC). In 2014 8th international conference on signal processing
and communication systems (ICSPCS), pages 1–10. IEEE, 2014.

[68] Karim Hadjar. University ontology: A case study at ahlia university. In
Semantic Web, pages 173–183. Springer, 2016.

[69] BQ Hai and Z Ying. Study on the access control model in information security.
In Quad-regional Radio Science and Wireless Technology Conference, pages
830–834, 2011.

BIBLIOGRAPHY 105

[70] Festim Halili and Erenis Ramadani. Web services: a comparison of soap and
rest services. Modern Applied Science, 12(3):175, 2018.

[71] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology
overview series, consensus system. arXiv preprint arXiv:1805.04548, 2018.

[72] Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur Özkasap.
Lightchain: A dht-based blockchain for resource constrained environments.
arXiv preprint arXiv:1904.00375, 2019.

[73] Florian Haupt, Frank Leymann, and Karolina Vukojevic-Haupt. API gov-
ernance support through the structural analysis of REST APIs. Computer
Science-Research and Development, 33(3):291–303, 2018.

[74] Yiming Hei, Yizhong Liu, Dawei Li, Jianwei Liu, and Qianhong Wu. Themis:
An accountable blockchain-based p2p cloud storage scheme. Peer-to-Peer Net-
working and Applications, 14(1):225–239, 2021.

[75] Willem-Jan van den Heuvel, Damian A. Tamburri, Damiano D’Amici, Fabi-
ano Izzo, and Sandra Potten. Chainops for smart contract-based distributed
applications. In International Symposium on Business Modeling and Software
Design, pages 374–383. Springer, 2021.

[76] Haihui Huang, Xiuxiu Zhou, and Jun Liu. Food supply chain traceability
scheme based on blockchain and epc technology. In International Conference
on Smart Blockchain, pages 32–42. Springer, 2019.

[77] Marc Hüffmeyer, Florian Haupt, Frank Leymann, and Ulf Schreier.
Authorization-aware hateoas. In CLOSER, pages 78–89, 2018.

[78] Janne Häkli, Kaarle Jaakkola, Pekka Pursula, Miika Huusko, and Kaj Num-
mila. Uhf rfid based tracking of logs in the forest industry. In 2010 IEEE
International Conference on RFID (IEEE RFID 2010), pages 245–251, 2010.

[79] Daniel Jacobson, Greg Brail, and Dan Woods. APIs: A strategy guide. "
O’Reilly Media, Inc.", 2012.

[80] Vila Jean and Broustail Alain. Nftwatch - an rdf based ontology. https:
//ontochain.ngi.eu/content/nftwatch, 2020. Accessed: 2021-12-05.

[81] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and
cpn tools for modelling and validation of concurrent systems. International
Journal on Software Tools for Technology Transfer, 9(3):213–254, 2007.

[82] Qiu Jiong and Ma Chen-hua. Detecting and resolving constraint conflicts in
role-based access control. In 2011 International Conference on Electrical and
Control Engineering, pages 5845–5848. IEEE, 2011.

[83] Arshad Junaid and Azad Ajmal. Reputable:a provenance-aware decentralized
reputation system for blockchain-based ecosystems. https://ontochain.ngi.
eu/selected-projects, 2020. Accessed: 2021-12-05.

https://ontochain.ngi.eu/content/nftwatch
https://ontochain.ngi.eu/content/nftwatch
https://ontochain.ngi.eu/sel ected-projects
https://ontochain.ngi.eu/sel ected-projects

106 BIBLIOGRAPHY

[84] Alexandros Kalafatelis, Konstantinos Panagos, Anastasios E Giannopoulos,
Sotirios T Spantideas, Nikolaos C Kapsalis, Marios Touloupou, Evgenia Ka-
passa, Leonidas Katelaris, Panayiotis Christodoulou, Klitos Christodoulou,
et al. Island: An interlinked semantically-enriched blockchain data framework.
In International Conference on the Economics of Grids, Clouds, Systems, and
Services, pages 207–214. Springer, 2021.

[85] Ujval J Kapasi, Scott Rixner, William J Dally, Brucek Khailany, Jung Ho
Ahn, Peter Mattson, and John D Owens. Programmable stream processors.
Computer, 36(8):54–62, 2003.

[86] Avita Katal, Pranjal Gupta, Mohammad Wazid, RH Goudar, Abhishek Mittal,
Sakshi Panwar, and Sanjay Joshi. Authentication and authorization: Domain
specific role based access control using ontology. In 2013 7th International
Conference on Intelligent Systems and Control (ISCO), pages 439–444. IEEE,
2013.

[87] Nattawat Khamphakdee, Nunnapus Benjamas, and Saiyan Saiyod. Perfor-
mance evaluation of big data technology on designing big network traffic data
analysis system. In 2016 Joint 8th International Conference on soft computing
and Intelligent Systems (SCIS) and 17th International Symposium on Advanced
Intelligent Systems (ISIS), pages 454–459. IEEE, 2016.

[88] Shinsaku Kiyomoto, Mohammad Shahriar Rahman, and Anirban Basu. On
blockchain-based anonymized dataset distribution platform. In 2017 IEEE
15th International Conference on Software Engineering Research, Management
and Applications (SERA), pages 85–92. IEEE, 2017.

[89] H Kohad, S Kumar, and A Ambhaikar. Scalability issues of blockchain tech-
nology. Int. J. Eng. Adv. Technol. IJEAT, 9(3), 2020.

[90] Sebastian Kotstein and Christian Decker. Navigational support for non
HATEOAS-compliant Web-based APIs. In Symposium and Summer School
on Service-Oriented Computing, pages 169–188. Springer, 2020.

[91] Kouji Kozaki, Eiichi Sunagawa, Yoshinobu Kitamura, and Riichiro Mizoguchi.
Fundamental consideration of role concepts for ontology evaluation. In EON@
WWW, 2006.

[92] M Vinod Kumar and Sriman Narayana N Ch Iyengar. A framework for
blockchain technology in rice supply chain management. Advanced Science
and Technology Letters, 146:125–130, 2017.

[93] K Anitha Kumari, R Padmashani, R Varsha, and Vasu Upadhayay. Securing
internet of medical things (iomt) using private blockchain network. In Princi-
ples of Internet of Things (IoT) Ecosystem: Insight Paradigm, pages 305–326.
Springer, 2020.

BIBLIOGRAPHY 107

[94] Roffia L, Gigli L, and Aguzzi C Marconi A. Desmo-ld: Decentralized smart ora-
cles for trusted linked data. https://ontochain.ngi.eu/content/desmo-ld,
2020. Accessed: 2021-12-14.

[95] Joss Langford, A Poikola, Wil Janssen, Viivi Lähteenoja, and Marlies Rikken.
Understanding mydata operators. https://mydata.org/wp-content/
uploads/sites/5/2020/04/Understanding-Mydata-Operators-pages.pdf,
2020. Accessed: 2022-05-09.

[96] Henocque Laurent and Risterucci Gabriel. Uniprodapi: Universal proven data
and process interchange. https://ontochain.ngi.eu/content/uniprodapi,
2020. Accessed: 2021-12-11.

[97] Tam Le and Matt W Mutka. Capchain: A privacy preserving access control
framework based on blockchain for pervasive environments. In 2018 IEEE
International Conference on Smart Computing (SMARTCOMP), pages 57–64.
IEEE, 2018.

[98] Michel Legault. A practitioner’s view on distributed storage systems:
Overview, challenges and potential solutions. Technology Innovation Man-
agement Review, 11(6):32–41, 2021.

[99] Benjamin Leiding and Alex Norta. Mapping requirements specifications into
a formalized blockchain-enabled authentication protocol for secured personal
identity assurance. In International Conference on Future Data and Security
Engineering, pages 181–196. Springer, 2017.

[100] Huiying Li, Xiang Zhang, Honghan Wu, and Yuzhong Qu. Design and appli-
cation of rule based access control policies. In Proc of the Semantic Web and
Policy Workshop, pages 34–41. Citeseer, 2005.

[101] Ruinian Li, Tianyi Song, Bo Mei, Hong Li, Xiuzhen Cheng, and Limin Sun.
Blockchain for large-scale internet of things data storage and protection. IEEE
Transactions on Services Computing, 12(5):762–771, 2018.

[102] Olga Liskin, Leif Singer, and Kurt Schneider. Teaching old services new tricks:
adding hateoas support as an afterthought. In Proceedings of the Second In-
ternational Workshop on RESTful Design, pages 3–10, 2011.

[103] Francesco Longo, Letizia Nicoletti, Antonio Padovano, Gianfranco d’Atri, and
Marco Forte. Blockchain-enabled supply chain: An experimental study. Com-
puters & Industrial Engineering, 136:57–69, 2019.

[104] Lundin Lotta, Chandran Lal, and Padayatti George. Nftwatch - an rdf based
ontology. https://ontochain.ngi.eu/content/nftwatch, 2020. Accessed:
2021-12-07.

[105] Damian A Lucio, Fabiano D’Amici, Damiano, and Sandra Potten. Bowler:
Blockchain oriented warehouse and low code engine and reasoner. https:
//ontochain.ngi.eu/content/bowler, 2020. Accessed: 2021-12-06.

https://ontochain.ngi.eu/content/desmo-ld
https://mydata.org/wp-content/uploads/sites/5/2020/04/Understanding-Mydata-Operators-pages.pdf
https://mydata.org/wp-content/uploads/sites/5/2020/04/Understanding-Mydata-Operators-pages.pdf
https://ontochain.ngi.eu/content/uniprodapi
https://ontochain.ngi.eu/content/nftwatch
https://ontochain.ngi.eu/content/bowler
https://ontochain.ngi.eu/content/bowler

108 BIBLIOGRAPHY

[106] Ketil Lund, Anders Eggen, Dinko Hadzic, Trude Hafsoe, and Frank T Johnsen.
Using web services to realize service oriented architecture in military commu-
nication networks. IEEE communications magazine, 45(10):47–53, 2007.

[107] Christian Lundkvist, Rouven Heck, Joel Torstensson, Zac Mitton, and Michael
Sena. Uport: A platform for self-sovereign identity. https://whitepaper.
uport.me/uPort_whitepaper_DRAFT20170221.pdf, 2017. Accessed: 2022-05-
09.

[108] Emil C Lupu, Damian A Marriott, Morris S Sloman, and Nicholas Yialelis. A
policy based role framework for access control. In Proceedings of the first ACM
Workshop on Role-based access control, pages 11–es, 1996.

[109] Nikolaos Lykousas, Vasilios Koutsokostas, Fran Casino, and Constantinos Pat-
sakis. The cynicism of modern cybercrime: Automating the analysis of surface
Web marketplaces. arXiv preprint arXiv:2105.11805, 2021.

[110] Mohammad Madine, Khaled Salah, Raja Jayaraman, Yousof Al-Hammadi,
Junaid Arshad, and Ibrar Yaqoob. Application-level interoperability for
blockchain networks. TechRxiv, IEEE, 2021.

[111] M Mercedes Martínez-González, María Luisa Alvite-Díez, Pompeu Casanovas,
Núria Casellas, David Sanz, Amador Aparicio, Inma Gutiérrez, et al. Ontoropa
deliverable 2. proposed design specification and approach. Technical report,
ONTOCHAIN, 2021.

[112] Amirreza Masoumzadeh and James Joshi. Ontology-based access control for
social network systems. International Journal of Information Privacy, Security
and Integrity, 1(1):59–78, 2011.

[113] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. In International Workshop on Peer-to-
Peer Systems, pages 53–65. Springer, 2002.

[114] Sonia Mehla and Sarika Jain. Rule languages for the semantic Web. In Emerg-
ing Technologies in Data Mining and Information Security, pages 825–834.
Springer, 2019.

[115] Ralph C Merkle. Protocols for public key cryptosystems. In 1980 IEEE Sym-
posium on Security and Privacy, pages 122–122. IEEE, 1980.

[116] Alexander Mikroyannidis, Allan Third, and John Domingue. A case study on
the decentralisation of lifelong learning using blockchain technology. Journal
of Interactive Media in Education, 2020(1):1–10, 2020.

[117] Malte Moser. Anonymity of bitcoin transactions. In Münster Bitcoin Confer-
ence (MBC), Münster, Germany, July 2013.

https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf

BIBLIOGRAPHY 109

[118] Michael Mrissa, Aleksandar Tošić, Niki Hrovatin, Sidra Aslam, Balázs Dávid,
László Hajdu, Miklós Krész, Andrej Brodnik, and Branko Kavšek. Privacy-
aware and secure decentralized air quality monitoring. Applied Sciences,
12(4):2147, 2022.

[119] Snehal Mumbaikar, Puja Padiya, et al. Web services based on soap and
rest principles. International Journal of Scientific and Research Publications,
3(5):1–4, 2013.

[120] San Murugesan. Understanding web 2.0. IT professional, 9(4):34–41, 2007.

[121] Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf. Accessed: 2020-01-07.

[122] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive
introduction. Princeton University Press, 2016.

[123] Denis Nasonov, Alexander A Visheratin, and Alexander Boukhanovsky.
Blockchain-based transaction integrity in distributed big data marketplace. In
International Conference on Computational Science, pages 569–577. Springer,
2018.

[124] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An analysis of public
REST Web service APIs. IEEE Transactions on Services Computing, 2018.

[125] Isler Nikolaos, Devris and Xenakis Christos. Dw-marking - data watermarking:
The missing link to on or off-chain implementation of distributed data market-
places. https://ontochain.ngi.eu/content/dw-marking, 2020. Accessed:
2021-12-13.

[126] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain.
Business & Information Systems Engineering, 59(3):183–187, 2017.

[127] Roy Oberhauser. A hypermedia middleware for process enactment and adap-
tation. International Journal of Software Engineering and Its Applications
(IJSEIA), 10(6):53–68, 2016.

[128] Robert Olsson. Applying REST principles on local client-side APIs, 2014.

[129] Mourad Ouzzani and Athman Bouguettaya. Efficient access to web services.
IEEE Internet Computing, 8(2):34–44, 2004.

[130] Cesare Pautasso. Bpmn for REST. In International Workshop on Business
Process Modeling Notation, pages 74–87. Springer, 2011.

[131] Alex Pazaitis, Primavera De Filippi, and Vasilis Kostakis. Blockchain and value
systems in the sharing economy: The illustrative case of backfeed. Technological
Forecasting and Social Change, 125:105–115, 2017.

https://bitcoin. org/bitcoin. pdf
https://ontochain.ngi.eu/content/dw-marking

110 BIBLIOGRAPHY

[132] Salvador Pérez, José L Hernández-Ramos, Diego Pedone, Domenico Rotondi,
Leonardo Straniero, and Antonio F Skarmeta. A digital envelope approach
using attribute-based encryption for secure data exchange in iot scenarios. In
2017 Global Internet of Things Summit (GIoTS), pages 1–6. IEEE, 2017.

[133] Julien Polge, Jérémy Robert, and Yves Le Traon. Permissioned blockchain
frameworks in the industry: A comparison. ICT Express, 2020.

[134] Torsten Priebe, Wolfgang Dobmeier, and Nora Kamprath. Supporting
attribute-based access control with ontologies. In First International conference
on availability, reliability and security (ARES’06), pages 8–pp. IEEE, 2006.

[135] Torsten Priebe, Wolfgang Dobmeier, Björn Muschall, and Günther Pernul.
Abac–ein referenzmodell für attributbasierte zugriffskontrolle. Sicherheit 2005,
Sicherheit–Schutz und Zuverlässigkeit, 2005.

[136] Torsten Priebe, Björn Muschall, Wolfgang Dobmeier, and Günther Pernul. A
flexible security system for enterprise and e-government portals. In Interna-
tional Conference on Database and Expert Systems Applications, pages 884–
893. Springer, 2004.

[137] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and Han Ratul Mahajan. Trusted
Computer System Evaluation Criteria. Dod Computer Security Center, De-
cember 1985.

[138] Satyajeet Raje, Chowdary Davuluri, Michael Freitas, Rajiv Ramnath, and Jay
Ramanathan. Using semantic Web technologies for RBAC in project-oriented
environments. In 2012 IEEE 36th Annual Computer Software and Applications
Conference, pages 521–530. IEEE, 2012.

[139] Manoharan Ramachandran, Niaz Chowdhury, Allan Third, John Domingue,
Kevin Quick, and Michelle Bachler. Towards complete decentralised verifi-
cation of data with confidentiality: different ways to connect solid pods and
blockchain. In Companion Proceedings of the Web Conference 2020, pages
645–649, 2020.

[140] Johnson Rebecca, Schaeffner Martin, and Reuter Michael. Hibi: Human iden-
tity blockchain initiative. https://ontochain.ngi.eu/content/hibi, 2021.
Accessed: 2021-12-16.

[141] Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s top “REST-
ful” services and why they are not RESTful. In International Conference on
Web Information Systems Engineering, pages 354–367. Springer, 2012.

[142] Jaideep Roy and Anupama Ramanujan. Understanding web services. IT pro-
fessional, 3(6):69–73, 2001.

[143] Paul RYANab, Harshvardhan Pandit, and Rob Brennan. Building a data pro-
cessing activities catalog: Representing heterogeneous compliance-related in-
formation for gdpr using dcat-ap and dpv. In Further with Knowledge Graphs,
pages 169–182. IOS Press, 2021.

https://ontochain.ngi.eu/content/hibi

BIBLIOGRAPHY 111

[144] Motaz K Saad, Ramzi Abed, and Hatem M Hamad. Performance evaluation
of restful web services for mobile devices. International Arab Journal of e-
Technology, 2010.

[145] Sara Saberi, Mahtab Kouhizadeh, Joseph Sarkis, and Lejia Shen. Blockchain
technology and its relationships to sustainable supply chain management. In-
ternational Journal of Production Research, 57(7):2117–2135, 2019.

[146] Pierangela Samarati and Sushil Jajodia. Data security. Wiley Encyclopedia of
Electrical and Electronics Engineering. John Wiley & Sons, 1999.

[147] Ravi Sandhu, David Ferraiolo, Richard Kuhn, et al. The nist model for role-
based access control: towards a unified standard. In ACM workshop on Role-
based access control, volume 10, 2000.

[148] Ravi Sandhu and Pierangela Samarati. Authentication, access control, and
audit. ACM Computing Surveys (CSUR), 28(1):241–243, 1996.

[149] Ravi S Sandhu. Role-based access control. In Advances in computers, vol-
ume 46, pages 237–286. Elsevier, 1998.

[150] Andreas Schaad, Pascal Spadone, and Helmut Weichsel. A case study of sep-
aration of duty properties in the context of the austrian" elaw" process. In
Proceedings of the 2005 ACM symposium on Applied computing, pages 1328–
1332, 2005.

[151] Pascal Schiessle. Datalog-an overview and outlook on a decade-old technology.
In Proceedings of the 2020 OMI Seminars (PROMIS 2020), volume 1, pages
14–1. Universität Ulm, 2021.

[152] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.
Towards blockchain-based auditable storage and sharing of iot data. In Pro-
ceedings of the 2017 on Cloud Computing Security Workshop, pages 45–50,
2017.

[153] Ajay Kumar Shrestha, Julita Vassileva, and Ralph Deters. A blockchain plat-
form for user data sharing ensuring user control and incentives. Frontiers in
Blockchain, 3:48, 2020.

[154] Richard T Simon and Mary Ellen Zurko. Separation of duty in role-based
environments. In Proceedings 10th Computer Security Foundations Workshop,
pages 183–194. IEEE, 1997.

[155] Rajeev Sobti and Ganesan Geetha. Cryptographic hash functions: a review.
International Journal of Computer Science Issues (IJCSI), 9(2):461, 2012.

[156] Jihong Song and Shaopeng Wang. The pastry algorithm based on dht. Comput.
Inf. Sci., 2(4):153–157, 2009.

112 BIBLIOGRAPHY

[157] Mirek Sopek, Dominik Tomaszuk, Szymon Głąb, Filip Turoboś, Ivo Zieliński,
Dominik Kuziński, Ryszard Olejnik, Piotr Luniewski, and Przemysław
Grądzki. Technological foundations of ontological ecosystems on the 3rd gen-
eration blockchains. IEEE Access, 2022.

[158] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-
peer lookup protocol for internet applications. IEEE/ACM Transactions on
networking, 11(1):17–32, 2003.

[159] Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura, and Riichiro Mizoguchi.
A framework for organizing role concepts in ontology development tool: Hozo.
Boella et al.[8], pages 136–143, 2005.

[160] Nick Szabo. The idea of smart contracts. Nick Szabo’s papers and concise
tutorials, 6(1), 1997.

[161] Mohammad Mustafa Taye. Understanding semantic Web and ontologies: The-
ory and applications. arXiv preprint arXiv:1006.4567, 2010.

[162] Javier Prieto Tejedor, Sara Rodríguez González, María Aránzazu
Moyeno Barredo, and Adrián Heredia Jimeno. Carechain: Sup-
porting care through microinsurances using blockchain. https:
//ontochain.ngi.eu/content/carechain, 2020. Accessed: 2021-12-10.

[163] Feng Tian. An agri-food supply chain traceability system for china based on
rfid & blockchain technology. In 2016 13th international conference on service
systems and service management (ICSSSM), pages 1–6. IEEE, 2016.

[164] Juris Tihomirovs and Jānis Grabis. Comparison of soap and rest based web
services using software evaluation metrics. Information technology and man-
agement science, 19(1):92–97, 2016.

[165] Dominik Tomaszuk, Dominik Kuziński, Mirek Sopek, and Bogusław Swiecicki.
A distributed graph data storage in ethereum ecosystem. In International
Conference on the Economics of Grids, Clouds, Systems, and Services, pages
223–231. Springer, 2021.

[166] Kentaroh Toyoda, P Takis Mathiopoulos, Iwao Sasase, and Tomoaki Ohtsuki.
A novel blockchain-based product ownership management system (poms) for
anti-counterfeits in the post supply chain. IEEE access, 5:17465–17477, 2017.

[167] Wei-Tek Tsai and Qihong Shao. Role-based access-control using reference on-
tology in clouds. In 2011 Tenth International Symposium on Autonomous
Decentralized Systems, pages 121–128. IEEE, 2011.

[168] Ioakeim Tzoulis and Zaharoula Andreopoulou. Emerging traceability technolo-
gies as a tool for quality wood trade. Procedia Technology, 8:606–611, 2013.

[169] Sarah Underwood. Blockchain beyond bitcoin. Communications of the ACM,
59(11):15–17, 2016.

https://ontochain.ngi.eu/content/carechain
https://ontochain.ngi.eu/content/carechain

BIBLIOGRAPHY 113

[170] Steve Vinoski. Putting the" web" into web services. web services interaction
models. 2. IEEE Internet Computing, 6(4):90–92, 2002.

[171] William Voorsluys, James Broberg, Rajkumar Buyya, et al. Introduction to
cloud computing. Cloud computing: Principles and paradigms, pages 1–44,
2011.

[172] Shangping Wang, Yinglong Zhang, and Yaling Zhang. A blockchain-based
framework for data sharing with fine-grained access control in decentralized
storage systems. Ieee Access, 6:38437–38450, 2018.

[173] Sebastian Weber and Jörg Rech. An overview and differentiation of the evo-
lutionary steps of the Web xy movement: the Web before and beyond 2.0.
Handbook of Research on Web 2.0, 3.0, and X. 0: Technologies, Business, and
Social Applications, pages 12–39, 2010.

[174] Kevin Werbach. The blockchain and the new architecture of trust. Mit Press,
2018.

[175] Martin Westerkamp, Friedhelm Victor, and Axel Küpper. Blockchain-based
supply chain traceability: Token recipes model manufacturing processes. In
2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages
1595–1602. IEEE, 2018.

[176] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. Storj
a peer-to-peer cloud storage network. Technical report, storj.io, 2014.

[177] Di Wu, Xiyuan Chen, Jian Lin, and Miaoliang Zhu. Ontology-based RBAC
specification for interoperation in distributed environment. In Asian Semantic
Web Conference, pages 179–190. Springer, 2006.

[178] Lei Xu, Nolan Shah, Lin Chen, Nour Diallo, Zhimin Gao, Yang Lu, and Wei-
dong Shi. Enabling the sharing economy: Privacy respecting contract based
on public blockchain. In Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts, pages 15–21, 2017.

[179] Wenli Yang, Saurabh Garg, Ali Raza, David Herbert, and Byeong Kang.
Blockchain: trends and future. In Pacific Rim Knowledge Acquisition Work-
shop, pages 201–210. Springer, 2018.

[180] Rui Zhang, Alessandro Artale, Fausto Giunchiglia, and Bruno Crispo. Using
description logics in relation based access control. In International Workshop
on Description Logics, Oxford, UK, July 2009.

[181] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph,
and John D Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on selected areas in communications, 22(1):41–53,
2004.

114 BIBLIOGRAPHY

[182] Xiaochen Zheng, Jinzhi Lu, Shengjing Sun, and Dimitris Kiritsis. Decentralized
industrial iot data management based on blockchain and ipfs. In IFIP Inter-
national Conference on Advances in Production Management Systems, pages
222–229. Springer, 2020.

[183] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin
Wang. Blockchain challenges and opportunities: A survey. International Jour-
nal of Web and Grid Services, 14(4):352–375, 2018.

[184] Michael Zur Muehlen, Jeffrey V Nickerson, and Keith D Swenson. Develop-
ing web services choreography standards—the case of rest vs. soap. Decision
support systems, 40(1):9–29, 2005.

[185] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to
protect personal data. In 2015 IEEE Security and Privacy Workshops, pages
180–184. IEEE, 2015.

[186] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized com-
putation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471,
2015.

Index

Access control ontology, 81
Application Programming Interface, 2
Asymmetric encryption, 64
Availability, 74

Blockchain, 3

check permission, 75
Class, 81
Confidentiality, 74

Data update, 5
Decentralized data storage, 5
Distributed Hash Table, 8

HATEOAS, 26
HTTP, 1

Immutability, 3
Integrity, 74
Internet, 1
Internet Protocol, 1

Link template, 92

Metadata, 63

Non-repudiation, 74

Ontology, 22

Permission, 62
Privacy, 3
Private key, 64
Proof of work, 15
Public blockchain, 17
Public key, 16

Representational State Transfer, 8
Resource, 82
Role, 62
Role-based Access Control, 20

scalability, 74
Security, 3
Semantic Web Rule Language, 8
Symmetric encryption, 64

Time cost, 74
Traceability, 3
Trusted Third Party, 3

Uniform Resource Identifier, 1

Web, 1
Web framework, 10
Wood supply chain, 3

Povzetek v slovenskem jeziku

Zasebnost in Varnost Podatkov za Decentralizirani Splet Stvari

7.3 Uvod

V zadnjih desetletjih sta internet in nato še splet zagotavljala zanesljiv sklad pro-
tokolov za podporo različnim aplikacijam, od shranjevanja podatkov do pretakanja
in predvajanja v živo. Internet deluje kot globalno omrežje, ki omogoča, da naprave
komunicirajo med seboj po vsem svetu, na podlagi internetnega protokola (IP1), ki
zagotavlja identifikatorje za naprave, protokol za nadzor prenosa (TCP2) omogoči
zanesljivo komunikacijo. Splet je zbirka spletnih strani, ki so med seboj povezane
s hiperbesedilnimi povezavami in so dostopne prek interneta. Vsaka stran v spletu
ima edinstven naslov, imenovan Enotni Identifikator Vira (URI3). Protokol za prenos
hiperbesedila (HTTP4) je odgovoren za komunikacijo med spletnim odjemalcem (npr.
brskalnikom) in spletnim strežnikom s pomočjo HTTP indeksHTTP sporočil (za-
hteva in odgovor) [5]. Prva implementacija spleta je temeljila na statičnih straneh [5]
in omogočila le branje.

Nato je bil uveden dinamični splet, ki omogoča odjemalcu interakcijo s spletnimi
stranmi. Hiter razvoj spleta je podprla tudi industrija zaradi potrebe po medpod-
jetni interakciji preko spletnih vmesnikov. Po tem trendu je razvoj sklada protokolov
spletnih storitev omogočil programskim odjemalcem klic oddaljenih aplikacij s po-
močjo spleta, s popolno abstrakcijo osnovnih operacijskih sistemov, protokolov in
programskih jezikov. Sklad protokolov spletnih storitev je sestavljen iz protokola
SOAP (ang. Simple Object Access Protocol)5, WSDL (ang. Web Service Descrip-
tion Language)6 in UDDI (ang. Universal Description, Discovery, and Integration)7.

Vendar SOAP ni bil široko sprejet zaradi težav z zasnovo. Zaradi tega se je razvoj
spletnih storitev razvil na osnovi arhitekturnega principa REST, ki pravilno izkorišča
splet in HTTP protokol. Medtem ko so se je splet začel široko uporabljati, se je po-
javila potreba po obsežni infrastrukturi, za ponujanje in nemoten dostop do spletnih

1https://datatracker.ietf.org/doc/html/rfc791
2https://www.ietf.org/rfc/rfc793.txt/
3https://datatracker.ietf.org/doc/html/rfc3986
4https://datatracker.ietf.org/doc/html/rfc2616
5https://www.w3.org/TR/soap/
6https://www.w3.org/TR/wsdl/
7http://www.uddi.org/pubs/uddi_v3.htm

https://datatracker.ietf.org/ doc/html/rfc791
https://www.ietf.org/rfc/rfc793.txt/
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2616
https://www.w3.org/TR/soap/
https ://www.w3.org/TR/wsdl/
http://www.uddi.org/pubs/uddi_v3.htm

INDEX 117

storitev. To je spodbudilo razvoj računalništva v oblaku [34, 171]. Vendar je cen-
tralizirana zasnova računalništva v oblaku podvržena varnostnim pomanjkljivostim,
kot je problem kritične točke odpovedi [172]. Zato se je pojavila potreba po decen-
traliziranem pristopu k shranjevanju in upravljanju podatkov, da bi uporabnikom
ponudili enake storitve, kot jih ponuja oblak, brez varnostnih težav. V tem kontek-
stu se decentralizirani pristopi približajo shranjevanju in upravljanju podatkov ter
uporabnikom ponudijo enake storitve, kot jih ponuja oblak, brez varnostnih težav.
Zlasti v zadnjih nekaj letih je blockchain kot tehnologija razpršene evidence prido-
bila veliko pozornosti zaradi svoje decentralizirane in pregledne narave. Vendar kljub
prednostim, ima tehnologija blockchain tudi številne omejitve. V tem diplomskem
delu raziskujemo omejitve povezane z nespremenljivostjo podatkov, zasebnost in
varnost.

7.4 Raziskovalni Prispevki in Zaključki

V nadaljevanju povzemamo glavne prispevke in rezultate te disertacije, spletno
ogrodje, rešitev za shranjevanje podatkov, semantični nadzor dostopa in spletni odje-
malec.

7.4.1 Decentralizirano Spletno Ogrodje:

V poglavju 3 smo predlagali decentralizirano spletno ogrodje, ki lastnikom podatkov
omogoča nadzor in upravljanje podatkov brez kakršne koli vmesne osebe. Da bi to
naredili, smo združili tehnologijo veriženja blokov z porazdeljeno zgoščevalno tabelo,
več vrstami mehanizmov šifriranja, nadzorom dostopa do podatkov in podpisom v
enem samem ogrodju, da bi izboljšali zasebnost posameznika, izboljšali varnost in
zagotovili spremenljivost. Zasnovali smo API-je RESTful, ki prikazujejo uporab-
nost naše rešitve v spletu z vsemi prednostmi, ki jih prinaša ta arhitekturni slog.
Zagotovili smo primerjalno analizo naših API-jev z obstoječimi API-ji tehnologije
Hyperledger.

7.4.2 Decentralizirano Spremenljivo Shranjevanje Podatkov:

V poglavju 4 smo predlagali decentralizirano rešitev, ki pooblaščenim akterjem
omogoča pisanje, posodabljanje in dostop do svoje zgodovine transakcij. Predlagana
rešitev je shranila metapodatke in ključe v blockchain, medtem ko se šifrirani po-
datki upravljajo na porazdeljena zgoščeni tabeli, kar lastnikom podatkov omogoča
posodobitev svojih podatkov. Da bi zagotovili varnost podatkov, smo predlagali
zasnovo šifriranja, ki akterjem omogoča izbiro med različnimi vrstami mehaniz-
mov šifriranja za shranjevanje podatkov v decentraliziranem okviru. Zasnovali smo
strukturo metapodatkov, ki ohranjajo nespremenljive podatkovne operacije v ve-
rigi blokov, kar zagotavlja zaupanje in sledljivost akterja. Razvili smo rešitev, ki
lastnikom podatkov omogoča spreminjanje svojih podatkov in dostop do njihove
zgodovine posodobitev. Predlagana zasnova rešitve zagotavlja varnostne lastnosti,
kot so zaupnost, celovitost, razpoložljivost in nezavrnitev. Podatke ščiti pred napadi
povezovanja, prisluškovanja, ponarejanja in spreminjanja. Učinkovitost naše rešitve

118 7.4 Raziskovalni Prispevki in Zaključki

v smislu razširljivosti smo ocenili s prototipom, in izvedli več meritev z različnim
številom akterjev. Eksperimentalni rezultati so pokazali, da naša predlagana rešitev
obvlada veliko število akterjev.

7.4.3 Semantični Nadozor Dostopa na podlagi Vlog:

V poglavju 5 smo združili model nadzora dostopa na podlagi vlog (RBAC) z on-
tologijo OWL za nadzor nepooblaščenega dostopa do podatkov prek API-jev REST-
ful. Pravila za nadzor dostopa smo definirali z uporabo metod HTTP, ki pooblaščenim
akterjem omogočajo izvajanje POST, GET, PUT in DELETE nad podatki. Pred-
lagana rešitev upravlja kompleksna dovoljenja za dostop do podatkov in upravl-
janje odnosov med akterji. Modelirali smo razrede OWL (kot so vloge, igralci, viri)
in posameznike v skladu z našim motivacijskim scenarijem verige oskrbe z lesom.
Razpravljali smo o podrobnostih izvedbe in podali primerjavo povprečnega časa,
medtem ko smo uporabljali različne argumente.

7.4.4 HATEOAS Odjemalec z REST APIs:

V poglavju 6 smo razvili proxy, ki omogoča navigacijo HATEOAS. Predlagani proxy
obdeluje odziv API-ja in ponuja ustrezne povezave do odjemalca s pomočjo API-jev
REST. Oblikovali smo odjemalski HATEOAS za navigacijo po podatkih z uporabo
API-jev REST. Predlagani odjemalec HATEOAS je splošen in podpira vse spletne
API-je REST. Podali smo podrobnosti o implementaciji in ocenili njen odzivni čas.

Kazalo vsebine

Kazalo slik viii

Kazalo algoritmov ix

Kazalo tabel x

1 Uvod 1
1.1 Znanstveno ozadje . 1

1.1.1 Asociacijska pravila . 3
1.1.2 Klasifikacijska pravila . 3
1.1.3 Razvrščanje v skupine . 7

1.2 Pregled literature . 9
1.3 Prispevki k znanosti in metodologija 12
1.4 Pregled vsebine . 14

2 Odkrivanje klasifikacijskih asociacijskih pravil 17
2.1 Algoritmi za rudarjenje pogostih postavk 17

2.1.1 (naivna) Metoda s surova silo 18
2.1.2 APRIORI (nivojski) pristop 19
2.1.3 ECLAT algoritem . 20
2.1.4 Pristop pogostih dreves vzorcev: algoritem FP-Growth 21

2.2 Klasifikacijska asociacijska pravila . 23

3 Asociativna klasifikacija 25
3.1 Preprost pristop k asociativni klasifikaciji (SA) 25

3.1.1 Eksperimentalna evalvacija SA pristopa 28
3.2 Asociativna klasifikacija po J&B pristopu 31

3.2.1 Eksperimentalna evalvacija J&B pristopa 39

4 Mere razdalje 47
4.1 Indirektne mere razdalje . 47
4.2 Nova “direktna” mera razdalje . 50
4.3 Nova “kombinirana” mera razdalje 51

120 7.4 Raziskovalni Prispevki in Zaključki

5 Identifikacija skupin klasifikacijskih asociacijskih pravil (CAR) 53
5.1 Particijski algoritem razvrščanja v skupine 53
5.2 Hierarhični algoritem razvrščanja v skupine 55

6 Identifikacija reprezentativnega klasifikacijskega asociacijskega prav-
ila znotraj skupine 59
6.1 Reprezentativno pravilo (CAR), ki temelji na težišču skupine 59
6.2 Reprezentativno pravilo (CAR), ki temelji na pokritosti primerov . . 59
6.3 Končni asociativni klasifikator . 60

7 Eksperimentalna evalvacija in diskusija 64
7.1 Diskusija rezultatov . 71

8 Zaključki in nadaljnje delo 75

Literatura in viri 76

Stvarno kazalo 86

Povzetek v slovenskem jeziku 87

Kazalo (v slovenskem jeziku) 101

Stvarno Kazalo (v slovenskem jeziku) 103

Stvarno Kazalo

Integriteta, 74
ne zavračljivost, 74
Sledljivost, 3
Vloga, 62

aplikacijski programski vmesnik, 2
Asimetrična Enkripcija, 64

Decentralizirano shranjevanje
podatkov, 5

Dobavna veriga lesa, 3
dokazilo o delu, 15
Dovoljenje, 62

HATEOAS, 26

Internet, 1
Internetni Protokol, 1

javni blockchain, 17
javni ključ, 16
Jezik Semantičnega Spleta, 8

Metapodatki, 63

nadozor dostopa po funkcijah, 20
nespremenljivost, 3

Ontologija, 22

Ontologija kontrole dostopa, 81

porazdeljena zgoščena tabela, 8
Posodobitev podatkov, 5
Predloga povezave, 92
predstavitveni prenos stanj, 8
preveri dovoljenja, 75
protokol za prenos hipertexta, 1

Razpoložljivost, 74
Razred, 81

Simetrična enkripcija, 64
Skalabilnost, 74
Splet, 1
Spletno ogrodje, 10

tehnologija veriženja blokov, 3

Varnost, 3
vir, 82

Zasebni ključ, 64
Zasebnost, 3
Zaupanja vredna tretja oseba, 3
Zaupnost, 74

Časovna cena, 74

Declaration

I declare that this PhD Dissertation does not contain any materials previously pub-
lished or written by another person except where due reference is made in the text.

Sidra Aslam

	List of Figures
	List of Tables
	Introduction
	Motivating Scenario
	Research Problems
	Research Questions and Hypotheses
	Thesis Goals
	Research Methodology
	Literature Review
	Critical Evaluation of Existing Methodologies

	Scientific Contribution
	Dissertation Outline

	Background Knowledge and Literature Review
	Introduction
	Background Knowledge
	Blockchain Technology
	Distributed Hash Table
	Role-based Access Control
	Semantic Web
	The REST Architectural Style

	Literature Review
	Decentralized Data Storage
	Decentralized Identity Privacy
	Semantic Approaches to Access Control
	REST and HATEOAS
	Comparative Analysis

	Discussion and Conclusion

	Decentralized Web Framework for Data Management
	Introduction
	Framework Overview
	API and Algorithm for Actor Registration
	Execution Flow

	Framework Components
	Access Control Ontology Component
	Blockchain Component
	DHT Component
	Encryption Manager Component

	Implementation and Discussion
	Chapter Summary

	Decentralized Mutable Data Storage
	Introduction
	Metadata Structure
	Algorithm for the Data Write Operation
	Management of Data Operations
	Traceability Algorithm
	Results and Implementation
	Experimental Setup and Implementation
	Security Analysis
	Performance Evaluation

	Chapter Summary

	Semantic Role-based Access Control
	Introduction
	Access Control Ontology Component
	Ontology Classes and Instances
	Relations using Object Properties
	Semantic Description of Non-Hierarchical Relationships
	Access Control Rules

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion

	HATEOAS Client with REST APIs
	Introduction
	HATEOAS Client
	Proxy as a Resource
	Proxy Template Management
	Results and Evaluation
	Experimental Setup and Implementation
	Evaluation

	Chapter Summary

	Conclusion and Future Work
	General Conclusion
	Future Work

	Bibliography
	Index
	Povzetek v slovenskem jeziku
	Uvod
	Raziskovalni Prispevki in Zaključki
	Decentralizirano Spletno Ogrodje:
	Decentralizirano Spremenljivo Shranjevanje Podatkov:
	 Semantični Nadozor Dostopa na podlagi Vlog:
	 HATEOAS Odjemalec z REST APIs:

	Kazalo
	Stvarno kazalo

