
N
IK

O
L

IĆ
Z

A
K

L
J
U

Č
N

A
N

A
L

O
G

A
(F

IN
A

L
P

R
O

J
E

C
T

P
A

P
E

R
)

20
21 UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

ZAKLJUČNA NALOGA

(FINAL PROJECT PAPER)

IMPLEMENTACIJA DINAMIČNE

DISTRIBUIRANE REŠITVE ZA

SHRANJEVANJE PODATKOV Z UPORABO

EDGEFS IN NAPRAV IOT

(IMPLEMENTATION OF A DYNAMIC

DISTRIBUTED DATA STORAGE SOLUTION

USING EDGEFS AND IOT DEVICES)

MILAN NIKOLIĆ

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

(Final project paper)

Implementacija dinamične distribuirane rešitve za

shranjevanje podatkov z uporabo EdgeFs in naprav IoT

(Implementation of a dynamic distributed data

storage solution using EdgeFs and Iot devices)

Ime in priimek: Milan Nikolić

Študijski program: Računalnǐstvo in informatika

Mentor: izr. prof. dr. Jernej Vičič

Somentor: asist. Aleksandar Tošić

Koper, september 2021

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Milan NIKOLIĆ

Naslov zaključne naloge: Implementacija dinamične distribuirane reštive za sranjevanje

podatkov z uporabo EdgeFs in naprav IoT

Kraj: Koper

Leto: 2021

Število listov: 43 Število slik: 27

Število referenc: 14

Mentor: izr. prof. dr. Jernej Vičič

Somentor: asist. Aleksandar Tošić

Ključne besede: EdgeFs, porazdeljeno shranjevanje, IoT naprave

Izvleček:

Zaključna projekta naloga predstavlja implementacijo rešitve za porazdeljeno shran-

jevanje podatkov z uporabo EdgeFs in naprav IoT. Bralcu je najprej predstavljen

osnovni koncept porazdeljenega shranjevanja podatkov in primerjava s tradicionalno

centralizirano hrambo. Opisane su različne rešitve za porazdeljeno hrambo podatkov

in izbrana tehnologija EdgeFS. Ker obstajajo veliko možnosti za izbiro naprav IoT,

so bralcu predstavljene najpogosteǰse naprave, naša izbira in obrazložitev zanjo. V

zaključnem delu je bralcu predstavljeno izvajanje, preizkusi, ki so bili opravljeni, in

njihovi rezultati.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 III

Key words documentation

Name and SURNAME: Milan NIKOLIĆ

Title of final project paper: Implementation of a dynamic distributed data storage

solution using EdgeFs and Iot devices

Place: Koper

Year: 2021

Number of pages: 43 Number of figures: 27

Number of references: 14

Mentor: Assoc. Prof. Jernej Vičič, PhD

Co-Mentor: Assist. Aleksandar Tošić

Keywords: EdgeFs, distributed storage, IoT devices

Abstract:

The final project presents the implementation of a distributed data storage solution

using EdgeFs and IoT devices. The reader is first presented with the basic concept of

distributed storage and a comparison of the traditional centralized storage implemen-

tations. We touch upon different distributed storage solutions and go into more detail

with EdgeFs. The reader is presented with the most common device, our choice and

the reasoning behind it, Since there are a lot of different options for an IoT device. In

the end, the reader is presented with the implementation tests that were performed

and their results.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 IV

Zahvala

Zahvalil bi se mentorju doc. dr. Jerneju Vičiču in somentorju mag. Aleksandru Tošiću

za vso podporo, strokovno pomoč in usmeritve tako pri zaključnem delu, kot v času

izobraževanja. Prav tako bi se zahvalil družini in prijateljem za vso podporo, ki so mi

jo izkazali na izobraževalni poti.

Hvala!

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 V

Contents

1 Introduction 1

2 Storage 4

2.1 Centralized Storage . 4

2.2 Distributed Storage . 5

2.3 Distributed vs Centralized . 6

3 IoT 8

3.1 Most popular devices . 9

3.2 Chosen IoT device: Raspberry Pi . 11

4 Edge computing 13

4.1 Cloud solutions . 15

4.2 Docker . 15

4.3 Kubernetes . 16

4.4 Rook . 17

4.5 EdgeFs . 18

4.6 CephFs . 19

5 Methodology and Implementation 21

5.1 Setting up GCP and Kubernetes . 21

5.1.1 Deploying EdgeFs . 22

5.1.2 Deploying CephFs . 24

6 Evaluation and Results 26

6.1 EdgeFS . 26

6.1.1 Test Description . 26

6.1.2 Results . 27

6.2 CephFs . 28

6.2.1 Test Description . 28

6.2.2 Results . 29

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 VI

7 Conclusion 31

8 Povzetek naloge v slovenskem jeziku 32

9 Bibliography 33

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 VII

List of Figures

1 A NeXTcube used by Tim Berners-Lee as the first Web server 1

2 WEB 1.0 vs WEB 2.0 . 2

3 WEB 1.0 vs WEB 2.0 . 3

4 Simplistic representation of the Web of Data 3

5 Logical representation of ZFS . 5

6 Distributed Storage Example . 5

7 Distributed vs Centralized model . 6

8 Crude representation of an IoT system 8

9 Total number of device connections . 10

10 Technical specification of Raspberry Pi 4 11

11 Raspberry Pie board . 12

12 Representation of Edge architecture . 13

13 May 2021 round-trip latency figures for Microsoft Azure 14

14 Multiple containers running on a Docker host 16

15 Application deployment . 16

16 Kubernetes in relation to Docker . 17

17 Rook Architecture . 18

18 EdgeFs: Representation of data storage 19

19 Ceph Cluster Overview . 19

20 Ceph Architecture Overview . 20

21 Deployment representation . 21

22 Console View of Kubernetes Cluster . 22

23 Console View of disk configuration in one node 22

24 Cloudshell list of pods created by operator.yaml 23

25 Cloudshell list of pods created by cluster.yaml 23

26 Printout of FlexHash table . 23

27 Cloudshell list of nodes created by cluster.yaml 24

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 VIII

List of abbreviations

CD Compact Disk

HTML HyperText Markup Language

RAID Redundant Array of Inexpensive Disks or Redundant

Array of Independent Disks

IoT Internet of Things

IIoT Industrial Internet of Things

IC Integrated circuit

MIPI Mobile Industry Processor Interface

DSI Display Serial Interface

HDMI High-Definition Multimedia Interface

DC Direct current

USB-C Universal Serial Bus Type C

GPIO General-purpose input/output

PoE Power over Ethernet

AWS Amazon Web Services

SLA Service-Level Agreement

OS Operating System

VM Virtual Machine

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 1

1 Introduction

In the early days of storage, sharing files was rather basic and rudimentary. In the early

days of storage, sharing files was rather basic and rudimentary. Sharing data was done

manually via floppy disks. Over the years technology continued developing and soon

larger storage devices where available. But even with devices like CDs and hard disks

which could store large quantities of data, nothing changed. Carrying an external

device was still needed to physically connect to a computer. However, everything

changed with the introduction of the Internet.

The Internet enabled a new way of sharing data, a new way of sharing information.

We can now make connections to other computers all around the world.

Figure 1: A NeXTcube used by Tim Berners-Lee as the first Web server

Established in 1969 the Internet began as a small, publicly owned computer network

[1]. The term ‘Internet’ emerged in 1974 as a simple abbreviation for internetworking

between multiple computers [1]. Then in late 1989 Tim Burners-Lee introduced the

World Wide Web [2]. The World Wide Web (WWW, or simply Web) is an information

space in which the items of interest, referred to as resources, are identified by global

identifiers called Uniform Resource Identifiers (URI) [2]. Through its life cycle, the

Word Wide Web underwent various phases of development transitioning through WEB

1.0 (Web of documents), WEB 2.0 (Web of people) and now slowly into WEB 3.0

(Web of data). Starting in 1989 and lasting until 2005 WEB 1.0 is defined as a web

of information connections. This was the era of static pages with a purpose of only

0Source:https://en.wikipedia.org/wiki/Web server

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 2

content delivery, allowing searching for information and reading. Technologies included

in WEB 1.0 are HTLM, HTTP and URI.

A term coined by Tim O’Reilly Web 2.0 is a transition from the World Wide Web

to a new phase of use and service development [3].

Figure 2: WEB 1.0 vs WEB 2.0

Sites that emphasize user-generated content, participation and interoperability (com-

patible to work with other systems and devices) are part of WEB 2.0. In the WEB 1.0

era users were limited to viewing content in a passive manner, whereas WEB 2.0 web-

sites allow users to interact and collaborate with each other. An example of this would

be social media sites like Facebook or Instagram, video sharing sites like YouTube,

image sharing sites like Imgur, and many more. This is also recognized in this user

centric definition [4] The Social Web is often used to characterize sites that consist

of communities. It is all about content management and new ways of communication

and interaction between users. Web applications that facilitate collective knowledge

production, social networking and increases user to user information exchange [4].

When a user uses a site like Amazon to buy a certain item the website’s algorithm

will analyze and find other people who have purchased the same item, look at their

other purchases and based on that will extrapolate and recommend items to the user.

The website is learning and becoming more intelligent and this, in essence, is the very

philosophy behind web 3.0.

0Source:https://www.slideshare.net/olaonyx/web-10-web-20-and-web-30/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 3

Figure 3: WEB 1.0 vs WEB 2.0

One of the key elements of WEB 3.0 is Semantic Web, a collaborative movement

led by international standards body the World Wide Web Consortium. As defined on

W3C, ”The Semantic Web provides a common framework that allows data to be shared

and reused across application, enterprise, and community boundaries”. It is a system

that enables machines to ”understand” and respond to complex human requests based

on its meaning which requires for the information sources to be semantically structured.

The Web of Data envisions data as being openly accessible to the general public hosting

a variety of data sets like books, scholarly articles, metadata on music and many other

types of information.

Figure 4: Simplistic representation of the Web of Data

0Source:https://boydcohen.medium.com/urban-mobility-web-2-0-uber-vs-web-3-0-iomob-

2e424a99f8bd
0Source:https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.6445rep=rep1type=pdf

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 4

2 Storage

In a world heavily dependent on information one could argue that the way we store it is

more important than the information itself. Most of our information today is stored on

servers and most of those servers are owned by just a handful of large companies such

as Microsoft, Google, Amazon, IBM. All of these servers are considered as centralized

storage. But is this really the best way to store data, or should we explore a solution

where data isn’t stored on one big server but on many small ones scattered around the

world?

2.1 Centralized Storage

In this era of WEB 2.0 data is stored in large data centers full of servers. Servers consist

of physical disks combined together with a virtualization technology called “Redundant

Array of Inexpensive Disks” (RAID) or a file system and logical volume manager

like ZFS. The purpose of RAID is to achieve better data redundancy, performance

improvement, or both. There are different RAID levels. All of them distribute data

differently on the physical disks and offer a unique balance of reliability, availability,

performance and capacity. Other than RAID 0, all levels provide protection against

disk sector errors, as well as whole disk failures. In Case of ZFS, it controls how the

bits and blocks of the file are stored and how drives are logically arranged for the

purpose of RAID and redundancy. ZFS also allows snapshots, which can be described

as photographs of how something was at a point in time. While traditional RAID

requires the use of expensive hardware raid cards, ZFS does not. It also supports

various RAID levels, some the same as with traditional RAID, namely RAID 0, 1, and

10, additionally it supports RAIDZ-1, RAIDZ-2 and RAIDZ-3. RAIDZ puts multiple

drives together in a VDEV (logical grouping of one or more storage devices) and stores

parity, or fault tolerance. Parity is stored across all drives in a VDEV with no dedicated

parity drive. The amount of stored parity determines the RAIDZ level.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 5

Figure 5: Logical representation of ZFS

The servers must be always operational. If a server hosting a web site is not

workingthat web site cannot be accessed unless it is also hosted on another operational

server.This high availability demand makes server maintenance very expensive and risk

oflosing data always high.

2.2 Distributed Storage

Storing data has evolved during the years and now we are entering an era where the

traditional approach to storage is no longer the optimal solution for both technical

and economic reasons. We are approaching a point where just having faster drives and

networks won’t be enough. We need a new concept for storing data.

Figure 6: Distributed Storage Example

Rather than storing data in one centralized server, we use many servers that behave

as one storage system even though data is distributed between these servers.

0Source:https://computingforgeeks.com/raid-vs-lvm-vs-zfs-comparison/
0Source:https://www.kdnuggets.com/2015/03/interview-dave-mccrory-basho-distributed-

databases.html

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 6

2.3 Distributed vs Centralized

Looking at the statistic published by the ”Internet World Stats” we can see that the

number of Internet users over the last 10 years has gone up by more than 50%, from

2,267 million to 5,168 million 1. TechJury states in one of their articles that in the year

of 2020 people created 1.7MB of data every second and that by 2025 200+ zettabytes of

data will be in cloud storage around the globe2. This further indicates that one of the

most recent events in storage history is the transition from centralized to distributed

storage. This is due to its ability to scale out capacity. Distributed storage is combined

of many nodes, living in different locations. Each of those nodes can be used for both

compute and storage, and scale up as more resources are needed.

Figure 7: Distributed vs Centralized model

Both centralized and distributed storage have certain technical advantages and

disadvantages. Centralized storage offers:

• Easier access and co-ordination of data, since it is stored in one location.

• For the same reason, minimal data redundancy.

• Lower cost compared to other data storage solutions for smaller use cases, since

everything is stored, located and maintained in only one location.

However, some of the cons are:

• Problems when a large number of users try and access data at the same time,

since one server has to handle all the requests.

1Source: https://www.internetworldstats.com/emarketing.htm
2Source: https://techjury.net/blog/how-much-data-is-created-every-day/
0Source: https://www.geeksforgeeks.org/difference-between-centralized-database-and-distributed-

database/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 7

• Higher risk of data loss- if any system failure occurs, all the data is lost.

Distributed storage offers:

• Easy expandability, since data is stored in different locations

• Easy access from different networks.

• Better security.

• Higher performance capability since system load is spread over multiple nodes.

On the other side, some of the disadvantages are:

• High cost and maintenance difficulty, due to higher complexity.

• No easy way to provide users with a uniform view, since data is not in one

location.

Maybe more importantly distributed storage solves some key problems that are not

technical, but rather ethical or even personal, like censorship and data control, since

both are not possible in a distributed model.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 8

3 IoT

The Internet of Things consists of physical objects, connected with other devices and

systems over the Internet, that are embedded with sensors, software and other tech-

nologies for collecting and exchanging data. Internet of Things refers to the billions

(probably more) devices connected to the Internet, all equipped with sensors for gath-

ering information and an Internet connection for sending or receiving data, or even

both. This opens up a whole new world of automation possibilities. IoT devices are

capable of gathering information and then acting based on that information without

any human input. For example: moisture sensor used in farming can tell if a field needs

watering or the opposite - if it is too moist. That data can then be sent to the cloud

where it is combined with other data from the Internet, like if rain is expected later in

the day, and then decide if the field should be watered or not, thus keeping the ground

at an optimal moisture level to yield a maximum profit from the field. With even more

sensors this simple system can be turned into a much more complex system that can

run algorithms that analyze all this information, leading to models that could be used

to predict future conditions and prevent losses.

Figure 8: Crude representation of an IoT system

All IoT devices can be categorized and described as following:

• Devices that collect and send data.

• Devices that receive data and act on it.
0Source:https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-

iot-for-the-first-time/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 9

• Devices that can do both.

Combining sensors with an Internet connection gives devices that can collect and

send data, thus allowing the collection of data about the environment, and make in-

formed calculated decisions based on that information. For example, there is a street

of 10 houses all connected to the electric grid via one base station which regulates the

electricity for that street. A device can be installed to each house with sensors that

measures how much electricity a house uses, sends that information to the cloud and

uses algorithms to determine future patterns for electricity use to see when the most or

least power is required. The base station in the example represents a device that can

receive data and act on it. The electricity company can send a command to increase

power to meet higher demand or decrease power if necessary. A more common example

of such a device is a printer that could be as simple as in coming only with a ”turn on”

command, or a complex 3D model for a 3D printer [5]. The real power of the Internet

of Things arises when things can do both of the above. Things that collect information

and send it, but also receive information and act on it [5]. If in the above example

every house is equipped with an IoT device that can collect, send, receive and act on

information then the basis for a much more capable system is created. The IoT device

can now collect data about the electricity use of a house, its temperature, humidity etc.

It can then combine that data with data from the Internet such as weather predictions

or electricity usage of other houses connected to the same network. By analyzing that

data, it can decide and turn on or off the heating system or control any other device

connected to it, resulting in a lowered electricity bill.

It is obvious that the power of IoT increases by increasing the number of sensors it

has, devices it’s connected to, devices it can control and by being backed by a powerful

supercomputer in the cloud. But what are the benefits of IoT?

Beside the examples shown above IoT has many benefits for consumers and businesses.

It makes the life of a consumer much easier, streamlining mundane everyday tasks,

improving healthcare, lowering utility bills (as shown in the example above), and much

more. Businesses can use IoT to increase efficiency, make informed decisions based on

actual real-time data which gives an obvious competitive advantage, and much more.

3.1 Most popular devices

The number of IoT devices is growing fast and a large majority is made up of smart-

phones [6]. In fact, the total number of smartphone users topped 3 billion in 2018 and

7.9 billion in 2020 [6]. As shown in the image below (Figure 6), the number of devices is

only expected to grow, and not just in number of smartphones, but also in the health-

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 10

care industry, construction, energy etc. [6]. The manufacturing and industrial sectors

are early and fast adopters of IoT technology, a trend currently known as Industry 4.0.

Industrial Internet of Things (IIoT) has a heavy focus not on people using machines,

but on machine automation with minimal human input thanks to robotics [6].

Figure 9: Total number of device connections

While the most popular IoT devices are smartphones and home automation devices,

such as Google Home and Amazon Echo Plus we need to look at them from a more

technical and developer focused point of view. At the heart of all consumer IoT devices

lies a SoC - System on A Chip. For defining the term SoC we will use the definition

from [8]. SoC design is defined as a complex IC that integrates the major functional

elements of a complete end-product into a single chip or chipset. In general, SOC design

incorporates a programmable processor, on-chip memory, and accelerating function

units implemented in hardware. It also interfaces to peripheral devices and/or the real

world. SOC designs encompass both hardware and software components [8]. In essence

an IoT device is a SoC that includes hardware for Internet connection.

All the above mentioned IoT devices use a proprietary SoC that is not available to

the general public, instead we will take a closer look at the IoT development board

consumer market.

But first let’s lay out the requirements for our development board

• Ability to run Linux, since it is our OS of choice.

• Ability to run Docker, for the ability to use containers

0Source:https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-

iot-for-the-first-time/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 11

• Ability to run Kubernetes, for automating container management.

• A minimum of 2GB of RAM, minimum specification for running Kubernetes as

specified by Cloud66 1.

• A Micro-SD card slot, for additional storage.

Unfortunately, our above requirements exclude all boards that are based on microcon-

trollers, since those IoT boards have a very small amount of RAM and storage available.

While the huge IoT development board market offers many products suitable for our

project, like the Odroid-XU4, Banana Pi M64, VIM2 SBC just to name a few, the

Raspberry Pi will be used, due to its availability and huge online community.

3.2 Chosen IoT device: Raspberry Pi

Raspberry Pi is the obvious choice since it meets all the given requirements, it can run

Linux, Docker and Kubernetes, up to a generous 8GB of RAM, and a Micro-SD card

slot to install everything on.

Figure 10: Technical specification of Raspberry Pi 4

The Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz,

should be powerful enough to ensure smooth operation of the board. It supports a

2.4 GHz and 5.0 GHz IEEE 802.11ac wireless connection and even a Gigabit Ethernet

port for wired connection, so connecting the Internet isn’t a problem even in areas

where wireless signal is weak or unstable. The 2-lane MIPI DSI display port and 2

micro-HDMI ports are welcome in case user interaction is required. The 40 pin GPIO

header enables connecting a wide array of sensors for data gathering. It only needs 5V

1Source:https://help.cloud66.com/maestro/references/minimum-specs-kubernetes.html
0Source:https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 12

DC power to run and that can be via USB-C connector or GPIO header and it’s even

Power over Ethernet (PoE) enabled.

Figure 11: Raspberry Pie board

0Source:http://raspi.tv/2019/raspberry-pi-4-launches-with-bcm2711-quad-core-cortex-a72-64-bit-

soc-running-at-1-5ghz-with-dual-4k-display-capability

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 13

4 Edge computing

Cloud based models depend on a data center to process data that is generated by edge

devices. While that enables the use of large-scale analytics it also results in an increase

in frequency of communication between an edge device and geographically distant

cloud data centers. This is particularly a problem for services that need to process

real-time data, like autonomous self-driving cars where a lot of data is generated every

second from various sensors and sending that data to a centralized cloud and awaiting

a response is not feasible due to bandwidth constraints and required quick response

time. By offloading some of the processing from the data center to an edge device,

chances of a network and data center overload are reduced, since we are reducing the

number of device-cloud-device round trips, redundancy and availability are increased,

since any possible disruption is limited to just one point in the network instead of

the entire system, which is the case with the cloud. Data can be redirected through

multiple pathways to the user ensuring availability.

Figure 12: Representation of Edge architecture

In the figure above we have a representation of a better approach where computing

and storage resources, known as cloudlets, micro datacenters or fog nodes, are placed

near the end of the network closer to edge devices. Worth noting is that if the edge

devices themselves have enough compute or storage resources they can be used as

both an edge device and node, which is the case in our above example of autonomous

self-driving cars.

0Source:https://www.moxa.com/en/articles/should-you-consider-fog-computing-for-your-iiot

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 14

[9] Edge computing refers to the enabling technologies allowing computation to be

performed at the edge of the network, on downstream data on behalf of cloud services

and upstream data on behalf of IoT services [9]. In this definition ”Edge” refers to any

computing and storage resource that is placed between the data center and the data

source. Ideally as close to as possible to the data source, so that computing happens

at the proximity of the data source. But why does this proximity matter?

Latency. Logical network proximity is almost entirely dependent on latency. When a

large number of data streams are generated by edge devices real-time analytics is not

possible when done by a distant cloud.

Figure 13: May 2021 round-trip latency figures for Microsoft Azure

From the figure above we can see that the round-trip time form North Europe to

South East Asia is 160ms. [10] For example, remote augmented reality applications

which analyze a camera video feed to determine where to place a virtual object need a

latency as low as 20-50ms [10]. So, if a user is in South East Asia and all the process-

ing is done in North Europe than the round-trip time exceeds our latency requirement

which may diminish the user experience. Having a cloudlet in proximity would result

in a highly responsive cloud service, by lowering the end-to-end latency, increase scal-

ability with edge analytics, by processing the raw data received from the source and

sending only a small portion of it to the main cloud, help enforce privacy policies, by

ensuring the privacy policies of the owner are fulfilled before sending the data to the

cloud, and mask cloud outages, by temporarily acting as a fallback service if the cloud

becomes unavailable.

0Source:https://docs.microsoft.com/en-us/azure/networking/azure-network-latency

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 15

With this project we will try and achieve all of the before-mentioned benefits of edge

computing. By using an Raspberry Pi device as both an edge device and a cloudlet, we

will try and connect multiple devices with each other to share data, which will hopefully

increase data redundancy and prevent data loss. One device will be a ’master’ device,

which will periodically send analyzed and sorted data (significantly smaller than the

original data) to a remote server. In case the master device brakes, an algorithm will

choose another suitable master to replace it. Each device will be able to collect data

from sensors connected to it, analyze and store the data, and then take action without

any human input. Finally, we will do tests which will help us to analyze our latency,

speed, reliability and data redundancy.

4.1 Cloud solutions

The idea of a decentralized edge computing system is, at this point in time, not a

revolutionary idea by no means. There are many cloud services available that offer

various ways to interact with and control remote devices. Cloud services like balena,

Amazon Web Services (AWS), Microsoft Azure and Google Cloud all have IoT spe-

cific services [11]. Clouds are a large pool of easily usable and accessible virtualized

resources (such as hardware, development platforms and/or services). These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilization. This pool of resources is typically exploited by a

pay-per-use model in which guarantees are offered by the Infrastructure Provider by

means of customized SLAs [11]. While cloud services do offer ways to control our re-

mote devices, they are also built under the assumption that devices will be used only

for data collection. The expectation is that devices just collect and send data back

to the cloud, which then uses its processing power to do complex analytics and, when

needed, send instructions back to devices. In our project we will rely on cloud services

as only a final storage location for our data. But the main objective is to create a

system where data is being analyzed and used closer to its origin.

4.2 Docker

To understand what Docker is we must first define what a container is. A container

is an application or services, with all of its dependencies and configuration packaged

together in an image. That container can then be tested and deployed as an image

instance to the host operating system. All containers hosted on an OS are isolated

and run on a container host which in turn runs on the OS. The largest benefit of this

approach is scalability, by creating a new container for a short-term task.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 16

Figure 14: Multiple containers running on a Docker host

Docker is just an open-source engine that automates the deployment of containers.

All docker image can run natively on Windows or Linux, but Windows images can only

run on Windows, and Linux images only on Linux.

4.3 Kubernetes

To fully understand Kubernetes, we need to take a look at how we deploy applications.

Figure 15: Application deployment

In the first column, following the traditional deployment, applications ran on phys-

ical servers, with no way of allocating resource and defining resource boundaries. So,

if multiple applications run on one physical server, one application could take up most

of the server’s resources which would result in other applications under-performing.

The solution for this is to run multiple virtual machines on one server, each running

its own OS. Each application then would run in its own VM, with no access to other

0Source:https://docs.microsoft.com/ro-ro/dotnet/architecture/microservices/container-docker-

introduction/
0Source:https://www.softwaredaily.com/topic/container-orchestration-wars

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 17

applications. The last column, container deployment, we use containers instead of VM,

which are very similar, the major difference being that container share the OS. In a

production environment, where we have one or multiple applications running in mul-

tiple containers, we need a way to manage them, and this is where Kubernetes comes

in to play.

Figure 16: Kubernetes in relation to Docker

[12] Kubernetes is an open-source orchestrator for deploying containerized applica-

tions [12]. It allows us to automatically scale our application responding to an increase

or decrease in traffic. Kubernetes is self-healing, meaning that it will restart contain-

ers that fail. All of this comes in very handy when dealing with a large number of

containers.

4.4 Rook

Rook is a Kubernetes storage orchestrator (written as a Kubernetes Operator) that

turns distributed storage systems into self-managing, self-scaling, self-healing storage

services 1.

0Source:https://www.edureka.co/blog/kubernetes-tutorial/
1Source:https://rook.io/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 18

Figure 17: Rook Architecture

It allows use of file, block and block storage and an easy and automated integration

for EdgeFs and other storage providers like Ceph and Cassandra just to name a few,

and also automates tasks like deployment, provisioning, scaling, monitoring and all the

other storage administration related tasks.

4.5 EdgeFs

EdgeFS, like Rook, is also a Kubernetes storage orchestrator (written as a Kubernetes

Operator) that ads support for provisioning iSCSI volumes, NFS volumes, or S3 buck-

ets with a high throughput and low latency access. It includes immutable self-verifying

location-independent metadata that references self-validated location-independent pay-

loads. It can span an unlimited number of geographically independent sites and at each

location deploy an EdgeFs segment as a container. Data is stored using blocks with

a strong cryptographic hash to identify, verify and retrieve. To avoid transmission

of duplicate payloads EdgeFs hashes the storage block before requesting it. Data is

placed dynamically by routing the request to a data group and negotiating within that

group to place the new block on the least loaded target. To find the least loaded target

it uses an EdgeFS FlexHash which is a table that resides in the server memory of the

local site and is automatically discovered. All data stored is immutable and versioned,

since changing an object would result in a completely different hash code.

1Source:https://blog.wescale.fr/2017/08/28/rook-comment-avoir-du-stockage-distribue/

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 19

Figure 18: EdgeFs: Representation of data storage

Leveraging local site resources and presenting them as highly available, geographi-

cally dispersed cluster segments with immutable data structure design, dynamic data

placement, built-in multi-protocol storage gateway and highly scalable, share-free ar-

chitecture for local sites results in outstanding performance for edge computing.

4.6 CephFs

[14] Ceph is a cutting edge, open source, distributed data storage technology. It is

based on self-healing, intelligent object storage devices (OSDs), a combination of CPU,

network interface local cache and underlying disk space [14].

Figure 19: Ceph Cluster Overview

1Source:https://medium.com/edgefs/securing-and-deduplicating-the-edge-with-edgefs-

bd93e7f786de
0Source:https://medium.com/@pk0752/ceph-the-next-generation-store-67f7c51780d3

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 20

Objects are the base unit of storage in Ceph. The block storage interface is an

abstraction layer that allows users to view a large number of objects as a virtual

block device, to which the user can write to and read from. The Ceph clients can be

categorized in 3 different types: apps, host or VM and clients. As shown in the image

below.

Figure 20: Ceph Architecture Overview

FFor accessing the storage cluster one of four ways can be used, through libRADOS,

RADOSGW (HTTP REST gateway for the RADOS object store), RBD (block storage)

or CephFs. The libRADOS API enables interaction with Ceph Monitor (maintains

master copy of the cluster map) and Ceph OSD Daemon (stores data as objects in a

storage node).

CephFs is a file-system built on top of Ceph’s distributed object store, RADOS. It is

highly scalable, having in mind that it allows clients to directly read from and write to

all OSD nodes, and since it is a shared file-system multiple clients can work at the same

time. By providing a cluster of Ceph Metadata Servers (manages metadata related to

files stored on the Ceph File System), which consists of one active server and multiple

standby servers, high availability is achieved. If the active server terminates, on stand-

by servers activate allowing client mounts to continue working through a server failure
2.

0Source:https://docs.ceph.com/en/latest/architecture/
2Source:https://access.redhat.com/documentation/en-us/red hat ceph storage/2/html/

ceph file system guide technology preview/what is the ceph file system cephfs

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 21

5 Methodology and

Implementation

5.1 Setting up GCP and Kubernetes

Using EdgeFs in combination with Rook on Google Cloud Platform we will configure

a 4-node Edgefs cluster and use FIO to test overall I/O performance characteristics:

file, block, and object.

Figure 21: Deployment representation

Target Nodes 1-4 represent data nodes each serving disks. There are 3 different

possible combinations:

• All HDDs.

• A hybrid system with HDDs and SSDs, where metadata is offloaded to SSD.

• All SSDs.

As illustrated above, our configuration will be a hybrid one consisting of 2 HDDs, used

for capacity, and one SSD for metadata. As illustrated above, our configuration will

be a hybrid one consisting of 2 HDDs, used for capacity, and one SSD for metadata. To

configure the Kubernetes Cluster in an optimal way, certain rules need to be applied.

Unfortunately, at the time of writing this thesis, the EdgeFs git repository and Rook

documentation page, which together held 90% of the documentation for EdgeFs, have

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 22

been taken down due to a DCMA take-down request issued by DataDirect Networks.

Therefore, we will be referring to a Medium article written by Dmitry Yusupov, one

of the creators behind EdgeFs, for configuration guidelines 1. Yusupov states that our

target nodes should have 2 CPU cores per SDD (one SSD in our case) and 2GB of

memory per device plus an additional 2GB for nodes’ other functions (8GB in our case

since we have 3 devices). So, we will create a Kubernetes Cluster with 2 node pools,

one containing 4 nodes (Target Nodes) and one containing one gateway node. Once

configured and deployed our Kubernetes Cluster looks like this.

Figure 22: Console View of Kubernetes Cluster

Figure 23: Console View of disk configuration in one node

5.1.1 Deploying EdgeFs

EdgeFs is deployed together with Rook to accomplish that we first need to clone the

Rook git repository. Due to the DCMA take-down we will have to use an older non-

official version of the Rook repository from Dmitry Yusupov’s GitHub page. The

deployment of Rook and EdgeFs is handled by YAML files, configuration files most

commonly used in applications where data is being stored or transmitted, written in

YAML - a human-readable data-serialization language 2. File operator.yaml will create

our EdgeFs operator and automatically discover and allocate our pods, resulting in.

1Source:https://medium.com/edgefs/edgefs-cluster-with-rook-in-google-cloud-2dabe954cda6
2Source:https://en.wikipedia.org/wiki/YAML

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 23

Figure 24: Cloudshell list of pods created by operator.yaml

By using another YAML file, cluster.yaml, we can create our target and gateway

pods, resulting in.

Figure 25: Cloudshell list of pods created by cluster.yaml

The interesting thing here is that target and gateway nodes look the same. In fact,

the only difference between them is that gateway pods don’t serve disks.

The next important construct we need to initialize is FlexHash [13]. FlexHash consists

of dynamically discovered configuration and checkpoint of accepted distribution table.

FlexHash is responsible for I/O direction and plays an important role in dynamic load

balancing logic. It defines so-called Negotiating Groups (typically formed across zoned

8-24 disks) and final table distribution across all the participating components, e.g.,

data nodes, service gateways, and tools [13]. What this means is that every low level

I/O will use FlexHash to negotiate delivery over the network.

Figure 26: Printout of FlexHash table

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 24

5.1.2 Deploying CephFs

For deploying CephFs we will use the same Google Cloud Platform and Kubernetes

configuration as we did for EdgeFS. Afterwards, we will test read and write performance

using the included rados test command for benchmarking.

For deploying CephFs we will use the example yaml files from the official Rook GitHub

page 3.

kubectl create -f crds.yaml -f common.yaml

kubectl create -f operator.yaml

These two commands will first create the CRDs, common resource, and finally Operator

deployment. After our Operators are deployed, we run the two commands displayed

below to deploy our Cluster and list all nodes to check if deployment is successful.

kubectl create -f cluster.yaml

kubectl -n rook-ceph get pod

Figure 27: Cloudshell list of nodes created by cluster.yaml

3Source:https://github.com/rook/rook/tree/release-1.7

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 25

The most notable and important nodes are the rook-ceph-mon, rook-ceph-mgr,

rook-ceph-osd and rook-ceph-mds. The Ceph monitors (rook-ceph-mon) control

all the metadata that is required to store, retrieve and keep data safe. Each monitor

has a unique, immutable and static identity which is its IP address. It contains the

master copy of the storage cluster map including the storage cluster topology. The

Ceph Manager daemon (rook-ceph-mgr) provides monitoring and an interface for

external monitoring and management systems. Data is stored on the Ceph Object

Storage Device which runs the rook-ceph-osd daemon and interacts with logical disks

attached to the node. The Ceph Metadata Server (rook-ceph-mds) manages metadata

related to files stored on the Ceph File System (CephFS) and coordinates access to the

shared storage cluster 4.

kubectl create -f toolbox.yaml

kubectl -n rook-ceph exec -it deploy/rook-ceph-tools -- bash

The above commands will initialize and connect to our toolbox which contains the

rados test command for benchmarking.

4Source:https://access.redhat.com/documentation/en-us/red hat ceph storage/4/html-

single/installation guide/index

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 26

6 Evaluation and Results

Now that everything is configured and deployed, we can test our performance charac-

teristics. For EdgeFS testing we will use its FIO integrated I/O engines. For CephFS

we will use its integrated rados test command.

6.1 EdgeFS

FIO is an I/O tester that will allow us to quickly simulate a given workload by spawning

a number of thread and processes doing a particular type of I/O action which we will

define.

6.1.1 Test Description

We will run two test cases:

• the first one will compare IOPS (Input/output operations per second) between

provisioned HDD without EdgeFs and with,

• the second will focus more on read and write speed.

[g l o b a l]

i o eng in e=ccowvola io

bu f f e r ed=0

d i r e c t=1

bu f f e r compre s s pe r c en tage =50

dedupe percentage=87

a l l r a n d r e p e a t=0

r e f i l l b u f f e r s

norandommap

randrepeat=0

bs=32K

s i z e =10G

i o s i z e =10G

rw=randrw

rwmixread=80

chunk s i z e =32768

bucket=c l t e s t / t e s t / t e s t−bucket−32k

group repo r t ing=1

thread=1

[f i l e 1]

numjobs=16

In our first test we specify how compressible our data is (50%), the de-duplication

factor 87% (identifies extra copies of data and deletes them) and will generate 16 files.

The second test actually depends on the rwmixread flag. First, we will run the test with

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 27

rwmixread set to 0, meaning 100% writes, then set to 100, meaning 100% reads. For

both tests we will create 4 different buckets, each with 8 jobs and created objects equally

distributed among the target nodes. Compression and de-duplication configuration

remain the same as in previous test. Data replication count is 1.

[g l o b a l]

i o eng in e=ccowobj

bu f f e r ed=0

d i r e c t=1

bu f f e r compre s s pe r c en tage =50

dedupe percentage=87

a l l r a n d r e p e a t=0

r e f i l l b u f f e r s

norandommap

randrepeat=0

bs=2M

s i z e =2G

i o s i z e =2G

rwmixread=0

rw=randrw

c l u s t e r=c l t e s t

tenant=t e s t

repcount=1

group repo r t ing=1

thread=1

[\\ .\ bk1]

numjobs=8

[\\ .\ bk2]

numjobs=8

[\\ .\ bk3]

numjobs=8

[\\ .\ bk4]

numjobs=8

Now that we have defined our tests, let’s see, analyze and chart our results.

6.1.2 Results

Here is the generated output of the first test:

read : IOPS=8300 , BW=241MiB/ s (260MB/ s)(128GiB/573205 msec)

wr i t e : IOPS=1837 , BW=63.2MiB/ s (70 . 1MB/ s) (3 2 . 3 GiB/462029 msec)

While provisioning an HDD disk in Google Cloud Platform we can see that the disks

are rated for 350 IOPS read and 700 IOPS write. With an 80/20 workload, which we

have specified in our test file, we can calculate that the maximum IOPS for 8 HDDs is

approximately 3360 IOPS (80% read 6.4 HDD’s * 350 IOPS + 20% write 1.6 HDD’s *

700 IOPS). Let’s compare that visually to what we’ve got.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 28

10137 IOPSEdgeFs HDD

3360 IOPSGoogle HDD

0IOPS 11000IOPS
number of IOPS

This 300% improvement in IOPS is mostly due to de-duplication and compression

but also offloading metadata to the SSD.

Now let’s take a look at the generated output of the second test:

wr i t e : IOPS=932 , BW=1849MiB/ s (1941MB/ s) (6 4 . 0 GiB/34061 msec)

read : IOPS=1391 , BW=2827MiB/ s (2932MB/ s) (6 4 . 0 GiB/22683 msec)

Similar to the explanation of the first test, while provisioning HDDs disk in Google

Cloud Platform we can see that the disks are rated for 60MB/s read and write. But

now we are running the same test twice, once for 100% write than 100% read, that

means that our 8 HDD without EdgeFs can read and write at a maximum of 480MB/s

(8 HDD’s * 60MB/s).

1941 MB/sEdgeFs HDD Write
2932 MB/sEdgeFs HDD Read

480 MB/sGoogle HDD Read/Write

0MB/s 3500MB/s

throughput in MB/s

Here we can see an increase of 400% for read and 300% write, this is again due to

the smart de-duplication and compression of data chunks before sending it over to the

network gateway.

6.2 CephFs

Testing performance on a RADOS storage cluster using the Ceph toolbox and rados

test command is simple and fast, by executing one write and two types of read test.

6.2.1 Test Description

As stated above we execute 3 different types of tests.

rados bench -p testbench 30 write -t 64 -b 10000000 --no-cleanup

rados bench -p testbench 30 seq

rados bench -p testbench 30 rand

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 29

The first command runs a test with 64 concurrent writes of 10MB bytes to objects of

size 10, lasting up to 30 seconds. The —no-cleanup flag is important since by default

the command will delete objects it has written to the storage pool. Similarly, the next

commands run a test sequential and random read, respectively.

6.2.2 Results

Now that we have our test defined, let’s analyze the result. Beginning from the first

command, a write test.

Cur ops started finished avg MB/s cur MB/s last lat(s) avg lat(s)

4 152 148 145.5037 772.205 4.05607 11.0554

--

Average Latency(s): 10.8479

Stddev Latency(s): 3.56829

Max latency(s): 14.9274

Min latency(s): 0.836277

From the above results we can see that the maximum write speed we’ve got is 772.205

MB/s compared to the theoretical HDD maximum of 480MB/s, calculated in a previous

chapter, that is an increase of more than 50%. Minimum latency is very good at ¡1s

but we have a high maximum latency of almost 15s. Let’s visualize that with a graph.

772 MB/sCephFS HDD Write
480 MB/sGoogle HDD Read/Write

0MB/s 1000MB/s

throughput in MB/s

Next we will look at the sequential read and random read commands.

Sequential Read:

Cur ops started finished avg MB/s cur MB/s last lat(s) avg lat(s)

16 117 101 503.81 624.235 0.007545 0.135894

--

Average Latency(s): 0.164992

Max latency(s): 0.547845

Min latency(s): 0.007545

Random Read:

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 30

Cur ops started finished avg MB/s cur MB/s last lat(s) avg lat(s)

15 400 385 558.276 724.815 0.097046 0.318651

--

Average Latency(s): 0.320861

Max latency(s): 1.57361

Min latency(s): 0.0830519

Similarly to the first test we can see that the maximum sequential read speed at

624.235 MB/s is around 50% faster than the theoretical maximum of 480MB/s while

the random read at 724.815 MB/s is around 60% faster, with very low latency for both

sequential and random reads. Let’s visualize that with a graph.

624.235 MB/sCephFS Sequential Read
724.815 MB/sCephFS Random Read

480 MB/sGoogle HDD Read/Write

0MB/s 3500MB/s

throughput in MB/s

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 31

7 Conclusion

As demonstrated above, by running EdgeFs in combination with Rook, Kubernetes

on Google Cloud Platform we can easily and significantly enhance the performance of

HDDs, SSDs available on GCP. Similarly, we can do the same using CephFs in com-

bination with Rook, Kubernetes on Google Cloud Platform. Regarding further work

I would like to implement one or both of these technologies on the previously chosen

Raspberry Pie device, connecting them and managing them together and comparing

their performance in real world scenarios with real data. Unfortunately, this will not

be possible with EdgeFs since, while writing this article, it has been abandoned and

unlikely to have any future. Without an official supported repository and up to date

documentation, implementation of any kind would be very difficult to say the least.

Ceph, on the other hand, is a well maintained and documented project and I look

froward on implementing it with Raspberry Pie devices.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 32

8 Povzetek naloge v slovenskem

jeziku

Zaključna projekta naloga na začetku predstavi zgodovino interneta in njeno evolucjio

od WEB 1.0 do WEB 3.0, potem opǐse tradicionalno centralizirano shranjevanje, po-

razdeljeno shranjevanje in razlike med njimi. Nadaljuje z uvodom in opisom naprav

IoT, ter z predstavitvijo najbolj popularnih naprav, minimalnih zahtev in končno izbiro

naprave IoT glede na te zahteve. Kot uvod za opis implementacije sledi predstavitev

tehnologij ki bo v uporabi (Docker, Kubernetes, Rook, EdgeFs in CephFs). Zaključna

naloga se konča s primerjavo EdgeFs v CephFs implementacijah z navadnimi diski

Google Cloud Storage (brez EdgeFs ali CephFS) in pregledom rezultatov narejenih

testov.

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 33

9 Bibliography

[1] CURRAN, James; FENTON, Natalie; FREEDMAN, Des; in Misunder-

standing the Internet, Routledge. 2012. (Quoted on page 1.)

[2] BERNERS-LEE, Tim; BRAY, Tim; CONNOLLY, Dan; COT-

TON, Paul; FIELDING, Roy; JAECKLE, Mario; LILLEY, Chris;

MENDELSOHN, Noah; ORCHARD David; WALSH, Norman;

WILLIAMS, Stuart, Architecture of the World Wide Web, Volume One,

https://www.w3.org/TR/webarch. (Date of viewing: 06. 08. 2021.) (Quoted on

page 1.)

[3] WEISONG, Shi; JIE, Cao; QUAN, Zhang; YOUHUIZI, Li; LANYU, Xu

in Wielding new media in Web 2.0: exploring the history of engage-

ment with the collaborative construction of media products, New

Media Society. 2009, sprejeto v objavo. (Quoted on page 2.)

[4] CHOUDHURY, Nupur, World Wide Web and Its Journey from Web 1.0 to Web

4.0. International Journal of Computer Science and Information Technologies,

2014, sprejeto v objavo. (Quoted on page 2.)

[5] MCCLELLAND, Calum, IoT 101 An Introduction to the Internet of Things,

Leverege LLC, 2018. (Quoted on page 9.)

[6] COOK, Sam, 60+ IoT statistics and facts,

https://www.comparitech.com/internet-providers/iot-statistics/.

(Date of viewing: 14. 07. 2021.) (Quoted on pages 9 in 10.)

[7] SHIVAM, Arora, IoT Explained: What It Is, How It Works, Why It Matters,

https://www.simplilearn.com/what-is-iot-how-and-why-it-matters-article.

(Date of viewing: 14. 07. 2021.) (Not quoted.)

[8] MCNELLY, Andrew; GRANT, Martin; CHANG, Henry; COOKE,

Larry; HUNT, Merrill; LEE, Todd in Surviving the SOC Revolu-

tion: A Guide to Platform-Based Design, Kluwer Academic Publishers.

1999. (Quoted on page 10.)

Nikolić M. Implementacija dinamične distribuirane rešitve za shranjevanje podatkov.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 34

[9] WEISONG, Shi; JIE, Cao; QUAN, Zhang; YOUHUIZI, Li; LANYU,

Xu in Edge Computing: Vision and Challenges, IEEE Internet of Things

Journal. 2016, sprejeto v objavo. (Quoted on page 14.)

[10] S in h, a. r, sprejeto v objavo.ad Agarwal Matthai Philipose Victor Bahl AGAR-

WAL, Sharad; PHILIPSE, Matthai BAHL, Victor Vision: The Case for Cellular

Small Cells for Cloudlets International Workshop on Mobile Cloud Computing

Services 2014 (Quoted on page 14.)

[11] VAQUERO, Luis M.; RODERO-MERINO, Luis; CACERES, Juan;

LINDNER, Maik in A Break in the Clouds: Towards a Cloud Def-

inition, ACM SIGCOMM Computer Communication Review. 2009, sprejeto v

objavo. (Quoted on page 15.)

[12] BURNS, Brendan; BEDA, Joe; HIGHTOWER, Kelsey; in Kubernetes

Up Running: Dive into the Future of Infrastructure, O’Reilly Media.

2019. (Quoted on page 17.)

[13] Setting up FlexHash and Site root object ,

http://edgefs.io/docs/Quick-Start---Initialization.html. (Date of

viewing: 10. 08. 2021.)

[14] BORGES, Goncalo; CROSBY, Sean; BOLAND, Lucien in CephFS:

a new generation storage platform for Australian high energy

physics, Journal of Physics: Conference Series. 2017, sprejeto v objavo. (Quoted

on page 23.)

(Quoted on page 19.)

