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1 INTRODUCTION 

 

The Burrows-Wheeler Transform (BWT)[1, Chap. 1] uses the idea of muddling 

(permuting) the letters in a document to make it easier to find a compact representation and 

to perform other kinds of processing. What is amazing about the BWT is that it makes it 

very easy to find the unique correct permutation very quickly. For example, for the 

following line from Hamlet‘s famous soliloquy:  

“To be or not to be: that is the question, whether tis nobler in the mind to suffer the slings 

and arrows of outrageous fortune.” 

we get the transformed text:  

“sdoosrtesrsefeeoe:nsrrtdn,r h onnhbhhbglfhuhnofu antttttw mltt bs ioaiui Tttn i fne r 

eoeetraoguiwi e ao es e. urqstoo o” 

Notice that many characters in the transformed text appear in runs, or very close to 

previous occurrences. This clustering of characters makes compression very easy. The 

point is that the transform makes the encoding task a lot simpler, and importantly, can give 

compression that is comparable with the very best lossless compression methods, i.e 

methods that allow the original data to be perfectly reconstructed from the compressed 

data. 

BWT is useful for a lot more than compression because it contains an implicit sorted index 

of the input string. In this thesis we will review some of its other uses especially for 

pattern-matching and full-text indexing, which leads to applications in bioinformatics.  

The Burrows-Wheeler Transform method is often referred to as ―block sorting‖, because it 

takes a block of text and permutes it. The main disadvantage of the block-wise approach is 

that it cannot process text character by character; it must read in a block (typically tens of 

kilobytes) and then compress it. This is not a limitation for most purposes, but it does rule 

out some applications that need to process data on-the-fly as it arrives. Another important 

point is that the text can be sorted. 

 

1.1 Genesis of the Burrows-Wheeler Transform 

 

One of the last 20th century breakthrough in general-purpose lossless compression 

methods was Burrows and Wheeler's enigmatic transform, the BWT. David Wheeler had 

come up with the transform as early as 1978, but it wasn't until 1994 that, with the help of 

Mike Burrows, the idea was turned into a practical data compression method. The research 

report involved rearranging the characters in a text before encoding and then arranging 

them back in their original order in the decoder. The fact that the original can be re-created 

at all is somewhat astonishing, and their early work took some time to receive the 

recognition it deserved. By the late 1990s, researchers began to realize that the BWT 

approach might be useful for more than just compressing text. Because BWT happens to 
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sort the text in alphabetical order, the permuted text has the benefit to act as a kind of 

dictionary for the original text. Traditionally an index and the compressed text would be 

stored separately, even though they contain effectively the same information. The BWT is 

an intermediate representation that is halfway between text and index; the original text can 

be efficiently reconstructed, yet sorted lists are suitable for binary searching, giving very 

fast searching for arbitrary fragments in the text. [1, Chap. 1.2] 

 

1.2 Notation, definitions and structure of the thesis 

 

First we will define some terms and notation that will be used in the thesis. Throughout the 

paper we will be coding a string T of n characters, T[1 . . . n] (n ≥ 1), containing n 

characters over an alphabet T[i] ∈ Σ = {σ1, σ2, . . . σ|Σ|} with size |Σ|. The array R[1...n] will 

represent an array of references to rotated strings in the input text T. Furthermore, a string 

P[1 . . . m] (1 ≤ m ≤ n), where P[j] ∈ Σ. Finally, the compression of text which first 

transforms text using the BWT we call with a generic term BCompress.  

Analyzing an algorithm means predicting the resources that the algorithm requires. 

Generally, we measure the time needed per operation (time complexity) and the amount of 

space we need to store the data structure (space complexity). We shall assume random-

access machine (RAM) model of computation as our implementation technology.  

There are different methods to perform the analysis. In this thesis we will use worst-case 

analysis in the comparison model measuring the number of comparisons needed (which is 

in linear relation with operations in a data structure). Worst case [14, Chap. 2.2] analysis 

looks at the worst-case running time and provides an upper bound for time in all cases. We 

give these bounds on performance based on asymptotic notation [14, Chap. 3.1]. 

Specifically, O-notation For a given function g(n), we denote by O(g(n)) the set of 

functions  

O(g(n))  = { f(n) : there exist positive constants c and n0 such that 

0 ≤  f(n) ≤  cg(n) for all n ≥  n0 }. 

We measure space complexity by counting the number of registers, in the RAM model [14, 

Chap. 2.2], needed to store the data structure. For the (uniform-cost) RAM model we 

assume that one register (space in memory) is needed to store one value from our data 

structure. 

 Section 2 continues to introduce Burrows-Wheeler Transform, and describes its 

relationship suffix trees and suffix arrays. 

In Section 3 we perform computational complexity analysis of the BCompress, and we do 

the encoding of the BWT output created in Section 2. 

Details about pattern matching and its relationship with BWT are described in Section 4. 

Some of the applications of BWT in bioinformatics and computational biology can be 

found in Section 5. For instance, given the strong relationship between the BWT and data 
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structures such as suffix trees and suffix arrays, it can be expected that the BWT can be 

used in the identification and analysis of repetitions. Finding repeats can be viewed as a 

variant of the pattern matching problem.  
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2 HOW DOES BURROWS-WHEELER TRANSFORM WORK 

 

Let us first look in detail at how the Burrows-Wheeler Transform is implemented in 

practice. We will see how to perform the encoding and decoding in O(n) space, and 

O(nlogn) time. Using a few techniques, the time can be reduced to O(n). [1, Chap. 2] 

 

2.1  The forward Burrows-Wheeler Transform 

 

The forward transform essentially involves sorting all rotations of the input string, which 

clusters together characters that occur in similar contexts. Table 1.a shows the matrix A 

containing all rotations that would occur if the transform is given T = mississippi as 

the input. Table 1.b shows the result of sorting A, which we will refer to as As. The last 

column of As (usually referred to as L) is the Burrows-Wheeler Transform of the input.  

 

Table 1: Matrices A and As 

mississippi 
ississippim 
ssissippimi 
sissippimis 
issippimiss 
ssippimissi 
sippimissis 
ippimississ 
ppimississi 
pimississip 
imississipp 

imississipp 
ippimississ 
issippimiss 
ississippim 
mississippi 
pimississip 
ppimississi 
sippimissis 
sissippimis 
ssippimissi 
ssissippimi 

  

                           (a)                  (b) 

 

Rather than use O(n
2
) space as suggested by Table 1, we can use array R[1...n]. Initially 

R[i] is simply set to i for each i from 1 to n to represent the unsorted list. It is then sorted 

using the substring beginning at T[R[i]] as the comparison key. Figure 1 shows the result of 

sorting: for example, position 11 is the first rotated string in lexical order (imiss…), 

followed by position 8 (ippim..) and position 5 (issip…).  

The array R directly indexes the characters in T corresponding to the first column of As 

(referred to as F in BWT literature). The last column of As (referred to as L) is the output of 

BWT and can be read off as T[R[i]-1], where i ranges from 1 to n. In this case the 

transformed text is L = pssimipssii. We also need to transmit an index a to indicate 

to the decoder which row of As contains the original string T. In this case the index a = 5 is 

included.  

The transform is completed using just O(n) space (for R). The time taken is O(n) for the 

creation of the array R, plus the time needed for sorting O(nlogn).  [1, Chap. 2.1] 

 

A= =As 
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Figure 1: The R array used to sort the sample file mississippi 

 

 

2.2  The reverse Burrows-Wheeler Transform 

 

The reverse transform - taking a BWT permuted text and reconstructing the original input 

T - is somewhat more difficult to implement than the forward transform, but it can still be 

done in O(n) time and space if care is taken.  

We will use the decoding of the string mississippi as the running example. Figure 2 

shows the matrix As for this example, with columns F and L labeled. As is not sorted 

explicitly in practice, but we shall use it in meantime to illustrate how decoding can be 

done. The decoder can determine F simply by sorting L, since it contains exactly the same 

characters, just in a different order — each column of As contains the same set of characters 

because the rows are all the rotations of the original string. In fact, F need not be stored, as 

it can be generated implicitly by counting how often each character appears in L. 

Looking at As helps us to see the information that is needed to perform the decoding.  

Given just F and L, the key step is determining which character should come after a 

particular character in F. Consider, for example, the two rows ending with a p (rows 1 and 

6). Because of the rotation, the order of these two rows is determined by the characters that 

come after the respective occurrences of p in T (imi... and pim... respectively). Thus the 

first occurrence of p in L corresponds to the first occurrence of p in F, and likewise with 

the second occurrence. This permits us to work through the text backwards: if we have just 

decoded the second p in L, then it must correspond to the one in row 7 of F. Looking at 

row 7, the L column tells us that the p was preceded by an i. In turn, because this is the 

second i in L, it must correspond to the second i in F, which is in row 2. We carry on 

traversing the L and F arrays in this way until the whole string is decoded in reverse. 
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Figure 2: The array As for mississipi; F and L are the first and last columns respectively 

 

In practice the decoder never reconstructs As or F in full, but implicitly creates indexes to 

represent enough of its structure to decode the original string. L is stored explicitly (the 

decoder just reads the input and stores it in L), but F is stored implicitly to save space and 

to efficiently provide the kind of information needed during decoding. 

Figure 3 shows three auxiliary arrays that are useful for decoding. K[c] is simply a count of 

how many times each character c occurs in F, which is easily determined by counting the 

characters in L. M[c] locates the first position of character c in the array F, so K and M 

together effectively store the information in F. C[i] stores the number of times the 

character L[i] occurs in L earlier than position i; for example the last character in L is i, 

and i occurs 3 times in the earlier part of L. These three arrays make it easy to traverse the 

input in reverse. 

 

 
Figure 3: The array (As) that is implicitly reconstructed to decode the string pssmipissii 

 



Vujinović D. Burrows-Wheeler Transform. 

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021  7 

Algorithm 1 shows how the input (transformed text L and starting index a) is used to 

construct these three arrays, which are then used to produce Q, the decoded text. The first 

step is simply to count the characters into K by going through transformed text L, shown in 

lines 1 to 7 of the algorithm. At the same time, it is convenient to construct C by recording 

the value of K before each increment. The array M is then constructed in lines 8 to 12 by 

accumulating the values in C. We now have sufficient structures to decode the text in 

reverse, which happens in lines 13 to 17. 

 

 

 

Reversing the BWT this way requires four arrays (L, K, C and M). K and M contain just |Σ| 

entries (the characters are represented by integers from 1 to |Σ|) and are likely to be of 

negligible size; L and C contain n values, and hence use O(n) space. We would normally 

also have to allow for Q, which uses O(n) space to store the backwards string before it can 

be stored in the correct order. The time taken is also O(n) + O(|Σ|), since the main work is 

in the two passes through the n input items — once to count them, and once to decode 

them.  [1, Chap. 2.2] 

 

2.2.1 Decode the string in its original order  

 

It may be inconvenient that the output is generated backwards, and there are ways to 

address this. The simplest approach is to reverse the order of the string at encoding time. 

This should not take any extra time, since the whole string must be read into memory 

anyway — we simply fill the array T in reverse.  If the transformed text is to be decoded 
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multiple times, it is possible to store one or more auxiliary arrays that enable us to traverse 

sections of the text at will. This can be useful for pattern matching because it allows 

segments of the original string to be read off when needed for matching, but still relates the 

data to the implicit sorted array As, which provides access to a sorted list of strings that are 

useful for searching.  

 As we can see from line 19 of Algorithm 1, the value C[i] + M[L[i]] is the key to 

navigating through L to decode the original string. Instead of doing the decoding 

immediately (which was in lines 16 to 20 of Algorithm 1), an array V is created to store the 

navigation information, shown in Algorithm 2. This array can then be used to step 

backwards through the original characters. The values of V for our example are shown in 

Figure 4.  

 

 
 

It is just as easy to create an auxiliary array that will decode the original text forwards 

rather than backwards. This array will be called W, and it identifies the position of the 

character in L that comes after the present one, compared with V , which gives the position 

that comes before. As for V , this new array is not essential for decoding, but it can be 

useful because it preserves access to the sorted structure of L, which can be exploited 

during pattern matching. Algorithm 3 shows how the W array can be created. Note that the 

array M that was created in Algorithm 1 is used, and that afterwards its contents are 

changed so they are no longer valid. Like V, the W array is created in just O(n) time. Figure 

4 shows the values of W for our example.  
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Figure 4: The auxiliary arrays V and W which can be used to decode the sample string 

 

 

 
 

W can then be used to generate the original text in its correct order using the simple 

sequence shown in Algorithm 4. 

 

 

 

If both forwards and backwards generation of the original text is needed, it is possible to 

create V and W in one pass as shown in Algorithm 5. [1, Chap. 2.2] 



Vujinović D. Burrows-Wheeler Transform. 

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021  10 

 
 

2.3 The BWT, Suffix Trees, and Suffix Arrays 

 

The Burrows-Wheeler Transform has a very close relationship with suffix trees and suffix 

arrays — the array of indexes to the sorted array of substrings generated during the 

transform is essentially a suffix array, which in turn is a representation of the information 

in a suffix tree. As pointed out by Burrows and Wheeler in their original work [2], the 

problem of sorting the rotated matrices is the major bottleneck in performing the 

transformation. 

To see the relationship [1, Chap. 5.1] between the BWT and these data structures, consider 

Table 2 and Figure 5, which show the list of suffixes, the suffix tree, and the BWT sorted 

rotation matrix for the sample string T = mississippi. In this example a $ character is 

used to denote the end-of-string; it isn‘t strictly necessary for the BWT, but it does simplify 

the descriptions by marking the end of each suffix. The L array, the final BWT output, is 

given in the last column of the table. We have also included the corresponding BWT 

output character (given in parenthesis) at each leaf node in the suffix tree. Given that the 

suffix array records the index of the sorted suffixes of a string, it is easy to see the 

relationship between the BWT and suffix arrays. 

Given that leaves are sorted, the BWT output can be obtained by a simple traversal of the 

leaf nodes in the suffix tree from left to right. Let li (1 ≤ i ≤ n+ 1) be the label of the i-th 

leaf node in the suffix tree (scanning left to right). Recall that li is the starting position of 

the i-th suffix in the input string T. Thus, at the i-th leaf node, with n as the length of T, we 

obtain the corresponding BWT output as follows: 

 

𝐿 𝑖 = 𝐵𝑊𝑇[𝑖] =  
𝑇 𝑙𝑖 − 1 , 𝑖 ≠ 1

𝑇 𝑛 + 1 = $,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Table 2: The suffixes and the rotation matrix 

Suffixes ID Sorted Suffixes Sufix 

Array 

Sorted Rotations 

(As matrix) 

BWT 

Output 

(L) 

mississippi$ 1 $ 12 $mississippi i 

ississippi$ 2 i$ 11 i$mississipp p 

ssissippi$ 3 ippi$ 8 ippi$mississ s 

sissippi$ 4 issippi$ 5 issippi$miss s 

issippi$ 5 ississippi$ 2 ississippi$m m 

ssippi$ 6 mississippi$ 1 mississippi$ $ 

sippi$ 7 pi$ 10 pi$mississip p 

ippi$ 8 ppi$ 9 ppi$mississi i 

ppi$ 9 sippi$ 7 sippi$missis s 

pi$ 10 sissippi$ 4 sissippi$mis s 

i$ 11 ssippi$ 6 ssippi$missi i 

$ 12 ssissippi$ 3 ssissippi$mi i 

 

In the Figure 5 the number at each leaf node in the suffix tree corresponds to the suffix ID, 

which indicates the starting position of the suffix in the original sequence T. The character 

in parenthesis at each leaf node corresponds to the BWT output character for the leaf. The 

label on each edge corresponds to a substring of T. 

 

 

 
Figure 5: The suffix tree  

 

If we ignore the characters after the special character $ in the final results from the BWT 

rotation and permutation procedures, the sorted suffixes (Table 2, third column) 

correspond exactly to the sorted rotated matrix from the BWT (Table 2, fifth column). 
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Therefore, given AT , the suffix array of the input string T, the BWT output can be 

computed as follows: 

𝐿 𝑖 =  
𝑇 𝐴𝑇 𝑖 − 1 ,   𝐴𝑇 𝑖 ≠ 1

𝑇 𝑛 + 1 = $, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  

 

 

2.3.1 Construction of a suffix tree 

 

Construction of the suffix tree for a string is not difficult [1, Chap. 4.1.2]. A simple 

algorithm that accomplishes this task for any given string is given in Algorithm 6. 

 

 
 

The above algorithm, although simple to implement, unfortunately requires construction 

time that is proportional to the square of n, the length of the string. This O(n
2
) complexity 

may not pose a problem for short sequences with a few characters. However, for most 

practical applications of suffix trees, such as in whole-genome sequence analysis with 

input strings that could have billions of characters, more efficient approaches are required. 

Ukkonen‘s algorithm [5] is popular mainly because it is easy to understand and implement, 

and also because it has a relatively small memory footprint. Complete details can be found 

in the original paper by Ukkonen [5].  

Given a string T = t1t2 ... tn, Ukkonen‘s algorithm is based on an observation that the 

suffixes of a string T 
i 
= t1t2 . . . ti (i.e. the i-th prefix of T) can be obtained from the suffixes 

of T 
i-1

= t1t2 . . . ti−1 by appending ti at the end of each suffix of T
i−1

, and by adding the 

empty suffix. Therefore, the suffix tree of T = t1t2 . . . tn = T 
n 

can be constructed using a left 

to right scan, by first building the suffix tree for T 
0
, the empty string, expanding this to 

obtain the suffix tree for T 
1
, and continuing in this way until we build the suffix tree of T = 

T 
n
 from that of T 

n−1
. This incremental construction and the left-to-right scanning ability 



Vujinović D. Burrows-Wheeler Transform. 

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021  13 

also imply that the algorithm can build the suffix tree piece-by-piece as a new character is 

received, without having the entire input string available at the beginning. 
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3 ANALYSIS OF BCOMPRESS 

 

The Burrows-Wheeler Transform does not change the size of the file that has been 

transformed, but merely rearranges it so that it will be easier to represent it compactly. It 

then needs to be coded using a second phase which we will refer to as the ―Local to Global 

Transform‖ (LGT). The local to global transform (LGT) converts the local structure 

induced by the BWT to a global structure that can be exploited by standard entropy 

encoding algorithms [1, Chap. 5].  

Entropy coding is process in which characters are encoded to bits based on an estimated 

probability distribution for how likely each character is. The aim is to represent characters 

in as few bits as possible, and the limit of this is dictated by the entropy. The BCompress 

often use entropy coding as their final stage. In entropy coding, the representation of a 

character is based on some estimated probability of that character occurring. The next 

character to be coded will be drawn from a probability distribution that is typically 

estimated based on previous observations [1, Chap 3.1]. 

 
Figure 6: Stages in the BCompress 

 

 

3.1  Computational complexity 

 

To analyze the overall computational complexity of using the BCompress, we consider the 

two major stages. The first stage is concerned with the transformation (permutation and 

sorting) that produces the L array (described in Section 2). The second stage concerns the 

subsequent stage of possibly transforming the local structures in the BWT output into a 

global structure (for instance, using some recency ranking scheme) and a final entropy 

encoding using a given variable length code. Thus, stage two corresponds to LGT and EC 

in the general compression framework. For some applications of the BWT compression 

such as in pattern matching, only the first stage is needed, while applications such as 

biological sequence comparison and phylogeny in bioinformatics may not require the 

entropy encoding stage. 

From Section 2, we can observe that given L, the reconstruction of the original sequence T 

requires the construction of F, the array of first characters, and other count arrays. This can 

be computed in linear time O(n). Hence, the forward BWT and inverse BWT (BWT first 

stage) can each be performed in linear time and linear space in the worst case. 
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3.1.1 BCompress second stage – coding the transformed text 

 

The second stage of BCompress invloves the encoding of the BWT output – the L array 

and the index value, a (number of row of As containing original string T).  

Traditionally BCompressors use a ―Move to Front‖ (MTF) list, which essentially ranks 

characters based on how recently they have occurred. This is done by keeping a list with 

one entry for each character in the alphabet, and a character is moved to the front of the list 

each time it is coded, thereby increasing its rank (and decreasing the corresponding number 

of bits that will be used to code it next time). For our example we will again use 

mississippi. We know from Section 2 that for the Burrows-Wheeler Transform of it, 

we get the text L =pssmipissii. The MTF list that is used for coding our example is 

shown in Table 3, assuming only four characters in the alphabet and starting in 

alphabetical order Σ = {i, m, p, s}. The character at the front (left end) of the list is 

numbered 0, so the first character to be coded (p) has a rank of 2. After it has been coded, 

it is then moved up to rank 0 (the move-to-front step), which in this case happens to be 

unfortunate because every other character in our small alphabet will be encoded before the 

next p. Next, the s is coded as rank 3, and then moved up to rank 0. This time it works out 

well, because the next character is also an s, and is represented by rank 0. The decoder 

maintains the same list, and after each character is decoded it makes the same updates to 

the list, so it always has the up-to-date ranking for each character. [1, Chap. 3.3] 

 

Table 3: The MTF ranks for the characters in the BWT transformed text L = pssmipissii 

 

MTF list Rank 

im(p)s 2 

pim(s) 3 

(s)pim 0 

spi(m) 3 

msp(i) 3 

ims(p) 3 

p(i)ms 1 

ipm(s) 3 

(s)ipm 0 

s(i)pm 1 

(i)spm 0 

 

Local to global structure transformation (LGT) algorithms [1, Chap. 5.2.2], such as MTF  

require only a single pass over the BWT output. Consider the i-th step in the MTF 

algorithm.  
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Let σ = L[i], and let the position of σ in the current alphabet list be pσ. At the i-th step, the 

MTF algorithm records pσ on the output stream, and then moves σ to the head of the 

alphabet list. Thus, the algorithm requires O(n) time to process all the characters in the 

input sequence L. The only additional space required is an O(|Σ|) space to maintain the 

alphabets, where Σ is the character alphabet. With a fixed alphabet, the time will be linear 

with respect to n, the length of the input string. Similarly, the entropy encoding stage can 

be implemented in linear time and linear space for a given input sequence. The decoding 

process essentially reverses the encoding steps, and subsequent processing of the output 

using the inverse LGT. Thus, decoding can equally be performed in O(n) time and space in 

the worst case.  

 

3.2 BWT context clustering property 

 

An important characteristic of the Burrows-Wheeler Transform is that it supports  finding 

characters that have similar contexts in the input string and cluster them together in the 

output stream [1, Chap. 5.3]. For a given sequence, T = t1t2 . . . tn, the context of character ti 

is defined by the characters that immediately precede ti in T. This is sometimes called the 

preceding context (or left context), and is defined by the substring ti-1ti-2 . . . t1. Thus, the 

context of ti is defined by reversing the prefix T
i-1

. With the BWT, context clustering is 

performed based on the succeeding context (also called right context, or forward context), 

defined by the characters that immediately succeed ti in T. Given the cyclic rotation of the 

input string by the BWT, the forward context for ti is therefore essentially defined by the 

string Ti+1 ∗ T
i−1

, where the character ∗ denotes concatenation. When the special end of 

string terminator $ is used, the forward context will be determined only by the suffix Ti+1. 

With the suffix sorting stage of the BWT, suffixes that are similar in the original sequence 

will be placed together in the sorted matrix of rotations of the BWT.  

From the relationship between the BWT and suffix trees and suffix arrays it therefore 

follows that the BWT output characters in the same region of the output array L are likely 

to have similar following suffixes, that is, similar forward contexts in the original 

sequence. Thus, the output stream can be partitioned into different segments based on the 

similarity in the character contexts. 
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4 EXACT AND APPROXIMATE PATTERN MATCHING 

 

A fundamental operation on strings is determining whether a pattern of characters occurs 

as a substring in a larger string called the text, or as an approximate subsequence in the 

text. This problem has been investigated since the early 1960s, not only for its theoretical 

importance in computer science but because it has many applications in information 

processing and in particular in biological sciences. In recent years, string matching 

algorithms have been used as powerful tools in the study of genomics and proteomics, in 

finding genes and regulatory motifs, and in comparative genomics, gene expression 

analysis and molecular evolutionary theory.  

Pattern matching and data compression are closely related, and at the same time they can 

work against each other. The process of compression removes redundancies in a text by 

replacing data with smaller and irregular bit patterns, which unfortunately also destroys the 

natural structure of the text and makes it harder to search for patterns and retrieve 

information. 

We are focusing on pattern-matching, which involves processing the entire text looking for 

the pattern. It is also possible to construct various kinds of indexes to support the pattern 

matching. Particularly if multiple patterns are to be located, in which case the effort used in 

building the index can be amortized over the multiple searches. Adapting the Burrows-

Wheeler Transform for this sort of application is particularly attractive because the 

compression process automatically provides a sorted index of the text, and thus we have a 

nice compromise between avoiding doing extra work to create an index, yet we can benefit 

from such information being available.[1, Chap. 7] 

 

4.1 Exact Pattern Matching 

 

The pattern matching problem is to determine whether pattern P occurs as a substring in 

text T. If P occurs in T then we also want to report the positions of P in T. 

 

4.1.1 The Knuth-Morris-Pratt Algorithm 

  

The most obvious approach for pattern matching is to compare the given pattern characters 

P[1 . . . m] with the first m characters of the text T[1 . . . m] stored in a buffer, and compare 

the corresponding pairs of characters. If all character pairs match, the algorithm reports 

that P has been found in T, and reports the text position where the first pair of characters 

matched. Whether or not a match is found, the pattern characters are then compared with 

the characters starting at the next position in T (i.e. T[2 . . . m+ 1]) to see if every pair 

matches. This process is iterated n − m + 1 times, and then terminates.  
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Pseudocode for this method is given in Algorithm 7, and it  takes O(nm) time.  

An example of the worst case is when T = a
n−1
b, and P = a

m-1
b. For the first n − m 

attempts the character comparison fails at the last (m-th) character position of the pattern 

after m−1 successful matches. 

It arises because the algorithm does not use the information that it has already encountered 

during the partial match between the pattern and the text. When a mismatch occurs at the j-

th input character of the text, the text reference does not necessarily have to be reset back 

to j−i+2 because the algorithm already ―knows‖ the previous i−1 characters of the pattern 

P. More precisely, if we imagine placing the pattern under the text and sliding it right 

during the matching process, the brute force method blindly slides the pattern by just one 

character right whenever a mismatch occurs, but it may be possible to slide it further than 

that. What is the maximum amount of right shift that can be made without missing the 

occurrence of the pattern in the text? [1, Chap 7.1.1]   

To determine the appropriate amount of right shift, we need to define the concept of a 

border. A border [1, Chap. 7.1.2] of a pattern P[1 . . . i] is any prefix of P[1 . . . i] that is 

equal to a proper suffix of P[1 . . . i]. The longest border for P[1 . . . i] will be denoted as bi 

with a length li. The sequence of li‘s for i = 1 to n is called the border array. If we add the 

constraint that P[i+1] ≠ P[li +1], then the border will be denoted as Bi and its length will be 

denoted as Λ i (Figure 7).   

The amount of this shift depends only on the pattern P, and is independent of the text T. 

We can pre-compute and store in an array the values of Li for each value of i (1 ≤ i ≤ m) for 

a given pattern P.  
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Figure 7: Definition of border Bi with length  Λ i 

 

We formally define the failure function  Φ for 1 ≤ i ≤ m + 1 as  Φ [i] = Λ i-1 + 1, and define 

Λ 0 = 0. There are two special cases: if a mismatch occurs at position i = 1, set  Φ [1] = 1; 

and if the entire pattern matches and we are interested in continuing the search process to 

find all matches in the text, we right shift the text by (m − Lm). This is done by setting  Φ 

[m + 1] = Λ m + 1, given that  Φ is precomputed. The computation of the failure function  Φ 

takes O(m) time. The KMP algorithm [6] is given in Algorithm 8.  

 

 

 

In the KMP algorithm, when there is a mismatch between a pattern and a text character, the 

pattern is shifted right as specified by the failure function. But, failures may repeat and in 

the worst case this may happen |Σ| times. Thus, in the worst case the KMP algorithm has 

complexity O(m|Σ| + n). If we assume that |Σ| is constant the complexity is O(m+n). 
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4.1.2 Multiple pattern matching 

 

A generalization of the pattern matching problem is to search for sets of patterns. Given a 

set of patterns P = [P1, P2, . . . , Pk] and an input text string T of length n, we need to 

determine whether some pattern Pi occurred as a substring in T. We will assume that the 

total length of the patterns is m, and the text is longer than the shortest pattern in the set P. 

We also assume that the patterns in the set are distinct. A straightforward approach to this 

problem is to apply KMP algorithm for each pattern in the set over the text T. This will 

take O(m + kn) time in total.  

Aho and Corasick [7] solved the multiple pattern matching problem using only O(n+m) 

time. If the number of patterns k is large, this is a significant improvement. The idea of 

their algorithm is to generalize the KMP approach using a finite state machine. Aho and 

Corasick adopted an approach similar to KMP shifts, but  a better known formulation 

using the digital trie, which contains all keywords. (see also Algorithm 1) 

The construction of the tree takes O(m) time. This is easy to see: the tree for P1 is simply a 

path with edges labeled by the characters of P1. Suppose we have the tree of the first i 

patterns in the tree. To add the pattern Pi+1, just trace the path using the letters in Pi+1 as far 

as possible. At some point a distinct sibling edge has to be added, which will lead to a sub-

path terminating in a terminal node representing the pattern. Thus the work involved is 

bounded by the length of the pattern Pi+1. Adding all the pattern lengths gives us m 

characters, so the total construction time is O(m).  

A brute force method to search a text for any of the patterns in the set is to start at each 

position in the text and trace a unique path from the root, matching text characters with the 

characters labeling the edges in the path until a failure occurs or a node representing a 

pattern is reached. For a keyword tree, a node representing a pattern may be reached more 

than once if some patterns in P are prefixes of other patterns in P. In general, to find all 

patterns for a given position in the text the tree traversal time is bounded by the length of 

the longest pattern which could be O(m). Since there are n positions in the text, the brute 

force algorithm thus takes O(nm) time in the worst case. The Aho-Corasick algorithm 

generalizes the KMP algorithm for a keyword tree and reduces this time to O(n + m + 

ηocc), where ηocc is the number of occurrences of the patterns in P in T. 

String of characters on the path from the root to v will be denoted as path(v). More 

formally, for the node v, define lp(v) to be the length of the longest proper suffix of path(v) 

that is a prefix pri of some pattern Pi in P. The unique node in the tree that has a path label 

pri will be denoted as link(v). The ordered pair (v, link(v)) will be called a failure link. If 

lp(v) = 0, then link(v) will be the root node; in this case it need not be stored, as nodes that 

do not have an explicit failure link will have an implicit failure link to the root node. Now, 

suppose we are tracing a text T on the digital tree to find patterns and come to node v after 
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matching with the character T[c − 1] of text, and there is a mismatch with character T[c], 

where c points to a position in the text. Then, by the definition of the failure link (v, 

link(v)), it is guaranteed that the characters T[c−lp(v). . . c−1] will match the characters of 

path(link(v)). We can then proceed to compare the character T[c] with the next character 

after path(link(v)). This is a generalization of the notion of shifting the pattern in KMP 

algorithm.  

We also need to resolve the situation where one pattern is a substring of another pattern in 

P. This can be taken care of easily by noting that if there is a failure link or a directed path 

of failure links from any node v in the tree to a terminal node corresponding to pattern Pi, 

then whenever the node v is reached during the tree traversal, one can conclude that the 

pattern Pi has occurred in the text ending at the current text position (c) when v was 

reached. Thus we can modify our algorithm by stating that if a node v is reached at T[c], 

and if v is either a terminal node, a link or a directed path of links from v that leads to a 

terminal node, then a pattern must have occurred in the text ending in position c.  
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4.2 Approximate pattern matching  

 

Until now we have assumed that patterns must match exactly with the text being searched. 

However, there are many applications where we want to find close matches, rather than 

require strict equality. Moreover, there are applications where we wish to apply a metric to 

the difference, and find matches that conform to some specified parameters. The need to 

consider approximation may arise in the context of errors which might occur in a text file 

because of inaccuracies in the data stored, or in the pattern being searched for; and it arises 

in the context of determining how similar two strings are. 

 Approximate pattern matching algorithms [1, Chap. 7.4] have been used as powerful tools 

in the study of genomics and proteomics; in finding genes, regulatory motifs, conserved 

sequences in DNA, sequence alignment and multiple sequence alignments. 

 

4.2.1 Edit distance 

 

Given two strings S1 = a1a2 . . . am and S2 = b1b2 . . . bn, the problem is to determine how 

similar are they. This can be made more precise by defining an integer parameter k and a 

distance function d and then stating the problem as finding all substrings S of S2 such that 

d(S1, S) ≤ k. Let us first consider how to compute d(S1, S2). A natural way to compare these 

two strings is to determine their edit distance (sometimes called the Levenshtein 

distance[15]), defined as the minimum number of editing operations that will transform 

one string to the other string. The two simplest such operations are insertion and deletion 

of a character, and a cost of 1 is usually associated with each such operation. A third 

operation is substitution or replacement of a character of one sequence by another 

character of the second sequence, as it happens in a mutation of a DNA sequence. The cost 

for this operation is also usually assumed to be 1, but in text editing operations this can be 

realized by one delete operation followed immediately by an insert operation in which case 

the cost should then be 2 for this operation. If two characters match, the cost is assumed to 

be 0. In general, arbitrary cost values can be defined for these operations depending on the 

application. The sequence of edit operations to transform S1 to S2 is called the edit 

transcript. 

A dynamic programming formulation to compute the edit distance is as follows:  

Define d(i, j) to be the edit distance between the prefix strings S1[1 . . . i] and S2[1 . . . j]. 

The basis equations are:  

 d(0, 0) = 0 because no cost is involved in converting a null string to a null string,  

 d(i, 0) = i for 1 ≤ i ≤ m signifying that i deletion operations are needed to convert 

the prefix of S1 to a null string, and  

 d(0, j) = j for 1 ≤ j ≤ n signifying that j insertion operations are needed to covert a 

null string to the prefix S2[1 . . . j].  
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We can write the recurrence relation as  

 d(i, j) = min{d(i − 1, j) + cI, d(i, j − 1) + cD, d(i − 1, j − 1) + cS}, 

where cI,  cD, and cS  are costs for insertion, deletion, and substitiution, respectively, and are 

equal to 1, except for cS = 0 if ai = bj . 

Consider a minimum cost edit transcript for d(i, j). If the last operation of this transcript is 

an insertion operation in S2, then this corresponds to the term d(i, j − 1) + 1. This is 

characterized by a horizontal arrow in the m + 1 by n + 1 matrix M containing d(i, j) 

values, from cell M[i, j – 1] to cell M[i, j]. If the last operation of this transcript is a 

deletion operation in S1, then the corresponding term is d(i − 1, j) + 1. It can be sybmolized 

by a vertical arrow in M from cell M[i −1, j] to cell M[i, j]. Match, or a substitution (i.e 

replacement) of S2[j] by S1[i] correspond to the term d(i − 1, j − 1) + c(i, j) in the 

expression for d(i, j). Both match and replacement operations are represented by a diagonal 

arrow from cell M[i − 1, j – 1] to cell M[i, j]. 

To compute the value at any  M[i, j], it is sufficient if we know the minimum edit distances 

of its north, north-west and west neighbors, and the pair of characters from the two 

sequences under consideration. We know how to compute the 0th row and the 0th column 

of the matrix from the basis equations defined above, and so we can compute the rest of the 

matrix one row at a time consecutively with increasing row indexes, or one column at a 

time consecutively with increasing column indexes. The edit distance of the two strings S1 

and S2 is given by d(m, n). The time complexity of the algorithm is O(mn) since a matrix of 

size (m + 1)(n + 1) has to be computed and each entry takes a constant amount of work 

(three additions, one comparison and a minimum operation). The space complexity is also 

O(mn). In the case when we are interested only in the distance, not the sequence of 

operations, this can be reduced to O(min{n, m}), since we only need to keep information 

about the last column or last row in order to perform the required computation at any point. 

An example illustrating this algorithm is shown in Figure 8 using the sequences 

S1=abccdab and S2=babcabc. Two possible alignments (corresponding to the squares 

enclosed by heavy lines and arrows indicating insert, delete or match operations) are also 

shown. The ‗-‘ stands for a gap created in a corresponding sequence. During construction 

of the table, back pointers to neighboring cells can be kept to trace the paths taken by the 

minimum edit distance computation. The forward pointers are drawn to show the 

operations performed. 
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Figure 8: Computation of edit distances 

 

In the context of biological applications, scientists are more interested in finding 

similarities than the difference between two sequences. This can be cast into another 

dynamic programming formulation by defining a score or value to each of the edit 

operations, giving the match operation a high score and giving other edit operations an 

appropriate low or negative score. The problem then is to compute the maximum score v(i, 

j) between the two prefixes of S1 and S2. The similarity of the two strings is then expressed 

by the value v(m, n). [1, Chap. 7.4.1] 

 

4.2.2 Local similarity 

 

An important variant of similarity search is local alignment or local similarity. Suppose we 

have two long DNA sequences in which there is a particularly interesting subsequence 

representing a gene that is common between the sequences. Doing a global alignment or 

similarity search will not be able to identify this because there may be a lot of 

dissimilarities in the rest of the sequence which yield a low value for similarity and a large 

edit distance, neither of which say anything about this interesting region. If the regions of 

highly similar local alignment are small, they can get lost in the context of global 
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alignment. The dynamic programming equations are very similar to the edit distance 

computation and similarity value v(i, j) is given as:  

v(i, j) = max{ 0, v(i − 1, j) + cI, v(i, j − 1) + cD,, 

v(i − 1, j − 1) + cS,} 

  

where cI, cD, and cS,are the values assigned to the insertion, deletion and substitution 

operations, respectively. [1, Chap. 7.4.3] 
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5 APPLICATIONS OF BURROWS-WHEELER TRANSFORM IN 

BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 

 

The major application of the Burrows-Wheeler Transform has been for data compression 

and efficient storage. However, various researches on the Burrows-Wheeler Transform 

have shown the versatility of the BWT, and hence efforts are shifting from its traditional 

application in data compression to other areas of study.  

Given the availability of complete genomes of various organisms, a major challenge is how 

to make some sense out of the growing mass of data. Computational methods have been 

brought to bear on this problem, and different algorithms have been proposed for various 

problems. One major characteristic of problems in this area is the huge size of data often 

involved. The human genome, for instance, contains about 3 billion base pairs, and there 

are organisms with genomes that are orders of magnitude larger. A suffix array would 

require 12 gigabytes of storage for the human genome, while the suffix tree may take as 

much as 5 times this amount. Developing efficient search algorithms for patterns of various 

forms in the genomic sequence thus represents an important problem. 

Another important characteristic of genomic sequences is the relatively large amount of 

repetition often observed in such data. Hence, identification, grouping, and effective 

exploitation of the various types of repetition found in biological sequences is another 

challenge. Currently, most applications of the BWT in bioinformatics and computational 

biology mainly exploit the context clustering ability of the BWT[1, Chap 8.3]. For the rest 

of the chater we will look at analysis, compression, annotation, and pattern matching of 

DNA sequences that use BWT.  

 

5.1 DNA sequence compression 

 

Given the large data sizes involved in biological sequences, one way to deal with the 

increasing data sizes is by compressing the sequence (see Figure 5 and Section 3). The 

major problem is that these algorithms deal with the data as merely a sequence of 

characters, without exploiting the special nature of such sequences. In Adjeroh et al. (2002) 

[8], two methods were proposed for DNA sequence compression, based on the BWT. The 

basic idea was to exploit the different repetition structures observed in DNA sequences to 

compress them. Thus, repetition analysis was performed on the sequence based on the 

relationship between the BWT and suffix trees and suffix arrays. They proposed two 

vocabulary parsing schemes that use a repetition code for repeat types, to parse the input 

sequence. Here, vocabulary refers to the ensemble of repeat structures without reference to 

their specific locations in the sequence. In one scheme, each repeated substring is removed 

from the input sequence and moved to an external dictionary. The positions in the 

sequence where each repetition occurred, along with the corresponding repetition code, are 
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recorded in the dictionary. Thus there is no reference or pointer information in the original 

sequence.  

Results in the paper showed that the introduction of repetition analysis and parsing in the 

BWT compression pipeline generally improves the compression result. In essence, the 

analysis and parsing stage further exposed the hidden regularities in the DNA sequence 

(such as reverse complements), which typically will not be discovered by compression 

algorithms. [1, Chap. 8.3.1] 

 

5.2 Building BWTs for big databases using prefix free-parsing 

 

High-throughput sequencing technologies have led to the growth of genomic databases. 

For many applications we want to build and store indexes of these databases but 

constructing such indexes is a challenge. Fortunately, many of these genomic databases are 

highly repetitive – a characteristic that can be exploited and enable the computation of the 

Burrows-Wheeler Transform (BWT). In the paper Boucher et al. (2019) [3], introduced a 

preprocessing algorithm, referred to as prefix-free parsing, to ease the computation of 

Burrows-Wheeler Transforms (BWTs) of genomic databases. Given a string S, it produces 

a dictionary D and a parse P of overlapping phrases such that BWT of S can be computed 

from D and P in time and workspace bounded in terms of their combined size |PFP(S)|.  

Their experiments show that D and P are significantly smaller than S in practice, and thus, 

can fit in a reasonable internal memory even when T is very large. Therefore, prefix-free 

parsing eases BWT construction, which is pertinent to many bioinformatics applications. 

In the other paper[4], they considered PFP(S) as a data structure and showed how it can be 

augmented to support various queries, including BWT,  quickly, still in O(|PFP(S)|) space. 

 

5.3 Analysis of repetition structures and genome annotation 

 

Repetition structures represent an important characteristic of genomic sequences. Long 

runs of tandem repeats and of randomly interspersed repeats are prominent features of 

DNA sequences. The family of Alu repeats (usually about 350 bases in length) is typical of 

short interspersed repeat sequences, referred to as SINEs — short interspersed nuclear 

elements[9]. These have been estimated to make up about 11% of the human genome[16]. 

There are also the long interspersed repeat sequences (LINEs — long interspersed nuclear 

elements) which are usually more than 6000 bases in length. In the human genome, the L1 

family is the most common LINEs, with about 60,000 to 100,000 occurrences. There are 

also short repeats (sometimes called ―random repeats‖), attributed to the fact that typical 

sequences and genomes are orders of magnitude larger than the alphabet size (4 in this 

case).  
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It is known that the redundancy due to the repetition structures provides some form of 

stability for the genome. Tandem repeats in particular play a major role in various 

regulation mechanisms in the genome, such as in protein binding. Repetition structures 

have been implicated in various diseases and genetic disorders. For instance, the triplet 

repeats (CTG)n/(CAG)n have been associated with Huntington‘s disease, while the hairpins 

formed in (CGG)n/(CCG)n repeats have been linked to the Fragile-X mental retardation 

syndrome [10]. An important observation for computational analysis of such repetition 

structures is that, in every single case listed, the susceptibility to (or incidence of) the 

disease critically depends on the number of copies (that is, the copy exponents in the 

repeat), and how many times the triple repeat occurs with a given exponent. [1, Chap. 

8.3.2] 

Another issue in the analysis of genomic sequences is determining changes in the copy 

number of certain important repeating elements over time, perhaps in response to a drug or 

environmental changes. A special case of this problem is in detecting changes in the gene 

copy number between a normal genome and a mutant genome [11]. For such analysis, 

substrings in the genome sequence can be viewed as a word, and the major problem 

becomes that of performing a word count over the genome. When the word length is small, 

or we have only one or two words, the problem is easy and could be solved using direct 

methods. [1, Chap. 8.3.2] However, with increasing word lengths, or an increasing number 

of words, improved data structures and algorithms are needed. Using the BWT and related 

data structures, Healy et al. (2003) [12] developed a method for annotating any sequence, 

including the entire human genome, with the counts of its constituent words. Thus, the 

problem is turned into reporting counting queries for each pattern.   

At each position along the genome, annotation is performed in terms of the number of 

occurrences of the q-mer at this position in both the forward and the reverse directions, for 

different values of q. The result is a visualization of the annotation ‖terrain‖ along the 

entire genome, which provides a quick view of the structure of repeats within a localized 

region along the genome. 

 

5.4 Distance measure between sequences and phylogeny 

 

Mantaci et al. (2005, 2007) [17, 18] proposed an extension of the BWT that uses an 

ordering different from the lexicographic ordering. The new ordering allows the BWT to 

be extended to handle a multiset of strings (rather than just a single string which is a 

multiset of characters). In the same set of papers they showed how the extended BWT can 

be used to define a distance measure between sequences. Such a distance measure can thus 

be used to cluster species based on their similarity with respect to this measure. Given two 

input sequences, say S and T, the number of segments shared by S and T could be used as a 

measure of their similarity over evolution. Given the extended BWT, the extent to which 



Vujinović D. Burrows-Wheeler Transform. 

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021  29 

the two sequences share some segments can be captured by considering the extent of 

mixing between symbols from the two sequences in the output array after the 

transformation. Thus, even when large but similar segments of two genomes are shuffled 

within each genome, the distance measure can still capture their potential relatedness. This 

is important in other applications such as in the analysis of genome rearrangements. The 

distance measure is therefore simply given by the number of alternations between symbols 

from each sequence in the output of the extended BWT. Based on this Mantaci et al. 

(2007) constructed phylogenic trees between different species based on their mitochondria 

DNA. [1, Chap. 8.3.5] 
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6 CONCLUSION 

 

Thoroughout this final project paper we have studied the BWT, one of the last 20th century 

breakthroughs in general-purpose lossless compression methods.  

The transform is closely related to suffix tree, and suffix array. It can be implemented 

using suffix array and thus achiving linear time complexity. The remarkable thing about 

BWT is not that it generates more easily encoded output, but that it does this reversibly, 

allowing the original document to be re-generated.  

Various researchers have shown that versatility of BWT, and shifted its traditional 

application in data compression to other areas of study. In this thesis we explore the view 

of transformed file as both text and an index, and look at some of the applications that 

exploit this. 

We observed, that characters in the transformed text are clustered together. From the 

relatioship between BWT and suffix array and suffix tree, it follows that output text can be 

partitioned into different segments based on the similarity in the character context.  

BWT transform has a promising future, as it is being applied in an environment of new 

data structures, more powerful computers with new models of computation, increasing 

amounts of data to be processed for storage, and pattern matching, and new theory to help 

us better understand how we can exploit a powerful technique that is based on simply 

muddling up the contents of a file. 
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7    DALJŠI POVZETEK V SLOVENSKEM JEZIKU 

 

V diplomski nalogi smo najprej opisali Burrows-Whelerjevo preslikavo (BWT) kot enega 

zadnjih dosežkov v 20. stoletju v splošnem stiskanju brez izgub. BWT uporablja zamisel o 

permutiranju ĉrk v besedilu, kar olajša izgradnjo kompaktne predstavitve in druge vrste 

obdelave. Za analizo uporabljamo primerjalni oziroma model RAM. Za zapis rezultatov 

uporabljamo asimptotiĉen zapis, zlasti O-zapis. 

Nato preuĉimo, kako se BWT izvaja v praksi. Transformacija naprej uredi rotacije 

vhodnega niza kar ima za posledico združevanje znakov ki se pojavljajo v podobnih 

kontekstih. Obratna BWT omogoĉa ponovno izdelavo izvornega besedila iz permutiranega 

besedila BWT. Obratno transformacijo je nekoliko težje izvesti kot transformacijo naprej. 

BWT je zelo tesno povezana s priponskim drevesom in priponskim poljem. Problem 

razvršĉanja rotiranih matrik je glavna težava pri izvedbi preslikave.  

Pri analizi splošne raĉunske zahtevnosti stiskanja upoštevamo dve glavni fazi. Prva faza je 

BWT preoblikovanje. Druga faza se nanaša na naslednjo stopnjo morebitnega 

preoblikovanja lokalnih struktur v izhodu BWT v globalno strukturo in konĉno entropijsko 

kodiranje z uporabo kode spremenljive dolžine. BWT naprej in obratna BWT (prva faza 

BCompress) se lahko izvedeta v linearnem ĉasu in linearnem prostoru v najslabšem 

primeru. LGT pretvori lokalno strukturo, ki jo ustvari BWT, v globalno strukturo, ki jo 

lahko uporabe algoritmi za entropijsko stiskanje. Entropijsko kodiranje je proces, v 

katerem je mogoĉe simbole kodirati na podlagi ocenjene porazdelitve verjetnosti, kako 

verjetni so posamezni simboli. Algoritmi za lokalno preoblikovanje globalne strukture 

(LGT) zahtevajo le en prehod preko izhoda BWT. Tako je lahko dekodiranje v najslabšem 

primeru prav tako izvedeno v O(n) ĉasu in prostoru. 

Problem ujemanja vzorcev je ugotoviti, ali se vzorec P pojavlja kot podniz v besedilu T. 

Eden najpomembnejših algoritmov za iskanje vzorcev je algoritem Knuth-Morris-Prath 

(KMP). Deluje na osnovi opažanja, da, ko pride do neujemanja, smo zbrali dovolj 

informacij, da bolje doloĉimo, kje bi se lahko zaĉelo naslednje ujemanje. Na ta naĉin se 

izognemo ponovnemu preverjanju predhodno ujemajoĉih se znakov. Ujemanje veĉ vzorcev 

je posplošitev problema ujemanja enega vzorca. Problem ujemanja veĉ vzorcev sta rešila 

Aho in Corasick s pristopom, podobnim KMP in z uporabo številskega drevesa. 

Omenjamo tudi približno ujemanje vzorcev, kar je koristno, ĉe bi radi našli približna 

ujemanja, namesto popolne enakosti. 

Glede na razpoložljivost popolnih genomov razliĉnih organizmov je velik izziv, kako iz 

vse veĉje množice podatkov narediti nekaj smislenega. Druga pomembna znaĉilnost 

genomskih zaporedij je razmeroma velika stopnja ponovitev. Veĉina aplikacij BWT v 

bioinformatiki in raĉunalniški biologiji izkorišĉa predvsem sposobnost kontekstnog 

bruĉenja BWT. 



Vujinović D. Burrows-Wheeler Transform. 

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021  32 

8 REFERENCES 

 

[1] Adjeroh, Donald, Timothy Bell, and Amar Mukherjee. The Burrows-Wheeler 

Transform:: Data Compression, Suffix Arrays, and Pattern Matching. Springer Science & 

Business Media, 2008. 

 

[2] Burrows, Michael, and Wheeler, David. "A block-sorting lossless data compression 

algorithm." Digital SRC Research Report. 1994. 

 

[3] Boucher, Christina, et al. "Prefix-free parsing for building big BWTs." Algorithms for 

Molecular Biology 14.1 (2019): 1-15. 

 

[4] Boucher, Christina, et. al. ‖PFP Data Structures.‖ arXiv preprint arXiv:2006.11687  

(2020). 

 

[5]  Ukkonen, Esko. "On-line construction of suffix trees." Algorithmica 14.3 (1995): 249-

260. 

 

[6] Knuth, Donald E., James H. Morris, Jr, and Vaughan R. Pratt. "Fast pattern matching in 

strings." SIAM journal on computing 6.2 (1977): 323-350. 

 

[7] Aho, Alfred V., and Margaret J. Corasick. "Efficient string matching: an aid to 

bibliographic search." Communications of the ACM 18.6 (1975): 333-340. 

 

[8] Adjeroh, Don, et al. "DNA sequence compression using the Burrows-Wheeler 

Transform." Proceedings. IEEE Computer Society Bioinformatics Conference. IEEE, 

2002. 

 

[9] Kramerov, Dimitri A., and Nikita S. Vassetzky. "Short retroposons in eukaryotic 

genomes." International review of cytology 247 (2005): 165-221. 

 

[10] Lubin, Flora, et al. "Nutritional and lifestyle habits and water-fiber interaction in 

colorectal adenoma etiology." Cancer Epidemiology and Prevention Biomarkers 6.2 

(1997): 79-85. 

 

[11] Lucito, Robert, et al. "Representational oligonucleotide microarray analysis: a high-

resolution method to detect genome copy number variation." Genome research 13.10 

(2003): 2291-2305. 

 



Vujinović D. Burrows-Wheeler Transform. 

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021  33 

[12] Healy, John, et al. "Annotating large genomes with exact word matches." Genome 

research 13.10 (2003): 2306-231 

 

[13] Smith, Temple F., and Michael S. Waterman. "Identification of common molecular 

subsequences." Journal of molecular biology 147.1 (1981): 195-197. 

 

[14] Cormen, Thomas H., et al. Introduction to algorithms, Third Edition. 3rd. MIT Press, 

2009 

 

[15] Levenshtein, Vladimir I. "Binary codes capable of correcting deletions, insertions, and 

reversals." Soviet physics doklady. Vol. 10. No. 8. 1966. 

 

[16] Bai, Xue, Feifei Li, and Zhihua Zhang. "A hypothetical model of trans-acting R-

loops-mediated promoter-enhancer interactions by Alu elements." Journal of Genetics and 

Genomics (2021). 

 

[17] Mantaci, Sabrina, et al. "An extension of the Burrows–Wheeler 

transform." Theoretical Computer Science 387.3 (2007): 298-312. 

 

[18] Mantaci, Sabrina, et al. "An extension of the Burrows Wheeler transform and 

applications to sequence comparison and data compression." Annual Symposium on 

Combinatorial Pattern Matching. Springer, Berlin, Heidelberg, 2005 

 

 


