

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

ZAKLJUĈNA NALOGA

(FINAL PROJECT PAPER)

TRANSFORMACIJA BURROWS-WHEELERJA

(BURROWS-WHEELER TRANSFORM)

DOROTEJA VUJINOVIĆ

V
U

JI
N

O
V

IĆ

Z

A
K

L
JU

Ĉ
N

A
 N

A
L

O
G

A

(F

IN
A

L
 P

R
O

JE
C

T
 P

A
P

E
R

)

 2
0

2
1

L
E

T
O

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zakljuĉna naloga

(Times New Roman, 12 pt, sredinska poravnava, razmik med vrsticami:1,25)

Naslov zaključne naloge
(Times New Roman, 14 pt, krepko, sredinska poravnava, razmik med vrsticami:1,25)

(Naslov zakljuĉne naloge v angleškem jeziku)

(Times New Roman, 12 pt, sredinska poravnava, razmik med vrsticami:1,25)

Zakljuĉna naloga

(Final project paper)

Transformacija Burrows-Wheelerja

(Burrows-Wheeler Transform)

Ime in priimek: Doroteja Vujinović

Študijski program: Bioinformatika

Mentor: prof. dr. Andrej Brodnik

Koper, september 2021

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Doroteja VUJINOVIĆ

Naslov zakljuĉne naloge: Transformacija Burrows-Wheelerja

Kraj: Koper

Leto: 2021

Število listov: 42 Število slik: 8 Število tabel: 3

Število referenc: 18

Mentor: prof. dr. Andrej Brodnik

Kljuĉne besede: Transformacija Burrows-Wheelerja, BWT, besedilo, ujemanje vzorcev,

pripona, algoritem

Izvleĉek:

Najprej uvajamo pojem Burrows-Wheelerjeva transformacija, skupaj z zapisom in metodo

analize, uporabljeno v celotni diplomski nalogi. Podrobno predstavljamo, kako deluje

BWT, in analiziramo njegovo raĉunsko kompleksnost. Nadalje predstavljamo podatkovne

strukture, kot sta drevo konĉnic in matrika pripon, ter koncept ujemanja vzorcev in njihov

odnos z BWT. Na koncu si oglejmo nekaj najpomembnejših aplikacij BWT v

bioinformatiki in raĉunalniški biologiji.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 III

Key document information

Name and SURNAME: Doroteja VUJINOVIĆ

Title of the final project paper: Burrows-Wheeler Transform

Place: Koper

Year: 2021

Number of pages: 42 Number of figures: 8 Number of tables: 3

Number of references: 18

Mentor: Prof. Andrej Brodnik, PhD

Keywords: Burrows-Wheeler Transform, BWT, text, pattern matching, suffix, algorithm

Abstract:

First, we introduce the notion of Burrows-Wheeler Transform, along with notation and

method of analysis used throughout the thesis. We present in detail how does the BWT

work, and analyze its computational complexity. Continuing, we present data structures

such as suffix tree and suffix array, as well as the concept of pattern matching and their

relationship with BWT. Finally, we take a look at some of the most important applications

of BWT in bioinformatics and computational biology.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 IV

ACKNOWLEDGEMENTS

I would like to express my very great appreciation to my mentor and professor Andrej

Brodnik, firstly for his adaptiveness and readiness to help me finish my studies during the

COVID-19 pandemic, secondly, for his support, patience, encouragement and guidance

during the writing of this final project paper.

Also, I would like to thank my family for being my biggest support from when I was

young, up to now.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 V

LIST OF CONTENTS

1 INTRODUCTION ... 1

1.1 Genesis of the Burrows-Wheeler Transform .. 1

1.2 Notation, definitions and structure of the thesis ... 2

2 HOW DOES BURROWS-WHEELER TRANSFORM WORK 4

2.1 The forward Burrows-Wheeler Transform ... 4

2.2 The reverse Burrows-Wheeler Transform .. 5

2.2.1 Decode the string in its original order ... 7

2.3 The BWT, Suffix Trees, and Suffix Arrays .. 10

2.3.1 Construction of a suffix tree ... 12

3 ANALYSIS OF BCOMPRESS ... 14

3.1 Computational complexity .. 14

3.1.1 BCompress second stage – coding the transformed text 15

3.2 BWT context clustering property ... 16

4 EXACT AND APPROXIMATE PATTERN MATCHING 17

4.1 Exact Pattern Matching ... 17

4.1.1 The Knuth-Morris-Pratt Algorithm ... 17

4.1.2 Multiple pattern matching ... 20

4.2 Approximate pattern matching ... 22

4.2.1 Edit distance .. 22

4.2.2 Local similarity .. 24

5 APPLICATIONS OF BURROWS-WHEELER TRANSFORM IN

BIOINFORMATICS AND COMPUTATIONAL BIOLOGY ... 26

5.1 DNA sequence compression ... 26

5.2 Building BWTs for big databases using prefix free-parsing 27

5.3 Analysis of repetition structures and genome annotation 27

5.4 Distance measure between sequences and phylogeny .. 28

6 CONCLUSION ... 30

7 DALJŠI POVZETEK V SLOVENSKEM JEZIKU .. 31

8 REFERENCES .. 32

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 VI

LIST OF TABLES

Table 1: Matrices A and As .. 4

Table 2: The suffixes and the rotation matrix.. 11

Table 3: The MTF ranks for the characters in the BWT transformed text L =

pssmipissii ... 15

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 VII

LIST OF FIGURES

Figure 1: The R array used to sort the sample file mississippi 5

Figure 2: The array As for mississipi; F and L are the first and last columns

respectively .. 6

Figure 3: The array (As) that is implicitly reconstructed to decode the string

pssmipissii ... 6

Figure 4: The auxiliary arrays V and W which can be used to decode the sample string 9

Figure 6: The suffix tree .. 11

Figure 5: Stages in the BWT compression pipeline .. 14

Figure 7: Definition of border Bi with length Λ i ... 19

Figure 8: Computation of edit distances .. 24

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 VIII

LIST OF ABBREVATIONS

i.e. that is

et al. and others

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 1

1 INTRODUCTION

The Burrows-Wheeler Transform (BWT)[1, Chap. 1] uses the idea of muddling

(permuting) the letters in a document to make it easier to find a compact representation and

to perform other kinds of processing. What is amazing about the BWT is that it makes it

very easy to find the unique correct permutation very quickly. For example, for the

following line from Hamlet‘s famous soliloquy:

“To be or not to be: that is the question, whether tis nobler in the mind to suffer the slings

and arrows of outrageous fortune.”

we get the transformed text:

“sdoosrtesrsefeeoe:nsrrtdn,r h onnhbhhbglfhuhnofu antttttw mltt bs ioaiui Tttn i fne r

eoeetraoguiwi e ao es e. urqstoo o”

Notice that many characters in the transformed text appear in runs, or very close to

previous occurrences. This clustering of characters makes compression very easy. The

point is that the transform makes the encoding task a lot simpler, and importantly, can give

compression that is comparable with the very best lossless compression methods, i.e

methods that allow the original data to be perfectly reconstructed from the compressed

data.

BWT is useful for a lot more than compression because it contains an implicit sorted index

of the input string. In this thesis we will review some of its other uses especially for

pattern-matching and full-text indexing, which leads to applications in bioinformatics.

The Burrows-Wheeler Transform method is often referred to as ―block sorting‖, because it

takes a block of text and permutes it. The main disadvantage of the block-wise approach is

that it cannot process text character by character; it must read in a block (typically tens of

kilobytes) and then compress it. This is not a limitation for most purposes, but it does rule

out some applications that need to process data on-the-fly as it arrives. Another important

point is that the text can be sorted.

1.1 Genesis of the Burrows-Wheeler Transform

One of the last 20th century breakthrough in general-purpose lossless compression

methods was Burrows and Wheeler's enigmatic transform, the BWT. David Wheeler had

come up with the transform as early as 1978, but it wasn't until 1994 that, with the help of

Mike Burrows, the idea was turned into a practical data compression method. The research

report involved rearranging the characters in a text before encoding and then arranging

them back in their original order in the decoder. The fact that the original can be re-created

at all is somewhat astonishing, and their early work took some time to receive the

recognition it deserved. By the late 1990s, researchers began to realize that the BWT

approach might be useful for more than just compressing text. Because BWT happens to

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 2

sort the text in alphabetical order, the permuted text has the benefit to act as a kind of

dictionary for the original text. Traditionally an index and the compressed text would be

stored separately, even though they contain effectively the same information. The BWT is

an intermediate representation that is halfway between text and index; the original text can

be efficiently reconstructed, yet sorted lists are suitable for binary searching, giving very

fast searching for arbitrary fragments in the text. [1, Chap. 1.2]

1.2 Notation, definitions and structure of the thesis

First we will define some terms and notation that will be used in the thesis. Throughout the

paper we will be coding a string T of n characters, T[1 . . . n] (n ≥ 1), containing n

characters over an alphabet T[i] ∈ Σ = {σ1, σ2, . . . σ|Σ|} with size |Σ|. The array R[1...n] will

represent an array of references to rotated strings in the input text T. Furthermore, a string

P[1 . . . m] (1 ≤ m ≤ n), where P[j] ∈ Σ. Finally, the compression of text which first

transforms text using the BWT we call with a generic term BCompress.

Analyzing an algorithm means predicting the resources that the algorithm requires.

Generally, we measure the time needed per operation (time complexity) and the amount of

space we need to store the data structure (space complexity). We shall assume random-

access machine (RAM) model of computation as our implementation technology.

There are different methods to perform the analysis. In this thesis we will use worst-case

analysis in the comparison model measuring the number of comparisons needed (which is

in linear relation with operations in a data structure). Worst case [14, Chap. 2.2] analysis

looks at the worst-case running time and provides an upper bound for time in all cases. We

give these bounds on performance based on asymptotic notation [14, Chap. 3.1].

Specifically, O-notation For a given function g(n), we denote by O(g(n)) the set of

functions

O(g(n)) = { f(n) : there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0 }.

We measure space complexity by counting the number of registers, in the RAM model [14,

Chap. 2.2], needed to store the data structure. For the (uniform-cost) RAM model we

assume that one register (space in memory) is needed to store one value from our data

structure.

 Section 2 continues to introduce Burrows-Wheeler Transform, and describes its

relationship suffix trees and suffix arrays.

In Section 3 we perform computational complexity analysis of the BCompress, and we do

the encoding of the BWT output created in Section 2.

Details about pattern matching and its relationship with BWT are described in Section 4.

Some of the applications of BWT in bioinformatics and computational biology can be

found in Section 5. For instance, given the strong relationship between the BWT and data

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 3

structures such as suffix trees and suffix arrays, it can be expected that the BWT can be

used in the identification and analysis of repetitions. Finding repeats can be viewed as a

variant of the pattern matching problem.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 4

2 HOW DOES BURROWS-WHEELER TRANSFORM WORK

Let us first look in detail at how the Burrows-Wheeler Transform is implemented in

practice. We will see how to perform the encoding and decoding in O(n) space, and

O(nlogn) time. Using a few techniques, the time can be reduced to O(n). [1, Chap. 2]

2.1 The forward Burrows-Wheeler Transform

The forward transform essentially involves sorting all rotations of the input string, which

clusters together characters that occur in similar contexts. Table 1.a shows the matrix A

containing all rotations that would occur if the transform is given T = mississippi as

the input. Table 1.b shows the result of sorting A, which we will refer to as As. The last

column of As (usually referred to as L) is the Burrows-Wheeler Transform of the input.

Table 1: Matrices A and As

mississippi
ississippim
ssissippimi
sissippimis
issippimiss
ssippimissi
sippimissis
ippimississ
ppimississi
pimississip
imississipp

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi

 (a) (b)

Rather than use O(n
2
) space as suggested by Table 1, we can use array R[1...n]. Initially

R[i] is simply set to i for each i from 1 to n to represent the unsorted list. It is then sorted

using the substring beginning at T[R[i]] as the comparison key. Figure 1 shows the result of

sorting: for example, position 11 is the first rotated string in lexical order (imiss…),

followed by position 8 (ippim..) and position 5 (issip…).

The array R directly indexes the characters in T corresponding to the first column of As

(referred to as F in BWT literature). The last column of As (referred to as L) is the output of

BWT and can be read off as T[R[i]-1], where i ranges from 1 to n. In this case the

transformed text is L = pssimipssii. We also need to transmit an index a to indicate

to the decoder which row of As contains the original string T. In this case the index a = 5 is

included.

The transform is completed using just O(n) space (for R). The time taken is O(n) for the

creation of the array R, plus the time needed for sorting O(nlogn). [1, Chap. 2.1]

A= =As

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 5

Figure 1: The R array used to sort the sample file mississippi

2.2 The reverse Burrows-Wheeler Transform

The reverse transform - taking a BWT permuted text and reconstructing the original input

T - is somewhat more difficult to implement than the forward transform, but it can still be

done in O(n) time and space if care is taken.

We will use the decoding of the string mississippi as the running example. Figure 2

shows the matrix As for this example, with columns F and L labeled. As is not sorted

explicitly in practice, but we shall use it in meantime to illustrate how decoding can be

done. The decoder can determine F simply by sorting L, since it contains exactly the same

characters, just in a different order — each column of As contains the same set of characters

because the rows are all the rotations of the original string. In fact, F need not be stored, as

it can be generated implicitly by counting how often each character appears in L.

Looking at As helps us to see the information that is needed to perform the decoding.

Given just F and L, the key step is determining which character should come after a

particular character in F. Consider, for example, the two rows ending with a p (rows 1 and

6). Because of the rotation, the order of these two rows is determined by the characters that

come after the respective occurrences of p in T (imi... and pim... respectively). Thus the

first occurrence of p in L corresponds to the first occurrence of p in F, and likewise with

the second occurrence. This permits us to work through the text backwards: if we have just

decoded the second p in L, then it must correspond to the one in row 7 of F. Looking at

row 7, the L column tells us that the p was preceded by an i. In turn, because this is the

second i in L, it must correspond to the second i in F, which is in row 2. We carry on

traversing the L and F arrays in this way until the whole string is decoded in reverse.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 6

Figure 2: The array As for mississipi; F and L are the first and last columns respectively

In practice the decoder never reconstructs As or F in full, but implicitly creates indexes to

represent enough of its structure to decode the original string. L is stored explicitly (the

decoder just reads the input and stores it in L), but F is stored implicitly to save space and

to efficiently provide the kind of information needed during decoding.

Figure 3 shows three auxiliary arrays that are useful for decoding. K[c] is simply a count of

how many times each character c occurs in F, which is easily determined by counting the

characters in L. M[c] locates the first position of character c in the array F, so K and M

together effectively store the information in F. C[i] stores the number of times the

character L[i] occurs in L earlier than position i; for example the last character in L is i,

and i occurs 3 times in the earlier part of L. These three arrays make it easy to traverse the

input in reverse.

Figure 3: The array (As) that is implicitly reconstructed to decode the string pssmipissii

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 7

Algorithm 1 shows how the input (transformed text L and starting index a) is used to

construct these three arrays, which are then used to produce Q, the decoded text. The first

step is simply to count the characters into K by going through transformed text L, shown in

lines 1 to 7 of the algorithm. At the same time, it is convenient to construct C by recording

the value of K before each increment. The array M is then constructed in lines 8 to 12 by

accumulating the values in C. We now have sufficient structures to decode the text in

reverse, which happens in lines 13 to 17.

Reversing the BWT this way requires four arrays (L, K, C and M). K and M contain just |Σ|

entries (the characters are represented by integers from 1 to |Σ|) and are likely to be of

negligible size; L and C contain n values, and hence use O(n) space. We would normally

also have to allow for Q, which uses O(n) space to store the backwards string before it can

be stored in the correct order. The time taken is also O(n) + O(|Σ|), since the main work is

in the two passes through the n input items — once to count them, and once to decode

them. [1, Chap. 2.2]

2.2.1 Decode the string in its original order

It may be inconvenient that the output is generated backwards, and there are ways to

address this. The simplest approach is to reverse the order of the string at encoding time.

This should not take any extra time, since the whole string must be read into memory

anyway — we simply fill the array T in reverse. If the transformed text is to be decoded

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 8

multiple times, it is possible to store one or more auxiliary arrays that enable us to traverse

sections of the text at will. This can be useful for pattern matching because it allows

segments of the original string to be read off when needed for matching, but still relates the

data to the implicit sorted array As, which provides access to a sorted list of strings that are

useful for searching.

 As we can see from line 19 of Algorithm 1, the value C[i] + M[L[i]] is the key to

navigating through L to decode the original string. Instead of doing the decoding

immediately (which was in lines 16 to 20 of Algorithm 1), an array V is created to store the

navigation information, shown in Algorithm 2. This array can then be used to step

backwards through the original characters. The values of V for our example are shown in

Figure 4.

It is just as easy to create an auxiliary array that will decode the original text forwards

rather than backwards. This array will be called W, and it identifies the position of the

character in L that comes after the present one, compared with V , which gives the position

that comes before. As for V , this new array is not essential for decoding, but it can be

useful because it preserves access to the sorted structure of L, which can be exploited

during pattern matching. Algorithm 3 shows how the W array can be created. Note that the

array M that was created in Algorithm 1 is used, and that afterwards its contents are

changed so they are no longer valid. Like V, the W array is created in just O(n) time. Figure

4 shows the values of W for our example.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 9

Figure 4: The auxiliary arrays V and W which can be used to decode the sample string

W can then be used to generate the original text in its correct order using the simple

sequence shown in Algorithm 4.

If both forwards and backwards generation of the original text is needed, it is possible to

create V and W in one pass as shown in Algorithm 5. [1, Chap. 2.2]

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 10

2.3 The BWT, Suffix Trees, and Suffix Arrays

The Burrows-Wheeler Transform has a very close relationship with suffix trees and suffix

arrays — the array of indexes to the sorted array of substrings generated during the

transform is essentially a suffix array, which in turn is a representation of the information

in a suffix tree. As pointed out by Burrows and Wheeler in their original work [2], the

problem of sorting the rotated matrices is the major bottleneck in performing the

transformation.

To see the relationship [1, Chap. 5.1] between the BWT and these data structures, consider

Table 2 and Figure 5, which show the list of suffixes, the suffix tree, and the BWT sorted

rotation matrix for the sample string T = mississippi. In this example a $ character is

used to denote the end-of-string; it isn‘t strictly necessary for the BWT, but it does simplify

the descriptions by marking the end of each suffix. The L array, the final BWT output, is

given in the last column of the table. We have also included the corresponding BWT

output character (given in parenthesis) at each leaf node in the suffix tree. Given that the

suffix array records the index of the sorted suffixes of a string, it is easy to see the

relationship between the BWT and suffix arrays.

Given that leaves are sorted, the BWT output can be obtained by a simple traversal of the

leaf nodes in the suffix tree from left to right. Let li (1 ≤ i ≤ n+ 1) be the label of the i-th

leaf node in the suffix tree (scanning left to right). Recall that li is the starting position of

the i-th suffix in the input string T. Thus, at the i-th leaf node, with n as the length of T, we

obtain the corresponding BWT output as follows:

𝐿 𝑖 = 𝐵𝑊𝑇[𝑖] =
𝑇 𝑙𝑖 − 1 , 𝑖 ≠ 1

𝑇 𝑛 + 1 = $, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 11

Table 2: The suffixes and the rotation matrix

Suffixes ID Sorted Suffixes Sufix

Array

Sorted Rotations

(As matrix)

BWT

Output

(L)

mississippi$ 1 $ 12 $mississippi i

ississippi$ 2 i$ 11 i$mississipp p

ssissippi$ 3 ippi$ 8 ippi$mississ s

sissippi$ 4 issippi$ 5 issippi$miss s

issippi$ 5 ississippi$ 2 ississippi$m m

ssippi$ 6 mississippi$ 1 mississippi$ $

sippi$ 7 pi$ 10 pi$mississip p

ippi$ 8 ppi$ 9 ppi$mississi i

ppi$ 9 sippi$ 7 sippi$missis s

pi$ 10 sissippi$ 4 sissippi$mis s

i$ 11 ssippi$ 6 ssippi$missi i

$ 12 ssissippi$ 3 ssissippi$mi i

In the Figure 5 the number at each leaf node in the suffix tree corresponds to the suffix ID,

which indicates the starting position of the suffix in the original sequence T. The character

in parenthesis at each leaf node corresponds to the BWT output character for the leaf. The

label on each edge corresponds to a substring of T.

Figure 5: The suffix tree

If we ignore the characters after the special character $ in the final results from the BWT

rotation and permutation procedures, the sorted suffixes (Table 2, third column)

correspond exactly to the sorted rotated matrix from the BWT (Table 2, fifth column).

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 12

Therefore, given AT , the suffix array of the input string T, the BWT output can be

computed as follows:

𝐿 𝑖 =
𝑇 𝐴𝑇 𝑖 − 1 , 𝐴𝑇 𝑖 ≠ 1

𝑇 𝑛 + 1 = $, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.3.1 Construction of a suffix tree

Construction of the suffix tree for a string is not difficult [1, Chap. 4.1.2]. A simple

algorithm that accomplishes this task for any given string is given in Algorithm 6.

The above algorithm, although simple to implement, unfortunately requires construction

time that is proportional to the square of n, the length of the string. This O(n
2
) complexity

may not pose a problem for short sequences with a few characters. However, for most

practical applications of suffix trees, such as in whole-genome sequence analysis with

input strings that could have billions of characters, more efficient approaches are required.

Ukkonen‘s algorithm [5] is popular mainly because it is easy to understand and implement,

and also because it has a relatively small memory footprint. Complete details can be found

in the original paper by Ukkonen [5].

Given a string T = t1t2 ... tn, Ukkonen‘s algorithm is based on an observation that the

suffixes of a string T
i
= t1t2 . . . ti (i.e. the i-th prefix of T) can be obtained from the suffixes

of T
i-1

= t1t2 . . . ti−1 by appending ti at the end of each suffix of T
i−1

, and by adding the

empty suffix. Therefore, the suffix tree of T = t1t2 . . . tn = T
n

can be constructed using a left

to right scan, by first building the suffix tree for T
0
, the empty string, expanding this to

obtain the suffix tree for T
1
, and continuing in this way until we build the suffix tree of T =

T
n
 from that of T

n−1
. This incremental construction and the left-to-right scanning ability

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 13

also imply that the algorithm can build the suffix tree piece-by-piece as a new character is

received, without having the entire input string available at the beginning.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 14

3 ANALYSIS OF BCOMPRESS

The Burrows-Wheeler Transform does not change the size of the file that has been

transformed, but merely rearranges it so that it will be easier to represent it compactly. It

then needs to be coded using a second phase which we will refer to as the ―Local to Global

Transform‖ (LGT). The local to global transform (LGT) converts the local structure

induced by the BWT to a global structure that can be exploited by standard entropy

encoding algorithms [1, Chap. 5].

Entropy coding is process in which characters are encoded to bits based on an estimated

probability distribution for how likely each character is. The aim is to represent characters

in as few bits as possible, and the limit of this is dictated by the entropy. The BCompress

often use entropy coding as their final stage. In entropy coding, the representation of a

character is based on some estimated probability of that character occurring. The next

character to be coded will be drawn from a probability distribution that is typically

estimated based on previous observations [1, Chap 3.1].

Figure 6: Stages in the BCompress

3.1 Computational complexity

To analyze the overall computational complexity of using the BCompress, we consider the

two major stages. The first stage is concerned with the transformation (permutation and

sorting) that produces the L array (described in Section 2). The second stage concerns the

subsequent stage of possibly transforming the local structures in the BWT output into a

global structure (for instance, using some recency ranking scheme) and a final entropy

encoding using a given variable length code. Thus, stage two corresponds to LGT and EC

in the general compression framework. For some applications of the BWT compression

such as in pattern matching, only the first stage is needed, while applications such as

biological sequence comparison and phylogeny in bioinformatics may not require the

entropy encoding stage.

From Section 2, we can observe that given L, the reconstruction of the original sequence T

requires the construction of F, the array of first characters, and other count arrays. This can

be computed in linear time O(n). Hence, the forward BWT and inverse BWT (BWT first

stage) can each be performed in linear time and linear space in the worst case.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 15

3.1.1 BCompress second stage – coding the transformed text

The second stage of BCompress invloves the encoding of the BWT output – the L array

and the index value, a (number of row of As containing original string T).

Traditionally BCompressors use a ―Move to Front‖ (MTF) list, which essentially ranks

characters based on how recently they have occurred. This is done by keeping a list with

one entry for each character in the alphabet, and a character is moved to the front of the list

each time it is coded, thereby increasing its rank (and decreasing the corresponding number

of bits that will be used to code it next time). For our example we will again use

mississippi. We know from Section 2 that for the Burrows-Wheeler Transform of it,

we get the text L =pssmipissii. The MTF list that is used for coding our example is

shown in Table 3, assuming only four characters in the alphabet and starting in

alphabetical order Σ = {i, m, p, s}. The character at the front (left end) of the list is

numbered 0, so the first character to be coded (p) has a rank of 2. After it has been coded,

it is then moved up to rank 0 (the move-to-front step), which in this case happens to be

unfortunate because every other character in our small alphabet will be encoded before the

next p. Next, the s is coded as rank 3, and then moved up to rank 0. This time it works out

well, because the next character is also an s, and is represented by rank 0. The decoder

maintains the same list, and after each character is decoded it makes the same updates to

the list, so it always has the up-to-date ranking for each character. [1, Chap. 3.3]

Table 3: The MTF ranks for the characters in the BWT transformed text L = pssmipissii

MTF list Rank

im(p)s 2

pim(s) 3

(s)pim 0

spi(m) 3

msp(i) 3

ims(p) 3

p(i)ms 1

ipm(s) 3

(s)ipm 0

s(i)pm 1

(i)spm 0

Local to global structure transformation (LGT) algorithms [1, Chap. 5.2.2], such as MTF

require only a single pass over the BWT output. Consider the i-th step in the MTF

algorithm.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 16

Let σ = L[i], and let the position of σ in the current alphabet list be pσ. At the i-th step, the

MTF algorithm records pσ on the output stream, and then moves σ to the head of the

alphabet list. Thus, the algorithm requires O(n) time to process all the characters in the

input sequence L. The only additional space required is an O(|Σ|) space to maintain the

alphabets, where Σ is the character alphabet. With a fixed alphabet, the time will be linear

with respect to n, the length of the input string. Similarly, the entropy encoding stage can

be implemented in linear time and linear space for a given input sequence. The decoding

process essentially reverses the encoding steps, and subsequent processing of the output

using the inverse LGT. Thus, decoding can equally be performed in O(n) time and space in

the worst case.

3.2 BWT context clustering property

An important characteristic of the Burrows-Wheeler Transform is that it supports finding

characters that have similar contexts in the input string and cluster them together in the

output stream [1, Chap. 5.3]. For a given sequence, T = t1t2 . . . tn, the context of character ti

is defined by the characters that immediately precede ti in T. This is sometimes called the

preceding context (or left context), and is defined by the substring ti-1ti-2 . . . t1. Thus, the

context of ti is defined by reversing the prefix T
i-1

. With the BWT, context clustering is

performed based on the succeeding context (also called right context, or forward context),

defined by the characters that immediately succeed ti in T. Given the cyclic rotation of the

input string by the BWT, the forward context for ti is therefore essentially defined by the

string Ti+1 ∗ T
i−1

, where the character ∗ denotes concatenation. When the special end of

string terminator $ is used, the forward context will be determined only by the suffix Ti+1.

With the suffix sorting stage of the BWT, suffixes that are similar in the original sequence

will be placed together in the sorted matrix of rotations of the BWT.

From the relationship between the BWT and suffix trees and suffix arrays it therefore

follows that the BWT output characters in the same region of the output array L are likely

to have similar following suffixes, that is, similar forward contexts in the original

sequence. Thus, the output stream can be partitioned into different segments based on the

similarity in the character contexts.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 17

4 EXACT AND APPROXIMATE PATTERN MATCHING

A fundamental operation on strings is determining whether a pattern of characters occurs

as a substring in a larger string called the text, or as an approximate subsequence in the

text. This problem has been investigated since the early 1960s, not only for its theoretical

importance in computer science but because it has many applications in information

processing and in particular in biological sciences. In recent years, string matching

algorithms have been used as powerful tools in the study of genomics and proteomics, in

finding genes and regulatory motifs, and in comparative genomics, gene expression

analysis and molecular evolutionary theory.

Pattern matching and data compression are closely related, and at the same time they can

work against each other. The process of compression removes redundancies in a text by

replacing data with smaller and irregular bit patterns, which unfortunately also destroys the

natural structure of the text and makes it harder to search for patterns and retrieve

information.

We are focusing on pattern-matching, which involves processing the entire text looking for

the pattern. It is also possible to construct various kinds of indexes to support the pattern

matching. Particularly if multiple patterns are to be located, in which case the effort used in

building the index can be amortized over the multiple searches. Adapting the Burrows-

Wheeler Transform for this sort of application is particularly attractive because the

compression process automatically provides a sorted index of the text, and thus we have a

nice compromise between avoiding doing extra work to create an index, yet we can benefit

from such information being available.[1, Chap. 7]

4.1 Exact Pattern Matching

The pattern matching problem is to determine whether pattern P occurs as a substring in

text T. If P occurs in T then we also want to report the positions of P in T.

4.1.1 The Knuth-Morris-Pratt Algorithm

The most obvious approach for pattern matching is to compare the given pattern characters

P[1 . . . m] with the first m characters of the text T[1 . . . m] stored in a buffer, and compare

the corresponding pairs of characters. If all character pairs match, the algorithm reports

that P has been found in T, and reports the text position where the first pair of characters

matched. Whether or not a match is found, the pattern characters are then compared with

the characters starting at the next position in T (i.e. T[2 . . . m+ 1]) to see if every pair

matches. This process is iterated n − m + 1 times, and then terminates.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 18

Pseudocode for this method is given in Algorithm 7, and it takes O(nm) time.

An example of the worst case is when T = a
n−1
b, and P = a

m-1
b. For the first n − m

attempts the character comparison fails at the last (m-th) character position of the pattern

after m−1 successful matches.

It arises because the algorithm does not use the information that it has already encountered

during the partial match between the pattern and the text. When a mismatch occurs at the j-

th input character of the text, the text reference does not necessarily have to be reset back

to j−i+2 because the algorithm already ―knows‖ the previous i−1 characters of the pattern

P. More precisely, if we imagine placing the pattern under the text and sliding it right

during the matching process, the brute force method blindly slides the pattern by just one

character right whenever a mismatch occurs, but it may be possible to slide it further than

that. What is the maximum amount of right shift that can be made without missing the

occurrence of the pattern in the text? [1, Chap 7.1.1]

To determine the appropriate amount of right shift, we need to define the concept of a

border. A border [1, Chap. 7.1.2] of a pattern P[1 . . . i] is any prefix of P[1 . . . i] that is

equal to a proper suffix of P[1 . . . i]. The longest border for P[1 . . . i] will be denoted as bi

with a length li. The sequence of li‘s for i = 1 to n is called the border array. If we add the

constraint that P[i+1] ≠ P[li +1], then the border will be denoted as Bi and its length will be

denoted as Λ i (Figure 7).

The amount of this shift depends only on the pattern P, and is independent of the text T.

We can pre-compute and store in an array the values of Li for each value of i (1 ≤ i ≤ m) for

a given pattern P.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 19

Figure 7: Definition of border Bi with length Λ i

We formally define the failure function Φ for 1 ≤ i ≤ m + 1 as Φ [i] = Λ i-1 + 1, and define

Λ 0 = 0. There are two special cases: if a mismatch occurs at position i = 1, set Φ [1] = 1;

and if the entire pattern matches and we are interested in continuing the search process to

find all matches in the text, we right shift the text by (m − Lm). This is done by setting Φ

[m + 1] = Λ m + 1, given that Φ is precomputed. The computation of the failure function Φ

takes O(m) time. The KMP algorithm [6] is given in Algorithm 8.

In the KMP algorithm, when there is a mismatch between a pattern and a text character, the

pattern is shifted right as specified by the failure function. But, failures may repeat and in

the worst case this may happen |Σ| times. Thus, in the worst case the KMP algorithm has

complexity O(m|Σ| + n). If we assume that |Σ| is constant the complexity is O(m+n).

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 20

4.1.2 Multiple pattern matching

A generalization of the pattern matching problem is to search for sets of patterns. Given a

set of patterns P = [P1, P2, . . . , Pk] and an input text string T of length n, we need to

determine whether some pattern Pi occurred as a substring in T. We will assume that the

total length of the patterns is m, and the text is longer than the shortest pattern in the set P.

We also assume that the patterns in the set are distinct. A straightforward approach to this

problem is to apply KMP algorithm for each pattern in the set over the text T. This will

take O(m + kn) time in total.

Aho and Corasick [7] solved the multiple pattern matching problem using only O(n+m)

time. If the number of patterns k is large, this is a significant improvement. The idea of

their algorithm is to generalize the KMP approach using a finite state machine. Aho and

Corasick adopted an approach similar to KMP shifts, but a better known formulation

using the digital trie, which contains all keywords. (see also Algorithm 1)

The construction of the tree takes O(m) time. This is easy to see: the tree for P1 is simply a

path with edges labeled by the characters of P1. Suppose we have the tree of the first i

patterns in the tree. To add the pattern Pi+1, just trace the path using the letters in Pi+1 as far

as possible. At some point a distinct sibling edge has to be added, which will lead to a sub-

path terminating in a terminal node representing the pattern. Thus the work involved is

bounded by the length of the pattern Pi+1. Adding all the pattern lengths gives us m

characters, so the total construction time is O(m).

A brute force method to search a text for any of the patterns in the set is to start at each

position in the text and trace a unique path from the root, matching text characters with the

characters labeling the edges in the path until a failure occurs or a node representing a

pattern is reached. For a keyword tree, a node representing a pattern may be reached more

than once if some patterns in P are prefixes of other patterns in P. In general, to find all

patterns for a given position in the text the tree traversal time is bounded by the length of

the longest pattern which could be O(m). Since there are n positions in the text, the brute

force algorithm thus takes O(nm) time in the worst case. The Aho-Corasick algorithm

generalizes the KMP algorithm for a keyword tree and reduces this time to O(n + m +

ηocc), where ηocc is the number of occurrences of the patterns in P in T.

String of characters on the path from the root to v will be denoted as path(v). More

formally, for the node v, define lp(v) to be the length of the longest proper suffix of path(v)

that is a prefix pri of some pattern Pi in P. The unique node in the tree that has a path label

pri will be denoted as link(v). The ordered pair (v, link(v)) will be called a failure link. If

lp(v) = 0, then link(v) will be the root node; in this case it need not be stored, as nodes that

do not have an explicit failure link will have an implicit failure link to the root node. Now,

suppose we are tracing a text T on the digital tree to find patterns and come to node v after

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 21

matching with the character T[c − 1] of text, and there is a mismatch with character T[c],

where c points to a position in the text. Then, by the definition of the failure link (v,

link(v)), it is guaranteed that the characters T[c−lp(v). . . c−1] will match the characters of

path(link(v)). We can then proceed to compare the character T[c] with the next character

after path(link(v)). This is a generalization of the notion of shifting the pattern in KMP

algorithm.

We also need to resolve the situation where one pattern is a substring of another pattern in

P. This can be taken care of easily by noting that if there is a failure link or a directed path

of failure links from any node v in the tree to a terminal node corresponding to pattern Pi,

then whenever the node v is reached during the tree traversal, one can conclude that the

pattern Pi has occurred in the text ending at the current text position (c) when v was

reached. Thus we can modify our algorithm by stating that if a node v is reached at T[c],

and if v is either a terminal node, a link or a directed path of links from v that leads to a

terminal node, then a pattern must have occurred in the text ending in position c.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 22

4.2 Approximate pattern matching

Until now we have assumed that patterns must match exactly with the text being searched.

However, there are many applications where we want to find close matches, rather than

require strict equality. Moreover, there are applications where we wish to apply a metric to

the difference, and find matches that conform to some specified parameters. The need to

consider approximation may arise in the context of errors which might occur in a text file

because of inaccuracies in the data stored, or in the pattern being searched for; and it arises

in the context of determining how similar two strings are.

 Approximate pattern matching algorithms [1, Chap. 7.4] have been used as powerful tools

in the study of genomics and proteomics; in finding genes, regulatory motifs, conserved

sequences in DNA, sequence alignment and multiple sequence alignments.

4.2.1 Edit distance

Given two strings S1 = a1a2 . . . am and S2 = b1b2 . . . bn, the problem is to determine how

similar are they. This can be made more precise by defining an integer parameter k and a

distance function d and then stating the problem as finding all substrings S of S2 such that

d(S1, S) ≤ k. Let us first consider how to compute d(S1, S2). A natural way to compare these

two strings is to determine their edit distance (sometimes called the Levenshtein

distance[15]), defined as the minimum number of editing operations that will transform

one string to the other string. The two simplest such operations are insertion and deletion

of a character, and a cost of 1 is usually associated with each such operation. A third

operation is substitution or replacement of a character of one sequence by another

character of the second sequence, as it happens in a mutation of a DNA sequence. The cost

for this operation is also usually assumed to be 1, but in text editing operations this can be

realized by one delete operation followed immediately by an insert operation in which case

the cost should then be 2 for this operation. If two characters match, the cost is assumed to

be 0. In general, arbitrary cost values can be defined for these operations depending on the

application. The sequence of edit operations to transform S1 to S2 is called the edit

transcript.

A dynamic programming formulation to compute the edit distance is as follows:

Define d(i, j) to be the edit distance between the prefix strings S1[1 . . . i] and S2[1 . . . j].

The basis equations are:

 d(0, 0) = 0 because no cost is involved in converting a null string to a null string,

 d(i, 0) = i for 1 ≤ i ≤ m signifying that i deletion operations are needed to convert

the prefix of S1 to a null string, and

 d(0, j) = j for 1 ≤ j ≤ n signifying that j insertion operations are needed to covert a

null string to the prefix S2[1 . . . j].

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 23

We can write the recurrence relation as

 d(i, j) = min{d(i − 1, j) + cI, d(i, j − 1) + cD, d(i − 1, j − 1) + cS},

where cI, cD, and cS are costs for insertion, deletion, and substitiution, respectively, and are

equal to 1, except for cS = 0 if ai = bj .

Consider a minimum cost edit transcript for d(i, j). If the last operation of this transcript is

an insertion operation in S2, then this corresponds to the term d(i, j − 1) + 1. This is

characterized by a horizontal arrow in the m + 1 by n + 1 matrix M containing d(i, j)

values, from cell M[i, j – 1] to cell M[i, j]. If the last operation of this transcript is a

deletion operation in S1, then the corresponding term is d(i − 1, j) + 1. It can be sybmolized

by a vertical arrow in M from cell M[i −1, j] to cell M[i, j]. Match, or a substitution (i.e

replacement) of S2[j] by S1[i] correspond to the term d(i − 1, j − 1) + c(i, j) in the

expression for d(i, j). Both match and replacement operations are represented by a diagonal

arrow from cell M[i − 1, j – 1] to cell M[i, j].

To compute the value at any M[i, j], it is sufficient if we know the minimum edit distances

of its north, north-west and west neighbors, and the pair of characters from the two

sequences under consideration. We know how to compute the 0th row and the 0th column

of the matrix from the basis equations defined above, and so we can compute the rest of the

matrix one row at a time consecutively with increasing row indexes, or one column at a

time consecutively with increasing column indexes. The edit distance of the two strings S1

and S2 is given by d(m, n). The time complexity of the algorithm is O(mn) since a matrix of

size (m + 1)(n + 1) has to be computed and each entry takes a constant amount of work

(three additions, one comparison and a minimum operation). The space complexity is also

O(mn). In the case when we are interested only in the distance, not the sequence of

operations, this can be reduced to O(min{n, m}), since we only need to keep information

about the last column or last row in order to perform the required computation at any point.

An example illustrating this algorithm is shown in Figure 8 using the sequences

S1=abccdab and S2=babcabc. Two possible alignments (corresponding to the squares

enclosed by heavy lines and arrows indicating insert, delete or match operations) are also

shown. The ‗-‘ stands for a gap created in a corresponding sequence. During construction

of the table, back pointers to neighboring cells can be kept to trace the paths taken by the

minimum edit distance computation. The forward pointers are drawn to show the

operations performed.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 24

Figure 8: Computation of edit distances

In the context of biological applications, scientists are more interested in finding

similarities than the difference between two sequences. This can be cast into another

dynamic programming formulation by defining a score or value to each of the edit

operations, giving the match operation a high score and giving other edit operations an

appropriate low or negative score. The problem then is to compute the maximum score v(i,

j) between the two prefixes of S1 and S2. The similarity of the two strings is then expressed

by the value v(m, n). [1, Chap. 7.4.1]

4.2.2 Local similarity

An important variant of similarity search is local alignment or local similarity. Suppose we

have two long DNA sequences in which there is a particularly interesting subsequence

representing a gene that is common between the sequences. Doing a global alignment or

similarity search will not be able to identify this because there may be a lot of

dissimilarities in the rest of the sequence which yield a low value for similarity and a large

edit distance, neither of which say anything about this interesting region. If the regions of

highly similar local alignment are small, they can get lost in the context of global

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 25

alignment. The dynamic programming equations are very similar to the edit distance

computation and similarity value v(i, j) is given as:

v(i, j) = max{ 0, v(i − 1, j) + cI, v(i, j − 1) + cD,,

v(i − 1, j − 1) + cS,}

where cI, cD, and cS,are the values assigned to the insertion, deletion and substitution

operations, respectively. [1, Chap. 7.4.3]

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 26

5 APPLICATIONS OF BURROWS-WHEELER TRANSFORM IN

BIOINFORMATICS AND COMPUTATIONAL BIOLOGY

The major application of the Burrows-Wheeler Transform has been for data compression

and efficient storage. However, various researches on the Burrows-Wheeler Transform

have shown the versatility of the BWT, and hence efforts are shifting from its traditional

application in data compression to other areas of study.

Given the availability of complete genomes of various organisms, a major challenge is how

to make some sense out of the growing mass of data. Computational methods have been

brought to bear on this problem, and different algorithms have been proposed for various

problems. One major characteristic of problems in this area is the huge size of data often

involved. The human genome, for instance, contains about 3 billion base pairs, and there

are organisms with genomes that are orders of magnitude larger. A suffix array would

require 12 gigabytes of storage for the human genome, while the suffix tree may take as

much as 5 times this amount. Developing efficient search algorithms for patterns of various

forms in the genomic sequence thus represents an important problem.

Another important characteristic of genomic sequences is the relatively large amount of

repetition often observed in such data. Hence, identification, grouping, and effective

exploitation of the various types of repetition found in biological sequences is another

challenge. Currently, most applications of the BWT in bioinformatics and computational

biology mainly exploit the context clustering ability of the BWT[1, Chap 8.3]. For the rest

of the chater we will look at analysis, compression, annotation, and pattern matching of

DNA sequences that use BWT.

5.1 DNA sequence compression

Given the large data sizes involved in biological sequences, one way to deal with the

increasing data sizes is by compressing the sequence (see Figure 5 and Section 3). The

major problem is that these algorithms deal with the data as merely a sequence of

characters, without exploiting the special nature of such sequences. In Adjeroh et al. (2002)

[8], two methods were proposed for DNA sequence compression, based on the BWT. The

basic idea was to exploit the different repetition structures observed in DNA sequences to

compress them. Thus, repetition analysis was performed on the sequence based on the

relationship between the BWT and suffix trees and suffix arrays. They proposed two

vocabulary parsing schemes that use a repetition code for repeat types, to parse the input

sequence. Here, vocabulary refers to the ensemble of repeat structures without reference to

their specific locations in the sequence. In one scheme, each repeated substring is removed

from the input sequence and moved to an external dictionary. The positions in the

sequence where each repetition occurred, along with the corresponding repetition code, are

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 27

recorded in the dictionary. Thus there is no reference or pointer information in the original

sequence.

Results in the paper showed that the introduction of repetition analysis and parsing in the

BWT compression pipeline generally improves the compression result. In essence, the

analysis and parsing stage further exposed the hidden regularities in the DNA sequence

(such as reverse complements), which typically will not be discovered by compression

algorithms. [1, Chap. 8.3.1]

5.2 Building BWTs for big databases using prefix free-parsing

High-throughput sequencing technologies have led to the growth of genomic databases.

For many applications we want to build and store indexes of these databases but

constructing such indexes is a challenge. Fortunately, many of these genomic databases are

highly repetitive – a characteristic that can be exploited and enable the computation of the

Burrows-Wheeler Transform (BWT). In the paper Boucher et al. (2019) [3], introduced a

preprocessing algorithm, referred to as prefix-free parsing, to ease the computation of

Burrows-Wheeler Transforms (BWTs) of genomic databases. Given a string S, it produces

a dictionary D and a parse P of overlapping phrases such that BWT of S can be computed

from D and P in time and workspace bounded in terms of their combined size |PFP(S)|.

Their experiments show that D and P are significantly smaller than S in practice, and thus,

can fit in a reasonable internal memory even when T is very large. Therefore, prefix-free

parsing eases BWT construction, which is pertinent to many bioinformatics applications.

In the other paper[4], they considered PFP(S) as a data structure and showed how it can be

augmented to support various queries, including BWT, quickly, still in O(|PFP(S)|) space.

5.3 Analysis of repetition structures and genome annotation

Repetition structures represent an important characteristic of genomic sequences. Long

runs of tandem repeats and of randomly interspersed repeats are prominent features of

DNA sequences. The family of Alu repeats (usually about 350 bases in length) is typical of

short interspersed repeat sequences, referred to as SINEs — short interspersed nuclear

elements[9]. These have been estimated to make up about 11% of the human genome[16].

There are also the long interspersed repeat sequences (LINEs — long interspersed nuclear

elements) which are usually more than 6000 bases in length. In the human genome, the L1

family is the most common LINEs, with about 60,000 to 100,000 occurrences. There are

also short repeats (sometimes called ―random repeats‖), attributed to the fact that typical

sequences and genomes are orders of magnitude larger than the alphabet size (4 in this

case).

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 28

It is known that the redundancy due to the repetition structures provides some form of

stability for the genome. Tandem repeats in particular play a major role in various

regulation mechanisms in the genome, such as in protein binding. Repetition structures

have been implicated in various diseases and genetic disorders. For instance, the triplet

repeats (CTG)n/(CAG)n have been associated with Huntington‘s disease, while the hairpins

formed in (CGG)n/(CCG)n repeats have been linked to the Fragile-X mental retardation

syndrome [10]. An important observation for computational analysis of such repetition

structures is that, in every single case listed, the susceptibility to (or incidence of) the

disease critically depends on the number of copies (that is, the copy exponents in the

repeat), and how many times the triple repeat occurs with a given exponent. [1, Chap.

8.3.2]

Another issue in the analysis of genomic sequences is determining changes in the copy

number of certain important repeating elements over time, perhaps in response to a drug or

environmental changes. A special case of this problem is in detecting changes in the gene

copy number between a normal genome and a mutant genome [11]. For such analysis,

substrings in the genome sequence can be viewed as a word, and the major problem

becomes that of performing a word count over the genome. When the word length is small,

or we have only one or two words, the problem is easy and could be solved using direct

methods. [1, Chap. 8.3.2] However, with increasing word lengths, or an increasing number

of words, improved data structures and algorithms are needed. Using the BWT and related

data structures, Healy et al. (2003) [12] developed a method for annotating any sequence,

including the entire human genome, with the counts of its constituent words. Thus, the

problem is turned into reporting counting queries for each pattern.

At each position along the genome, annotation is performed in terms of the number of

occurrences of the q-mer at this position in both the forward and the reverse directions, for

different values of q. The result is a visualization of the annotation ‖terrain‖ along the

entire genome, which provides a quick view of the structure of repeats within a localized

region along the genome.

5.4 Distance measure between sequences and phylogeny

Mantaci et al. (2005, 2007) [17, 18] proposed an extension of the BWT that uses an

ordering different from the lexicographic ordering. The new ordering allows the BWT to

be extended to handle a multiset of strings (rather than just a single string which is a

multiset of characters). In the same set of papers they showed how the extended BWT can

be used to define a distance measure between sequences. Such a distance measure can thus

be used to cluster species based on their similarity with respect to this measure. Given two

input sequences, say S and T, the number of segments shared by S and T could be used as a

measure of their similarity over evolution. Given the extended BWT, the extent to which

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 29

the two sequences share some segments can be captured by considering the extent of

mixing between symbols from the two sequences in the output array after the

transformation. Thus, even when large but similar segments of two genomes are shuffled

within each genome, the distance measure can still capture their potential relatedness. This

is important in other applications such as in the analysis of genome rearrangements. The

distance measure is therefore simply given by the number of alternations between symbols

from each sequence in the output of the extended BWT. Based on this Mantaci et al.

(2007) constructed phylogenic trees between different species based on their mitochondria

DNA. [1, Chap. 8.3.5]

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 30

6 CONCLUSION

Thoroughout this final project paper we have studied the BWT, one of the last 20th century

breakthroughs in general-purpose lossless compression methods.

The transform is closely related to suffix tree, and suffix array. It can be implemented

using suffix array and thus achiving linear time complexity. The remarkable thing about

BWT is not that it generates more easily encoded output, but that it does this reversibly,

allowing the original document to be re-generated.

Various researchers have shown that versatility of BWT, and shifted its traditional

application in data compression to other areas of study. In this thesis we explore the view

of transformed file as both text and an index, and look at some of the applications that

exploit this.

We observed, that characters in the transformed text are clustered together. From the

relatioship between BWT and suffix array and suffix tree, it follows that output text can be

partitioned into different segments based on the similarity in the character context.

BWT transform has a promising future, as it is being applied in an environment of new

data structures, more powerful computers with new models of computation, increasing

amounts of data to be processed for storage, and pattern matching, and new theory to help

us better understand how we can exploit a powerful technique that is based on simply

muddling up the contents of a file.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 31

7 DALJŠI POVZETEK V SLOVENSKEM JEZIKU

V diplomski nalogi smo najprej opisali Burrows-Whelerjevo preslikavo (BWT) kot enega

zadnjih dosežkov v 20. stoletju v splošnem stiskanju brez izgub. BWT uporablja zamisel o

permutiranju ĉrk v besedilu, kar olajša izgradnjo kompaktne predstavitve in druge vrste

obdelave. Za analizo uporabljamo primerjalni oziroma model RAM. Za zapis rezultatov

uporabljamo asimptotiĉen zapis, zlasti O-zapis.

Nato preuĉimo, kako se BWT izvaja v praksi. Transformacija naprej uredi rotacije

vhodnega niza kar ima za posledico združevanje znakov ki se pojavljajo v podobnih

kontekstih. Obratna BWT omogoĉa ponovno izdelavo izvornega besedila iz permutiranega

besedila BWT. Obratno transformacijo je nekoliko težje izvesti kot transformacijo naprej.

BWT je zelo tesno povezana s priponskim drevesom in priponskim poljem. Problem

razvršĉanja rotiranih matrik je glavna težava pri izvedbi preslikave.

Pri analizi splošne raĉunske zahtevnosti stiskanja upoštevamo dve glavni fazi. Prva faza je

BWT preoblikovanje. Druga faza se nanaša na naslednjo stopnjo morebitnega

preoblikovanja lokalnih struktur v izhodu BWT v globalno strukturo in konĉno entropijsko

kodiranje z uporabo kode spremenljive dolžine. BWT naprej in obratna BWT (prva faza

BCompress) se lahko izvedeta v linearnem ĉasu in linearnem prostoru v najslabšem

primeru. LGT pretvori lokalno strukturo, ki jo ustvari BWT, v globalno strukturo, ki jo

lahko uporabe algoritmi za entropijsko stiskanje. Entropijsko kodiranje je proces, v

katerem je mogoĉe simbole kodirati na podlagi ocenjene porazdelitve verjetnosti, kako

verjetni so posamezni simboli. Algoritmi za lokalno preoblikovanje globalne strukture

(LGT) zahtevajo le en prehod preko izhoda BWT. Tako je lahko dekodiranje v najslabšem

primeru prav tako izvedeno v O(n) ĉasu in prostoru.

Problem ujemanja vzorcev je ugotoviti, ali se vzorec P pojavlja kot podniz v besedilu T.

Eden najpomembnejših algoritmov za iskanje vzorcev je algoritem Knuth-Morris-Prath

(KMP). Deluje na osnovi opažanja, da, ko pride do neujemanja, smo zbrali dovolj

informacij, da bolje doloĉimo, kje bi se lahko zaĉelo naslednje ujemanje. Na ta naĉin se

izognemo ponovnemu preverjanju predhodno ujemajoĉih se znakov. Ujemanje veĉ vzorcev

je posplošitev problema ujemanja enega vzorca. Problem ujemanja veĉ vzorcev sta rešila

Aho in Corasick s pristopom, podobnim KMP in z uporabo številskega drevesa.

Omenjamo tudi približno ujemanje vzorcev, kar je koristno, ĉe bi radi našli približna

ujemanja, namesto popolne enakosti.

Glede na razpoložljivost popolnih genomov razliĉnih organizmov je velik izziv, kako iz

vse veĉje množice podatkov narediti nekaj smislenega. Druga pomembna znaĉilnost

genomskih zaporedij je razmeroma velika stopnja ponovitev. Veĉina aplikacij BWT v

bioinformatiki in raĉunalniški biologiji izkorišĉa predvsem sposobnost kontekstnog

bruĉenja BWT.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 32

8 REFERENCES

[1] Adjeroh, Donald, Timothy Bell, and Amar Mukherjee. The Burrows-Wheeler

Transform:: Data Compression, Suffix Arrays, and Pattern Matching. Springer Science &

Business Media, 2008.

[2] Burrows, Michael, and Wheeler, David. "A block-sorting lossless data compression

algorithm." Digital SRC Research Report. 1994.

[3] Boucher, Christina, et al. "Prefix-free parsing for building big BWTs." Algorithms for

Molecular Biology 14.1 (2019): 1-15.

[4] Boucher, Christina, et. al. ‖PFP Data Structures.‖ arXiv preprint arXiv:2006.11687

(2020).

[5] Ukkonen, Esko. "On-line construction of suffix trees." Algorithmica 14.3 (1995): 249-

260.

[6] Knuth, Donald E., James H. Morris, Jr, and Vaughan R. Pratt. "Fast pattern matching in

strings." SIAM journal on computing 6.2 (1977): 323-350.

[7] Aho, Alfred V., and Margaret J. Corasick. "Efficient string matching: an aid to

bibliographic search." Communications of the ACM 18.6 (1975): 333-340.

[8] Adjeroh, Don, et al. "DNA sequence compression using the Burrows-Wheeler

Transform." Proceedings. IEEE Computer Society Bioinformatics Conference. IEEE,

2002.

[9] Kramerov, Dimitri A., and Nikita S. Vassetzky. "Short retroposons in eukaryotic

genomes." International review of cytology 247 (2005): 165-221.

[10] Lubin, Flora, et al. "Nutritional and lifestyle habits and water-fiber interaction in

colorectal adenoma etiology." Cancer Epidemiology and Prevention Biomarkers 6.2

(1997): 79-85.

[11] Lucito, Robert, et al. "Representational oligonucleotide microarray analysis: a high-

resolution method to detect genome copy number variation." Genome research 13.10

(2003): 2291-2305.

Vujinović D. Burrows-Wheeler Transform.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 33

[12] Healy, John, et al. "Annotating large genomes with exact word matches." Genome

research 13.10 (2003): 2306-231

[13] Smith, Temple F., and Michael S. Waterman. "Identification of common molecular

subsequences." Journal of molecular biology 147.1 (1981): 195-197.

[14] Cormen, Thomas H., et al. Introduction to algorithms, Third Edition. 3rd. MIT Press,

2009

[15] Levenshtein, Vladimir I. "Binary codes capable of correcting deletions, insertions, and

reversals." Soviet physics doklady. Vol. 10. No. 8. 1966.

[16] Bai, Xue, Feifei Li, and Zhihua Zhang. "A hypothetical model of trans-acting R-

loops-mediated promoter-enhancer interactions by Alu elements." Journal of Genetics and

Genomics (2021).

[17] Mantaci, Sabrina, et al. "An extension of the Burrows–Wheeler

transform." Theoretical Computer Science 387.3 (2007): 298-312.

[18] Mantaci, Sabrina, et al. "An extension of the Burrows Wheeler transform and

applications to sequence comparison and data compression." Annual Symposium on

Combinatorial Pattern Matching. Springer, Berlin, Heidelberg, 2005

