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Izvleček:

V magistrskem delu je opisana uporaba kvantnih algoritmov v kriptoanalizi bločnih

šifer, ki se opirajo na Feistelovo omrežje ali na zamenjalno-permutacijsko struk-

turo (SPN). V delu analiziramo več dobro poznanih kvantnih algoritmov, med

katere spadajo Simonov, Groverjev, Berstein- Vaziranijev ter Kuperbergov algoritem.

Preučena je njihova časovna zahtevnost, ki jo primerjamo z zahtevnostjo dotičnih

klasičnih algoritmov. Za omenjene algoritme je podanih več aplikacij v kriptoanalizi

nekaterih enkripcijskih shem, kot so npr. Even-Mansourjeva konstrukcija, FX kon-

strukcija ter številne Feistelove šifre. Utemeljeno je, da so kvantni napadi, ki temeljijo

na kombinaciji Simonovega in Groverjevega algoritma pogosto uspešni v primeru Feis-

telovega omrežja, medtem ko so šifre, ki temeljijo na SPN strukturi, dovolj odporne

na njih. To še posebej velja za šifre tipa AES. Orodja, ki jih v magistrskem delu

uporabimo, slonijo na dobro poznanih razultatih iz linearne algebre in kvantnega

računalnǐstva. Ker je post-kvantna kriptoanaliza bločnih šifer šele v povojih, zaklučimo,

da je potrebno kvantno varnost bločnih šifer ponovno evalvirati.
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UDC: 519.712(043.2)

Keywords: Quantum algorithms, Simon’s, Cryptanalysis of block ciphers, Post-

quantum analysis, Simon’s algorithm, Grover’s algorithm, Bertein-Vazirani’s algo-

rithm, Kuperberg’s algorithm, Feistel network, SPN, FX

Math. Subj. Class. (2020): 03G12, 06E30, 15B34, 81P94, 94A60

Abstract:

In this thesis, we elaborate applications of quantum algorithms in cryptanalysis of block

ciphers based on Feistel network or Substitution-Permutation network (SPN). So far,

many significant results have been discovered in this field. In this context, we are recall-

ing and elaborating the widely used quantum algorithms such as: Simon’s, Grover’s,

Berstein- Vazirani’s and Kuperberg’s algorithms. Also, we discuss their complexities

in comparison to the classical counterparts. Then, we elaborate the applications of

these algorithms in the cryptanalysis of several general encryption schemes such as

Even-Mansour, FX construction, various Feistel-based ciphers, just to name a few. It

appears that the quantum attacks (mainly based on the Simon-Grover combination)

are efficiently applied to Feistel networks, while the SPN-based ciphers still possess suf-

ficient resistance (especially AES-like ciphers). The methodology that we use is based

on the well-known results in linear algebra and quantum computation. As the post-

quantum development of the field of cryptanalysis of block ciphers is still in its early

phase, we conclude that the quantum security of block ciphers has to be re-evaluated.
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Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 IX

List of Abbreviations

i.e. that is

e.g. for example
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1 INTRODUCTION

Throughout history, people always had a need to group, thus creating tribes, empires,

kingdoms, states, and hence the need to protect information from external enemies or

even from members of their group. So, it was natural to create a science, which keeps

the messages secure, which is today known as cryptography (kryptós-hidden, graphein-

to write). The beginning of its development has been initiated by the discovering of

letters. The first known evidences of this science were found in a wall of the tomb from

the Old Kingdom of Egypt circa 1900 BC. At first, before the modern era, which is a

turning point in science and technology, the main goal of cryptography was to secure

confidential documents, to ensure the security of communication during wars, political

competition and religious revolutions. However, the modern cryptography is used to

protect our bank accounts, databases, computers, e-mails, etc.

On the other hand, in order to improve cryptographic schemes or test their security,

the field of cryptanalysis has been developing over time as well, which is the science of

analyzing and breaking cryptographic systems. These two sciences, cryptography and

cryptanalysis, are combined into one common field called cryptology that studies the

methods of providing/breaking the secrecy in a communication between two parties.

This is one of the most important and significant sciences today that has changed its

shape and form throughout history, but its main goal to provide secrecy has remained

the same. In order to understand better the modern cryptography that we know today

(in context of the use of secret keys), we now briefly describe its two main types, namely

public-key and symmetric key cryptography (see [54] for more details).

Suppose that Alice and Bob are communicating over an insecure channel (e.g. tele-

phone line, computer network, or radio). The main goal of cryptography is to disable

an adversary, usually referred to as Eve/Oscar, to see what is being sent. The message

that Alice and Bob want to exchange is called plaintext (e.g. text in English, numbers).

To disable the adversary, Alice chooses a secret key K (i.e. an encryption key) and

encrypts the plaintext P to obtain an encrypted message called ciphertext C. Then,

Alice sends ciphertext to Bob, which uses a decryption key K ′ to obtain the original

message (K and K ′ are not necessarily the same in general). Here, the transformation

of the plaintext into ciphertext is called the encryption process, and the reverse process

is called the decryption. This is illustrated in Figure 1.

Depending on the type of encryption and decryption keys, there are two types of
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cryptography. If the sender and receiver use the same keys, the secret key to encrypt

and decrypt the message (i.e. K = K ′), then it regards the symmetric-key cryptogra-

phy. On the other hand, if K 6= K ′, in which case two separate keys are required: the

public key for encryption and the private one for decryption of the message, then it

regards asymmetric-key cryptography. Apart from the traditional modern cryptogra-

Figure 1: The communication over an insecure channel.

phy, there has been a lot of discussion recently concerning post-quantum cryptography,

which is a result of the development of quantum computers. An initial idea to develop

quantum computers belongs to the physicist Richard Feyman (1982) [23], whose work

influenced the derivation of various quantum algorithms. The first construction of

quantum computers appeared in the last two decades with the tendency to achieve

the quantum supremacy, i.e. to have a programmable quantum device capable of solv-

ing certain problems faster than the most powerful classical computer in any feasible

amount of time.

In general, the term algorithm refers to a series of steps that we must perform to

solve a given problem. However, a quantum algorithm is an algorithm such that at least

one of the steps is based on quantum states such as superposition and/or entanglement.

The algorithms are usually described by a quantum circuit, which represents a model

of quantum computation where the steps of solving a given problem are quantum gates

applied to one or more qubits. A detailed description of these terms will be given later

on.

In certain cases, quantum algorithms are much faster and efficient than classical

algorithms. However, the following question arises: Will the privacy of our data be

compromised in the (near) future by quantum computers, which are predicted to be a

part of our daily lives? The application of quantum algorithms in the last two decades

shows that the classical public-key encryption schemes can be completely broken. While

the symmetric-key algorithms do not provide the same level of security as in the clas-

sical environment. For instance, in 1994, Peter Shor [52] described a polynomial-time

algorithm for solving the integer factorization and discrete logarithm problems, which

means that Shor’s algorithm can completely break the RSA-like cryptosystems. On

the other hand, the application of Grover’s algorithm [25] to symmetric-key encryption
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schemes imposes the requirement that a secret master key has to be doubled in size.

Later on, the application of other quantum algorithms, such as Simon’s [53], Bernstein-

Vazirani’s [6], Kuperberg’s [36] and their combinations, shows that our understanding

of the security of symmetric-key schemes is not on a proper level yet.

Before we describe the main goals of this thesis, we briefly recall the notation

related to symmetric-key encryption schemes. As they are traditionally divided in two

main representatives, namely stream ciphers and block ciphers, in this thesis we will

be considering only block ciphers. An n-bit block cipher is a function E : {0, 1}n ×
{0, 1}k → {0, 1}n such that for a fixed key K ∈ K (K denotes the keyspace) the

encryption function E(P,K) = EK(P ) is a permutation, which takes as inputs a

key K of a length k and a message block P (plaintext) of a length n, and produces

an n-bit output C called chipertext. The inverse mapping is the decryption function

D : {0, 1}n × {0, 1}k → {0, 1}n defined as D(C,K) = E−1
K (C) = DK(C), such that for

each K ∈ K, DK(EK(P )) = P .

The most common design approachs of block ciphers today are iterated product

block ciphers with the structure based on either Feistel Network (FN) or Substitution

Permutation Network (SPN). The encryption of iterated product block ciphers is per-

formed by applying the same round function (certain amount of times) which uses the

so-called round keys, which are derived from a secret master key by a key-scheduling

algorithm.

In this thesis, we elaborate applications of quantum algorithms (mentioned ear-

lier) in cryptoanalysis of block ciphers based on FN or SPN structure. So far, many

significant results have been discovered in this field. For instance, although Simon’s

algorithm was described in 1994, its first application in cryptanalysis of block ciphers

was demonstrated in 2010 [37] when it was shown that security of the 3-round Feistel

cipher can be completely broken. Later, it was shown that the so-called Even-Mansour

construction is not secure [38] as well. Furthermore, Leander and May [39] firstly

introduced the combination of Simon’s [53] and Grover’s algorithms [25], which were

applied to the FX-construction [34]. They showed that the key whitening procedure

of increasing the key space is not efficient as it is in the classical environment. Also,

the applications of Berstein-Vazirani’s [6] and Kuperberg’s [36] algorithms are given in

the context of constructing quantum distinguishers based on period finding (for binary

and non-binary block ciphers respectively). Overall, the post-quantum development of

the field of cryptanalysis of block ciphers is still in its early phase.
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2 PRELIMINARIES

In this section, we give an overview of definitions important for understanding the

results discussed in the subsequent sections. We start with the definition of Boolean

functions, which are utilized in the design of almost all symmetric-key encryption

schemes.

Definition 2.1. A Boolean function f in n variables is a map {0, 1}n → {0, 1}.

Some further properties of Boolean functions are given in Chapter 5. As linear

algebra plays an important role in the description of quantum algorithms, in what

follows we recall the main definitions and properties.

2.1 GROUPS AND VECTOR SPACES

We start with the well-known results related to groups and vector spaces. If not stated

otherwise, the definitions have been taken from [27].

Definition 2.2. The group is a pair (G, ·), where · : G×G→ G is a binary operation

with the following properties:

1. Associativity: (x · y) · z = x · (y · z), ∀x, y, z ∈ G.

2. Identity element: ∃!e ∈ G : e · x = x · e = x,∀x ∈ G.

3. Inverse element: ∀x ∈ G, ∃!x−1 : x · x−1 = x−1 · x = e.

A group in which the group operation is commutative is called a commutative or Abelian

group. The definition of the vector space is given as follows.

Definition 2.3. Let V (+, ·) be an Abelian group and (F,+, ·) be a field. We say that

V is a vector space over F if there exist function F × V → V , such that for every

α, β ∈ F and u,v ∈ V the following holds:

1. α(u + v) = αu + βv,

2. (α + β)u = αu + βu,

3. (αβ)u = α(βu),
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4. eu = u,

where (α,u) = αu.

The elements of the set V are called vectors and are usually denoted as v or −→v .

However, in quantum computing it is common to use the so-called Dirac notation (bra-

ket), which will be introduced in the next subsection. In most applications of quantum

computation, finite vector spaces over the field of complex numbers C is used, and it

is denoted by Cn. Several definitions related to vectors spaces are given as follows.

Definition 2.4. In a vector space V , a sequence of vectors v1,v2, . . .vn is linearly

dependent, if there exist scalars α1, α2, . . . , αn ∈ C such that at least one scalar is non-

zero and

α1v1 + · · ·+ αnvn = 0.

Otherwise, we say that a sequence of vectors is linearly independent.

Definition 2.5. A basis for a vector space V is a sequence of vectors which is linearly

independent and spans V .

Definition 2.6. We say that a vector space V is finite-dimensional if its basis contains

finitely many vectors.

Definition 2.7. The dimension of a vector space V , denoted by dim(V ), is the number

of vectors in its bases.

Theorem 2.8. In a vector space V , a sequence of vectors v1, . . . ,vn is a basis if and

only if any vector x ∈ Cn can be written in the form

x =
n∑
i=1

αivi, α1, . . . αn ∈ Cn.

We note that the definitions, theorems and other results given in the subsequent

subsections of this chapter are taken from [46,57].

2.2 THE DIRAC NOTATION

In the previous subsection, vectors were denoted as v. However, as mentioned before,

in quantum computing it is common to use Dirac notation (bra-ket) introduced by the

English physicist Paul Dirac. The notation uses the angle brackets,”〈” and ”〉”, and a

vertical bar ”|”.

Let v be an arbitrary vector in Cn, then

v = |v〉 =


v1

v2

...

vn

 ,
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such that all entries vi for i = 1, . . . , n are complex numbers, i.e. vi = xi + yii, where

real numbers xi and yi are real and imaginary part of vi, respectively. Its dual vector

is denoted as follows

〈v| = (v̄1, . . . , v̄n),

where v̄i is a conjugate of the complex number vi, for i ∈ {1, . . . , n}, respectively. Then

”|〉” is called a ket and ”〈|” is called a bra. Using this notation we can represent vectors

of the computational basis of Cn in the following way:

|0〉 =


1

0
...

0

 , |1〉 =


0

1
...

0

 , . . . , |n− 1〉 =


0

0
...

1

 . (2.1)

Example 2.9. Let us consider 2-dimensional vector space C2. From (2.1) we know

that its computational basis is B = {|0〉, |1〉}, where

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
.

For a better understanding of quantum algorithms, in their mathematical descrip-

tion, an inner product is used, which is defined as follows.

Definition 2.10. Let V be vector space over field F . Then a function 〈·|·〉 : V ×
V → F is called an inner product that satisfies the following conditions for all vectors

|x〉, |y〉, |z〉 ∈ V and all scalars α ∈ F

1. 〈x|y〉 = 〈y|x〉,

2. 〈x+ y|z〉 = 〈x|z〉+ 〈y|z〉,

3. 〈αx|y〉 = α〈x|y〉,

4. 〈x|x〉 ≥ 0,

5. 〈x|x〉 = 0 ⇐⇒ |x〉 = 0.

Example 2.11. In the vector space Cn, a function defined by

〈x|y〉 =
n∑
i=1

xiyi,

where |x〉 = (x1, . . . , xn)>, |y〉 = (y1, . . . , yn)> ∈ Cn is called an inner product.

Definition 2.12. A vector space over the field of complex numbers with an inner

product is called a unitary vector space.
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Definition 2.13. In a unitary vector space V , the function ‖ · ‖ : V → R defined as

‖|x〉‖ =
√
〈x|x〉

is called a norm on V . A non-negative real number ‖|x〉‖ is called a norm of vector

|x〉.

Definition 2.14. In a unitary vector space V we say that vectors |x〉, |y〉 ∈ V are

orthogonal if 〈x|y〉 = 0.

Definition 2.15. A basis {|a〉, |b〉} of C2 is orthonormal if

1. 〈a|b〉 = 0,

2. 〈a|a〉 = 〈b|b〉 = 1.

Example 2.16. Let us consider a basis H = {|+〉, |−〉} of C2, where

|+〉 =
|0〉+ |1〉√

2
and |−〉 =

|0〉 − |1〉√
2

. (2.2)

The basis introduced above is called a Hadamard basis and it is an example of an

orthonormal basis.

Example 2.17. An example of another orthonormal basis of C2 is the Nega-Hadamard

basis: N = {|i〉, | − i〉}, where

|i〉 =
|0〉+ i|1〉√

2
and | − i〉 =

|0〉 − i|1〉√
2

(2.3)

We note that the two bases introduced in Examples 2.15 and 2.16 are important in

the construction of quantum algorithms.

2.3 QUBITS AND QUANTUM GATES

A bit is a fundamental unit of classical information processing. Similarly, a qubit is a

fundamental unit of quantum information processing and it is defined as follows.

Definition 2.18. The qubit is a unit vector in C2. Each qubit can be represented as

follows:

|ψ〉 = α|0〉+ β|1〉 =

(
α

β

)
, (2.4)

where α, β ∈ C are called amplitudes of state |ψ〉 and |α|2 + |β|2 = 1. If α 6= 0 and

β 6= 0 than qubit is in the superposition of states |0〉 and |1〉.
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The measurement plays a central role in quantum computations since, we have to

be able to extract information out of the computational system and it is associated to

an orthonormal basis, say {|ψ1〉, |ψ2〉}. Thus, if we want to measure (2.4) the qubit is

forced into one of the following two states, either |ψ1〉 or |ψ2〉. Based on the Born rule

described in [60], the probability to get |ψ1〉 equals

|〈ψ1|ψ〉|2. (2.5)

Similarly, the probability to get |ψ2〉 equals

|〈ψ2|ψ〉|2. (2.6)

This measurement is called a single-qubit measurement.

Example 2.19. Let us consider the single-qubit state |ψ〉 = i√
3
|0〉 +

√
2√
3
|1〉 and the

measurement basis {|0〉, |1〉}. By (2.5) and (2.6) we are able to determine their proba-

bilities. Since we have

〈0|( i√
3
|0〉+

√
2√
3
|1〉)〉 =

i√
3
〈0|0〉+

√
2√
3
〈0|1〉 =

i√
3

the probability to obtain |0〉 after the measurement equals

|〈0|ψ〉|2 =
∣∣∣ i√

3

∣∣∣2 =
1

3
.

Equivalently, the probability to obtain |1〉 equals

|〈1|ψ〉|2 =
∣∣∣√2√

3

∣∣∣2 =
2

3
.

If we want to transform one qubit state into another we use unitary transformations.

Definition 2.20. A linear transformation U in a vector space V is said to be unitary

if

U †U = UU † = I

where I is a identity linear transformation and U † denotes the conjugate transpose of

U .

A set of linear operations that are of fundamental importance in quantum compu-

tations is known as Pauli transformations, which are defined as follows.

Definition 2.21. With respect to the computational basis the matrix of the Pauli

transformations I,X, Y and Z are given by

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (2.7)
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All these transformations can be written using the Dirac notation as follows:

• I = |0〉〈0|+ |1〉〈1|,

• X = |1〉〈0|+ |0〉〈1|,

• Y = −i|0〉〈1|+ i|1〉〈0|,

• Z = |0〉〈0| − |1〉〈1|.

These transformations act to the computational basis states as follows:

I|0〉 = |0〉, I|1〉 = |1〉,

X|0〉 = |1〉, X|1〉 = |0〉.

Since X is similar to classical NOT operation it is sometimes known as the NOT

operator or bit flip.

Y |0〉 = −i|1〉, Y |1〉 = i|0〉,

Z|0〉 = |0〉, Z|1〉 = −|1〉.

Let us introduce the fundamental quantum operation, called the Hadamard transfor-

mation, which is represented by a Hadamard matrix.

Definition 2.22. A matrix Hn×n which has all entries ±1 and satisfies HH> = I is

called a Hadamard matrix.

Example 2.23. For a single qubit we use 2 × 2 matrixes, therefore the Hadamard

matrix H2×2. It is given by

H =
1√
2

(
1 1

1 −1

)
. (2.8)

Remark 2.24. Through the thesis the Hadamard matrix 2× 2 is used more frequently.

The Hadamard transform acts on the computational basis states in the following

way:

H|0〉 =
|0〉+ |1〉√

2
= |+〉 and H|1〉 =

|0〉 − |1〉√
2

= |−〉. (2.9)

In Dirac notation (2.8) can be represented by

H =
1√
2

(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|).

The Hadamard and Pauli transformations represented in (2.8) and (2.7), respectively

are the basic operations for one single-qubit. Some of the rest quantum transformations

are presented in Table 1. These operators are simply called quantum gates.
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Now we describe a multi-qubit state using tensor product. In this context, a quan-

tum register is a set of qubits treated as a composite system. We consider two single

qubit states |ψ1〉 = α|0〉+ β|1〉 and |ψ2〉 = α′|0〉+ β′|1〉, respectively. The combination

of two state is given by

|ψ1〉 ⊗ |ψ2〉 = (α|0〉+ β|1〉)⊗ (α′|0〉+ β′|1〉)

= αα′|0〉|0〉+ αβ′|0〉|1〉+ βα′|1〉|0〉+ ββ′|1〉|1〉

= αα′|00〉+ αβ′|01〉+ βα′|10〉+ ββ′|11〉,

where |αα′|2 + |αβ′|2 + |βα′|2 + |ββ′|2 = 1. For simplicity we often write |ψ1〉 ⊗ |ψ2〉 =

|ψ1〉|ψ2〉 = |ψ1ψ2〉. In general state of n-qubit register is

|ψ〉 =
∑

i∈{0,1}2
ai|i〉, (2.10)

where
∑

i∈{0,1}2
|ai|2 = 1. Consequently, all transformations to the n-qubit states are

2n × 2n matrices, that are obtained using Kronecker product.

Definition 2.25. Let A be a m× n matrix and B a p× q matrix. Then,

C = A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 . (2.11)

The resulting matrix C is mp× nq matrix.

Let us consider gate H⊗n = H ⊗ · · · ⊗H︸ ︷︷ ︸
n times

that preforms a Hadamard transform on

the register of n-bits.

Proposition 2.26. Let |0〉⊗n = |0〉 ⊗ · · · ⊗ |0〉 denote initial state on n qubits. Then

H⊗n|0〉⊗n =
1√
2n

∑
∈{0,1}n

|x〉. (2.12)

Proof. We prove the above proposition by induction on n.

Base case: For n = 1, it follows from 2.9 that the property holds. For n = 2, we have

that:

H ⊗H =
1√
2

(
1 1

1 −1

)
⊗ 1√

2

(
1 1

1 −1

)
=

1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 1 −1 1

 ,

and

|0〉 ⊗ |0〉 =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 .
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Therefore,

H⊗2|00〉 =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 1 −1 1




1

0

0

0

 =
1

2


1

1

1

1

 =
|00〉+ |01〉+ |10〉+ |11〉

2
.

Hence, H⊗2|00〉 =
1√
22

∑
x∈0,12

|x〉 and (2.12) holds for n = 2.

Induction step: Suppose now (2.12) is true for n− 1, i.e.

H⊗(n−1)|0〉⊗(n−1) =
1√
2n−1

∑
x∈{0,1}n−1

|x〉.

Let us consider |ψ〉 = H⊗n|0〉⊗n = H⊗(n−1)|0〉⊗(n−1)H|0〉. By induction hypothesis and

(2.9) we have

|ψ〉 =
1√
2n−1

∑
x∈{0,1}n−1

|x〉 ⊗ |0〉+ |1〉√
2

=
1√
2n

∑
∈{0,1}n

|x〉.

Proposition 2.27. [59] Let |x〉 = |x1 . . . xn〉 denote a computational basis on n qubit,

i.e x ∈ {0, 1}n, where xi ∈ {0, 1}. Then

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉. (2.13)

Here, the dot product x · y denotes the dot product modulo two.

Notice that both Hadamard and Pauli quantum gates are gates for a single qubit

register. The quantum gate that is often used in the construction of quantum algo-

rithms is the Controlled Not gate (CNOT). Its matrix form, as well as other important

quantum gates, are given in Table 1. Quantum gates are the building blocks of the

quantum circuits, which we describe in the following subsection.
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Table 1: The matrix form of some of the more important quantum gates.

Quantum Gate Matrix Form Quantum Gate Matrix Form

Hadamard 1√
2

(
1 1

1 −1

)
CNOT


1 0 00

0 1 0 0

0 0 0 1

0 0 1 0



Pauli-X

(
0 1

1 0

)
Swap


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



Pauli-Y

(
0 −i
i 0

)
CZ


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



Pauli-Z

(
1 0

0 −1

)
CPHASE


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i



Phase (S)

(
1 0

0 i

)
Toffoli



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0



π
8

(T)

(
1 0

0 e
iπ
4

)
CSWAP



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1



2.4 THE QUANTUM CIRCUIT

Programs that run on quantum computers can be described through quantum circuits,

where quantum gates act on qubits. The following conventions are used for drawing

circuits:

• Each line in the circuit represents a wire in the quantum circuits.

• Horizontal single lines represent the qubits and may be labeled.

• Double lines are classical bits.

• The gates on these qubits are drawn on the wire.

• The circuit is to be read from the left to the right.

• Control qubits are represented by solid circles.
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• Every new state maybe separated with vertical lines.

Figure 2: Symbols in quantum circuits.

Let us consider the given quantum circuit. In Figure 3 we see that

1. The initial state |ψ0〉 = |x0〉|x1〉|x2〉|x3〉.

2. The next state |ψ1〉 is obtained by acting H ⊗ I ⊗X ⊗ I on initial state |ψ0〉.

3. In this step we call a black-box/oracle function which is a unitary operator i.e.

Uf |ψ1〉 = |ψ2〉.

4. Finally, to obtain the state |ψ3〉 we perform the following transformation (CNOT⊗
I ⊗ T )|ψ2〉.

Figure 3: An example of a quantum circuit without measurement.
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One of the most important quantum operations, the quantum Fourier transform, which

has also found application in the construction of Kuperberg’s algorithm (described later

on), is introduced in the following subsection.

2.5 THE QUANTUM FOURIER TRANSFORM

Definition 2.28. The classical Fourier transform is a mapping that takes an input

vector (x0, x1, . . . , xn−1) ∈ Cn and maps it to the output vector (y0, y1, . . . , yn−1) ∈ Cn

in the following way:

yk =
1√
n

n−1∑
j=0

xke
−2πijk
n , k = 0, 1, . . . , n− 1. (2.14)

Definition 2.29. The quantum Fourier transform (QFT) on an orthonormal basis

|0〉, |1〉, . . . , |n−1〉 is defined as a linear operator with the following action on the basis

states:

|k〉 → 1√
n

n−1∑
j=0

e
2πijk
n (2.15)

Similarly, applying QFT on an arbitrary state, we can write

n−1∑
j=0

xj|j〉 →
n−1∑
k=0

yk|k〉,

where the amplitudes yk are classical Fourier transformation of the amplitudes xj. The

quantum Fourier transform can be represented by the unitary n× n matrix as follows:

Fn =
1√
n



1 1 1 1 . . . 1

1 ω ω2 ω3 . . . ωn−1

1 ω2 ω4 ω6 . . . ω2(n−1)

1 ω3 ω6 ω9 . . . ω3(n−1)

...
...

...
... . . .

...

1 ωn−1 ω2(n−1) ω3(n−1) . . . ω(n−1)(n−1)


, (2.16)

where ω = e
2πi
n is an n-th root of unity.

Example 2.30. Let us consider matrix form of QFT for n = 2, then ω = e
2πi
2 = eπi =

−1. From Equation 2.16 we have

F2 =
1√
2

(
1 1

1 −1

)
,

which is the Hadamard transform introduced in (2.8).
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When constructing algorithms, it is important to consider their efficiency. A special

branch of science, Complex Theory studies this. For our needs, we introduce the

following two definitions, which are taken from [18].

Definition 2.31. For a given function g(n) let us introduce the following set:

Θ(g(n)) = {f | ∃ c1, c2 > 0 ∧ n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0}.

We say that g(n) is an asymptotically tight bound for f(n).

Definition 2.32. For a given function g(n) let us introduce the following set:

O(g(n)) = {f | ∃ c > 0 ∧ n0 : 0 ≤ f(n) ≤ cg(n), ∀n ≥ n0}.

We use O-notation to give an upper bound for the functions.
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3 SIMON’S ALGORITHM

The idea of quantum algorithms arose from the need to solve some more complex

problems much faster than classical algorithms do. One such algorithm is Simon’s

algorithm described by Daniel R. Simon in 1994 [53]. A very simple quantum algorithm

was derived, being exponentially faster than any known classical algorithm, which

solves the so-called Simon’s problem. In this section we define this problem and collect

some of the most important applications of Simon’s algorithm. We note that Simon’s

algorithm is one of the main tools used in cryptanalysis of block ciphers today.

Problem 3.1. [53] (Simon’s problem) Given a function f : {0, 1}n → {0, 1}m (m ≥ n)

with the promise that there exists a secret string s ∈ {0, 1}n such that ∀x 6= y

f(x) = f(y)⇔ x⊕ y ∈ {0n, s}, (3.1)

where ⊕ denotes bitwise addition module two. The goal is to find s.

If x⊕ y = 0n, then x = y, which implies that f is injection (one to one ) function.

Remark 3.2. Through the thesis, for the simplicity, we will assume that n = m.

Example 3.3. Let us consider a function f : {0, 1}3 → {0, 1}3 defined by the following

table of values:

x f(x)

000 101

001 010

010 000

100 000

011 110

101 110

110 101

111 010

From the table we see that f(000) = f(110), f(001) = f(111), f(010) = f(100), f(011) =

f(101) Since 000 ⊕ 110 = 110 it implies that the secret string s = 110. Similarly for

the remaining cases, by a simple calculation, we can conclude that the secret string s

is equal to 110.
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Simon’s algorithm: The best classical algorithm can solve Simon’s problem in

time complexity O(2
n
2 ). However, with the following quantum algorithm it is possible

to solve this problem with quantum complexity O(n). The following description of

Simon’s algorithm is taken from [50,59].

1. Input (2n-qubits): Prepare the initial state with two n−bit registers:

|ψ0〉 = |0〉⊗n ⊗ |0〉⊗n,

where ⊗ is the tensor product.

2. Apply a Hadamard transform: In this step the input will be transformed by

applying the Hadamard transform H⊗n to the first register.

|ψ1〉 = (H⊗n|0〉⊗n)︸ ︷︷ ︸
(2.12)

⊗|0〉⊗n

=
( ∑
x∈{0,1}n

1√
2n
|x〉
)
⊗ |0〉⊗n

=
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉⊗n.

3. Apply the oracle or black-box Of : Here we call the oracle Of , that is imple-

mented as a unitary operation that performs the transformation Of (|x〉 ⊗ |y〉) =

|x〉 ⊗ |f(x)⊕ y〉. Applying it on |ψ2〉 we obtain

|ψ2〉 =
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |f(x)〉.

4. Measure the second register: From (3.1) we have f(x) = f(y) if and only if

x⊕ y ∈ {0n, s}. Therefore if x⊕ y = 0n it implies x = y, and thus f is injection,

i.e. each value of x corresponds to a unique value f(x). Therefore, since {0, 1}n

has 2n elements, every x ∈ {0, 1}n has equal probability 1
2n
. On the other hand,

if x⊕ y = s 6= 0n then x = y⊕ s. Hence, there are two possible values of x: x = y

or x = y ⊕ s. After measuring the second register, first register is reduced to an

equal superposition of those two values:

|ψ3〉 =
1√
2

(|y〉+ |y ⊕ s〉).

Since, there will be no more operations on the second register, further calculations

will be performed only on the first register.

5. Apply a Hadamard transform to the first register: Now we apply the

Hadamard transform H⊗n on the first register of state |ψ3〉. Using Proposition
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(2.27), we obtain

|ψ4〉 = H⊗n|ψ3〉 =
1√
2
H⊗n(|y〉+ |y ⊕ s〉)

=
1√
2

1√
2n

(
∑

z∈{0,1}

(−1)y·z|z〉+
∑

z∈{0,1}n
(−1)(y⊕s)·z|z〉)

=
1√
2n+1

∑
z∈{0,1}n

((−1)y·z + (−1)(y⊕s)·z|z〉)

=
1√
2n+1

∑
z∈{0,1}n

((−1)y·z + (−1)y·z⊕s·z|z〉)

=
1√
2n+1

∑
z∈{0,1}n

(−1)y·z(1 + (−1)s·z)|z〉.

6. Measurement: In the case when s = 0n, f is an injective function and s · z = 0.

Thus the x ∈ {0, 1}n will be produced with uniform distribution.

Suppose now s 6= 0n, then s · z = 1 or s · z = 0.

If s · z = 1, then (−1)y·z(1 + (−1)s·z = (−1)y·z(1 + (−1)1) = 0. Hence, pz = 0, so

such a z will never be measured.

If s · z = 0, we have (−1)y·z(1 + (−1)s·z = (−1)y·z(1 + (−1)0) = 2(−1)y·z. In that

case |ψ4〉 becomes

|ψ4〉 =
2√
2n+1

∑
z∈{0,1}n

(−1)y·z|z〉

=
1√
2n−1

∑
z∈{0,1}n

(−1)y·z|z〉.

Since |(−1)| = 1, the probability of observing any of z ∈ {0, 1}n such that s·z = 0

is equal to :

pz =
∣∣∣ 1√

2n−1

∣∣∣2 =
1

2n−1
.

So, in summary if s 6= 0n, we have the following probabilities:

pz =

 1
2n−1 , if s · z = 0,

0, if s · z = 1.

7. Classical post-procesing: In the previous part we saw that measurement re-

sults in some string z ∈ {0, 1}n that satisfies s ·z = 0. This is enough information

to determinate s. By running this quantum subroutine several times, say n − 1

times, we get n − 1 strings: zi ∈ {0, 1}n , i ∈ {1, n − 1}. This gives a system of

n− 1 equations, with n unknowns to find s:
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z1 · s = z11s1 + z12s2 + . . . z1nsn = 0,

z2 · s = z21s1 + z22s2 + . . . z2nsn = 0,

...

zn−1 · s = z(n−1)1s1 + z(n−1)2s2 + . . . z(n−1)nsn = 0.

In order to solve given system zi must be linearly independent. Hence, the

probability of finding strings is pi = 1 − 2i−1

2n−1 , for 1 < i < n − 1. Therefore, the

probability that zi are linearly independent is

n−1∏
i=1

(1− 2i−1

2n−1
) =

n−1∏
i=1

1− 1

2n−i
=

n−1∏
i=1

1− 1

2i
≥ 0.288 ≥ 1

4
.

If z1, z2, .., zn−1 ∈ {0, 1}n are linearly independent, we can solve the system and

get some s′ 6= 0n, test whether is f(0n) = f(s′) or not. If this is true , we know

that s = s′ and problem has been solved. If it is not true, it must be that s = 0n.

From the obtained probability, we conclude that s can be determined by repeat-

ing Simon’s algorithm no more than 4n times. Therefore, complexity of this

algorithm is O(n).

The following figure illustrates Simon’s algorithm.

Figure 4: The quantum circuit of Simon’s algorithm.

3.1 APLICATIONS OF SIMON’S ALGORITHM

3.1.1 Simon’s algorithm and three-round Feistel Construction

Although Simon’s algorithm was described in 1994, its first application in cryptanalysis

of block ciphers was demonstrated in 2010 by H. Kuwakado and M. Morii, where it

was shown that one can construct an efficient quantum distinguisher for 3-round Feistel

Network [37]. In order to recall their construction, we firstly provide the definition of

a block cipher based on the Feistel construction.
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Definition 3.4. [42] A Feistel cipher is a symmetric structure that maps a 2n-bit

plaintext L0||R0, where L0, R0 ∈ {0, 1}n and || is the concatenation operator, to a

2n-bit ciphertext Lr||Rr, through an r-round process where r ≥ 1. For i ≤ 1 ≤ r,

Li = Ri−1 and Ri = Li−1 ⊕ F (Ri−1, Ki), where each Ki is derived from the cipher key

K and F is the round function.

In [37] authors considered a 3-round Feistel cipher (Figure 5) with internal permu-

tations (FP) P1, P2, P3 on {0, 1}n (assumed to be publicly known). Assume p = a||b
be plaintext, then using the previous scheme one can obtain the ciphertext c = p||q as

follows:

• Round 1: FP (p) = FP (a||b) = b||a⊕ P1(b) = c1

• Round 2: FP (c1) = a⊕ P1(b)||b⊕ P2(a⊕ P1(b)) = c2

• Round 3: FP (c2) = b⊕P2(a⊕P1(b))||a⊕P1(b)⊕P3(b⊕P2(a⊕P1(b))) = p||q.

Now we define a function F which will be utilised in construction of a distinguisher

later on.

Definition 3.5. Let E be 3−round Feistel cipher with internal permutations Pi (i =

1, 2, 3). Than, the function F : {0, 1}2n → {0, 1}n is defined by

F (a||b) = b⊕ P2(a⊕ P1(b)), (3.2)

where a, b ∈ {0, 1}n.

In order to describe the quantum distinguisher constructed by H. Kuwakado and

M. Morii in [37], we recall the definition of a random permutation.

Definition 3.6. [37] Denote by Pn the set of all permutations on {0, 1}n. The per-

mutation P ∈ Pn is called a random permutation if is chosen from Pn randomly.

In [37], the following problem has been considered.

Problem 3.7. [37] Let E be either the 3-round Feistel cipher (Figure 5) with internal

fixed permutations (publicly known), or a random permutation on {0, 1}2n. Let UE be

unitary operator for computing E, defined as follows

UE|x〉|y〉 = |x〉|y ⊕ E(x)〉,

x, y ∈ {0, 1}2n. By querying UE, the goal is to determine whether E possesses the

Feistel structure (with internal known permutations) or it is selected randomly from

P2n. Unitary operator UE−1 for computing E−1 is not given.
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Figure 5: The 3-round Feistel scheme.

The first step is to construct the Simon’s function f : {0, 1}×{0, 1}n → {0, 1}n for

two distinct arbitrary constants α, β ∈ {0, 1}n as

f(c||a) =

F (a||α)⊕ β, if c = 0,

F (a||β)⊕ α, if c = 1,
(3.3)

where c ∈ {0, 1}, a ∈ {0, 1}n.

Lemma 3.8. [37] Let E be 3-round Feistel cipher with (known) internal permutations.

Then for any distinct strings c||a and c′||a′ in {0, 1}n+1

f(c||a) = f(c′||a′) ⇐⇒ c′ = c⊕ 1 ∧ a′ = a⊕ z,

where z = P1(α)⊕ P1(β).

Proof. (⇒) Suppose that c = 1 and f(c||a) = f(c′||a′). Using (3.2) and (3.3) we have

f(1||a) = F (a||β)⊕ α = β ⊕ P2(a⊕ P1(β))⊕ α.

Let us consider the following two cases:

Case 1:

c′ = 0 =⇒ f(0||a′) = F (a′||α)⊕ β = α⊕ P2(a′ ⊕ P1(α))⊕ β.
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Since f(1||a) = f(0||a′), it implies

β ⊕ P2(a⊕ P1(β))⊕ α = α⊕ P2(a′ ⊕ P1(α))⊕ β, P2(a⊕ P1(β)) = P2(a′ ⊕ P1(α)).

The P2 is an internal permutations, thus it must be injective, and therefore

a⊕ P1(β) = a′ ⊕ P1(α),

hence a′ = a⊕ P1(α)⊕ P2(β) = a⊕ z, where z = P1(α)⊕ P2(β).

Case 2:

c′ = 1 =⇒ f(1||a′) = F (a′||β)⊕ α = β ⊕ P2(a′ ⊕ P1(β))⊕ α.

From f(1||a) = f(1||a′) we obtain

β ⊕ P2(a⊕ P1(β))⊕ α = β ⊕ P2(a′ ⊕ P1(β))⊕ α.

Since P2 and P1 are permutations it must be a = a′.

(⇐) Suppose now c = 1, c′ = c ⊕ 1 and a′ = a ⊕ z, where z = P1(α) ⊕ P2(β).

c′ = 1⊕1 = 0, conclude c′ = 1⊕1 = 0. Using (3.2) and (3.3), we are able to determine

the following

f(1||a) = β ⊕ P2(a⊕ P1(β))⊕ α

and

f(0||a′) = f(0||a⊕ z)

= α⊕ P2((a⊕ z)⊕ P1(α))⊕ β

= α⊕ P2((a⊕ P1(α)⊕ P2(β))⊕ P1(α))⊕ β

= α⊕ P2(a⊕ P1(β))⊕ β.

From the last two expression we can conclude f(1||a) = f(0||a′). The case when c = 0

can be proved in a similar way (cf. [37]).

Lemma 3.8 shows us that the function f is periodic with the period s = 1||z,

i.e. f(c||a) = f((c||a) ⊕ (1||z)) which is equivalent to the condition (3.1) in Simon’s

problem. Therefore, f(c||a) = f((c||a) ⊕ (1||z)). The next step is to define the oracle

function Of as follows

Of |x〉|y〉 = |x〉|y ⊕ f(x)〉, (3.4)

where x ∈ {0, 1}n+1 and y ∈ {0, 1}n. Using this operator we are able to introduce

an attack based on Simon’s algorithm to determine whether E possesses the Feistel

structure (with internal known permutations) or it is a random permutation:



Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 23

1. Initialize X as the empty set.

2. Run Simon’s algorithm.

3. If X does not contain n lineraly independent v′s then go back to step 2. Oth-

erwise, find n-bit string z = (z0, z1, . . . , zn−1) by solving this linear system of

equations:


v0

1 v0
2 . . . v0

n

v1
1 v1

2 . . . v1
n

...
. . .

...

vn−1
1 vn−1

2 . . . vn−1
n



z0

z1

...

zn

 =


v0p

v1
0
...

vn−1
0

 (mod 2), (3.5)

where vij ∈ {0, 1} and (vi0, v
i
1, . . . , v

i
n) ∈ X.

4. Choose u ∈ {0, 1}n+1 at random. Let u′ = u⊕(1||z). Compute f(u) and f(u′). If

f(u) = f(u′) then E is supposed to be with the internal permutations, otherwise

it is with the random permutations.

Let us analyze the case when E possesses the Feistel structure. After applying Of and

measurement the second register, from Simon’s algorithm (Step 4) implies that the

state is

|ψ〉 =
1√
2

(|x〉+ |x⊕ (1||z)〉).

Applying the Hadamard H⊗(n+1) transform we have,

|ψ1〉 =
1√
2n+2

∑
v∈{0,1}n+1

((−1)x·v + (−1)x⊕(1||z)·v|v〉)

=
1√
2n+2

∑
v∈{0,1}n+1

(−1)x·v(1 + (−1)(1||z)·v)|v〉.

We obtain the result from Step 5 of Simon’s algorithm. Measuring this state, we have

(1||z) · v = 0, which is a solution of one equation in (3.5). Since we assumed that E

originates from the Feistel structure, then from Lemma 3.8 follows f(u) = f(u⊕(1||z))

and the output of this algorithm is correct. On the other hand, if E is a random

permutation, then the vector z will be a random vector if exists. In that case, we make

an error if we do not have n independent vectors after 2n extractions. Therefore the

probability that f(u) = f(u′ ⊕ 1||z) is p = 2n−1
22n−1

≈ 1
2n

. In this way, the main result

in [37] is proven.

Theorem 3.9. There is a quantum algorithm for distinguishing the 3-round Feistel

cipher with internal known permutations from a random permutation on {0, 1}2n. The

complexity of the algorithm is O(n) and the error probability is approximately equal to
1

2n
.
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3.1.2 Even-Mansour’s cipher

Let P be a random public permutation on {0, 1}n2 and key k = k1||k2 where k1, k2 ∈
{0, 1}n2 . The encryption function Ek : {0, 1}n × {0, 1}n2 → {0, 1}n2 of Even-Mansour

cipher (EM) is defined as

Ek(p) = P (k1 ⊕ p)⊕ k2 = c,

where c is obtained ciphertext. Therefore, the decryption function Dk : {0, 1}n ×
{0, 1}n2 → {0, 1}n2 is

Dk(c) = P−1(c⊕ k2)⊕ k1 = p,

where p is a plaintext. For more details about this cryptography construction, we refer

reader to [22].

In [38], M. Mori and H. Kuwakado introduced a quantum version of Even-Mansour’s

cipher, which is defined as a unitary operator UEk given as

UEk |x〉|y〉 = |x〉|y ⊕ Ek(x)〉,

where x, y ∈ {0, 1}n2 . In general, the goal is to find the secret key k, and in this process

the adversary is allowed to use the unitary operator UEk . In [38], authors described

a quantum algorithm similar to Simon’s algorithm, which is given as follows. Firstly,

the define the function

f(x) = Ek(x)⊕ P (x) = P (k1 ⊕ x)⊕ k2 ⊕ P (x).

For y = x⊕ k1, we have

f(y) = P (k1⊕y)⊕k2⊕P (y) = P (k1⊕x⊕k1)⊕k2⊕P (x⊕k1) = P (x)⊕P (x⊕k1) = f(x),

i.e. f satisfies Simon’s condition. Now, we consider the application of Simon’s algo-

rithm in details.

Let set Z be initialized as an empty set, then the quantum algorithm for distin-

guishing EM cipher consists of the following steps [22]:

1. Two n
2
-qubit registers are initialized to the zero state:

|ψ0〉 = |0〉⊗
n
2 ⊗ |0〉⊗

n
2 .

2. Apply the Hadamard transform H⊗
n
2 the obtain the state

|ψ1〉 =
1√
2
n
2

∑
x∈{0,1}

n
2

|x〉 ⊗ |0〉⊗
n
2 .
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3. Apply the unitary operator (black box/oracle) defined as Uf |x〉|y〉 = |x〉 ⊗ |y ⊕
f(x)〉 and obtain

|ψ2〉 =
1√
2
n
2

∑
x∈{0,1}

n
2

|x〉 ⊗ |f(x〉).

4. Measure the second register, the one that contains the values of f . Let y be

the measurement result and denote by Xy set of all x such that y = f(x). For

simplicity, omit the second register then the resulting state is given by

|ψ3〉 =
1√
|Xy|

∑
x∈Xy

|x〉.

From the definition of f , we have that if f(x) = y, than f(x⊕k1) = y. Therefore,

the state |ψ3〉 can be rewritten as:

|ψ3〉 =
1√
|Xy|

|Xy |∑
i=1

|xi〉 =
1√
|Xy|

|Xy |
2∑
i=1

|xi〉+ |xi ⊕ k1〉.

5. Applying the Hadamard transform H⊗
n
2 to |ψ3〉 gives

|ψ4〉 =
1√
|Xy|2

n
2

∑
1≤i≤ |Xy |

2

z∈{0,1}
n
2

((−1)xi·z + (−1)(xi⊕k1)·z)|z〉.

6. Measure the register. Notice that we can write ((−1)xi·z + (−1)(xi⊕k1)·z)|z〉 =

(−1)xi·z(1 + (−1)xi⊕k1)|z〉. Hence, the measurement result satisfies

z · k1 = 0,

where z ∈ {0, 1}n2 .

7. Append z to the set Z. If Z does not contains n
2

independent z′s then go back

to Step 2. On the other hand solve the following system of equations

zi · k1 = 0, i ∈ {1, 2, . . . , n
2
− 1}.

8. Choose an arbitrary p ∈ {0, 1}n2 , and let k2 be given by

k2 = Ek(p)⊕ P (p⊕ k1).

If we obtained k1 correctly solving previous system, then one can also obtain k2

and thus k = k1||k2.
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Recall that in Step 7 one obtains n
2
−1 linearly independent equations. In order to do

this the adversary must repeat the procedure from Step 2 to Step 7, say r = n
2

+ ε

times. Then the probability to determine k1 is

r∏
i=ε+2

(1− 1

2i
) > 1− 1

2ε + 1
,

which is independent of n. Thus, the time complexity of this algorithm is O(n). For

classical equivalent it was shown in [38] that the algorithm needs O(n3) steps. There-

fore, Even-Mansour’s cipher is insecure in quantum environment.

3.1.3 Application of Simon’s algorithm to CBC-MAC

In this section, we describe a quantum algorithm introduced by T. Santoli in [49],

which is used to attack a block cipher in the mode called cipher block chaining mes-

sage authentication code (CBC-MAC). The main goal of message authentication and

integrity is to verify that the message was not changed in transit and that the sent

message came from a stated sender, respectively. The message authentication process

is generally realized by message authentication codes (MACs), which works as follows.

To mark the message m, the sender takes an arbitrary key k and uses the MAC algo-

rithm to calculate the tag t of the message m, i.e MAC(k,m) = t. Then a pair (m, t)

is sent to the receiver, who uses the same key k to check if t is a tag of m or not.

CBC-MAC (for more details on CBC-MAC algorithm we refer reader to [42]) is

based on a pseudorandom permutations and usually has many variants. Unless other-

wise stated, all definitions are from [33].

Definition 3.10. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an arbitrary function. We

say that F is an efficient keyed function if for any key k there exist a polynomial-

time algorithm which computes Fk(x) where x is an input. It is length-preserving if

it accepts only pairs of inputs (k, x) where k, x and the output Fk(x) have the same

length.

In order to define pseudorandom functions, we first describe meaning of an oracle-

distinguisher. It consists of an algorithm DO which has an access to an oracle function

denoted by O.

Definition 3.11. Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient length-preserving a

keyed function. F is a pseudorandom function if for any probabilistic polynomial-time

oracle distinguisher D, there exists a negligible function σ(n) such that:∣∣∣Pr[(DFK )(1n) = 1]− Pr[Df (1n) = 1]
∣∣∣ ≤ σ(n),
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where a negligible function is one which grows slower than any inverse polynomial in n,

or more precisely, for any polynomial p there exists an n0 > 0 such that for all integers

n > n0, σ(n) < 1
p(n)

.

Definition 3.12. Let F be a mapping {0, 1}k × {0, 1}n → {0, 1}n. F is keyed per-

mutation if for any K ∈ {0, 1}k the function FK is a permutation from {0, 1}n to

{0, 1}n.

Definition 3.13. A keyed permutation is called efficient if for any K ∈ {0, 1}k there is

a polynomial-time algorithm to evaluate FK(x) and F−1
K (x) respectively, for any input

x ∈ {0, 1}n.

Definition 3.14. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient keyed permuta-

tion. F is called a pseudorandom permutation if for any probabilistic polynomial-time

distinguisher D, there exists a negligible function σ(n) such that:∣∣∣Pr[(DFK )(1n) = 1]− Pr[Df (1n) = 1]
∣∣∣ ≤ σ(n),

where K ∈ 0, 1n and Pn ∈ Pn are chosen uniformly at random.

Similarly as in the case of classical definitions, a quantum pseudorandom permu-

tations are defined. We use a quantum oracle-distinguisher algorithm D|O〉, which is

allowed to make a quantum queries of the form

|x〉|y〉 → |x〉|y ⊕O(x).

Definition 3.15. Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient keyed permutation.

F is a quantum pseudorandom permutation if for any probabilistic polynomial-time

quantum distignuisher D, there exists a negligible function σ(n) such that:∣∣∣Pr[(D|FK〉)(1n) = 1]− Pr[D|Pn〉(1n) = 1]
∣∣∣ ≤ σ(n).

For a pseudorandom function F : {0, 1}k×{0, 1}n → {0, 1}n, CBC-MAC construc-

tion is described as follows. Define the function CBC l : {0, 1}k × {0, 1}s → {0, 1}n

as

CBC(K,m1||m2||m3 . . .ml) = CBC l
FK

(m1||m2||m3|| . . . ||ml),

where s = ln and

CBC l
FK

(m1||m2||m3|| . . . ||ml) = FK(FK(. . . (FK(m1)⊕m2)⊕ . . . )ml). (3.6)

Using (3.6), a tag t of the message m of length s can be computed as t = CBC l(K,m).

In [49] a quantum forgery attack on CBC-MAC is described as follows.
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A message m with prefix α1 ∈ {0, 1}n is given and it is tagged using CBC-MAC for

which it is assumed that pseudorandom permutations FK is replaced with a random

permutation P . For i = 1, . . . l − 1 define functions gi : {0, 1}n+1 → {0, 1}n

gi(b||x) = CBC l
P (αb||0(i−1)n)||x||0(l−i−1)n = P l−iP j(αb)⊕ x), (3.7)

where b ∈ {0, 1}. We have the following result which regards the periods of gi.

Lemma 3.16. For distinct elements u, v ∈ {0, 1}n+1, it holds gi(u) = gi(v) if and only

if v = u⊕ 1||(P i(α0))⊕ P i(α1).

Proof. (⇒) The statement if proved only for b = 0, since in a similar way one proves it

for b = 1. Hence, let us denote by z = P i(α0)⊕ P i(α1). Since u = b||x and v = b′||x′,
the claim of the lemma is equivalent to gi(b||x) = gi(b

′||x′) ⇐⇒ b′ = b ⊕ 1 and

x′ = x⊕ z.
Now, let us assume gi(u) = gi(v) for distinct elements u, v ∈ {0, 1}n+1 and b = b′ =

0. Hence, from equation (3.7) we have

P l−i(P i(α0)⊕ x) = P l−i(P i(α0)⊕ x′)

Since P is permutation we obtain x = x′. It follows u = v which is a trivial case.

Suppose now b = 0 and b′ = 1. Then, we have

P l−i(P i(α0)⊕ x) = P l−i(P i(α1)⊕ x′)

Since P is a permutation we have

x′ = x⊕ P i(α1)⊕ P i(α1) = x⊕ z.

(⇐) Suppose that b = 0, b′ = b ⊕ 1 = 1 and x′ = x ⊕ z. Let us determine gi(u) and

gj(v), respectively. From equation (3.7) we have

gi(u) = gi(0||x) = P l−i(P i(α0)⊕ x)

gi(v) = gi(1||x′) = P l−i(P i(α1)⊕ x′)

= P l−i(P i(α1)⊕ x⊕ P i(α1)⊕ P i(α0)

= P l−i(P i(α0)⊕ x = gi(u).

The above property of functions gi is essentially equivalent to the condition of Si-

mon’s problem. In [49], the quantum attack on CBC-MAC based on Simon’s algorithm

is described as follows:
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1. Construct the unitary operator Ugi , for i = 1, . . . , l − 1 as Ugi |x〉|y〉 = |x〉|x ⊕
gi(x)〉 and for i = 1, . . . , l − 1 apply Simon’s algorithm to find zi = P i(α0) ⊕
P i(α1) 6= 0n. All queries made in this process are on superpositions of messages

m1||m2||m3 . . . ||ml such that mj = 0n for at least one j ∈ {1, . . . , l}.

2. Compute t0 = CBC l
P (α0||0(l−1)n) = P l(α0) and t1 = CBC l

P (α1||0(l−1)n = P l(α1)

classically. Similarly as in the first step, these queries are made on messages

m1||m2||m3 . . . ||ml such that mj = 0n for at least one j ∈ {1, . . . , l}.

3. Assume first that l is even, then forge (m, t) = (α1||z1||z2|| . . . ||zl−1, t0).

Suppose now that l is odd. In this case we forge (m, t) = (α1||z1||z2|| . . . ||zl−1, t1).

The following lemma is proved by T. Santoli in [49] using the induction method for

l ≥ 3.

Lemma 3.17. [49] The tag t is a valid tag for the message m, which means that

t = CBC l
P (m), where t = t0 if l is even and t = t1 if l is odd.

Proof. Base case: For l = 3 (l is odd), we have t = t1 = P 3(α1), and thus

CBC3
P (α1||z1||z2) = P (P (P (α1)⊕ z1)⊕ z2)

= P (P (P (α1)⊕ P (α0)⊕ P (α1))⊕ P 2(α0)⊕ P 2(α1))

= P ((P 2(α0)⊕ P 2(α0)⊕ P 2(α1)⊕ P 2(α1)) = P 3(α1) = t1.

For l = 4 (l is even), we have t = t0 = P 4(α0), and thus

CBC4
P (α1||z1||z2||z3) = P (P (P (P (α1)⊕ z1)⊕ z2)⊕ z3)

= P (P (P (P (α1)⊕ P (α0)⊕ P (α1))⊕ P 2(α0)⊕ P 2(α1))⊕ P 3(α0)⊕ P 3(α1))

= P (P (P 2(α0)⊕ P 2(α0)⊕ P 2(α1))⊕ P 3(α0)⊕ P 3(α1))

= P (P 3(α1)⊕ P 3(α0)⊕ P 3(α1)) = P 4(α0) = t0.

Induction hypothesis: We claim that the forging attack is successful for l. We want to

prove that it holds for l + 1.

Induction step: Consider the following two cases:

Case 1: l being odd implies that l+ 1 is even. In this case CBC l
P = P l(α1), and thus

CBC l+1
P (α1||z1||z2|| . . . ||zl−1||zl)

= P (CBC l
P (α1||z1||z2|| . . . ||zl−1||zl−1)⊕ zl)

= P (P l(α1)⊕ P l(α0)⊕ P l(α1)) = P l+1(α0) = t0.
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Case 2: Suppose now l is even, then l + 1 must be odd. Hence, similarly like above

we obtain

CBC l+1
P (α1||z1||z2|| . . . ||zl−1||zl)

= P (CBC l
P (α1||z1||z2|| . . . ||zl−1||zl−1)⊕ zl)

= P (P l(α0)⊕ P l(α0)⊕ P l(α1)) = P l+1(α1) = t1.

Hence, we proved by induction for l ≥ 3 that t is a valid tag for m.

3.1.4 Quantum slide attack

Slide attacks were first introduced in [8] by Biryukov and Wagner. They can be applied

to an r-round block cipher E whose round functions F are all identical and use the

same round key k.

More precisely, it is assumed that the attacker has knowledge of encryptions of 2
n
2

plaintext. With a high probability, he obtains a slid pair, i.e. a pair of couples (P,C)

and (P ′, C ′) such that F (P ) = P ′. This implies that F (C) = C ′. A quantum version of

this attack was first described in [12], where it has been shown that Simon’s algorithm

can be combined with the slide attack. The quantum version is briefly described as

follows.

Let F be an unkeyed round function and Ek be a whole encryption function of an

r-round block cipher. Then Simon’s function f : {0, 1} × {0, 1}n → {0, 1}n is defined

by

f(b||x) =

F (Ek(x))⊕ x, if b = 0,

Ek(F (x))⊕ x, if b = 1.
(3.8)

The slide property shows that all x satisfy F (Ek(x))⊕k = Ek(F (x⊕k)), which means

that f is a periodic function with the period s = 1||k. Note that this is equivalent to

Simon’s promise 3.1. The following lemma plays an important role in determining the

Figure 6: An illustration of the slide attack.

success probability of Simon’s algorithm.



Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 31

Lemma 3.18. [53] Assume there is a periodic function f with a period s. Then there

exists a, 0 < a < 1 that satisfies

ε(f ; s) = max
t/∈{0,s}

Pr[(f(x)) = f(x⊕ t)] ≤ a.

Repeating Simon’s algorithm cn times, s can be determined with the probability at least

1− (2( (1+a)
2

)c)n.

In order to show that Simon’s algorithm can be applied to recover the secret key k,

by Lemma 3.18 one bounds ε(f, 1||k) under the condition that both Ek ◦P and P ◦Ek
are indistinguishable from random permutations.

If ε(f, 1||k) > 1
2
, there exist (t0, t1) /∈ {(0, 0), (1, k)}, such that Pr[f(b, x) = f(b ⊕

t0, x⊕ t)] > 1
2
. Now, assuming that t0 = 0 we have that t 6= 0 and thus

Pr[f(b, x) = f(b, x⊕ t)] > 1

2
,

which is according to (3.8) equivalent to

Pr[F (Ek(x)) = F (Ek(x⊕ t))⊕ t] >
1

2
,

when b = 0 or

Pr[Ek(F (x)) = Ek(F (x⊕ t))⊕ t] > 1

2
,

for b = 1. Now, for t0 = 1 we have t 6= k, and similarly as in the previous part for

b = 0 we have

Pr[F (Ek(x))⊕ x = Ek(F (x⊕ t))⊕ x⊕ t] > 1

2
,

or

Pr[Ek(F (x⊕ k))⊕ k = Ek(F (x⊕ t))⊕ t] > 1

2

for b = 1. This means there is a differential in Ek ◦ F and F ◦ Ek with probability

1/2. On the other hand, one can conclude that ε(f, 1||k) ≤ 1
2

unless Ek ◦ F or F ◦ Ek
have differentials with probability 1/2. Therefore, according to Lemma 3.18, Simon’s

algorithm can be combined with slide attacks. In this way the slide attack is improved

and its time complexity in quantum environment is O(n), while the classical one has

the complexity O(2
n
2 ).

3.1.4.1 Quantum slide attack on LED block cipher

Many existing block ciphers are based on EM structure. One such cipher is Light

Encryption Device (shortly LED), proposed by Guo at al. in [26]. It is a 64-bit block

cipher, with 64-bit or 128-bit key. In the following exposition, we are interested in 64-

bit keylength (LED-64), with the corresponding number of being 32. Now we describe

the specifications of a 64-bit LED block cipher with a 64-bit key [26].
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A 64-bit plaintext p is divided into 16 nibbles p0||p1|| . . . ||p15, which are represented

as a 4× 4 matrix 
p0 p1 p2 p3

p4 p5 p6 p7

p8 p9 p10 p11

p12 p13 p14 p15

 .

This is the initial value of the cipher state. In general, key sizes that are not a multiple

of 4 bits are not included. Denote by k0, k1, . . . , kl the l nibbles of the key K, then the

i-th subkey SKi are represented in the matrix form as follows
ski0 ski1 ski2 ski3

ski4 ski5 ski6 ski7

ski8 ski9 ski10 ski11

ski12 ski13 ski14 ski15

 ,

where skij = k(j+i·16 mod l). For a 64-bit keyK (l = 16), represented byK = k0||k1|| . . . ||k15,

we have that all subkeys (SK) are equal to K, which is shown by the matrix
k0 k1 k2 k3

k4 k5 k6 k7

k8 k9 k10 k11

k12 k13 k14 k15

 .

The round function of LED is described using two operations, firstly addRound-

Key(state,SKi) and second step(state) operation. The first addRoundKey(state,SKi)

combines nibbles of subkey SKi with the state. The second operation consists of four

transformations in the sequence of AddConstants, SubCells, ShiftRows and MixCol-

umn, which are explained in [26]. The number of steps r during encryption depends

on the key size, where for instance, for a 64-bit key we have r = 8.

Quantum slide attack on LED-64

In [19] J. Guo et al. proposed a quantum attack on LED-64 block cipher, which is

similar to attacks on Feistel network and Even-Mansour constructions, described in

the Subsections 3.1.1 and 3.1.2, respectively.

Define the function f : {0, 1} × {0, 1}n → {0, 1}n as follows:

f(b||x) =

Pr+1((E1(x))⊕ x, if b = 0,

E2(P1(x))⊕ x, if b = 1,
(3.9)

where E1 represents the original LED-64, while E2 represents the altered LED-64 with

a change in the initial round constant, and P1, Pr+1 are the first and (r + 1)-th round
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function of E1, respectively. More precisely

E1(x) = (Pkr ◦ Pkr1 ◦ · · · ◦ Pk1)(x)⊕ k,

where Pkr = Pr(x⊗ k) and

E2(x) = (P ′kr ◦ P
′
kr1
◦ · · · ◦ P ′k1)(x),⊕k,

such that P ′kr = P ′r(x⊗ k) and P ′i = Pi+1 for i = 1, . . . , r. Note that for LED-64 n = 64

and r = 8.

Lemma 3.19. For a function f : {0, 1} × {0, 1}n → {0, 1}n defined by (3.9), it holds

that

f(b||x) = f(b′||x′) ⇐⇒ b′ = b⊕ 1 ∧ x′ = x⊕ k.

Therefore, the function f is periodic with the period s = 1||k. Now, we can describe

the algorithm introduced in [19], to recover the key k:

1. The first step is to construct a quantum circuit suitable for Simon’s algorithm

as shown in Figure 8 . The idea is the same as in [2]. Let us consider a public

random permutation P such that P : |x〉|y〉 → |x〉|y ⊕ P (x)〉 and the function

g : |x〉|y〉 → |x〉|y⊕g(x)〉, then the quantum gate of controlled P is CP : |X〉|y〉 →
|x〉|y ⊕ bP (x)〉 and the quantum gate of controlled function g is Cg : |x〉|y〉 →
|x〉⊕ bg(x)〉. Note that gate CEi (i = 1, 2) is constructed from oracle the Ei and

Figure 7: The CP and Cg circuits.

CCNOT gate [2].

2. Initialize X as an empty set to store the vector z. Choose 4n + 1 qubits state

and divide it into five quantum registers denoted by A,B,C,D and F , such that

the first register A consists of 1 qubit and the others consist of n qubits. Apply

the Hadamard transform H⊗n to the second register B to obtain the state |ψ1〉.
Repeat the next two steps c(n+ 1) times, where c is some constant.
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Figure 8: The quantum circuit which realizes the function f .

3. Call the oracle function Og to map state |ψ1〉 to |ψ2〉, stored in the last register

F and measure it. Similarly as in the Step 4 in Simon’s algorithm, B is reduced

to

|ψ3〉 =
1√
2

(|y〉|0〉+ |y ⊕ s〉|0〉).

4. Apply the Hadamard transform H⊗(n+1) to obtain

|ψ4〉 =
1√
2n+2

∑
(−1)y·z(1 + (−1)s·z)|z〉.

This step is in details described in the 5th part of Simon’s algorithm. After that

the second register is measured to obtain some vector z such that y · s = 0.

5. We want to determine classically, if the found vector z is linearly independent of

the vectors in X. If it is true, denote it with zi (i is the cardinally of X and we

count from 0) and add in the set X. If i < n− 1, return to the previous step and

repeat the process. If i = n− 1 it means we have n linearly-independent vectors.

We go to the 7th step.

6. The attack is not realized if the above process ends naturally after c(n+1) steps.

7. The attack is successful if this step is achieved. Add the (n + 1)− th vector zn,

which is linearly independent of the elements of X and not to orthogonal to s.

Therefore, there is a system of n+ 1 linearly independent equations such that

zi · s =

0, i = 0, 1 . . . , n− 1,

1, i = n.

We can use the improved Gaussian or some other method to solve this system

and determine s = (1||k), where k is the secret key.

Before stating the result, which gives us an information about the complexity of the

described quantum algorithm that attacks the LED-64 block cipher, we state the fol-

lowing lemma.
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Theorem 3.20. [19] As in the case of the quantum slide attack on LED-64, the

probability of success is about 99.9% the required space complexity is 29, time complexity

is 212 quantum query and 226 classical computations.

Proof. Assuming that c = 3 in Step 2 and a = 1
2
, we repeat described procedure

3(n+ 1) times. By Lemma 3.18 the probability of success is 1− (2(
1+ 1

2

2
)3)64 ≈ 99.9%.

According to the quantum circuit given in Figure 8, the attack requires 4n+ 1 qubits

in total. Since, for LED-64 block cipher n = 64, then 4 · 64 + 1 = 257 < 29 qubits are

required. Therefore, the space complexity is approximately 29. In order to determine

time complexity of the quantum attack on LED-64, we consider Figure 8. There are

several operations to be performed: CPj four times, CEi twice and CNOT once.

Additionally, each CEi consists of three unit operations (see Figure 7), so it is six more

transformations. In Steps 2 and 4 one applies the Hadamard transforms. Hence, the

total sum of the unit operations is 15. On the other hand, we repeat the procedure at

most c(n+ 1) times, where it is assumed that c = 3. Therefore the total required time

complexity for quantum query is 15 · 3 · (64 + 1) ≈ 212.

The time complexity of the classical computation is mainly determined by Steps

5 and 7. Based on the improved Gaussian elimination method introduced in [41] we

need about (n+1)3 the classical computational steps to solve Step 5. For each iteration

of step 5, not only the linear dependence of the obtained vector z on the vectors from

the set X is checked, but also to ensure that the matrix L generated by the set X has

the simplest form L = (z0, z1 . . . zn−1)>. In Step 7, according to the n× (n+1) matrix

L, we add the (n+ 1)-th vector zn, which is linearly independent of the elements of X

and not to orthogonal to s, then construct a system of n + 1 independent equations.

Solving the system for s = 1||k , the required classical computational complexity is

about (n+ 1)2. In total, the time complexity required for the classical computation is

c(n+ 1)(n+ 1)3 + (n+ 1)2 = 3(64 + 1)(64 + 1)3 + (64 + 1)2 ≈ 226.

3.1.4.2 Quantum attack on 1k-Feistel network

We start by recalling the definition of an rk-Feistel block cipher.

Definition 3.21. [12] An rk-Feistel version of Feistel cipher is a block cipher where

the round keys form a periodic sequence of period r. In particular, 1k-Feistel denotes

the case where all subkeys are equal.

X. Dong et al. in [21] described an attack to 1k-Feistel network. Let f be a round

function of 1k-Feistel block cipher, and k a secret key. For α is a random constant, let

the function F : {0, 1} × {0, 1}n2 → {0, 1}n2 is defined as follows:

F (b||x) =

Ek(x, α)R, if b = 0,

Ek(α, f(x)⊕ x)L, if b = 1,
(3.10)



Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 36

Figure 9: The quantum slide attack on 1k-Feistel block cipher.

where n is the block size of 1k-Feistel block cipher Ek, Ek(·)L and Ek(·)R are the left

branch or right branch, respectively of Ek.

As shown in Figure 9, Ek(x, α)R = R4, EK(L1, R1)L = L5 = R4, L1 = α and

R1 = f(k⊕α)⊕x hold. Therefore, from Ek(x, α)R = Ek(L1, R1)L = R4, one concludes

that

F (0||x) = Ek(x, α)R = Ek(α, F (K ⊕ α)⊕ x)L = F (1||x⊕ f(α)⊕ f(k ⊕ α)).

Hence, F (b||x) is a function with period s = 1||f(α) ⊕ f(k ⊕ α), thus one can apply

Simon’s algorithm to attack 1k- Feistel cipher. Using the results and analysis provided

by Leander and May in [39], the time complexity is about 2(n/2 + 1 +
√
n/2 + 1)

repetitions of Simon’s algorithm, which requires about n + 1 qubits. Note that, the

attack works for any number r of rounds of 1k-Feistel, but in [21] authors give an

example for case when r = 4 (cf. Figure 9).

Remark 3.22. Similar attacks can be realized on 2k and 4k-Feistel block ciphers. For

more details we refer to [21]. Also, note that an improved version of the attack given

for the 1k-Feistel network, can applied to 1k-DES as well.
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3.1.5 Quantum cryptanalysis of AEZ

We start by recalling the construction of tweakable block cipeher proposed by M. Lisov

et al. in [40].

The tweakable block cipher E takes three inputs: a key K ∈ {0, 1}k, a tweak

(initialization vector) T ∈ {0, 1}t and a plaintext P ∈ {0, 1}n and produces as output

a ciphertext C ∈ {0, 1}n, i.e.

E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n.

AEZ cryptographic system introduced by V. T. Hoang et al. in [28] is an example of

a tweakable block ciphers. It is also an authentication-encryption scheme. AEZ allows

keys of any length, but the given key is processed into 384 bits, and if it is not already

that length, then one applies a cryptographic hash function. The key K is decomposed

in three 128-bits subkeys (I, J, L).

The main building block of AEZ is a tweakable function Ei,j
K , which is a permutation

on 128 bits. For more details related to the structure and design of AEZ, we refer the

reader to [10, 28]. In general, there are multiples versions of AEZ, such as AEZv2,

AEZv3, AEZv4, AEZv5, AEZ10. In [10], X. Bonnetain proposed a quantum attack on

AEZ which is showed that all versions of AEZ can be broken in quantum cryptanalysis.

Let us consider subkey functions fI , fJ and fL, which are defined as follows:

fI(x) = lastblock(AEZ − core(K, (τ,N), (0, x, 0, x))),

fL(x) = AEZ − prf(K, (τ,N, (x, x)), τ),

fJ(x) = AEZ − prf(K, (τ, x, x), τ),

where τ is the output length of a pseudo-random function (PRF), and N is a fixed

nonce for each input. Here, AEZ-prf is a pseudo-random function that is called when

the message is empty, that takes some associated data and a length τ as arguments,

and that outputs a tag of the desired length that can be used to authenticate the

associated data. Since the AEZ- core has a more complex description, for more details

we refer to [14]. All functions fI , fL and fJ are periodic with the following periods

x⊕ I, x⊕ J , x⊕ 6L, respectively, and therefore once can apply Simon’s algorithm.

In the AEZv4 version there is a small difference for fI , since the period is not on

the whole AEZ-core but only on the last block. One can construct an oracle of fI from

an oracle of the AEZ-core by subtracting out the last block and taking only that. Using

this method, one query to fI costs two queries to AEZ-core. For each case, functions

of n = 128 bits are queried. To get a success probability of 1
2
, one needs 80% of success

for each subkey, which is achieved in 157 queries. The total query complexity of the

attack is 628 = 29.3. For k ∈ {I, J,K}, the attack has the following steps:
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1. Query 157 times Simon’s routine with fk.

2. Solve classically the Boolean equation system to get the period of fk.

3. If this period was a multiple of k, invert to retrieve k.

In this quantum attack, the different functions have the same hidden period. The only

condition for the nonce is that it is not entangled with the input value. For fL, one

needs to perform a quantum query with a nonce superposition. If one does not want

to allow this, one can always use f ′L = AEZ − prf(K, (τ,N, x, x), τ), which satisfies

f ′L(x) = f ′L(x ⊕ 12L). This has the same query complexity, but a slightly larger data

complexity (about 211.5).

3.1.6 Quantum attacks on SoEM

One of the interesting applications of Simon’s algorithm is the application to Sum

of Even-Mansour construction, called SoEM, which is the combination of a sum of

permutations and Even-Mansour cipher [15]. More precisely, for permutations P1, P2 ∈
Pn, one can consider a generic construction SOEM : {0, 1}n×{0, 1}n×{0, 1}n → {0, 1}
as

SOEM(k1, k2, x) = P1(x⊕ k1)⊕ k1 ⊕ P2(x⊕ k2)⊕ k2.

There are three variants of SoEM: SoEM1, where permutations P1 and P2 are equal,

SoEM21, where permutations P1 and P2 are independent, but keys k1 and k2 are

identical (the key space is of n bits) and SoEM2, where both permutations P1 and

P2 and keys k1 and k2 are independent [15]. In [51] Shingawa and Iwata described

quantum attack based on Simon’s algorithm to SoEM1 and SoEM21, since attack to

SoEM22 is a combination of Simon’s and Grover’s algorithm, which we describe in

Chapter 4.

A quantum attack on SoEM1

For SoEM1 it holds that P1 = P2 = P . Therefore, a function f : {0, 1}n → {0, 1}n

can be define as follows:

f(x) = SOEM(k1, k2, x) = P (x⊕ k1)⊕ k1 ⊕ P (x⊕ k2)⊕ k2. (3.11)

It is not difficult to verify that the following lemma holds.

Lemma 3.23. Let f be a function defined by (3.11). Then for any two distinct vectors

x, y ∈ {0, 1}n it holds that

f(x) = f(y) ⇐⇒ y = x⊕ k1 ⊕ k2.

Thus, according to Lemma 3.23, f is a periodic function with the period k = k1⊕k2,

i.e. f satisfies Simon’s condition (3.1). Therefore one can apply Simon’s algorithm to
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determine k = k1⊕k2, by using O(n) qubits and O(n) quantum gates. In order to find

k1 and k2, a function g : {0, 1}n → {0, 1}n is defined as:

g(x) = f(x)⊕ P (x)⊕ P (x⊕ k′)

= P (x⊕ k1)⊕ P (x⊕ k2)⊕ k2 ⊕ P (x)⊕ P (x⊕ k′).

It easy to check that g has the period k1 which can be computed by applying Simon’s

algorithm again. Since, we have knowledge about k′ and k1 we can derive k2 = k′⊕ k1.

Therefore the following result holds.

Theorem 3.24. [51] There exists a quantum attack against SoEM1 that recovers the

secret keys k1 and k2 with O(n) qubits and O(n) quantum queries.

A quantum attack on SoEM21

Quantum attack to SoEM21 is quite similar to SoEM1, apart from a few differences.

Since, k1 = k2 = k and P1 6= P2, the function f : {0, 1}n → {0, 1}n is defined by

f(x) = SOEM21(k.k, x)⊕ P1(x)⊕ P2(x)

= P1(x⊕ k)⊕ P2(x⊕ k)⊕ k ⊕ P1(x)⊕ P2(x). (3.12)

In order to determine the periodicity of f , we state the following lemma.

Lemma 3.25. Let f be a function defined as in relation (3.12). Then for any two

distinct vectors x, y ∈ {0, 1}n it holds

f(x) = f(y) ⇐⇒ y = x⊕ k.

Therefore, f given by (3.12) is a periodic function with the period k, i.e. f(x) =

f(x⊕ k). Since f satisfies Simon’s condition, one is able to apply Simon’s algorithm to

recover the secret key k in polynomial time O(n).
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4 GROVER’S ALGORITHM

In this section, we introduce a quantum algorithm which solves the so-called Grover’s

problem, which is stated in general as Problem 4.1 below. Lov K. Grover [25] showed

that a quantum computer can solve a given problem quadratically faster than any

classical computer. In what follows we recall Grover’s problem and the algorithm

which solves this problem.

Problem 4.1. Given an unstructured system X of N = 2n elements. The goal is

to find elements that satisfy some ordered conditions. Without loss of generality, we

assume that there is a unique such element, and we denote it by y.

For N = 2n, this problem can be represented by using the function f : {0, 1}n →
{0, 1}

f(x) =

1, if x = y,

0, if x 6= y,
(4.1)

where one has to find all inputs which map to 1. The probability of finding an element

y in N random elements is uniformly distributed, therefore py = 1
N

, and thus when

N →∞ probability is equal to zero. Since classical computers can solve this problem

in O(N) steps, it requires a lot of time for a large enough N . Now we recall Grover’s

algorithm, using the similar notation as E. Strubell in [55].

Grover’s algorithm: Grover showed that there is a quantum algorithm that solves

the previously mentioned problem in O(
√
N) steps:

1. Input:

• A quantum oracle Of which is implemented as a unitary operation pre-

forming the transformation Of |x〉 = (−1)f(x)|x〉 , where f(x) satisfies the

condition (4.1).

• n qubits initialized to the state |0〉 and the oracle qubit q to the state |1〉,
which is flipped if f(x) = 1, and is unchanged otherwise.

Therefore initial state is

|ψ0〉 = |0〉⊗n ⊗ |1〉.
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2. Apply a Hadamard transform: In this step we transform |ψ0〉 applying the

Hadamard transform H⊗(n+1) :

|ψ1〉 = H⊗n|0〉⊗n ⊗H|1〉

=
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉 − |1〉√
2

.

3. Repeat Grover iterations r ≈ π
4

√
2n times: Here we omit the last qubit for

the simplicity. The first step in the Grover iteration is a call to a quantum oracle

O : |x〉 → (−1)f(x)|x〉, Where f(x) = 1 if x = y and f(x) = 0 otherwise.

The next part of iteration is the diffusion transform, that consists of Hadamard

transforms H⊗n, conditionally shift phase and another Hadamard transform H⊗n.

The conditional phase shift can be represented by the unitary operator

2|0〉〈0| − I.

It is not difficult to see that this operator shifts every state except |0〉 by −1, i.e.

(2|0〉〈0| − I)|0〉 = |0〉, (2|0〉〈0| − I)|x〉 = −|x〉.

In summary, this part of the algorithm can be written as

H⊗n(2|0〉〈0| − I)H⊗n = 2H⊗|0〉〈0|H⊗ − I = 2|ψ〉〈ψ| − I,

where |ψ〉 is state of the first n qubits in |ψ1〉. Thus we can write |ψ2〉 = [2(|ψ〉〈ψ|−
I)O]r|ψ〉 ≈ |y〉.

4. Measurement: We measure the quantum register and obtain the probability,

to find y, is equal to 1. So, we conclude that the probability of success is O(1).

Figure 10: The quantum circuit Grover’s algoritm.

Proposition 4.2. [1] After r iterations of Grover’s operator the system is in the

superposition

sin(2r + 1)θ|φ1〉+ sin(2r + 1)θ|φ0〉,

where θ is the angle such that sin θ = 1√
2n

, |φ1〉 and |φ0〉 denotes the projection onto

the good and onto to bad subspace, respectively.
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Hence, we conclude that after r iterations we have angle 2(k + 1)θ. If this angle is

approximately π
2
, then |φ0〉 and |φ1〉 are almost co-linear. Since for large θ it holds that

sin θ ≈ θ = 1√
2n

, we iterate until

(2r + 1)θ ∼=
π

2
=⇒ r ≈ π

4

√
2n.

This explains the choice of the number of iterations r in Step 3.

4.1 APPLICATIONS OF GROVER’S ALGORITHM

The first application of Grover’s algorithm in cryptanalysis of block ciphers was dis-

cussed and described by A. Jahiko et al in [1]. The idea is to improve the known-

plaintext attack by Grover’s algorithm to be able to recover a secret key.

1. Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher. Assume that an attacker

has knowledge of the plaintext P and corresponding ciphertext C = E(P, k′),

where k′ is a secret key. Define function f : {0, 1}k → {0, 1} in the form of (4.1)

f(k′) =

1, if E(P, k′) = C,

0, otherwise,

and the oracle function Of |k′〉 = (−1)f(k′)|k′〉.

2. The next step is an initialization of all possible keys of the set {0, 1}k = K with

the same amplitude, putting them into a superposition (in [1] authors assumed

that n = k = 264)

|K〉 =
1√
2k

∑
k′∈K

|k′〉.

3. After Grover’s iterations are applied r times, then the measurement is performed

to obtain key ki such that F (ki) = 1. Therefore it takes O(
√

2n) steps to find a

secret key. After measurement, the state |ki〉 is obtained with a probability at

least 1
2
.

From Proposition 4.2, one obtains the key ki = φ1. Since the measurement is classical,

then the probability to obtain |ψ1〉 is equal to | sin(2r + 1)θ|2 ≥ 1
2

for 0 ≤ θ ≤ π
2

and

θ ≈ 1√
2n

. Hence

r ≥ π

√
2n

8
.

Thus, when n = 64 we need r ≈ π229 iterations.

Similarly, M. Kaplan in [32] described a quantum attack against 4-round iterated

block ciphers, that is equivalent to well known Meet-in-the middle attack, where the
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attacker has on disposal of enough many pairs (Pi, Ci). In order to describe the attack

proposed by M. Kaplan, we follow the same notation as in [32]. We denote by [N ] the

set of integers {1, 2, . . . , N} and by P[N ] the set of permutations of [N ]. The space of

keys is [N ] and the space of blocks is [M ]. We consider the following problem.

Problem 4.3. [32] The 4-Key Extraction problem (KE4) with P = (P1, P2, P3) ∈ [M ]4

and C = (C1, C2, C3, C4) ∈ [M ]4 takes input F where F = {F1, F2, . . . , FN} is a

collection of permutations Fi ∈ PM . The goal of the problem is to find a quadruple

(k1, k2, k3, k4) such that Ci = Fk4(Fk3(Fk2(Fk1(Pi)))) for i ∈ {1, . . . 4}.

In [32], Kaplan first considered the decision version of the problem denoted by

d−KE4.

Problem 4.4. The decision 4-Key Extracton problem with a pair (P,C), permutations

F = {F1, . . . , FN} is to decide if there exist a 4-typle key (k1, k2, k3, k4) such that

C = Fk4(Fk3(Fk2(Fk1(P )))).

The d-(KE)4 = h was expressed in the compositions form:

h = SEARCH ◦ (f0 ∧ g0, f1 ∧ g1, . . . , fN ∧ gN),

where ∧ is logical AND, and the function fX : (P[M ])
N → {0, 1} is given by

{F1, . . . FN} =

1, if ∃ k1, k2 : Fk2(Fk1(P )) = X,

0, otherwise.

and function gX : (P[M ])
N → {0, 1} such that

{F1, . . . FN} =

1, if ∃ k1, k2 : Fk2(Fk1(X)) = C,

0, otherwise.

By SEARCH we denote the function SEARCH: {0, 1}M → {0, 1} with the following

properties

SEARCH(y) =

1, if ∃ i : yi = 1,

0, otherwise.

In the other word, the idea is the make compositions of the meet-in-the-middle attack

and Grover’s search operator. A quantum query complexity is multiplicative under

function composition and it is O(
√
M

3
√
N2). The main result of [32] is given as follows.

Theorem 4.5. There exists a quantum algorithm that solves KE4 in time O( 6
√

7) and

using memory O(
3
√
N2). The time-space product for this attack is O(

6
√
N11).

Since the proof is quite lengthly and requires many new definitions and facts, it is

omitted here.
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4.1.1 Application of Grover’s algorithm to a version of Sim-

plified AES

The Advanced Encryption Standard (AES) is a symmetric block cipher established by

U.S. National Institute of Standards and Technology (NIST) [4]. Due to the importance

of the AES block cipher (and its design philosophy) in symmetric-key cryptography,

in this subsection we recall its simplified version and show the application of Grover’s

algorithm. It is important to note that full version of AES, and in general its design

approach, appears to be quantum resistant against the quantum attacks known today.

A detailed description of AES is given in [4].

Regarding the application of Grover’s algorithm, in 2015 an article [24] was pub-

lished in which Grover’s quantum attack on the AES was discussed for the fist time. For

simplicty, in this subsection we present similar results of applying Grover’s algorithm

to a simplified version of AES (shortly, S-AES). The S-AES has the same structure as

AES with difference in the key size (16 bits) and block size (16 bits) [45].

4.1.1.1 The Quantum S-AES

The qaunatum simplified version of AES is introduced by M. Almazrooie et al. in [3].

To describe quantum S-AES it takes 64 qubits and 8 additional qubits to implement

an S-Box. Therefore the initial state is |ψ0〉 = |k〉⊗16|0〉⊗48 where the first register

represents the master key k. The plaintext is introduced by applying Pauli-X gates to

the first 16 qubits. The number of Pauli- X gates is equal to the number of ones in the

plaintext.

Substitute Nibbles (SN): In the classical form one nibble is 4 bits or half of byte,

so quantum nibble is constitued out of 4 qubits. Hence in the S-AES the initial state

|ψ0〉 can be represented by 16 nibbles N0, N1, . . . , N15. Firstly, we describe this step

for classical S-AES.

Take a nibble a and substitute it by some other nibble b-obtained as follows.

Consider the nibble a in the form of 4-bit column vector, i.e a = (a0, a1, a2, a3)>,

ai ∈ {0, 1} for i = 0, 1, 2, 3, and compute its inverse c = a−1 in the finite field

GF (24) = F2[x]/(x4 +x+1), where x4 +x+1 is an irreducible polynomial over GF (2)4.

For more details about properties of finite fields and their constructions see [44].

Remark 4.6. The elements of GF (24) are provided in the Apendix A of the end of the

thesis.

After computing c, one finds a new nibble b using the following affine transforma-
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tions: 
b0

b1

b2

b3

 =


1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

 ·

c0

c1

c2

c3

⊕


1

0

0

1

 . (4.2)

There are a few methods to compute inverse element in a finite field1. Since for every

finite field F of order pk, where p is prime holds gp
k−1 = 1 for any g ∈ F, we conclude

g−1 = gp
k−2. Hence, in our case we have:

a−1 = a24−2 = a14.

Thus, the element a14 can be expressed as follows

a14 = a2 · (a2)2 · ((a2)2)2. (4.3)

Therefore, in order to determine a multiplicative inverse, the two multiplications and

three square operations are required. The multiplier circuit is used first. Its quantum

version is proposed by Cheung et al. in [16] for GF (24). The next step is to construct

Figure 11: The multiplier quantum circuit of the GF (24).

a quantum squarer circuit. Let a′ = a2 = a · a, then a′ can be computed as follows
a′0

a′1

a′2

a′3

 =


1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

 ·

a0

a1

a2

a3

 . (4.4)

The justification is the same as for (4.6). Every element of GF (24) can be expressed in

the form a3x
3 +a2x

2 +a1x+a0. The matrix in the expression (4.4) can be implemented

1The methods for computing inverse element in a finite field are usually based on Euclidian algo-

rithm or on Fermat’s little theorem.
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in the quantum circuit applying a set of C-NOT gates and using additional auxiliary

qubits, due to the dependency among the qubits in the matrix. In order to remove

the dependency, CNOT synthetic algorithm proposed in [48] is used. In the following

Figure 12: a) The squarer circuit of GF (24); b) The circuit of the affine transformation

given in the relation (4.2).

example, we show that based on the relation (4.4), for instance, one can find the square

of the element x2 ∈ GF (24).

Example 4.7. Let us consider the element a = x2 ∈ F2/(x
4 + x + 1). Since every

element in this field can be written in the form a3x
3 + a2x

2 + a1x+ a0, or as a matrix

(a0 a1 a2 a3)>, then a = x2 =
(

0 0 1 0
)>

. According to relation (4.4), we can

compute a2 as follows 
1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

 ·


0

0

1

0

 =


1

1

0

0

 .

Hence, a2 = (1 1 0 0)>, or in a polynomial form a2 = x+ 1.

After creating the quantum multiplier circuit and the square circuit, the next step is

to construct a quantum circuit for the matrix of affine transformation. For this purpose,

the synthesis algorithm of C-NOT gates [48] is used again. In order to implement XOR-

ed vector we use two Pauili-X gates (see Figure 12 b)). According to (4.3) the complete

quantum circuit of substitute nibbles is composition of these three quantum circuits.

The next step is shifting the rows.

Shifting the rows: In the quantum circuit we can shift the rows arbitrarily. For

instance, in Figure 14, the nibble N0 is shifted by N10 (state |ψ1〉).

Mix columns(MC): In the classical S-AES we make the state matrix S =

(
S0 S2

S1 S3

)
,

where Si represents nibbles of a plaintext. The MixColumns transformation in S-AES

is expressed as follows: (
S̃0

S̃1

)
=

(
1 x2

x2 1

)
·

(
S0

S1

)
(4.5)
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where all operations are in the F2/(x
4 + x+ 1).

Remark 4.8. If we consider an element a ∈ F2/(x
4 + x + 1) in the form a = a3x

3 +

a2x
2 +a1x+a0 and multiply by x2, then their product is of the form d = (a3x

3 +a2x
2 +

a1 + a0) · x2 = a0x
2 + a1x

3 + a2x
4 + a3x

5 = a0x
2 + a1x

3 + a2(x + 1) + a3(x2 + x) =

a2 + (a2 + a3)x+ (a0 + a3)x2 + a1x
3. Hence, we can write :

d0

d1

d2

d3

 =


0 0 1 0

0 0 1 1

1 0 0 1

0 1 0 0

 ·

a0

a1

a2

a3

 . (4.6)

Now, we have to make a quantum circuits that implements the matrix in (4.6) into

the matrix in (4.5). In relation (4.5), we replace 1 with the identity matrix and x2 with

the matrix expressed in relation (4.6):

d0

d1

d2

d3

d4

d5

d6

d7


=



1 0 0 0 0 0 1 0

0 1 0 0 0 0 1 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 0 0

0 0 1 0 1 0 0 0

0 0 1 1 0 1 0 0

1 0 0 1 0 0 1 0

0 1 0 0 0 0 0 1


·



a0

a1

a2

a3

a4

a5

a6

a7


. (4.7)

In order to implement matrix from the expression (4.7) into the quantum circuit we can

use CNOT gates. However, it will require ancilla qubits and therefore we use CNOT

synthetic [48] to construct a quntum circuit of mix columns.

Figure 13: The Quantum Circuit of Columns Mixing of S-AES.

Key Expansion: As mentioned earlier S-AES has a 16-bit keysize, and the key is

divided in the four nibbles N0, N1, N2, N3. Two nibbles make one byte B, i.e. B0 =

N0||N1 and B1 = N3||N4, and the main key k = (B0, B1). The S-AES has the three
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subkeys expanded from the main key: the whitening key obtained directly from the

main key, the first encryption round subkey (B2, B3) and the second round subkey

(B4, B5) are generated from k using Subkey generation algorithm [45], as explained

in the following example.

Example 4.9. Let us assume that the input key is k = 1010101010110001. The first

subkey k1 is in the fact just the input key divided in the two bytes: B0 = 10101010

and B1 = 10110001.

The other subkeys are expanded as follows:

1. Bi = Bi−2⊕RCON( i
2
)⊕SubNibRotNib(Bi−1) if i ≡ 0(mod 2), where i = 2, 3, 4, 5,

RCON(i) = (xi+2)||0000, where xi+2 is the element of GF (24) the function

RotNib is to rotate the two nibbles and SubNib is introducet at (4.2).

2. if i 6≡ 0(mod 2), then Bi = Bi−2 ⊕Bi−1.

Hence B2 = B0 ⊕ 10000000⊕SubNib(00011011). The nibble 0001 is equivalent to 1 in

GF (24) thus it is inverse to itself. Using (4.2) we obtain a new nibble given as 0111.

The nibble 1011 is equivalent to x2 +x+ 1 and its inverse is x2 +x = 0110. Using (4.2)

we obtain a new nibble 1010. Thus, B2 = 10101010⊕10000000⊕01101010 = 1000000.

Moreover, B3 = B1 ⊕ B2 = 10110001 ⊕ 1000000 = 00110001. In the similar way, we

can determine the third subkey (B4, B5).

In Figure 14, we have that first 16 qubits represent the main key. Hence, B0 =

N0||N1 and B1 = N2||N3. The first round subkey starts at the state |ψ2〉, where RC

is actually a round constant implemented for free. At the state |ψ3〉 we have that the

nibbles N2 and N3 are exchanged using (SN), and their outputs are at position N5

and N4 respectively, then they are Xored by the constant 10000000 by placing a single

Pauli-X gates to the last qubit of the nibble N5. In order to obtain first byte B2 of the

subkey nibbles N0 and N1 are XOR-ed with N4 and N5, respectively (the state |ψ4〉.)
The byte B1 is XOR-ed with B2 to produce B3 which is XOR-ed with the second nibble

of ciphertext (see |ψ5〉). The process to obtain the second round subkey is similar to

the first one. The difference is that one uses two Pauili-X gates implemented on qubits

0 and 1 of the nibble N7. Note that RCON(2) = (x2+2||0000) = (x + 1||0000) =

00110000.

4.1.1.2 Grover’s attack on S-AES

Choose a pair (P,C), where P is a plaintext and C is the corresponding ciphertext.

The main goal it to recover the secret key K. The description of Grover’s attack to

S-AES, as well as its design, we recall from [3]. Namely, in [3], M. Almazrooie et al.
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Figure 14: The Quantum Circuit of S-AES.

firstly defines the function f as

f(K) =

1, if SAES(K,P ) = C,

0, otherwise,

and then defined the oracle function Of |k〉 = (−1)f(k)|k〉. The quantum attack consists

the following steps:

1. Initializing 16 qubits to the state |0〉 and put the oracle qubit to the state |0〉.

|ψ0〉 = |0〉⊗16 ⊗ |0〉.

2. Apply Pauli-X gates to the last qubit X|0〉 = |1〉. After that one uses a Hadamard

transform H⊗17 to obtain a superposition of the key qubits and thus one obtains

|ψ1〉 = H⊗16|0〉 ⊗ |H〉|1〉 =
1√
216

∑
k∈F1

26

|k〉 ⊗ |0〉 − |1〉√
2

.

3. In this step ciphertext C is obtained, applying quantum S-AES described in the

previous section |ψ2〉 = |C〉. In this state, the oracle or the Black-box Of , is

queried. Here, 63 additional qubits were used for the workspace. We omit it in

the first two steps for simplicity.

4. After solution is being marked, the reversing S-AES is applied and results to

plaintext P, i.e. |ψ3〉 = |P 〉.
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5. Finally Grover operator (the conditional phase shift) is applied to determine

|ψ4〉 ≈ |K〉.

Figure 15: The Quantum Circuit of Grover Attack on the S-AES

Remark 4.10. Note that in [3], authors introduced experimental results which show

that Grover’s attack to S-AES recovers the secret key in π
4
2
k
2 , where k is the number

of the qubits of the key.

4.1.2 Combining Simon’s and Grover’s Algorithm

4.1.2.1 The FX construction

The FX- construction was proposed by Killian and Rogaway in [34] as a generalization

of the DESX scheme. This construction was build using an n-bit block cipher E with

m-bit key K and two additional n-bit keys K1 and K2 such that

FXK,K1,K2(P ) = EK(P ⊕K1)⊕K.

In [39], Leander and May introduced for a first time a combination of Grover’s and

Simon’s algorithms, which has been applied to the FX-construction. The main result

of [39] is given with the following theorem.

Theorem 4.11. Let f : {0, 1}m × {0, 1}3n → {0, 1}n with

fk0,k1,k2(x) = gk0(x⊕ k1)⊕ k2, (4.8)

where g : {0, 1}m×{0, 1}n → {0, 1}n. Given quantum oracle access to f and g, the tuple

(k0, k1, k2) can be computed with success probability at least 2
5

using m + 4n(n +
√
n)

qubits and 2
m
2 O(m+ n) oracle queries.

Lemma 4.12. Let u1, . . . ,un−1 ∈ {0, 1}n be linearly independent vectors. Then one

can compute in time O(n3) a unique vector v ∈ {0, 1}n\{0} orthogonal to ui for all

i ∈ {1, . . . , n− 1}.
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The proof of Theorem 4.11 is based on the construction of a quantum algorithm

which is a combination of Simon’s and Grover’s quantum results. As the proof is

lengthy, we will focus only on its parts that are closely related to the mentioned con-

struction.

Note that the function f actually represents the FX block cipher, where fk0,k1,k2(x) =

FXK,K1,K2(P ) and gk0(x ⊕ k1) = EK(P ⊕ K1). Let us now define the function f ′ :

{0, 1}m ⊗ {0, 1}n → {0, 1}n with

f ′(k, x) = fk0,k1,k2(x)⊕ gk(x).

For k = k0, we have

f ′(k0, x) = fk0,k1,k2(x)⊕ gk0(x) = gk0(x⊕ k1)⊕ k2 ⊕ gk0(x) = f ′(k0, x⊕ k1),

and therefore the function f ′(k0, x) is periodic with the period k1 in its second com-

ponents, which is equivalent to the property (3.1). Therefore, by applying Simon’s

algorithm we are able to find k0 for which f ′ is a periodic function. In the case when

k1 = 0n, f ′(k0, x) = gk0(x ⊕ 0n) ⊕ k2 ⊕ gk0(x) = gk0(x) ⊕ k2 ⊕ gk0(x) = k2, hence f ′ is

constant for trivial k1.

By relation (4.8) we have that if k0 is known, then one computes k2 = fk0,k1,k2(x)⊕gk0(x)

for any x.

The next step is to define the function h : {0, 1}m × {0, 1}nl → {0, 1}nl as follows

h : (k, x1, x2, . . . , xl)→ f ′(k, x1)||f ′(k, x2)|| . . . ||f ′(k, xl),

where l = 2(n+
√
n). By Oh we define the quantum oracle as

Oh : |k, x1, . . . , xl, 0, . . . , 0〉 → |k, x1, . . . , xl, h(k, x1, . . . , xl)〉,

where 0 is the all quantum state of length n. Now we describe the quantum algorithm

which is a parallelized version of Simon’s algorithm, which uses l ≈ O(n) queries and

m+ 2nl = m+ 4n(n+
√
n) qubits.

The quantum algorithm A:

1. Prepare the initial state

|ψ0〉 = |0〉⊗m+2nl.

2. Apply the Hadamard transform H⊗(m+nl) to obtain a state

|ψ〉 =
1√

2m+nl

∑
k∈{0,1}m,x1,...,xl∈{0,1}n

|k〉|x1〉 . . . |xl〉|0〉⊗nl.

3. Call the oracle Oh and apply it to |ψ2〉 :

|ψ3〉 =
1√

2m+nl

∑
k∈{0,1}m,x1,...,xl∈{0,1}n

|k〉|x1〉 . . . |xl〉|h(k, x1, . . . , xl)〉).
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4. Apply now the Hadamard transform H⊗nl to |x1〉 . . . |xl〉 which gives the state

|ψ5〉 =
1√

2m+2nl

∑
k∈{0,1}m,z1,·zl∈{0,1}n

x1,...,xl∈{0,1}n

|k〉(−1)z1·x1 |z1〉 . . . (−1)z1·xl |zl〉|h(k, x1, x2, . . . xl)〉.

Since we are combining Simon’s and Grover’s algorithms, we introduce the definition

of the classifier B as follows:

Classifier B: Let us define a function B : {0, 1}m+nl → {0, 1} that maps (k, z1, . . . , zl)→
{0, 1}, which satisfies the following two tests:

1. Test 1: If the dimension of liner span of all zi ∈ {0, 1}n is not equal to n − 1,

we set B(k, z1, . . . , zl) = 0. Otherwise, one applies Lemma (4.12) to compute a

unique non-zero vector k′1 ∈ {0, 1}n.

2. Test 2: Let mi,m
′
i ∈ {0, 1}m be random and distinct elements, and check the

identities yi = fk0,k1,k2(mi) + fk0,k1,k2 = g(k0,mi + k1) + g(k0,m
′
i + k1),∀i =

1, . . . , d3m+nl
n
e. If all identities hold, then B(k, z1, . . . , zl) = 1, otherwise 0.

Classifier B partitions the state |ψ5〉 = |φ1〉 + |φ2〉 in a good subspace |φ1〉 if both

tests are satisfied, and a bad subspace |φ2〉 otherwise. Thus, we classify the state

|k〉|z1〉 . . . |zl〉 as good if and only if B(k, z1, . . . , zl) = 1.

Lemma 4.13. [39] If k = k0 then test B outputs 1 by probability at least 1
5
. If B

outputs 1, then k0 = k holds with the probability at least 1− 1
22m+nl−4 .

Therefore, the initial probability p of producing a good state in A is equal to

p = Pr[|k〉|z1〉 . . . |zl〉is good]

= Pr[k = k0] · Pr(B(k, z1, . . . , zl) = 1|k = k0) ≥ 1

5
· 1

2m
.

(4.9)

The classifier B defines a unitary operator SB that changes the signs of states as :

SB : |k〉|z1〉 . . . |zl〉 →

−|k〉|z1〉 . . . |zl〉, if B(k, z1, . . . , zl) = 1,

|k〉|z1〉 . . . |zl〉, if B(k, z1, . . . , zl) = 0.

The application of Grover’s algorithm is realized by applying the unitary operator

Q = AS0A−1SB to the initial state |ψ5〉 = A|0〉⊗m+2nl, i.e. we compute QK |ψ5〉 and

measure system for k iterations. In order to determined probability of a good state the

following theorem is used.

Theorem 4.14. [13] Let A be any quantum algorithm on q qubits that use no mea-

surement. Let B : {0, 1}q → {0, 1} be a function that classifies outcomes A as good or

bad. Let p > 0 be the initial success probability that a measurement of A|0〉⊗q is good.
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Set k = d π
4θ
e, where θ is defined via sin2(θ) = p. Moreover, define the unitary operator

Q = −AS0A−1sB, where the operator SB changes the sign of the good state

|x〉 →

−|x〉, if B(x) = 1,

|x〉, if B(x) = 0,

while S0 changes the sign of the amplitude only for the zero state |0〉⊗q. Then, after the

computation of QkA|0〉⊗q, a measurement yields good with probability at least max{1−
p, p}.

Initially, the angle between |ψ5〉 and its bad subspace |φ0〉 is θ, where

sin2(θ) = p = 〈φ1|φ1〉.

Therefore, θ = arcsin(
√
p) ≥ arcsin( 1√

5
· 1√

2m
), where the lower bound follows from

(4.9). Every Grover iteration increase the angle θ to (2k + 1)θ after k = d π
4 arcsin 1√

2m
e.

After k iterations a final measurement produces a good state with the probability

pgood = sin2((2k + 1)θ), since θ ≥ arcsin( 1√
5
· 1√

2m
), and thus

pgood ≥ sin2
(π

2
· arcsin(5

−1
2 · 2−m2 )

arcsin(2
−m
2 )

)
.

Since arcsin(x) ≈ x for small x, then for m � 0 one can write pgood ≥ sin2(π
2
·

(5
−1
2 ·2

−m
2 )

2
−m
2

) = sin2( π
2
√

5
) ≈ 0.42.

Notice that for θ = π
2

we have that the resulting state is almost equal to the good

state |φ1〉, and in that case one obtains a good state with a high probability after

measurement.

4.1.2.2 SMS4 block cipher

The application of Simon’s and Grover’s algorithms has been demonstrated to 7/8-

rounds of SMS4 block cipher in [31] by Hodžić and Knudsen. We firstly recall the

structure of the main building elements presented in the round function of SMS4 cipher.

In general, it is a 32 round unbalanced Feistel network. Let us define the linear function

L : F32
2 → F32

2 as

L(u) = u⊕ (u≪ 2)⊕ (u≪ 10)⊕ (u≪ 18)⊕ (u≪ 24),

where ” ≪ i” denotes left rotation by i bits, and the function Fr : F32
2 → F32

2

Fr(x) = L(S(x⊕ kr)),

where S : (F8
2)4 → (F8

2)4 is 8-byte function defined as

S(u⊕ kr) = (S(u1 ⊕ kr1), . . . ,S(u4 ⊕ kr4)),
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where u = (u1, . . . , u4) ∈ (F4
2)8 and kr = (kr1, . . . , k

r
4) and S : F8

2 → F8
2 is a nonlinear

S-box function. Now, the round function RFr : (F32
2 )4 × F32

2 → (F32
2 )4 is defined by

RF3(x0, x1, x2, x3, kr) = (x1, x2, x3, x0 ⊕ Fr(x1 ⊕ x2 ⊕ x3)),

where xi ∈ F32
2 . The main idea in [31] is to consider the output of the first branch at

Figure 16: The eight round SMS4 block cipher

round 8, denoted by RF 1
8 , of round function RF8 and using it define the function for

SMS4 block cipher, with similarly properties as the function f defined in the case of

the FX-construction. In Figure 16, we can see that RF 1
8 has output given by

RF 1
8 (x) = T0(x)⊕ F5(T1(x)⊕ T2(x)⊕ T3(x)), (4.10)
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where x = (x0, x1, x3) and

T0(x) = x0 ⊕ F1(x1 ⊕ x2 ⊕ x3),

T1(x) = x1 ⊕ F2(x2 ⊕ x3 ⊕ T0(x)),

T2(x) = x2 ⊕ F3(x3 ⊕ T0(x)⊕ T1(x))

T3(x) = x3 ⊕ F4(T0(x)⊕ T1(x)⊕ T2(x)).

Notice that that the term T3(x) in (4.10) does not have x3 present together with

T0(x) in the function F4. Therefore instead x = (x0, x1, x2, x3) we write x = (x, α, α, α) =

(x,Λ), where Λ = (α, α, α) for some fixed α ∈ F32
2 . Furthermore, we have

T1(x)⊕ T2(x)⊕ T3(x) = α⊕ F2(x⊕ F1(α))⊕ F3(x⊕ F1(α)⊕ F2(x⊕ F1(α)))

⊕ F4(x⊕ F1(α)⊕ F2(x⊕ F1(α)))

⊕ F3(x⊕ F1(α)⊕ F2(x⊕ F1(α))) = α⊕D(x⊕ F1(α)),

and thus the output of RF 1
8 can be written as

RF 1
8 (x,Λ) = x⊕ F1(α)⊕ F5(α⊕D(x⊕ F1(α)).

In order to apply the Simon-Grover algorithm, we introduce the function f : F2n+1
2 →

Fn2 as follows:

f(y, b, x) =

g(y, x) = α0 ⊕ A[(φ(x, y))⊕RF 1
8 (x,Λ0)], if b = 0,

h(y, x) = α1 ⊕ A[(φ(x, y))⊕RF 1
8 (x,Λ1)], if b = 1,

where φ(x, y) = x⊕L(S(αi⊕y)) and Λi = {αi, αi, αi} for i = 0, 1. Function A represents

the composition functions of inverse mapping of functions S and L respectively, i.e

A = (S−1 ◦ L−1). It is not difficult to verify that for y = k1 then g(k1, x) = h(k1, x ⊕
F1(α0)⊕ F1(α1)), and thus the function f(k1, b, x) is a periodic function.

Denoting by z = (b, x) ∈ F2 → F32
2 , we define function h1 : Fn2 × (Fn+1

2 )l → Fln2 by

h1 : (y, z1, . . . , zl)→ f(y, z1)|| . . . ||f(y, zl).

The next step is to introduce the quantum oracle Oh1 and apply the quantum algorithm

A, test classifier B and realize Grover’s algorithm Q = AS0ASB. As this process is

described in detail for FX constructions, we will state only the final result.

Hence, in [31] it was shown that Simon-Grover application to RF 1
8 requires n +

l(n+ 1) + ln qubits and 2
n
2 ·O(n) oracle queries. Similarly like for FX-construction the

key k1 is extracted.
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4.1.2.3 Quantum Key-recovery Attacks to 5-Round Feistel Structures

Based on the work of Leander and May, which we described in Subsection 4.1.2.1, Dong

and Wang in [21] derived a similar attack on 5-round Feistel network. We consider the

following function:

f(b, R0) = F2(k2, R0⊕F1(k1, αb)) = αb⊕R3 = αb⊕F4(k4, F5(k5, R5)⊕L5)⊕R5, (4.11)

where b ∈ {0, 1}, αb ∈ {0, 1}
n
2 is an arbitrary constant and α0 6= α1, E(αb||R0) =

(L5||R5). The following result describes the periodicity of f .

Lemma 4.15. Let E be 5-round Feistel cipher, then for any x = b||R0 ∈ {0, 1}
n+2
2

f(x) = f(x⊕ s) ⇐⇒ s = 1||F1(k1, α0)⊕ F1(k1, α1).

By Lemma 4.15, we have that f has the period s = 1||F1(k1, α0)⊕ F1(k1, α1), and

thus satisfies the assumption (3.1).

Theorem 4.16. Let g : {0, 1}n2 × {0, 1}n2 × {0, 1}n2 +1 → {0, 1}n2 with

(k4, k5, y)→ f(y) = f(b, R0) = αb ⊕ F4(k4, F5(k5, R5)⊕ L5)⊕R5,

where y = b||R0, α0, α1 are two arbitrary constants, and (L5||R5) = Enc(αb||R0). Given

quantum oracles of g and Enc, (k4, k5) and F1(k1, α0) ⊕ F1(k1, α1) could be computed

using n+ (n+ 1)(n+ 2 + 2
√
n/2 + 1) qubits and approximately 2

n
2 quantum queries.

In order to prove Theorem 4.16, the following function h : {0, 1}n × {0, 1}(n
2

+1l) →
{0, 1}(n

2
)l is defined by

h : (k4, k5, y1, . . . , yl)→ g(k4, k5, y1)|| . . . ||g(k4, k5, yl),

and a quantum oracle Oh is defined as

Oh : |k4, k5, y1, . . . , yl, 0, . . . , 0〉 → |k4, k5, y1, . . . , yl, h(k4, k5, y1, . . . yl)〉.

The next step is to apply the quantum algorithm A, test classifier B and apply Grover’s

algorithm Q = AS0ASB. This process has been described in detail for the FX con-

struction, and thus the details are omitted here.

Remark 4.17. [21] The quantum key-recovery attacks, described in this section can be

applied to 7-/8-/15-/31-/32-round Feistel structures with minor modifications. These

results are summarized in Table 2.



Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 57

Table 2: Summary of the key-recovery attacks on Feistel schemes in quantum chosen-

plaintext attack settings [21].

Rounds Trivial bound Dong et al.

5 21.25n 20.5n

7 21.75n 2n

8 22n 21.25n

15 23.75 23n

31 27.75n 27n

32 28n 27.25n

4.1.2.4 A quantum Attack on 30-round GOST Block Cipher

GOST [58] block cipher was developed in the 1970s by Soviet Union as an alternative

to the American DES. It is a 32 round symmetric block cipher standardized by the

Russian government with a block size of 64 bits, having a Feistel structure with 8 S-

boxes and 256-bit keysize. The round function f consists of a key addition, eight 4× 4

S-boxes and 11-bit left rotation. The key k of bit size 256 is divided into eight 32-bit

words, i.e., K = (k0, k1, k2, . . . , k8), ki ∈ {0, 1}32. The GOST round function is shown

in Figure 17, where Li||Ri is the input state of the i-th round function, such that Li

and Ri are the left and right branches of the i-th round function for i = 0, 1, 2, . . . 31,

and ”≪” represents a cyclic left rotation by j bits. Before describing the quantum

Figure 17: One round of the GOST block cipher.

attack presented in [21], let us recall some properties of the GOST block cipher.

• Property 1: [21] For a two round GOST holds the following. If we know (L0||R0)
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and (L2||R2), then k0 = S−1((L0 ⊕ L2) ≫ 11) − R0), k1 = S−1((R0 ⊕ R2) ≫

11)− L2.

• Property 2 (Reflection Property): [47] If the input state of the 25th round

meets condition L24 = R24, then the last 16-round of 32-round GOST acts as

an identity by ignoring the last swap function, i.e., the input of 17th round is

(L16||R16), and the output of 32th round is (L32||R32) = (L16||R16).

In [21], an attack on 30 rounds of the cipher has been provided, where the authors

consider from the 3-rd round (as an input) to the 32-nd round as an output, i.e. the

input is L2||R2 and the output is L32||R32. Similarly as the Feistel construction, one

firstly applies Algorithm A that we described earlier, and then the combination of

Simon’s and Grover’s algorithms. More precisely, we have the following steps.

Algorithm A :

1. Prepare the initial 32× 7-bit register

|ψ0〉 = |0〉⊗224

.

2. Apply the Hadamard transform H⊗224 to obtain a state

|ψ1〉 =
1

2112

∑
L2,k2,...,x7∈{0,1}32

|L2〉|k2〉 . . . |k7〉,

where L2 is the left half of the input of the 30-round GOST, the right half R2 is

a constant.

3. By Property 2, if L24 = R24, the last 16-round is an identical transformation if the

last swap function is ignored. Thus, given 232 inputs L2||R2, we can expect that

there is an L2||R2 that satisfies the condition L24 = R24, i.e., L16||R16 = R32||L32.

4. Once the right L2||R2 is obtained, one can guess k2, k3, . . . , k7 and then encrypts

for round 3-8 to obtain the internal state L8||R8, decrypts L16||R16 for round

11-16 to obtain L10||R10. According to Property 1, k0 and k1 can be derived from

L8||R8 and L10||R10.

To partition the space |ψ1〉 into a good |φ1〉 and a bad |φ0〉 subspaces, a classifier

B : {0, 1}32×7 → {0, 1} that maps (L2, k2, . . . , k7) to 0 or 1 is constructed as follows:

1. Derive L32||R32 for L2||R2 from the 30-round encryption oracle, note that R2 is

a randomly given constant.

2. Use (k2, k3, . . . , k7), L2||R2 and L32||R32 to derive k0, k1 from Property 1.

3. Check the derived (k0, k1, k2, . . . , k7) by 5 plaintext ciphertext pairs using the

30-round encryption oracle. If the check is correct, output 1, otherwise 0.
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The classifier B outputs good state if it satisfies the following two tests:

1. Test 1: L2||R2 satisfies Property 2. According to the FX construction, it is

correct with probability 2−32.

2. Test 2: k2, k3, . . . k7 are the correct subkeys. It is correct with probability 2−192.

Classifier B defines a unitary operator SB, which conditionally changes the sign of the

quantum state ψ1: −|L2〉|k2〉 . . . |k7〉, if B(L2, k2, . . . , k7) = 1,

|L2〉|k2〉 . . . |k7〉, if B(L2, k2, . . . , k7) = 0.

The application of Grover’s algorithm is realized by applying the unitary operator

Q = AS0A−∞SB to the initial state A|ψ1〉. Similarly to the FX construction, one can

obtain that after 2112 Grover iterations Q, the angle between resulting state and the

bad subspace is approximately π
2
. The probability to obtain a good state is about

sin2(π
2
) = 1.

4.1.2.5 Quantum Attack on SoEM22

In Chapter 2 we defined and introduced Sum of Even-Mansour construction and de-

scribed the application of Simon’s algorithm to two variants (SoEM1 and SoEM2) of

this construction. In this section, we consider a quantum attack on SoEM22 based on

the combination of Simon’s and Grover’s algorithms. Let g : {0, 1}n⊗{0, 1}n → {0, 1}n

be a function g(x, k) = P1(x)⊕p2(X⊕k), where P1, P2 are permutations in Pn. Define

the function f : {0, 1}n × {0, 1}n → {0, 1} as follows:

f(k, x) = SOEM22(k1, k2, x)⊕ g(k, x)

= P1(x⊕ k1)⊕ k1 ⊕ P2(x⊕ k2)⊕ k2 ⊕ P1(x)⊕ P2(x⊕ k).
(4.12)

For the case that k = k2, we have f(k2, x) = P (x ⊕ k1) ⊕ k1 ⊕ k2 ⊕ P1(x). It is not

difficult to verify that f(k2, x) is a periodic function with the period k1. Following the

steps of the proof of Theorem 4.11, we assume that g behaves like a random function

for every k ∈ {0, 1}n. For k 6= k2, f is not a periodic function with high probability.

Then, in the application of Grover’s algorithm, we have the steps which are the same

as for th FX construction (and thus the details are omitted). We recall the following

theorem for SoEM22, which is equivalent to Theorem 4.11 for the FX construction.

Theorem 4.18. [51] For any fixed k ∈ {0, 1}n, g(k, x) is assumed to behave like a

random function {0, 1}n → {0, 1}n. With quantum oracle access to SOEM22(k1, k2, x)

and g(k, x), there is a quantum attack against SoEM22 that recovers k1 and k2 with

O(n2) qubits and O(n · 2n
2 ) queries.
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5 BERNSTEIN-VAZIRANI’S

ALGORITHM

In this section we describe Bernstein-Vazirani’s algorithm [6] and some of its applica-

tions. In general, this algorithm can be considered as an extension of the Deutsch–Jozsa

algorithm [20]. In cryptanalysis of block ciphers, Bernstein-Vazirani’s algorithm is used

for the similar purpose as Simon’s algorithm (in relation to linear structures of a given

function), as well as in derivation of a quantum version of differential attacks. We now

state Bernstein-Vazirani’s problem, and later the algorithm which solves this problem

is provided.

Problem 5.1. Bernstein-Vazirani’s Problem: Let f : {0, 1}n → {0, 1} be a function

with the promise that for all input strings x ∈ {0, 1}n it holds that

f(x) = x · s, (5.1)

where s ∈ {0, 1}n is a secret string. The goal is to determine s.

Example 5.2. Let the function f : {0, 1}2 → {0, 1} be defined by the following table

of values

x f(x)

00 0

01 0

10 1

11 1

Note that f satisfies the property (5.1). The goal is to find a secret string s = s1s2,

where s1, s2 ∈ {0, 1}. Since the function f satisfies (5.1), we have for all x = (x1, x2) ∈
{0, 1}2, it holds that f(x) = x · s = x1s1 + x2s2. Let us consider two elements x1 = 01

and x2 = 10. From the table of values of f we have that f(x1) = f(01) = 0 and

f(x2) = f(10) = 1. Thus, one obtains the following system of equations

f(01) = 0s1 + 1s2 = 0,

f(10) = 1s1 + 0s2 = 1.
(5.2)

By solving the system (5.2) one deduces that s1 = 1 and s2 = 0, and thus s = 10.
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In Example 5.2, one needs two queries to determine s in the classical way. Similarly,

for n > 2 we can conclude that we need at least n queries of the function to find s, while

only one query is required for the quantum computation, as shown by the following

algorithm.

Bernstein-Vazirani’s Algorithm [6]:

1. Input: Prepare the state:

|ψ0〉 = |0〉⊗n ⊗ |1〉.

2. Apply a Hadamard transform: In this step we transform input |ψ0〉 applying

the Hadamard transform H⊗(n+1). We can write it as follows:

|ψ1〉 = H⊗n|0〉⊗n ⊗H|1〉 =
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉 − |1〉√
2

.

3. Call the oracle or black-box Of : Now we call the oracle Of , that is im-

plemented as a unitary operation that preforms the transformation Of |x〉 =

(−1)f(x)|x〉

|ψ2〉 =
1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉 ⊗ |0〉 − |1〉√
2

.

4. Apply a Hadamard transform: Here we omit the last qubit for the simplicity.

Notice, if we aplly a Hadamard transform to the last qubit |0〉−|1〉√
2

we obtain state

|1〉. In this step, the Hadamard transforms H⊗n are applied to the first n qubits

|ψ3〉 =
1

2n

∑
x∈{0,1}n

(−1)f(x))H⊗n|x〉 =
1

2n

∑
y∈{0,1}n

∑
x∈{0,1}n

(−1)f(x)⊕y·x|y〉.

By (5.1), we have that f(x) = x · s and x · s⊕ y · x = (s⊕ y) · x, and thus

|ψ3〉 =
1

2n

∑
y∈{0,1}n

∑
x∈{0,1}n

(−1)(s⊕y)·x|y〉.

5. Measurement: Now we consider

c =
1

2n

∑
x∈{0,1}n

(−1)(s⊕y)·x.

Clearly, for s = y we have that c = 1. Therefore, the probability that s = y is

1. Since the total probability must add up to 1, this means that all the other

amplitudes must be zero.

As we mentioned earlier, we used only one query to find s and O(n) gates. In general,

Berstein-Vazirani’s algorithm has found application in determining the linear structure

of Boolean’s functions, as well as in quantum differential analysis. So now we define

the Walsh transform of Boolean’s function, which actually represents the connection

between this algorithm and its applications.
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Definition 5.3. The Walsh transform of a function f : {0, 1}n → {0, 1} is defined by

Sf (u) =
1

2n

∑
x∈{0,1}n

(−1)f(x)⊕x·u. (5.3)

Let us define the following two sets:

N 0
f = {u ∈ {0, 1}n|Sf (u) = 0}, N 1

f = {u ∈ {0, 1}n|Sf (u) 6= 0}. (5.4)

By (5.3), the state |ψ3〉 of the BV algorithm can be written as follows

|ψ3〉 =
∑

y∈{0,1}n
Sf (y)|y〉.

Therefore, if we measure it in the computational basis we will find y with the probability

S2
f (y), since Sf (y) is an amplitude of the corresponding state. The probability of

obtaining y ∈ N 0
f is always zero according to (5.4). Thus, we always determine the y

such that y ∈ N 1
f . This fact is very important for BV applications, which we will show

in the following section.

Figure 18: The quantum circuit of BV algorithm.

5.1 A QUANTUM ALGORITHM FOR FINDING LINEAR

STRUCTURES OF BOOLEAN FUNCTIONS

There is no known efficient classical algorithm to determine the linear structure of

Boolean functions with higher number of input variables. However, the quantum al-

gorithm based on Bernstein-Vazirani’s algorithm introduced in [29] can provide some

information in an efficient way. Before we provide all details, we firstly list some im-

portant facts, properties, and definitions related to the linear structures of Boolean

functions.

Definition 5.4. The vector s ∈ {0, 1}n is a linear structure of a function f : {0, 1}n →
{0, 1} if

f(x⊕ s)⊕ f(x) = f(s)⊕ f(0), ∀x ∈ {0, 1}n. (5.5)
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Let Uf denote the collection of the linear structure of f(x), then

Uf = U0
f ∪ U1

f ,

where

U i
f = {s ∈ {0, 1}n|f(x⊕ s) + f(x) = i, ∀x ∈ {0, 1}n}, i = 0, 1.

For any s ∈ {0, 1}n and i = 0, 1 let

V i
f,s = {x ∈ {0, 1}n|f(x⊕ s)⊕ f(x) = i}. (5.6)

Definition 5.5. A vector s ∈ {0, 1}n is called a quasi linear structure of a function

f ∈ {0, 1}n if

1− |{x ∈ {0, 1}
n|f(x⊕ s)⊕ f(x) = i}|

2n
< σ(n), (5.7)

where σ(n) is a negligible function.

The relation (5.7) means that (5.5) holds except for the negligible number of vectors

x.

Definition 5.6. The relative differential uniformity of f : {0, 1}n → {0, 1} is

δf =
1

2n
max

06=a∈{0,1}2
max
i∈{0,1}

|x ∈ {0, 1}n|f(x⊕ a)⊕ f(x) = i|. (5.8)

Notice that Uf 6= {0} if and only if δf = 1.

Lemma 5.7. [29]

Cf (s) =
∑

x∈{0,1}2
(−1)f(x)+f(x⊕s) = 2n

(∑
u·s=0

S2
f (u)−

∑
u·s=1

S2
f (u)

)
,

where Cf (s) is the correlation function of f .

Theorem 5.8. [29] Let f : {0, 1}n → {0, 1}, the for all s ∈ {0, 1}n and for all

i ∈ {0, 1} ∑
u·s=i

S2
f (u) =

|V i
f,s|

2n
=
|{x ∈ {0, 1}n|f(x⊕ s) + f(x) = i}|

2n
.

Proof. For Cf it holds:

Cf (s) = |{x ∈ {0, 1}n|f(x⊕ s) + f(x) = 0}| − |x ∈ {0, 1}n|f(x⊕ s) + f(x) = 1}|

= |V 0
f,s| − |V 1

f,s|.
(5.9)

Therefore, from the Lemma 5.7 and relation (5.9), we have

2n

(∑
u·s=0

S2
f (u)−

∑
u·s=1

S2
f (u)

)
= |V 0

f,s| − |V 1
f,s|,
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which occurs in the following equation

∑
u·s=0

S2
f (u)−

∑
u·s=1

S2
f (u) =

|V 0
f,s|

2n
−
|V 1
f,s|

2n
. (5.10)

On the other hand, Parseval’s relation gives (see [43])∑
u·s=0

S2
f (u) +

∑
u·s=1

S2
f (u) =

∑
u∈{0,1}n

S2
f (u) = 1. (5.11)

By (5.6), we have

|V 0
f,s|+ |V 1

f,s| = 2n. (5.12)

Dividing, the relation (5.12) by 2n we have

|V 0
f,s|

2n
+
|V 1
f,s|

2n
= 1. (5.13)

Combining relations (5.11) and (5.13), we obtain

∑
u·s=0

S2
f (u) +

∑
u·s=1

S2
f (u) =

|V 0
f,s|

2n
+
|V 1
f,s|

2n
. (5.14)

Now, by (5.10) and (5.14) we have

∑
u·s=0

S2
f (u) =

|V 0
f,s|

2n
,

∑
u·s=1

S2
f (u) =

|V 1
f,s|

2n
, (5.15)

which is equivalent to the statement of the theorem.

Theorem 5.8 is very important since it represents the relationship between linear

structures and the Walsh spectrum of Boolean functions, as well as Bernstein-Vazirani’s

algorithm. In other words, if we run the BV algorithm, the probability of getting u

such that u · s = i will be equal to
|V if,s|

2n
.

By the following lemma we have that if one can determine N 1
f , then one can obtain

U i
f . Recall that by applying Bernstein-Vazirani’s algorithm we can find a subset of N 1

f .

Lemma 5.9. Let a function f : {0, 1}n → {0, 1}, be given, then ∀i ∈ {0, 1}, then the

set U i
f is equal to

U i
f = {s ∈ {0, 1}n|u · s = i, ∀u ∈ N 1

f }.

Before we introduce the quantum algorithm for finding a linear structure of the

Boolean function f , which is provided in [29], we recall the following problem.

Problem 5.10. For a given function f : {0, 1}n → {0, 1}, decide whether a function

has non-zero linear structures or not.
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Algorithm 1: A quantum algorithm for finding a linear structures of the

Boolean function f [29].

Input: The Boolean function f : {0, 1}n → {0, 1}
Output: Sets S0 and S1

1 Initialize U := X and p := p(n)

2 for r many times

3 Run the Bernstein-Vazirani algorithm to the function f for n+ 1 times to

get n+ 1 vectors u1, u2, . . . , un+1 ∈ N 1
f

4 Put U := U ∪ {u1, . . . , un+1}
5 Solve the equation x · U = i to get the solution Si

6 if S0 = {0} and S1=X then

7 output no and stop

8 Report f has quasi linear structures and output S0 and S1

For an arbitrary polynomial p(n), and an empty set X is an empty set, Algorithm 1

solves the Problem 5.10. The complexity of this algorithm is described with Theorem

5.12 below.

Remark 5.11. By Theorem 5.9 it must be the case that U i
f ⊆ Si, but the reverse does

not necessarily hold. Clearly, if S0 = {0} and S1 = X (Step 6), then s must be 0, i.e.

f has no non-zero linear structure.

In order to find out whether a given Boolean function f has non-zero linear struc-

tures or not, we recall the following results from [29].

Theorem 5.12. If there exist the relative differential uniformity δf such that δf < 1,

an average of O( n+1
1−δf

) times running the Bernstein-Vazirani algorithm in Algorithm 1

(i.e r = O( 1
1−δ )) will give an answer that f has no non-zero linear structure.

Proof. Assume that there exist δf < 1. Then there are ζ ∈ {0, 1}n and η ∈ {0, 1} such

that

δf =
1

2n
|{x ∈ {0, 1}n|f(x⊕ ζ)⊕ f(x) = η}|

=
1

2n
max

06=a∈{0,1}2
max
i∈{0,1}

|{x ∈ {0, 1}n|f(x⊕ s)⊕ f(x) = i}| = δ < 1.

Then,

1

2n
|{x ∈ {0, 1}n|f(x⊕ ζ)⊕ f(x) = η}|

=
1

2n
min

06=a∈{0,1}2
min
i∈{0,1}

|{x ∈ {0, 1}n|f(x⊕ s)⊕ f(x) = i}| = 1− δ > 0.
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Thus, for any 0 6= a ∈ {0, 1}n and for any i ∈ {0, 1}, it holds that

0 < 1− δ ≤ 1

2n
|{x ∈ {0, 1}n|f(x⊕ a)⊕ f(x) = i}| ≤ δ < 1.

Let us denote by Cs,i the set of all vectors u ∈ {0, 1}n such that u · s = i i.e.

Cs,i = {u ∈ {0, 1}n|u · s = i}. Assume that after r ≈ m times ruining of BV algorithm

we have given the set U . The probability that U ⊆ Cs,i is at most

δm = ((1− (1− δ)))m ≤ e−m(1−δ).

If m = 1
δ−1

, then δm ≤ e−1. Particularly, if m > c
1−δ it implies δm < 1

ec
, where c > 1 is

a constant. Therefore, the probability that U is not a subset of Cs,i is at least

1− δm > 1− 1

ec
.

Suppose now, after some time we found k linearly independent vectors u1, u2, . . . , uk

such that a ∈ {0, 1}2 is a solution of the equation ui · x = 0 and 0 < k < n. Then after

another expected number of order O( 1
δ−1

) we get uk+1 such that uk+1 ·s = 1. uk+1 must

be linearly independent with ui, 0 ≤ i ≤ k, since ui · s = 0 (s is solution of ui · x = 0).

Repeating the process we can find n linearly independent vectors u1, u2, . . . , un, through

an expected number of order O( n
1−δ ) measures. Thus we conclude S0 = U f

0 = {0}. Since

there exists exactly one possible solution b of the equations uj · b = 1, another expected

number of order O( 1
1−δ ) measures will give a un+1, such that un+1 · b = 0 thus it means

U1
f = S1 = X. Thus we need O( n+1

1−δf
) time complexity for running Bernstein-Vazirani’s

algorithm to give an answer that f has no non-zero linear structure.

Another result (given in [29]), plays an important role in determining the running

time of Algorithm 1, is given as follows.

Theorem 5.13. [30] Given an oracle access to f : {0, 1}n → {0, 1}, Algorithm 1

gives an answer that f has no non-linear structure or outputs vector sets S0 and S1.

Assuming one has run the Bernstein–Vazirani algorithm p = r(n + 1) times, then for

every s ∈ {Si}, (i = 0, 1), and for every ε, such that 0 < ε < 1 holds

Pr

(
1− |{x ∈ {0, 1}

n|f(x⊕ s)⊕ f(x) = i}|
2n

< ε
)
> 1− e−2pε2, (5.16)

where Pr(E) is the probability of the event E happens.

Let us consider some special cases of δ. Let us assume that p(n) is a polynomial

function of n, such that δ < 1− 1
p(n)

. Thus, n+1
1−δ <

n+1
1−1+ 1

p(n)

= (n+1)p(n). By Theorem

5.12 we have that the complexity of running Algorithm 1 to obtain an answer that f

has no non-zero structure is O(n+1
1−δ ) < O((n+ 1)p(n)). The other special case is when

δ = 1
2
, in which Algorithm 1 has O(2(n+ 1)) = O(2n) time complexity.
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Let us assume e(n) is an exponential function of n and 1 > δ > 1− 1
e(n)

. By Theorems

5.12 and 5.13, we need at least O(e(n)) times to run the algorithm. Special case is

when δ = 2n−1, in which case we have O(n2n−1) steps. All this cases are considered

in [29].

The previous discussion shows that Algorithm 1, used to find the linear structures

of Boolean functions is a polynomial-time algorithm.

5.2 THE QUANTUM DIFFERENTIAL CRYPTOANALYSIS

Differential cryptanalysis, proposed by Biham and Shamir in 1990 [7], is one of the

most popular cryptanalyitic methods for block ciphers. In the following text, we briefly

describe the main concept of differential cryptanalysis.

Let us consider a function f : {0, 1}n → {0, 1}m with input x = (x0, x1, . . . , xn−1)

and output y = (y0, y1, . . . , ym−1). Let x′ and x′′ be two inputs such that f(x′) = y′

and f(x′′) = y′′. The input and output differences are given by

∆x = x′ ⊕ x′′ = (∆x0, x1 . . . ,∆xn−1),

and

∆y = y′ ⊕ y′′ = (∆y0, y1 . . . ,∆ym−1),

respectively, where ∆xi = x′i ⊕ x′′i and ∆yi = y′i ⊕ y′′i . The pair (∆x,∆y) is called a

differential.

A differential characteristic is composed of input and output differences, where the

input difference to one round is determined by the output difference of the last round.

Based on their previous work, L. Hongwei et al. [30] described two methods based on

BV algorithm to derive a quantum version of differential cryptanalysis. In our work

we introduce the first one.

Let us assume that there is a block cipher with block length k = ln i.e the its

plaintexts and the ciphertexts are of the length k. Suppose that every S-box function

F = (F1, F2, . . . , Fm), where Fi : {0, 1}n → {0, 1}, for each i ∈ {1, . . . ,m}, maps

{0, 1}n → {0, 1}m. Steps of the first part of the quantum algorithm, which proposes

differential cryptanalysis, are given by Algorithm 2. Firstly, one has to analyse obtained

outputs Sji (where j = 0, 1) in order to get some high probability differentials of a S-

Box function F . Now, assume that p(n) = cn for some constant c ≥ 2. Consequently,

every vector s ∈ Sji satisfies

|{x ∈ {0, 1}n|fi(x⊕ s) + fi(x) = j}|
2n

>
1

2

with high probability, according to the Theorem 5.13. This means that for any vector

s ∈ Sji , (s, i) is a differential of Fi with the probability grater than 1
2
. If most of
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Algorithm 2: The first algorithm for the quantum differential cryptoanalysis

[30]

Input: An S-Box F = {F1, . . . Fm}.
Output: Some high probability differentials of each Fi, i = 1, . . . ,m

1 Prepare U and W as a empty sets.

2 for i = 1, . . . ,m

3 for p = 1, . . . , p(n)

4 Run the BV algorithm, and get an m-bit output u

5 Let U = U ∪ {u}

6 Solve the equations UX = 0 and UX = 1 zo get sets S0
i and S1

i ,

respectively

7 Output S0
i and S1

i

the Sji consists of many vectors, then one should take p(n) to be larger (for example,

p(n) ≈ n2). The purpose of this is to prevent the set Sji from having too many elements.

On the other hand, Algorithm 3 (given below) can be utilized to find differentials

of F with high probability. The outputs of this algorithm are vectors of the form

(s, j1j2 . . . jm) or (0, 0), and they can used to construct differential characteristics.

Algorithm 3: The second quantum algorithm for finding differentials [30].

Input: Sji , i = 1, 2 . . . ,m, j = 0, 1

Output: Differentials of f with high probability.

1 for each Sj11 , j1 = 0, 1

2 for j = 1, . . . , n

3 for ji = 0, 1

4 if s ∈ Sjii then

5 (xs, ys) = (s, j1 . . . ji)

6 else if s /∈ S0
i and a /∈ S1

i then

7 (xs, ys) = (0, 0))

8 Output (xa, ya)

5.2.1 The efficiency of the quantum differential algorithm

In order to evaluate an S-Box function f , the running time of the BV algorithm is

mp(n) = p, where the time to solve the system of linear equations UX = 0 and

UX = 1 is mq(n) = mn, with q = q(n) is a polynomial of n. Hence, the total time of
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the first algorithm is m(p+ q).

Let us consider the running time of the second algorithm, which has been derived

in [30]. Obviously the upper bound of the time complexity is O(2m). Now we want to

see the success probability.

Theorem 5.14. [30] If (s, j1, j2, . . . , jn) is obtained by running Algorithm 3, then for

any 0 < ε < 1

Pr

(
1− |{x ∈ {0, 1}

n|f(x⊕ a)⊕ f(x) = j1 . . . jm}|
2n

< mε
)
> (1− e−2pε2)m. (5.17)

Proof. By Theorem 5.13, the probability of

|{x ∈ {0, 1}n|fi(x⊕ a)⊕ fi(x) = ji}|
2n

> 1− ε (5.18)

is greater than 1 − e−2pε2 . If the equation holds in 3.3 then the number of x that

satisfies the above equation for two distinct i is at least 2n(2(1− ε)− 1) = 2n(1− 2ε).

Similarly for three distinct i, the number of x satisfies equality in (5.18) is at least

2n((1 − 2ε) + (1 − ε) − 1) = 2n(1 − 3ε). By induction of m we can prove that for all

i = 1, . . . ,m holds that the number of x satisfying equality in (5.18) is 2n(1 − mε).

Therefore, the probability that

1− |{x ∈ {0, 1}
n|f(x⊕ a) + f(x) = j1 . . . jm|

2n
< mε

is greater than (1− e−2pε2)m.

Suppose now, ε = 1
c1m

, where c1 ≥ 2 is a constant, p = c2
ε2

, where c2 ≥ 1 + lnm
2

is

also a constant, then from (5.17) we have

(1− e−2pε2)m ≥ (1− e−2p
c2
p )m ≥ 1− ne−2c2 ≥ 1− ne−2(1+ lnn

2
) = 1− 1

e2
.

Therefore, after a total time of m(p + q) + O(2n), where p = max{p(m), c2c
2
1n

2}, we

obtain a set of non-zero differentials that consists of vectors of the form (a, j1 . . . jm)

which satisfy

Pr

(
1− |{x ∈ {0, 1}

n|f(x⊕ a) + f(x) = i}|
2n

<
1

c1

ε
)
> 1− 1

e2
. (5.19)

Since the classical algorithm needs 2m+n steps, and as the S-Box used in the block

ciphers are not large, i. e. m and n are small, then 2m+n is also small and therefore

this quantum algorithm essentially does not show any higher speed compared to the

classical one.
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5.3 APPLICATIONS OF BERSTEIN-VAZIRANI’s ALGORITHM

5.3.1 Application to a 3-round Feistel network

In Section 3.1.1 we defined the Feistel network and described applications of Simon’s

algorithm. Now, we introduce an application of Bernstein-Vazirani algorithm to a

Feistel network [56]. We start by defining the function f : {0, 1} × {0, 1}n → {0, 1}n

as follows

f(a||b) =

P2(b⊕ P1(α0)), if a = 0,

P2(b⊕ P1(α1)), if a = 1,
(5.20)

where a ∈ {0, 1}, b ∈ {0, 1}n and α0, α1{0, 1}n are distinct arbitrary constants. The

next step is to construct the oracle function Oα0,α1

f :

Of |a〉|b〉 = |a〉|y ⊕ αa〉

Lemma 5.15. For every x = (a||b) ∈ {0, 1}n+1 and y = (a′||b′) ∈ {0, 1}n+1 holds

f(x) = f(y) ⇐⇒ a = a⊕ 1 and b′ = b⊕ z,

where z = P1(α0)⊕ P1(α1).

The proof of Lemma 5.15 is similar to the proof of Lemma 3.8. We note that for

the function f (by Definition 5.5), the vector s = (1||z) = (1||P1(α0) ⊕ P2(α1)) is a

non-zero linear structure, where (1||z) ∈ O(0,0...,0)
f can be determined by Algorithm 1.

Now, suppose that the access to the quantum oracle, which computes three-rounds

function of the Feistel network or a random permutation over {0, 1}2n, is given. Let

p(n) = n + 1 be an arbitrary polynomial function of n and initialize the set U as an

empty set. A quantum distinguisher for 3-round Feistel network, based on Bernsein-

Vzirani’s algorithm, is given by Algorithm 4 (given below). The following two results

show the validity of Algorithm 4.

Lemma 5.16. [56] Let f = (f1, f2, . . . , fn) be a function defined as (5.20). Then for

all i = 1, . . . , n, it holds

δfi(1||z) =
1

2n+1
max

(s1,s2)∈{0,1}n+1
|{(b||x) ∈ {0, 1}n+1|fi(b||x) = f(b⊕ s1||x⊕ s2)}| ≤ 2

3

holds except a negligible probability. Here, δfi(1||α) is still a random variable since fi

is determined by random functions P1 and P2 and (s1, s2) /∈ {(0, . . . , 0), (1||α)}.

Theorem 5.17. [56] Algorithm 4 successfully distinguishes the 3-round Feistel func-

tion from a random permutation except a negligible probability.
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Algorithm 4: [56] The quantum algorithm for distinguishing 3- Feistel net-

work.
Input: Arbitrary distinct constants α0, α1 ∈ {0, 1}n. The function

f = (f1, f2, . . . , fn) defined by (5.20).

1 for j = 1, . . . n

2 for p = 1, . . . , p(n)

3 Apply BV algorithm to fj to get an u ∈ N 1
fj

4 Set U = U ∪ {u}

5 Solve the system of linear equations {x · u = 0|u ∈ U} to get the solution

set Sj0.

6 if S0
j ⊆ {(0, 0, . . . , 0)} then

7 Output NO and stop the process.

8 else

9 Let U = ∅

10 if S0
1 ∩ · · · ∩ S0

n+1 ⊆ {(0, . . . , 0)} then

11 Output NO and stop.

12 else

13 Choose an arbitrary nonzero vector a ∈ S0
1 ∩ · · · ∩ S0

n+1 and choose an

(n+ 1)-bit string v uniformly at random. Let v′ = v ⊕ a. Make classical

queries for v and v′.

14 if f(v) = f(v′). then

15 Output YES

16 else

17 Output NO

Proof. (Theorem 5.17) If the given oracle computes a random permutation, the vector

a obtained after running Algorithm 4 is random (if exists). Therefore, since we have 2n

elements, the probability to obtain a such that v′ = v⊕ a is 1
2n

. Hence, the probability

that f(v) = f(v′) is 1
2n

. On the other hand, if the given oracle computes the 3-round

Feistel function, then according to Lemma 5.16 we have that

δfi(1||z) =
1

2n+1
max

(s1,s2)∈{0,1}n+1
|{(b||x) ∈ {0, 1}n+1|fi(b||x) = f(b⊕ s1||x⊕ s2)}| ≤ 2

3

holds with overwhelming probability 1. According to Theorem 2 in [56] we have

Pr[a 6= (1||z)] ≤
(2

3

)n+1
,

1We say that an event E holds with overwhelming probability if, for every fixed a > 0, it holds

with probability 1−Oa(n−a), i.e Pr(E) ≥ 1− Can
−a for some Ca independent of n.
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and thus the probability that f(v) 6= f(v′) is the most
(

2
3

)n+1
.

Since Algorithm 4 requires n(n + 1) times for quantum oracle and classical oracle

for 2 times, it has complexity O(n2) [56]. In comparison to Simon’s quantum attack on

the Feistel network described in Section 3.1.1, which requires O(n) times complexity,

this algorithm appears to be less efficient (since it requires more time).

5.3.2 Application to Even-Mansour construction

Recall that in Section 3.1.2 we introduced Even Mansour’s cipher and described an

application of Simon’s attack to it. Recall that the encryption function Ek is defined

as

Ek(p) = P (k1 ⊕ p)⊕ k2,

where k = (k1, k2) is a secret key and P : {0, 1}n → {0, 1}n is a public permutation.

In [56], authors proposed a new quantum algorithm for recovering the key k, but they

used Bernstein-Vazirani’s algorithm in the place of Simon’s. In order to construct this

quantum attack, we define a function f : {0, 1}n → {0, 1}n as

f(x) = Ek(x)⊕ P (x) = P (x⊕ k1)⊕ P (x).

If an oracle access of Ek is given, one can construct the quantum oracle function Of .
Recall from Section 3.1.2 that for y = x⊕k1 f(x) = f(y), i.e period of function f is k1.

Similarly, since we can write f(x ⊕ k1) ⊕ f(k1) = f(k1) ⊕ f(0), it implies that k1 is a

linear structure of function f . Hence, by applying Algorithm 1, we are able to obtain

k1, while on the other hand Algorithm 5 (introduced in [56], which is given below) can

determine k1 with an overwhelming probability. The two following results justifies the

validity of Algorithm 5.

Lemma 5.18. Let f = (f1, f2, . . . , fn) be an arbitrary function. Applying Algorithm 5

with n2 queries (p(n) = n) to f gives output NO or some vector. It holds, if

δ′f ≤ p0 < 1

and f has no linear structure, then Algorithm 5 returns NO with probability grater than

1− pn0 .

Lemma 5.18 is part of Theorem 3 in [56], where it was assumed, that cn2 queries is

required, where c is a constant, but for our purpose we set c = 1.

Theorem 5.19. Applying Algorithm 5 with n2 (p(n) = n) queries to f gives a key k1,

except for negligible probability.



Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 73

Proof. The result of Lemma 5.16 can be modified for this purpose such that

δfi(k1) =
1

2n+1
max

s∈{0,1}n
|{x ∈ {0, 1}n|fi(x) = fi(x⊕ s)}| ≤

2

3
(5.21)

and s /∈ {((0, . . . , 0)), k1} holds except a negligible probability. Here, δfi(k1) is still a

random variable since fj is determined by random functions P1, P2. For

δ′f =
1

2n
max

a∈{0,1}2,a/∈U1
f

max
i∈{0,1}2

|{x ∈ {0, 1}2|f(x⊕ a)⊕ f(x) = i}|,

we have that δ′f = maxj δ
′
fj
≤ 2

3
holds except for a negligible probability. Then ac-

cording to Lemma 5.18, Algorithm 5 recovers k1 with the probability greater than

1− (2
3
)n.

Let us assume the oracle access to f = (f1, . . . , fn) is given and p(n) is an arbi-

trary polynomial of n. Then the quantum algorithm for distinguishing Even-Mansour

construction is described in Algorithm 5.

Algorithm 5: [56] The quantum algorithm for distinguishing EM scheme.

1 for i = 1, . . . n

2 for p = 1, . . . , p(n)

3 Apply BV algorithm on fj to get an u ∈ N 1
fj

4 Put U = U ∪ {u}

5 Solve the system of linear equations {x · u = 0|u ∈ U} to get the solution

Sj0,

6 if S0
j ⊆ {(0, 0, . . . , 0)} then

7 Output NO and stop the process.

8 else

9 Let U = ∅.

10 if S0
1 ∩ · · · ∩ S0

n+1 ⊆ {(0, . . . , 0)} then

11 Output NO and stop.

12 else

13 Choose an arbitrary nonzero vector a ∈ S0
1 ∩ · · · ∩ S0

n and output a.

Time complexity of Algorithm 5 is O(n2), which is higher than the polynomial

complexity O(n) of Simon’s algorithm.
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6 KUPERBERG’S ALGORITHMS

In this section we recall a few variants of Kuperberg’s algorithm (other versions can

be found in [36]), which has quite similar applications as Simon’s algorithm, but for

the case when non-binary operations are involved. Equivalently, it is an algorithm

for solving the well-known The hidden subgroup problem. Although it does not have

many applications in cryptanalysis of block ciphers (since most of block ciphers utilize

binary operations), our intention is to recall known applications and its relation to the

problem of finding a period of a given function (i.e. to shows its connection to Simon’s

problem). We start by recalling The hidden subgroup problem (HSP).

Problem 6.1. Given a group G, a finite set X and a black box/oracle function f :

G → X with promise that there exist subgroup H ≤ G such that for all a, b ∈ G,

f(a) = f(b) if and only if Ha = Hb. The goal is to find H.

In [36], G. Kuperberg introduced and described a quantum algorithm with subexpo-

nential complexity 2O(
√
logN) for the dihedral hidden subgroup problem (DHSP), where

G is the dihedral group DN . The definition of the dihedral group is given as follows.

Definition 6.2. The dihedral group DN is the group of symmetries of a regular polygon

with N vertices. The group order of DN is 2N.

There are two types of symmetries of the N -gon: rotations of angle 2kπ
N

and reflec-

tions through a line which makes an angle of πk
N

with the horizontal axis. One group

presentation for the dihedral group is:

DN = 〈x, y : x2 = yN , xyx = y−1〉. (6.1)

Using this group presentation, we can write any element of DN in the form g = ytxs,

where t ∈ Z2 and s ∈ ZN . For t = 0, g = xs is rotation and for t = 1, g = yxs is

reflection element.

Example 6.3. Let us consider the dihedral group D6. The order of this group is

2 · 6 = 12. The set of rotation elements is given as ρ = {1, x, x2, x3, x4, x5}, where

1 is the identity element of the group D6. The set of reflection elements is σ =

{y, yx, yx2, yx3, yx4, yx5}. Let x be a rotation of the angle 2π
6

. In Figure 19, we
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Figure 19: Dihedral group D6.

conclude that

x :

(
1 2 3 4 5 6

2 3 4 5 6 1

)
, yx :

(
1 2 3 4 5 6

6 5 4 3 2 1

)
.

Similarly, we can determine the other elements of D6.

In [36], it was assumed that H = 〈xys〉, where s is the slope of a reflection. There-

fore, in order to solve HSP we want to find s. This is justified by the following propo-

sition.

Proposition 6.4. [36] Finding an arbitrary hidden subgroup H of DN reduces to

finding the slope s of a hidden reflection.

Proof. The subgroups of DN are either cyclic or dihedral. Assume that H is not a

reflection. Then it is the trivial subgroup or it has a non-trivial intersection with the

cyclic subgroup CN = 〈x〉. Finding the hidden subgroup H1 = H ∩ CN is easy if we

know the factors of N . Note that we can factor N using Shor’s algorithm [52]. Then

the quotient group is H/H1 is either trivial or a reflection in the quotient group G/H1.

If H is trivial, then this will be determined by the fact that an algorithm to find the

slope of a hidden reflection must fail.

In [36], G. Kuperberg firstly described the quantum algorithm when n is the power

of 2 i.e. N = 2n, and then introduced another algorithm that works for every N . We

now recall the case when N = 2n.
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An algorithm for solving DHSP when N = 2n [36]

The main goal of this algorithm is to find the parity of s. When we find out its parity,

the main part can be repeated with a subgroup of DN isomorphic to DN/2. There are

two such subgroups:

H0 = 〈x2, y〉, H1 = 〈x2, yx〉.

Depending on whether s (mod 2) is equal to 0 or 1, the subgroup H is contained in

H0 or H1, respectively. Now, we describe define a hidden subgroup state. This result is

recalled from [17]. For any finite set X we can define the constant pure state |X〉

|X〉 =
1√
|X|

∑
x∈X

|x〉.

Using this, we are able to prepare a uniform superposition over group elements:

|G〉 =
1√
|G|

∑
g∈G

|g〉.

Then, we call the black box /oracle function Of : |g〉 → |g〉 ⊗ |f(g)〉 and obtain:

1√
|G|

∑
g∈G

|g〉 ⊗ |f(g)〉.

Now we measure the second register. If we get some value x ∈ S, then state is projected

to the uniform superposition of those g ∈ G such that f(g) = x. By definition of f ,

f(a) = f(b) if and only if a and b are in the same coset of H, those g make some coset

of H. Since every coset has the same cardinality, they occur with the same probability.

Thus, we obtain the coset state:

|Hg〉 =
1√
|H|

∑
h∈H

|hg〉.

This result is equivalent to hidden subgroup state

ρG/H =
1√
|G|

∑
g∈G

|Hg〉〈Hg|. (6.2)

In our special case G = DN . We mentioned earlier that every element g of DN (the

relation (6.1)) can be written in the form g = ytxs, where t ∈ ZN and s ∈ Z2. Since

N = 2n, it means that we need n qubits to describe s and one qubit to describe t.

Now, we are able to introduce the quantum algorithm proposed in [36].

Kuperberg’s first algorithm (Algorithm 1):

1. Input: An oracle f : G → X, where G = DN with the hidden subgroup H =

〈yxs〉 and N = 2n.
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2. In this step we make a list L0 of copies of ρDN/H by applying the unitary oper-

ator to the constant pure state |DN〉. Explicitly, we apply the quantum Fourier

transform (QFT) to |s〉 as

QFT |s〉 =
1

N

∑
k∈ZN

e
2πisk
N |k〉.

and measure it. This gives us the measured value with a uniform probability,

and collapses the remaining qubit in the state

|ψk〉 =
1√
2

(|0〉+ e
2πiks
N |1〉), (6.3)

We always prepare the same state ρDN/H and make the same measurement, hence

we can assume that we have 2O(
√
n) states of the form |ψk〉, where k is chosen

independently and uniformly at random but different for every state obtained in

this way. Since

|ψ−k〉 = X|ψk〉,

where X is a Pauli-X gate, the state |ψ−k〉 has the equivalent information about

s as |ψk〉.

3. Let m = dn − 1e, then for each i ∈ {0, . . . ,m − 1}, a list Li of qubit state such

that k has at least mi the last bits in the row equal to zero. Divide Li into pairs

|ψk〉, |ψl〉, so that they have at least m common low bits or n − 1 − mi bits if

m = i− 1. To combine states we do the following:

|ψk〉 ⊗ |ψl〉 =
1√
2

(|0〉+ e
2πiks
N |1〉)⊗ 1√

2
(|0〉+ e

2πils
N |1〉)

=
1

2
(|00〉+ e

2πils
N |01〉+ e

2πiks
N |10〉+ e

2πs(k+l)
N |11〉).

Applying CNOT gate we obtain:

1

2
(|00〉+ e

2πils
N |01〉+ e

2πiks
N |11〉+ e

2πs(k+l)
N |10〉) =

1√
2

(|ψk+l〉|0〉+ |ψk−l〉|1〉).

After measurement in the classical basis {|0〉, |1〉}, we get a classical state, out of

superposition, i.e. we get states |ψk+l〉, and |ψk−l〉, respectively. This is procedure

how to extract the new qubit |ψk±l〉 from the old qubits |ψk〉 and |ψl〉. Make a

new list Li+1 that contains only states of the form |ψl−k〉.

4. In this step the final list Lm consists of the remaining states of the form |ψ0〉
and |ψ2n−1〉, as follows. In order to obtain state |ψ2n−1〉, observe 2n−1 = 2n

2
= N

2

and relation (6.3). Therefore, state |ψ2n−1 is equal to 1√
2
(|0〉 + (−1)

2πiN
2N

s) =
1√
2
(|0〉+(−1)πis|1〉). Note that if s is even i.e the lowest bit of s is 0, we have |+〉,

otherwise it is |−〉. Measure it in the {|+〉, |−〉} basis to determine the parity of

the slope s.
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5. Repeat steps 1 − 3 with the subgroup of DN which is isomorphic to DN/2 and

which contains H.

In Step 3 we described the combinations of states |ψk〉 and |ψl〉. For all k and l they

can be used once, and we want to produce a special state |ψ2n−1〉. Thus, it is natural

that we need an algorithm to choose which elements to combine. For more details on

this part, we refer the reader to [11]. For this purpose G.Kuperberg has constructed

a sieve that begins with 2θ(
√
n) qubits. Each stage of the sieve will determine |ψk〉 and

|ψl〉 such that k and l agree in θ(
√
n) low bits in additional to their trailing zeros. The

probability that the label k± l of the extracted qubit has
√
n more trailing zeros than

k or l is 1
2
. If the sieve has θ(

√
n) steps, we can expect it to result |ψ2n−1〉 (cf. [36]).

Another algorithm described in [36] solves DSHP for N 6= 2n. There are a few differ-

ences in comparison to the first Kuperberg’s algorithm.

Kuperberg’s second algorithm (Algorithm 2): [36]

1. Input: An oracle f : DN → X with a hidden subgroup H = 〈yxs〉.

2. Similarly as in the first Kuperberg’s algorithm we make a list L0 of copies of

ρDN/H . Using a QFT on ZN and a measurement, we extract a qubit state |ψk〉,
here 0 ≤ k ≤ N

2
. Since N is not a power of 2, the QFT is more complicated on

ZN . For more details we refer to [35].

3. For each 0 ≤ j < m, where m = d
√

(log2N)− 2e, we suppose a list Lj of qubit

states |ψk〉 such that 0 ≤ k ≤ 2m
2−mi+1. Randomly divide Lj into pairs of qubits

|ψk〉 and |ψl〉 such that |k− l| ≤ 2m
2−m(i+1)+1. The new list Lj+1 consist states of

the form |ψk−l〉.

4. The final list Lm contains the states |ψ0〉 and |ψ1〉.

5. We supposed that N is not of the power of 2, therefore we can write N = 2αb,

where b 6= 1 is odd. By the well known Chinese remainder theorem

CN ∼= C2α × Cb,

where CN si a cyclic group. For each 1 ≤ j ≤ dlog2Ne, apply the first Kuper-

berg’s algorithm to produce many |ψ〉 with 2(α,j)|k. Then repeat Steps 1 − 4

after applying the group authomorphisam x → x2−i to the factor Cb of DN .

This produces copies of |ψj2〉, thus cosine observations cos(πi2j(s− t)/N)2. These

observations determine s.

In [36], G. Kuperberg also introduced an algorithm for solving HSP when N = pn. Let

us a consider function ξ(k), whose value represents the number of factors of r in k,
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with the exception that ξ(0) = 0. Within the list L of qubit states available only at

any given time, we will pick |ψk〉 and |ψl〉 to maximize ξ(k ± l).

Kuperberg’s third algorithm (Algorithm 3): [36]

1. Input: An oracle f : DN → X with a hidden subgroup H and N = pn

2. Within the sublist L′ of L that minimizes ξ, repeatedly extract |ψ(k±l)〉 from a

pair of qubits |ψk〉 and |ψl〉 that maximize ξ(k ± l).

3. After enough qubits |ψk〉 appear with N
p
|k, measure s (mod p). Then repeat the

algorithm with a subgroup DN isomorphic to DN/r.

G. Kuperberg proved the next two results for Algorithms 1, 2 and 3.

Theorem 6.5. [36] Algorithms 1 and 2 find a hidden reflection in the dihedral group

G = DN with the time and query complexity 2O(
√

logN).

The complexity in Theorem 6.5 is subexponential, while on the other hand any

classical algorithm requires at least 2
√
N queries. We note that the 3-rd algorithm has

higher time and query complexity.

Theorem 6.6. [36] Algorithm 3 requires Õ(3
√

2 log3N) queries and quasilinear time in

the number of queries.

For the proofs of Theorems 6.5 and 6.6 we refer the reader to [36]. In general, there

are other problems which are quivalent to DHSP , such as the abelian hidden shift

problems and the hidden reflection problem in G. Let G be an abelian group and let

eG denote the multiplicative form of the same group. Let Cn = eZn be the multiplicative

cyclic group of order n. Since G is an abelian group, we can define generalized dihedral

group to be the semidirect product

DG
∼= C2 nG,

with the conjugation relation x−1 = yxy, for any x ∈ eG and for the non-trivial y ∈ C2.

Note that any element of the form yx is the reflection in DG.

Definition 6.7. Let G be an abelian group. Then the function f : G→ X is a function

which is injective except for

f(g) = f(s− g),

were s is hidden in G.

Remark 6.8. In what follows the terms Kuperberg’s algorithm or basic algorithm rep-

resents Kuperberg’s first algorithm.
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6.1 KUPERBERG’S ALGORITHM FOR SOLVING THE

HIDDEN SHIFT PROBLEM

In [11] authors have introduced new results for solving the hidden shift problem, that

is a natural variant of the hidden subgroup problem, using Kuperberg’s algorithm. Let

us first recall this problem.

Problem 6.9. (Hidden shift problem ) Let (G, ·) be a finite group. Given two injective

functions f, g with the promise that there exist s ∈ G such that for all x, it holds that

f(x) = g(x · s). The goal is to find s.

Notice that if the group operation is ⊕, then f(x) = g(x⊕s) and the given problem

can be solved by Simon’s algorithm in polynomial time. More precisely, Hidden Shift

Version of Simon’s Problem is defined as follows.

Problem 6.10. [12] Let f, g : {0, 1}n → {0, 1}n be two permutations with promise

that there exists s ∈ {0, 1}n, that for all x, it holds f(x) = g(x ⊕ s). The goal is to

find s.

We saw earlier that the Kuperberg’s algorithm works for N = 2n i.e. it works

for modular addition which is power of 2. Before we recall the algorithm for solving

Problem 6.9, which is presented in [11], we define an oracle function O as follows:

O : |a〉|x〉|y〉 →

|0〉|x〉|y ⊕ f(x)〉, if a = 0,

|1〉|x〉|y ⊕ g(x)〉, if a = 1.
(6.4)

The quantum circuit for Kuperberg’s algorithm, with oracle is given in the Figure 20.

Notice, that first Hadamard transform is applied to the first two registers, and then

the oracle function O is called followed by measurement of the second register. To

estimate the complexity, in [11] authors consider the case when n = log2 |G|.

Figure 20: The quantum circuit of Kuperberg’s algorithm [11].
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Kuperberg’s algorithm for hidden shift problem [11]

1. Prepare three quantum registers in the zero state:

|ψ0〉 = |0〉|0〉⊗n|0〉⊗m.

2. Applying Hadamard transforms to the first two register in order to obtain state:

|ψ1〉 = (H|0〉)⊗ (H⊗n|0〉⊗n)⊗ |0〉⊗m

=
|0〉+ |1〉√

2
⊗ 1√

2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉⊗m

=
1√
2n+1

∑
x∈{0,1}n

(|0〉|x〉|0〉⊗m + |1〉|x〉|0〉⊗m).

3. Apply the oracle O. By (6.4) one obtains the state:

|ψ2〉 =
1√
2n+1

∑
x∈{0,1}n

(|0〉|x〉|f(x)〉+ |1〉|x〉|g(x)〉).

4. Measure the third register to find a vector y0 such that f(y0) = g(x). For sim-

plicity in the obtained state we omit amplitudes and last register. Therefore, we

have

|ψ3〉 =
∑

f(x)=y0

|0〉|x〉+
∑

g(x)=y0

|1〉|x〉.

Thanks to the promise given in (6.9) and the fact that f and g are injective

functions, we have that f(x0) = g(x1) implies x0 = x1 = x0 + s. Since we want

to consider modular addition we write operation +. Therefore, we have

|ψ3〉 = |0〉|x0〉+ |1〉|x0 + s〉.

5. Then we apply the QFT on the second register and measure the result. This

gives us a k with a uniform probability, and collapses the remaining qubits into

the state

|ψk〉 =
1√
2

(|0〉+ e
2πiks
N |1〉).

The remaining steps are the same as in Kuperberg’s algorithm described before.

In [11] the authors proposed a new variant of this algorithm with improved time com-

plexity. It still has a subexponential time, but it needs only one iteration to find all

qubits instead of n. In order to find a more precise complexity estimations, the authors

in [11] have simulated the classical part of the algorithm, replacing the quantum mea-

surement by random outcomes. In Table 3, are summarized results of these simulations

for different values of n, with 90% success probability. From these simulations authors
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Algorithm 6: Improved variant of Kuperberg’s algorithm [11]

1 Generate N random numbers in ZN , where N = 2n.

2 Separate them in lists Li of elements divisible by 2i and not 2i+1

3 for i = 1, . . . , n− 2

4 while |Li| ≥ 3 do

5 Pop two elements (k, l) of Li where k + l or k − l has the highest

possible divisibility by 2 (and is not 0)

6 Chose element c randomly in {k + l, k − l} and put it in the

corresponding Lj

7 if ∀i ∈ {0, . . . , n− 1}, Li 6= ∅ then

8 return Found

9 return Failure

Table 3: Results of the simulation of the improved variant of Kuperberg’s algorithm [11]

n queries log2(queries) 1.8 ·
√
n− 0.5 number of tests

16 118 6.9 6.7 106

32 826 9.7 9.7 106

64 14975 13.9 13.9 5 · 105

80 49200 15.6 15.6 105

128 9.8 · 105 19.9 19.9 5 · 104

concluded that an approximate complexity is 0.7 · 21.8
√
n for a 90% success probability.

This matches the exponential complexity of Õ(2
√

2 log2(3)n). In the same work, authors

proposed a new algorithm which is a combination of Simon’s and Kuperberg’s algo-

rithms for the first time.

An attack on Poly 1305-AES: This improved version of Kuperberg’ algorithm found

its application in the quantum cryptanalysis of Poly 1305-AES message-authentication

code, proposed by D. Bernstein in [5]. It computes a 128-bit authenticator Poly1305r

(m,AESk(n)) of a message m, using a 128-bit AES key k, a 128-bit additional key r,

and a 128-bit nonce n. The function is defined as:

Poly1305r(mi, AESk(n)) =
(( q∑

i=1

(cq−i+1+2128)ri mod 2130−5
)

+AESk(n)
)

(mod 2128),

where q = d l
128
e and ci are constants, which are defined as in [5]. The length l is

any non-negative number, which can be different for different messages(cf. [5] for more

details).

In order to make a quantum attack, Bonnetain and Naya-Plasencia in [11] consid-
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ered the function

Polyn : |m1〉|m2〉|0〉 → |m1〉|m2〉|Poly1305r(m1,m2, AESk(n))〉.

It was shown that this attack, which is based on improved Kuperberg’s algorithm,

has complexity of about 238 in time and queries. So, Poly1305 − AES is affected by

quantum cryptoanalysis. For more detail we refer reader to [11].

6.2 QUANTUMATTACKONKEY-ALTERNATINGCIPHER

In [12] X. Bonnetain et al. proposed the quantum slide attack on the key-alternating

cipher using modular additions instead of XOR. This bock ciphers generalizes the Even-

Mansour construction over multiple rounds. We begin by recalling the design of an

idealized model of a key-alternating cipher presented in [9].

Let be permutations P1, P2, . . . Pt : {0, 1}n → {0, 1}n ,where t ≥ 1 and keys k0, k1, . . . kt ∈
{0, 1}n are given. The key-alternating block cipher E = Ek0,...,kt : {0, 1}n → {0, 1}n is

defined by

E(x) = Ek0,...,kt = Pt(. . . P2(P1(x⊕ k0) . . . )⊕ kt

for x ∈ {0, 1}n. An illustrated version of this is shown in Figure 21.

Figure 21: A key-alternating cipher.

In the case of XOR, we are able to construct a quantum attack based on Simon’s

algorithm that distinguishes the key-alternating cipher. Now suppose that instead of

XOR, we have modular addition, and based on the definition of the quantum slide

attack, we assume that all keys are equal, i.e. k = k0 = k1 = · · · = kt.

Now, define the function G : {0, 1} × {0, 1}n → {0, 1}n as follows:

G(b||x) =

f(x) = P (Ek(x))− x, if b = 0,

g(x) = Ek(P (x))− x, if b = 1.
(6.5)

In Section 3.1.4, we defined a quantum slide attack, and thus for all x the condition

P (Ek(x)) + k = Ek(P (x+ k)) is satisfied. Therefore, the following lemma holds.
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Lemma 6.11. Let f and g be functions defined as in the relation (6.5). Then for any

arbitrary distinct vectors x, y ∈ {0, 1}n holds

f(x) = g(y) ⇐⇒ y = x+ k.

Proof. (⇒) Let us assume first that for any distinct vectors x, y ∈ {0, 1}n holds f(x) =

g(y), i.e. P (Ek(x))− x = Ek(P (y))− y. Since it holds P (Ek(x)) + k = Ek(P (x+ k)),

we can write P (Ek(x)) = Ek(P (x+ k))− k. Hence

P (Ek(x))− x = Ek(P (x+ k))− (k + x) = Ek(P (y))− y,

which implies that y = x+ k.

(⇐) Now suppose y = x + k, then by the relation (6.5) it holds f(x) = P (Ek(x))− x
and g(y) = Ek(P (y)−y = Ek(P (x+k))− (x+k). Since Ek(P (x+k)) = P (Ek(x))+k,

we can write. g(x+ k) = P (Ek(x)) + k − (x+ k) = P (Ek(x))− x = f(x).

By Lemma 6.11, we deduce that G satisfies the conditions of the Hidden shift

problem 6.9, that is

G(0||x) = P (Ek(x))− x = Ek(P (x+ k))− (k + x) = G(1||x+ k).

Also, we note that one can apply Kuperberg’s algorithm as well, which recovers the

key k with the complexity of21.78
√
n [12].

6.3 QUANTUM ATTACK ON ONE ROUND FEISTEL NET-

WORK

In Section 3.1, we defined Feistel cipher and described a quantum attack based on

Simon’s algorithm [37] which breaks 3-round Feistel network in polynomial time O(n).

We now describe a quantum slide attack on the first round Feistel network with modular

addition instead of XOR, proposed in [12]. According to the definition 3.4, for one

round of Feistel network, the right part of the plaintext R0 is equal to the left part

of the second plaintext L1, i.e., R0 = L1. Since R0 is fixed, in this quantum attack

one can consider a variable k′ = F (R0 + k) (see Figure 22) as an equivalent key [12]

where F is a weak round function. Let Ek be an encryption function and TL and TR be

the functions that truncate a Feistel state only to its left and right parts, respectively.

Define the function G : {0, 1} × {0, 1}n2 → {0, 1}n2 by

G(b||x) =

f(x) = TR(Ek(x,R0)), if b = 0,

g(x) = TL(Ek(R0, x)), if b = 1.
(6.6)

In Figure 22, one concludes that f(x) = g(x + k′), which implies that the function G

defined in (6.6) satisfies the Hidden shift problem. Consequently, the key k′ = F (R0+k)
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can be recovered by Kuperberg’s algorithm, and since F is a weak function, a secret

key k can be determined. This attack has complexity 21.2
√
n, which is worse than in

Simon’s case.

Remark 6.12. One of the improved variants of the slide attack is the complementation

slide attack [8]. Similar to the previous work for, authors in [12] illustrated this on a

Feistel cipher with 2-round self-similarity and then applied Kuperberg’s algorithm.

Figure 22: The slide attack on Feistel scheme with one round self-similarity and mod-

ular addition [12].
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7 CONCLUSION

It is well know that Shor’s algorithm is going to compromise the classical public-key

cryptography in quantum environment. On the other hand, symmetric-key cryptog-

raphy (referring to block ciphers) is appearing to be quite unexplored. Base on the

works published in the last decade, it has been shown that the development of new

quantum attacks is becoming more efficient. Not only that one is able to combine

classical and quantum attacks, but also the quantum algorithms can be combined as

well. In this context, it was initially an opinion of the community that the resistance to

Grover’s algorithm is achieved just by doubling the secret key. However, by combining

it with Simon’s algorithm, it turns out not the be sufficient. It has been presented

throughout the thesis that various block ciphers can be easily broken by using just

the Simon-Grover algorithm, which is possible to combine with other known classical

attacks. We note that during the writing of this thesis, various new articles have been

published which are supporting the fact that the security of block ciphers has to be

re-evaluated. Although in most of the cases it has been shown that the Simon-Grover

algorithm is more efficient to encryption schemes based on Feistel network, there is still

no guarantee that the SPN-based schemes will stay secure. At this moment, it appears

that the AES-like schemes are resistant to known quantum attacks. To these schemes,

an attack based on Grover’s algorithm is the only one that one can consider.
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8 DALJŠI POVZETEK V

SLOVENSKEM JEZIKU

Skozi zgodovino so se ljudje vedno zbirali v skupine, tvorili plemena, imperije, kral-

jestva, države. Zato so potrebovali zaščito informacij tako pred zunanjimi sovražniki

kot tudi pred samimi člani skupine. Posledično so sčasoma razvili znanost, ki zaščiti

sporočila in jo danes poznamo pod imenom kriptografija (kryptós - skrito, graphein -

pisati). Začetek njenega razvoja je povzročila iznajdba črk. Prvi znaki obstoja krip-

tografije najdemo na zidu grobnice iz časa starega kraljestva v Egiptu, ki sega 1900 let

pred našim štetjem. Pred njenim modernim razvojem, ki predstavlja točko preloma v

znanosti in tehnologiji, je bila poglavitna naloga kriptografije v zaščiti zaupnih sporočil

med vojno, religijskimi revolucijami ter pred političnimi tekmeci. Medtem se moderna

kriptografija uporablja pri zaščiti bančnih računov, bazah podatkov, računalnikov, elek-

tronske pošte itd.

Na drugi strani se je z namenom izbolǰsanja kriptografskih shem razvila tudi krip-

toanaliza, ki je znanost analiziranja in vdiranja v kriptografske sisteme. Obe znanosti

skupaj tvorita kriptologijo, ki zajema tako metode zaščite kot tudi metode vdiranja v

skritost sporočila pri komunikaciji med dvema deležnikoma. Slednja danes predstavlja

eno najpomembneǰsih znanosti. Čeprav se je skozi zgodovino močno spremenila, je njen

poglavitni namen o skritosti ostal enak. Z namenom bolǰsega razumevanja moderne

kriptografije opǐsimo dve njeni glavni področji, ki se razlikujeta glede na tip skritega

ključa. To sta kriptografija javnega ključa in simetrična kriptografija (več informa-

cij najdemo v [54]). Recimo, da Alice in Bob komunicirata preko nezaščitenega kanala

(npr. preko telefonske linije, računalnǐskega omrežja ali radia). Glavni cilj kriptografije

je preprečiti zunanjemu nasprotniku, ki ga pogosto imenujemo Eve/Oscar, da bi videl

vsebino sporočila v komunikaciji. Sporočilo, ki si ga Alice in Bob želita izmenjati

imenujemo navadni tekst. Pri onemogočanju nasprotnika Alice izbere skrivni ključ K

(tj. enkripcijski ključ) in spremeni navadni tekst P v skrivno sporočilo, ki ga imenujemo

šifriran tekst C. Šifriran tekst nato Alice pošlje Bobu, ki uporabi dekripcijski ključ K ′,

da pride do originalnega sporočila (ključa K in K ′ nista nujno enaka). Transformacijo,

ki navadni tekst spremeni v šifriran tekst, imenujemo enkripcija, obratni postopek pa

dekripcija.

Glede na to, ali sta enkripcijski in dekripcijski ključ med sabo enaka, ločimo dve

vrsti kriptografije. V primeru enakosti ključev (tj. K = K ′) govorimo o simetrični



Vǐsnjić D. On Applications of Quantum Algorithms in Cryptanalysis of Block Ciphers.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 88

kriptografiji. Sicer, če velja K 6= K ′, imamo opravka z asimetrično kriptografijo. V

slednjem primeru je enkripcijski ključ javni, dekripcijski pa zasebni.

V zadnjem času je poleg klasične moderne kriptografije veliko govora o post-kvantni

kriptografiji, ki se nanaša na poskus razvoja kvantnih računalnikov. Ideja o razvoju

kvantnega računalniku pripada slovitemu fiziku Richardu Feynmanu (1982) [23], čigar

delo je vplivalo na številne kvantne algoritme. Prvi poskusi konstrukcije kvantnega

računalnika so se pojavili v zadnjih dveh desetletjih z namenom doseči kvantno premoč,

ki bi jo predstavljala naprava, ki jo je moč programirati, in je sposobna v realnem času

rešiti določene probleme, ki jih klasični superračunalniki ne zmorejo.

V splošnem se pojem algoritma nanaša na serijo korakov, ki so potrebni za razrešitev

določenega problema. Pri kvantnih algoritmih se vsaj en izmed teh korakov zanaša na

kvantna stanja kot sta superpozicija ali prepletenost. Tovrstni algoritmi so običajno

opisani preko kvantnega vezja, ki predstavlja model kvantnega računanja, kjer so ko-

raki, ki rešujejo posamezen del problema, kvantna vrata uporabljena na določenih

kubitih.

V določenih primerih so kvantni algoritmi precej hitreǰsi in efektivni v primerjavi s

klasičnimi algoritmi. Zato se za (bližnjo) prihodnost, ko naj bi po nekaterih napovedih

kvantni računalniki postali del vsakodnevnega življenja, pojavi vprašanje o varnosti

naših (skritih) podatkov. Aplikacije kvantnih algoritmov v zadnjih dveh desetletjih so

nakazale, da klasične sheme iz kriptografije javnega ključa ne nudijo potrebne zaščite.

Medtem se zaščita shem v simetrični kriptografiji zmanǰsa v primerjavi s klasičnem

kontekstom. Leta 1994 je npr. Peter Shor [52] podal polinomski algoritem za fak-

torizacijo celih števil ter diskretne logaritemske probleme. Slednje pomeni, da lahko

Shorov algoritem vdre v RSA kriptosisteme. Na drugi strani Groverjev algoritem [25]

zahteva, da se dolžina skrivnega ključa podvoji. Kasneje so aplikacije kvantnih algo-

ritmov, kot so Simonov [53], Bernstein-Vaziranijev [6], Kuperbergov [36] algoritem, ter

njihove kombinacije naznanile, da razumevanje zaščite shem v simetrični kriptografiji

še ni na zadovoljivi ravni.

Za bolǰse razumevanje poglavitnih ciljev magistrskega dela, potrebujemo nekaj oz-

nak, ki so vezane na sheme simetrične kriptografije. Le-te tipično ločimo na tokovne

šifre in bločne šifre, vendar bomo v delu obravnavali le slednje. Pojem n-bitne bločne

šifre je ponazorjen s funkcijo E : {0, 1}n × {0, 1}k → {0, 1}n, za katero velja, da

je za vsak fiksen K ∈ K (K je prostor ključev) enkripcijska funkcija E(P,K) =

EK(P ) permutacija. Slednja priredi ključu K, z dolžino k, ter bločnemu sporočilu P

(navadni tekst) dolžine n, n-bitni šifriran tekst C. Inverzna, tj. dekripcijska funkcija

D : {0, 1}n×{0, 1}k → {0, 1}n je definirana s predpisom D(C,K) = E−1
K (C) = DK(C),

kjer je DK(EK(P )) = P za vsak K ∈ K.

Najpogosteǰsi dizajnerski pristop bločnih šifer je dandanes sestavljen iz iteriranih

produktnih šifer, katerih struktura temelji bodisi na Feistelovem omrežju (FN) bodisi
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na zamenjalno permutacijskem omrežju (SPN). Do enkripcije pri iteriranih produktnih

bločnih šifrah pride z aplikacijo iste rundne funkcije (aplicirane večkrat), ki uporablja

t.i. rundne ključe. Slednji so dobljeni s pomočjo glavnega skrivnega ključa in algoritma,

ki razvršča ključe.

V magistrskem delu opǐsemo in analiziramo zgoraj omenjene kvantne algoritme v

kontekstu kriptoanalize bločnih šifer, ki temeljijo na FN ali SPN strukturi. Znani so

številni rezultati na tem področju, ki v zadnjem času pridobiva na veljavnosti. Čeprav

je bil Simonov algoritem opisan že leta 1994, njegovo prvo aplikacijo v kriptoanalizi

bločnih šifer zasledimo šele v delu [37] iz leta 2010, kjer je bilo pokazano, da je 3-

rundno Feistelovo šifro mogoče zlomiti. Kasneje so pokazali, da t.i. Even-Mansourjeva

konstrukcija prav tako ni varna [38]. Poleg tega sta Leander in May [39] prva upora-

bila kombinacijo Simonovega in Groverjevega algoritma na FX-konstrukciji. Pokazala

sta, da t.i. “key whitening” procedura, ki povečuje prostor ključev, ni enako efektivna

kot v klasičnem kontekstu. V magistrskem delu sta opisani tudi aplikaciji Berstein-

Vaziranijevega in Kuperbergovega algoritma v konstekstu konstrukcije kvantnih raz-

likovalcev, ki temeljijo na periodičnem iskanju. Magistrsko delo je razdeljeno na osem

poglavij, pri čemer poglavja 2-6 predstavljajo njeno jedro. Poglavju 2, kjer so pred-

stavljena vsa orodja, ki jih v delu potrebujemo, sledijo štiri poglavja, ki so posvečena

Simonovemu, Groverjemu, Berstein-Vaziranijevemu ter Kuperbergovemu algoritmu.
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Appendices



APPENDIX A The elements of Galois

field GF (24)

Definition A.1. A field is a 3-tiple (F,+, ·) such that

1. (F,+) is abelian group with identity 0.

2. (F/{0}, ·) is abelian group with identity 1.

3. distributivity lows hold: a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

Let us denote by GF (q) Galois field of order q = ph, where p is prime. Consider

GF (24). The polynomial p(x) = x4 + x + 1 is irreducible over F2 = {0, 1}, therefore

GF (24) is equivalent to F2/(x
4+x2+1.) Using this we are able to determine all elements

of GF (24).

The elements of Galois field GF (24).

Elements in polynomial form Elements in binary form Inverse

1 0001 1

x 0010 x3 + 1

x+ 1 0011 x3 + x2 + x

x2 0100 x3 + x2 + 1

x2 + 1 0101 x3 + x+ 1

x2 + x 0110 x2 + x+ 1

x2 + x+ 1 0111 x2 + x

x3 1000 x3 + x2 + x+ 1

x3 + 1 1001 x

x3 + x 1010 x3 + x2

x3 + x+ 1 1011 x2 + 1

x3 + x2 1100 x3 + x

x3 + x2 + 1 1101 x2

x3 + x2 + x 1110 x+ 1

x3 + x2 + x+ 1 1111 x3


