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Mentor: izr. prof. dr. Jernej Vičič
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1 Introduction

This paper is concerned with the the end-to-end encryption protocol - Signal and its

behaviour in the context of a P2P distributed system.

E2EE is a type of encryption in which only the communicating parties can perform

message encryption and decryption on sent messages. Other forms of encryption may

rely on third parties performing these operations, hence posing a security risk since

the user is forced to rely on a third party and trust them with their original message

in plaintext format. This is also an obvious security problem in situations where the

aforementioned message may contain sensitive data.

As the number of parties through which the data passes unprotected, as well as

the number of parties that have control over encryption keys is minimized to just

sender and receiver, E2EE is generally considered a safer alternative to contemporary

encryption/decryption methods.

1.1 Symmetric and asymmetric cryptography

There are two main types of cryptographic encryption protocols. E2EE, as well as

other cryptographic systems, rely on either one type, or most often on a combination

of both.

The first type of encryption is called symmetric encryption.

The defining feature of symmetric encryption is the fact that the same key is used

for both encryption and decryption during communication between parties. The com-

municating parties must exchange the key in order for decryption to be possible.

In contrast to symmetric encryption, the second type of encryption, asymmetric

encryption, makes use of a keypair composed out of a public and a private key. These

are two separate, yet mathematically uniquely paired keys.

Encryption is done with a publicly available key of the intended recipient, known

to all exchanging and non-exchanging parties. Afterwards, the message is received by

the recipient in an encrypted format, and can be decrypted with the recipient’s private

key.

Since the public counterpart in this keypair is available to everyone, the pair must

be generated in such a manner that the private key cannot be deduced from the public
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key. To achieve this, asymmetric cryptography uses encryption algorithms to create

the public and private keys. These algorithms are based on certain mathematical

constructs called trap door functions which cannot be efficiently reversed. The nature

of the mathematical problems of reversing these trapdoor functions is such that it is

borderline impossible for an outside party to derive a private key based on only its

public counterpart. In practice, this means that it would take present supercomputers

trillions of years to break the key.

This form of communication offers the primary advantage of communicating parties

never having to share a key. Intermediary parties transferring the data have only access

to the public keys, which are used for encryption, but never have access to the private

keys needed for decryption.

1.2 Cryptographic primitives used in the Signal pro-

tocol

Before understanding the full functioning of the Signal protocol, we must firstly analyze

the tools required for its functioning.

Two of the most common asymmetric algorithms that are used are RSA and ECC.

RSA is based around the presumed difficulty of factoring large integers. Decryption

hence is infeasable on the assumption that the problem of integer factorization lacks

an efficient algorithm to solve it.

The second relevant asymmetric algorithm is ECC. ECC is based on the presumed

difficulty of the discrete logarithm problem. It is more efficient than RSA and it

is therefore used by most new, modern systems that do not need to be backward

compatible. Signal protocol and the blockchain environment are two such examples.

1.2.1 Elliptic curve cryptography

ECC relies on the algebraic structure of elliptic curves over finite fields. It is assumed

that discovering the discrete logarithm of a random elliptic curve element in connection

to a publicly known base point is impractical.

An elliptic curve is a set of points which satisfy the equation:

y2 = x3 + ax+ b

with the limitation that 4a3 + 27b2 6= 0. The purpose of this limitation is to avoid

singular points.

In order to use elliptic curves in an efficient cryptographic system, we need to find

an operation that is easy and efficient to compute (it will be used for encryption), but
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computationally impossible to reverse (decryption will be impossible without an extra

piece of information - the private key). In the ECC scheme, the operation is scalar

multiplication of a point.

Firstly, let us demonstrate how point addition is defined within the ECC system.

In order to properly define the addition, it is important to point out two important

properties of elliptic curves. Firstly, the curves have horizontal symmetry - that is, if

a point (x, y) lies on the curve, then the point (x,−y) lies on the curve as well. The

second property is that any line drawn between any two different points on this elliptic

curve will intersect the curve in at most one other point.

For demonstrative purposes, let us choose two randomly selected points P and Q

on some graphed elliptic curve.

Figure 1: Selected curve with 2 points.

Here we may note the aforementioned property that any line drawn between any

two different points on this elliptic curve will intersect the curve in at most one other

point.
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Figure 2: Line between selected points.

We mark the point of intersection and reflect it across the x axis. We denote the

reflected point with R and define it to be the addition of points P and Q.

Figure 3: Reflected point on an elliptic curve

In a similar way we can also add a point to itself. Let us find a point P + P . In

this case we draw a tangent on the curve in point P , see where it intersects the curve,

and reflect it. In this way we define multiplication of a point with a scalar with ”∗”.

In the following example, we find the point 2 ∗ P .
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Figure 4: Scalar operation on an elliptic curve.

Note that the operation is repeatable on a single point. Obtaining a point Q with

an initial point P and a random integer d is simple, as we can just repeat the operation

d times. Reversing this operation, however, would require us to solve the discrete

logarithm problem, which is not feasible. That is, given two points P and Q = d ∗ P ,

it is infeasible to find the integer d.

To algebraically demonstrate this addition operation, let us choose a specific curve

E : y2 = x3 + Ax+B

and supposed we want to add the points

P1 = (x1, y1),

P2 = (x2, y2)

on this curve. Furthermore, let the line connecting P to Q be

L : y = λx+ ν

with the slope and y-intercept given by

λ =


y2−y1
x2−x1

, if P1 6= P2

3x2
1+A

2y1
, if P1 = P2

and ν = y1 − λx1.

We can find the intersection of E and L by solving

(λx+ ν)2 = x3 + Ax+B.
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We know x1 and x2 are solutions, and we may find x3 using the equation

x3 + Ax+B − (λx+ ν)2

= (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3.

For example, equating the coefficients of x2 gives us

−λ2 = −x1 − x2 − x3

and consequently

x3 = λ2 − x1 − x2.

Computing y3 using y3 = λx3 + ν allows us to finally arive at

P1 + P2 = (x3,−y3).

It must be noted that this example is included purely for demonstrative purposes. A

more interested reader can find more detailed information on the mathematics behind

ECC in [2].

To conclude, the nature of this operation functions as trap door function for elliptic

curves, hence making it cryptographically relevant. The curve, the initial point P , its

order and the final point Q may be used as public elements, and the random integer d

may be used as the private component. Given that the operation is difficult to reverse,

d can safely be used as a private component in our asymmetric cryptography keypair.

1.2.2 Elliptic curve Diffie Helman

The second important tool for the functioning of the Signal protocol is the ECDH

algorithm.

ECDH is a key agreement protocol which is used by two communicating parties for

the purpose of establishing a shared key. It is a variant of the standard Diffie-Hellman

protocol which uses ECC. In this section we will offer a high level description of the

algorithm. A more interested reader can find useful details in [2].

As a prerequestite, a curve is decided upon by both communicating parties, and a

point G on that same curve. Also, each party must have their own ECC keypair.

Let us suppose Alice and Bob want to establish a safe communication channel.

Firstly they generate their respective keypairs. Alice computes

Qa = da ∗G



Marinkovski H. Analysis and module implementation of the Signal Protocol in a distributed environment.

University of Primorska, Faculty of mathematics, natural sciences and information technologies, 2021 7

and Bob computes

Qb = db ∗G,

where Qa and Qb respectively are the public keys, while da and db are the private keys.

After the keypair has been generated by both parties, the protocol is executed by

exchanging the public keys and combining it with their own respective private keys.

Alice computes:

SharedKeyAlice = da ∗ db ∗G

and Bob will do the same using his private key:

SharedKeyBob = db ∗ da ∗G.

The operation ∗ is commutative, so Alice and Bob will both arrive at the same

key, obtaining a shared secret without directly communicating their private keys. The

trap door functioning of ECC is an integral part of this key agreement protocol. If the

operation ∗ could be reversed, the party which transmits the public components could

derive also the private ones, computing the shared secret between the two parties.
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2 Signal protocol

As we previously noted, the Signal protocol is an end-to-end encryption protocol. It

was developed by Open Whisper Systems in 2012 and is currently used by Signal,

WhatsApp, Facebook Messenger, and other platforms for which it is suitable.

It is primarily constructed by the following algorithms:

• XEdDSA and VXEdDSA, which are used for creating and verifying EdDSA-

compatible signatures.

• X3DH, which is used for the secure computation of a shared secret between two

parties who wish to communicate.

• Double Ratchet, which is used as the algorithm which determines the mode of

sending and receiving messages after the shared secret has been computed.

• Sesame, which is used for the purpose of managing message encryption sessions

in an asynchronous and multi-device setting.

In this chapter, we will explore these algorithms in greater detail, although it should

be noted that the purpose of this chapter is only to provide a rudimentary understand-

ing of how these algorithms function and what their purpose is within the context of

the protocol. Certain information, such as security considerations and implementation

details have been omitted and further reference should be obtained from the official

Signal documentation which may be referenced in [1]. The following subsections are

in great part summarized from the same source.

2.1 XEdDSA and VXEdDSA

A digital signature in asymmetric cryptography is an electronic verification of the

sender. The purpose of such signatures is to provide authenticity of the sender to the

receiver, and to assure the integrity of the message.

Generally in asymmetric cryptography, establishing a signature is done by encrypt-

ing data with the sender’s private key. Data is firstly passed through a hash function

and padded to avoid issues with data length, and afterwards, the said data is encrypted.
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When the receiving party receives the message, they may decrypt it by using the

public key of the sender. If the decrypted data is correct, the receiver has received

a proof of authenticity by the sender. If the decryption step yields incorrect results

however, the receiver will know that the data has either been tampered with or sent

by someone other than the expected sender.

EdDSA is a modern and secure digital signature algorithm based on performance-

optimized elliptic curves. Details regarding EdDSA are outside the scope of this paper.

A more interested reader may find out more about this topic in [3].

The XEdDSA signature scheme, a modified version of the aforementioned EdDSA

algorithm, is used by the Signal protocol for the creation and verification of these exact

EdDSA-compatible signatures using public and private key formats initially defined for

the X25519 and X448 elliptic curve Diffie-Hellman functions.

XEdDSA functions by enabling the use of a single keypair format for both signing

and key exchange. In some cases it enables the use of the same, unmodified keypair

for both algorithms, which is in general not possible.

XEdDSA is extended by VXEdDSA, which is used to make it a verifiable random

function. Successful verification of a VXEdDSA signature returns a VRF output which

is unique for the message and public key. Additionally, the output is seemingly random

to an outside party which has not seen a VXEdDSA signature for that exact message

and key.

2.2 X3DH

The X3DH key agreement protocol is used by Signal for establishing a secret symmet-

ric key between two parties who have mutually authenticated each other using their

respective public keys.

Besides having other desirable cryptographic properties, X3DH is also designed to

work asynchronously. If two parties want to establish a secret key for future communi-

cations, each party may compute the key without intervention from the other directly.

This also means that the party which computes said key may start sending messages

immediately.

The X3DH protocol involves three parties:

• Alice, who wants to send Bob some initial data using encryption, and also es-

tablish a shared secret key which may be used for bidirectional communication.

• Bob, who wants to allow parties like Alice to establish a shared key with him

and send encrypted data. However, Bob might be offline when Alice attempts to

do this. To enable this, Bob has a relationship with some server.
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• The server, which can store messages from Alice to Bob which Bob can later

retrieve. The server also lets Bob publish some data which the server will provide

to parties like Alice.

The purpose of the protocol is for both sides to generate a 32-byte secret key SK,

and in order to achieve this, the following keys are used:

Table 1: Keypair’s involved in the X3DH algorithm.

Name Definition

(IK−1
A , IKA) Alice’s identity keypair

(EK−1
A , EKA) Alice’s ephemeral keypair

(IK−1
B , IKB) Bob’s identity keypair

(SPK−1
B , SPKB) Bob’s signed pre keypair

(OTK−1
Bi
, OTKBi

) One of Bob’s one-time keypairs

The first step of the X3DH protocol consists of publishing a collection of keys to the

server by Bob. This collection is set of keys which will be used as ECDH components,

and they contain the following keys:

• Bob’s public identity key IKB,

• Bob’s public, signed prekey SPKB,

• Bob’s prekey signature Sig(IKB, Encode(SPKB)),

• A set of Bob’s one-time prekeys (OPKB1, OPKB2, OPKB3, ...).

The set of one-time prekeys is to be utilized by other parties which want to attempt

to communicate with Bob, so it follows that Bob will eventually have to update it to

avoid reusing the same keys.

The signed keypair may be updated at some interval in order to ensure long-term

authenticity. Whilst updating the signed key, Bob may keep the private key of the

previous signed key in order to handle messages which have been delayed in transit.

However, for the security purpose of forward secrecy, this private key should eventually

be deleted.

After Bob’s collection of keys has been uploaded to the server, another party, such

as Alice may attempt to establish communications with Bob. In order to do this, Alice

requests Bob’s prekey bundle from the server. A prekey bundle in the context of the

Signal protocol contains the following keys:
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• Bob’s public identity key IKB,

• Bob’s public, signed prekey SPKB,

• Bob’s prekey signature Sig(IKB, Encode(SPKB)),

• (Optionally) One of Bob’s one-time prekeys OPKBi.

One-time keys should always be provided, when available, and should be deleted

after being given to Alice or whichever other user. The only situation where a one-time

key may not be available is if all have been deleted and Bob has not uploaded any new

ones.

Since a signed prekey is available and authentication must be performed, Alice

firstly verifies the signature. If verification fails the protocol is of course aborted.

Alice then proceeds to generate her ephemeral key pair, and performs the following

computations:

ECDH1 = ECDH (IK−1
A , SPKB),

ECDH2 = ECDH (EK−1
A , IKB),

ECDH3 = ECDH (EK−1
A , SPKB),

SK = KDF (ECDH1 || ECDH2 || ECDH3).

If the obtained pre-key bundle contains a one-time key, the following operation is added:

ECDH4 = ECDH(EK−1
A , OPKB).

After these computations are completed, their results are appended and passed through

a KDF in order to derive the final secret key. A KDF is a cryptographic function which

receives a KDF key and some input data, and uses it to derive new output data. The

core strength of a KDF is that the output data is virtually indistinguishable from

random data.

With this, the secret key is computed as:

SK = KDF (ECDH1 || ECDH2 || ECDH3|| ECDH4).

This flow of operation may be seen in the figure below:
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Figure 5: X3DH key computations.

Note that ECDH1 and ECDH2 provide mutual authentication, with the usage of

the signed key and the identity keys of both users, while ECDH3 and ECDH4 provide

forward secrecy with the usage of a temporary ephemeral key and a one-time key.

After calculating SK, Alice may freely delete private ephemeral key and the ECDH

outputs, since they will no longer be necessary. She calculates associative data which

contains identity information on both communicating parties:

AD = Encode(IKA) || Encode(IKB).

The associative data may also contain other information such as usernames, certificates

or similar identifying information.

Alice continues by sending Bob an initial message with a bundle containing the

following keys:

• Alice’s identity key IKA,

• Alice’s ephemeral key EKA,

• Identifiers stating which of Bob’s data was used in the ECDH calculations,

• Initial, encrypted ciphertext.

The initial cyphertext generally functions as the first message Alice wants to send

to Bob. It can also contain data which is used by the post-X3DH Double Ratchet

algorithm.

After receiving the key bundle from Alice, Bob may simply continue by computing:
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ECDH1 = ECDH (IKA, SPK
−1
B ),

ECDH2 = ECDH (EKA, IK
−1
B ),

ECDH3 = ECDH (EKA, SPK
−1
B ),

SK = KDF (ECDH1 || ECDH2 || ECDH3).

If a one-time key was provided, the following operation is added to the computations:

ECDH4 = ECDH(EKA, OPK
−1
B ),

changing the SK computation to:

SK = KDF (ECDH1 || ECDH2 || ECDH3|| ECDH4).

Since the private keys act as inverses to their public counterparts, both parties

derive the same secret key SK. After Bob derives the shared key SK, he may also

delete the ECDH values, and construct the associative data AD using IKA and IKB

as described previously.

Given that Bob has also received an encrypted message, he may now attempt to

decrypt the message, and fail the protocol if said decryption fails. If the decryption suc-

ceeds however, he may delete the one-time private key that was used and subsequently

use the SK and keys derived from it in the future.

With this, the flow of the X3DH algorithm is finished and a shared secret has been

successfully computed.

2.3 Double Ratchet

After the computation of a shared secret key, the Double Ratchet algorithm is used by

the communicating parties in order to send and receive messages.

At the core of the Double Ratchet algorithm is the concept of a KDF chain. The

defining feature of a KDF chain is the fact that it uses the output keys generated from

the function as input keys in the following function run.
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Figure 6: Basic KDF chain construction.

KDF chains are constructed in such a manner that backward secrecy is always

assured. With the computation of a new key for each message, and the irreversability

of the KDF itself, an attacker has no way of deriving past keys using current output

from a KDF chain.

KDF chains also utilize Diffie-Hellman parameters as their inputs. This way, ran-

domized data is mixed into the output of the KDF. Without knowledge of these Diffie-

Hellman parameters, an attacker would have no way of computing the subsequent key

of a KDF chain, should he obtain the current. Hence, KDF chains also provide for-

ward secrecy. These Diffie-Helman inputs additionaly add a level of entropy during the

computation of the KDF outputs.

In a Double Ratchet session between Alice and Bob each party stores a KDF key

for three chains:

• A sending chain, which is used for encrypting sent messages. Alice’s chain is

synchronized with Bob’s receiving chain if the algorithm is flowing correctly.

• A receiving chain, which is used for decrypting received messages. Alice’s re-

ceiving chain is synchronized with Bob’s sending chain if the algorithm is flowing

correctly.
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• A root chain, which is used to update the sending and receiving chains and

provide additional security to the algorithm.

The Double Ratchet consists of two separate ratchets, namely the symmetric-key

ratchet and the Diffie-Hellman ratchet.

Symmetric-key ratchet

The symmetric-key ratchet serves the purpose of providing backward security to the

algorithm.

The symmetric-key ratchet functions by encrypting each sent or received message

with a unique message key, which are derived from the aforementioned sending and

receiving chains. From now on, we will refer to these keys as chain keys.

Figure 7: Symmetric key ratchet.

Calculating the next chain key and message key from a given chain key is a single

ratchet step in the symmetric-key ratchet. Message keys are not used in the subsequent

ratchet step. Since the KDF function, in context of practicality, is not reversible, they

may freely be saved to handle out-of-order messages by the recipient.

Note that without the presence of a variable parameter as input, an attacker which

obtains the chain keys of a symmetric-key ratchet may tick along with the ratchet and

compute all subsequent outputs. Hence, without a further addition of entropy, the

symmetric-key ratchet by itself does not provide forward secrecy to its users. This is

the primary motivation for the addition of the Diffie-Helman ratchet.
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Diffie-Hellman ratchet

As we previously noted, the Diffie-Hellman ratchet serves the purpose of providing

forward secrecy to the Double Ratchet algorithm.

The DH ratchet begins with each party generating a DH key pair which becomes

their current ratchet key pair. Alice conducts initialization using Bob’s ratchet public

key. As part of initialization Alice performs a DH calculation between her ratchet

private key and Bob’s ratchet public key.

Figure 8: Initialization of the Diffie-Hellman ratchet.

Afterwards, sent messages contain the sender’s current ratchet public key in the

header, and upon receiving a message, a DH ratchet step is performed which replaces

the receiver’s current ratchet key pair with a new key pair. The scope of the DH ratchet

step in the context of the Diffie-Hellman ratchet contains the following steps:

• Computation of DH output with the receiver’s current ratchet key pair and the

senders public key.

• Computation of DH output with a newly computed ratchet key pair and the

senders public key.
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Figure 9: Bob’s Diffie-Hellman ratchet step.

Messages sent back by Bob similarly advertise his new public key. Eventually, Alice

will receive one of Bob’s messages and perform a DH ratchet step, replacing her ratchet

key pair and deriving two DH outputs, one that matches Bob’s latest and a new one.

Figure 10: Alice’s Diffie-Hellman ratchet step.

This ”ping-pong” behaviour between Alice and Bob continues for the rest of their
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communication. Note that initialization by Alice using Bob’s private key must be

performed before the DH ratchet can begin to function. Due to this requirement, Bob

must share his DH ratchet public key before the ratcheting may begin.

The DH outputs generated during each DH ratchet step are used to derive new

sending and receiving chain keys.

This is done by using the DH outputs as KDF inputs to a root chain, and the KDF

outputs from the root chain are used as sending and receiving chain keys.

Figure 11: Connection of the Diffie-Helman ratchet outputs to the KDF chains.

Note that an attacker may compromise one of the party’s keys, but it will eventually

be replaced due to the nature of the algorithm. The additional DH output also provides

additional randomness to the keys derived for the sending and receiving chains. Hence,

this provides us with forward secrecy.

Combining the symmetric-key ratchet and the DH ratchet constructs the Double

Ratchet, consisting of the following functioning:

1. When a message is sent or received, a symmetric-key ratchet step is applied to

the sending or receiving chain to derive the message key.

2. When a new ratchet public key is received, a DH ratchet step is performed prior

to the symmetric-key ratchet to replace the chain keys.
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2.4 Sesame

With the computation of a shared secret by the X3DH algrotihm and messaging com-

putations of the Double Ratchet algorithm, communications by any two parties have

been established. The Signal protocol additionally handles message encryption sessions

in an asynchronous and multi-device setting. This is accomplished through the Sesame

algorithm.

The purpose of the Sesame algorithm stems for the fact that Alice and Bob might

have several devices which they use for communication between them. Hence, the

following concerns, quoted from the official Signal documentation, arise:

• Encrypting a message from Alice and Bob might encapsulate creating sessions

from Alice’s sending device to all of Bob’s receiving devices. Alice’s sending

devices should at least have a copy of the sent message. Otherwise, in the scope

of the sending devices that did not receive such a copy, the message was never

sent.

• Alice and Bob might add and remove devices, so they will have to add and delete

sessions to handle these changes.

• Alice and Bob might simultaneously initiate a new sessions with each other. For

the efficacy of the Double Ratchet algorithm, Alice and Bob must send and receive

messages using matching sessions. Hence, they must have a way of agreeing which

matching sessions to use.

• Alice might chose to erase their private session state, restore it from a backup or

similar. In this situation, the sessions which are obtained might not match Bob’s

sessions.

The Sesame algorithm is constructed with these complications in mind. It managed

the creation, deletion and usage of sessions to resolve the aforementioned issues.

The central idea behind the algorithm is for each device to keep a record of an

”active” session for each other device it communicates with. When a message is received

on an ”inactive” session, it becomes the new ”active” session.

This is achieved by storing the state for each device. This state is then used for the

sending and receiving of messages.

The state in question consists of a set of user records for its correspondents,

indexed by user identifiers. Each of these user records contains a set of device records,

indexed by identifiers of the devices in question. These device records in turn may

contain an active session and an ordered list of inactive sessions.
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Sending copies of the user’s outgoing messages to his other devices is handled by

containing a user record for its own identifier, without device records included.

Each device stores an identity key pair for authentication. This key pair, as well as

its unique identifier, are not replaced within the algorithm flow.

Sesame has different ways of handling how key pairs are tied to users.

One option is to have the key pair be shared by all devices used by a certain user.

If this is done, the identity pubic keys for the devices are stored under the set of user

records.

The alternative is to have separate key pairs for each device. In this case, it follows

that identity keys for the devices are stored under the set of device records.

State modification

In the context of the Sesame algortithm local state, devices have the following opera-

tions available to them:

• Deletion of sessions, user records or device records.

The last session of a device record being deleted leads to the device record itself

being deleted. If a the last device record of a user record is deleted, then the user

record is deleted.

• Insertion of new sessions into a device record.

Inserted sessions instantly become the device record’s active session. Inactive

sessions are not deleted, but simply stored in decreasing order based on the last

time they were active. If there are too many in storage, the older used inactive

sessions may be deleted.

• Activation of an inactive session of a device record.

The previously used session is simply ordered below the new active session and

marked as inactive.

• Marking of a record as stale.

Stale records are those of users or devices has been deleted. These stale records

are kept for a certain time for the purpose of decrypting delayed messages, al-

though senders may delete them instantly.

• Updating records based on a user identifier, device identifier and a

public key.

If a relevant user record is not present or has an identity public key that differs

from the input key, then an empty user record replaces the existing one, for the

user identifier. With per-user identity public keys, the input public key is stored
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in the new, empty record. Equivalently, if this happens with device records not

existing or storing a differing key, the public key is stored in the empty record.

If the user and device identifiers equal the device’s, a new device record is not

added.

• Prepare for encryption to a user, device and public key tuple.

This is done by deleting relevant records if they are stale, updating the records

based on the tuple information, and initialization and creation of a session if no

session is currently active.

Sending messages

The Sesame sending process initializes with received plaintext and a set of user iden-

tifiers. The recipient set includes the device’s own user identifier.

Quoted from the Signal documentation [1], the entire process of sending the data

is encapsulated by the following steps, which are executed for each user identifier:

1. If a relevant non-stale UserRecord exists for the recipient UserID, then for each

non-stale DeviceRecord in the UserRecord that contains an active session, the

sending device encrypts the plaintext using that active session.

2. The recipient UserID is sent to the server, along with the list of encrypted mes-

sages and a corresponding list of DeviceIDs indicating the recipient mailbox for

each message. These lists will be empty if no relevant active sessions exist.

3. If the recipient UserID is currently in-use and the sender’s list of DeviceIDs is

current for the recipient UserID, then the server accepts the messages and the

messages are sent to the relevant mailboxes. This process then terminates for the

recipient UserID, returning to step 1 for the next recipient UserID.

4. Otherwise the server rejects the messages and either informs the sending device if

the recipient UserID does not exist; or informs the sending device of the old De-

viceIDs and new DeviceIDs needed to make the sending device’s records current,

and the identity public keys corresponding to any new DeviceIDs.

5. If the server indicates that the recipient UserID does not exist, then the sending

device marks the relevant UserRecord (if any) as stale. The sending device then

terminates this process for the recipient UserID, returning to step 1 for the next

recipient UserID.

6. For each old DeviceID, the sending device marks the relevant DeviceRecord as

stale.
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7. For each new DeviceID, the sending device preps for encrypting to the tuple

(UserID, DeviceID, relevant public key).

8. This process is restarted from step 1 for the current recipient UserID.

For the purpose of state consistency, errors during encryption to a user will lead to

the sending device discarding any changes to the relevant user record. Additionally,

the continuation of encrypting and sending messages to other users may continue, or

the sender may decide to terminate the entire sending process. Excessive re sending

may be avoided by simply limiting the number of times the device retries to send a

message to the particular user.

Receiving messages

The input to the Sesame receiving process is an encrypted message and the sender’s

user and device identifiers, which are fetched from the server.

Quoted from the Signal documentation [1], the entire process of receiving and de-

crypting data is encapsulated by the following steps:

1. If the encrypted message is an initiation message and the recipient device does

not have a relevant DeviceRecord containing a session that can decrypt the mes-

sage, then the relevant public key is extracted from the message header. Af-

terwards, the device conditionally updates its records based on the (sender’s

UserID, sender’s DeviceID, relevant public key) tuple and lastly creates a new

session using the initiating message and inserts the new session into the relevant

DeviceRecord.

2. If no session in the relevant DeviceRecord can decrypt the encrypted message,

then the encrypted message is discarded, all changes to device state are discarded,

and this process terminates.

3. Otherwise, the message is decrypted with the relevant session.

4. If the relevant session is not active it is activated.

Errors occurring in the decryption process leads to the receiving device discarding all

state changes (with the goal of state consistency), the message itself and the termination

of the decryption process.
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3 Implementation

Our scope of implementations around the Signal protocol were the X3DH and Double

Ratchet algorithm. Signature generation and verification, and well as implementation

for multi-device communications through Sesame, was excluded from the implementa-

tion.

3.1 System overview

The system in which we integrated the X3DH and Double Ratchet modules is a dis-

tributed blockchain system which was built for the purpose of container orchestra-

tionand autonomous migration. The platform attempts to decentralize the decision

making about where containerized applications should migrate in order to optimise

resource consumption across the network. If successful, the architecture could replace

centralized orchestration tools such as Kubernetes in order to avoid a single point of

failure.

One of the key building parts of a blockchain is the consensus mechanism. The

implementation uses a vote based mechanism with pseudo-random role selection. In

general, for every block, nodes compute a VDF using the previous block hash as input.

The VDF produces a verifiable proof, which is used as an entropy pool (shared seed)

for pseudo random number generation.

Additionally, VDFs inherently can not be computed in parallel, which prevents any

node to peek into the future and learn about the roles of other nodes for the next block.

After computing the proof, nodes randomly self-elect into specific roles for the

current block. There are three roles, namely Block Producer, Committee Member, and

Validator.

• Block Producer proposes a candidate block. The block is prepared, signed and

delivered to the committee members. The node then awaits for attestations and

in case a majority vote is reached, the block is broadcasted to the network.

• Committee Members are used to federate the voting process to provide scal-

ability. It is not feasible to reach consensus in large networks if every node

is expected to cast a vote. Instead, committee members are pseudo-randomly
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choose to attest (vote) for a block by sending their signature to the block pro-

ducer. To avoid block congestion, BLS12-381 signature scheme is used, where

votes are aggregated into a single signature present in the block header.

• Validators are all other nodes participating in the consensus but have not been

elected to perform any of the aforementioned roles for this block. Validator nodes

are expect to receive a new block. Upon receiving a block, they verify the integrity

and signatures of the block, and accept or reject it.

The security of the consensus mechanism depends on the assumption that a ma-

licious actor is not able to influence the role selection, and will have an impractically

small probability of having the malicious nodes have the majority vote in the commit-

tee. However, an eclipse attack could help the attacker to gain advantage by eclipsing

other voting nodes. This attack is generally done by manipulating a node to make

connections only to malicious nodes in the overlay network. The malicious nodes may

then choose to not propagate specific messages, thereby eclipsing the node.

If committee nodes were to be eclipsed, the attacker would need a smaller number

as the votes would not be received by the block producer. In order to protect against

this, the entire voting protocol between the block producer, and committee members

is encrypted.

3.2 Security considerations

As we previously noted, blocks are accepted or denied to the chain solely on a majority

vote by the appointed committee. Hence, it follows that security in regards to how the

votes are communicated is important for the system to behave as intended.

There are two main ways in which an attacker may significantly impact which blocks

are given or denied attachment to the blockchain:

• A malicious party may control the majority (or large portion) of the

nodes that are in the committee.

While a malicious attacker may decide to intentionally accept or reject a block

irregardless of verification, in order to significantly impact whether this block is

accepted or denied to the blockchain consistently, they must control the majority

of nodes in the committee, or at least control an impactful portion of it. However,

the fact that committee members are chosen at randomly makes this very difficult

for the attacker, as they would have to control a very large portion of the network

nodes in order to consistently impact committee votes.
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• A malicious party may impact the votes of other members through a

man-in-the-middle attack.

A MITM attack is a cyberattack in which the attacker intercepts communications

between parties in a system, in order to either passively observe the communi-

cation, or manipulate the messages which are received by either party. In the

context of our system, a successful attacker could manipulate the votes that are

sent by committee members, and therefore have either enhanced, or even full

control over the majority vote of a committee.

Given that the first attack is largely impractical for a potential attacker, a MITM

attack on committee votes was our primary security concern, and hence, our primary

motivation for the implementation of the X3DH and Double Ratchet modules in this

system.

3.3 Algorithm integrations

Our primary motivation for choosing the X3DH and Double Ratchet modules specif-

ically, is that they most contributed for security against the aforementioned MITM

attack on committee votes, and they were implemented for that purpose alone.

It should be noted, however, that signature generation and verification through

XEdDSA and VXEdDSA would still significantly contribute to the overall security of

the system, by providing improved node authentication.

The implementations of the X3DH and Double Ratchet algorithms was done under

the guidance of the official Signal documentation, which may be referenced in [1].

3.3.1 X3DH integration

While a P2P network is considered safer due to no reliance on server trust, for the

integration of the Signal protocol, and more specifically, the X3DH algortihm, it is

problematic.

As we previously noted in Chapter 2, the Signal protocol uses the X3DH algorithm

for computing a shared secred. The algorithm functions in part by each user publishing

prekey bundles to a central server, and obtaining the bundles whenever they wish to

establish communication with another user.

Given that a central server is not present in a P2P system, we considered the

following alternatives:

• Simple usage of a single node(a ”trusted” node) as a replacement for

a central server.
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By allowing a single node to function as a replacement, the server issue is fixed

as all data may just be channeled through this trusted node. However, the main

drawback of this method was the fact that it would function as a performance

bottleneck.

• Replacement of a central server with a root certification authority.

The certification authority may also work to accomplish the function of a central

server. The drawback of this method is that it would require the implementa-

tion of a public-key infrastructure, significantly increasing the complexity of the

solution.

• Exchange of prekey bundles directly between nodes that wish to com-

municate.

When nodes wish to communicate, they may simply begin the communication

by sending their bundles to the recipient, or reqesting a bundle directly from the

recipient. The main issue with this method is that we lose node authentication,

which would normally be provided by an intermediary such as the server.

Given that node authentication was not of major concern in our system, and im-

plementation complexity is lowest by simply allowing the nodes to directly exchange

the prekey bundles, we decided on this method of implementation.

More specifically, joining nodes initiate the X3DH algorithm and begin exchanging

key bundles with their acceptors as soon as they are accepted by them into the network.

Each node continually holds a record of nodes and the current keys established with

them.

3.3.2 Double Ratchet integration

In accordance to the Signal protocol, the shared key computed by X3DH is directly

used by Double Ratchet as soon as communication occurs after a the shared key is

established. With ratcheting steps occurring, chain keys are continually stored and

updated by and for each node in the network.

The Double Ratchet algorithm required no specific adaptations to the system’s P2P

architecture.
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4 Performance considerations

While generally the X3DH and Double Ratchet algorithm are not demanding on per-

formance, it is important to consider how they will impact the system with a larger

amount of nodes consistently doing the computations required by the algorithms.

4.1 X3DH performance considerations

With nodes exchanging key bundles whenever a new node joins the network, the com-

plete exchanges and key generation connected to X3DH grows with linear asymptotic

complexity. Hence, this algorithm is not an issue in terms of system performance and

scalability.

Additionally, the algorithm finishes as soon as the shared key is computed between

the nodes, having no impact on further computations in the system, such as committee

voting and other activities.

4.2 Double Ratchet performance considerations

In our implementation, Double Ratchet directly impacts the sending and receiving of

votes by the committee by encrypting and decrypting the votes, as well as ratcheting

the appropriate keys.

With committee votes having to be submitted within as specific time window,

lest they be skipped, the additional computations for the encryption, decryptiong and

ratcheting may lead to more votes being skipped.

In our current implementation, the time limit was sufficient such that no votes

were skipped with the addition of these computations, therefore having no major per-

formance impact.

However, it should be noted that should the time limit be decreased, this algorithm

may lead to committee voting skips and therefore, inaccuracies with block approval.
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5 Conclusion

The Signal protocol is based on a compilation of cryptographic primitives and algo-

rithms which can greatly contribute to the security of a system.

With their integration, the X3DH and Double Ratchet protocols specifically, can

provide forward secrecy, cryptographic deniability, resilience and break-in recovery.

While a proper integration of Signal modules in a P2P architecture can be difficult,

its integration can offer security benefits which outweigh potential complications during

implementation, depending on the system specifics.

In blockchain systems, which may be reliant on consensus voting for block accep-

tance, the integration X3DH and Double ratchet modules contributes to the overall

security and fair block acceptance by offering a suitable defence against MITM attacks

during vote communication.

Furthermore, with proper integration, the linear asymptotic complexity of the

X3DH algorithm scales well with increasing number of nodes in the system. Given

that X3DH is not performance demanding, the overall performance of the system is

not heavily impacted.

While the computations of the Double Ratchet algorithm are not demanding in

terms of performance, it may cause issues on vote skipping if consensus votes must be

passed within a short time limit. Further testing with increasingly shorter time limits

may showcase more accurate results on how impactful this is to the overall accuracy

of the consensus voting results.
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6 Povezetek naloge v slovenskem

jeziku

Naloga opisuje splošne značilnosti delovanja protokola Signal in prikazuje podrobnosti

izvajanja modulov X3DH in Double Ratchet v porazdeljenem sistemu omrežja P2P

Prispevek v uvodu predstavi bralcu osnovni opis asimetrične in simetrične krip-

tografije, saj obe predstavljata osnovo za večino kriptografskih protokolov, vključno s

Signalom. Medtem ko simetrična kriptografija uporablja en sam ključ za šifriranje in

dešifriranje podatkov, asimetrična kriptografija uporablja par ključev, sestavljenih iz

zasebnega in javnega ključa.

Nadaljevanje analizira kriptografske primitive, ki so potrebni za pravilno delovanje

protokola Signal in njegovih modulov.

Prvi kriptografski primitiv, ki je predstavlje je ”Elliptic curve cryptography”(ECC).

Z opredelitvijo posebne operacije seštevanja na eliptičnih krivuljah lahko operacija

deluje kot ”trap door”. Z drugimi besedami, lahko dobimo operacijo, ki je enostavna

za izvedbo s posebnimi parametri, vendar jih je težko pridobiti iz rezultata. Te vrste

operacij se lahko kasneje uporabijo kot komponente javnega in zasebnega ključa v

segmentih asimetrične kriptografije protokola Signal.

Drugi kriptografski primitiv, ki je predstavljen, je ”Elliptic-curve Diffie-Hellman”(ECDH).

ECDH je različica standardnega Diffie-Hellman protokola za izmenjavo ključa, ki uporablja

eliptične krivulje za namen vzpostavitve skupnega ključa med dvema strankama. Je

osnova, na kateri temelji modul X3DH protokola Signal.

V nadaljevanju so razloženi štirje najpomembneǰsi algoritmi, ki sestavljajo sam

protokol.

XEdDSA in VXEdDSA omogočata generiranje in preverjanje podpisov, združljivih

z EdDSA, s čimer je uporabnikom protokola Signal zagotovljena plast preverjanja prist-

nosti. XEdDSA deluje tako, da omogoča uporabo enotne oblike para ključev za pod-

pisovanje in izmenjavo ključev. Poleg tega ga razširja VXEdDSA z namenom, da

postane preverljiva naključna funkcija.

Nadaljuje opis protokola dogovora o ključu X3DH, ki se uporablja za vzpostavitev

skrivnega ključa za strani, ki želijo komunicirati. Algoritem deluje z uporabo več

parov ključev in kombinacijo izračunov, ki temeljijo na omenjenem algoritmu ECDH..
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Z dodajanjem KDF za dodatno varnost obe strani varno izračunata skupni ključ.

Sledi opis algoritma Double Ratchet, ki za vhod sprejme izhodni ključ X3DH. Ta

algoritem služi kot funkcija, ki omogoča in dodatno varuje vsako pozneǰso komunikacijo

med strankama. To počne z uporabo verige KDF, ki je integrirana v simetrično in

Diffie-Hellmanovo zanko(ratchet). Oboje prispeva k vǐsji varnosti in skupaj tvorita

dvojno ključavnico.

Zadnji algoritem Signal protokola ki ga obravnavamo, je Sesame, ki se uporablja za

obravnavo asinhronih komunikacij in komunikacij z več napravami. Ker imajo lahko

strani, ki komunicirajo, več naprav, s katerimi komunicirajo med seboj, algoritem

Sesame oblikuje vrsto korakov za pošiljanje in sprejemanje sporočil v nastavitvah za

več naprav.

Nadaljuje predstavitev integracije modulov X3DH in Double Ratchet v porazdel-

jenem sistemu P2P.

Sistem, v katerega integriramo te module, je bil zgrajen za namen uporabe v okolju

veriženja blokov.. O vsakem ustvarjenem bloku mora glasovati odbor vozlǐsč. Bloki,

ki dobijo večino glasov, se dodajo verigi blokov. Napad MITM na glasovanje bi lahko

napadalcu omogočil nadzor nad velikim delom ali celo večino glasov odbora. Z dodano

plastjo zaščite prek X3DH in Double Ratchet se lahko izbolǰsa glasovalna komunikacija.

To je bila glavna motivacija za našo integracijo.

Splošni scenarij delovanja protokola Signal zahteva osrednji strežnik. Za izvedbo

algoritma X3DH je bilo pomanjkanje osrednjega strežnika zaradi omrežja P2P prob-

lematično, saj algoritem zahteva objavo ključnih svežnjev na strežniku za normalno

delovanje. Ta problem je bil rešen tako, da je vozlǐsčem omogočen neposreden prenos

ključnih svežnjev med seboj. Algoritem Double Ratchet ni zahteval posebnih pri-

lagoditev arhitekture P2P, njegova integracija je bila osredotočena neposredno na glaso-

vanje v odboru.

Nazadnje je obravnavan vpliv predstavljenih algoritmov na zmogljivost sistema.

Integracija X3DH je omogočila linearno asimptotično kompleksnost. Glede na to, da

izračuni niso intenzivni, sklepamo, da je razširljivost in zmogljivost sistema ohranjena.

Algoritem Double Ratchet ni računsko drag, vendar z ugotavljamo, da lahko že

majhno zmanǰse časovnega okvira za glasovanje v odboru povzroči povečanje števila

preskočenih glasov. Ta integracija in sum na vpliv na uspešnost predstavljata podlago

za nadaljnje preizkušanje povezave med dovoljenim časovnim okvirom za glasovanje v

odboru in preskočenimi glasovi.
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