Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Geometric interpolation by parametric polynomial curves

Emil Žagar

Faculty of mathematics and physics, University of Ljubljana Institute of mathematics, physics and mechanics

Research mathematical seminar, FAMNIT and IAM, University of Primorska,

8. 12. 2014

- **General conjecture**
- 3 Planar case
- Onasymptotic analysis
- **5** Special curves
- **6** Open problems

- Standard problem in CAGD:
 - Points $\mathbf{T}_j \in \mathbb{R}^d$ $(d \ge 2)$, $j = 0, 1, \dots, k$, are given.
 - Find parametric polynomial **p** such that

$$\boldsymbol{p}(t_j) = \boldsymbol{T}_j, \quad j = 0, 1, \dots, k.$$

• If k is large, replace **p** by spline **s**.

- Standard problem in CAGD:
 - Points $\boldsymbol{T}_j \in \mathbb{R}^d$ $(d \ge 2)$, $j = 0, 1, \dots, k$, are given.
 - Find parametric polynomial **p** such that

$$\boldsymbol{p}(t_j) = \boldsymbol{T}_j, \quad j = 0, 1, \dots, k.$$

- If k is large, replace **p** by spline **s**.
- If the sequence {t_j}^k_{j=0} is known, construction of *p* is a linear problem.
- Different choices of $\{t_j\}_{j=0}^k$ give different curves.
- Degree of \boldsymbol{p} is k in general.

Assume $t_0 := 0$ (shift if necessary). Possible choices for $\{t_j\}_{j=1}^k$ are:

• Uniform:

$$t_j := j, \quad j = 0, 1, \ldots, k.$$

Assume $t_0 := 0$ (shift if necessary). Possible choices for $\{t_j\}_{j=1}^k$ are:

• Uniform:

$$t_j := j, \quad j = 0, 1, \ldots, k.$$

• Chordal:

$$t_{j+1} = t_j + \|\Delta \boldsymbol{T}_j\| = \sum_{\ell=0}^j \|\Delta \boldsymbol{T}_\ell\|, \quad \Delta \boldsymbol{T}_\ell = \boldsymbol{T}_{\ell+1} - \boldsymbol{T}_\ell.$$

Assume $t_0 := 0$ (shift if necessary). Possible choices for $\{t_j\}_{j=1}^k$ are:

• Uniform:

$$t_j := j, \quad j = 0, 1, \ldots, k.$$

• Chordal:

$$t_{j+1} = t_j + \|\Delta \boldsymbol{T}_j\| = \sum_{\ell=0}^j \|\Delta \boldsymbol{T}_\ell\|, \quad \Delta \boldsymbol{T}_\ell = \boldsymbol{T}_{\ell+1} - \boldsymbol{T}_\ell.$$

Lee's generalization:

$$t_{j+1} = t_j + \|\Delta T_j\|^{\alpha} = \sum_{\ell=0}^n \|\Delta T_\ell\|^{\alpha}, \quad j = 0, 1, \dots, k-1,$$

where $\alpha \in [0, 1]$. The most known one is centripetal $(\alpha = 1/2)$.

Figure : Various parameterizations by quintic polynomial: uniform (black), chordal (blue) and centripetal (red).

- Number of points interpolated by polynomial curve of degree ≤ k is at most k + 1.
- Expected approximation order in case of "dense" data is k + 1.
- Unique solution always exists.

.

• Expected computational time is $\mathcal{O}(d k^2)$.

- Number of points interpolated by polynomial curve of degree ≤ k is at most k + 1.
- Expected approximation order in case of "dense" data is k + 1.
- Unique solution always exists.
- Expected computational time is $\mathcal{O}(d k^2)$.
- Is it possible to increase the number of interpolated points by polynomial curve of the same degree *k*?

How many points can be interpolated by planar parametric parabola?

- 3?
- 4?
- 5 or more?

How many points can be interpolated by planar parametric parabola?

- 3?...always
- 4?... sometimes
- 5 or more?...pure luck

Figure : Four points interpolated by a parametric parabola.

Detailed analysis: K. Mørken, Parametric interpolation by quadratic polynomials in the plane.

Conjecture (Höllig and Koch(1996))

Parametric polynomial curve of degree k in \mathbb{R}^d can, in general, interpolate

$$\left\lfloor \frac{d\left(k+1\right)-2}{d-1} \right\rfloor$$

points.

If the conjecture holds true, the approximation order of interpolating polynomial might be much higher than in the functional case.

Maybe even a shape of the resulting curve is satisfactory?!

Figure : Cubic geometric interpolant on 6 points (solid), quintic chordal parameterization (doted), quintic uniform parameterization (gray).

Probably the first serious attempt to analyze geometric (cubic) interpolant goes back to 1987:
C. de Boor, K. Höllig, and M. Sabin: High accuracy geometric Hermite interpolation. Comput. Aided Geom. Design 4 (1987), no. 4, 269–278.

- Probably the first serious attempt to analyze geometric (cubic) interpolant goes back to 1987:
 C. de Boor, K. Höllig, and M. Sabin: High accuracy geometric Hermite interpolation. Comput. Aided Geom. Design 4 (1987), no. 4, 269–278.
- Asymptotic analysis of geometric Hermite interpolation of values, tangent directions and curvatures at two boundary points by planar cubic polynomial curve.
- Approximation order is 6, but there might be no solution.

- The most interesting case of the conjecture is d = 2.
- Nonasymptotic analysis is terribly complicated in general.
- Conjecture is still an open problem.

.

- Only a few generalizations to spline cases are known.
- It seems it is more or less theoretical issue.

Nonlinear equations in the planar case

• Equations:

$$\boldsymbol{p}_n(t_\ell) = \boldsymbol{T}_\ell, \quad \ell = 0, 1, \dots, 2n-1.$$

• Unknowns t_{ℓ} are ordered as

.

$$t_0 < t_1 < \cdots < t_{2n-1}.$$

• We may assume $t_0 := 0$, $t_{2n-1} := 1$ (linear reparameterization).

• $\mathbf{t} := (t_\ell)_{\ell=1}^{2n-2}$ are not the only unknowns.

.

• Also the coefficients of the polynomial **p**_n have to be determined.

• $\mathbf{t} := (t_{\ell})_{\ell=1}^{2n-2}$ are not the only unknowns.

- Also the coefficients of the polynomial **p**_n have to be determined.
- First part of the problem is nonlinear (hard).
- Second part is linear (easy).

.

• The problem can be split into two parts: finding *t* first and then the coefficients of *p*_n.

- The equations for the unknown parameters *t* can be derived using linearly independent functionals (divided differences).
- One way is to choose

$$[t_0, t_1, \ldots, t_{n+j}], \quad j = 1, 2, \ldots, n-1.$$

• Applying $[t_0, t_1, \dots, t_{n+j}]$ to the equations

.

 $\boldsymbol{p}_n(t_\ell) = \boldsymbol{T}_\ell$

leads to

$$[t_0, t_1, \dots, t_{n+j}] \boldsymbol{p}_n = \boldsymbol{0} = \sum_{\ell=0}^{n+j} \frac{\boldsymbol{T}_{\ell}}{\dot{\omega}_j(t_{\ell})},$$

$$j = 1, \dots, n-1,$$

where

$$\omega_j(t):=\prod_{\ell=0}^{n+j}(t-t_\ell), \quad \dot{\omega}_j(t):=rac{d\omega_j(t)}{dt}.$$

Geometric interpolation by parametric polynomial curves

- This gives 2n 2 nonlinear equations for 2n 2 unknowns $\mathbf{t} = (t_\ell)_{\ell=1}^{2n-2}$.
- Any sequence of n + 1 parameters t_{ℓ} determine p_n uniquely.
- General analysis is unfortunately complicated → asymptotic approach.

Asymptotic analysis

• Assumption: T_{ℓ} are sampled from smooth convex planar curve

 $\boldsymbol{f}:[0,h]\to\mathbb{R}^2,$

 $f(0) = (0,0)^T$, $f'(0) = (1,0)^T$.

Asymptotic analysis

• Assumption: T_{ℓ} are sampled from smooth convex planar curve

 $\boldsymbol{f}:[0,h]\to\mathbb{R}^2,$

$$f(0) = (0,0)^T$$
, $f'(0) = (1,0)^T$.

• The curve **f** is parametrized by the first component:

$$\boldsymbol{f}(\boldsymbol{x}) = \left(\begin{array}{c} \boldsymbol{x} \\ \boldsymbol{y}(\boldsymbol{x}) \end{array}\right),$$

 $y(x) := \frac{1}{2}y''(0)x^2 + \mathcal{O}(x^3), \quad y''(0) > 0.$

• Since *h* is small, the coordinate system should be scaled by the matrix

$$D_h = \operatorname{diag}\left(rac{1}{h}, rac{2}{h^2 \, y''(0)}
ight).$$

• Since *h* is small, the coordinate system should be scaled by the matrix

$$D_h = \operatorname{diag}\left(\frac{1}{h}, \frac{2}{h^2 y''(0)}\right).$$

Suppose now

$$\eta_0 := 0 < \eta_1 < \cdots < \eta_{2n-2} < \eta_{2n-1} := 1,$$

are the (given) parameters, for which

$$T_{\boldsymbol{\ell}} = D_h \boldsymbol{f}(\eta_{\ell} h), \quad \ell = 0, 1, \dots, 2n-1.$$

• Asymptotic expansion of T_{ℓ} gives

$$\boldsymbol{T}_{\ell} = \begin{pmatrix} \eta_{\ell} \\ \sum_{k=2}^{\infty} c_k h^{k-2} \eta_{\ell}^k \end{pmatrix}, \quad \ell = 0, 1, \dots, 2n-1,$$

where c_k depend on y, but not on η_ℓ or h.

• Asymptotic expansion of T_{ℓ} gives

$$\boldsymbol{T}_{\ell} = \begin{pmatrix} \eta_{\ell} \\ \sum_{k=2}^{\infty} c_k h^{k-2} \eta_{\ell}^k \end{pmatrix}, \quad \ell = 0, 1, \dots, 2n-1,$$

where c_k depend on y, but not on η_ℓ or h.

More precisely

$$c_k = \frac{2}{k!} \frac{y^{(k)}(0)}{y''(0)}, \quad k = 2, 3, \dots$$

Geometric interpolation by parametric polynomial curves

Solving the nonlinear system

Our goal is to prove: there exists h₀ > 0 such that the system of nonlinear equations has a solution t for any h, 0 ≤ h ≤ h₀.
 ▶ system

Planar case

Solving the nonlinear system

- Our goal is to prove: there exists h₀ > 0 such that the system of nonlinear equations has a solution t for any h, 0 ≤ h ≤ h₀.
 ▶ system
- First we find a solution as $h \rightarrow 0$.
- Then we prove that the Jacobian matrix in the limit solution is nonsingular.
- Finally, we use the Implicit function theorem.

• The limit solution, as $h \to 0$ is $\boldsymbol{t} = \boldsymbol{\eta} := (\eta_\ell)_{\ell=1}^{2n-2}$.

Namely

$$\lim_{h\to 0} \sum_{\ell=0}^{n+j} \frac{1}{\dot{\omega}_j(t_\ell)} \boldsymbol{T}_\ell$$
$$= \sum_{\ell=0}^{n+j} \frac{1}{\dot{\omega}_j(\eta_\ell)} \lim_{h\to 0} \boldsymbol{T}_\ell = \sum_{\ell=0}^{n+j} \frac{1}{\dot{\omega}_j(\eta_\ell)} \begin{pmatrix} \eta_\ell \\ \eta_\ell^2 \end{pmatrix}$$
$$= [\eta_0, \eta_1, \dots, \eta_{n+j}] \begin{pmatrix} \eta \\ \eta^2 \end{pmatrix} = \boldsymbol{0}.$$

Geometric interpolation by parametric polynomial curves

- Unfortunately the Jacobian matrix at the limit solution is singular (its kernel is n 2 dimensional).
- The implicit function theorem can not be applied directly!
- Some more involved analysis is needed with several nontrivial steps.
- Finally we end up with the following result.

Theorem

The final system of nonlinear equations has a real solution for $n \leq 5$ and h small enough.

Theorem

If the system of nonlinear equations has a real solution then the interpolating polynomial curve \mathbf{p}_n exists and approximates \mathbf{f} by optimal approximation order, namely 2n.

• In the case n = 2 only one equation for a particular unqnown ξ_1 is obtained, i.e.,

$$2\xi_1+c_3+\mathcal{O}(h)=0.$$

• It obviously has a real solution.

• If n = 3 then the nonlinear system becomes

$$\xi_1^2 + 3 c_3 \xi_1 + 2 \xi_2 + c_4 + \mathcal{O}(h) = 0,$$

$$3 c_3 \xi_1^2 + 2 \xi_1 (\xi_2 + 2 c_4) + 3 c_3 \xi_2 + c_5 + \mathcal{O}(h) = 0.$$

• It can be reduced to only one equation for ξ_1

$$\begin{split} \xi_1^3 + \frac{3}{2} c_3 \xi_1^2 + \left(\frac{9}{2} c_3^2 - 3 c_4\right) \xi_1 + \frac{3}{2} c_3 c_4 - c_5 \\ + \mathcal{O}(h) &= 0, \end{split}$$

which again has a real solution.

- 26 / 42

If n = 5 the following "mess" is obtained

$$c_{4} + 5 c_{3} \xi_{1} + 6 c_{2} \xi_{1}^{2} + c_{1} \xi_{1}^{3} + 4 c_{2} \xi_{2} + 6 c_{1} \xi_{1} \xi_{2} + \xi_{2}^{2} + (3 c_{1} + 2 \xi_{1})\xi_{3} + 2 \xi_{4} + \mathcal{O}(h) = 0,$$

$$c_{5} + 6 c_{4} \xi_{1} + 10 c_{3} \xi_{1}^{2} + 4 c_{2} \xi_{1}^{3} + 5 c_{3} \xi_{2} + +12 c_{2} \xi_{1} \xi_{2} + 3 c_{1} \xi_{1}^{2} \xi_{2} + 3 c_{1} \xi_{2}^{2} + 4 c_{2} \xi_{3} + 6 c_{1} \xi_{1} \xi_{3} + 2 \xi_{2} \xi_{3} + 3 c_{1} \xi_{4} + 2 \xi_{1} \xi_{4} + \mathcal{O}(h) = 0,$$

.

 $\begin{aligned} c_{6} + 7 c_{5} \xi_{1} + 15 c_{4} \xi_{1}^{2} + 10 c_{3} \xi_{1}^{3} + 6 c_{4} \xi_{2} + 20 c_{3} \xi_{1} \xi_{2} + \\ 12 c_{2} \xi_{1}^{2} \xi_{2} + 6 c_{2} \xi_{2}^{2} + 3 c_{1} \xi_{1} \xi_{2}^{2} + c_{2} \xi_{1}^{4} + 5 c_{3} \xi_{3} + 12 c_{2} \xi_{1} \xi_{3} + \\ 3 c_{1} \xi_{1}^{2} \xi_{3} + 6 c_{1} \xi_{2} \xi_{3} + \xi_{3}^{2} + 4 c_{2} \xi_{4} + 6 c_{1} \xi_{1} \xi_{4} + 2 \xi_{2} \xi_{4} + \mathcal{O}(h) = 0, \\ c_{7} + 8 c_{6} \xi_{1} + 21 c_{5} \xi_{1}^{2} + 20 c_{4} \xi_{1}^{3} + 5 c_{3} \xi_{1}^{4} + 7 c_{5} \xi_{2} + 30 c_{4} \xi_{1} \xi_{2} + \\ 30 c_{3} \xi_{1}^{2} \xi_{2} + 4 c_{2} \xi_{1}^{3} \xi_{2} + 10 c_{3} \xi_{2}^{2} + 12 c_{2} \xi_{1} \xi_{2}^{2} + c_{1} \xi_{2}^{3} + 6 c_{4} \xi_{3} + \\ 20 c_{3} \xi_{1} \xi_{3} + 12 c_{2} \xi_{1}^{2} \xi_{3} + 12 c_{2} \xi_{2} \xi_{3} + 6 c_{1} \xi_{1} \xi_{2} \xi_{3} + 3 c_{1} \xi_{3}^{2} + \\ 5 c_{3} \xi_{4} + 12 c_{2} \xi_{1} \xi_{4} + 3 c_{1} \xi_{1}^{2} \xi_{4} + 6 c_{1} \xi_{2} \xi_{4} + 2 \xi_{3} \xi_{4} + \mathcal{O}(h) = 0. \end{aligned}$

An example

The interpolating curve is

$$\boldsymbol{f}(u) = \left(\begin{array}{c} \cos u \, \log(1+u) \\ \sin u \, \log(1+u) \end{array}\right),$$

 $u \in [3, 3 + h]$. The table shows estimated rate of convergence for the interpolant p_5 on 10 points.

h	Error	Rate
3	7.12 <i>e</i> – 6	—
2.4	8.79 <i>e</i> – 7	9.38
1.92	1.05 <i>e</i> – 7	9.52
1.54	1.22 <i>e</i> – 8	9.63
1.22	1.40 <i>e</i> - 9	9.71
0.98	1.58e - 10	9.76
0.78	1.79e - 11	9.77

Nonasymptotic analysis

- Nonasymptotic analysis is much more complicated.
- Geometry of data is involved in the analysis.
- The results are known only for parabolic an cubic case in the plane.
- In higher dimensions it seems that the only known result is interpolation of d + 2 points by polynomial curve of degree d in R^d.
- Homotopy methods are used to confirm the existence of the solution.

Special curves

Special curves

- Geometric interpolation of special curves is also interesting (and important).
- Special attention was given to conic sections, specially circular segments.

Special curves

Special curves

- Geometric interpolation of special curves is also interesting (and important).
- Special attention was given to conic sections, specially circular segments.
- M.S. Floater: An O(h²ⁿ) Hermite approximation for conic sections. Comput. Aided Geom. Design 14 (1997), no. 2, 135–151.
- G. Jaklič, J. Kozak, M. Krajnc and E. Ž.: On geometric interpolation of circle-like curves. Comput. Aided Geom. Design 24 (2007), no. 5, 241–251.

Theorem

If $x_n(t) := 1 + \sum_{k=2}^n \alpha_k t^k$, $y_n(t) := \sum_{k=1}^n \beta_k t^k$, $\beta_1 > 0$, then the best approximant of the unit circural arc is given by

$$\alpha_{k} = \begin{cases} \sum_{j=0}^{k(n-k)} P(j,k,n-k) \cos\left(\frac{k^{2}}{2n}\pi + \frac{j}{n}\pi\right), & k \text{ is even,} \\ 0, & k \text{ is odd,} \end{cases}$$

$$\beta_{k} = \begin{cases} 0, & k \text{ is even,} \\ \sum_{j=0}^{k(n-k)} P(j,k,n-k) \sin\left(\frac{k^{2}}{2n}\pi + \frac{j}{n}\pi\right), & k \text{ is odd,} \end{cases}$$

where P(j, k, r) denotes the number of integer partitions of $j \in \mathbb{N}$ with $\leq k$ parts, all between 1 and r, where $k, r \in \mathbb{N}$, and P(0, k, r) := 1.

Table : The best approximats from the previous Theorem.

Figure : The unit circle and its polynomial approximant for n = 2.

Geometric interpolation by parametric polynomial curves

Figure : The unit circle and its polynomial approximant for n = 3.

Geometric interpolation by parametric polynomial curves

Geometric interpolation by parametric polynomial curves

Geometric interpolation by parametric polynomial curves

Figure : The unit circle and its polynomial approximant for n = 6.

Geometric interpolation by parametric polynomial curves

Figure : The unit circle and its polynomial approximant for n = 7.

Geometric interpolation by parametric polynomial curves

Figure : Cycles of the approximant for n = 20.

Geometric interpolation by parametric polynomial curves

41 / 42

۸

Open problems

- Asymptotic analysis for n > 5.
- Geometric conditions implying solutions at least for $n \leq 5$.
- Geometric interpolation of special classes of curves (PH curves, MPH curves,...) (partially solved).
- Geometric interpolation of spatial and rational curves (connected with motion design (robotics)).
- Geometric subdivision.