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Motivation

Standard problem in CAGD:

Points TTTTTTTTT j ∈ Rd (d ≥ 2), j = 0, 1, . . . , k , are given.
Find parametric polynomial ppppppppp such that

ppppppppp(tj) = TTTTTTTTT j , j = 0, 1, . . . , k.

If k is large, replace ppppppppp by spline sssssssss.

If the sequence {tj}kj=0 is known, construction of ppppppppp is a linear
problem.

Different choices of {tj}kj=0 give different curves.

Degree of ppppppppp is k in general.
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Assume t0 := 0 (shift if necessary).
Possible choices for {tj}kj=1 are:

Uniform:
tj := j , j = 0, 1, . . . , k .

Chordal:

tj+1 = tj + ‖∆TTTTTTTTT j‖ =

j∑
`=0

‖∆TTTTTTTTT `‖, ∆TTTTTTTTT ` = TTTTTTTTT `+1 − TTTTTTTTT `.

Lee’s generalization:

tj+1 = tj + ‖∆TTTTTTTTT j‖α =
n∑
`=0

‖∆TTTTTTTTT `‖α, j = 0, 1, . . . , k − 1,

where α ∈ [0, 1]. The most known one is centripetal
(α = 1/2).
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Figure : Various parameterizations by quintic polynomial: uniform
(black), chordal (blue) and centripetal (red).
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Number of points interpolated by polynomial curve of degree
≤ k is at most k + 1.

Expected approximation order in case of “dense” data is
k + 1.

Unique solution always exists.

Expected computational time is O(d k2).

Is it possible to increase the number of interpolated points by
polynomial curve of the same degree k?
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How many points can be interpolated by planar parametric
parabola?

3?

. . . always

4?

. . . sometimes

5 or more?

. . . pure luck
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Figure : Four points interpolated by a parametric parabola.

Detailed analysis: K. Mørken, Parametric interpolation by
quadratic polynomials in the plane.
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General conjecture

Conjecture (Höllig and Koch(1996))

Parametric polynomial curve of degree k in Rd can, in gen-
eral, interpolate ⌊

d (k + 1)− 2

d − 1

⌋
points.

If the conjecture holds true, the approximation order of
interpolating polynomial might be much higher than in the
functional case.
Maybe even a shape of the resulting curve is satisfactory?!
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Figure : Cubic geometric interpolant on 6 points (solid), quintic
chordal parameterization (doted), quintic uniform parameterization
(gray).
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Probably the first serious attempt to analyze geometric
(cubic) interpolant goes back to 1987:
C. de Boor, K. Höllig, and M. Sabin: High accuracy
geometric Hermite interpolation. Comput. Aided Geom.
Design 4 (1987), no. 4, 269–278.

Asymptotic analysis of geometric Hermite interpolation of
values, tangent directions and curvatures at two boundary
points by planar cubic polynomial curve.

Approximation order is 6, but there might be no solution.
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The most interesting case of the conjecture is d = 2.

Nonasymptotic analysis is terribly complicated in general.

Conjecture is still an open problem.

Only a few generalizations to spline cases are known.

It seems it is more or less theoretical issue.
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Planar case

Nonlinear equations in the planar case

Equations:

pppppppppn(t`) = TTTTTTTTT `, ` = 0, 1, . . . , 2n − 1.

Unknowns t` are ordered as

t0 < t1 < · · · < t2n−1.

We may assume t0 := 0, t2n−1 := 1 (linear
reparameterization).
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ttttttttt := (t`)
2n−2
`=1 are not the only unknowns.

Also the coefficients of the polynomial pppppppppn have to be
determined.

First part of the problem is nonlinear (hard).

Second part is linear (easy).

The problem can be split into two parts: finding ttttttttt first and
then the coefficients of pppppppppn.
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Planar case

Divided differences

The equations for the unknown parameters ttttttttt can be derived
using linearly independent functionals (divided differences).

One way is to choose

[t0, t1, . . . , tn+j ], j = 1, 2, . . . , n − 1.
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Applying [t0, t1, . . . , tn+j ] to the equations

pppppppppn(t`) = TTTTTTTTT `

leads to

[t0, t1, . . . , tn+j ]pppppppppn= 000000000 =

n+j∑
`=0

TTTTTTTTT `

ω̇j(t`)
,

j = 1, . . . , n − 1,

where

ωj(t) :=

n+j∏
`=0

(t − t`), ω̇j(t) :=
dωj(t)

dt
.
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This gives 2n − 2 nonlinear equations for 2n − 2 unknowns
ttttttttt = (t`)

2 n−2
`=1 .

Any sequence of n + 1 parameters t` determine pppppppppn uniquely.

General analysis is unfortunately complicated −→ asymptotic
approach.
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Planar case

Asymptotic analysis

Assumption: TTTTTTTTT ` are sampled from smooth convex planar
curve

fffffffff : [0, h]→ R2,

fffffffff (0) = (0, 0)T , fffffffff ′(0) = (1, 0)T .

The curve fffffffff is parametrized by the first component:

fffffffff (x) =

(
x

y(x)

)
,

y(x) := 1
2y
′′(0)x2 +O(x3), y ′′(0) > 0.
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Since h is small, the coordinate system should be scaled by
the matrix

Dh = diag

(
1

h
,

2

h2 y ′′(0)

)
.

Suppose now

η0 := 0 < η1 < · · · < η2n−2 < η2n−1 := 1,

are the (given) parameters, for which

T`T`T`T`T`T`T`T`T` = Dhfffffffff (η`h), ` = 0, 1, . . . , 2n − 1.
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Asymptotic expansion of T`T`T`T`T`T`T`T`T` gives

TTTTTTTTT ` =

 η`
∞∑
k=2

ckh
k−2ηk`

 , ` = 0, 1, . . . , 2n − 1,

where ck depend on y ,but not on η` or h.

More precisely

ck =
2

k!

y (k)(0)

y ′′(0)
, k = 2, 3, . . .
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Planar case

Solving the nonlinear system

Our goal is to prove: there exists h0 > 0 such that the system
of nonlinear equations has a solution ttttttttt for any h, 0 ≤ h ≤ h0.

system

First we find a solution as h→ 0.

Then we prove that the Jacobian matrix in the limit solution
is nonsingular.

Finally, we use the Implicit function theorem.
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The limit solution, as h→ 0 is ttttttttt = ηηηηηηηηη := (η`)
2n−2
`=1 .

Namely

lim
h→0

n+j∑
`=0

1

ω̇j(t`)
TTTTTTTTT `

=

n+j∑
`=0

1

ω̇j(η`)
lim
h→0

TTTTTTTTT ` =

n+j∑
`=0

1

ω̇j(η`)

(
η`
η2`

)
= [η0, η1, . . . , ηn+j ]

(
η
η2

)
= 000000000.
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Unfortunately the Jacobian matrix at the limit solution is
singular (its kernel is n − 2 dimensional).

The implicit function theorem can not be applied directly!

Some more involved analysis is needed with several nontrivial
steps.

Finally we end up with the following result.
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Theorem

The final system of nonlinear equations has a real solution
for n ≤ 5 and h small enough.

Theorem

If the system of nonlinear equations has a real solution
then the interpolating polynomial curve pppppppppn exists and
approximates fffffffff by optimal approximation order, namely 2n.
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Planar case

Some particular cases

In the case n = 2 only one equation for a particular unqnown
ξ1 is obtained, i.e.,

2 ξ1 + c3 +O(h) = 0.

It obviously has a real solution.

25 / 42
Geometric interpolation by parametric polynomial curves

N



If n = 3 then the nonlinear system becomes

ξ21 + 3 c3 ξ1 + 2 ξ2 + c4 +O(h) = 0,

3 c3 ξ
2
1 + 2 ξ1 (ξ2 + 2 c4) + 3 c3 ξ2 + c5 +O(h) = 0.

It can be reduced to only one equation for ξ1

ξ31 +
3

2
c3 ξ

2
1 +

(
9

2
c23 − 3 c4

)
ξ1 +

3

2
c3 c4 − c5

+O(h) = 0,

which again has a real solution.
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If n = 5 the following “mess” is obtained

c4 + 5 c3 ξ1 + 6 c2 ξ1
2 + c1 ξ1

3 + 4 c2 ξ2 + 6 c1 ξ1 ξ2+

ξ2
2 + (3 c1 + 2 ξ1)ξ3 + 2 ξ4 +O(h) = 0,

c5 + 6 c4 ξ1 + 10 c3 ξ1
2 + 4 c2 ξ1

3 + 5 c3 ξ2

+12 c2 ξ1 ξ2 + 3 c1 ξ1
2 ξ2+

3 c1 ξ2
2 + 4 c2 ξ3 + 6 c1 ξ1 ξ3

+2 ξ2 ξ3 + 3 c1 ξ4 + 2 ξ1 ξ4 +O(h) = 0,

−→
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c6 + 7 c5 ξ1 + 15 c4 ξ1
2 + 10 c3 ξ1

3 + 6 c4 ξ2 + 20 c3 ξ1 ξ2+

12 c2 ξ1
2 ξ2 + 6 c2 ξ2

2 + 3 c1 ξ1 ξ2
2 + c2 ξ1

4 + 5 c3 ξ3 + 12 c2 ξ1 ξ3+

3 c1 ξ1
2 ξ3 + 6 c1 ξ2 ξ3 + ξ3

2 + 4 c2 ξ4 + 6 c1 ξ1 ξ4 + 2 ξ2 ξ4 +O(h) = 0,

c7 + 8 c6 ξ1 + 21 c5 ξ1
2 + 20 c4 ξ1

3 + 5 c3 ξ1
4 + 7 c5 ξ2 + 30 c4 ξ1 ξ2+

30 c3 ξ1
2 ξ2 + 4 c2 ξ1

3 ξ2 + 10 c3 ξ2
2 + 12 c2 ξ1 ξ2

2 + c1 ξ2
3 + 6 c4 ξ3+

20 c3 ξ1 ξ3 + 12 c2 ξ1
2 ξ3 + 12 c2 ξ2 ξ3 + 6 c1 ξ1 ξ2 ξ3 + 3 c1 ξ3

2+

5 c3 ξ4 + 12 c2 ξ1 ξ4 + 3 c1 ξ1
2 ξ4 + 6 c1 ξ2 ξ4 + 2 ξ3 ξ4 +O(h) = 0.
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Planar case

An example

The interpolating curve is

fffffffff (u) =

(
cos u log(1 + u)
sin u log(1 + u)

)
,

u ∈ [3, 3 + h]. The table
shows estimated rate of
convergence for the
interpolant p5 on 10 points.

h Error Rate
3 7.12e − 6 −

2.4 8.79e − 7 9.38
1.92 1.05e − 7 9.52
1.54 1.22e − 8 9.63
1.22 1.40e − 9 9.71
0.98 1.58e − 10 9.76
0.78 1.79e − 11 9.77
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Nonasymptotic analysis

Nonasymptotic analysis

Nonasymptotic analysis is much more complicated.

Geometry of data is involved in the analysis.

The results are known only for parabolic an cubic case in the
plane.

In higher dimensions it seems that the only known result is
interpolation of d + 2 points by polynomial curve of degree d
in Rd .

Homotopy methods are used to confirm the existence of the
solution.

30 / 42
Geometric interpolation by parametric polynomial curves

N



Special curves

Special curves
Geometric interpolation of special curves is also interesting
(and important).

Special attention was given to conic sections, specially
circular segments.

M.S. Floater: An O(h2n) Hermite approximation for conic
sections. Comput. Aided Geom. Design 14 (1997), no. 2,
135–151.

G. Jaklič, J. Kozak, M. Krajnc and E. Ž.: On geometric
interpolation of circle-like curves. Comput. Aided Geom.
Design 24 (2007), no. 5, 241–251.
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Theorem

If xn(t) := 1 +
∑n

k=2 αk tk , yn(t) :=
∑n

k=1 βk tk , β1 > 0,
then the best approximant of the unit circural arc is given
by

αk =


k(n−k)∑
j=0

P(j , k , n − k) cos

(
k2

2n
π +

j

n
π

)
, k is even,

0, k is odd,

βk =


0, k is even,

k(n−k)∑
j=0

P(j , k , n − k) sin

(
k2

2n
π +

j

n
π

)
, k is odd,

where P(j , k , r) denotes the number of integer partitions of
j ∈ N with ≤ k parts, all between 1 and r , where k , r ∈ N,
and P(0, k , r) := 1.
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n xn(t), yn(t)

2 x2(t) = 1− t2, y2(t) =
√

2 t
3 x3(t) = 1− 2 t2, y3(t) = 2 t − t3

4 x4(t) = 1− (2 +
√

2)t2 + t4

y4(t) =
√

4 + 2
√

2(t − t3)

5 x5(t) = 1− (3 +
√

5)t2 + (1 +
√

5)t4

y5(t) = (1 +
√

5)t − (3 +
√

5)t3 + t5

6 x6(t) = 1− 2(2 +
√

3)t2 + 2(2 +
√

3)t4 − t6

y6(t) = (
√

2 +
√

6)t −
√

2 (3 + 2
√

3)t3 + (
√

2 +
√

6)t5

Table : The best approximats from the previous Theorem.
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Figure : The unit circle.
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Figure : The unit circle and its polynomial approximant for n = 2.
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Figure : The unit circle and its polynomial approximant for n = 3.
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Figure : The unit circle and its polynomial approximant for n = 4.
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Figure : The unit circle and its polynomial approximant for n = 5.
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Figure : The unit circle and its polynomial approximant for n = 6.
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Figure : The unit circle and its polynomial approximant for n = 7.
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Figure : Cycles of the approximant for n = 20.
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Open problems

Open problems

Asymptotic analysis for n > 5.

Geometric conditions implying solutions at least for n ≤ 5.

Geometric interpolation of special classes of curves (PH
curves, MPH curves,. . . ) (partially solved).

Geometric interpolation of spatial and rational curves
(connected with motion design (robotics)).

Geometric subdivision.
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