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Martin Milanič Vector connectivity in graphs



Vector domination in graphs

Given: a graph G = (V ,E)
For every vertex v , an integer r(v)

A set S ⊆ V is a vector dominating set for (G, r) if every vertex
in V \ S has at least r(v) neighbors in S.
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Vector domination in graphs

Vector domination generalizes:
domination: r(v) = 1 for all v
vertex cover: r(v) = d(v) for all v
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Martin Milanič Vector connectivity in graphs



Vector domination in graphs

Vector domination generalizes:
domination: r(v) = 1 for all v
vertex cover: r(v) = d(v) for all v

2

4

3

1

5
5

2

2

2

4

2

4

5

3

4
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Vector domination in graphs
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domination: r(v) = 1 for all v
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Martin Milanič Vector connectivity in graphs



Vector connectivity in graphs

Relaxation: edges paths

Given: a graph G = (V ,E)
For every vertex v , an integer r(v)

A set S ⊆ V is a vector connectivity set for (G, r) if every vertex
in V \ S has at least r(v) disjoint paths to S.
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The problem

Vector connectivity:

Input: A graph G = (V ,E) and r(v) ∈ Z+ for each v ∈ V
Task: Find a minimum vector connectivity set for (G, r).

Introduced in: Boros, Heggernes, van ’t Hof, M.
TAMC 2013, Networks 2014

The talk is also based on:
Cicalese, M., Rizzi, 2014, On the complexity of the vector
connectivity problem, http://arxiv.org/abs/1412.2559
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Application 1 – viral marketing

Suppose that the graph models a social network.
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In a viral marketing campaign one of the problems is to
identify a set of targets in the network that can be
influenced (e.g., on the goodness of a product) and such
that from them most/all the network can be influenced
(e.g., convinced to buy the product).
Usual assumption: each vertex has a threshold r(v) such
that when r(v) neighbors are influenced, v will get
influenced too.

Martin Milanič Vector connectivity in graphs



Application 1 – viral marketing

Assume now that for v it is not enough that r(v) neighbors
are convinced about the product. Vertex v also requires
that their motivations are independent.
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A customer will buy the product if he/she has at least r(v)
“independent” ways of learning about it.
A minimum set of customers that the company should
‘target’ directly so that all individuals in the network will buy
the product is exactly a minimum vector connectivity set.
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Application 2 – warehouse placement

Each vertex in a network produces a certain amount of a
given good.
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Application 2 – warehouse placement

We want to place in the network warehouses where the
good can be stored.
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Application 2 – warehouse placement

For security/resilience reasons it is better if from each
source to each destination (warehouse) only a small
amount of the good (e.g., one unit) travels at once.
In particular, it is preferred if the units of good from one
location to the different warehouses travel on different
routes.
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Application 2 – warehouse placement

This reduces the risk that if delivery gets intercepted or
attacked or interrupted by a fault on the network a large
amount of the good gets lost.

Finding the minimum number of warehouses given the
amount of units produced at each vertex coincides with the
vector connectivity problem.
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Overview of the talk

1 A characterization of vector connectivity sets
Cicalese et al., 2014

vector connectivity sets as hitting sets of a derived
hypergraph

2 An approximation algorithm
Boros et al., 2014

polynomial time algorithm approximating vector connectivity
within a factor of log n + 2

3 Inapproximability result Cicalese et al., 2014
the problem is APX-hard (no PTAS unless P = NP)

4 Exact polynomial algorithms for special graph classes
Boros et al., 2014, Cicalese et al., 2014

trees, cographs, split graphs, block graphs
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A CHARACTERIZATION OF VECTOR CONNECTIVITY SETS
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A characterization

Recall:

A hypergraph is a pair H = (V ,F) where V is a finite set
and F is a set of subsets of V (called hyperedges).
A hitting set (or: transversal) of a hypergraph H is a
subset S ⊆ V such that S ∩ X 6= ∅ for all X ∈ F .

vertex covers of a graph G = hitting sets of G
dominating sets = hitting sets of the closed neighborhood
hypergraph of G
vector dominating sets = . . .
etc.
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A characterization

Menger’s Theorem can be used to derive a similar
characterization of vector connectivity sets.

Proposition
For every graph G = (V ,E), vertex requirements r : V → Z+,
and a set S ⊆ V, the following conditions are equivalent:

1 S is a vector connectivity set for (G, r).
2 S is the hitting set of the hypergraph consisting of all

non-empty sets X ⊆ V such that G[X ] is connected and
|N(X )| < R(X ).

Here, R(X ) := maxx∈X r(x).
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A characterization – example

X

K

maxv∈V (X) r(v) = 4 > |N(X)|
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A characterization – example
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A characterization – example

Every vector connectivity set contains at least one vertex from
each of the following three sets:
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A characterization – example

It follows that the solution consisting of the three red vertices
below is optimal.
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AN APPROXIMATION ALGORITHM
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Approximating vector connectivity

Greedy Strategy
start with S = ∅
if S is not a vector connectivity set, keep on adding to S
a vertex v ∈ V \ S maximizing f (S ∪ {v})− f (S)

argmaxv∈V (f (S ∪ {v})− f (S))

f (X ) =
∑

v∈V fv (X ) , for all X ⊆ V , and

fv (X ) =

{
min{σ(v ,X ), r(v)} if v 6∈ X ;

r(v) if v ∈ X .

σ(v ,X ) = maximum number of disjoint v -X paths
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Approximating vector connectivity

f (X ) =
∑

v∈V fv (X ) , for all X ⊆ V , and

fv (X ) =

{
min{σ(v ,X ), r(v)} if v 6∈ X ;

r(v) if v ∈ X .

Note that:
f (V ) =

∑
v∈V r(v)

f (X ) = f (V ) if and only if X ⊆ V is a vector connectivity set
for (G, r).
Hence, the vector connectivity problem asks for a smallest
set X ⊆ V with f (X ) = f (V ).
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Approximating vector connectivity

It can be shown that f is a (non-decreasing, integer-valued)
submodular set function.

Hence, the vector connectivity problem is a special case of the
Minimum Submodular Cover problem:

Input: A finite set V and an integer-valued nondecreasing
submodular set function g on subsets of V (given by an oracle).

Task: Find a smallest set X ⊆ V such that g(X ) = g(V ).
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Approximating vector connectivity

Greedy Strategy
start with S = ∅
if S is not a vector connectivity set, keep on adding to S
a vertex v ∈ V \ S maximizing f (S ∪ {v})− f (S)

By a result of [Wolsey, 1982] on minimum submodular cover,
the greedy strategy approximates OPT by a factor of at most

Hmax f ({y}) ≤ Hn+∆(G) ≤ log n + 2 .

Hk =
∑k

i=1
1
i
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Approximating vector connectivity

It can be shown that f is a (non-decreasing, integer-valued)
submodular set function.

Submodularity is a discrete analog of concavity:

X ⊆ Y ⇒ f (X ∪ {v})− f (X ) ≥ f (Y ∪ {v})− f (Y ) .

We have two proofs for submodularity:

1 Derive a monotonicity property of disjoint path systems
using a classical result on stable matchings
[Gale, Shapley, 1962].

2 Observe that f is closely related to the rank function of a
certain gammoid.
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A little detour to matroids

Gammoids are special matroids.

Recall:
A matroid is a hypergraph (V ,F) such that F is nonempty
and closed under taking subsets, and its elements, called
the independent sets,
satisfy the following
exchange property:
for every two independent sets A and B such that |A| < |B|,
there exists an element of B whose addition to A results in
a larger independent set.
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A little detour to matroids

Some basic facts about matroids:
They can be defined in several equivalent ways.

For every matrix (over any field), the collection of linearly
independent sets of columns of the matrix forms a matroid.

Matroids are the most general combinatorial structures for
which the greedy method always finds a cheapest basis
(maximal independent set).

Given a matroid M = (V ,F), the rank function of M is the
function rM : P(V )→ Z+, defined by:

rM(X ) = maximum size of an independent set contained in X .

The rank function of every matroid is submodular.
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Approximating vector connectivity

A gammoid is a hypergraph Γ = (U,F) derived from a triple
(D,S,T ) where D = (V ,A) is a digraph and S,T ⊆ V such that
U = S and a subset S′ ⊆ S forms a hyperedge if and only if
D contains |S′| disjoint directed paths connecting S′ to T .

S
T

S′

D

Theorem (Perfect 1968, Pym 1969)
Every gammoid is a matroid.
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Approximating vector connectivity

f (X ) =
∑

v∈V fv (X ) , for all X ⊆ V , and

fv (X ) =

{
min{σ(v ,X ), r(v)} if v 6∈ X ;

r(v) if v ∈ X .
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Approximating vector connectivity

f (X ) =
∑

v∈V fv (X ) , for all X ⊆ V , and

fv (X ) =

{
min{σ(v ,X ), r(v)} if v 6∈ X ;

r(v) if v ∈ X .

σ(v ,X ) = maximum number of disjoint v -X paths
= maximum number of disjoint directed paths

from N(v) to X in the digraph D representing G
= rank of X in the gammoid derived from

(D,V \ {v},N(v))

⇒ σ(v ,X ) is submodular
⇒ f is submodular
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HARDNESS RESULTS
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Inapproximability of vector connectivity

Theorem
Vector connectivity is APX-hard.

There exists a constant ε > 0 such that vector connectivity
cannot be approximated in polynomial time within a factor
of 1 + ε unless P = NP.
Reduction is from vertex cover in cubic graphs.
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Inapproximability of vector connectivity

instance of vertex cover instance to vector connectivity

G G′
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Inapproximability of vector connectivity
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Inapproximability of vector connectivity

4 3 4
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instance of vertex cover instance of vector connectivity

G G′

Idea behind the reduction:

for each edge of G, every vector connectivity set for (G′, r) must contain
at least one vertex from each of the circled sets

the three sets can be hit with two vertices, but not with just one

no matter whether one or two of the red vertices are used, one
additional green vertex must be used
(and if no red vertex is used, two green vertices must be used)

the best we can do is to find a vertex cover for G and then add one
green vertex for each edge of G.
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Inapproximability of vector connectivity

Similar reductions show NP-hardness of vector connectivity in:
planar line graphs of maximum degree 5,
planar bipartite graphs of maximum degree 5.

Corollary:
Vector connectivity is NP-hard for perfect graphs.

Note that vertex cover is polynomially solvable for line graphs
and for perfect graphs.
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POLYNOMIAL SPECIAL CASES
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Split graphs

A graph is split if there exists a partition of its vertex set into a
clique and an independent set.

Source: http://en.wikipedia.org/wiki/Split_graph
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Split graphs

Theorem
Vector connectivity can be solved in polynomial time in
split graphs.

Recall that domination (and hence vector domination) is
hard to approximate to within a factor of (1− ε) log n, for every
constant ε > 0, even within the class of split graphs
[Chlebı́k–Chlebı́kova, 2008].
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Split graphs

Theorem
Vector connectivity can be solved in polynomial time in
split graphs.

The following very simple greedy algorithm is optimal:
sort the vertices of G by their r -values in non-increasing
order
greedily pick vertices from the start of the sorted list to be
in S until we have a vector connectivity set

Caveat: we assume that r(v) ≤ d(v) for all v ∈ V
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Split graphs

Observation
Let G be a split graph, and let S ⊆ V such that

min
u∈S

r(u) ≥ max
v∈V\S

r(v) .

Then, every v ∈ V \ S has at least min{r(v), |S|} disjoint paths
to S.
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Cographs

A cograph is a P4-free graph.

Theorem
Vector connectivity can be solved in polynomial time in
cographs.

The algorithm: dynamic programming based on the fact that
a cograph on at least two vertices is either disconnected or its
complement is disconnected
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Cographs

Example:
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Martin Milanič Vector connectivity in graphs



Cographs

Example:
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Cographs

Theorem
Vector connectivity can be solved in polynomial time in
cographs.

A recursive decomposition of a cograph using disjoint
union and join operations is represented by a cotree,
which can be computed in linear time [Corneil-Perl-Stewart
1985]
we need to solve a more general problem, in which, given
an integer `,
all vertices v with r(v) ≥ ` must be included in the vector
connectivity set

Martin Milanič Vector connectivity in graphs



Trees

Theorem
Vector connectivity can be solved in polynomial time in trees.

Idea of the algorithm:
construct a vector connectivity set S for T of minimum size,
starting from the leaves of T and traversing the tree bottom up,
processing a vertex only after all its children have been
processed
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Trees

Tv : subtree of T rooted at v

We recursively compute for each vertex v the values of:
n(v): whether or not there exists a vertex in Tv that
“needs” an additional path to a vertex outside of Tv ,
b(v): whether or not there is a vertex of S in the subtree Tv
“below” v ,
c(v): the number of children w of v with b(w) = 1.

The current node v is added to S only if this is necessary in
order to maintain the feasibility in the subtree.

This is easy to determine using n(v), b(v), c(v).
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Trees

The algorithm maintains the following invariants:

Feasibility:
(i) If n(v) = 0, then S ∩ V (Tv ) is a vector connectivity set

for Tv .
(ii) If n(v) = 1, then (S ∩ V (Tv )) ∪ {p(v)} is a vector

connectivity set for the subtree of T induced by
V (Tv ) ∪ {p(v)};

Optimality:
(iii) There is no vector connectivity set S′ for T such that
|S′ ∩ V (Tv )| < |S ∩ V (Tv )|.
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Block graphs

A block graph is a graph every block of which is complete.

Theorem
Vector connectivity can be solved in polynomial time in block
graphs.

This generalizes the result for trees.
The result is obtained by reducing the vector connectivity
problem from arbitrary graphs to biconnected graphs
(connected graphs without cut vertices),
and solving the problem on complete graphs.
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Reduction to biconnected graphs

The following generalization of the problem is needed for the
reduction:

Free-set vector connectivity:
Input: A graph G = (V ,E), a function r : V → Z+, and a set
F ⊆ V .
Task: Find a minimum set S such that for every vertex
v ∈ V \ S is connected via r(v) disjoint paths to S ∪ F .
(For v ∈ F \ S, one of the paths can be trivial.)
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Reduction to biconnected graphs

Theorem
Suppose that free-set vector connectivity can be solved in
polynomial time on graphs from a class G.

Then, the problem can be solved in polynomial time on graphs
every block of which is in G.

The result for block graphs follows by taking G to be the set of
complete graphs.
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CONCLUSION
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Conclusion

We have seen several aspects of vector connectivity:

1 A characterization of vector connectivity sets
2 A (log n + 2)-approximation algorithm
3 An APX-hardness result

NP-hardness for bipartite graphs
NP-hardness for line graphs

4 Exact polynomial algorithms for trees, cographs, split
graphs, and block graphs

5 A reduction to biconnected graphs
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Conclusion

Some open questions:
1 What is the exact (in)approximability status of vector

connectivity?
In particular, is it constant-factor approximable?

2 On what other graph classes is the problem polynomial?
In particular, is it polynomial for:

chordal graphs?
Pk -free graphs (for every fixed k )?
graphs of bounded clique-width?

3 Could IP formulations lead to new tractable cases?
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The end

Thank you for your attention!
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