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KNESER GRAPHS KG(n,k)
n≥ 2k, [n] = {1, . . . ,n},
[n]k = {S⊆ [n] : |S|= k},

KG(n,k): graph with vertex set [n]k and edges between disjoint vertices.

KG(n,1)≈ Kn.
KG(2k,k)≈ 1

2

(2k
k

)
K2.

KG(n,k) is t-regular, with t =
(n−k

k

)
.

ω(KG(n,k)) =
⌊n

k

⌋
.

Maximum

Stable sets Ij = {S ∈ [n]k : j ∈ S}, center j.

α(KG(n,k))
(n−1

k−1

)
.

S stable set without center |S| ≤
(n−1

k−1

)
−
(n−k−1

k−1

)
+1 [Hilton, Milner

(1967)].
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CHROMATIC NUMBER OF KNESER GRAPHS

r = 1, . . . ,n−2k+1 −→ I ′
r = {S ∈ [n]k : min(S) = r},

I ′
n−2k+2 = {S ∈ [n]k : min(S)≥ n−2k+2}.

χ(KG(n,k))≤ n−2k+2.

Conjecture [Martin Kneser, 1955]: Let I1,I2, . . . ,In−2k+1 be an
(n−2k+1)-partition of [n]k. Then, there exists j such that Ij contains
two disjoint subsets.

Remark: If the conjecture is true then χ(KG(n,k))≥ n−2k+2.

Lovász, 1978: χ(KG(n,k)) = n−2k+2.

Are Kneser graphs χ-critical?
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STABLE KNESER GRAPHS

S⊂ [n] is 2-stable if 2≤ |i− j| ≤ n−2 for all i, j ∈ S.

[n]k2 = {S ∈ [n]k : S is 2-stable}

KG(n,k)2: subgraph of KG(n,k) induced by [n]k2.
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KG(n,k)2 is χ-critical.

KG(n,k)2: Schrijver graphs.
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S⊂ [n] is s-stable if s≤ |i− j| ≤ n− s.

[n]k2 = {S ∈ [n]k : S is s-stable}.

s-stable Kneser graphs [Alon et al., 2009] KG(n,k)s: subgraph of
KG(n,k) induced by [n]ks .
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S⊂ [n] is s-stable if s≤ |i− j| ≤ n− s.
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CHROMATIC NUMBER OF s-STABLE KNESER GRAPHS

χ(KG(n,k)2) = n−2k+2 = n−2(k−1).

χ(KG(ks+1,k)s) = s+1 [Meunier, 2011].
χ(KG(n,k)s)≤ n− s(k−1) [Meunier, 2011].
Conjecture [Meunier, 2011]: χ(KG(n,k)s) = n− s(k−1).
s≥ 4, k ≥ 2, the conjecture is true for n large enough [Jonsson,
2012] [n≥max

{
s(s(k−1))+1

2q , sk
}

with q =
⌊
log2(

s
2 )
⌋
].

n = 2s+2, k = 2 X (χ(KG(2s+2,2)s) = s+2)[M. Valencia, T.,
2017]

and KG(2s+2,2)s are not χ-critical.

n≤ 9, k = 2, s = 3.
n≤ 10, k = 2, s = 4.
n≤ 11, k = 3, s = 3.
n≤ 13, k = 3, s = 4.
n≤ 14, k = 4, s = 3.
n≤ 17, k = 4, s = 4.
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χrk(KG(n,k)) = rn [Stahl, 1976].

Conjecture [Stahl, 1976]: If r = qk−p, q≥ 1, 0≤ p < k, then
χr(KG(n,k)) = qn−2p.

k = 2,3 X [Stahl, 1998].

n = 10, k = 4X [Kincses et al., 2012].
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2017].

Graphs KG(sk+1,k)s are circulant graphs and so hom-idempotent
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Graphs KG(sk+1,k)s are circulant graphs and so hom-idempotent
graphs [V., T., 2017].
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The automorphism group of Cn, Aut(Cn), is D2n.
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Aut(KG(n,k)) is isomorphic to Sym(n).



THE AUTOMORPHISM GROUP OF s-STABLE KNESER

GRAPHS

The automorphism group of the Schrijver graph Aut(KG(n,k)2) is
isomorphic to D2n [B. Braun, 2010].

The automorphism group of the stable Kneser graph
Aut(KG(n,k)s) is isomorphic to D2n [T., 2017].
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Kneser graphs are vertex-transitive.
Schrijver graphs are not vertex transitive in general.
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VERTEX-TRANSITIVITY

A graph G is said vertex-transitive if its automorphism group acts
transitively on its vertex-set.

Kneser graphs are vertex-transitive.
Schrijver graphs are not vertex transitive in general.
KG(n,k)s is vertex transitive if and only if n = sk+1 [T., 2017].



PROOFS

KG(n,k)s is vertex transitive if and only if n = sk+1.

Vertex S = {s1,s2, . . . ,sk} s.t. si < si+1, 1≤ i≤ k−1.

Gaps li(S) = si+1− si, 1≤ i≤ k−1, lk = s1 +n− sk

automorphisms preserve the gaps.

n≥ sk+2,

S1 = {1,1+ s,1+2s, . . . ,1+(k−1)s}, li(S1) = s, 1≤ i≤ k−1,

lk(S1)≥ s+2.

S2 = {1,2+ s,2+2s, . . . ,2+(k−1)s}, l1(S2) = s+1.

n = sk+1, exactly one gap is s+1 and the remaining gaps are
equal to s.
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PROOFS

An automorphism φ of a graph G is called a shift of G if
{u,φ(u)} ∈ E(G) for each u ∈ V(G). In other words, a shift of G maps
every vertex to one of its neighbors.

Let n≥ (k+1)s−1. Then, the only 2(s−1) shifts of the s-stable
Kneser graph KG(n,k)s−stab are the rotations σ i with
i ∈ {1, . . . ,s−1}∪{n− s+1, . . . ,n−1}.

The only two shifts of the 2-stable Kneser graph KG(n,k)2 are the
rotations σ1 and σn−1.
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PROOFS

Let A be a group and S a subset of A that is closed under inverses and
does not contain the identity. The Cayley gragh Cay(A,S) is the graph
whose vertex set is A, two vertices u,v being joined by an edge if
u−1v ∈ S.

If H is a subgraph of G and φ : G→ H has the property that φ(u) = u for
every vertex u of H, then φ is called a retraction and H is called a retract
of G.

A graph G is called a core if it has no proper retracts. It is well known
that any finite graph G is homomorphically equivalent to at least one
core G•, as can be seen by selecting G• as a retract of G with a
minimum number of vertices. In this way, G• is uniquely determined up
to isomorphism, and it makes sense to think of it as the core of G.

Given a graph G, the set of all shifts of G is denoted by SG.
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PROOFS

A graph G is hom-idempotent if and only if G↔ Cay(Aut(G•),SG•)
[Larose et al. 1998].

Let G be a χ-critical graph. Then G is weakly hom-idempotent if
and only if it is hom-idempotent [Larose et al. 1998].

Let n≥ 2k+2 and let G denotes the graph KG(n,k)2−stab. Then,
G 6→ Cay(Aut(G),SG), where SG are the shifts of G.

For any n≥ 2k+2, the 2-stable Kneser graphs KG(n,k)2−stab are
not weakly hom-idempotent.
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Hvala!

¡Muchas gracias!
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G r χr(G) χr(G�G) = χr(G�G)≥ χr(G�G)≤
KG(5,2) 2 5 6 - -

- 3 8 9 - -
- 4 10 12 - -
- 5 13 15 - -
- 6 15 18 - -
- 7 18 ? 20 21

KG(6,2) 2 6 8 - -
- 3 10 12 - -
- 4 12 ? 15 16
- 5 16 ? 19 20
- 6 18 ? 23 24

KG(7,2) 2 7 ? 9 10
- 3 12 ? 13 15
- 4 14 ? 17 20

KG(8,2) 2 8 ? 11 12
- 3 14 ? 16 18
- 4 16 ? 21 24


