STABLE KNESER GRAPHS: PROBLEMS AND CONJECTURES.

Pablo Torres

Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina

Mathematical Research Seminar UP FAMNIT - IAM, Koper, 2017.

PETERSEN GRAPH

$$
\begin{aligned}
& {[5]=\{1,2,3,4,5\},} \\
& {[5]^{2}=\{S \subset[5]:|S|=2\}}
\end{aligned}
$$

Petersen graph

$$
[5]=\{1,2,3,4,5\},
$$

$$
[5]^{2}=\{S \subset[5]:|S|=2\}
$$

PETERSEN GRAPH

$[5]=\{1,2,3,4,5\}$,
$[5]^{2}=\{S \subset[5]:|S|=2\}$

PETERSEN GRAPH

$$
\begin{aligned}
& {[5]=\{1,2,3,4,5\},} \\
& {[5]^{2}=\{S \subset[5]:|S|=2\}}
\end{aligned}
$$

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.
- $\omega(K G(n, k))=\left\lfloor\frac{n}{k}\right\rfloor$.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.
- $\omega(K G(n, k))=\left\lfloor\frac{n}{k}\right\rfloor$.

Stable sets $\mathscr{I}_{j}=\left\{S \in[n]^{k}: j \in S\right\}$, center j.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.
- $\omega(K G(n, k))=\left\lfloor\frac{n}{k}\right\rfloor$.

Stable sets $\mathscr{I}_{j}=\left\{S \in[n]^{k}: j \in S\right\}$, center j.

- $\alpha(K G(n, k)) \geq\binom{ n-1}{k-1}$.

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.
- $\omega(K G(n, k))=\left\lfloor\frac{n}{k}\right\rfloor$.

Stable sets $\mathscr{I}_{j}=\left\{S \in[n]^{k}: j \in S\right\}$, center j.

- $\alpha(K G(n, k))=\binom{n-1}{k-1}$ [Erdős, Ko, Rado (1961)].

Kneser graphs $K G(n, k)$

$$
\begin{aligned}
& n \geq 2 k,[n]=\{1, \ldots, n\}, \\
& {[n]^{k}=\{S \subseteq[n]:|S|=k\},}
\end{aligned}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.
- $\omega(K G(n, k))=\left\lfloor\frac{n}{k}\right\rfloor$.
- Maximum Stable sets $\mathscr{I}_{j}=\left\{S \in[n]^{k}: j \in S\right\}$, center j.
- $\alpha(K G(n, k))=\binom{n-1}{k-1}$ [Erdős, Ko, Rado (1961)].

Kneser graphs $K G(n, k)$

$$
n \geq 2 k,[n]=\{1, \ldots, n\}
$$

$$
[n]^{k}=\{S \subseteq[n]:|S|=k\}
$$

$K G(n, k)$: graph with vertex set $[n]^{k}$ and edges between disjoint vertices.

- $K G(n, 1) \approx K_{n}$.
- $K G(2 k, k) \approx \frac{1}{2}\binom{2 k}{k} K_{2}$.
- $K G(n, k)$ is t-regular, with $t=\binom{n-k}{k}$.
- $\omega(K G(n, k))=\left\lfloor\frac{n}{k}\right\rfloor$.
- Maximum Stable sets $\mathscr{I}_{j}=\left\{S \in[n]^{k}: j \in S\right\}$, center j.
- $\alpha(K G(n, k))=\binom{n-1}{k-1}$ [Erdős, Ko, Rado (1961)].
- S stable set without center $|S| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$ [Hilton, Milner (1967)].

Chromatic number of Kneser graphs

Chromatic number of Kneser graphs

$$
\begin{aligned}
& r=1, \ldots, n-2 k+1 \longrightarrow \mathscr{I}_{r}^{\prime}=\left\{S \in[n]^{k}: \min (S)=r\right\}, \\
& \mathscr{I}_{n-2 k+2}^{\prime}=\left\{S \in[n]^{k}: \min (S) \geq n-2 k+2\right\} .
\end{aligned}
$$

Chromatic number of Kneser graphs

$r=1, \ldots, n-2 k+1 \longrightarrow \mathscr{I}_{r}^{\prime}=\left\{S \in[n]^{k}: \min (S)=r\right\}$,
$\mathscr{I}_{n-2 k+2}^{\prime}=\left\{S \in[n]^{k}: \min (S) \geq n-2 k+2\right\}$.
$\chi(K G(n, k)) \leq n-2 k+2$.

Chromatic number of Kneser graphs

$r=1, \ldots, n-2 k+1 \longrightarrow \mathscr{I}_{r}^{\prime}=\left\{S \in[n]^{k}: \min (S)=r\right\}$,
$\mathscr{I}_{n-2 k+2}^{\prime}=\left\{S \in[n]^{k}: \min (S) \geq n-2 k+2\right\}$.
$\chi(K G(n, k)) \leq n-2 k+2$.
Conjecture [Martin Kneser, 1955]: Let $\mathscr{I}_{1}, \mathscr{I}_{2}, \ldots, \mathscr{I}_{n-2 k+1}$ be an $(n-2 k+1)$-partition of $[n]^{k}$. Then, there exists j such that $\mathscr{\mathscr { S }}_{j}$ contains two disjoint subsets.

Chromatic number of Kneser graphs

$r=1, \ldots, n-2 k+1 \longrightarrow \mathscr{I}_{r}^{\prime}=\left\{S \in[n]^{k}: \min (S)=r\right\}$,
$\mathscr{I}_{n-2 k+2}^{\prime}=\left\{S \in[n]^{k}: \min (S) \geq n-2 k+2\right\}$.
$\chi(K G(n, k)) \leq n-2 k+2$.
Conjecture [Martin Kneser, 1955]: Let $\mathscr{I}_{1}, \mathscr{I}_{2}, \ldots, \mathscr{I}_{n-2 k+1}$ be an $(n-2 k+1)$-partition of $[n]^{k}$. Then, there exists j such that $\mathscr{\mathscr { ~ }}_{j}$ contains two disjoint subsets.

Remark: If the conjecture is true then $\chi(K G(n, k)) \geq n-2 k+2$.

Chromatic number of Kneser graphs

$r=1, \ldots, n-2 k+1 \longrightarrow \mathscr{I}_{r}^{\prime}=\left\{S \in[n]^{k}: \min (S)=r\right\}$,
$\mathscr{I}_{n-2 k+2}^{\prime}=\left\{S \in[n]^{k}: \min (S) \geq n-2 k+2\right\}$.
$\chi(K G(n, k)) \leq n-2 k+2$.
Conjecture [Martin Kneser, 1955]: Let $\mathscr{I}_{1}, \mathscr{I}_{2}, \ldots, \mathscr{I}_{n-2 k+1}$ be an $(n-2 k+1)$-partition of $[n]^{k}$. Then, there exists j such that $\mathscr{\mathscr { S }}_{j}$ contains two disjoint subsets.

Remark: If the conjecture is true then $\chi(K G(n, k)) \geq n-2 k+2$.
Lovász, 1978: $\chi(K G(n, k))=n-2 k+2$.

Chromatic number of Kneser graphs

$r=1, \ldots, n-2 k+1 \longrightarrow \mathscr{I}_{r}^{\prime}=\left\{S \in[n]^{k}: \min (S)=r\right\}$,
$\mathscr{I}_{n-2 k+2}^{\prime}=\left\{S \in[n]^{k}: \min (S) \geq n-2 k+2\right\}$.
$\chi(K G(n, k)) \leq n-2 k+2$.
Conjecture [Martin Kneser, 1955]: Let $\mathscr{I}_{1}, \mathscr{I}_{2}, \ldots, \mathscr{I}_{n-2 k+1}$ be an $(n-2 k+1)$-partition of $[n]^{k}$. Then, there exists j such that $\mathscr{\mathscr { F }}_{j}$ contains two disjoint subsets.

Remark: If the conjecture is true then $\chi(K G(n, k)) \geq n-2 k+2$.
Lovász, 1978: $\chi(K G(n, k))=n-2 k+2$.
Are Kneser graphs χ-critical?

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.

Figure: $K G(5,2)$

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.

Figure: $K G(5,2)_{2}$

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.

Figure: $K G(6,2)_{2}$

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.
Schrijver (1978):

- $\chi\left(K G(n, k)_{2}\right)=\chi(K G(n, k))=n-2 k+2$.

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.

Schrijver (1978):

- $\chi\left(K G(n, k)_{2}\right)=\chi(K G(n, k))=n-2 k+2$.
- $K G(n, k)_{2}$ is χ-critical.

Stable Kneser graphs

$S \subset[n]$ is 2 -stable if $2 \leq|i-j| \leq n-2$ for all $i, j \in S$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is 2-stable $\}$
$K G(n, k)_{2}$: subgraph of $K G(n, k)$ induced by $[n]_{2}^{k}$.

Schrijver (1978):

- $\chi\left(K G(n, k)_{2}\right)=\chi(K G(n, k))=n-2 k+2$.
- $K G(n, k)_{2}$ is χ-critical.
- $K G(n, k)_{2}$: Schrijver graphs.

s-STABLE KNESER GRAPHS

$S \subset[n]$ is s-stable if $s \leq|i-j| \leq n-s$.

s-STABLE KNESER GRAPHS

$S \subset[n]$ is s-stable if $s \leq|i-j| \leq n-s$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is s-stable $\}$.

s-STABLE KNESER GRAPHS

$S \subset[n]$ is s-stable if $s \leq|i-j| \leq n-s$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is s-stable $\}$.
s-stable Kneser graphs [Alon et al., 2009] $K G(n, k)_{s}$: subgraph of $K G(n, k)$ induced by $[n]_{s}^{k}$.

s-STABLE KNESER GRAPHS

$S \subset[n]$ is s-stable if $s \leq|i-j| \leq n-s$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is s-stable $\}$.
s-stable Kneser graphs [Alon et al., 2009] $K G(n, k)_{s}$: subgraph of $K G(n, k)$ induced by $[n]_{s}^{k}$.

Figure: $K G(7,2)_{3}$

s-STABLE KNESER GRAPHS

$S \subset[n]$ is s-stable if $s \leq|i-j| \leq n-s$.
$[n]_{2}^{k}=\left\{S \in[n]^{k}: S\right.$ is s-stable $\}$.
s-stable Kneser graphs [Alon et al., 2009] $K G(n, k)_{s}$: subgraph of $K G(n, k)$ induced by $[n]_{s}^{k}$.

Figure: $K G(10,3)_{3}$

Chromatic number of s-Stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1)$.

Chromatic number of s-Stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1)$.
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011].

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1)$.
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011].
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1)$.
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011].
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].
- Conjecture [Meunier, 2011]: $\chi\left(K G(n, k)_{s}\right)=n-s(k-1)$.

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1) . s=2 \checkmark$
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011]. $n=k s+1 \checkmark$
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].
- Conjecture [Meunier, 2011]: $\chi\left(K G(n, k)_{s}\right)=n-s(k-1)$.

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1) . s=2 \checkmark$
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011]. $n=k s+1 \checkmark$
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].
- Conjecture [Meunier, 2011]: $\chi\left(K G(n, k)_{s}\right)=n-s(k-1)$.
- $s \geq 4, k \geq 2$, the conjecture is true for n large enough [Jonsson, 2012] [$n \geq \max \left\{\frac{s(s(k-1))+1}{2 q}, s k\right\}$ with $q=\left\lfloor\log _{2}\left(\frac{s}{2}\right)\right]$.

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1) . s=2 \checkmark$
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011]. $n=k s+1 \checkmark$
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].
- Conjecture [Meunier, 2011]: $\chi\left(K G(n, k)_{s}\right)=n-s(k-1)$.
- $s \geq 4, k \geq 2$, the conjecture is true for n large enough [Jonsson, 2012] [$n \geq \max \left\{\frac{s(s(k-1))+1}{2 q}, s k\right\}$ with $q=\left[\log _{2}\left(\frac{s}{2}\right)\right]$.
- $n=2 s+2, k=2 \checkmark\left(\chi\left(K G(2 s+2,2)_{s}\right)=s+2\right)[\mathrm{M}$. Valencia, T., 2017]

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1) . s=2 \checkmark$
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011]. $n=k s+1 \checkmark$
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].
- Conjecture [Meunier, 2011]: $\chi\left(K G(n, k)_{s}\right)=n-s(k-1)$.
- $s \geq 4, k \geq 2$, the conjecture is true for n large enough [Jonsson, 2012] [$n \geq \max \left\{\frac{s(s(k-1))+1}{2 q}, s k\right\}$ with $q=\left[\log _{2}\left(\frac{s}{2}\right)\right]$.
- $n=2 s+2, k=2 \checkmark(\chi(K G(2 s+2,2) s)=s+2)[\mathrm{M}$. Valencia, T., 2017]
- $n \leq 9, k=2, s=3$.
$n \leq 10, k=2, s=4$.
$n \leq 11, k=3, s=3$.
$n \leq 13, k=3, s=4$.
$n \leq 14, k=4, s=3$.
$n \leq 17, k=4, s=4$.

Chromatic number of s-stable Kneser graphs

- $\chi\left(K G(n, k)_{2}\right)=n-2 k+2=n-2(k-1) . s=2 \checkmark$
- $\chi\left(K G(k s+1, k)_{s}\right)=s+1$ [Meunier, 2011]. $n=k s+1 \checkmark$
- $\chi\left(K G(n, k)_{s}\right) \leq n-s(k-1)$ [Meunier, 2011].
- Conjecture [Meunier, 2011]: $\chi\left(K G(n, k)_{s}\right)=n-s(k-1)$.
- $s \geq 4, k \geq 2$, the conjecture is true for n large enough [Jonsson, 2012] $\left[n \geq \max \left\{\frac{s(s(k-1))+1}{2 q}, s k\right\}\right.$ with $q=\left[\log _{2}\left(\frac{s}{2}\right)\right]$.
- $n=2 s+2, k=2 \checkmark(\chi(K G(2 s+2,2) s)=s+2)[\mathrm{M}$. Valencia, T., 2017] and $K G(2 s+2,2)_{s}$ are not χ-critical.
- $n \leq 9, k=2, s=3$.
$n \leq 10, k=2, s=4$.
$n \leq 11, k=3, s=3$.
$n \leq 13, k=3, s=4$.
$n \leq 14, k=4, s=3$.
$n \leq 17, k=4, s=4$.

Graph homomorphism

A homomorphism from a graph G into a graph H, denoted by $G \rightarrow H$, is an edge-preserving map from $V(G)$ to $V(H)$.

Graph homomorphism

A homomorphism from a graph G into a graph H, denoted by $G \rightarrow H$, is an edge-preserving map from $V(G)$ to $V(H)$.

- $G \rightarrow K_{k} \Leftrightarrow G$ is k-coloreable.

Graph homomorphism

A homomorphism from a graph G into a graph H, denoted by $G \rightarrow H$, is an edge-preserving map from $V(G)$ to $V(H)$.

- $G \rightarrow K_{k} \Leftrightarrow G$ is k-coloreable.
- $\chi(G)=\min \left\{k: G \rightarrow K_{k}\right\}$.

$$
G \rightarrow K G(t, r)
$$

r-TUPLE COLORING

An r-tuple coloring of a graph G assigns a set of r colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint.
$G \rightarrow K G(t, r) \Leftrightarrow G$ has an r-tuple coloring with t colors.

r-TUPLE COLORING

An r-tuple coloring of a graph G assigns a set of r colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint.
$G \rightarrow K G(t, r) \Leftrightarrow G$ has an r-tuple coloring with t colors.
$\chi_{r}(G): r$-tuple cromatic number.

r-TUPLE COLORING

An r-tuple coloring of a graph G assigns a set of r colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint.
$G \rightarrow K G(t, r) \Leftrightarrow G$ has an r-tuple coloring with t colors.
$\chi_{r}(G): r$-tuple cromatic number.

r-TUPLE COLORING

An r-tuple coloring of a graph G assigns a set of r colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint.
$G \rightarrow K G(t, r) \Leftrightarrow G$ has an r-tuple coloring with t colors.
$\chi_{r}(G): r$-tuple cromatic number.

$\chi_{2}\left(C_{5}\right)=5$.

r-TUPLE COLORING

An r-tuple coloring of a graph G assigns a set of r colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint.
$G \rightarrow K G(t, r) \Leftrightarrow G$ has an r-tuple coloring with t colors.
$\chi_{r}(G): r$-tuple cromatic number.

- $\chi_{r}(K G(n, k))$?

r-TUPLE COLORING

An r-tuple coloring of a graph G assigns a set of r colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint.
$G \rightarrow K G(t, r) \Leftrightarrow G$ has an r-tuple coloring with t colors.
$\chi_{r}(G): r$-tuple cromatic number.

- $\chi_{r}(K G(n, k))$?
- Minimum t such that $K G(n, k) \rightarrow K G(t, r)$.

r-TUPLE COLORING OF KNESER GRAPHS

- $1 \leq r \leq k, \chi_{r}(K G(n, k))=n-2(k-r)$ [Stahl, 1976].
- $\chi_{r}(K G(2 k+1, k))=2 r+1+\left\lfloor\frac{r-1}{k}\right\rfloor[S t a h l, 1976]$.
- $\chi_{r k}(K G(n, k))=r n$ [Stahl, 1976].

r-TUPLE COLORING OF KNESER GRAPHS

- $1 \leq r \leq k, \chi_{r}(K G(n, k))=n-2(k-r)$ [Stahl, 1976].
- $\chi_{r}(K G(2 k+1, k))=2 r+1+\left\lfloor\frac{r-1}{k}\right\rfloor[S t a h l, 1976]$.
- $\chi_{r k}(K G(n, k))=r n$ [Stahl, 1976].

Conjecture [Stahl, 1976]: If $r=q k-p, q \geq 1,0 \leq p<k$, then $\chi_{r}(K G(n, k))=q n-2 p$.

r-TUPLE COLORING OF KNESER GRAPHS

- $1 \leq r \leq k, \chi_{r}(K G(n, k))=n-2(k-r)$ [Stahl, 1976].
- $\chi_{r}(K G(2 k+1, k))=2 r+1+\left\lfloor\frac{r-1}{k}\right\rfloor[S t a h l, 1976]$.
- $\chi_{r k}(K G(n, k))=r n$ [Stahl, 1976].

Conjecture [Stahl, 1976]: If $r=q k-p, q \geq 1,0 \leq p<k$, then $\chi_{r}(K G(n, k))=q n-2 p$.

- $k=2,3 \checkmark$ [Stahl, 1998].

r-TUPLE COLORING OF KNESER GRAPHS

- $1 \leq r \leq k, \chi_{r}(K G(n, k))=n-2(k-r)$ [Stahl, 1976].
- $\chi_{r}(K G(2 k+1, k))=2 r+1+\left\lfloor\frac{r-1}{k}\right\rfloor[S t a h l, 1976]$.
- $\chi_{r k}(K G(n, k))=r n$ [Stahl, 1976].

Conjecture [Stahl, 1976]: If $r=q k-p, q \geq 1,0 \leq p<k$, then $\chi_{r}(K G(n, k))=q n-2 p$.

- $k=2,3 \checkmark$ [Stahl, 1998].
- $n=10, k=4 \checkmark$ [Kincses et al., 2012].

r-TUPLE COLORING OF KNESER GRAPHS

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.

r-TUPLE COLORING OF KNESER GRAPHS

$$
\chi(G \square H)=\max \{\chi(G), \chi(H)\} .
$$

$$
\chi_{r}(G \square H)=\max \left\{\chi_{r}(G), \chi_{r}(H)\right\} ?
$$

r-TUPLE COLORING OF Kneser graphs

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.
$\chi_{r}(G \square H)=\max \left\{\chi_{r}(G), \chi_{r}(H)\right\} ?$

- If $\chi(G) \leq \chi(H)=\omega(H) \checkmark$ [Bonomo, Koch, Valencia, T., 2017].
- If G is hom-idempotent and H is a subgraph of $G \checkmark$ [B.K.V.T].
- If G is not bipartite, G has a shift and H is bipartite \checkmark [B.K.V.T]. [An automorphism ϕ of G is a shift if $u, \phi(u) \in E(G)$ for all vertex u.]

r-TUPLE COLORING OF KNESER GRAPHS

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.
$\chi_{r}(G \square H)=\max \left\{\chi_{r}(G), \chi_{r}(H)\right\} ?$

- If $\chi(G) \leq \chi(H)=\omega(H) \checkmark$ [Bonomo, Koch, Valencia, T., 2017].
- If G is hom-idempotent and H is a subgraph of $G \checkmark$ [B.K.V.T].
- If G is not bipartite, G has a shift and H is bipartite \checkmark [B.K.V.T]. [An automorphism ϕ of G is a shift if $u, \phi(u) \in E(G)$ for all vertex u.]
$n>2 k, K G(n, k) \square K G(n, k) \nrightarrow K G(n, k)$, [Larose et al., 1998]

r-TUPLE COLORING OF Kneser graphs

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.
$\chi_{r}(G \square H)=\max \left\{\chi_{r}(G), \chi_{r}(H)\right\}$? No.

- If $\chi(G) \leq \chi(H)=\omega(H) \checkmark$ [Bonomo, Koch, Valencia, T., 2017].
- If G is hom-idempotent and H is a subgraph of $G \checkmark$ [B.K.V.T].
- If G is not bipartite, G has a shift and H is bipartite \checkmark [B.K.V.T]. [An automorphism ϕ of G is a shift if $u, \phi(u) \in E(G)$ for all vertex u.]
$n>2 k, K G(n, k) \square K G(n, k) \nrightarrow K G(n, k)$, [Larose et al., 1998]
$\chi_{k}(K G(n, k) \square K G(n, k))>n$.

r-TUPLE COLORING OF Kneser graphs

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.
$\chi_{r}(G \square H)=\max \left\{\chi_{r}(G), \chi_{r}(H)\right\}$? No.

- If $\chi(G) \leq \chi(H)=\omega(H) \checkmark$ [Bonomo, Koch, Valencia, T., 2017].
- If G is hom-idempotent and H is a subgraph of $G \checkmark$ [B.K.V.T].
- If G is not bipartite, G has a shift and H is bipartite \checkmark [B.K.V.T]. [An automorphism ϕ of G is a shift if $u, \phi(u) \in E(G)$ for all vertex u.]
$n>2 k, K G(n, k) \square K G(n, k) \nrightarrow K G(n, k)$, [Larose et al., 1998]
$\chi_{k}(K G(n, k) \square K G(n, k))>n$.
$\chi_{2}\left(K G(2 s+4,2)^{2}\right)-\chi_{2}(K G(2 s+4,2))$ is not bounded [B.K.V.T.].

r-TUPLE COLORING OF KNESER GRAPHS

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.
$\chi_{r}(G \square H)=\max \left\{\chi_{r}(G), \chi_{r}(H)\right\}$? No.

- If $\chi(G) \leq \chi(H)=\omega(H) \checkmark$ [Bonomo, Koch, Valencia, T., 2017].
- If G is hom-idempotent and H is a subgraph of $G \checkmark$ [B.K.V.T].
- If G is not bipartite, G has a shift and H is bipartite \checkmark [B.K.V.T]. [An automorphism ϕ of G is a shift if $u, \phi(u) \in E(G)$ for all vertex u.]
$n>2 k, K G(n, k) \square K G(n, k) \nrightarrow K G(n, k)$, [Larose et al., 1998]
$\chi_{k}(K G(n, k) \square K G(n, k))>n$.
$\chi_{2}\left(K G(2 s+4,2)^{2}\right)-\chi_{2}(K G(2 s+4,2))$ is not bounded [B.K.V.T.].

Hom-idempotence of stable Kneser graphs

G is hom-idempotent if $G^{2}=G \square G \rightarrow G$.

Hom-idempotence of stable Kneser graphs

G is hom-idempotent if $G^{2}=G \square G \rightarrow G$.
G is weakly hom-idempotent if exist $n \in \mathbb{N}$ s.t. $G^{n+1} \rightarrow G^{n}$.

Hom-idempotence of stable Kneser graphs

G is hom-idempotent if $G^{2}=G \square G \rightarrow G$.
G is weakly hom-idempotent if exist $n \in \mathbb{N}$ s.t. $G^{n+1} \rightarrow G^{n}$.

- Kneser graphs are not weakly hom-idempotent graphs [Larose et al., 1998].

Hom-idempotence of stable Kneser graphs

 G is hom-idempotent if $G^{2}=G \square G \rightarrow G$.$G$ is weakly hom-idempotent if exist $n \in \mathbb{N}$ s.t. $G^{n+1} \rightarrow G^{n}$.

- Kneser graphs are not weakly hom-idempotent graphs [Larose et al., 1998].
- If $n \geq 2 k+2$ and $k \geq 2$, Schijver graphs are not weakly hom-idempotent graphs [Valencia, T., 2017].

Hom-idempotence of stable Kneser graphs

 G is hom-idempotent if $G^{2}=G \square G \rightarrow G$.$G$ is weakly hom-idempotent if exist $n \in \mathbb{N}$ s.t. $G^{n+1} \rightarrow G^{n}$.

- Kneser graphs are not weakly hom-idempotent graphs [Larose et al., 1998].
- If $n \geq 2 k+2$ and $k \geq 2$, Schijver graphs are not weakly hom-idempotent graphs [Valencia, T., 2017].
- Graphs $K G(2 s+2,2)_{s}$ are not hom-idempotent graphs [V., T., 2017].

Hom-idempotence of stable Kneser graphs

 G is hom-idempotent if $G^{2}=G \square G \rightarrow G$.$G$ is weakly hom-idempotent if exist $n \in \mathbb{N}$ s.t. $G^{n+1} \rightarrow G^{n}$.

- Kneser graphs are not weakly hom-idempotent graphs [Larose et al., 1998].
- If $n \geq 2 k+2$ and $k \geq 2$, Schijver graphs are not weakly hom-idempotent graphs [Valencia, T., 2017].
- Graphs $K G(2 s+2,2)_{s}$ are not hom-idempotent graphs [V., T., 2017].
- Graphs $K G(s k+1, k)_{s}$ are circulant graphs and so hom-idempotent graphs [V., T., 2017].

Hom-idempotence of stable Kneser graphs

- Graphs $K G(s k+1, k)_{s}$ are circulant graphs and so hom-idempotent graphs [V., T., 2017].

Hom-idempotence of stable Kneser graphs

- Graphs $K G(s k+1, k)_{s}$ are circulant graphs and so hom-idempotent graphs [V., T., 2017].

Figure: $K G(5,2)_{2}$

Hom-idempotence of stable Kneser graphs

- Graphs $K G(s k+1, k)_{s}$ are circulant graphs and so hom-idempotent graphs [V., T., 2017].

Figure: $K G(7,2)_{3}$

Hom-idempotence of stable Kneser graphs

- Graphs $K G(s k+1, k)_{s}$ are circulant graphs and so hom-idempotent graphs [V., T., 2017].

Figure: $K G(10,3)_{3}$

Automorphism of graphs

A bijective homomorphism from G to G is an automorphism.

AUTOMORPHISM OF GRAPHS

A bijective homomorphism from G to G is an automorphism.

Figure: C_{5}

AUTOMORPHISM OF GRAPHS

A bijective homomorphism from G to G is an automorphism.

Figure: Rotation

AUTOMORPHISM OF GRAPHS

A bijective homomorphism from G to G is an automorphism.

Figure: Reflexion

AUTOMORPHISM OF GRAPHS

A bijective homomorphism from G to G is an automorphism.

Figure: Reflexion

The automorphism group of $C_{n}, \operatorname{Aut}\left(C_{n}\right)$, is $\mathscr{D}_{2 n}$.

The automorphism group of Kneser graphs

ϕ rotation in [n].

The automorphism group of Kneser graphs

 ϕ rotation in [n].If $n=5$, e.g. $\phi(\{1,3\})=\{2,4\}, \phi(\{2,5\})=\{3,1\}$.

The automorphism group of Kneser graphs

ϕ rotation in $[n]$.
If $n=5$, e.g. $\phi(\{1,3\})=\{2,4\}, \phi(\{2,5\})=\{3,1\}$.

The automorphism group of Kneser graphs

ϕ rotation in $[n]$.
If $n=5$, e.g. $\phi(\{1,3\})=\{2,4\}, \phi(\{2,5\})=\{3,1\}$.

The automorphism group of Kneser graphs

 ϕ rotation in $[n]$.If $n=5$, e.g. $\phi(\{1,3\})=\{2,4\}, \phi(\{2,5\})=\{3,1\}$.

$\operatorname{Aut}(K G(n, k))$ is isomorphic to $\operatorname{Sym}(n)$.

The automorphism group of s-Stable Kneser GRAPHS

- The automorphism group of the Schrijver graph $\operatorname{Aut}\left(\operatorname{KG}(n, k)_{2}\right)$ is isomorphic to $\mathscr{D}_{2 n}$ [B. Braun, 2010].

The automorphism group of s-Stable Kneser GRAPHS

- The automorphism group of the Schrijver graph $\operatorname{Aut}\left(\operatorname{KG}(n, k)_{2}\right)$ is isomorphic to $\mathscr{D}_{2 n}$ [B. Braun, 2010].
- The automorphism group of the stable Kneser graph $\operatorname{Aut}\left(K G(n, k)_{s}\right)$ is isomorphic to $\mathscr{D}_{2 n}$ [T., 2017].

VERTEX-TRANSITIVITY

A graph G is said vertex-transitive if its automorphism group acts transitively on its vertex-set.

VERTEX-TRANSITIVITY

A graph G is said vertex-transitive if its automorphism group acts transitively on its vertex-set.

- Kneser graphs are vertex-transitive.

VERTEX-TRANSITIVITY

A graph G is said vertex-transitive if its automorphism group acts transitively on its vertex-set.

- Kneser graphs are vertex-transitive.
- Schrijver graphs are not vertex transitive in general.

VERTEX-TRANSITIVITY

A graph G is said vertex-transitive if its automorphism group acts transitively on its vertex-set.

- Kneser graphs are vertex-transitive.
- Schrijver graphs are not vertex transitive in general.

Figure: $K G(6,2)_{2}$

VERTEX-TRANSITIVITY

A graph G is said vertex-transitive if its automorphism group acts transitively on its vertex-set.

- Kneser graphs are vertex-transitive.
- Schrijver graphs are not vertex transitive in general.
- $K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$ [T., 2017].

PRoofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.

Proofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.
Vertex $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ s.t. $s_{i}<s_{i+1}, 1 \leq i \leq k-1$.

Proofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.
Vertex $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ s.t. $s_{i}<s_{i+1}, 1 \leq i \leq k-1$.
$\operatorname{Gaps} l_{i}(S)=s_{i+1}-s_{i}, 1 \leq i \leq k-1, l_{k}=s_{1}+n-s_{k}$

Proofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.
Vertex $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ s.t. $s_{i}<s_{i+1}, 1 \leq i \leq k-1$.
Gaps $l_{i}(S)=s_{i+1}-s_{i}, 1 \leq i \leq k-1, l_{k}=s_{1}+n-s_{k}$ automorphisms preserve the gaps.

Proofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.
Vertex $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ s.t. $s_{i}<s_{i+1}, 1 \leq i \leq k-1$.
$\operatorname{Gaps} l_{i}(S)=s_{i+1}-s_{i}, 1 \leq i \leq k-1, l_{k}=s_{1}+n-s_{k}$ automorphisms preserve the gaps.

- $n \geq s k+2$,

$$
\begin{aligned}
& S_{1}=\{1,1+s, 1+2 s, \ldots, 1+(k-1) s\}, l_{i}\left(S_{1}\right)=s, 1 \leq i \leq k-1, \\
& l_{k}\left(S_{1}\right) \geq s+2 .
\end{aligned}
$$

Proofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.
Vertex $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ s.t. $s_{i}<s_{i+1}, 1 \leq i \leq k-1$.
$\operatorname{Gaps} l_{i}(S)=s_{i+1}-s_{i}, 1 \leq i \leq k-1, l_{k}=s_{1}+n-s_{k}$ automorphisms preserve the gaps.

- $n \geq s k+2$,

$$
\begin{aligned}
& S_{1}=\{1,1+s, 1+2 s, \ldots, 1+(k-1) s\}, l_{i}\left(S_{1}\right)=s, 1 \leq i \leq k-1, \\
& l_{k}\left(S_{1}\right) \geq s+2 . \\
& S_{2}=\{1,2+s, 2+2 s, \ldots, 2+(k-1) s\}, l_{1}\left(S_{2}\right)=s+1 .
\end{aligned}
$$

Proofs

$K G(n, k)_{s}$ is vertex transitive if and only if $n=s k+1$.
Vertex $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ s.t. $s_{i}<s_{i+1}, 1 \leq i \leq k-1$.
$\operatorname{Gaps} l_{i}(S)=s_{i+1}-s_{i}, 1 \leq i \leq k-1, l_{k}=s_{1}+n-s_{k}$
automorphisms preserve the gaps.

- $n \geq s k+2$,

$$
\begin{aligned}
& S_{1}=\{1,1+s, 1+2 s, \ldots, 1+(k-1) s\}, l_{i}\left(S_{1}\right)=s, 1 \leq i \leq k-1, \\
& l_{k}\left(S_{1}\right) \geq s+2 \\
& S_{2}=\{1,2+s, 2+2 s, \ldots, 2+(k-1) s\}, l_{1}\left(S_{2}\right)=s+1 .
\end{aligned}
$$

- $n=s k+1$, exactly one gap is $s+1$ and the remaining gaps are equal to s.

Proofs

An automorphism ϕ of a graph G is called a shift of G if $\{u, \phi(u)\} \in E(G)$ for each $u \in V(G)$. In other words, a shift of G maps every vertex to one of its neighbors.

Proofs

An automorphism ϕ of a graph G is called a shift of G if $\{u, \phi(u)\} \in E(G)$ for each $u \in V(G)$. In other words, a shift of G maps every vertex to one of its neighbors.

- Let $n \geq(k+1) s-1$. Then, the only $2(s-1)$ shifts of the s-stable Kneser graph $\operatorname{KG}(n, k)_{s-\text { stab }}$ are the rotations σ^{i} with $i \in\{1, \ldots, s-1\} \cup\{n-s+1, \ldots, n-1\}$.

Proofs

An automorphism ϕ of a graph G is called a shift of G if $\{u, \phi(u)\} \in E(G)$ for each $u \in V(G)$. In other words, a shift of G maps every vertex to one of its neighbors.

- Let $n \geq(k+1) s-1$. Then, the only $2(s-1)$ shifts of the s-stable Kneser graph $\operatorname{KG}(n, k)_{s-\text { stab }}$ are the rotations σ^{i} with $i \in\{1, \ldots, s-1\} \cup\{n-s+1, \ldots, n-1\}$.
- The only two shifts of the 2-stable Kneser graph $K G(n, k)_{2}$ are the rotations σ^{1} and σ^{n-1}.

Proofs

- Let A be a group and S a subset of A that is closed under inverses and does not contain the identity. The Cayley gragh $\operatorname{Cay}(A, S)$ is the graph whose vertex set is A, two vertices u, v being joined by an edge if $u^{-1} v \in S$.

PROOFS

- Let A be a group and S a subset of A that is closed under inverses and does not contain the identity. The Cayley gragh $\operatorname{Cay}(A, S)$ is the graph whose vertex set is A, two vertices u, v being joined by an edge if $u^{-1} v \in S$.
- If H is a subgraph of G and $\phi: G \rightarrow H$ has the property that $\phi(u)=u$ for every vertex u of H, then ϕ is called a retraction and H is called a retract of G.

Proofs

- Let A be a group and S a subset of A that is closed under inverses and does not contain the identity. The Cayley gragh Cay (A, S) is the graph whose vertex set is A, two vertices u, v being joined by an edge if $u^{-1} v \in S$.
- If H is a subgraph of G and $\phi: G \rightarrow H$ has the property that $\phi(u)=u$ for every vertex u of H, then ϕ is called a retraction and H is called a retract of G.
- A graph G is called a core if it has no proper retracts. It is well known that any finite graph G is homomorphically equivalent to at least one core G^{\bullet}, as can be seen by selecting G^{\bullet} as a retract of G with a minimum number of vertices. In this way, G^{\bullet} is uniquely determined up to isomorphism, and it makes sense to think of it as the core of G.

Proofs

- Let A be a group and S a subset of A that is closed under inverses and does not contain the identity. The Cayley gragh Cay (A, S) is the graph whose vertex set is A, two vertices u, v being joined by an edge if $u^{-1} v \in S$.
- If H is a subgraph of G and $\phi: G \rightarrow H$ has the property that $\phi(u)=u$ for every vertex u of H, then ϕ is called a retraction and H is called a retract of G.
- A graph G is called a core if it has no proper retracts. It is well known that any finite graph G is homomorphically equivalent to at least one core G^{\bullet}, as can be seen by selecting G^{\bullet} as a retract of G with a minimum number of vertices. In this way, G^{\bullet} is uniquely determined up to isomorphism, and it makes sense to think of it as the core of G.
- Given a graph G, the set of all shifts of G is denoted by S_{G}.

PROOFS

- A graph G is hom-idempotent if and only if $G \leftrightarrow \operatorname{Cay}\left(\operatorname{Aut}\left(G^{\bullet}\right), S_{G^{\bullet}}\right)$ [Larose et al. 1998].

Proofs

- A graph G is hom-idempotent if and only if $G \leftrightarrow \operatorname{Cay}\left(\operatorname{Aut}\left(G^{\bullet}\right), S_{G^{\bullet}}\right)$ [Larose et al. 1998].
- Let G be a χ-critical graph. Then G is weakly hom-idempotent if and only if it is hom-idempotent [Larose et al. 1998].

Proofs

- A graph G is hom-idempotent if and only if $G \leftrightarrow \operatorname{Cay}\left(\operatorname{Aut}\left(G^{\bullet}\right), S_{G^{\bullet}}\right)$ [Larose et al. 1998].
- Let G be a χ-critical graph. Then G is weakly hom-idempotent if and only if it is hom-idempotent [Larose et al. 1998].
- Let $n \geq 2 k+2$ and let G denotes the graph $K G(n, k)_{2-s t a b}$. Then, $G \nrightarrow \operatorname{Cay}\left(\operatorname{Aut}(G), S_{G}\right)$, where S_{G} are the shifts of G.

PROOFS

- A graph G is hom-idempotent if and only if $G \leftrightarrow \operatorname{Cay}\left(\operatorname{Aut}\left(G^{\bullet}\right), S_{G^{\bullet}}\right)$ [Larose et al. 1998].
- Let G be a χ-critical graph. Then G is weakly hom-idempotent if and only if it is hom-idempotent [Larose et al. 1998].
- Let $n \geq 2 k+2$ and let G denotes the graph $K G(n, k)_{2-s t a b}$. Then, $G \nrightarrow \operatorname{Cay}\left(\operatorname{Aut}(G), S_{G}\right)$, where S_{G} are the shifts of G.
- For any $n \geq 2 k+2$, the 2-stable Kneser graphs $K G(n, k)_{2-s t a b}$ are not weakly hom-idempotent.

Hvala!

¡Muchas gracias!

REFERENCES

- N. Alon, L. Drewnowski, T. Łuczak, Stable Kneser hypergraphs and ideals in N with the Nikodým property, Proc Am Math Soc 137:467-471, 2009.
- B. Braun, Symmetries of the stable Kneser graphs, Advances in Applied Mathematics, 45:12-14, 2010.
- P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets. Quarterly Journal of Mathematics, 12:313-320, 1961.
- M. Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung, vol. 50, 1955, pp. 27.
- J. Kincses, G. Makay, M. Maróti, J. Osztényi, L. Zádori, A special case of Stahl conjecture, European Journal of Combinatorics 34:502-511, 2013.
- B. Larose, F. Laviolette, C. Tardif, On normal Cayley graphs and Hom-idempotent graphs, European Journal of Combinatorics, 19:867-881, 1998.
- L. Lovász, Kneser's conjecture, chromatic number and homotopy, Journal of Combinatorial Theory, Series A, 25:319-324, 1978.
- F. Meunier, The chromatic number of almost stable Kneser hypergraphs, Journal of Combinatorial Theory, Series A, 118:1820-1828, 2011.
- A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd., 26(3):454-461, 1978.

REFERENCES

10 S. Stahl, n-Tuple colorings and associated graphs, Journal of Combinatorial Theory, Series B, 20:185-203, 1976.
11 S. Stahl, The multichromatic numbers of some Kneser graphs, Discrete Mathematics, 185:287-291, 1998.

Cited papers

- F. Bonomo, I. Koch, P. Torres, M. Valencia-Pabon, k-tuple colorings of the cartesian product of graphs, Discrete Applied Mathematics, 2017.DOI: 10.1016/j.dam.2017.02.003
- P. Torres, The automorphism group of the s-stable Kneser graphs, Advances in Applied Mathematics 89:67-75, 2017
- P. Torres, M. Valencia-Pabon, Shifts of the Stable Kneser Graphs and Hom-Idempotence, European Journal of Combinatorics 62:50-57, 2017.

G	r	$\chi_{r}(G)$	$\chi_{r}(G \square G)=$	$\chi_{r}(G \square G) \geq$	$\chi_{r}(G \square G) \leq$
$K G(5,2)$	2	5	6	-	-
-	3	8	9	-	-
-	4	10	12	-	-
-	5	13	15	-	-
-	6	15	18	-	-
-	7	18	$?$	20	21
$K G(6,2)$	2	6	8	-	-
-	3	10	12	-	-
-	4	12	$?$	15	16
-	5	16	$?$	19	20
-	6	18	$?$	23	24
$K G(7,2)$	2	7	$?$	9	10
-	3	12	$?$	13	15
-	4	14	$?$	17	20
$K G(8,2)$	2	8	$?$	11	12
-	3	14	$?$	16	18
-	4	16	$?$	21	24

