Isolating highly connected induced subgraphs

Irena Penev ${ }^{1}$ Stéphan Thomassé ${ }^{2}$ Nicolas Trotignon ${ }^{3}$

January 8, 2018
UP FAMNIT
Koper, Slovenia

[^0]- All graphs are assumed to be finite and simple.
- All graphs are assumed to be finite and simple.

Definition

An induced subgraph of a graph G is any graph H s.t. $V(H) \subseteq V(G)$ and for all distinct $u, v \in V(H), u v \in E(H)$ iff $u v \in E(G)$.

an induced subgraph

not an induced subgraph

Definition

A cutset of a graph G is a (possibly empty) set $C \varsubsetneqq V(G)$ s.t. $G \backslash C$ is disconnected.

Definition

A cut-partition of a graph G is a partition (A, B, C) of $V(G)$ s.t. A and B are non-empty (C may possibly be empty), and A is anticomplete to B (i.e. there are no edges between A and B).

Definition

A cutset of a graph G is a (possibly empty) set $C \varsubsetneqq V(G)$ s.t. $G \backslash C$ is disconnected.

Definition

A cut-partition of a graph G is a partition (A, B, C) of $V(G)$ s.t. A and B are non-empty (C may possibly be empty), and A is anticomplete to B (i.e. there are no edges between A and B).

Definition

Let $k \in \mathbb{N}^{+}$. A graph is k-connected if it has $\geq k+1$ vertices and does not admit a cutset of size $\leq k-1$.

Theorem [Mader, 1972]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $d(G) \geq 4 k,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph.

$$
{ }^{\mathrm{a}} d(G)=\text { average degree of } G
$$

Theorem [Mader, 1972]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $d(G) \geq 4 k,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph.

$$
{ }^{\mathrm{a}} d(G)=\text { average degree of } G
$$

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t. $\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{a} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

$H-(k+1)$-connected $\quad\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{2} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

- Question: Is it possible to replace $\delta(G)$ with $d(G)$ in Theorem 1 (possibly by increasing the bound of $2 k^{2}-1$)?

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{2} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

- Question: Is it possible to replace $\delta(G)$ with $d(G)$ in Theorem 1 (possibly by increasing the bound of $2 k^{2}-1$)?
- Answer: No. (Not even for $k=1$.)

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{2} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

- Question: Is it possible to replace $\delta(G)$ with $d(G)$ in Theorem 1 (possibly by increasing the bound of $2 k^{2}-1$)?
- Answer: No. (Not even for $k=1$.)

Proposition

$\forall d \in \mathbb{N}^{+}$, there is a graph of average degree $\geq d$, all of whose 2-connected induced subgraphs have frontier of size $\geq d$.

Theorem [Sachs, 1963]

For all integers $d, g \geq 3$, there exists a d-regular graph of girth g.

Proposition

$\forall d \in \mathbb{N}^{+}$, there is a graph of average degree $\geq d$, all of whose 2-connected induced subgraphs have frontier of size $\geq d$.

Proof: Let $d \geq 3$, and let G_{0} be a $(2 d-2)$-regular graph with $\operatorname{girth}\left(G_{0}\right)=d$.

Theorem [Sachs, 1963]

For all integers $d, g \geq 3$, there exists a d-regular graph of girth g.

Proposition

$\forall d \in \mathbb{N}^{+}$, there is a graph of average degree $\geq d$, all of whose 2 -connected induced subgraphs have frontier of size $\geq d$.

Proof: Let $d \geq 3$, and let G_{0} be a $(2 d-2)$-regular graph with $\operatorname{girth}\left(G_{0}\right)=d$. Let G be obtained from G_{0} by adding a pendant edge at each vertex. Then $d(G)=\operatorname{girth}(G)=d$.

Theorem [Sachs, 1963]

For all integers $d, g \geq 3$, there exists a d-regular graph of girth g.

Proposition

$\forall d \in \mathbb{N}^{+}$, there is a graph of average degree $\geq d$, all of whose 2-connected induced subgraphs have frontier of size $\geq d$.

Proof: Let $d \geq 3$, and let G_{0} be a $(2 d-2)$-regular graph with $\operatorname{girth}\left(G_{0}\right)=d$. Let G be obtained from G_{0} by adding a pendant edge at each vertex. Then $d(G)=\operatorname{girth}(G)=d$.

For $d=3$:

Let H be a 2-connected induced subgraph of G. Then H is an induced subgraph of G_{0}; because of the pendant edges, $\partial_{G}(H)=V(H)$. Furthermore, H contains a cycle, and so $|V(H)| \geq \operatorname{girth}(G)=d$, and consequently, $\left|\partial_{G}(H)\right| \geq d$. Q.E.D.

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{2} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

- Question: Is it possible to obtain a linear (or at least subquadratic) bound for $\delta(G)$?

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{a} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

- Question: Is it possible to obtain a linear (or at least subquadratic) bound for $\delta(G)$?
- Answer: No.

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1,{ }^{a}$ then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)^{b}$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.
${ }^{a} \delta(G)=$ minimum degree of G
${ }^{b} \partial_{G}(H)=$ frontier of H, i.e. vertices of H with a neighbor in $V(G) \backslash V(H)$.

- Question: Is it possible to obtain a linear (or at least subquadratic) bound for $\delta(G)$?
- Answer: No.

Proposition

Let $k \in \mathbb{N}^{+}$. There exists a graph G with $\delta(G)=k^{2}+k-1$ s.t. all $(k+1)$-connected induced subgraphs H of G satisfy
$\partial_{G}(H)=V(H)$.

Proposition

Let $k \in \mathbb{N}^{+}$. There exists a graph G with $\delta(G)=k^{2}+k-1$ $\delta(G)=k^{2}$ s.t. all $(k+1)$-connected induced subgraphs H of G satisfy $\partial_{G}(H)=V(H)$.

Proposition

Let $k \in \mathbb{N}^{+}$. There exists a graph G with $\delta(G)=k^{2}+k-1$ $\delta(G)=k^{2}$ s.t. all $(k+1)$-connected induced subgraphs H of G satisfy $\partial_{G}(H)=V(H)$.

Proof:
G is k^{2}-regular.
$\Longrightarrow \delta(G)=k^{2}$
Let H be a
$(k+1)$-connected induced subgraph of G.
Then H lies entirely inside one copy of G_{0}, and $\delta(H) \geq k+1$.

$$
\Longrightarrow u_{1}, \ldots, u_{k} \notin V(H)
$$

$$
\Longrightarrow \partial_{G}(H)=V(H)
$$

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1$, then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

Theorem 1' \Rightarrow Theorem 1:

If (a) holds:	If (b) holds:
$H:=G$	$H:=G[A \cup C]$ is
$\partial_{G}(H)=\emptyset$	$(k+1)$-connected
	$\partial_{G}(H) \subseteq C$

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1$, then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1$, then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

> Theorem $1 \Rightarrow$ Theorem 1':
> Case 1: $V(G) \backslash V(H)=\emptyset$
> $\Longrightarrow G=H$

Theorem 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. If $\delta(G)>2 k^{2}-1$, then G contains a $(k+1)$-connected induced subgraph H s.t.
$\partial_{G}(H) \varsubsetneqq V(H)$ and $\left|\partial_{G}(H)\right| \leq 2 k^{2}-1$.

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

Theorem $1 \Rightarrow$ Theorem 1':
Case 2: $V(G) \backslash V(H) \neq \emptyset$

$$
\begin{aligned}
& A:=V(H) \backslash \partial_{G}(H) \\
& B:=V(G) \backslash V(H) \\
& C:=\partial_{G}(H)
\end{aligned}
$$

Theorem [Alon, Kleitman, Saks, Seymour, Thomassen, 1987]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+10 k^{2}+1,100 k^{3}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem [Alon, Kleitman, Saks, Seymour, Thomassen, 1987]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+10 k^{2}+1,100 k^{3}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem [Chudnovsky, P., Scott, Trotignon, 2013]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+2 k^{2}, 2 k^{2}+k\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem [Alon, Kleitman, Saks, Seymour, Thomassen, 1987]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+10 k^{2}+1,100 k^{3}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem [Chudnovsky, P., Scott, Trotignon, 2013]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+2 k^{2}, 2 k^{2}+k\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Proof (using Theorem 1'):

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Proof (using Theorem 1'): Let G be s.t. $\chi(G)>c+2 k^{2}-1$. We must exhibit a $(k+1)$-connected induced subgraph H of G s.t. $\chi(H)>c$.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Proof (using Theorem 1'): Let G be s.t. $\chi(G)>c+2 k^{2}-1$. We must exhibit a $(k+1)$-connected induced subgraph H of G s.t. $\chi(H)>c$.

We may assume that $\chi(G)=c+2 k^{2}$, and that G is vertex-critical (i.e. all proper induced subgraphs have chromatic number $\leq \chi(G)-1)$.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Proof (using Theorem 1'): Let G be s.t. $\chi(G)>c+2 k^{2}-1$. We must exhibit a $(k+1)$-connected induced subgraph H of G s.t. $\chi(H)>c$.

We may assume that $\chi(G)=c+2 k^{2}$, and that G is vertex-critical (i.e. all proper induced subgraphs have chromatic number $\leq \chi(G)-1)$.
$\Longrightarrow \delta(G) \geq \chi(G)-1=c+2 k^{2}-1 \geq 2 k^{2}$.
\Longrightarrow (c) from Theorem 1' is false.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Proof (using Theorem 1'): Let G be s.t. $\chi(G)>c+2 k^{2}-1$. We must exhibit a $(k+1)$-connected induced subgraph H of G s.t. $\chi(H)>c$.

We may assume that $\chi(G)=c+2 k^{2}$, and that G is vertex-critical (i.e. all proper induced subgraphs have chromatic number $\leq \chi(G)-1)$.
$\Longrightarrow \delta(G) \geq \chi(G)-1=c+2 k^{2}-1 \geq 2 k^{2}$.
$\Longrightarrow(c)$ from Theorem 1^{\prime} is false.
We may assume that G is not $(k+1)$-connected (otherwise, we set $H:=G$, and we are done). Thus, (a) from Theorem 1' is false.

Proof (cont.): Thus, (b) from Theorem 1' holds. Let (A, B, C) be as in (b) from Theorem 1', and set $H:=G[A \cup C]$. Then H is $(k+1)$-connected; we must show that $\chi(H)>c$.

Proof (cont.): Thus, (b) from Theorem 1' holds. Let (A, B, C) be as in (b) from Theorem 1 ', and set $H:=G[A \cup C]$. Then H is $(k+1)$-connected; we must show that $\chi(H)>c$.

Suppose otherwise, i.e. $\chi(H) \leq c$. $\Longrightarrow \chi(G[A]) \leq \chi(H) \leq c$.

Proof (cont.): Thus, (b) from Theorem 1' holds. Let (A, B, C) be as in (b) from Theorem 1 ', and set $H:=G[A \cup C]$. Then H is $(k+1)$-connected; we must show that $\chi(H)>c$.

Suppose otherwise, i.e. $\chi(H) \leq c$.
$\Longrightarrow \chi(G[A]) \leq \chi(H) \leq c$.
Since G is vertex-critical, $\chi(\underbrace{G \backslash A}_{=G[B \cup C]}) \leq \chi(G)-1=c+2 k^{2}-1$.

$$
\begin{aligned}
& \chi(G)=c+2 k^{2} \\
& \chi(G[A]) \leq c \\
& \chi(G[B \cup C]) \leq c+2 k^{2}-1
\end{aligned}
$$

$$
H=G\lfloor A \cup C\rfloor \text { is }(k+1) \text {-connected. }
$$

We properly color $G \backslash A=G[B \cup C]$ with $c+2 k^{2}-1$ colors.
At most $|C| \leq 2 k^{2}-1$ of those colors are used on C; consequently, at least c of our $c+2 k^{2}-1$ colors remain "unused" on C.

Use these c "unused" colors to properly color $G[A]$.
We now have a proper coloring of G that uses only $c+2 k^{2}-1$ colors, contrary to the fact that $\chi(G)=c+2 k^{2}$. Q.E.D.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem 2 [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+2 k-2,2 k^{2}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Corollary [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $c+2 k^{2}-1$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem 2 [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+2 k-2,2 k^{2}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

- Theorem 2 does not follow from Theorem 1' (equivalently: Theorem 1). It can, however, be derived form a lemma (Lemma 1) that we used to prove Theorem 1'.

Definition

Let $k \in \mathbb{N}^{+}$, and let G be a graph.
(1) for all $v \in V(G)$ and $Z \subseteq V(G) \backslash\{v\}$, ${ }^{a}$

$$
w_{Z}(v)= \begin{cases}1 & \text { if } \quad d_{Z}(v)=0 \\ d_{Z}(v) & \text { if } 1 \leq d_{Z}(v) \leq k \\ k & \text { if } \quad d_{Z}(v) \geq k+1\end{cases}
$$

(2) for all disjoint sets $Y, Z \subseteq V(G), w_{Z}(Y)=\sum_{v \in Y} w_{Z}(v)$. ${ }^{b}$

$$
\begin{aligned}
& { }^{a} d_{z}(v)=\text { number of neighbors that } v \text { has in } Z \\
& \stackrel{b}{\Longrightarrow}|Y| \leq w_{Z}(Y) \leq k|Y|
\end{aligned}
$$

$$
d_{Z}(v)=\left|N_{G}(v) \cap Z\right|
$$

Lemma 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is
$(k+1)$-connected and $w_{B}(C) \leq 2 k^{2}-1 ;{ }^{a}$
(c) G contains a vertex of degree at most $2 k^{2}-1$.
${ }^{a}$ Consequently, $|C| \leq w_{B}(C) \leq 2 k^{2}-1$.

$$
G[A \cup C] \text { is }(k+1) \text {-connected }
$$

Lemma 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is
$(k+1)$-connected and $w_{B}(C) \leq 2 k^{2}-1 ;{ }^{a}$
(c) G contains a vertex of degree at most $2 k^{2}-1$.
${ }^{\text {a }}$ Consequently, $|C| \leq w_{B}(C) \leq 2 k^{2}-1$.

$$
G[A \cup C] \text { is }(k+1) \text {-connected }
$$

- Clearly, Lemma 1 implies Theorem 1'.

Lemma 1 [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $w_{B}(C) \leq 2 k^{2}-1 ;^{a}$
(c) G contains a vertex of degree at most $2 k^{2}-1$.
${ }^{a}$ Consequently, $|C| \leq w_{B}(C) \leq 2 k^{2}-1$.
Proof: We assume that (a) and (c) are false (i.e. G is not $(k+1)$-connected, and $\left.\delta(G) \geq 2 k^{2}\right)$, and we prove (b).

Claim 1: G admits a cut-partition (A, B, C) s.t. $w_{B}(C) \leq 2 k^{2}-1$.

Claim 1: G admits a cut-partition (A, B, C) s.t. $w_{B}(C) \leq 2 k^{2}-1$.

Proof of Claim 1: Since G is not $(k+1)$-connected, either (1) $|V(G)| \leq k+1$, or
(2) G admits a cutset of size $\leq k$.

However,

$$
|V(G)| \geq \delta(G)+1 \geq 2 k^{2}+1 \geq k+2
$$

and so (1) is false. Thus, (2) is true.

Claim 1: G admits a cut-partition (A, B, C) s.t. $w_{B}(C) \leq 2 k^{2}-1$.

Proof of Claim 1: Since G is not $(k+1)$-connected, either
(1) $|V(G)| \leq k+1$, or
(2) G admits a cutset of size $\leq k$.

However,

$$
|V(G)| \geq \delta(G)+1 \geq 2 k^{2}+1 \geq k+2
$$

and so (1) is false. Thus, (2) is true.
Let (A, B, C) be a cut-partition of G s.t. $|C| \leq k$.

Then $w_{B}(C) \leq k|C| \leq k^{2} \leq 2 k^{2}-1$. This proves Claim 1 .

Proof (cont.): Let (A, B, C) be a cut-partition of G with $w_{B}(C) \leq 2 k^{2}-1$, and subject to that, chosen so that $A \cup C$ is minimal. ${ }^{4}$

${ }^{4}$ Thus, there does not exist a cut-partition $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ of G s.t. $w_{B^{\prime}}\left(C^{\prime}\right) \leq 2 k^{2}-1$ and $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$.

Proof (cont.): Let (A, B, C) be a cut-partition of G with $w_{B}(C) \leq 2 k^{2}-1$, and subject to that, chosen so that $A \cup C$ is minimal. ${ }^{4}$

We must show that $G[A \cup C]$ is $(k+1)$-connected, that is, that

- $|A \cup C| \geq k+2$, and
- $G[A \cup C]$ does not admit a cutset of size $\leq k$.

This will imply that (A, B, C) satisfies (b).

[^1]Proof (cont.):
Claim 2: $|A \cup C| \geq k+2$.
Proof of Claim 2: Suppose otherwise, i.e. $|A \cup C| \leq k+1$.

Fix $a \in A$. Then

$$
\operatorname{deg}_{G}(a) \leq|A \cup C|-1 \leq k<2 k^{2} \leq \delta(G)
$$

a contradiction. This proves Claim 2.

Proof (cont.):
Claim 2: $|A \cup C| \geq k+2$.
Proof of Claim 2: Suppose otherwise, i.e. $|A \cup C| \leq k+1$.

Fix $a \in A$. Then

$$
\operatorname{deg}_{G}(a) \leq|A \cup C|-1 \leq k<2 k^{2} \leq \delta(G)
$$

a contradiction. This proves Claim 2.

- It remains to show that $G[A \cup C]$ does not admit a cutset of size $\leq k$.

Proof (cont.):
Claim 2: $|A \cup C| \geq k+2$.
Proof of Claim 2: Suppose otherwise, i.e. $|A \cup C| \leq k+1$.

Fix $a \in A$. Then

$$
\operatorname{deg}_{G}(a) \leq|A \cup C|-1 \leq k<2 k^{2} \leq \delta(G)
$$

a contradiction. This proves Claim 2.

- It remains to show that $G[A \cup C]$ does not admit a cutset of size $\leq k$.
- Suppose otherwise, i.e. $G[A \cup C]$ admits a cutset of size $\leq k$.

Proof (cont.): Let $\left(S_{A}, S_{B}, S\right)$ be a cut-partition of $G[A \cup C]$ with $|S| \leq k$.

Proof (cont.): Let $\left(S_{A}, S_{B}, S\right)$ be a cut-partition of $G[A \cup C]$ with $|S| \leq k$.

Goal: Derive a contradiction by either

- exhibiting a vertex $v \in V(G)$ s.t. $\operatorname{deg}_{G}(v) \leq 2 k^{2}-1$ (contrary to the fact that $\delta(G) \geq 2 k^{2}$), or
- exhibiting a cut-partition $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ of G s.t. $w_{B^{\prime}}\left(C^{\prime}\right) \leq 2 k^{2}-1$ and $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$ (contrary to the minimality of $A \cup C)$.

$$
\begin{aligned}
& w_{B}(C) \leq \\
& 2 k^{2}-1
\end{aligned}
$$

Clearly, $w_{B}\left(C \cap S_{A}\right)+w_{B}\left(C \cap S_{B}\right) \leq w_{B}(C) \leq 2 k^{2}-1$.
\Longrightarrow Either $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$ or $w_{B}\left(C \cap S_{B}\right) \leq k^{2}-1$.

Clearly, $w_{B}\left(C \cap S_{A}\right)+w_{B}\left(C \cap S_{B}\right) \leq w_{B}(C) \leq 2 k^{2}-1$.
\Longrightarrow Either $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$ or $w_{B}\left(C \cap S_{B}\right) \leq k^{2}-1$. By symmetry, we may assume that $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$.

Clearly, $w_{B}\left(C \cap S_{A}\right)+w_{B}\left(C \cap S_{B}\right) \leq w_{B}(C) \leq 2 k^{2}-1$.
\Longrightarrow Either $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$ or $w_{B}\left(C \cap S_{B}\right) \leq k^{2}-1$.
By symmetry, we may assume that $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$.
Claim 3: $A \cap S_{A}=\emptyset$.

Clearly, $w_{B}\left(C \cap S_{A}\right)+w_{B}\left(C \cap S_{B}\right) \leq w_{B}(C) \leq 2 k^{2}-1$.
\Longrightarrow Either $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$ or $w_{B}\left(C \cap S_{B}\right) \leq k^{2}-1$. By symmetry, we may assume that $w_{B}\left(C \cap S_{A}\right) \leq k^{2}-1$.

Claim 3: $A \cap S_{A}=\emptyset$.
Proof of Claim 3: Suppose otherwise, i.e. $A \cap S_{A} \neq \emptyset$.

Proof (cont.): Proof of Claim 3 (cont.):

$\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ is a cut-partition of G with $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$, and

$$
\begin{aligned}
w_{B^{\prime}}\left(C^{\prime}\right) & =w_{B^{\prime}}(S)+w_{B^{\prime}}\left(C \cap S_{A}\right) \\
& \leq k|S|+w_{B}\left(C \cap S_{A}\right) \\
& \leq k^{2}+\left(k^{2}-1\right) \leq 2 k^{2}-1
\end{aligned}
$$

a contradiction to the minimality of $A \cup C$. This proves Claim 3 (i.e. $A \cap S_{A}=\emptyset$).

Proof (cont.): Since $S_{A} \neq \emptyset$, it follows that $C \cap S_{A} \neq \emptyset$.

Proof (cont.): Since $S_{A} \neq \emptyset$, it follows that $C \cap S_{A} \neq \emptyset$.

Claim 4: For all $v \in C \cap S_{A}, w_{B}(v)=k$. Consequently, $w_{B}\left(C \cap S_{A}\right)=k\left|C \cap S_{A}\right|$.

Proof (cont.): Since $S_{A} \neq \emptyset$, it follows that $C \cap S_{A} \neq \emptyset$.

Claim 4: For all $v \in C \cap S_{A}, w_{B}(v)=k$. Consequently, $w_{B}\left(C \cap S_{A}\right)=k\left|C \cap S_{A}\right|$.

Proof of Claim 4: Fix $v \in C \cap S_{A}$. By the definition of $w_{B}(v)$, it suffices to show that $d_{B}(v)>w_{B}(v)$.

Proof (cont.): Proof of Claim 4 (cont.): Recall: We need to show that $d_{B}(v)>w_{B}(v)$.

$$
\begin{aligned}
2 k^{2} \leq \delta(G) \leq \operatorname{deg}_{G}(v) & \leq\left|\left(C \cap S_{A}\right) \backslash\{v\}\right|+|S|+d_{B}(v) \\
& \leq w_{B}\left(\left(C \cap S_{A}\right) \backslash\{v\}\right)+|S|+d_{B}(v) \\
& \leq w_{B}\left(C \cap S_{A}\right)-w_{B}(v)+|S|+d_{B}(v) \\
& \leq\left(k^{2}-1\right)-w_{B}(v)+k+d_{B}(v) .
\end{aligned}
$$

Proof (cont.): Proof of Claim 4 (cont.): Recall: We need to show that $d_{B}(v)>w_{B}(v)$.

$$
\begin{aligned}
& w_{B}(C) \leq \\
& 2 k^{2}-1
\end{aligned}
$$

$$
\begin{array}{l:l}
& \begin{array}{l}
w_{B}\left(C \cap S_{A}\right) \\
\leq k^{2}-1
\end{array}
\end{array}
$$

$$
S_{B}=\emptyset \begin{array}{|c|c|}
\cline { 2 - 2 } & A \cap S_{B} \\
& C \cap S_{B} \\
\hline
\end{array}
$$

$\Longrightarrow 2 k^{2} \leq\left(k^{2}-1\right)-w_{B}(v)+k+d_{B}(v)$

Proof (cont.): Proof of Claim 4 (cont.): Recall: We need to show that $d_{B}(v)>w_{B}(v)$.

$\Longrightarrow 2 k^{2} \leq\left(k^{2}-1\right)-w_{B}(v)+k+d_{B}(v)$
$\Longrightarrow d_{B}(v) \geq w_{B}(v)+k^{2}-k+1>w_{B}(v)$
This proves Claim 4 (in particular, $w_{B}\left(C \cap S_{A}\right)=k\left|C \cap S_{A}\right|$).

Proof (cont.):

Claim 5: $A \cap S_{B} \neq \emptyset$.
Proof of Claim 5:

$$
\begin{aligned}
\left|C \backslash S_{A}\right| & \leq w_{B}\left(C \backslash S_{A}\right) \\
& \leq w_{B}(C)-w_{B}\left(C \cap S_{A}\right) \\
& \leq\left(2 k^{2}-1\right)-k\left|C \cap S_{A}\right| \\
|C| & \leq\left|C \backslash S_{A}\right|+\left|C \cap S_{A}\right| \\
& \leq\left(2 k^{2}-1\right)-(k-1)\left|C \cap S_{A}\right|
\end{aligned}
$$

Proof (cont.): Proof of Claim 5 (cont.): Recall that $|C| \leq\left(2 k^{2}-1\right)-(k-1)\left|C \cap S_{A}\right|$.

$\underset{2 k^{2}-1}{w_{B}(C)} \leq$
$w_{B}\left(C \cap S_{A}\right)$

B
$w_{B}\left(C \cap S_{A}\right)$
$=k\left|C \cap S_{A}\right|$

Proof (cont.): Proof of Claim 5 (cont.): Recall that $|C| \leq\left(2 k^{2}-1\right)-(k-1)\left|C \cap S_{A}\right|$.
Recall: We need to show that $A \cap S_{B} \neq \emptyset$.

$\underset{2 k^{2}-1}{w_{B}(C)} \leq$
$w_{B}\left(C \cap S_{A}\right)$
$\leq k^{2}-1$

B
$w_{B}\left(C \cap S_{A}\right)$
$=k\left|C \cap S_{A}\right|$

Proof (cont.): Proof of Claim 5 (cont.): Recall that $|C| \leq\left(2 k^{2}-1\right)-(k-1)\left|C \cap S_{A}\right|$.
Recall: We need to show that $A \cap S_{B} \neq \emptyset$. Suppose otherwise, i.e. $A \cap S_{B}=\emptyset$. Fix $a \in A(\Longrightarrow a \in A \cap S)$.

$$
\begin{aligned}
\operatorname{deg}_{G}(a) & \leq|(S \cup C) \backslash\{a\}| \leq|S \backslash\{a\}|+|C| \\
& \leq(k-1)+\left(2 k^{2}-1\right)-(k-1)\left|C \cap S_{A}\right| \\
& =\left(2 k^{2}-1\right)-(k-1)\left(\left|C \cap S_{A}\right|-1\right) \\
& \leq 2 k^{2}-1<\delta(G),
\end{aligned}
$$

a contradiction. This proves Claim 5 (i.e. $A \cap S_{B} \neq \emptyset$).

Proof (cont.):

Proof (cont.):

Our goal is to show that $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ contradicts the choice of (A, B, C).

Proof (cont.):

Our goal is to show that $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ contradicts the choice of (A, B, C).
For this, we need to show that:
(1) $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$;

- This follows from the fact that $C \cap S_{A} \neq \emptyset$

Proof (cont.):

Our goal is to show that $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ contradicts the choice of (A, B, C).
For this, we need to show that:
(1) $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$;

- This follows from the fact that $C \cap S_{A} \neq \emptyset$
(2) $w_{B^{\prime}}\left(C^{\prime}\right) \leq 2 k^{2}-1$.

Proof (cont.):

Our goal is to show that $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ contradicts the choice of (A, B, C).
For this, we need to show that:
(1) $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$;

- This follows from the fact that $C \cap S_{A} \neq \emptyset$
(2) $w_{B^{\prime}}\left(C^{\prime}\right) \leq 2 k^{2}-1$.
- Since $w_{B}(C) \leq 2 k^{2}-1$, it suffices to show that $w_{B^{\prime}}\left(C^{\prime}\right) \leq w_{B}(C)$.

Proof (cont.):

Claim 6: $w_{B^{\prime}}\left(C^{\prime}\right) \leq w_{B}(C)$.

Proof (cont.):

Claim 6: $w_{B^{\prime}}\left(C^{\prime}\right) \leq w_{B}(C)$.
Proof of Claim 6: When we "move" from $w_{B}(C)$ to $w_{B^{\prime}}\left(C^{\prime}\right)$:

- we "lose" $w_{B}\left(C \cap S_{A}\right)=k\left|C \cap S_{A}\right|$, and
- we "gain" $\leq w_{S_{A}}(S)=w_{C \cap S_{A}}(S) \leq|S|\left|C \cap S_{A}\right| \leq k\left|C \cap S_{A}\right|$.

Thus, $w_{B^{\prime}}\left(C^{\prime}\right) \leq w_{B}(C)$. This proves Claim 6. Q.E.D.

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

- For $k=2$, the optimal bound is 5 (rather than $2 k^{2}-1=7$).

Theorem 1' [P., Thomassé, Trotignon, 2016]

Let $k \in \mathbb{N}^{+}$, and let G be a graph. Then at least one of the following holds:
(a) G is $(k+1)$-connected;
(b) G admits a cut-partition (A, B, C) s.t. $G[A \cup C]$ is $(k+1)$-connected and $|C| \leq 2 k^{2}-1$;
(c) G contains a vertex of degree at most $2 k^{2}-1$.

- For $k=2$, the optimal bound is 5 (rather than $2 k^{2}-1=7$).
- The proof is completely different from that of Theorem 1 ', and it does not (seem to) generalize to higher values of k.

Theorem [Alon, Kleitman, Saks, Seymour, Thomassen, 1987]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+10 k^{2}+1,100 k^{3}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem [Chudnovsky, P., Scott, Trotignon, 2013]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+2 k^{2}, 2 k^{2}+k\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

Theorem 2 [P., Thomassé, Trotignon, 2016]

Let $k, c \in \mathbb{N}^{+}$. Then every graph of chromatic number greater than $\max \left\{c+2 k-2,2 k^{2}\right\}$ has a $(k+1)$-connected induced subgraph of chromatic number greater than c.

That's all.

Thanks for listening!
I. Penev, S. Thomassé, N. Tortignon, "Isolating highly connected induced subgraphs", SIAM Journal on Discrete Mathematics, 30(1) (2016), 592-619.
arXiv:1406.1671

[^0]: ${ }^{1}$ University of Leeds, School of Computing. This work was conducted at LIP, ENS de Lyon.
 ${ }^{2}$ LIP, ENS de Lyon.
 ${ }^{3}$ LIP, ENS de Lyon.

[^1]: ${ }^{4}$ Thus, there does not exist a cut-partition $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ of G s.t. $w_{B^{\prime}}\left(C^{\prime}\right) \leq 2 k^{2}-1$ and $A^{\prime} \cup C^{\prime} \varsubsetneqq A \cup C$.

