Counterexamples to Orlin's conjecture on equistable graphs

Martin Milanič

UP IAM and UP FAMNIT, University of Primorska

Based on joint work with

Stéphan Thomassé, ENS Lyon Nicolas Trotignon, ENS Lyon

Raziskovalni matematični seminar, FAMNIT, 24. marec 2014

Graphs and stable sets

- G = (V, E) a finite simple undirected graph
- stable (independent) set: a subset S ⊆ V of pairwise non-adjacent vertices
- a stable set is maximal if it is not contained in any other stable set

Definition

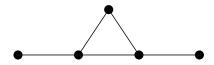
A graph G = (V, E) is **equistable** if there exists a function $w : V \to \mathbb{N}$ and a positive integer *t* such that $\forall S \subseteq V$:

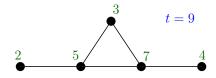
S is a maximal stable set in $G \Leftrightarrow w(S) = \sum_{v \in S} w(v) = t$.

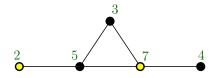
Equivalently:

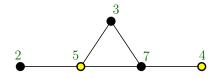
There exists a function $\varphi : V \to \mathbb{R}_+$ such that $\forall S \subseteq V$:

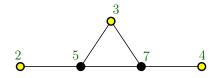
S is a maximal stable set in $G \Leftrightarrow \varphi(S) = \sum_{v \in S} \varphi(v) = 1$.



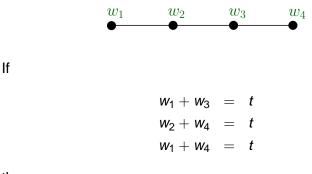








The following graph is not equistable:



then

$$W_2 + W_3 = t$$
.

Equistable graphs: motivation

- threshold graphs (Chvátal-Hammer 1977): $\exists w, t \text{ s.t. } S \subseteq V \text{ stable } \Leftrightarrow w(S) \leq t$
- equistable graphs (Payan 1980): $\exists w, t \text{ s.t. } S \subseteq V \text{ maximal stable} \Leftrightarrow w(S) = t$

Equistable graphs generalize:

- threshold graphs (Payan, 1980);
- cographs (graphs without an induced 3-edge path) (Mahadev-Peled-Sun, 1994).

Equistable graphs: state of the art

No combinatorial characterization of equistable graphs is known.

Combinatorial characterizations of equistable graphs are known for several graph classes:

- chordal graphs (Peled-Rotics 2003),
- distance-hereditary graphs (Korach-Peled-Rotics 2008),
- outerplanar graphs (Mahadev-Peled-Sun 1994),
- series-parallel graphs (Korach-Peled 2003),
- Iine graphs (Levit-M 2014),
- very well-covered graphs (Levit-M 2014),
- simplicial graphs (Levit-M 2014),
- various product graphs (Miklavič-M 2011),
- AT-free graphs (Kloks et al. 2003),
- EPT graphs (Alcón-Gutierrez-Kovács-M-Rizzi 2014+).

The computational complexity status of recognizing equistable graphs is open.

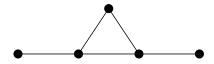
Definition

A graph G = (V, E) is a **general partition graph** if there exists a finite set U and an assignment of nonempty subsets $U_x \subseteq U$ to vertices of V such that

- $xy \in E$ if and only if $U_x \cap U_y \neq \emptyset$, and
- for every maximal stable set S in G, the set {U_x : x ∈ S} forms a partition of U.

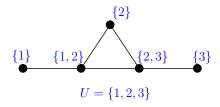
General partition graphs: example

The following graph is a general partition graph:



General partition graphs: example

The following graph is a general partition graph:



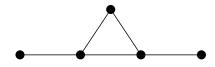
Theorem (McAvaney-Robertson-DeTemple, 1993)

For every graph G, the following are equivalent:

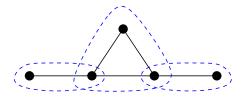
- G is a general partition graph,
- every edge of G is contained in a strong clique.

strong clique = a clique intersecting all maximal stable sets

The following graph is a general partition graph (every edge is contained in a strong clique):



The following graph is a general partition graph (every edge is contained in a strong clique):



The following graph is not a general partition graph (there exists an edge not contained in any strong clique):

The following graph is not a general partition graph (there exists an edge not contained in any strong clique):

The following inclusion relations hold:

equistable graphs ∪ strongly equistable graphs ∪ general partition graphs Let S(G) denotes the set of all maximal stable set of a graph *G*, and T(G) the set of all other non-empty subsets of V(G).

Definition

```
A graph G = (V, E) is strongly equistable if
for every T \in \mathcal{T}(G) and every \gamma \leq 1
there exists a function \varphi : V \to \mathbb{R}_+ such that
\varphi(S) = 1 for all S \in S(G)
and
\varphi(T) \neq \gamma.
```

General partition graphs are strongly equistable

Theorem (Jim Orlin, 2009)

Every general partition graph is equistable.

Theorem (Mahadev-Peled-Sun, 1994)

Every equistable graph with a strong clique is strongly equistable.

Theorem (McAvaney-Robertson-DeTemple, 1993)

G is a general partition graph if and only if every edge of G is contained in a strong clique.

Corollary

Every general partition graph is strongly equistable.

Inclusion relations among these classes

equistable graphs ∪I strongly equistable graphs ∪I general partition graphs

Conjecture (Mahadev-Peled-Sun, 1994)

Every equistable graph is strongly equistable.

Conjecture (Jim Orlin, 2009)

Every equistable graph is a general partition graph.

Conjecture (Miklavič-M, 2011)

Every equistable graph contains a strong clique.

Orlin's conjecture holds within the following graph classes:

- chordal graphs,
- graphs obtained from triangle-free graphs by gluing chordal graphs along edges,
- outerplanar graphs,
- series-parallel graphs,
- Iine graphs,
- EPT graphs,
- very well-covered graphs,
- simplicial graphs,
- AT-free graphs,
- certain product graphs.

We will show that Orlin's conjecture fails for complements of line graphs.

Recall:

- The complement of a graph G is the graph G with vertex set V(G) in which two distinct vertices are adjacent if and only if they are non-adjacent in G.
- A graph G is the **line graph** of a graph H, written G = L(H), if V(G) = E(H)

and two distinct edges of H are adjacent as vertices of G if they have an endpoint in common.

• Given two graphs *G* and *H*, we say that a graph *G* is *H*-free if no induced subgraph of *G* is isomorphic to *H*.

We will construct complements of line graphs of triangle-free graphs that are equistable but are not general partition.

We must address two questions:

When is $\overline{L(H)}$ (not) general partition? When is $\overline{L(H)}$ equistable?

Recall: general partition \iff every edge is contained in a strong clique

Observation

Given a graph G = (V, E), a subset $S \subseteq V$ is a strong clique in \overline{G} if and only if S is a strong stable set in G (that is, a stable set intersecting all maximal cliques).

Observation

Let G = L(H). Then:

 A set C ⊆ E(H) is a maximal clique in G if and only if C is a maximal set in the family of triangles and stars of H.
 A triangle is (the edge set of) a subgraph of G isomorphic to K₃.

A star is the set of all edges incident with a vertex.

• maximal stable sets in G = maximal matchings in H

Suppose in addition that H is triangle-free and of minimum degree at least 2. Then:

- maximal cliques in G = stars of H.
- strong stable sets in G
 - = matchings in H intersecting all stars
 - = perfect matchings in H

Building counterexamples

From now on, let H be a triangle-free graph of minimum degree at least 2.

Observation

Every edge of $\overline{L(H)}$ is contained in a strong clique \iff every non-edge of L(H) is contained in a strong stable set \iff every pair of disjoint edges in H is contained in a perfect matching \iff

H is 2-extendable

In a paper published in 1980, Plummer defined a graph to be k-extendable if it contains a matching of size k and every matching of size k is contained in a perfect matching.

Therefore, $\overline{L(H)}$ is not general partition if and only if *H* is not 2-extendable.

We will construct examples without a perfect matching (clearly such graphs are not 2-extendable).

Now, let us turn to the second question:

When is L(H) equistable?

Let *H* be a triangle-free graph of minimum degree at least 2, and let $F \subseteq E(H)$.

Then:

F is a maximal stable set in $\overline{L(H)}$

 \iff

F is a maximal clique in L(H)

 \iff

F is a maximal star in H

 \iff

F is a star in H

Proposition

The graph $\overline{L(H)}$ is equistable if and only if H is equistarable.

Definition

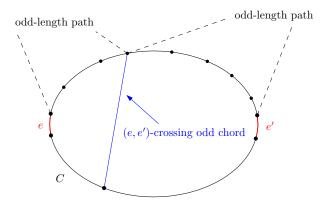
A graph G = (V, E) with at least one edge is **equistarable** if there exists a mapping $\varphi : E \to \mathbb{R}_+$ such that $\forall F \subseteq E$: F is a maximal star in $G \Leftrightarrow \varphi(F) = 1$.

To describe a family of equistarable graphs, we need two more definitions.

Even and odd chords

C: odd cycle in a graph *e*, *e*': disjoint edges in *C*

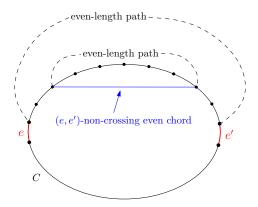
(e, e')-crossing odd chord of C:



Even and odd chords

C: odd cycle in a graph *e*, *e*': disjoint edges in *C*

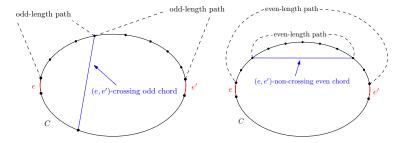
(e, e')-non-crossing even chord of C:



Bad graphs

Definition

A triangle-free graph *G* with |V(G)| odd is said to be **bad** if *G* has a Hamiltonian cycle *C* such that for every two disjoint edges $e, e' \in E(C)$, *G* contains either an (e, e')-crossing odd chord of *C*, or a (e, e')-non-crossing even chord of *C*.



Bad graphs

Definition

A triangle-free graph *G* with |V(G)| odd is said to be **bad** if *G* has a Hamiltonian cycle *C* such that for every two disjoint edges $e, e' \in E(C)$, *G* contains either an (e, e')-crossing odd chord of *C*, or a (e, e')-non-crossing even chord of *C*.

Theorem

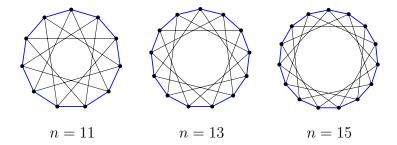
Every bad graph is equistarable.

Corollary

If G is a bad graph, then $\overline{L(G)}$ is an equistable graph without a strong clique. In particular, $\overline{L(G)}$ is a counterexample to the conjecture of Orlin and even to the (weaker) conjecture of Miklavič-M.

Examples of bad graphs: circulants

For every odd $n \ge 11$, the circulant $C_n(\{\pm 1, \pm 4\})$ is bad.



Theorem

Every bad graph is equistarable.

We construct an equistarable weight function φ of *G* in two steps.

Step 1:

- $F = E(G) \setminus C = \{f_1, \ldots, f_r\}$
- Int e ∈ (0, 1/(3r))
- let α₁,..., α_r ∈ (0, ε) be positive real numbers, algebraically independent over Q, that is, if ∑^r_{i=1} q_iα_i = 0 where q_i ∈ Q for all i ∈ {1,...,r}, then q₁ = ... = q_r = 0.

We set $\varphi(f_i) = \alpha_i$ for all $i \in \{1, \ldots, r\}$.

Proof sketch of the main theorem

Step 2:

The function φ should satisfy linear constraints of the form

 $\sum_{e \in E(v)} \varphi(e) = 1$

for every vertex $v \in V(G)$.

Substituting into this system of equations the already fixed values

$$\varphi(f_i) = \alpha_i$$

we obtain a linear system with *n* variables and *n* equations.

Since the cycle is odd, the coefficient matrix is of determinant 2, and the system has a unique solution β (which can be explicitly computed).

We set $\varphi(e) = \beta_e$ for all $e \in E(C)$.

It remains to show that φ is an equistarable weight function of *G*, that is, that:

- $\varphi(e) \ge 0$ for all $e \in E(G)$.
- For every star $E' \subseteq E(G)$, we have $\varphi(E') = 1$.
- Every set $E' \subseteq E(G)$ such that $\varphi(E') = 1$ is a star.

Recall: since we are in the case of minimum degree at least 2, every star is maximal

Proof sketch of the main theorem

- By construction, we have $\varphi(f) > 0$ for all $f \in F$.
- As ε → 0, we have α_i → 0 for all i.
 Explicit formulas for the β_e's imply that β_e → 1/2 for all e ∈ E(C).
- Since the β_e's are continuous functions of the α_i's, choosing ε small enough guarantees that 1/3 < β_e < 2/3 for all e ∈ E(C).
- By construction, for every star E' ⊆ E(G), we have φ(E') = 1.

Proof sketch of the main theorem

It remains to prove that every set $E' \subseteq E(G)$ such that $\varphi(E') = 1$ is a star.

- |E' ∩ E(C)| = 2, otherwise the weight is either too small or too large.
- If the two edges e, e' in E' ∩ E(C) share a common endpoint, say v, then the algebraic independence of the α_i's implies that E' is a star rooted at v.

If the two edges are disjoint then we derive a contradiction using the fact that G is bad:
 G contains either an (e, e')-crossing odd chord of C, or an (e, e')-non-crossing even chord of C.
 In either case, a contradiction can be derived.

Theorem

Every bad graph is equistarable.

Corollary

If G is a bad graph, then $\overline{L(G)}$ is an equistable graph without a strong clique. In particular, $\overline{L(G)}$ is not a general partition graph.

This disproves two conjectures:

Conjecture (Jim Orlin, 2009)

Every equistable graph is a general partition graph.

Conjecture (Miklavič-M, 2011)

Every equistable graph contains a strong clique.

Complements of line graphs of bipartite graphs

What about complements of line graphs of bipartite graphs?

Is there an equistarable bipartite graph H of minimum degree at least 2 that is not 2-extendable?

- Every equistarable weighting on the edges of a bipartite graph defines a **doubly stochastic matrix** (a matrix with non-negative entries, each column sum 1, and each row sum 1).
- It follows that equistarable bipartite graphs are balanced (thus, they cannot have odd order).
- The Birkhoff-von Neumann theorem states that every doubly shochastic matrix is a convex combination of permutation matrices.
- It follows that every edge of an equistarable bipartite graph belongs to a perfect matching, that is, the graph is 1-extendable.

Can our approach be modified to work for bipartite graphs?

A suitable replacement for the condition requiring the existence of chords with respect to a Hamiltonian cycle is needed.

Perhaps interpreting the problem in the language of doubly stochastic matrices could give some needed insight.

The following questions remain open:

Is there an equistarable bipartite graph H of minimum degree at least 2 such that H is not 2-extendable?

Does Orlin's conjecture hold for complements of line graphs of bipartite graphs? For perfect graphs?

Determine the complexity of recognizing equistable graphs.

Conjecture (Mahadev-Peled-Sun, 1994)

Every equistable graph is strongly equistable.

Thank you!