Solvable regular covering projections of graphs

Rok Požar
University of Primorska

Mathematical Research Seminar
UP FAMNIT
November 3, 2014

Graph covers

Graph covers

Regular coverings of connected graphs

a surjective mapping $p: \tilde{X} \rightarrow X$ s.t.
fibres $p^{-1}(v)=$ orbits of a semiregular subgroup $\mathrm{CT}_{\rho} \leq \operatorname{Aut}(\tilde{X})$

Distinguishing covers one from another

Distinguishing covers one from another

Isomorphism of regular coverings

$$
\begin{array}{rl}
\tilde{X} \xrightarrow[\mathrm{~g}]{ } & \tilde{X}^{\prime} \\
\rho \downarrow & \\
X \xrightarrow[g]{ } & \downarrow_{p^{\prime}} \\
X & X
\end{array}
$$

Distinguishing covers one from another

Isomorphism of regular coverings

$$
\begin{array}{rl}
\tilde{X} \xrightarrow[\mathrm{~g}]{\longrightarrow} & \tilde{X}^{\prime} \\
p \downarrow & \\
X \xrightarrow[g]{ } & \downarrow^{\prime} \\
X & X
\end{array}
$$

In particular, $g=\mathrm{id} \Rightarrow p$ and p^{\prime} are equivalent.

Covers, combinatorially

Covers, combinatorially

The derived graph

$$
\text { let } \zeta: A(X) \rightarrow \Gamma \text { s.t. } \zeta(v, u)=(\zeta(u, v))^{-1} \text { for }(u, v) \in A(X)
$$

Covers, combinatorially

The derived graph

$$
\text { let } \zeta: A(X) \rightarrow \Gamma \text { s.t. } \zeta(v, u)=(\zeta(u, v))^{-1} \text { for }(u, v) \in A(X)
$$

graph $X \times{ }_{\zeta}$ Г:
vertex set $V(X) \times \Gamma$,
$(u, a) \sim(v, a \cdot \zeta(u, v))$ for $u \sim v$ in X

$$
u \quad \zeta(u, v) \quad v
$$

Covers, combinatorially

The derived graph
let $\zeta: A(X) \rightarrow \Gamma$ s.t. $\zeta(v, u)=(\zeta(u, v))^{-1}$ for $(u, v) \in A(X)$
graph $X \times{ }_{\zeta} \Gamma$:
vertex set $V(X) \times \Gamma$,
$(u, a) \sim(v, a \cdot \zeta(u, v))$ for $u \sim v$ in X

$$
u \quad \zeta v
$$

The projection $p_{\zeta}: X{ }_{\zeta} \Gamma \rightarrow X$ onto the first coordinate
regular covering projection

Covers, combinatorially

The derived graph
let $\zeta: A(X) \rightarrow \Gamma$ s.t. $\zeta(v, u)=(\zeta(u, v))^{-1}$ for $(u, v) \in A(X)$
graph $X \times{ }_{\zeta} \Gamma$:
vertex set $V(X) \times \Gamma$,
$(u, a) \sim(v, a \cdot \zeta(u, v))$ for $u \sim v$ in X

$$
u \quad{ }^{\zeta(u, v)} v
$$

The projection $p_{\zeta}: X \times_{\zeta} \Gamma \rightarrow X$ onto the first coordinate regular covering projection

Regular covering projection $p: \tilde{X} \rightarrow X$
reconstructed by voltages $\Gamma \cong \mathrm{CT}_{p}$

Symmetries of covering graph vs. base graph

Symmetries of covering graph vs. base graph

Lifting automorphisms along regular covering projections

Symmetries of covering graph vs. base graph

Lifting automorphisms along regular covering projections

all elements of $G \leq \operatorname{Aut}(X)$ lift
G-admissible regular cover

Symmetries of covering graph vs. base graph

Lifting automorphisms along regular covering projections

all elements of $G \leq \operatorname{Aut}(X)$ lift
G-admissible regular cover

Applications

classification of particular classes of graphs and maps on surfaces, counting the number of graphs in certain families,
constructing infinite families or produce catalogues of graphs with prescribed degree of symmetry up to a certain reasonable size

The structure of the lifted group

The structure of the lifted group

\tilde{G} is a group extension of CT_{p} by G
$\mathrm{CT}_{\rho} \triangleleft \tilde{G}$ and $\tilde{G} / \mathrm{CT}_{\rho} \cong G$

Universal covering projection

Universal covering projection

covering projection $p^{*}: \mathcal{T} \rightarrow X$

$$
\text { where } \mathcal{T} \text { is a tree }
$$

Universal covering projection

covering projection $p^{*}: \mathcal{T} \rightarrow X$

$$
\text { where } \mathcal{T} \text { is a tree }
$$

Universal property
for every $p: \tilde{X} \rightarrow X$ there exists a unique $q: \mathcal{T} \rightarrow \tilde{X}$ s.t.

Universal covering projection

covering projection $p^{*}: \mathcal{T} \rightarrow X$
where \mathcal{T} is a tree
Universal property
for every $p: \tilde{X} \rightarrow X$ there exists a unique $q: \mathcal{T} \rightarrow \tilde{X}$ s.t.

$$
\begin{gathered}
\text { for each } G \leq \operatorname{Aut}(X) \\
p^{*} \text { is } G \text {-admissible }
\end{gathered}
$$

Universal covering projection, combinatorially

Universal covering projection, combinatorially

Reconstruction of $p^{*}: \mathcal{T} \rightarrow X$
choose a spanning tree T_{X} in X rooted at u_{0}, let $\left\{x_{1}, \ldots, x_{r}\right\} \subset A(X)$ contain exactly one arc from each edge of $E\left(X \backslash T_{X}\right)$, take $F=\left\langle a_{1}, \ldots, a_{r}\right\rangle \cong \pi\left(X, u_{0}\right)$ as a voltage group, define $\zeta^{*}: A(X) \rightarrow F$ to be trivial on $A\left(T_{X}\right)$ and $\zeta^{*}\left(x_{i}^{ \pm}\right)=a_{i}^{ \pm}$,

identify $\mathrm{CT}_{\rho_{\zeta^{*}}}$ with F via id$\tilde{\mathrm{d}}_{a}(u, c)=(u, a c)$

Normal subgroups of $F \longleftrightarrow$ regular covering projections

Take $N \triangleleft F$

Which normal subgroups in F give rise to G-admissibility?

Which normal subgroups in F give rise to G-admissibility?

Which normal subgroups in F give rise to G-admissibility?

$G^{*}=$ the lifted group of G along $p_{\zeta^{*}}\left(F \triangleleft G^{*}\right.$ and $\left.G^{*} / F \cong G\right)$

$N \triangleleft F \triangleleft G^{*}$

Which normal subgroups in F give rise to G-admissibility?

$G^{*}=$ the lifted group of G along $p_{\zeta^{*}}\left(F \triangleleft G^{*}\right.$ and $\left.G^{*} / F \cong G\right)$

$$
N \triangleleft F \triangleleft G^{*}
$$

Suppose p_{ζ} is G-admissible
$\tilde{G}=$ the lifted group of G along p_{ζ}

Which normal subgroups in F give rise to G-admissibility?

$G^{*}=$ the lifted group of G along $p_{\zeta^{*}}\left(F \triangleleft G^{*}\right.$ and $\left.G^{*} / F \cong G\right)$

$$
N \triangleleft F \triangleleft G^{*}
$$

Suppose p_{ζ} is G-admissible
$\tilde{G}=$ the lifted group of G along p_{ζ}
Then q is \tilde{G} - admissible

Which normal subgroups in F give rise to G-admissibility?

$G^{*}=$ the lifted group of G along $p_{\zeta^{*}}\left(F \triangleleft G^{*}\right.$ and $\left.G^{*} / F \cong G\right)$

$$
N \triangleleft F \triangleleft G^{*}
$$

Suppose p_{ζ} is G-admissible
$\tilde{G}=$ the lifted group of G along p_{ζ}
Then q is \tilde{G} - admissible

$N \triangleleft G^{*}$ s.t. $N \leq F \longleftrightarrow G$-admissible regular coverings

Suppose $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, r_{m}\left(g_{1}, \ldots, g_{n}\right)\right\rangle$
for each g_{i} choose the unique lift $\overline{g_{i}}$ with $\overline{g_{i}}\left(u_{0}, 1\right)=\left(g_{i} u_{0}, 1\right)$,

$$
\overline{g_{i}}\left(v, a_{i_{1}}^{ \pm} \cdots a_{i_{l}}^{ \pm}\right)=\left(g_{i} v,\left(\zeta^{*} g_{i} W^{i_{1}}\right)^{ \pm} \cdots\left(\zeta^{*} g_{i} W^{i_{l}}\right)^{ \pm}\left(\zeta^{*} g_{i} Q\right)^{-1}\right)
$$

where $W^{i j}$ is the fundamental u_{0}-based closed walk determined by $x_{i j}$ and T_{X}, $Q: v \rightarrow u_{0}$ the unique path in T_{X},

$$
\bar{S}=\left\{\overline{g_{1}}, \ldots, \overline{g_{n}}\right\}
$$

Finding a presentation of G^{*}

Suppose $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, r_{m}\left(g_{1}, \ldots, g_{n}\right)\right\rangle$
for each g_{i} choose the unique lift $\overline{g_{i}}$ with $\overline{g_{i}}\left(u_{0}, 1\right)=\left(g_{i} u_{0}, 1\right)$,

$$
\overline{g_{i}}\left(v, a_{i_{1}}^{ \pm} \cdots a_{i_{l}}^{ \pm}\right)=\left(g_{i} v,\left(\zeta^{*} g_{i} W^{i_{1}}\right)^{ \pm} \cdots\left(\zeta^{*} g_{i} W^{i_{l}}\right)^{ \pm}\left(\zeta^{*} g_{i} Q\right)^{-1}\right)
$$

where $W^{i j}$ is the fundamental u_{0}-based closed walk determined by $x_{i j}$ and T_{X}, $Q: v \rightarrow u_{0}$ the unique path in T_{X},

$$
\bar{S}=\left\{\overline{g_{1}}, \ldots, \overline{g_{n}}\right\}
$$

Since F is normal in G^{*}

$$
\begin{aligned}
& \text { let } \overline{g_{i}} a_{j}{\overline{g_{i}}}^{-1}=w_{i, j}\left(a_{1}, \ldots, a_{r}\right) \in F \text {, } \\
& P=\left\{a_{j}{\overline{g_{i}}}^{-1} w_{i, j}^{-1} \mid i=1, \ldots, n, j=1, \ldots, r\right\}
\end{aligned}
$$

Finding a presentation of G^{*}

Suppose $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, r_{m}\left(g_{1}, \ldots, g_{n}\right)\right\rangle$
for each g_{i} choose the unique lift $\overline{g_{i}}$ with $\overline{g_{i}}\left(u_{0}, 1\right)=\left(g_{i} u_{0}, 1\right)$,

$$
\overline{g_{i}}\left(v, a_{i_{1}}^{ \pm} \cdots a_{i_{l}}^{ \pm}\right)=\left(g_{i} v,\left(\zeta^{*} g_{i} W^{i_{1}}\right)^{ \pm} \cdots\left(\zeta^{*} g_{i} W^{i_{l}}\right)^{ \pm}\left(\zeta^{*} g_{i} Q\right)^{-1}\right)
$$

where $W^{i j}$ is the fundamental u_{0}-based closed walk determined by $x_{i j}$ and T_{X}, $Q: v \rightarrow u_{0}$ the unique path in T_{X},

$$
\bar{S}=\left\{\overline{g_{1}}, \ldots, \overline{g_{n}}\right\}
$$

Since F is normal in G^{*}

$$
\begin{gathered}
\text { let }{\overline{g_{i}} a_{j}{\overline{g_{i}}}^{-1}=w_{i, j}\left(a_{1}, \ldots, a_{r}\right) \in F,}_{P=\left\{a_{j}{\overline{g_{i}}}^{-1} w_{i, j}^{-1} \mid i=1, \ldots, n, j=1, \ldots, r\right\}}^{\text {Since } r_{k}\left(\overline{g_{1}}, \ldots, \overline{g_{n}}\right) \text { in } F} \\
\text { let } \overline{r_{k}}=r_{k}\left(\overline{g_{1}}, \ldots, \overline{g_{n}}\right)=w_{r_{k}}\left(a_{1}, \ldots, a_{r}\right), \\
\bar{R}=\left\{\overline{r_{k}} w_{r_{k}}\left(a_{1}, \ldots, a_{r}\right)^{-1} \mid k=1,2, \ldots, m\right\}
\end{gathered}
$$

Finding a presentation of G^{*}

Suppose $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, r_{m}\left(g_{1}, \ldots, g_{n}\right)\right\rangle$
for each g_{i} choose the unique lift $\overline{g_{i}}$ with $\overline{g_{i}}\left(u_{0}, 1\right)=\left(g_{i} u_{0}, 1\right)$,

$$
\overline{g_{i}}\left(v, a_{i_{1}}^{ \pm} \cdots a_{i_{l}}^{ \pm}\right)=\left(g_{i} v,\left(\zeta^{*} g_{i} W^{i_{1}}\right)^{ \pm} \cdots\left(\zeta^{*} g_{i} W^{i_{l}}\right)^{ \pm}\left(\zeta^{*} g_{i} Q\right)^{-1}\right)
$$

where $W^{i j}$ is the fundamental u_{0}-based closed walk determined by $x_{i j}$ and T_{X}, $Q: v \rightarrow u_{0}$ the unique path in T_{X},

$$
\bar{S}=\left\{\overline{g_{1}}, \ldots, \overline{g_{n}}\right\}
$$

Since F is normal in G^{*}

$$
\begin{gathered}
\text { let } \overline{g_{i}} a_{j}{\overline{g_{i}}}^{-1}=w_{i, j}\left(a_{1}, \ldots, a_{r}\right) \in F, \\
P=\left\{a_{j}{\overline{g_{i}}}^{-1} w_{i, j}^{-1} \mid i=1, \ldots, n, j=1, \ldots, r\right\} \\
\text { Since } r_{k}\left(\overline{g_{1}}, \ldots, \overline{g_{n}}\right) \text { in } F \\
\text { let } \overline{r_{k}}=r_{k}\left(\overline{g_{1}}, \ldots, \overline{g_{n}}\right)=w_{r_{k}}\left(a_{1}, \ldots, a_{r}\right), \\
\bar{R}=\left\{\overline{r_{k}} w_{r_{k}}\left(a_{1}, \ldots, a_{r}\right)^{-1} \mid k=1,2, \ldots, m\right\} \\
G^{*}=\left\langle a_{1}, \ldots, a_{r}, \overline{g_{1}}, \ldots, \overline{g_{n}} \mid P \cup \bar{R}\right\rangle
\end{gathered}
$$

G-admissible solvable regular covering projections

G-admissible solvable regular covering projections

Up to a prescribed order n of the respective covering graphs find all $N \triangleleft G^{*}$ contained in F with F / N solvable of order at most n

G-admissible solvable regular covering projections

Up to a prescribed order n of the respective covering graphs find all $N \triangleleft G^{*}$ contained in F with F / N solvable of order at most n

The basic idea

in a solvable F / N there exists a normal elementary abelian subgroup K / N;
if K is known, N can be found by considering $H \triangleleft G^{*}$ with $H \leq K$ and K / H elementary abelian

An algorithm

Computing normal subgroups with solvable factor
Input: a finitely presented group G, a normal subgroup H of G given by words in the generators of G that generates H, an integer $n>0$
Output: the set \mathcal{N} of all normal subgroups N of G contained in H with H / N solvable of order at most n
Set $\mathcal{N}=\{H\}$ and set Processed $=\emptyset$;
while $\mathcal{N} \backslash$ Processed $\neq \emptyset$ do
Choose $K \in \mathcal{N} \backslash$ Processed and insert K in Processed;
foreach prime p with $p|H: K| \leq n$ do
Let $M=K /[K, K] K^{p}$ with $f: K \rightarrow M$ the natural epimorphisms;
Turn M into $\mathbb{Z}_{p}[G / K]$-module;
Find the set \mathcal{S} of all maximal $\mathbb{Z}_{p}[G / N]$-submodules of M whose codimension d satisfies $p^{d}|H: K| \leq n$;
foreach $S \in \mathcal{S}$ do
Let $L=f^{-1}(S)$;
if L is not equal to any of subgroups in \mathcal{N} then Insert L into \mathcal{N};
return \mathcal{N};

Thank you!

