Obtaining planarity by contracting few edges

Pim van 't Hof

University of Bergen

joint work with

Petr Golovach University of Bergen Daniël Paulusma Durham University

Raziskovalni matematični seminar UP FAMNIT Koper, Slovenia 15 October 2012

Input: Graph G, integer k.

Question: Can G be made planar by contracting $\leq k$ edges?

problem	vd	ed	ea	ec	target
Vertex Cover	\checkmark				edgeless
Feedback Vertex Set	\checkmark				acyclic
ODD CYCLE TRANSVERSAL	\checkmark				bipartite
Edge Bipartization		\checkmark			bipartite
INTERVAL COMPLETION			\checkmark		interval
Minimum Fill-In			\checkmark		chordal
Cluster Editing		\checkmark	\checkmark		P_3 -free

problem	vd	ed	ea	ec	target
Vertex Cover	\checkmark				edgeless
Feedback Vertex Set	\checkmark				acyclic
Odd Cycle Transversal	\checkmark				bipartite
Edge Bipartization		\checkmark			bipartite
INTERVAL COMPLETION			\checkmark		interval
Minimum Fill-In			\checkmark		chordal
Cluster Editing		\checkmark	\checkmark		P_3 -free
PATH CONTRACTION				\checkmark	path
TREE CONTRACTION				\checkmark	tree
BIPARTITE CONTRACTION				\checkmark	bipartite

problem	vd	ed	ea	ec	target
Vertex Cover	\checkmark				edgeless
Feedback Vertex Set	\checkmark				acyclic
ODD CYCLE TRANSVERSAL	\checkmark				bipartite
Edge Bipartization		\checkmark			bipartite
INTERVAL COMPLETION			\checkmark		interval
Minimum Fill-In			\checkmark		chordal
Cluster Editing		\checkmark	\checkmark		P_3 -free
PATH CONTRACTION				\checkmark	path
TREE CONTRACTION				\checkmark	tree
BIPARTITE CONTRACTION				\checkmark	bipartite
Planar Contraction				\checkmark	planar

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $n^{O(1)}$ time?

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $n^{O(1)}$ time? Bad news:

Theorem (Asano & Hirata; 1983)

Let \mathcal{H} be a class of graphs. Then \mathcal{H} -CONTRACTION is NP-complete if \mathcal{H} satisfies the following three properties:

- H is non-trivial on connected graphs;
- $\bullet~\mathcal{H}$ is closed under edge contractions; and
- for every graph H, we have that $H \in \mathcal{H}$ if and only if all biconnected components of H are in \mathcal{H} .

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $n^{O(1)}$ time? Bad news:

Corollary

PLANAR CONTRACTION is NP-complete.

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $n^{O(1)}$ time? Bad news:

Corollary

PLANAR CONTRACTION is NP-complete.

So that's it?

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $n^{O(1)}$ time? Bad news:

Corollary

PLANAR CONTRACTION is NP-complete.

So that's it? No!

NP-hard problems, beware of...

Parameterized Complexity!

Input:Graph G, integer k.Question:Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $n^{O(1)}$ time?

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $f(k) \cdot n^{O(1)}$ time?

Input: Graph G, integer k. *Question:* Can G be made planar by contracting $\leq k$ edges?

Can we solve PLANAR CONTRACTION in $f(k) \cdot n^{O(1)}$ time?

Input: Graph G, integer k.

Question: Can G be made planar by contracting $\leq k$ edges?

Theorem

PLANAR CONTRACTION can be solved in $f(k) \cdot n^{O(1)}$ time.

Input: Graph G, integer k.

Question: Can G be made planar by contracting $\leq k$ edges?

Theorem

PLANAR CONTRACTION can be solved in $f(k) \cdot n^{O(1)}$ time, i.e., it is fixed-parameter tractable (FPT) when parameterized by k.

Input: Graph G, integer k.

Question: Can G be made planar by contracting $\leq k$ edges?

Theorem

PLANAR CONTRACTION can be solved in $f(k) \cdot n^{O(1)}$ time, i.e., it is fixed-parameter tractable (FPT) when parameterized by k.

Theorem

For every fixed integer k and every constant $\epsilon > 0$, k-PLANAR CONTRACTION can be solved in $O(n^{2+\epsilon})$ time.

k-Planar Contraction

Input: Graph G.

Question: Can G be made planar by contracting $\leq k$ edges?

Theorem

PLANAR CONTRACTION can be solved in $f(k) \cdot n^{O(1)}$ time, i.e., it is fixed-parameter tractable (FPT) when parameterized by k.

Theorem

For every fixed integer k and every constant $\epsilon > 0$, k-PLANAR CONTRACTION can be solved in $O(n^{2+\epsilon})$ time.

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Observation (easy)

PLANAR VERTEX DELETION *and* PLANAR EDGE DELETION *can be solved in polynomial time for every fixed integer k*.

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Observation (easy)

PLANAR VERTEX DELETION and PLANAR EDGE DELETION can be solved in $n^{O(k)}$ time.

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Observation (easy)

PLANAR VERTEX DELETION and PLANAR EDGE DELETION can be solved in $n^{O(k)}$ time.

Observation (easy, but using "heavy machinery")

PLANAR VERTEX DELETION can be solved in $f_1(k) \cdot n^3$ time.

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Observation (easy)

PLANAR VERTEX DELETION and PLANAR EDGE DELETION can be solved in $n^{O(k)}$ time.

Theorem (Marx & Schlotter; WG 2007)

PLANAR VERTEX DELETION can be solved in $f_2(k) \cdot n^2$ time.

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Observation (easy)

PLANAR VERTEX DELETION and PLANAR EDGE DELETION can be solved in $n^{O(k)}$ time.

Theorem (Kawarabayashi; FOCS 2009)

PLANAR VERTEX DELETION can be solved in $f_3(k) \cdot n$ time.

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ vertices?

PLANAR EDGE DELETION

Input: Graph G, integer k.

Question: Can G be made planar by deleting $\leq k$ edges?

Observation (easy)

PLANAR VERTEX DELETION and PLANAR EDGE DELETION can be solved in $n^{O(k)}$ time.

Theorem (Kawarabayashi & Reed; STOC 2007)

PLANAR EDGE DELETION can be solved in $f_4(k) \cdot n$ time.

Input: Graph G, integer k.

Question: Can G be made into a path by contracting $\leq k$ edges?

TREE CONTRACTION

Input: Graph G, integer k.

Question: Can G be made into a tree by contracting $\leq k$ edges?

Input: Graph G, integer k.

Question: Can G be made into a path by contracting $\leq k$ edges?

TREE CONTRACTION

Input: Graph G, integer k.

Question: Can G be made into a tree by contracting $\leq k$ edges?

Observation (easy, but again using "heavy machinery")

Both PATH CONTRACTION and TREE CONTRACTION are FPT when parameterized by k.

Input: Graph G, integer k.

Question: Can G be made into a path by contracting $\leq k$ edges?

TREE CONTRACTION

Input: Graph G, integer k.

Question: Can G be made into a tree by contracting $\leq k$ edges?

Observation (easy, but again using "heavy machinery")

Both PATH CONTRACTION and TREE CONTRACTION can be solved in $f_5(k) \cdot n$ time.

Input: Graph G, integer k.

Question: Can G be made into a path by contracting $\leq k$ edges?

TREE CONTRACTION

Input: Graph G, integer k.

Question: Can G be made into a tree by contracting $\leq k$ edges?

Observation (easy, but again using "heavy machinery")

Both PATH CONTRACTION and TREE CONTRACTION can be solved in $f_5(k) \cdot n$ time.

Theorem (Heggernes et al.; IPEC 2011)

PATH CONTRACTION can be solved in $2^{k+o(k)} + n^{O(1)}$ time.

Input: Graph G, integer k.

Question: Can G be made into a path by contracting $\leq k$ edges?

TREE CONTRACTION

Input: Graph G, integer k.

Question: Can G be made into a tree by contracting $\leq k$ edges?

Observation (easy, but again using "heavy machinery")

Both PATH CONTRACTION and TREE CONTRACTION can be solved in $f_5(k) \cdot n$ time.

Theorem (Heggernes et al.; IPEC 2011)

TREE CONTRACTION can be solved in $4.98^k \cdot n^{O(1)}$ time.

BIPARTITE CONTRACTION

Input: Graph G, integer k.

Question: Can G be made bipartite by contracting $\leq k$ edges?

Theorem (Heggernes et al.; FSTTCS 2011)

BIPARTITE CONTRACTION is FPT when parameterized by k.

Back to our problem

PLANAR CONTRACTION

Input: Graph G, integer k.

Question: Can G be made planar by contracting $\leq k$ edges?

k-Planar Contraction

Input: Graph G.

Question: Can G be made planar by contracting $\leq k$ edges?

Back to our problem

PLANAR CONTRACTION

Input: Graph G, integer k.

Question: Can G be made planar by contracting $\leq k$ edges?

k-Planar Contraction

Input: Graph G.

Question: Can G be made planar by contracting $\leq k$ edges?

Theorem

For every fixed integer k and every constant $\epsilon > 0$, k-PLANAR CONTRACTION can be solved in $O(n^{2+\epsilon})$ time.

Corollary

PLANAR CONTRACTION is FPT when parameterized by k.

A useful observation:

Observation

If G can be made planar by contracting $\leq k$ edges, then there is a set $S \subseteq V(G)$ with $|S| \leq k$ such that H := G - S is planar.

A useful observation:

Observation

If G can be made planar by contracting $\leq k$ edges, then there is a set $S \subseteq V(G)$ with $|S| \leq k$ such that H := G - S is planar.

And a famous theorem:

Theorem (Wagner; 1937)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as a minor.

Let G be an instance of k-PLANAR CONTRACTION.

One of the following two cases applies:

- 1. treewidth of G is bounded by f(k) \Rightarrow solve instance using Courcelle's Theorem
- G has a large wall W as a subgraph
 ⇒ find and contract an irrelevant edge in W

Repeat until instance is solved.

One of the following two cases applies:

- 1. treewidth of G is bounded by f(k) \Rightarrow solve instance using Courcelle's Theorem
- 2. G has a large wall W as a subgraph \Rightarrow find and contract an irrelevant edge in W

Repeat until instance is solved.

A 6×6 grid:

A 6×6 grid:

Theorem (Robertson & Seymour; 1994)

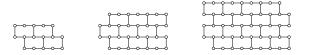
Any planar graph with treewidth more than 6r-5 has an $r \times r$ -grid as a minor.

A 6×6 grid:

Theorem (Robertson & Seymour; 1994)

Any planar graph with "large" treewidth has a "large" grid as a minor.

Elementary walls of height 2, 3 and 4:



A wall of height h is a subdivision of an elementary wall of height h.

Theorem (Robertson & Seymour; 1994)

Any planar graph with "large" treewidth has a "large" grid as a minor.

Elementary walls of height 2, 3 and 4:



A wall of height h is a subdivision of an elementary wall of height h.

Theorem (Robertson & Seymour; 1994)

Any planar graph with "large" treewidth has a "large" grid as a minor.

Observation

If a graph G has an $r \times r$ -grid as a minor, then G has a wall of height $\lfloor r/2 \rfloor - 1$ as a subgraph.

Elementary walls of height 2, 3 and 4:



A wall of height h is a subdivision of an elementary wall of height h.

Theorem (Robertson & Seymour; 1994)

Any planar graph with "large" treewidth has a "large" wall as a subgraph.

Observation

If a graph G has an $r \times r$ -grid as a minor, then G has a wall of height $\lfloor r/2 \rfloor - 1$ as a subgraph.

Elementary walls of height 2, 3 and 4:

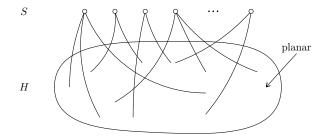
A wall of height h is a subdivision of an elementary wall of height h.

We find a large wall in polynomial time using the following result:

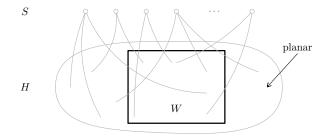
Theorem (Gu & Tamaki; 2011)

Let H be a planar graph, and let h^* be the height of a largest wall that appears as a subgraph in H. For every constant $\epsilon > 0$, there exists a constant $c_{\epsilon} > 3$ such that a wall in H with height at least h^*/c_{ϵ} can be constructed in $O(n^{1+\epsilon})$ time.

- 1. Find $S \subseteq V(G)$ with $|S| \leq k$ such that H := G S is planar.
 - If no such set S exists, output "no".



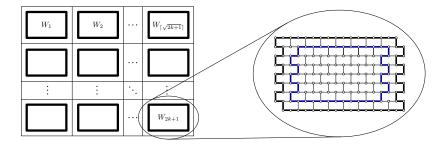
- 1. Find $S \subseteq V(G)$ with $|S| \le k$ such that H := G S is planar. • If no such set S exists, output "no".
- 2. Find a wall W of height $h \ge h^*/c_{\epsilon}$ as subgraph in H.



- 1. Find $S \subseteq V(G)$ with $|S| \leq k$ such that H := G S is planar.
 - If no such set S exists, output "no".
- 2. Find a wall W of height $h \ge h^*/c_{\epsilon}$ as subgraph in H.
 - Suppose $h \leq \lceil \sqrt{2k+1} \rceil (12k+10)$.
 - $\triangleright \quad h^* \le c_{\epsilon} h \le c_{\epsilon} \lceil \sqrt{2k+1} \rceil (12k+10);$
 - \triangleright *H* has bounded treewidth;
 - \triangleright G has bounded treewidth;
 - \triangleright Use Courcelle's Theorem to solve instance in O(n) time.
 - Suppose $h > \lceil \sqrt{2k+1} \rceil (12k+10)$.
 - \triangleright Find and contract an irrelevant edge in W.

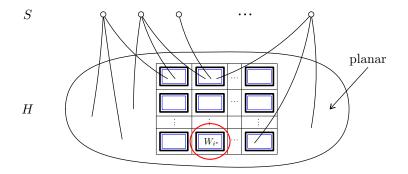
- 1. Find $S \subseteq V(G)$ with $|S| \leq k$ such that H := G S is planar.
 - If no such set S exists, output "no".
- 2. Find a wall W of height $h \ge h^*/c_{\epsilon}$ as subgraph in H.
 - Suppose $h \leq \lceil \sqrt{2k+1} \rceil (12k+10)$.
 - $\triangleright \quad h^* \le c_{\epsilon} h \le c_{\epsilon} \lceil \sqrt{2k+1} \rceil (12k+10);$
 - \triangleright *H* has bounded treewidth;
 - \triangleright G has bounded treewidth;
 - \triangleright Use Courcelle's Theorem to solve instance in O(n) time.
 - Suppose $h > \lceil \sqrt{2k+1} \rceil (12k+10)$.
 - \triangleright Define 2k + 1 disjoint subwalls W_1, \ldots, W_{2k+1} as follows:

Packing subwalls W_1, \ldots, W_{2k+1} inside W



- \triangleright Wall W has height $h > \lceil \sqrt{2k+1} \rceil (12k+10)$.
- \triangleright Each subwall W_i has height 12k + 8.
- \triangleright Inside each subwall W_i , we choose a subwall W'_i of height 12k + 6.

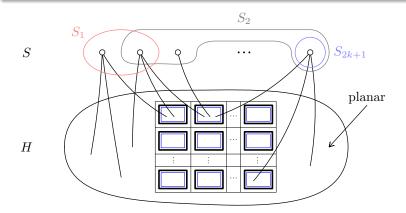
We will show there exists a subwall W_{i^*} such that no vertex of S is adjacent to an interior vertex of W'_{i^*} .



Defining the sets S_i

Definition

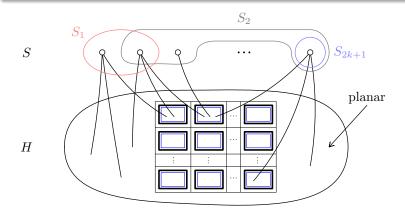
For i = 1, ..., 2k + 1, let $S_i \subseteq S$ be the subset of vertices of S that are adjacent to an interior vertex of W'_i .



Defining the sets S_i

Definition

A set S_i is of type 1 if S_i is non-empty and every vertex $y \in S_i$ also belongs to some S_j with $j \neq i$. Otherwise, S_i is of type 2.



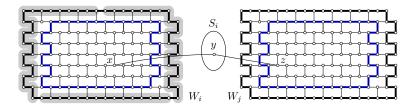
Bounding the number of sets S_i of type 1

Claim

If there are at least k+1 sets S_i of type 1, then G is a no-instance.

Proof (sketch). Suppose S_1, \ldots, S_ℓ are of type 1, where $\ell \ge k+1$.

For each $i \in \{1, \ldots, \ell\}$, we define a K_5 -witness structure \mathcal{X}_i of a subgraph of G as follows:



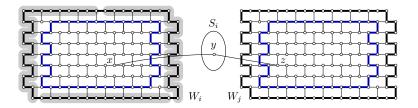
Bounding the number of sets S_i of type 1

Claim

If there are at least k+1 sets S_i of type 1, then G is a no-instance.

Proof (sketch). Suppose S_1, \ldots, S_ℓ are of type 1, where $\ell \ge k+1$.

For each $i \in \{1, ..., \ell\}$, we define a K_5 -witness structure \mathcal{X}_i of a subgraph of G as follows:



Destroying ℓ witness structures \mathcal{X}_i requires $\ell \geq k+1$ contractions.

Finding an empty set S_i

- \triangleright Suppose there are at most k sets S_i of type 1.
- \triangleright There are 2k + 1 sets S_i in total.
- \triangleright There are at least k + 1 sets S_i of type 2.

Definition

A set S_i is of type 1 if S_i is non-empty and every vertex $y \in S_i$ also belongs to some S_j with $j \neq i$. Otherwise, S_i is of type 2.

Finding an empty set S_i

- \triangleright Suppose there are at most k sets S_i of type 1.
- \triangleright There are 2k + 1 sets S_i in total.
- \triangleright There are at least k + 1 sets S_i of type 2.

Definition

A set S_i is of type 1 if S_i is non-empty and every vertex $y \in S_i$ also belongs to some S_j with $j \neq i$. Otherwise, S_i is of type 2.

- \triangleright Each non-empty set S_i of type 2 has a "private" S-vertex.
- \triangleright Recall that $|S| \leq k$.
- \triangleright There is at least one set S_i (of type 2) which is empty.

Finding an empty set S_i

- \triangleright Suppose there are at most k sets S_i of type 1.
- \triangleright There are 2k + 1 sets S_i in total.
- \triangleright There are at least k + 1 sets S_i of type 2.

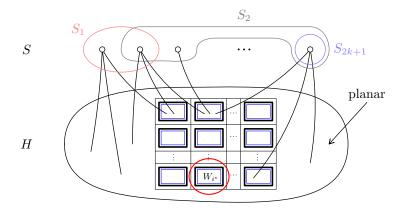
Definition

A set S_i is of type 1 if S_i is non-empty and every vertex $y \in S_i$ also belongs to some S_j with $j \neq i$. Otherwise, S_i is of type 2.

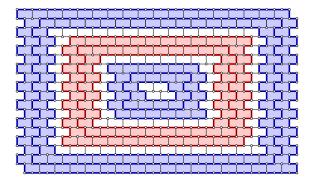
- \triangleright Each non-empty set S_i of type 2 has a "private" S-vertex.
- \triangleright Recall that $|S| \leq k$.
- \triangleright There is at least one set S_i (of type 2) which is empty.

Let us assume that $S_{i^*} = \emptyset$.

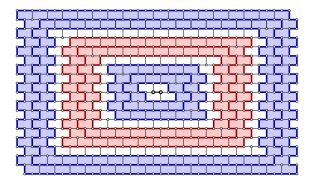
Exploiting the fact that $S'_{i^*} = \emptyset$



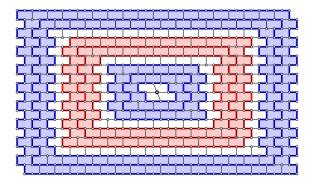
 \triangleright Define 2k + 1 nested triple layers within subwall W'_{i^*} .



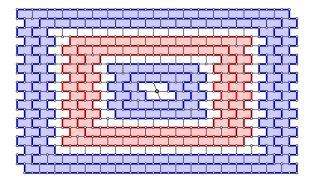
- \triangleright Define 2k + 1 nested triple layers within subwall W'_{i^*} .
- \triangleright Contract the "middle" edge of W'_{i^*} to obtain graph G'.



- \triangleright Define 2k + 1 nested triple layers within subwall W'_{i^*} .
- \triangleright Contract the "middle" edge of W'_{i^*} to obtain graph G'.



- \triangleright Define 2k + 1 nested triple layers within subwall W'_{i^*} .
- \triangleright Contract the "middle" edge of W'_{i^*} to obtain graph G'.

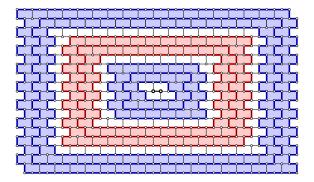


Claim

G is a yes-instance of k-PLANAR CONTRACTION iff G' is.

P. Golovach, P. van 't Hof, D. Paulusma Obtaining planarity by contracting few edges

- \triangleright Define 2k + 1 nested triple layers within subwall W'_{i^*} .
- \triangleright Contract the "middle" edge of W'_{i^*} to obtain graph G'.

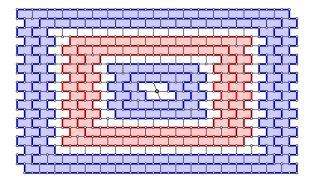


Claim

G is a yes-instance of k-PLANAR CONTRACTION iff G' is.

P. Golovach, P. van 't Hof, D. Paulusma Obtaining planarity by contracting few edges

- \triangleright Define 2k + 1 nested triple layers within subwall W'_{i^*} .
- \triangleright Contract the "middle" edge of W'_{i^*} to obtain graph G'.



Claim

G is a yes-instance of k-PLANAR CONTRACTION iff G' is.

P. Golovach, P. van 't Hof, D. Paulusma Obtaining planarity by contracting few edges

Theorem (Abello, Klavík, Kratochvíl & Vyskočil; IPEC 2012)

PLANAR CONTRACTION can be solved in $f(k) \cdot n^2$ time.

Further research:

- 1. Determine whether or not PLANAR CONTRACTION admits a polynomial kernel.
- 2. Determine the parameterized complexity of \mathcal{H} -CONTRACTION for classes \mathcal{H} that are H-minor free.

That's it!

