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What’s the problem?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

u v

G G/uv
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Graph modification problems

problem vd ed ea ec target

Vertex Cover X edgeless
Feedback Vertex Set X acyclic

Odd Cycle Transversal X bipartite
Edge Bipartization X bipartite

Interval Completion X interval
Minimum Fill-In X chordal
Cluster Editing X X P3-free

Path Contraction X path
Tree Contraction X tree

Bipartite Contraction X bipartite
Planar Contraction X planar

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



Graph modification problems

problem vd ed ea ec target

Vertex Cover X edgeless
Feedback Vertex Set X acyclic

Odd Cycle Transversal X bipartite
Edge Bipartization X bipartite

Interval Completion X interval
Minimum Fill-In X chordal
Cluster Editing X X P3-free

Path Contraction X path
Tree Contraction X tree

Bipartite Contraction X bipartite

Planar Contraction X planar

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



Graph modification problems

problem vd ed ea ec target

Vertex Cover X edgeless
Feedback Vertex Set X acyclic

Odd Cycle Transversal X bipartite
Edge Bipartization X bipartite

Interval Completion X interval
Minimum Fill-In X chordal
Cluster Editing X X P3-free

Path Contraction X path
Tree Contraction X tree

Bipartite Contraction X bipartite
Planar Contraction X planar

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



How hard is our problem?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in nO(1) time?

Bad news:
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How hard is our problem?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in nO(1) time? Bad news:

Theorem (Asano & Hirata; 1983)

Let H be a class of graphs. Then H-Contraction is
NP-complete if H satisfies the following three properties:

H is non-trivial on connected graphs;

H is closed under edge contractions; and

for every graph H, we have that H ∈ H if and only if
all biconnected components of H are in H.

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



How hard is our problem?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in nO(1) time? Bad news:

Corollary

Planar Contraction is NP-complete.

So that’s it?

No!
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How hard is our problem?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in nO(1) time? Bad news:

Corollary

Planar Contraction is NP-complete.

So that’s it? No!
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NP-hard problems, beware of...

Parameterized Complexity!

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



How hard is our problem?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in

f(k) ·

nO(1) time?
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How hard is our problem, really?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in f(k) · nO(1) time?
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How hard is our problem, really?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Can we solve Planar Contraction in f(k) · nO(1) time?
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How hard is our problem, really?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Theorem

Planar Contraction can be solved in f(k) · nO(1) time.
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How hard is our problem, really?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Theorem

Planar Contraction can be solved in f(k) · nO(1) time, i.e.,
it is fixed-parameter tractable (FPT) when parameterized by k.
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How hard is our problem, really?

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

Theorem

Planar Contraction can be solved in f(k) · nO(1) time, i.e.,
it is fixed-parameter tractable (FPT) when parameterized by k.

Theorem

For every fixed integer k and every constant ε > 0,
k-Planar Contraction can be solved in O(n2+ε) time.

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



How hard is our problem, really?

k-Planar Contraction

Input: Graph G.
Question: Can G be made planar by contracting ≤ k edges?

Theorem

Planar Contraction can be solved in f(k) · nO(1) time, i.e.,
it is fixed-parameter tractable (FPT) when parameterized by k.

Theorem

For every fixed integer k and every constant ε > 0,
k-Planar Contraction can be solved in O(n2+ε) time.
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?

Observation (easy)

Planar Vertex Deletion and Planar Edge Deletion
can be solved in polynomial time for every fixed integer k.
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?

Observation (easy)

Planar Vertex Deletion and Planar Edge Deletion
can be solved in nO(k) time.
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?

Observation (easy)

Planar Vertex Deletion and Planar Edge Deletion
can be solved in nO(k) time.

Observation (easy, but using “heavy machinery”)

Planar Vertex Deletion can be solved in f1(k) · n3 time.
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?

Observation (easy)

Planar Vertex Deletion and Planar Edge Deletion
can be solved in nO(k) time.

Theorem (Marx & Schlotter; WG 2007)

Planar Vertex Deletion can be solved in f2(k) · n2 time.
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?

Observation (easy)

Planar Vertex Deletion and Planar Edge Deletion
can be solved in nO(k) time.

Theorem (Kawarabayashi; FOCS 2009)

Planar Vertex Deletion can be solved in f3(k) · n time.
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Related work on modification into planar graphs

Planar Vertex Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k vertices?

Planar Edge Deletion

Input: Graph G, integer k.
Question: Can G be made planar by deleting ≤ k edges?

Observation (easy)

Planar Vertex Deletion and Planar Edge Deletion
can be solved in nO(k) time.

Theorem (Kawarabayashi & Reed; STOC 2007)

Planar Edge Deletion can be solved in f4(k) · n time.
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Related work on H-Contraction

Path Contraction

Input: Graph G, integer k.
Question: Can G be made into a path by contracting ≤ k edges?

Tree Contraction

Input: Graph G, integer k.
Question: Can G be made into a tree by contracting ≤ k edges?
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Related work on H-Contraction

Path Contraction

Input: Graph G, integer k.
Question: Can G be made into a path by contracting ≤ k edges?

Tree Contraction

Input: Graph G, integer k.
Question: Can G be made into a tree by contracting ≤ k edges?

Observation (easy, but again using “heavy machinery”)

Both Path Contraction and Tree Contraction are FPT
when parameterized by k.
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Related work on H-Contraction

Path Contraction

Input: Graph G, integer k.
Question: Can G be made into a path by contracting ≤ k edges?

Tree Contraction

Input: Graph G, integer k.
Question: Can G be made into a tree by contracting ≤ k edges?

Observation (easy, but again using “heavy machinery”)

Both Path Contraction and Tree Contraction can be
solved in f5(k) · n time.
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Related work on H-Contraction

Path Contraction

Input: Graph G, integer k.
Question: Can G be made into a path by contracting ≤ k edges?

Tree Contraction

Input: Graph G, integer k.
Question: Can G be made into a tree by contracting ≤ k edges?

Observation (easy, but again using “heavy machinery”)

Both Path Contraction and Tree Contraction can be
solved in f5(k) · n time.

Theorem (Heggernes et al.; IPEC 2011)

Path Contraction can be solved in 2k+o(k) + nO(1) time.
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Related work on H-Contraction

Path Contraction

Input: Graph G, integer k.
Question: Can G be made into a path by contracting ≤ k edges?

Tree Contraction

Input: Graph G, integer k.
Question: Can G be made into a tree by contracting ≤ k edges?

Observation (easy, but again using “heavy machinery”)

Both Path Contraction and Tree Contraction can be
solved in f5(k) · n time.

Theorem (Heggernes et al.; IPEC 2011)

Tree Contraction can be solved in 4.98k · nO(1) time.
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Related work on H-Contraction

Bipartite Contraction

Input: Graph G, integer k.
Question: Can G be made bipartite by contracting ≤ k edges?

Theorem (Heggernes et al.; FSTTCS 2011)

Bipartite Contraction is FPT when parameterized by k.
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Back to our problem

Planar Contraction

Input: Graph G, integer k.
Question: Can G be made planar by contracting ≤ k edges?

k-Planar Contraction

Input: Graph G.
Question: Can G be made planar by contracting ≤ k edges?

Theorem

For every fixed integer k and every constant ε > 0,
k-Planar Contraction can be solved in O(n2+ε) time.

Corollary

Planar Contraction is FPT when parameterized by k.
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k-Planar Contraction

Input: Graph G.
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Theorem

For every fixed integer k and every constant ε > 0,
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Before we start...

A useful observation:

Observation

If G can be made planar by contracting ≤ k edges, then there is a
set S ⊆ V (G) with |S| ≤ k such that H := G− S is planar.

And a famous theorem:

Theorem (Wagner; 1937)

A graph is planar if and only if it contains neither K5 nor K3,3 as a
minor.
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Main idea of the algorithm

Let G be an instance of k-Planar Contraction.

One of the following two cases applies:

1. treewidth of G is bounded by f(k)
⇒ solve instance using Courcelle’s Theorem

2. G has a large wall W as a subgraph
⇒ find and contract an irrelevant edge in W

Repeat until instance is solved.
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Let G be an instance of k-Planar Contraction.

One of the following two cases applies:
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Distinguishing between cases 1 and 2

A 6× 6 grid:
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Distinguishing between cases 1 and 2

A 6× 6 grid:

Theorem (Robertson & Seymour; 1994)

Any planar graph with treewidth more than 6r − 5 has an
r × r-grid as a minor.
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Distinguishing between cases 1 and 2

A 6× 6 grid:

Theorem (Robertson & Seymour; 1994)

Any planar graph with “large” treewidth has a “large” grid as a
minor.
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Distinguishing between cases 1 and 2

Elementary walls of height 2, 3 and 4:

A wall of height h is a subdivision of an elementary wall of height h.

Theorem (Robertson & Seymour; 1994)

Any planar graph with “large” treewidth has a “large” grid as a
minor.
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Distinguishing between cases 1 and 2

Elementary walls of height 2, 3 and 4:

A wall of height h is a subdivision of an elementary wall of height h.

Theorem (Robertson & Seymour; 1994)

Any planar graph with “large” treewidth has a “large” grid as a
minor.

Observation

If a graph G has an r × r-grid as a minor, then G has a wall of
height br/2c − 1 as a subgraph.
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Distinguishing between cases 1 and 2

Elementary walls of height 2, 3 and 4:

A wall of height h is a subdivision of an elementary wall of height h.

Theorem (Robertson & Seymour; 1994)

Any planar graph with “large” treewidth has a “large” wall as a
subgraph.

Observation

If a graph G has an r × r-grid as a minor, then G has a wall of
height br/2c − 1 as a subgraph.
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Distinguishing between cases 1 and 2

Elementary walls of height 2, 3 and 4:

A wall of height h is a subdivision of an elementary wall of height h.

We find a large wall in polynomial time using the following result:

Theorem (Gu & Tamaki; 2011)

Let H be a planar graph, and let h∗ be the height of a largest wall
that appears as a subgraph in H. For every constant ε > 0, there
exists a constant cε > 3 such that a wall in H with height at least
h∗/cε can be constructed in O(n1+ε) time.
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Outline of our algorithm

Let G be an instance of k-Planar Contraction.

1. Find S ⊆ V (G) with |S| ≤ k such that H := G−S is planar.

If no such set S exists, output “no”.

2. Find a wall W of height h ≥ h∗/cε as subgraph in H.

Suppose h ≤ d
√

2k + 1e(12k + 10).

B h∗ ≤ cεh ≤ cεd
√

2k + 1e(12k + 10);
B H has bounded treewidth;
B G has bounded treewidth;
B Use Courcelle’s Theorem to solve instance in O(n) time.

Suppose h > d
√

2k + 1e(12k + 10).

B

S

H

planar
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Let G be an instance of k-Planar Contraction.

1. Find S ⊆ V (G) with |S| ≤ k such that H := G−S is planar.

If no such set S exists, output “no”.

2. Find a wall W of height h ≥ h∗/cε as subgraph in H.

Suppose h ≤ d
√

2k + 1e(12k + 10).

B h∗ ≤ cεh ≤ cεd
√

2k + 1e(12k + 10);
B H has bounded treewidth;
B G has bounded treewidth;
B Use Courcelle’s Theorem to solve instance in O(n) time.

Suppose h > d
√

2k + 1e(12k + 10).

B

S

H

planar

W
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Outline of our algorithm

Let G be an instance of k-Planar Contraction.

1. Find S ⊆ V (G) with |S| ≤ k such that H := G−S is planar.

If no such set S exists, output “no”.

2. Find a wall W of height h ≥ h∗/cε as subgraph in H.

Suppose h ≤ d
√

2k + 1e(12k + 10).

B h∗ ≤ cεh ≤ cεd
√

2k + 1e(12k + 10);
B H has bounded treewidth;
B G has bounded treewidth;
B Use Courcelle’s Theorem to solve instance in O(n) time.

Suppose h > d
√

2k + 1e(12k + 10).

B Find and contract an irrelevant edge in W .

P. Golovach, P. van ’t Hof, D. Paulusma Obtaining planarity by contracting few edges



Outline of our algorithm

Let G be an instance of k-Planar Contraction.

1. Find S ⊆ V (G) with |S| ≤ k such that H := G−S is planar.

If no such set S exists, output “no”.

2. Find a wall W of height h ≥ h∗/cε as subgraph in H.

Suppose h ≤ d
√

2k + 1e(12k + 10).

B h∗ ≤ cεh ≤ cεd
√

2k + 1e(12k + 10);
B H has bounded treewidth;
B G has bounded treewidth;
B Use Courcelle’s Theorem to solve instance in O(n) time.

Suppose h > d
√

2k + 1e(12k + 10).

B Define 2k + 1 disjoint subwalls W1, . . . , W2k+1 as follows:
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Packing subwalls W1, . . . ,W2k+1 inside W

W1 W2 Wd
√

2k+1e

W2k+1

B Wall W has height h > d
√

2k + 1e(12k + 10).

B Each subwall Wi has height 12k + 8.

B Inside each subwall Wi, we choose a subwall W ′
i of height 12k + 6.
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Defining the sets Si

We will show there exists a subwall Wi∗ such that no vertex of S is
adjacent to an interior vertex of W ′i∗ .

S1

S2

S2k+1S

H

planar

Wi∗
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Defining the sets Si

Definition

For i = 1, . . . , 2k + 1, let Si ⊆ S be the subset of vertices of S
that are adjacent to an interior vertex of W ′i .

S

H

planar

S1

S2

S2k+1
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Defining the sets Si

Definition

A set Si is of type 1 if Si is non-empty and every vertex y ∈ Si
also belongs to some Sj with j 6= i. Otherwise, Si is of type 2.

S

H

planar

S1

S2

S2k+1
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Bounding the number of sets Si of type 1

Claim

If there are at least k+ 1 sets Si of type 1, then G is a no-instance.

Proof (sketch). Suppose S1, . . . , S` are of type 1, where ` ≥ k + 1.

For each i ∈ {1, . . . , `}, we define a K5-witness structure Xi of a
subgraph of G as follows:

Wi Wj

Si

y

zx

Destroying ` witness structures Xi requires ` ≥ k + 1 contractions.
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Finding an empty set Si

B Suppose there are at most k sets Si of type 1.

B There are 2k + 1 sets Si in total.

B There are at least k + 1 sets Si of type 2.

Definition

A set Si is of type 1 if Si is non-empty and every vertex y ∈ Si
also belongs to some Sj with j 6= i. Otherwise, Si is of type 2.

B Each non-empty set Si of type 2 has a “private” S-vertex.

B Recall that |S| ≤ k.

B There is at least one set Si (of type 2) which is empty.

Let us assume that Si∗ = ∅.
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Finding an empty set Si

B Suppose there are at most k sets Si of type 1.

B There are 2k + 1 sets Si in total.
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Definition
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also belongs to some Sj with j 6= i. Otherwise, Si is of type 2.
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Finding an empty set Si

B Suppose there are at most k sets Si of type 1.

B There are 2k + 1 sets Si in total.

B There are at least k + 1 sets Si of type 2.

Definition

A set Si is of type 1 if Si is non-empty and every vertex y ∈ Si
also belongs to some Sj with j 6= i. Otherwise, Si is of type 2.

B Each non-empty set Si of type 2 has a “private” S-vertex.

B Recall that |S| ≤ k.

B There is at least one set Si (of type 2) which is empty.

Let us assume that Si∗ = ∅.
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Exploiting the fact that S ′i∗ = ∅

S

H

planar

Wi∗

S1

S2

S2k+1
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Finding and contracting an irrelevant edge within W ′
i∗

B Define 2k + 1 nested triple layers within subwall W ′i∗ .

B Contract the “middle” edge of W ′i∗ to obtain graph G′.

Claim

G is a yes-instance of k-Planar Contraction iff G′ is.
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Finding and contracting an irrelevant edge within W ′
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B Define 2k + 1 nested triple layers within subwall W ′i∗ .

B Contract the “middle” edge of W ′i∗ to obtain graph G′.
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Concluding remarks

Theorem (Abello, Klav́ık, Kratochv́ıl & Vyskočil; IPEC 2012)

Planar Contraction can be solved in f(k) · n2 time.

Further research:

1. Determine whether or not Planar Contraction admits a
polynomial kernel.

2. Determine the parameterized complexity of H-Contraction
for classes H that are H-minor free.
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That’s it!

Hvala vam!

Dank u wel!

Thank you!

Takk!
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