Reformulations of nonlinear binary optimization problems

Yves Crama
HEC Management School, University of Liège, Belgium

Koper, May 2018
Outline

1. Nonlinear 0-1 optimization
2. Quadratization
3. Symmetric functions
4. Upper bounds
5. Lower bounds
6. Conclusions
Pseudo-Boolean functions
A pseudo-Boolean function is a mapping $f : \{0, 1\}^n \rightarrow \mathbb{R}$, that is, a real-valued function of $0 – 1$ variables.
Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping \(f : \{0, 1\}^n \rightarrow \mathbb{R} \), that is, a real-valued function of 0 – 1 variables.

Multilinear polynomials

Every pseudo-Boolean function can be represented – in a unique way – as a \textit{multilinear polynomial} in its variables. (Note: \(x_k^2 = x_k \).)
Definitions

Pseudo-Boolean functions
A pseudo-Boolean function is a mapping \(f : \{0, 1\}^n \rightarrow \mathbb{R} \), that is, a real-valued function of 0 – 1 variables.

Multilinear polynomials
Every pseudo-Boolean function can be represented – in a unique way – as a multilinear polynomial in its variables. (Note: \(x_k^2 = x_k \).)

Example:
\[
f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3x_4 - 13x_1x_2x_3x_4
\]
Multilinear optimization in binary variables

\[
(MOB) \quad \min_{x \in \{0,1\}^n} f(x) = \sum_{S \subseteq [n]} a_S \prod_{k \in S} x_k
\]

Complexity

Given a multilinear polynomial \(f \) of degree at least 2, it is NP-hard to find the minimum of \(f \).

The quadratic case has attracted much attention: many examples arise in this form: \(M_\text{AX} \), \(M_\text{AX} \text{CT} \), \(M_\text{AX}^2 \text{S} \text{AT} \), simple computer vision models,...

Efficient exact algorithms and heuristics have been proposed for this case. Higher-degree cases can be efficiently reduced to the quadratic case, and this leads to good optimization algorithms.
Multilinear optimization in binary variables

\[
\text{(MOB)} \quad \min_{x \in \{0, 1\}^n} f(x) = \sum_{S \in 2^n} a_S \prod_{k \in S} x_k
\]

Complexity

Given a multilinear polynomial \(f \) of degree at least 2, it is NP-hard to find the minimum of \(f \).
Multilinear optimization in binary variables

$$(\text{MOB}) \quad \min_{x \in \{0, 1\}^n} f(x) = \sum_{S \in \mathcal{P}[n]} a_S \prod_{k \in S} x_k$$

Complexity

Given a multilinear polynomial f of degree at least 2, it is NP-hard to find the minimum of f.

The quadratic case has attracted much attention:

- many examples arise in this form: MAX CUT, MAX 2SAT, simple computer vision models, ...
- efficient exact algorithms and heuristics have been proposed for this case
- higher-degree cases can be efficiently reduced to the quadratic case, and this leads to good optimization algorithms.
Outline

1. Nonlinear 0-1 optimization
2. Quadratization
3. Symmetric functions
4. Upper bounds
5. Lower bounds
6. Conclusions
Observations

- Say $g(x, y)$, $(x, y) \in \{0, 1\}^{n+m}$, is a quadratic function.
Observations

- Say \(g(x, y), (x, y) \in \{0, 1\}^{n+m}, \) is a quadratic function.
- Then, for all \(x \in \{0, 1\}^n, \)

\[
f(x) := \min \{ g(x, y) \mid y \in \{0, 1\}^m \}
\]

is a pseudo-Boolean function.
Observations

- Say \(g(x, y), (x, y) \in \{0, 1\}^{n+m} \), is a quadratic function.
- Then, for all \(x \in \{0, 1\}^n \),

\[
f(x) := \min \{ g(x, y) \mid y \in \{0, 1\}^m \}
\]

is a pseudo-Boolean function.
- \(f(x) \) may be quadratic, or not.
Observations

- Say \(g(x, y), \ (x, y) \in \{0, 1\}^{n+m} \), is a quadratic function.
- Then, for all \(x \in \{0, 1\}^n \),

\[
f(x) := \min \{ g(x, y) \mid y \in \{0, 1\}^m \}
\]

is a pseudo-Boolean function.
- \(f(x) \) may be quadratic, or not.
- \(\min \{ f(x) \mid x \in \{0, 1\}^n \} = \min \{ g(x, y) \mid (x, y) \in \{0, 1\}^{n+m} \} \).
Observations

- Say $g(x, y), (x, y) \in \{0, 1\}^{n+m}$, is a quadratic function.
- Then, for all $x \in \{0, 1\}^n$,
 \[
 f(x) := \min\{g(x, y) \mid y \in \{0, 1\}^m\}
 \]
 is a pseudo-Boolean function.
- $f(x)$ may be quadratic, or not.
- $\min\{f(x) \mid x \in \{0, 1\}^n\} = \min\{g(x, y) \mid (x, y) \in \{0, 1\}^{n+m}\}$.
- Conversely...
The quadratic function $g(x, y), (x, y) \in \{0, 1\}^{n+m}$ is an m-quadratization of the pseudo-Boolean function $f(x), x \in \{0, 1\}^n$, if

$$f(x) = \min\{g(x, y) \mid y \in \{0, 1\}^m\} \quad \text{for all } x \in \{0, 1\}^n.$$

The y-variables are called auxiliary variables.
Quadratization

The quadratic function $g(x, y), (x, y) \in \{0, 1\}^{n+m}$ is an **m-quadratization** of the pseudo-Boolean function $f(x), x \in \{0, 1\}^n$, if

$$f(x) = \min\{g(x, y) \mid y \in \{0, 1\}^m\} \quad \text{for all} \ x \in \{0, 1\}^n.$$

The y-variables are called **auxiliary** variables.

- $\min\{f(x) \mid x \in \{0, 1\}^n\} = \min\{g(x, y) \mid (x, y) \in \{0, 1\}^{n+m}\}.$
The quadratic function $g(x, y), (x, y) \in \{0, 1\}^{n+m}$ is an m-quadratization of the pseudo-Boolean function $f(x), x \in \{0, 1\}^n$, if

$$f(x) = \min\{g(x, y) \mid y \in \{0, 1\}^m\} \quad \text{for all } x \in \{0, 1\}^n.$$

The y-variables are called auxiliary variables.

- $\min\{f(x) \mid x \in \{0, 1\}^n\} = \min\{g(x, y) \mid (x, y) \in \{0, 1\}^{n+m}\}$.
- Akin to linearization procedures for MOB.
The quadratic function $g(x, y), (x, y) \in \{0, 1\}^{n+m}$ is an m-quadratization of the pseudo-Boolean function $f(x), x \in \{0, 1\}^n$, if

$$f(x) = \min\{g(x, y) \mid y \in \{0, 1\}^m\} \quad \text{for all} \ x \in \{0, 1\}^n.$$

The y-variables are called auxiliary variables.

- $\min\{f(x) \mid x \in \{0, 1\}^n\} = \min\{g(x, y) \mid (x, y) \in \{0, 1\}^{n+m}\}$.
- Akin to linearization procedures for MOB.
- Does every function f have a quadratization?
Given the multilinear expression of a pseudo-Boolean function $f(x), x \in \{0, 1\}^n$, one can find in polynomial time a quadratization $g(x, y)$ of $f(x)$.

Idea: in each term $\prod_{i \in A} x_i$ of f, with $\{1, 2\} \subseteq A$, replace the product $x_1 x_2$ by y:

$$t(x, y) = \left(\prod_{i \in A \setminus \{1, 2\}} x_i \right) y + M (x_1 x_2 - 2x_1 y - 2x_2 y + 3y).$$
Example:

$$\min_{x} f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1 x_2 + 13x_1 x_3 + 6x_2 x_3 x_4 - 13x_1 x_2 x_3 x_4$$

Substitute $x_3 x_4$:

$$\min_{x,y} \quad 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1 x_2 + 13x_1 x_3 + 6x_2 y_{34} - 13x_1 x_2 y_{34} + M(x_3 x_4 - 2x_3 y_{34} - 2x_4 y_{34} + 3y_{34})$$
Example:

$$\min_x f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3x_4 - 13x_1x_2x_3x_4$$

Substitute x_3x_4:

$$\min_{x,y} \quad 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2y_{34} - 13x_1x_2y_{34} + M(x_3x_4 - 2x_3y_{34} - 2x_4y_{34} + 3y_{34})$$

In a minimizer (x, y),

- if $x_3 = x_4 = 1$, then $M(1 - y_{34}) = 0$ and $y_{34} = x_3x_4 = 1$;
- if $x_3 = 0$, then $M(-2x_4y_{34} + 3y_{34}) = 0$ and $y_{34} = x_3x_4 = 0$.
Example:

\[\min_x f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3x_4 - 13x_1x_2x_3x_4 \]

Substitute \(x_3x_4 \):

\[\min_{x,y} 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2y_34 - 13x_1x_2y_34 + M(x_3x_4 - 2x_3y_34 - 2x_4y_34 + 3y_34) \]
Example:

\[\min_x f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3x_4 - 13x_1x_2x_3x_4 \]

Substitute \(x_3x_4 \):

\[\min_{x,y} \ 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2y_{34} - 13x_1x_2y_{34} + M(x_3x_4 - 2x_3y_{34} - 2x_4y_{34} + 3y_{34}) \]

Substitute \(x_1x_2 \):

\[\min \ 4 - 9x_1 - 5x_2 - 2x_3 + 13y_{12} + 13x_1x_3 + 6x_2y_{34} - 13y_{12}y_{34} + M(x_3x_4 - 2x_3y_{34} - 2x_4y_{34} + 3y_{34}) + M(x_1x_2 - 2x_1y_{12} - 2x_2y_{12} + 3y_{12}) \]
Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function $f(x)$, $x \in \{0, 1\}^n$, one can find in polynomial time a quadratization $g(x, y)$ of $f(x)$.

- Idea: in each term $\prod_{i \in A} x_i$ of f, with $\{1, 2\} \subseteq A$, replace the product $x_1 x_2$ by y:
 $$t(x, y) = \left(\prod_{i \in A \setminus \{1, 2\}} x_i \right) y + M(x_1 x_2 - 2x_1 y - 2x_2 y + 3y).$$
- Fix x. In every minimizer of $t(x, y)$, $y = x_1 x_2$ and $t(x, y) = \prod_{i \in A} x_i$.
- Potential drawbacks: introduces many auxiliary variables, big M.

Questions arising...

- Many quadratization procedures proposed in recent years. Which ones are “best”? Small number of variables, of positive terms, good properties with respect to persistencies, submodularity?
- Easier question: What if f is a single monomial?
- Can we characterize all quadratizations of f?
- How many variables are needed in a quadratization?
- etc.

Refs: Boros and Gruber (2011); Buchheim and Rinaldi (2007); Fix, Gruber, Boros and Zabih (2011); Freedman and Drineas (2005); Ishikawa (2011); Kolmogorov and Zabih (2004); Ramalingam et al. (2011); Rosenberg (1975); Rother et al. (2009); Živný, Cohen and Jeavons (2009); etc.
Focus of the presentation:

lower and upper bounds on size of quadratizations
the case of symmetric functions
M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratic reformulations of nonlinear binary optimization problems, Mathematical Programming 162 (2017) 115-144.
Focus of the presentation:

- lower and upper bounds on size of quadratizations
Outline

Focus of the presentation:

- lower and upper bounds on size of quadratizations
- the case of symmetric functions
Focus of the presentation:

- lower and upper bounds on size of quadratizations
- the case of symmetric functions

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratic reformulations of nonlinear binary optimization problems *Mathematical Programming* 162 (2017) 115-144.

Outline

1. Nonlinear 0-1 optimization
2. Quadratization
3. Symmetric functions
4. Upper bounds
5. Lower bounds
6. Conclusions
General question

- How many auxiliary variables are needed in general?

Worst-case bound based on termwise quadratizations:

Observation

Every term of the form $a \prod_{i=1}^{n} x_i$ can be quadratized using $n - 2$ auxiliary variables (Rosenberg 1975), and even $\lfloor \frac{n - 1}{2} \rfloor$ auxiliary variables (Ishikawa 2011).

So:

Ishikawa (2011)

Every n-variable pBF has a quadratization involving $\lfloor \frac{n - 1}{2} \rfloor^2$ auxiliary variables.

Best known bound, until recently.

Digression...
General question

- How many auxiliary variables are needed in general?
- Worst-case bound based on termwise quadratizations:
General question

- How many auxiliary variables are needed in general?
- Worst-case bound based on termwise quadratizations:

Observation

Every term of the form \(a \prod_{i=1}^{n} x_i \) can be quadratized using \(n - 2 \) auxiliary variables (Rosenberg 1975), and even \(\left\lfloor \frac{n-1}{2} \right\rfloor \) auxiliary variables (Ishikawa 2011).
General question

- How many auxiliary variables are needed in general?
- Worst-case bound based on termwise quadratizations:

Observation

Every term of the form $a \prod_{i=1}^{n} x_i$ can be quadratized using $n - 2$ auxiliary variables (Rosenberg 1975), and even $\left\lfloor \frac{n-1}{2} \right\rfloor$ auxiliary variables (Ishikawa 2011).

So:

Ishikawa (2011)

Every n-variable pBF has a quadratization involving $\left\lfloor \frac{n-1}{2} \right\rfloor 2^n$ auxiliary variables.
Symmetric functions

General question

- How many auxiliary variables are needed in general?
- Worst-case bound based on termwise quadratizations:

Observation

Every term of the form $a \prod_{i=1}^{n} x_i$ can be quadratized using $n - 2$ auxiliary variables (Rosenberg 1975), and even $\left\lfloor \frac{n-1}{2} \right\rfloor$ auxiliary variables (Ishikawa 2011).

So:

Ishikawa (2011)

Every n-variable pBF has a quadratization involving $\left\lfloor \frac{n-1}{2} \right\rfloor 2^n$ auxiliary variables.

- Best known bound, until recently.
- Digression...
The case of symmetric functions

A pseudo-Boolean function f is symmetric if the value of $f(x)$ depends only on the Hamming weight $|x| = \sum_{j=1}^{n} x_j$ (number of ones) of x.

That is, there is a discrete function $k : \{0, 1, \ldots, n\} \rightarrow \mathbb{R}$ such that $f(x) = k(w)$ where $w = |x|$.

Examples:

- **Monomials**: $a \prod_{i=1}^{n} x_i = ax_1 \ldots x_n$.
- **At least k-out-of-n function**: takes value 1 if and only if $|x| \geq k$.
- **Parity function**: takes value 1 if and only if $|x|$ is even.
Upper bounds for symmetric functions

- How many auxiliary variables are needed to quadratize a symmetric function?

\[N_n(x) = \min_{y} \left(n - 1 - \sum_{i=1}^{n} x_i \right) y. \]

\[P_n(x) = \prod_{i=1}^{n} x_i. \]

(Ishikawa 2011)

(Fixed 2011) \(n - 1 \) variables suffice for any symmetric function.

Based on ad hoc arguments.

In DAM (2016), we proposed a generic approach based on a general representation theorem for discrete functions.
How many auxiliary variables are needed to quadratize a symmetric function?

Negative monomial: $N_n(x) = - \prod_{i=1}^{n} x_i = -x_1 \ldots x_n$.

(Freedman and Drineas 2005) $N_n(x) = \min_y (n - 1 - \sum_{i=1}^{n} x_i)y$.

Positive monomial: $P_n(x) = \prod_{i=1}^{n} x_i = x_1 \ldots x_n$.

(Ishikawa 2011) P_n can be quadratized using $\lfloor n - 1 \rfloor$ auxiliary variables.

(Fix 2011) $n - 1$ variables suffice for any symmetric function.

Based on ad hoc arguments.

In DAM (2016), we proposed a generic approach based on a general representation theorem for discrete functions.
Upper bounds for symmetric functions

- How many auxiliary variables are needed to quadratize a symmetric function?

- Negative monomial: $N_n(x) = - \prod_{i=1}^{n} x_i = -x_1 \ldots x_n$.
- (Freedman and Drineas 2005) $N_n(x) = \min_y (n - 1 - \sum_{i=1}^{n} x_i)y$.
- Positive monomial: $P_n(x) = \prod_{i=1}^{n} x_i = x_1 \ldots x_n$.

(Fix 2011) $n - 1$ variables suffice for any symmetric function.

Based on ad hoc arguments.

In DAM (2016), we proposed a generic approach based on a general representation theorem for discrete functions.
Upper bounds for symmetric functions

- How many auxiliary variables are needed to quadratize a symmetric function?

- Negative monomial: $N_n(x) = - \prod_{i=1}^{n} x_i = -x_1 \ldots x_n$.
 - (Freedman and Drineas 2005) $N_n(x) = \min_y (n - 1 - \sum_{i=1}^{n} x_i)y$.

- Positive monomial: $P_n(x) = \prod_{i=1}^{n} x_i = x_1 \ldots x_n$.
 - (Ishikawa 2011) P_n can be quadratized using $\left\lfloor \frac{n-1}{2} \right\rfloor$ auxiliary variables.
Upper bounds for symmetric functions

- How many auxiliary variables are needed to quadratize a symmetric function?

 Negative monomial: $N_n(x) = -\prod_{i=1}^{n} x_i = -x_1 \ldots x_n$.
 (Freedman and Drineas 2005) $N_n(x) = \min_y \left(n - 1 - \sum_{i=1}^{n} x_i \right) y$.

 Positive monomial: $P_n(x) = \prod_{i=1}^{n} x_i = x_1 \ldots x_n$.
 (Ishikawa 2011) P_n can be quadratized using $\left\lfloor \frac{n-1}{2} \right\rfloor$ auxiliary variables.

 (Fix 2011) $n - 1$ variables suffice for any symmetric function.
Upper bounds for symmetric functions

- How many auxiliary variables are needed to quadratize a symmetric function?

- Negative monomial: \(N_n(x) = - \prod_{i=1}^{n} x_i = -x_1 \ldots x_n \).

 (Freedman and Drineas 2005) \(N_n(x) = \min_y (n - 1 - \sum_{i=1}^{n} x_i) y \).

- Positive monomial: \(P_n(x) = \prod_{i=1}^{n} x_i = x_1 \ldots x_n \).

 (Ishikawa 2011) \(P_n \) can be quadratized using \(\left\lfloor \frac{n-1}{2} \right\rfloor \) auxiliary variables.

- (Fix 2011) \(n - 1 \) variables suffice for any symmetric function.

- Based on ad hoc arguments.

- In *DAM* (2016), we proposed a generic approach based on a general representation theorem for discrete functions.
Assume: $k \geq \frac{n}{2}$.
Recent improvements: Boros, Crama, Rodríguez-Heck (2018).

Assume: \(k \geq \frac{n}{2} \).

<table>
<thead>
<tr>
<th>Function</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Previous UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td>(\Omega(\sqrt{n}))</td>
<td>(2\lceil \sqrt{n+1} \rceil)</td>
<td>(n - 2)</td>
</tr>
<tr>
<td>Positive monomial</td>
<td>(\lceil \log(n) \rceil - 1)</td>
<td>(\lceil \log(n) \rceil - 1)</td>
<td>(\lceil \frac{n-1}{2} \rceil)</td>
</tr>
<tr>
<td>(k)-out-of-(n)</td>
<td>(\lceil \log(k) \rceil - 1)</td>
<td>(\lceil \log(k) \rceil)</td>
<td>(\lceil \frac{n}{2} \rceil)</td>
</tr>
<tr>
<td>Parity</td>
<td>(\lceil \log(n) \rceil - 1)</td>
<td>(\lceil \log(n) \rceil - 1)</td>
<td>(\lceil \frac{n-1}{2} \rceil)</td>
</tr>
</tbody>
</table>
Basic idea:

Positive monomial: upper bound

Assume that $n = 2^k$. Then,

$$g(x, y) = \left(\sum_{i=1}^{n} x_i - \sum_{j=0}^{k-1} 2^j y_j \right)^2$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^{n} x_i$ using $k = \log(n)$ auxiliary variables.

Proof. (Sketch.) For all (x, y), $g(x, y) \geq 0$ and $0 \leq \sum_{j=0}^{k-1} 2^j y_j \leq n - 1$. If $\sum_{i=1}^{n} x_i < n$, then one can make $g(x, y) = 0$. If $\sum_{i=1}^{n} x_i = n$, then $\min_y g(x, y) = 1$.
Refinement:

Positive monomial: improved upper bound

Assume that $n = 2^k$. Then,

$$g(x, y) = \frac{1}{2} \left(\sum_{i=1}^{n} x_i - \sum_{j=1}^{k-1} 2^j y_j \right) \left(\sum_{i=1}^{n} x_i - \sum_{j=1}^{k-1} 2^j y_j - 1 \right)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^{n} x_i$ using $k - 1 = \log(n) - 1$ auxiliary variables.

We also have a matching lower bound.
Every quadratization of the positive monomial $P_n(x) = \prod_{i=1}^{n} x_i$ must use at least $\log(n) - 1$ auxiliary variables.
Positive monomial: lower bound

Every quadratization of the positive monomial $P_n(x) = \prod_{i=1}^{n} x_i$ must use at least $\log(n) - 1$ auxiliary variables.

Proof. (Sketch.) For a quadratization $g(x, y)$, define $r(x) = \prod_{y \in \{0,1\}^m} g(x, y)$.

- The degree of $r(x)$, $\text{deg}(r)$, is at most 2^{m+1}, by definition.
- For every x with $|x| < n$, there is $y \in \{0,1\}^m$ such that $g(x, y) = 0$. So, $r(x) = 0$.
- When $|x| = n$, $g(x, y) \geq 1$ for all $y \in \{0,1\}^m$, and hence $r(x) \geq 1$.
- It follows that $\text{deg}(r) = n$
- We get: $\text{deg}(r) = n \leq 2^{m+1}$.
Similar ideas and bounds extend to \(k \)-out-of-\(n \) (“exact” or “at least”) and to parity functions.
Similar ideas and bounds extend to k-out-of-n ("exact" or "at least") and to parity functions.

For symmetric functions:

General symmetric functions: Lower bound

- Some symmetric functions have no m-quadratization using less than \sqrt{n} auxiliary variables. (Anthony, Boros, Crama, Gruber 2017).
- Every symmetric function has a quadratization using at most $2\lceil \sqrt{n} + 1 \rceil$ auxiliary variables. (Boros, Crama, Rodríguez-Heck 2018.)
Similar ideas and bounds extend to k-out-of-n (“exact” or “at least”) and to parity functions.

For symmetric functions:

General symmetric functions: Lower bound

- Some symmetric functions have no m-quadratization using less than \sqrt{n} auxiliary variables. (Anthony, Boros, Crama, Gruber 2017).

- Every symmetric function has a quadratization using at most $2\left\lceil \sqrt{n} + 1 \right\rceil$ auxiliary variables. (Boros, Crama, Rodrìguez-Heck 2018.)

Note: Proofs rely on techniques developed for the analysis of the size of threshold circuits, and of slicing or covering of the vertices of the hypercube by hyperplanes (work by Alon, Füredi, Linial, Radhakrishnan, Saks, etc.)
Upper bound

- Worst-case bound based on termwise quadratizations:

Corollary

Every function f of n variables has a quadratization involving at most $O(\log(n) 2^n)$ auxiliary variables.
Worst-case bound based on termwise quadratizations:

Corollary
Every function f of n variables has a quadratization involving at most $O(\log(n) 2^n)$ auxiliary variables.

We can prove:

Theorem: upper bound (Math. Prog. (2017))
Every function f of n variables has a quadratization involving at most $O(2^{n/2})$ auxiliary variables.
Pairwise cover

Based on a construction using small *pairwise covers*:

A hypergraph \(\mathcal{H} \) is a *pairwise cover* of \(\{1, \ldots, n\} \) if, for every \(S \subseteq \{1, \ldots, n\} \) with \(|S| \geq 3 \), there are sets \(A, B \in \mathcal{H} \) such that \(|A| < |S|, |B| < |S| \) and \(A \cup B = S \).

- Pairwise covers are (almost) identical to so-called 2-*bases* investigated by Erdös, Füredi and Katona (2006), Frein, Lévêque and Sebő (2008), Ellis and Sudakov (2011).
Pairwise cover

Based on a construction using small *pairwise covers*:

A hypergraph \(\mathcal{H} \) is a *pairwise cover* of \(\{1, \ldots, n\} \) if, for every \(S \subseteq \{1, \ldots, n\} \) with \(|S| \geq 3 \), there are sets \(A, B \in \mathcal{H} \) such that \(|A| < |S|, |B| < |S| \) and \(A \cup B = S \).

- Pairwise covers are (almost) identical to so-called 2-*bases* investigated by Erdös, Füredi and Katona (2006), Frein, Lévêque and Sebö (2008), Ellis and Sudakov (2011).
- \(\mathcal{P}(\text{even}) = \) all subsets of even integers in \(\{1, \ldots, n\} \).
- \(\mathcal{P}(\text{odd}) = \) all subsets of odd integers in \(\{1, \ldots, n\} \).
- \(\mathcal{H} = \mathcal{P}(\text{even}) \cup \mathcal{P}(\text{odd}) \) is a “small” pairwise cover with size \(O(2^{n/2}) \).
We prove:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of \(\{1, \ldots, n\} \) of size \(m \), then every pseudo-Boolean function has an \(m \)-quadratization.

Idea of the proof: write \(\prod_{i \in S} x_i = (\prod_{j \in A} x_j)(\prod_{k \in B} x_k) \); substitute \(y_A \) for \(\prod_{j \in A} x_j \) and \(y_B \) for \(\prod_{k \in B} x_k \).

There are pairwise covers with size \(O(2^{n/2}) \).

Hence, every pseudo-Boolean function has a quadratization with \(O(2^{n/2}) \) auxiliary variables.
We prove:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of \(\{1, \ldots, n\} \) of size \(m \), then every pseudo-Boolean function has an \(m \)-quadratization.

Idea of the proof: write \(\prod_{i \in S} x_i = (\prod_{j \in A} x_j)(\prod_{k \in B} x_k) \); substitute \(y_A \) for \(\prod_{j \in A} x_j \) and \(y_B \) for \(\prod_{k \in B} x_k \).
We prove:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of \(\{1, \ldots, n\}\) of size \(m\), then every pseudo-Boolean function has an \(m\)-quadratization.

- Idea of the proof: write \(\prod_{i \in S} x_i = (\prod_{j \in A} x_j)(\prod_{k \in B} x_k)\); substitute \(y_A\) for \(\prod_{j \in A} x_j\) and \(y_B\) for \(\prod_{k \in B} x_k\).
- There are pairwise covers with size \(O(2^{n/2})\).
We prove:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of \(\{1, \ldots, n\} \) of size \(m \), then every pseudo-Boolean function has an \(m \)-quadratization.

- Idea of the proof: write \(\prod_{i \in S} x_i = (\prod_{j \in A} x_j)(\prod_{k \in B} x_k) \); substitute \(y_A \) for \(\prod_{j \in A} x_j \) and \(y_B \) for \(\prod_{k \in B} x_k \).
- There are pairwise covers with size \(O(2^{n/2}) \).
- Hence, every pseudo-Boolean function has a quadratization with \(O(2^{n/2}) \) auxiliary variables.
Similarly:

Fixed-degree functions

For every fixed d, every pseudo-Boolean function of degree d has a quadratizations with $O(n^{d/2})$ auxiliary variables.
Outline

1. Nonlinear 0-1 optimization
2. Quadratization
3. Symmetric functions
4. Upper bounds
5. Lower bounds
6. Conclusions
Any good lower bound on the number of auxiliary variables?
Any good lower bound on the number of auxiliary variables?

Theorem: lower bound (*Math. Prog. (2017)*)

There are pseudo-Boolean functions of n variables for which every quadratization must involve at least $\Omega(2^{n/2})$ auxiliary variables.
Any good lower bound on the number of auxiliary variables?

Theorem: lower bound (Math. Prog. (2017))

There are pseudo-Boolean functions of n variables for which every quadratization must involve at least $\Omega(2^{n/2})$ auxiliary variables.

- This lower bound matches the $O(2^{n/2})$ upper bound.
- Non constructive proof based on dimensionality argument: if too few auxiliary variables, then we cannot generate the whole vector space of pseudo-Boolean functions.
Proof

Main idea: dimensionality argument.

- Suppose $f(x)$ has an m-quadratization $g(x, y)$: for all $x \in \{0, 1\}^n$,
 \[f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\}. \]
 (1)

- $g(x, y)$ has $O(n^2 + m^2)$ coefficients.
- But the vector space of pseudo-Boolean functions on n variables has dimension 2^n.
- So, if m is too small, we cannot generate the whole vector space.
- It follows that if m additional variables suffice to quadratize any pseudo-Boolean function in n variables, then m is $\Omega(2^{n/2})$.

Must be refined, since the relation (1) is not linear.
Almost all functions...

Almost all pBFs need at least $\Omega(2^{n/2})$ auxiliary variables to be quadratized.
Almost all functions...

Almost all pBFs need at least $\Omega(2^{n/2})$ auxiliary variables to be quadratized.

- But no good lower bound for any specific function...
Almost all functions...

Almost all pBFs need at least $\Omega(2^{n/2})$ auxiliary variables to be quadratized.

- But no good lower bound for any specific function...
- We have seen earlier that pBFs of degree d can be quadratized using $O(n^{d/2})$ auxiliary variables.
Almost all functions...

Almost all pBFs need at least $\Omega(2^{n/2})$ auxiliary variables to be quadratized.

- But no good lower bound for any specific function...
- We have seen earlier that pBFs of degree d can be quadratized using $O(n^{d/2})$ auxiliary variables.

Fixed-degree functions

For every fixed d, there are degree-d pseudo-Boolean functions of n variables for which any quadratization must involve at least $\Omega(n^{d/2})$ auxiliary variables.
Almost all functions...

Almost all pBFs need at least $\Omega(2^{n/2})$ auxiliary variables to be quadratized.

But no good lower bound for any specific function...

We have seen earlier that pBFs of degree d can be quadratized using $O(n^{d/2})$ auxiliary variables.

Fixed-degree functions

For every fixed d, there are degree-d pseudo-Boolean functions of n variables for which any quadratization must involve at least $\Omega(n^{d/2})$ auxiliary variables.
All quadratization procedures considered here can be implemented in time polynomial in n and t, where t is the number of terms of the function.
Comments and interpretation

- All quadratization procedures considered here can be implemented in time polynomial in n and t, where t is the number of terms of the function.
- All termwise procedures require $\Omega(\log(n) t)$ auxiliary variables (compare with t auxiliary variables for linearization).
Comments and interpretation

- All quadratization procedures considered here can be implemented in time polynomial in n and t, where t is the number of terms of the function.
- All termwise procedures require $\Omega(\log(n) t)$ auxiliary variables (compare with t auxiliary variables for linearization).
- Since almost all functions contain $\Omega(2^n)$ terms, termwise quadratization usually requires $\Omega(\log(n) 2^n)$ auxiliary variables.
All quadratization procedures considered here can be implemented in time polynomial in n and t, where t is the number of terms of the function.

All termwise procedures require $\Omega(\log(n) t)$ auxiliary variables (compare with t auxiliary variables for linearization).

Since almost all functions contain $\Omega(2^n)$ terms, termwise quadratization usually requires $\Omega(\log(n) 2^n)$ auxiliary variables.

Our results improve this from $\Omega(\log(n) 2^n)$ to $\Omega(2^{n/2})$ auxiliary variables (or from $\Omega(\log(n) n^d)$ to $\Omega(n^{d/2})$ for degree-d functions).
Comments and interpretation

- All quadratization procedures considered here can be implemented in time polynomial in n and t, where t is the number of terms of the function.
- All termwise procedures require $\Omega(\log(n) \cdot t)$ auxiliary variables (compare with t auxiliary variables for linearization).
- Since almost all functions contain $\Omega(2^n)$ terms, termwise quadratization usually requires $\Omega(\log(n) \cdot 2^n)$ auxiliary variables.
- Our results improve this from $\Omega(\log(n) \cdot 2^n)$ to $\Omega(2^{n/2})$ auxiliary variables (or from $\Omega(\log(n) \cdot n^d)$ to $\Omega(n^{d/2})$ for degree-d functions).
- Our quadratization procedure based on pairwise covers probably yields small quadratizations as a function of t as well, but we have no generic bounds in this case.
Outline

1. Nonlinear 0-1 optimization
2. Quadratization
3. Symmetric functions
4. Upper bounds
5. Lower bounds
6. Conclusions
Conclusions

- Tight lower and upper bound for special classes of functions (e.g., for positive monomials).
- Tight lower and upper bounds on the number of auxiliary variables required for arbitrary and for fixed-degree functions.
- Structure and properties of quadratizations are poorly understood.
- Computational tests show that pairwise covers yield good quadratizations and efficient approaches for certain classes of nonlinear problems, but linearization remains competitive in most cases.
- Many intriguing questions and conjectures, much computational and theoretical work to be done.
Additional references

Additional references

