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Reconfiguration graphs

Given an instance of any combinatorial search problem

(colouring, independent set, clique . . . ), define the

reconfiguration graph:

the vertex set is the set of all feasible solutions;

the edge relation typically relates solutions that are “close”

(eg. their symmetric difference is size one).
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Example: Reconfiguration graphs of vertex colourings

Given an instance of 3-colouring,

each feasible solution is a vertex of the

reconfiguration graph,

and pairs of solutions are joined by an

edge if they differ in colour on exactly one vertex.
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Reconfiguration graph of 3-colourings of C5
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Terminology

If two colourings differ only on a vertex v (so there is an

edge between them in the reconfiguration graph), then we

say v can be recoloured.

A sequence of recolourings corresponds to a path in the

reconfiguration graph.

The available colours at a vertex are those that do not

appear on any of its neighbours.
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When is the reconfiguration graph connected?

There is no bound b(χ) such that, for all graphs G, for all
integers k ≥ b(χ(G)), the reconfiguration graph of k -colourings
of G is connected.

...

...
...

...
...

...

This colouring of Kn,n − I with n colours is frozen (it is a isolated
vertex in the reconfiguration graph)
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3-Colourings of Cycles

1

2

12

3 To describe a 3-colouring of a
cycle we orient the cycle, and
put weights on the edges.

1 2

2 3

3 1

have weight 1

2 1

3 2

1 3

have weight -1

The weight of a 3-coloured oriented cycle is the sum of the
weights of its edges.
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3-Colourings of Cycles

Compare the weights of cycles under 3-colourings that are
adjacent in the reconfiguration graph; that is, colourings that
differ on only one vertex.

1

33

2

33

Both neighbours must have the same colour.
So the incident edges have opposite sign, and their
combined weight is zero in both colourings.
3-colourings in the same component of the reconfiguration
graph of a cycle have the same weight.
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Reconfiguration graphs of 3-colourings

Proposition

The reconfiguration graph of 3-colourings of any 3-chromatic

graph is not connected.

A 3-chromatic graph G contains a cycle C with an odd

number of vertices.

For some 3-colouring of G, fix an orientation of C. Let w

be the weight of C. Notice that w 6= 0.

Obtain a new colouring by exchanging colours 1 and 2.

The weight of C is −w .

Thus these two colourings belong to different components

of the reconfiguration graph.
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k -Chromatic Graphs

For k ≥ 4, there are k -chromatic graphs that have
reconfiguration graphs that are not connected (complete
graphs, for example), but also k -chromatic graphs that have
connected reconfiguration graphs; for example:

K
k
- e K

k
- e
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Proposition

For k ≥ 2, ` ≥ k there are k-chromatic graphs whose

`-colourings reconfiguration graphs are not connected, but also

k-chromatic graphs that have connected `-colourings

reconfiguration graphs unless k = ` = 2 or k = ` = 3.

Theorem (Cereceda, van den Heuvel, MJ 2006)

Deciding whether the reconfiguration graph of 3-colourings of a

bipartite graph is connected is coNP-complete. (There is a

polynomial-time algorithm for planar graphs.)

The complexity of deciding whether reconfiguration graphs of
k -colourings are connected is open for k ≥ 4.
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Reconfiguration problem

The reconfiguration problem is to decide whether two

solutions belong to the same component of the

reconfiguration graph?

Let’s start with 3-colourings: we know that the colourings

induce weights on cycles and that recolouring vertices

cannot change the weight. So two colourings belong to the

same component only if every cycle has the same weight

in both colourings.

Is this condition sufficient?

Can it be checked (in polynomial time)?
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Locked Vertices

A vertex v in a graph coloured with α is locked if it has the
same colour in every colouring in the same component as α of
the reconfiguration graph of 3-colouring.

1

2 3

1
2

3

1

2

3

2

1

3 1
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Fixed Paths

If a path joins two locked vertices then it is a fixed path: no
sequence of recolourings will change the weight of the path
(the weight of a path is the sum of the weights of its edges
under some orientation of the path).

1

2 3

1
2

3

1

1

2

2 1

3
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Theorem (Cereceda, van den Heuvel, MJ 2008)

Two colourings α and β of a graph G on n vertices and m
edges belong to the same component of the reconfiguration
graph of the 3-colourings of G if and only if

every oriented cycle and fixed path of G has the same
weight under α and β, and
the locked vertices of G are the same — and have the
same colours — under α and β.

There is an O(n2) algorithm that will either find a path from α
to β or exhibit one of these obstacles.
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Finding Locked Vertices

To find the locked vertices of a 3-coloured graph:

Let B1, B2 and B3 be three sets of vertices initially equal to

the colour classes.

Remove a vertex from Bi if it is not adjacent to both a

vertex in Bj and a vertex in Bk (i , j , k distinct)

Continue removing vertices as long as possible.

The vertices that remain in B1, B2 and B3 are locked.
This process can be done using a modified breadth-first search
in time O(m).
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Algorithm for connecting 3-colourings

If two colourings α and β of G have the same set of locked

vertices (and they are coloured alike), then identify

like-coloured locked vertices (so there are three locked

vertices which induce K3).

This transforms fixed-weight paths into cycles — so now

the only obstacle is cycles of different weights.
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Algorithm for connecting 3-colourings

Aim: to recolour from α to β

We can assume G has 0 or 3 locked vertices and that it is

connected.

Let M be a connected set of vertices on which α and β

agree (assume M contains the locked vertices).

Let u be a vertex adjacent to M with α(u) 6= β(u).

Our approach is to recolour so that u is coloured with β(u) and
no vertex in M is recoloured.
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Algorithm for connecting 3-colourings

1

2 3

M

1
2

α

1

2 3

M

1
3

β

Assume α(u) = 2, β(u) = 3; so all the vertices in M

adjacent to u are coloured 1.

Want to recolour from α so that u is coloured 3 (and the

colours in M don’t change).
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Algorithm for connecting 3-colourings

1

2 3

M

1
2

α

3

3

3

1

1

1

2

2

2

From u, do a depth-first
search: from each vertex v
look for vertices w such that
α(w) = α(v) + 1 mod 3

If at some point in the search a vertex in M is found, then we

can find a cycle whose weight is different under α and β.
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Algorithm for connecting 3-colourings

1

2 3

M

1
2

α

3

3

3

1

1

1

2

2

2

From u, do a depth-first
search: from each vertex v
look for vertices w such that
α(w) = α(v) + 1 mod 3

During the search a vertex cannot find its descendant as this

would imply a cycle of locked vertices outside M.
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Algorithm for connecting 3-colourings

1

2 3

M

1
2

α

3

3

3

1

1

1

2

2

2

From u, do a depth-first
search: from each vertex v
look for vertices w such that
α(w) = α(v) + 1 mod 3

Use the depth-first tree obtained to recolour u but not M.

Visit the vertices in the order that they were finished by the

search and increase the colour by 1 mod 3.
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More than 3 colours

Theorem (Bonsma and Cereceda 2008)

Deciding whether two colourings are in the same component of

the reconfiguration graph of k colourings is PSPACE-complete

for k ≥ 4.

Restriction to bipartite graphs is also PSPACE-complete

(and to planar graphs for k ∈ {4,5,6}).

There are reconfiguration graphs of k -colourings with

superpolynomial diameter.
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Reconfigurations of colourings of chordal graphs

A graph is chordal if it has no induced cycle of length more
than 3.

Theorem (Bonamy, MJ, Lignos, Paulusma, Patel 2010)

For any chordal graph G on n vertices with chromatic number k,

for all ` ≥ k + 1, the reconfiguration graph for `-colourings of G

is connected with diameter at most 2n2, and paths between

pairs of `-colourings can be found in polynomial time.

More generally . . .
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Definition

A graph G is k -colour-dense if either

(i) it is the disjoint union of cliques each with at most k
vertices, or

(ii) it has a separator S such that G − S has components D1

and D2 with vertices u ∈ D1 and v ∈ D2 and
(a) |VD1 | ≤ max{1, k − |S|},
(b) S ⊆ N(v), and
(c) identifying u and v results in a k -colour-dense graph.

Theorem (Bonamy, MJ, Lignos, Paulusma, Patel 2010)

For any k-colour-dense graph G on n vertices, for all ` ≥ k + 1,
the diameter of the reconfiguration graph for `-colourings of G
is at most 2n2.
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Shortest paths between colourings

SHORTEST PATH RECONFIGURATION
Instance: graph G, k -colourings α and β, positive integer `
Question: Is there a path between α and β in the reconfigura-
tion graph of k -colourings of length at most `?

Theorem (MJ, Kratsch, Kratsch, Patel, Paulusma 2014)

There is an algorithm for Shortest Path Reconfiguration with
running time O((k`)`

2+` · `n2 (fixed-parameter tractable)

24 / 28



Algorithmic approach

The aim is to find a path in the reconfiguration graph from

α to β of length at most ` — that is, a sequence of

k -colourings α = c0, c1, . . . , c` = β such that each

colouring differs from the last on at most one vertex.

First observation: If α and β differ on more than ` vertices

there is no path.

Second observation: If a vertex v has more than `

neighbours of colour q, then v will not be coloured q in

any ci .
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Lemma

There is a set A∗ of size at most ` · (k`)` such that the colours

of all vertices not in A∗ are fixed on a shortest path from α to β.

The idea is that to recolour a vertex with α(v) 6= β(v) we

first have to recolour its neighbours.

This argument cascades for ` steps, but the number of

neighbours considered is bounded.

Then use brute force to search for a sequence of ` recolourings
of vertices of A∗.
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Theorem (MJ, Kratsch, Kratsch, Patel, Paulusma 2014)

For k = 3, there is an polynomial-time algorithm for Shortest

Path Reconfiguration

We already saw an algorithm to find a path between

3-colourings. This path finds the shortest path unless there

are no locked vertices.

If there are locked vertices, the problem is where to start

the algorithm: we showed that the optimal path could be a

found from few guesses.
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Open problems

What is the complexity of deciding whether the

reconfiguration graph of k -colourings is connected, k ≥ 4.

How many extra colours do you need to connect a pair of

k -colourings.

What is the complexity of finding a path between a pair of

solutions of, say, the Travelling Salesman Problem.
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