Graph Isomorphism problem, Weisfeiler-Leman algorithm and coherent configurations

M. Muzychuk

Netanya Academic College, Israel

University of Primorska, Koper Slovenia, February 2015

Content

Graph isomorphism problem and Weisfeiler-Leman algorithm.

(ロ)、(型)、(E)、(E)、 E) の(の)

- Coherent configurations and coherent (cellular) algebras.
- Association schemes.

References. Coherent configurtion and algebras

- [Hig70] D. G. Higman, Coherent configurations I, Rend. Sem. Mat. Univ. Padova 44(1970), 1-25
- [Hig87] D. G. Higman, Coherent algebras, Linear Alg. and Its Applications 93(1987), 209-239
- [Wei76] B. Weisfeiler, On Construction and Identification of Graphs, LNM 558 (1976)
- KRRT99] M. Klin, C. Rücker, G. Rücker and G. Tinhofer, Algebraic Combinatorics in Mahematical Chemistry. Methods and Algorithms. I. Permutation Groups and Coherent (Cellular) Algebras. Match (40), 1999, shttp:\match.pmf.kg.ac.rs\electronic_versions\ Match40\match40_7-138.pdf
 - [EP09] S. Evdokimov and I. Ponomarenko, Permutation group approach to association schemes, Europ. J. of Combin. 30(2009), 1456-1476.

References. Association Schemes

- [BI84] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.
- [Ba04] R.A. Bailey, Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge University Press, Cambridge, 2004
- [BCN89] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989
 - [Z96] P.-H. Zieschang, An algebraic approach to association schemes, Springer-Verlag, Berlin,1996
 - [Z05] P.-H. Zieschang, Theory of Association Schemes, Springer-Verlag, Berlin, 2005.

Let $R, S \subseteq \Omega^2$ be binary relations. Then

•
$$S^* := \{(\alpha, \beta) | (\beta, \alpha) \in S\};$$

• S is symmetric (antisymmetric) if $S = S^*$ ($S \cap S^* = \emptyset$ resp.);

•
$$\alpha S := \{\beta \mid (\alpha, \beta) \in S\}, S\alpha := \alpha S^*;$$

•
$$D(S) := \{ \alpha \in \Omega \mid \alpha S \neq \emptyset \}, R(S) := D(S^*);$$

•
$$RS = \{(\alpha, \beta) | \alpha R \cap S\beta \neq \emptyset\};$$

•
$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
 is the transitive closure of R ;

$$\mathbf{1}_{\Omega} := \{(\omega, \omega) \, | \, \omega \in \Omega\}$$

Each permutation $g \in \text{Sym}(\Omega)$ is considered as a binary relation. Thus $\alpha g = \{\alpha^g\}$ and $g^* = g^{-1}$.

- $\mathcal{P} \vdash \Omega$ means that \mathcal{P} is a partition of Ω .
- $\mathcal{P} \sqsubseteq \mathcal{C} \iff \mathcal{C}$ is a refinement of \mathcal{P} ;
- Lattice operations are denoted as $\mathcal{P} \lor \mathcal{C}$ and $\mathcal{P} \land \mathcal{C}$;
- if P ⊢ Ω then P[∪] denotes the set of all possible unions of elements in P;

$$\bullet \ \mathcal{C} \vdash \Omega^2 \implies \mathcal{C}^* := \{ \mathcal{C}^* \mid \mathcal{C} \in \mathcal{C} \};$$

In what follows graph is a pair $\Gamma = (\Omega, E)$ where Ω is a finite set of vertices and $E \subset \Omega \times \Omega$ is the set of (directed) edges/arcs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In what follows graph is a pair $\Gamma = (\Omega, E)$ where Ω is a finite set of vertices and $E \subset \Omega \times \Omega$ is the set of (directed) edges/arcs.

Definition.

Graphs $\Gamma_1 = (\Omega_1, E_1)$ and $\Gamma_2 = (\Omega_2, E_2)$ are called isomorphic, $\Gamma_1 \cong \Gamma_2$, if there is a bijection $f : \Omega_1 \to \Omega_2$ such that

$$\forall \alpha_1, \beta_1 \in \Omega_1: \quad (\alpha_1^f, \beta_1^f) \in E_2 \quad \Leftrightarrow \quad (\alpha_1, \beta_1) \in E_1.$$

Such a bijection is called an isomorphism from Γ_1 to Γ_2 ; the set of all of them is denoted by $Iso(\Gamma_1, \Gamma_2)$. The set $Iso(\Gamma_1, \Gamma_1)$ is known as the automorphism group of Γ_1 , notation $Aut(\Gamma_1)$.

In what follows graph is a pair $\Gamma = (\Omega, E)$ where Ω is a finite set of vertices and $E \subset \Omega \times \Omega$ is the set of (directed) edges/arcs.

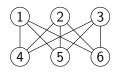
Definition.

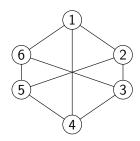
Graphs $\Gamma_1 = (\Omega_1, E_1)$ and $\Gamma_2 = (\Omega_2, E_2)$ are called isomorphic, $\Gamma_1 \cong \Gamma_2$, if there is a bijection $f : \Omega_1 \to \Omega_2$ such that

$$\forall \alpha_1, \beta_1 \in \Omega_1: \quad (\alpha_1^f, \beta_1^f) \in E_2 \quad \Leftrightarrow \quad (\alpha_1, \beta_1) \in E_1.$$

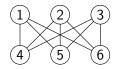
Such a bijection is called an isomorphism from Γ_1 to Γ_2 ; the set of all of them is denoted by $Iso(\Gamma_1, \Gamma_2)$. The set $Iso(\Gamma_1, \Gamma_1)$ is known as the automorphism group of Γ_1 , notation $Aut(\Gamma_1)$.

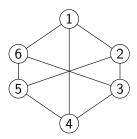
Example





Example

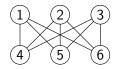


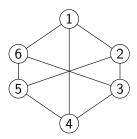


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An isomorphism

Example





An isomorphism

 $\operatorname{Aut}(\Gamma) = (S_3 \times S_3).S_2.$

ISO is to find the computational complexity of the problem:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

Given graphs Γ_1 and Γ_2 of order *n*, and a bijection $f: \Omega_1 \to \Omega_2$ one can test in time $O(n^2)$ whether $f \in \text{Iso}(\Gamma_1, \Gamma_2)$.

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order *n*, and a bijection $f: \Omega_1 \to \Omega_2$ one can test in time $O(n^2)$ whether $f \in \text{Iso}(\Gamma_1, \Gamma_2)$.
- Therefore ISO∈**NP**.

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order *n*, and a bijection $f: \Omega_1 \to \Omega_2$ one can test in time $O(n^2)$ whether $f \in \operatorname{Iso}(\Gamma_1, \Gamma_2)$.
- Therefore ISO∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order *n*, and a bijection $f: \Omega_1 \to \Omega_2$ one can test in time $O(n^2)$ whether $f \in \operatorname{Iso}(\Gamma_1, \Gamma_2)$.
- Therefore ISO∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).

• At present it is not known whether $ISO \in \mathbf{P}$.

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order *n*, and a bijection $f: \Omega_1 \to \Omega_2$ one can test in time $O(n^2)$ whether $f \in Iso(\Gamma_1, \Gamma_2)$.
- Therefore ISO∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).
- At present it is not known whether $ISO \in \mathbf{P}$.

The proof of the time bound of the best algorithm (up to now) for the ISO depends on the Classification of Finite Simple Groups.

ISO is to find the computational complexity of the problem:

ISO(Γ_1, Γ_2): given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order *n*, and a bijection $f: \Omega_1 \to \Omega_2$ one can test in time $O(n^2)$ whether $f \in Iso(\Gamma_1, \Gamma_2)$.
- Therefore ISO∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).
- At present it is not known whether $ISO \in \mathbf{P}$.

The proof of the time bound of the best algorithm (up to now) for the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of *n*-vertex graphs can be tested in time $\exp(O(\sqrt{n \log n}))$.

The following problems are equivalent to the ISO:

ICOUNT: given Γ and Γ' find $|Iso(\Gamma, \Gamma')|$,

The following problems are equivalent to the ISO:

ICOUNT: given Γ and Γ' find | Iso(Γ, Γ')|,
 ACOUNT: given Γ find | Aut(Γ)|,

The following problems are equivalent to the ISO:

- **ICOUNT**: given Γ and Γ' find $| Iso(\Gamma, \Gamma') |$,
- ACOUNT: given Γ find $|Aut(\Gamma)|$,
- AGEN: given Γ find generators of the group Aut(Γ),

The following problems are equivalent to the ISO:

- **ICOUNT**: given Γ and Γ' find $|Iso(\Gamma, \Gamma')|$,
- ACOUNT: given Γ find |Aut(Γ)|,
- AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

The following problems are equivalent to the ISO:

- **ICOUNT**: given Γ and Γ' find $|Iso(\Gamma, \Gamma')|$,
- ACOUNT: given Γ find |Aut(Γ)|,
- AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

Definition.

A triple (Ω, Y, c) where $c : \Omega^2 \to Y$ is a surjection, is called a colored graph with the coloring function c and color classes $c^{-1}(y), y \in Y$. Each colored graph determines a partition $\mathcal{C} := \{c^{-1}(y) | y \in Y\}$ of Ω^2 .

Two colored graphs (Ω, Y, c) and (Δ, Z, d) are isomorphic iff there exist bijections $f : \Omega \to \Delta, \phi : Y \to Z$ s.t. $d(\alpha^f, \beta^f) = c(\alpha, \beta)^{\phi}.$

Definition.

A triple (Ω, Y, c) where $c : \Omega^2 \to Y$ is a surjection, is called a colored graph with the coloring function c and color classes $c^{-1}(y), y \in Y$. Each colored graph determines a partition $\mathcal{C} := \{c^{-1}(y) | y \in Y\}$ of Ω^2 .

Two colored graphs (Ω, Y, c) and (Δ, Z, d) are isomorphic iff there exist bijections $f : \Omega \to \Delta, \phi : Y \to Z$ s.t. $d(\alpha^f, \beta^f) = c(\alpha, \beta)^{\phi}.$

Notice that ϕ is uniquely determined by f. For this reason we define $f^* := \phi$.

(日) (同) (三) (三) (三) (○) (○)

Isomorphism problem for colored graphs.

We also set $Iso(\Omega, Y, c)$ for the group of all isomorphisms from (Ω, Y, c) to itself and $Aut(\Omega, Y, c)$ for the normal subgroup of $Iso(\Omega, Y, c)$ which does not interchanges the colors (that is $f^* = 1_Y$).

Proposition

Let (Ω, Y, c) be a colored graph and $\mathcal{C} := \{c^{-1}(y) \mid y \in Y\}$ be the corresponding partition. Then

$$\mathsf{Iso}(\Omega, Y, c) = \{g \in \mathsf{Sym}(\Omega) \, | \, \mathcal{C}^g = \mathcal{C}\},\\ \mathsf{Aut}(\Omega, Y, c) = \{g \in \mathsf{Sym}(\Omega) \, | \, \forall_{C \in \mathcal{C}} C^g = C\}.$$

Theorem.

Isomorphism problem for colored graphs is polynomially equivalent to ISO.

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set

$${\sf Cay}(H,S):=\{(x,y)\,|\, xy^{-1}\in S\}$$

A circulant graph is a Cayley graph over a cyclic group.

Definition

Two Cayley graphs Cay(H, S) and Cay(K, T) are Cayley isomorphic if there exists a group isomorphism $f : H \to K$ which is a graph isomoprhism too, that is

$$Cay(H,S)^f = Cay(K,T) \iff S^f = T.$$

An automorphism of a Cayley graph Cay(H, S) contains a regular subgroup H_R consisting of right translations $h_R, h \in H$: $x^{h_R} = xh, x \in H.$

Theorem (Sabidussi)

A graph $\Gamma = (\Omega, E)$ is isomorphic to a Cayley graph over a group H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Isomorphism problems for Cayley graphs.

Given $\Gamma = Cay(H, S)$ and $\Gamma' = Cay(H, S')$:

- IMAP: find $f \in Iso(\Gamma, \Gamma')$ (if it exists),
- **ICOUNT**: find $| Iso(\Gamma, \Gamma') |$,
- ACOUNT: find $|Aut(\Gamma)|$,
- AGEN: find generators of the group Aut(Γ),
- CGR: given a graph Θ find whether it's a Cayley graph over a group H.

Construction. Let K be a finite group.

Define a graph $\Gamma(K)$ with vertex set $K \times K$ and edges: $(a, b) \sim (c, d) \iff a = c \lor b = d \lor ab = cd.$

Construction. Let K be a finite group.

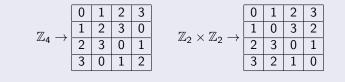
Define a graph $\Gamma(K)$ with vertex set $K \times K$ and edges: $(a,b) \sim (c,d) \iff a = c \lor b = d \lor ab = cd.$ **Theorem** $K_1 \cong K_2 \iff \Gamma(K_1) \cong \Gamma(K_2).$

Construction. Let K be a finite group.

Define a graph $\Gamma(K)$ with vertex set $K \times K$ and edges: $(a, b) \sim (c, d) \iff a = c \lor b = d \lor ab = cd.$ **Theorem** $K_1 \cong K_2 \iff \Gamma(K_1) \cong \Gamma(K_2).$

Exercise. Prove that $\Gamma(K)$ is a Cayley graph over $K \times K$.

Exercise. Prove that $\Gamma(\mathbb{Z}_4) \ncong \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)$.



Construction. Let K be a finite group.

Define a graph $\Gamma(K)$ with vertex set $K \times K$ and edges: $(a, b) \sim (c, d) \iff a = c \lor b = d \lor ab = cd.$ **Theorem** $K_1 \cong K_2 \iff \Gamma(K_1) \cong \Gamma(K_2).$

Exercise. Prove that $\Gamma(K)$ is a Cayley graph over $K \times K$.

Exercise. Prove that $\Gamma(\mathbb{Z}_4) \ncong \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)$.

$\mathbb{Z}_4 \rightarrow$	0	1	2	3	$\mathbb{Z}_2\times\mathbb{Z}_2\to$	0	1	2	3
	1	2	3	0		1	0	3	2
	2	3	0	1		2	3	0	1
	3	0	1	2		3	2	1	0

The isomorphism of groups of order *n* can be tested in time $n^{O(\log n)}$.

Naive vertex classification.

Vertex partition by valences.

Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vertex partition by valences.

Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;the valency of α in a color class is denoted by $d_{\Gamma}(\alpha, C)$.

Vertex partition by valences.

Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;the valency of α in a color class is denoted by $d_{\Gamma}(\alpha, C)$.

■ To find Orb(Aut(Γ)) put vertices α and β in the same class iff d_Γ(α) = d_Γ(β).

Vertex partition by valences.

Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;the valency of α in a color class is denoted by $d_{\Gamma}(\alpha, C)$.

• To find $Orb(Aut(\Gamma))$ put vertices α and β in the same class iff $d_{\Gamma}(\alpha) = d_{\Gamma}(\beta)$.

• Iteratively, put vertices α and β in the same class iff $d_{\Gamma}(\alpha, C) = d_{\Gamma}(\beta, C)$ for all color classes C.

Vertex partition by valences.

Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;the valency of α in a color class is denoted by $d_{\Gamma}(\alpha, C)$.

- To find Orb(Aut(Γ)) put vertices α and β in the same class iff
 d_Γ(α) = d_Γ(β).
- Iteratively, put vertices α and β in the same class iff $d_{\Gamma}(\alpha, C) = d_{\Gamma}(\beta, C)$ for all color classes C.

Comments.

 The algorithm correctly finds Orb(Aut(Γ)) for the class of trees (G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös, S.Selkow, 1980).

Vertex partition by valences.

Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;the valency of α in a color class is denoted by $d_{\Gamma}(\alpha, C)$.

- To find $Orb(Aut(\Gamma))$ put vertices α and β in the same class iff $d_{\Gamma}(\alpha) = d_{\Gamma}(\beta)$.
- Iteratively, put vertices α and β in the same class iff $d_{\Gamma}(\alpha, C) = d_{\Gamma}(\beta, C)$ for all color classes C.

Comments.

- The algorithm correctly finds Orb(Aut(Γ)) for the class of trees (G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös, S.Selkow, 1980).
- The algorithm fails when Γ is a regular graphs and the group Aut(Γ) is intransitive.

Vertex partition by valences.

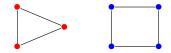
Denote by $d_{\Gamma}(\alpha)$ the valency of the vertex α in the graph Γ ;the valency of α in a color class is denoted by $d_{\Gamma}(\alpha, C)$.

- To find $Orb(Aut(\Gamma))$ put vertices α and β in the same class iff $d_{\Gamma}(\alpha) = d_{\Gamma}(\beta)$.
- Iteratively, put vertices α and β in the same class iff $d_{\Gamma}(\alpha, C) = d_{\Gamma}(\beta, C)$ for all color classes C.

Comments.

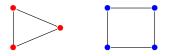
- The algorithm correctly finds Orb(Aut(Γ)) for the class of trees (G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös, S.Selkow, 1980).
- The algorithm fails when Γ is a regular graphs and the group Aut(Γ) is intransitive.

No automorphism moves red points to blue ones.



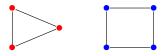
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No automorphism moves red points to blue ones.



To distinguish vertices we need to color edges of Γ .

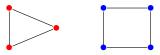
No automorphism moves red points to blue ones.



To distinguish vertices we need to color edges of Γ .

Algorithm. Set $C = \{1_{\Omega}\} \cup \{E\} \cup \{(\Omega \times \Omega) \setminus E\}.$

No automorphism moves red points to blue ones.



To distinguish vertices we need to color edges of Γ .

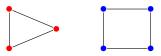
Algorithm. Set $C = \{1_{\Omega}\} \cup \{E\} \cup \{(\Omega \times \Omega) \setminus E\}.$

For all $(\alpha, \beta) \in \Omega \times \Omega$ and $R, S \in C$ find the number

$$c(\alpha,\beta;R,S) = |\alpha R \cap S\beta|.$$

Build a new partition Ы(C) by putting (α, β) and (α', β') to the same class of Ы(C) if |αR ∩ Sβ| = |α'R ∩ Sβ'| for all R, S ∈ C.

No automorphism moves red points to blue ones.



To distinguish vertices we need to color edges of Γ .

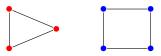
Algorithm. Set $C = \{1_{\Omega}\} \cup \{E\} \cup \{(\Omega \times \Omega) \setminus E\}.$

For all $(\alpha, \beta) \in \Omega \times \Omega$ and $R, S \in C$ find the number

$$c(\alpha,\beta;R,S) = |\alpha R \cap S\beta|.$$

- Build a new partition Ы(C) by putting (α, β) and (α', β') to the same class of Ы(C) if |αR ∩ Sβ| = |α'R ∩ Sβ'| for all R, S ∈ C.
- Repeat the procedure till |C| stops to increase.

No automorphism moves red points to blue ones.



To distinguish vertices we need to color edges of Γ .

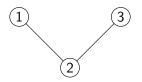
Algorithm. Set $C = \{1_{\Omega}\} \cup \{E\} \cup \{(\Omega \times \Omega) \setminus E\}.$

For all $(\alpha, \beta) \in \Omega \times \Omega$ and $R, S \in C$ find the number

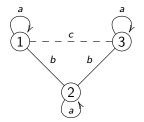
$$c(\alpha,\beta;R,S) = |\alpha R \cap S\beta|.$$

- Build a new partition Ы(C) by putting (α, β) and (α', β') to the same class of Ы(C) if |αR ∩ Sβ| = |α'R ∩ Sβ'| for all R, S ∈ C.
- Repeat the procedure till |C| stops to increase.

The WL-algorithm. Very small example



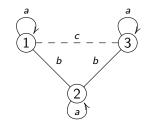
Initial coloring



Adjacency matrix

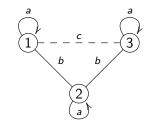
$$A = \left(\begin{array}{rrr} a & b & c \\ b & a & b \\ c & b & a \end{array}\right).$$

First iteration



$$A^{2} = \begin{pmatrix} a^{2} + b^{2} + c^{2} & ab + ba + cb & ac + b^{2} + ca \\ ba + ab + bc & 2b^{2} + a^{2} & bc + ab + ba \\ ca + b^{2} + ac & cb + ba + ab & c^{2} + b^{2} + a^{2} \end{pmatrix}.$$

First iteration



$$A^{2} = \begin{pmatrix} a^{2} + b^{2} + c^{2} & ab + ba + cb & ac + b^{2} + ca \\ bc + ab + ba & 2b^{2} + a^{2} & bc + ab + ba \\ ac + b^{2} + ca & ab + ba + cb & c^{2} + b^{2} + a^{2} \end{pmatrix}.$$

<□> <圖> < E> < E> E のQ@

New matrix A

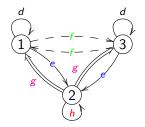
$$A = \begin{pmatrix} d & e & f \\ g & h & g \\ f & e & d \end{pmatrix}$$

New matrix A

$$A = \begin{pmatrix} d & e & f \\ g & h & g \\ f & e & d \end{pmatrix}$$

New matrix A

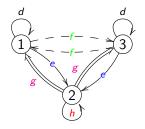
$$A = \begin{pmatrix} d & e & f \\ g & h & g \\ f & e & d \end{pmatrix}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

New matrix A

$$A = \left(\begin{array}{ccc} d & e & f \\ g & h & g \\ f & e & d \end{array}\right)$$



The matrix A is stable, that is A^2 produces the same coloring as A does.

Properties

Properties

•
$$\mathcal{C} \sqsubseteq \mathcal{S} \implies \mathsf{bl}(\mathcal{C}) \sqsubseteq \mathsf{bl}(\mathcal{S});$$

Properties

$$\begin{array}{l} \bullet \ \mathcal{C} \sqsubseteq \mathcal{S} \implies \mathsf{bl}(\mathcal{C}) \sqsubseteq \mathsf{bl}(\mathcal{S}); \\ \bullet \ \mathcal{C}^* = \mathcal{C} \implies \mathsf{bl}(\mathcal{C})^* = \mathsf{bl}(\mathcal{C}); \end{array}$$

Properties

$$\begin{array}{l} \mathcal{C} \sqsubseteq \mathcal{S} \implies \mathsf{bl}(\mathcal{C}) \sqsubseteq \mathsf{bl}(\mathcal{S}); \\ \mathbb{C}^* = \mathcal{C} \implies \mathsf{bl}(\mathcal{C})^* = \mathsf{bl}(\mathcal{C}); \\ \mathbb{1}_{\Omega} \in \mathcal{C}^{\cup} \implies \mathcal{C} \sqsubseteq \mathsf{bl}(\mathcal{C}); \end{array}$$

Properties

•
$$C \sqsubseteq S \implies bl(C) \sqsubseteq bl(S);$$

• $C^* = C \implies bl(C)^* = bl(C);$
• $1_0 \in C^{\cup} \implies C \sqsubset bl(C);$

Proposition

Let $f : \Omega \to \Delta$ be a bijection that maps a partition C of Ω^2 onto a partition T of Δ^2 (i.e. $C^f = T$). Then $\operatorname{bl}(C)^f = \operatorname{bl}(T)$.

Properties

•
$$C \sqsubseteq S \implies bl(C) \sqsubseteq bl(S);$$

• $C^* = C \implies bl(C)^* = bl(C);$
• $1_{\Omega} \in C^{\cup} \implies C \sqsubseteq bl(C);$

Proposition

Let $f : \Omega \to \Delta$ be a bijection that maps a partition C of Ω^2 onto a partition T of Δ^2 (i.e. $C^f = T$). Then $\operatorname{bl}(C)^f = \operatorname{bl}(T)$.

Given an ordered partition $\vec{C} = (S_1, ..., S_m)$ of Ω^2 the WL-algorithm produces a unique (canonical) ordering of the refinement $\square(C)$ (denoted as $\square(\vec{C})$) with the following property:

$$\vec{\mathcal{C}}^f = \vec{\mathcal{T}} \implies \mathsf{bl}(\vec{\mathcal{C}})^f = \mathsf{bl}(\vec{\mathcal{T}})$$

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

• \mathcal{C} is a partition of $\Omega \times \Omega$,

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

- \mathcal{C} is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

- C is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,
- $\blacksquare \ \mathcal{C}^* = \mathcal{C}$,

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

- C is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,
- $\blacksquare \ \mathcal{C}^* = \mathcal{C}$,
- $\mathcal{C} = \mathrm{bl}(\mathcal{C})$,

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

- \mathcal{C} is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,
- ${\scriptstyle lacksymbol{\square}} \ {\mathcal C}^* = {\mathcal C}$,
- C = bl(C), that is for all $R, S, T \in C$ the intersection number $c_{RS}^T = |\alpha R \cap S\beta|$ does not depend on the choice of $(\alpha, \beta) \in T$.

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

- C is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,
- $\hfill\blacksquare \mathcal{C}^* = \mathcal{C}$,
- C = bl(C), that is for all $R, S, T \in C$ the intersection number $c_{RS}^T = |\alpha R \cap S\beta|$ does not depend on the choice of $(\alpha, \beta) \in T$.

• the degree and rank of \mathcal{X} are the numbers $|\Omega|$ and $|\mathcal{C}|$,

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

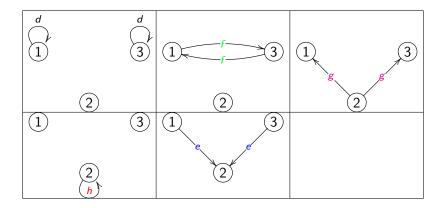
- C is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,
- $\hfill\blacksquare \mathcal{C}^* = \mathcal{C}$,
- C = bl(C), that is for all $R, S, T \in C$ the intersection number $c_{RS}^T = |\alpha R \cap S\beta|$ does not depend on the choice of $(\alpha, \beta) \in T$.
- the degree and rank of \mathcal{X} are the numbers $|\Omega|$ and $|\mathcal{C}|$,
- the basic relations and relations of X are the relations of C and of C[∪].

The output partition of the Weisfeiler-Leman algorithm is a coherent configuration, i.e. a pair $\mathcal{X} = (\Omega, \mathcal{C})$ such that:

- C is a partition of $\Omega \times \Omega$,
- $1_\Omega \in \mathcal{C}^\cup$,
- $\hfill\blacksquare \mathcal{C}^* = \mathcal{C}$,
- C = bl(C), that is for all $R, S, T \in C$ the intersection number $c_{RS}^T = |\alpha R \cap S\beta|$ does not depend on the choice of $(\alpha, \beta) \in T$.
- the degree and rank of \mathcal{X} are the numbers $|\Omega|$ and $|\mathcal{C}|$,
- the basic relations and relations of X are the relations of C and of C[∪].

The configuration \mathcal{X} is homogeneous (or association scheme, or scheme), if $1_{\Omega} \in \mathcal{C}$.

Coherent configurations: a concrete example.



|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

A fiber of \mathcal{X} is a set $\Delta \subset \Omega$ such that $1_{\Delta} \in \mathcal{C}$; the set of all fibers is denoted by $\Phi = \Phi(\mathcal{X})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition. The following statements hold:

Proposition. The following statements hold:

• $\Omega = \bigcup_{\Delta \in \Phi} \Delta$,

Proposition. The following statements hold:

•
$$\Omega = \bigcup_{\Delta \in \Phi} \Delta$$
,

• for any $S \in \mathcal{C}$ the sets D(S) and R(S) are fibres of \mathcal{X} ,

Proposition. The following statements hold:

•
$$\Omega = \bigcup_{\Delta \in \Phi} \Delta$$
,

- for any $S \in \mathcal{C}$ the sets D(S) and R(S) are fibres of \mathcal{X} ,
- for any $S \in C$ and $\alpha \in D(S)$ we have $|\alpha S| = c_{SS^*}^T$ where $T = 1_{D(S)}$.

Proposition. The following statements hold:

•
$$\Omega = \bigcup_{\Delta \in \Phi} \Delta$$
,

- for any $S \in \mathcal{C}$ the sets D(S) and R(S) are fibres of \mathcal{X} ,
- for any $S \in C$ and $\alpha \in D(S)$ we have $|\alpha S| = c_{SS^*}^T$ where $T = 1_{D(S)}$.

for any fiber Δ ∈ Φ the set of relations
 C_Δ := {C ∈ C | D(C) = Δ, R(C) = Δ} form a homogeneous co.co. on Δ, called a homogeneous constituent of C.

The number $n_S = c_{SS^*}^T$ is called the valency of S.

Proposition

Let $\mathcal{X} = (\Omega, \mathcal{C})$ be a co.co. Then

• the set \mathcal{C}^{\cup} is closed w.r.t. boolean operations;

•
$$1_\Omega, \Omega^2 \in \mathcal{C}^{\cup}$$

•
$$(\mathcal{C}^{\cup})^* = \mathcal{C}^{\cup};$$

• C^{\cup} is closed w.r.t. relational product;

Definition

Two coherent configuration $\mathcal{X} = (\Omega, \mathcal{C})$ and $\mathcal{X}' = (\Omega', \mathcal{C}')$ are called (combinatorially) isomorphic iff there exist bijections $f : \Omega \to \Omega', \phi : \mathcal{C} \to \mathcal{C}'$ such that

$$\forall_{\alpha,\beta\in\Omega} \ (\alpha,\beta)\in \mathcal{C} \iff (\alpha^f,\beta^f)\in \mathcal{C}^\phi.$$

The set of all isomorphisms between \mathcal{X} and \mathcal{X}' is denoted as $lso(\mathcal{X}, \mathcal{X}')$. Notice that ϕ is uniquely determined by f.

In what follows we set $Iso(\mathcal{X}) := Iso(\mathcal{X}, \mathcal{X})$. We call the elements of this group colored automorphisms of the configuration.

The mapping $(f, \phi) \mapsto \phi$ is an group homomorphism from $Iso(\mathcal{X})$ into $Sym(\mathcal{C})$. The kernel of this homomorphism denoted as $Aut(\mathcal{X})$ is called the the automorphism group of \mathcal{X} :

$$\operatorname{Aut}(\mathcal{X}) = \{ f \in \operatorname{Sym}(\Omega) : S^f = S \text{ for all } S \in \mathcal{C} \}$$

Theorem

Let $\langle\!\langle \Gamma \rangle\!\rangle$ be the WL-closure of a graph $\Gamma = (\Omega, E)$ obtained by applying WL-algorithm to Γ . Then

$$\bullet E \in \langle\!\langle \Gamma \rangle\!\rangle^{\cup};$$

•
$$\operatorname{Aut}(\Gamma) = \operatorname{Aut}(\langle\!\langle \Gamma \rangle\!\rangle).$$

The mapping $(f, \phi) \mapsto \phi$ is an group homomorphism from $Iso(\mathcal{X})$ into $Sym(\mathcal{C})$. The kernel of this homomorphism denoted as $Aut(\mathcal{X})$ is called the the automorphism group of \mathcal{X} :

$$\operatorname{Aut}(\mathcal{X}) = \{ f \in \operatorname{Sym}(\Omega) : S^f = S \text{ for all } S \in \mathcal{C} \}$$

Theorem

Let $\langle\!\langle \Gamma \rangle\!\rangle$ be the WL-closure of a graph $\Gamma = (\Omega, E)$ obtained by applying WL-algorithm to Γ . Then

$$\bullet E \in \langle\!\langle \Gamma \rangle\!\rangle^{\cup};$$

•
$$\operatorname{Aut}(\Gamma) = \operatorname{Aut}(\langle\!\langle \Gamma \rangle\!\rangle).$$

Examples. Strongly regular graphs.

Definition

A graph $\Gamma = (\Omega, E)$ is called strongly regular if its WL-closure has rank three. In other words, WL-algorithm stops at the first iteration and $\langle\!\langle \Gamma \rangle\!\rangle = \{1_{\Omega}, E, E^c\}.$

Examples. Strongly regular graphs.

Definition

A graph $\Gamma = (\Omega, E)$ is called strongly regular if its WL-closure has rank three. In other words, WL-algorithm stops at the first iteration and $\langle\!\langle \Gamma \rangle\!\rangle = \{1_{\Omega}, E, E^c\}.$

Proposition

A graph $\Gamma = (\Omega, E)$ is strongly regular if and only if there exists non-negative integers k, λ, μ such that

- **1** Γ is *k*-regular,
- 2 any pair of points connected by an edge have λ common neighbours,
- 3 any pair of points not connected by an edge have μ common neighbours

Examples. Permutation groups.

Let $G \leq \text{Sym}(\Omega)$ be a permutation group. It acts on $\Omega \times \Omega$: $(\alpha, \beta)^g := (\alpha^g, \beta^g), \qquad \alpha, \beta \in \Omega, \ g \in G.$

Examples. Permutation groups.

Let $G \leq Sym(\Omega)$ be a permutation group. It acts on $\Omega \times \Omega$:

$$(\alpha,\beta)^{g} := (\alpha^{g},\beta^{g}), \qquad \alpha,\beta \in \Omega, \ g \in G.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Set $Inv(G) := (\Omega, C)$ where $C := Orb(G, \Omega \times \Omega)$. Then

Examples. Permutation groups.

Let $G \leq \mathsf{Sym}(\Omega)$ be a permutation group. It acts on $\Omega \times \Omega$:

$$(\alpha,\beta)^{g} := (\alpha^{g},\beta^{g}), \qquad \alpha,\beta \in \Omega, \ g \in G.$$

Set $Inv(G) := (\Omega, C)$ where $C := Orb(G, \Omega \times \Omega)$. Then

1 Inv(G) is a coherent configuration (of G),

Let $G \leq Sym(\Omega)$ be a permutation group. It acts on $\Omega \times \Omega$:

$$(\alpha,\beta)^{g} := (\alpha^{g},\beta^{g}), \qquad \alpha,\beta \in \Omega, \ g \in G.$$

Set $Inv(G) := (\Omega, C)$ where $C := Orb(G, \Omega \times \Omega)$. Then

- 1 Inv(G) is a coherent configuration (of G),
- **2** the basic relations of \mathcal{X} are the 2-orbits of G,

Let $G \leq Sym(\Omega)$ be a permutation group. It acts on $\Omega \times \Omega$:

$$(\alpha,\beta)^{g} := (\alpha^{g},\beta^{g}), \qquad \alpha,\beta \in \Omega, \ g \in G.$$

Set $Inv(G) := (\Omega, C)$ where $C := Orb(G, \Omega \times \Omega)$. Then

- 1 Inv(G) is a coherent configuration (of G),
- **2** the basic relations of \mathcal{X} are the 2-orbits of G,
- 3 Φ(X) = Orb(G, Ω), in particular X is a scheme iff G is transitive;

Let $G \leq \mathsf{Sym}(\Omega)$ be a permutation group. It acts on $\Omega \times \Omega$:

$$(\alpha,\beta)^{g} := (\alpha^{g},\beta^{g}), \qquad \alpha,\beta \in \Omega, \ g \in G.$$

Set $Inv(G) := (\Omega, C)$ where $C := Orb(G, \Omega \times \Omega)$. Then

- 1 Inv(G) is a coherent configuration (of G),
- **2** the basic relations of \mathcal{X} are the 2-orbits of G,
- 3 Φ(X) = Orb(G, Ω), in particular X is a scheme iff G is transitive;

Definition.

A coherent configuration \mathcal{X} is called schurian if $\mathcal{X} = Inv(G)$ for some group G.

Schurity problem

Given a coherent configuration \mathcal{X} , find whether it is schurian.

Galois correspondence.

Definition

Let $\mathcal{X} = (\Omega, \mathcal{C}), \mathcal{X}' = (\Omega, \mathcal{C}')$ be two coherent configuratios. We say that \mathcal{X} is a fusion of \mathcal{X}' (equivalently \mathcal{X}' is a fission of \mathcal{X}), notation $\mathcal{X} \sqsubseteq \mathcal{X}'$ if $\mathcal{C} \sqsubseteq \mathcal{C}'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Galois correspondence.

Definition

Let $\mathcal{X} = (\Omega, \mathcal{C}), \mathcal{X}' = (\Omega, \mathcal{C}')$ be two coherent configuratios. We say that \mathcal{X} is a fusion of \mathcal{X}' (equivalently \mathcal{X}' is a fission of \mathcal{X}), notation $\mathcal{X} \sqsubseteq \mathcal{X}'$ if $\mathcal{C} \sqsubseteq \mathcal{C}'$.

Proposition

Let $\mathcal{X}, \mathcal{X}'$ be two coherent configurations defined on Ω and $G, H \leq Sym(\Omega)$ arbitrary subgroups. Then

•
$$\mathcal{X} \sqsubseteq \mathcal{X}' \implies \operatorname{Aut}(\mathcal{X}) \ge \operatorname{Aut}(\mathcal{X}');$$

$$\blacksquare H \leq G \implies \operatorname{Inv}(H) \sqsupseteq \operatorname{Inv}(G);$$

- $G \leq \operatorname{Aut}(\operatorname{Inv}(G);$
- $\mathcal{X} \sqsubseteq \mathsf{Inv}(\mathsf{Aut}(\mathcal{X}))$

Galois closed objects.

Definition

The group $G^{(2)} := \operatorname{Aut}(\operatorname{Inv}(G))$ is called a 2-closure of $G \leq \operatorname{Sym}(\Omega)$. A group is called 2-closed if $G = G^{(2)}$.

Definition

Given a coherent configuration $\mathcal{X} = (\Omega, \mathcal{C})$, the configuration $\operatorname{Sch}(\mathcal{X}) := \operatorname{Inv}(\operatorname{Aut}(\mathcal{X}))$ is called a Schurian closure of \mathcal{X} . A configuration \mathcal{X} is schurian iff $\operatorname{Sch}(\mathcal{X}) = \mathcal{X}$.

Theorem

The mappings (Aut, Inv) are bijections between 2-closed subgroups of Sym(Ω) and schurian coherent configurations defined on Ω .

Theorem.

The ISO is polynomially equivalent to the problem of finding the schurian closure of a coherent configuration.

Galois closed objects.

Definition

The group $G^{(2)} := \operatorname{Aut}(\operatorname{Inv}(G))$ is called a 2-closure of $G \leq \operatorname{Sym}(\Omega)$. A group is called 2-closed if $G = G^{(2)}$.

Definition

Given a coherent configuration $\mathcal{X} = (\Omega, \mathcal{C})$, the configuration $\operatorname{Sch}(\mathcal{X}) := \operatorname{Inv}(\operatorname{Aut}(\mathcal{X}))$ is called a Schurian closure of \mathcal{X} . A configuration \mathcal{X} is schurian iff $\operatorname{Sch}(\mathcal{X}) = \mathcal{X}$.

Theorem

The mappings (Aut, Inv) are bijections between 2-closed subgroups of Sym(Ω) and schurian coherent configurations defined on Ω .

Theorem.

The ISO is polynomially equivalent to the problem of finding the schurian closure of a coherent configuration.