Tutte polytope

Matjaž Konvalinka and Igor Pak

University of Ljubljana
February 2013

Combinatorial polytopes

A polytope is the convex hull of a finite number of points in \mathbb{R}^{n} (equivalently, a bounded intersection of closed halfspaces).

Combinatorial polytopes

A polytope is the convex hull of a finite number of points in \mathbb{R}^{n} (equivalently, a bounded intersection of closed halfspaces).

Combinatorial polytopes are families of polytopes that are interesting from a combinatorial point of view.

Combinatorial polytopes

A polytope is the convex hull of a finite number of points in \mathbb{R}^{n} (equivalently, a bounded intersection of closed halfspaces).

Combinatorial polytopes are families of polytopes that are interesting from a combinatorial point of view.

Examples

- permutahedron: vertices are in a bijective correspondence with permutations
- associahedron: vertices are in a bijective correspondence with correct parenthesizations of a string
- Birkhoff polytope: vertices are permutation matrices

Preview of coming attractions

Cayley's theorem and Braun's conjecture

Theorem (Cayley, 1857)

The number of integer sequences $\left(a_{1}, \ldots, a_{n}\right)$ such that $1 \leq a_{1} \leq 2$ and $1 \leq a_{i} \leq 2 a_{i-1}$ for $i=2, \ldots, n$, is equal to the total number of partitions of integers $N \in\left\{0,1, \ldots, 2^{n}-1\right\}$ into parts $1,2,4, \ldots, 2^{n-1}$.

Cayley's theorem and Braun's conjecture

Theorem (Cayley, 1857)

The number of integer sequences $\left(a_{1}, \ldots, a_{n}\right)$ such that $1 \leq a_{1} \leq 2$ and $1 \leq a_{i} \leq 2 a_{i-1}$ for $i=2, \ldots, n$, is equal to the total number of partitions of integers $N \in\left\{0,1, \ldots, 2^{n}-1\right\}$ into parts $1,2,4, \ldots, 2^{n-1}$.

Conjecture (Braun, 2011)

Define the Cayley polytope $\mathbf{C}_{n} \subseteq \mathbb{R}^{n}$ by inequalities

$$
1 \leq x_{1} \leq 2, \text { and } 1 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

Then $n!$ vol \mathbf{C}_{n} is equal to the number of connected graphs on $n+1$ nodes.

Main result

Theorem (K-Pak)
Define the Tutte polytope $\mathbf{T}_{n}(q, t) \subseteq \mathbb{R}^{n}$ (by inequalities or by vertices), $\mathbf{T}_{n}(0,1)=\mathbf{C}_{n}$. Then

$$
n!\operatorname{vol} \mathbf{T}_{n}(q, t)=\sum q^{k(G)-1} t^{E(G) \mid},
$$

where the sum is over all graphs on $n+1$ nodes, and $k(G)$ is the number of connected components of G.

Main result

Theorem (K-Pak)
Define the Tutte polytope $\mathbf{T}_{n}(q, t) \subseteq \mathbb{R}^{n}$ (by inequalities or by vertices), $\mathbf{T}_{n}(0,1)=\mathbf{C}_{n}$. Then

$$
n!\operatorname{vol} \mathbf{T}_{n}(q, t)=\sum q^{k(G)-1} t^{E(G) \mid},
$$

where the sum is over all graphs on $n+1$ nodes, and $k(G)$ is the number of connected components of G.

In other words, $n!$ vol $\mathbf{T}_{n}(q, t)=t^{n} T_{K_{n+1}}(1+q / t, 1+t)$, where $T_{H}(x, y)$ denotes the Tutte polynomial of the graph H.

Main result

Theorem (K-Pak)
Define the Tutte polytope $\mathbf{T}_{n}(q, t) \subseteq \mathbb{R}^{n}$ (by inequalities or by vertices), $\mathbf{T}_{n}(0,1)=\mathbf{C}_{n}$. Then

$$
n!\operatorname{vol} \mathbf{T}_{n}(q, t)=\sum q^{k(G)-1} t^{E(G) \mid},
$$

where the sum is over all graphs on $n+1$ nodes, and $k(G)$ is the number of connected components of G.

In other words, $n!$ vol $\mathbf{T}_{n}(q, t)=t^{n} T_{K_{n+1}}(1+q / t, 1+t)$, where $T_{H}(x, y)$ denotes the Tutte polynomial of the graph H.

When $t=1, q \rightarrow 0$, the Tutte polytope becomes the Cayley polytope, so the theorem in particular implies Braun's conjecture.

Main result

Theorem (K-Pak)
Define the Tutte polytope $\mathbf{T}_{n}(q, t) \subseteq \mathbb{R}^{n}$ (by inequalities or by vertices), $\mathbf{T}_{n}(0,1)=\mathbf{C}_{n}$. Then

$$
n!\operatorname{vol} \mathbf{T}_{n}(q, t)=\sum q^{k(G)-1} t^{E(G) \mid},
$$

where the sum is over all graphs on $n+1$ nodes, and $k(G)$ is the number of connected components of G.

In other words, $n!$ vol $\mathbf{T}_{n}(q, t)=t^{n} T_{K_{n+1}}(1+q / t, 1+t)$, where $T_{H}(x, y)$ denotes the Tutte polynomial of the graph H .

When $t=1, q \rightarrow 0$, the Tutte polytope becomes the Cayley polytope, so the theorem in particular implies Braun's conjecture.

We call n ! vol \mathbf{P} the normalized volume of $\mathbf{P} \subseteq \mathbb{R}^{n}$.

Triangulation of Cayley polytope

Conjecture (Braun, 2011)
Define the Cayley polytope $\mathbf{C}_{n} \subseteq \mathbb{R}^{n}$ by inequalities

$$
1 \leq x_{1} \leq 2, \text { and } 1 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n .
$$

Then the normalized volume of \mathbf{C}_{n} is equal to the number of connected graphs on $n+1$ nodes.

Triangulation of Cayley polytope

Conjecture (Braun, 2011)

Define the Cayley polytope $\mathbf{C}_{n} \subseteq \mathbb{R}^{n}$ by inequalities

$$
1 \leq x_{1} \leq 2, \text { and } 1 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

Then the normalized volume of \mathbf{C}_{n} is equal to the number of connected graphs on $n+1$ nodes.

We will define:

- a map from connected graphs to (labeled) trees
- a map from trees to simplices
so that:
- the simplices triangulate \mathbf{C}_{n}
- the normalized volume of each simplex is equal to the number of graphs that map into the corresponding tree

Connected graphs to trees: neighbors first search

- the node with the maximal label is the first active node and the 0 -th visited node

Connected graphs to trees: neighbors first search

- visit the unvisited neighbors of the active node in decreasing order of labels; the one with the smallest label becomes active

Connected graphs to trees: neighbors first search

- visit the unvisited neighbors of the active node in decreasing order of labels; the one with the smallest label becomes active

Connected graphs to trees: neighbors first search

- visit the unvisited neighbors of the active node in decreasing order of labels; the one with the smallest label becomes active

Connected graphs to trees: neighbors first search

- visit the unvisited neighbors of the active node in decreasing order of labels; the one with the smallest label becomes active

Connected graphs to trees: neighbors first search

- visit the unvisited neighbors of the active node in decreasing order of labels; the one with the smallest label becomes active

Connected graphs to trees: neighbors first search

- if all the neighbors of the active node have been visited, backtrack to the last visited node that has not been an active node

Connected graphs to trees: neighbors first search

- if all the neighbors of the active node have been visited, backtrack to the last visited node that has not been an active node

Connected graphs to trees: neighbors first search

- if all the neighbors of the active node have been visited, backtrack to the last visited node that has not been an active node

Connected graphs to trees: neighbors first search

- the result is an ordering of the nodes and a search tree

Connected graphs to trees: neighbors first search

- the result is an ordering of the nodes and a search tree

This is a variant of the neighbors first search introduced by Gessel and Sagan (1996).

Cane paths

A cane path is an up-up-...-up-down right path.

Cane paths

A cane path is an up-up-...-up-down right path.

Fact

Number of graphs with neighbors-first search tree T is $2^{\alpha(T)}$, where $\alpha(T)$ is the number of cane paths in T.

Coordinates of nodes in a tree

Coordinates of nodes in a tree

Fact

If the node v is visited i-th in the neighbors first search and j is the number of cane paths starting in v, then the coordinate of v is $x_{i} / 2^{j}$.

Trees to simplices

$$
1 \leq \frac{x_{8}}{16} \leq \frac{x_{10}}{4} \leq \frac{x_{7}}{8} \leq \frac{x_{9}}{2} \leq x_{11} \leq \frac{x_{3}}{4} \leq \frac{x_{5}}{8} \leq \frac{x_{4}}{4} \leq \frac{x_{6}}{8} \leq \frac{x_{2}}{2} \leq x_{1} \leq 2
$$

Trees to simplices

$$
1 \leq \frac{x_{8}}{16} \leq \frac{x_{10}}{4} \leq \frac{x_{7}}{8} \leq \frac{x_{9}}{2} \leq x_{11} \leq \frac{x_{3}}{4} \leq \frac{x_{5}}{8} \leq \frac{x_{4}}{4} \leq \frac{x_{6}}{8} \leq \frac{x_{2}}{2} \leq x_{1} \leq 2
$$

The result is a Schläfli orthoscheme with normalized volume equal to $2^{\alpha(T)}$.

Trees to simplices

$$
1 \leq \frac{x_{8}}{16} \leq \frac{x_{10}}{4} \leq \frac{x_{7}}{8} \leq \frac{x_{9}}{2} \leq x_{11} \leq \frac{x_{3}}{4} \leq \frac{x_{5}}{8} \leq \frac{x_{4}}{4} \leq \frac{x_{6}}{8} \leq \frac{x_{2}}{2} \leq x_{1} \leq 2
$$

The result is a Schläfli orthoscheme with normalized volume equal to $2^{\alpha(T)}$.

The resulting simplices triangulate Cayley's polytope. So this proves Braun's conjecture.

Triangulation of \mathbf{C}_{3}

Another subdivision of \mathbf{C}_{3}

Sketch of proof

The Cayley polytope consists of all points $\left(x_{1}, \ldots, x_{n}\right)$ for which $1 \leq x_{1} \leq 2$ and $1 \leq x_{i} \leq 2 x_{i-1}$ for $i=2, \ldots, n$. The main idea of the proof is to divide these inequalities into "narrower" inequalities.

Sketch of proof

The Cayley polytope consists of all points $\left(x_{1}, \ldots, x_{n}\right)$ for which $1 \leq x_{1} \leq 2$ and $1 \leq x_{i} \leq 2 x_{i-1}$ for $i=2, \ldots, n$. The main idea of the proof is to divide these inequalities into "narrower" inequalities.

Since $1 \leq x_{2} \leq 2 x_{1}$ and $2 x_{1} \geq 2$, we have either $1 \leq x_{2} \leq 2$ or $2 \leq x_{2} \leq 2 x_{1}$.

Sketch of proof

The Cayley polytope consists of all points $\left(x_{1}, \ldots, x_{n}\right)$ for which $1 \leq x_{1} \leq 2$ and $1 \leq x_{i} \leq 2 x_{i-1}$ for $i=2, \ldots, n$. The main idea of the proof is to divide these inequalities into "narrower" inequalities.

Since $1 \leq x_{2} \leq 2 x_{1}$ and $2 x_{1} \geq 2$, we have either $1 \leq x_{2} \leq 2$ or $2 \leq x_{2} \leq 2 x_{1}$.

If $1 \leq x_{2} \leq 2$, then either $1 \leq x_{3} \leq 2$ or $2 \leq x_{3} \leq 2 x_{2}$.

Sketch of proof

The Cayley polytope consists of all points $\left(x_{1}, \ldots, x_{n}\right)$ for which $1 \leq x_{1} \leq 2$ and $1 \leq x_{i} \leq 2 x_{i-1}$ for $i=2, \ldots, n$. The main idea of the proof is to divide these inequalities into "narrower" inequalities.

Since $1 \leq x_{2} \leq 2 x_{1}$ and $2 x_{1} \geq 2$, we have either $1 \leq x_{2} \leq 2$ or $2 \leq x_{2} \leq 2 x_{1}$.

If $1 \leq x_{2} \leq 2$, then either $1 \leq x_{3} \leq 2$ or $2 \leq x_{3} \leq 2 x_{2}$.
On the other hand, if $2 \leq x_{2} \leq 2 x_{1}$, then $2 x_{2} \geq 4$, so we have $1 \leq x_{3} \leq 2,2 \leq x_{3} \leq 4$ or $4 \leq x_{3} \leq 2 x_{2}$.

Sketch of proof

$1 \leq x_{1} \leq 2$	$1 \leq x_{2} \leq 2$	$1 \leq x_{3} \leq 2$	$\begin{gathered} 1 \leq x_{4} \leq 2 \\ \hline 2 \leq x_{4} \leq 2 x_{3} \end{gathered}$
		$2 \leq x_{3} \leq 2 x_{2}$	$1 \leq x_{4} \leq 2$
			$2 \leq x_{4} \leq 4$
			$4 \leq x_{4} \leq 2 x_{3}$
	$2 \leq x_{2} \leq 2 x_{1}$	$1 \leq x_{3} \leq 2$	$1 \leq x_{4} \leq 2$
			$2 \leq x_{4} \leq 2 x_{3}$
		$2 \leq x_{3} \leq 4$	$1 \leq x_{4} \leq 2$
			$2 \leq x_{4} \leq 4$
			$4 \leq x_{4} \leq 2 x_{3}$
		$4 \leq x_{3} \leq 2 x_{2}$	$1 \leq x_{4} \leq 2$
			$2 \leq x_{4} \leq 4$
			$4 \leq x_{4} \leq 8$
			$8 \leq x_{4} \leq 2 x_{3}$

Sketch of proof

This subdivides the polytope into subpolytopes (which are not simplices). The number of subpolytopes for $n=1,2,3,4,5$ is $1,2,5,14,42$.

Sketch of proof

This subdivides the polytope into subpolytopes (which are not simplices). The number of subpolytopes for $n=1,2,3,4,5$ is $1,2,5,14,42$.

We recognize the Catalan numbers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

which enumerate many important combinatorial objects: parenthesizations, triangulations of polygons, Dyck paths, plane trees etc.

Sketch of proof

This subdivides the polytope into subpolytopes (which are not simplices). The number of subpolytopes for $n=1,2,3,4,5$ is $1,2,5,14,42$.

We recognize the Catalan numbers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

which enumerate many important combinatorial objects: parenthesizations, triangulations of polygons, Dyck paths, plane trees etc.

It turns out that each subpolytope corresponds to a unique plane tree (unlabelled rooted tree).

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1} \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1} \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

Let k be the largest integer so that the inequalities for $x_{i}, i=2, \ldots, k$, are of the form $2^{i-1} \leq x_{i} \leq 2 x_{i-1}$. In our case, $k=3$.

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1}, \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

Let k be the largest integer so that the inequalities for $x_{i}, i=2, \ldots, k$, are of the form $2^{i-1} \leq x_{i} \leq 2 x_{i-1}$. In our case, $k=3$.

There exist unique integers $a_{1}, a_{2}, \ldots, a_{k} \geq 0$ so that among the inequalities for x_{k+1}, \ldots, x_{n}, the first a_{1} inequalities have at least 2^{k-1} on the left, the next a_{2} inequalities have at least 2^{k-2} on the left, etc. In our case, $a_{1}=5, a_{2}=2, a_{3}=1$.

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1}, \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

Let k be the largest integer so that the inequalities for $x_{i}, i=2, \ldots, k$, are of the form $2^{i-1} \leq x_{i} \leq 2 x_{i-1}$. In our case, $k=3$.

There exist unique integers $a_{1}, a_{2}, \ldots, a_{k} \geq 0$ so that among the inequalities for x_{k+1}, \ldots, x_{n}, the first a_{1} inequalities have at least 2^{k-1} on the left, the next a_{2} inequalities have at least 2^{k-2} on the left, etc. In our case, $a_{1}=5, a_{2}=2, a_{3}=1$.

These inequalities determine polytopes $2^{k-1} \mathbf{P}_{1}, 2^{k-2} \mathbf{P}_{2}$, and $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots$ give plane trees by induction. Attach these trees to a new root.

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1}, \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1} \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7}, \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

$$
k=3, a_{1}=5, a_{2}=2, a_{3}=1
$$

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1}, \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

$$
k=3, a_{1}=5, a_{2}=2, a_{3}=1
$$

$$
\begin{aligned}
& \mathbf{P}_{1}=\left\{\begin{array}{ll}
\left(x_{1}, \ldots, x_{5}\right): \quad 1 \leq x_{1} \leq 2, \quad 2 \leq x_{2} \leq 2 x_{1}, \\
2 \leq x_{3} \leq 4, & 2 \leq x_{4} \leq 4, \quad 4 \leq x_{5} \leq 2 x_{4}
\end{array}\right\}, \\
& \mathbf{P}_{2}=\left\{\left(x_{1}, x_{2}\right) \quad 1 \leq x_{1} \leq 2, \quad 2 \leq x_{2} \leq 2 x_{1}\right\}, \\
& \mathbf{P}_{3}=\left\{x_{1}: \quad 1 \leq x_{1} \leq 2\right\} .
\end{aligned}
$$

Example

$$
\mathbf{P}=\left\{\begin{array}{lll}
\left(x_{1}, \ldots, x_{11}\right): & 1 \leq x_{1} \leq 2, & 2 \leq x_{2} \leq 2 x_{1}, \\
4 \leq x_{3} \leq 2 x_{2}, & 4 \leq x_{4} \leq 8, & 8 \leq x_{5} \leq 2 x_{4} \\
8 \leq x_{6} \leq 16, & 8 \leq x_{7} \leq 16, & 16 \leq x_{8} \leq 2 x_{7} \\
2 \leq x_{9} \leq 4, & 4 \leq x_{10} \leq 2 x_{9}, & 1 \leq x_{11} \leq 2
\end{array}\right\}
$$

$$
k=3, a_{1}=5, a_{2}=2, a_{3}=1
$$

$$
\begin{aligned}
& \mathbf{P}_{1}=\left\{\begin{array}{ll}
\left(x_{1}, \ldots, x_{5}\right): \quad 1 \leq x_{1} \leq 2, \quad 2 \leq x_{2} \leq 2 x_{1}, \\
2 \leq x_{3} \leq 4, \quad 2 \leq x_{4} \leq 4, \quad 4 \leq x_{5} \leq 2 x_{4}
\end{array}\right\}, \\
& \mathbf{P}_{2}=\left\{\left(x_{1}, x_{2}\right): \quad 1 \leq x_{1} \leq 2, \quad 2 \leq x_{2} \leq 2 x_{1}\right\}, \\
& \mathbf{P}_{3}=\left\{x_{1}: \quad 1 \leq x_{1} \leq 2\right\} .
\end{aligned}
$$

From a subdivision to a triangulation

Every such P can be easily subdivided into simplices.

From a subdivision to a triangulation

Every such \mathbf{P} can be easily subdivided into simplices.
As an example, take $1 \leq x_{1} \leq 2,2 \leq x_{2} \leq 2 x_{1}, 2 \leq x_{3} \leq 4$, $4 \leq x_{4} \leq 2 x_{3}$.

From a subdivision to a triangulation

Every such \mathbf{P} can be easily subdivided into simplices.
As an example, take $1 \leq x_{1} \leq 2,2 \leq x_{2} \leq 2 x_{1}, 2 \leq x_{3} \leq 4$, $4 \leq x_{4} \leq 2 x_{3}$.

This is equivalent to inequalities

$$
1 \leq \frac{x_{2}}{2} \leq x_{1} \leq 2, \quad 1 \leq \frac{x_{4}}{4} \leq \frac{x_{3}}{2} \leq 2
$$

From a subdivision to a triangulation

Every such \mathbf{P} can be easily subdivided into simplices.
As an example, take $1 \leq x_{1} \leq 2,2 \leq x_{2} \leq 2 x_{1}, 2 \leq x_{3} \leq 4$, $4 \leq x_{4} \leq 2 x_{3}$.

This is equivalent to inequalities

$$
1 \leq \frac{x_{2}}{2} \leq x_{1} \leq 2, \quad 1 \leq \frac{x_{4}}{4} \leq \frac{x_{3}}{2} \leq 2
$$

To get a simplex, we have to pick an ordering of $x_{1}, x_{2} / 2, x_{3} / 2, x_{4} / 4$ that is consistent with these inequalities, for example

$$
1 \leq \frac{x_{4}}{4} \leq \frac{x_{2}}{2} \leq x_{1} \leq \frac{x_{3}}{2} \leq 2
$$

From a subdivision to a triangulation

Every such P can be easily subdivided into simplices.
As an example, take $1 \leq x_{1} \leq 2,2 \leq x_{2} \leq 2 x_{1}, 2 \leq x_{3} \leq 4$, $4 \leq x_{4} \leq 2 x_{3}$.

This is equivalent to inequalities

$$
1 \leq \frac{x_{2}}{2} \leq x_{1} \leq 2, \quad 1 \leq \frac{x_{4}}{4} \leq \frac{x_{3}}{2} \leq 2
$$

To get a simplex, we have to pick an ordering of $x_{1}, x_{2} / 2, x_{3} / 2, x_{4} / 4$ that is consistent with these inequalities, for example

$$
1 \leq \frac{x_{4}}{4} \leq \frac{x_{2}}{2} \leq x_{1} \leq \frac{x_{3}}{2} \leq 2
$$

This corresponds to a labeling of the plane tree.

Gayley polytope

Cayley polytope \mathbf{C}_{n} :

$$
1 \leq x_{1} \leq 2, \text { and } 1 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

Its normalized volume is the number of connected graphs on $n+1$ nodes.

Gayley polytope

Cayley polytope \mathbf{C}_{n} :

$$
1 \leq x_{1} \leq 2, \text { and } 1 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

Its normalized volume is the number of connected graphs on $n+1$ nodes.

Gayley polytope \mathbf{G}_{n} :

$$
0 \leq x_{1} \leq 2, \text { and } 0 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

It is an orthoscheme with sides $2,4, \ldots, 2^{n}$, so its normalized volume is $2^{\binom{n+1}{2}}$, i.e. the number of all graphs on $n+1$ nodes.

Gayley polytope

Cayley polytope \mathbf{C}_{n} :

$$
1 \leq x_{1} \leq 2, \text { and } 1 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

Its normalized volume is the number of connected graphs on $n+1$ nodes.

Gayley polytope \mathbf{G}_{n} :

$$
0 \leq x_{1} \leq 2, \text { and } 0 \leq x_{i} \leq 2 x_{i-1} \text { for } i=2, \ldots, n
$$

It is an orthoscheme with sides $2,4, \ldots, 2^{n}$, so its normalized volume is $2^{\binom{n+1}{2}}$, i.e. the number of all graphs on $n+1$ nodes.

Charles Mills Gayley (1858 - 1932), professor of English and Classics at UC Berkeley

Triangulation of Gayley polytope

Neighbors first search on a general graph: arrange connected components so that their maximal labels are decreasing from left to right, perform neighbors first search on each tree from left to right.

Triangulation of Gayley polytope

Neighbors first search on a general graph: arrange connected components so that their maximal labels are decreasing from left to right, perform neighbors first search on each tree from left to right.

Coordinates:

Triangulation of Gayley polytope

Neighbors first search on a general graph: arrange connected components so that their maximal labels are decreasing from left to right, perform neighbors first search on each tree from left to right.

Coordinates:

$$
0 \leq \frac{x_{11}}{4}-x_{8} \leq \frac{x_{6}}{4}-1 \leq \frac{x_{10}}{2}-x_{8} \leq \frac{x_{5}}{2}-1 \leq x_{7}-1 \leq
$$

$$
\leq \frac{x_{3}}{4}-1 \leq x_{9}-x_{8} \leq \frac{x_{4}}{4}-1 \leq x_{8} \leq \frac{x_{2}}{2}-1 \leq x_{1}-1 \leq 1 .
$$

t-Cayley and t-Gayley polytope

Replace powers of 2 by powers of $1+t, t>0$:

- t-Cayley polytope $\mathbf{C}_{n}(t)$:

$$
1 \leq x_{1} \leq 1+t, \text { and } 1 \leq x_{i} \leq(1+t) x_{i-1} \text { for } i=2, \ldots, n
$$

- t-Gayley polytope $\mathbf{G}_{n}(t)$:

$$
0 \leq x_{1} \leq 1+t, \text { and } 0 \leq x_{i} \leq(1+t) x_{i-1} \text { for } i=2, \ldots, n
$$

- coordinates of the form $x_{i} / 2^{j}-x_{l}$ become $x_{i} /(1+t)^{j}-x_{l}$
- coordinates of the form x_{I} (for roots) become $t x_{I}$

Normalized volumes

Theorem
The normalized volume of $\mathbf{C}_{n}(t)$ is

$$
\sum t^{|E(G)|}
$$

where the sum is over all connected graphs G on $n+1$ nodes. The normalized volume of $\mathbf{G}_{n}(t)$ is

$$
\sum^{\prime \prime}, \underline{\theta}
$$

where the sum is over all graphs G on $n+1$ nodes, i.e. $(1+t)\left(\begin{array}{c}\binom{n+1}{2}\end{array}\right.$.

Tutte polytope: hyperplanes

Take $0<q \leq 1$ and $t>0$. Define the Tutte polytope $\mathbf{T}_{n}(q, t)$ by

$$
\begin{gathered}
x_{n} \geq 1-q \\
q x_{i} \leq q(1+t) x_{i-1}-t(1-q)\left(1-x_{j-1}\right)
\end{gathered}
$$

where $1 \leq j \leq i \leq n$ and $x_{0}=1$.

Tutte polytope: hyperplanes

Take $0<q \leq 1$ and $t>0$. Define the Tutte polytope $\mathbf{T}_{n}(q, t)$ by

$$
\begin{gathered}
x_{n} \geq 1-q \\
q x_{i} \leq q(1+t) x_{i-1}-t(1-q)\left(1-x_{j-1}\right)
\end{gathered}
$$

where $1 \leq j \leq i \leq n$ and $x_{0}=1$.

Theorem

The normalized volume of the Tutte polytope is

$$
\sum q^{k(G)-1} t^{|E(G)|}
$$

where the sum is over all graphs on $n+1$ nodes.

t-Cayley polytope: vertices

Define $V_{n}(t)$ as the set of points with properties $x_{1} \in\{1,1+t\}$, $x_{i} \in\left\{1,(1+t) x_{i-1}\right\}$ for $i=2, \ldots, n$.

t-Cayley polytope: vertices

Define $V_{n}(t)$ as the set of points with properties $x_{1} \in\{1,1+t\}$, $x_{i} \in\left\{1,(1+t) x_{i-1}\right\}$ for $i=2, \ldots, n$.

$1+t$	$(1+t)^{2}$	$(1+t)^{3}$
$1+t$	$(1+t)^{2}$	1
$1+t$	1	$1+t$
$1+t$	1	1
1	$1+t$	$(1+t)^{2}$
1	$1+t$	1
1	1	$1+t$
1	1	1

t-Cayley polytope: vertices

Define $V_{n}(t)$ as the set of points with properties $x_{1} \in\{1,1+t\}$, $x_{i} \in\left\{1,(1+t) x_{i-1}\right\}$ for $i=2, \ldots, n$.

$1+t$	$(1+t)^{2}$	$(1+t)^{3}$
$1+t$	$(1+t)^{2}$	1
$1+t$	1	$1+t$
$1+t$	1	1
1	$1+t$	$(1+t)^{2}$
1	$1+t$	1
1	1	$1+t$
1	1	1

It is easy to see that $V_{n}(t)$ is the set of vertices of $\mathbf{C}_{n}(t)$.

Tutte polytope: vertices

Replace the trailing 1's of each point in $V_{n}(t)$ by $1-q$, denote the resulting set $V_{n}(q, t)$.

$1+t$	$(1+t)^{2}$	$(1+t)^{3}$
$1+t$	$(1+t)^{2}$	$1-q$
$1+t$	1	$1+t$
$1+t$	$1-q$	$1-q$
1	$1+t$	$(1+t)^{2}$
1	$1+t$	$1-q$
1	1	$1+t$
$1-q$	$1-q$	$1-q$

Then $V_{n}(q, t)$ is the set of vertices of $\mathbf{T}_{n}(q, t)$.

Triangulation of $\mathbf{T}_{2}(q, t)$

$(1+t)^{2}$
$1+t$

1
$1-q$

$1-q$
1
$1+t$

Future work

- Can something be said about the Ehrhart polynomial or the h^{*}-vector of the Cayley polytope?

Future work

- Can something be said about the Ehrhart polynomial or the h^{*}-vector of the Cayley polytope?
- What is the f-vector of the Tutte polytope?

Future work

- Can something be said about the Ehrhart polynomial or the h^{*}-vector of the Cayley polytope?
- What is the f-vector of the Tutte polytope?
- Can we find a nice shelling?

Future work

- Can something be said about the Ehrhart polynomial or the h^{*}-vector of the Cayley polytope?
- What is the f-vector of the Tutte polytope?
- Can we find a nice shelling?
- Can anything similar be done for other graphs (instead of the complete graph)? For some families of graphs?

