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Combinatorial polytopes

A polytope is the convex hull of a finite number of points in Rn

(equivalently, a bounded intersection of closed halfspaces).

Combinatorial polytopes are families of polytopes that are interesting
from a combinatorial point of view.

Examples
permutahedron: vertices are in a bijective correspondence with
permutations
associahedron: vertices are in a bijective correspondence with
correct parenthesizations of a string
Birkhoff polytope: vertices are permutation matrices

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 2 / 31



Combinatorial polytopes

A polytope is the convex hull of a finite number of points in Rn

(equivalently, a bounded intersection of closed halfspaces).

Combinatorial polytopes are families of polytopes that are interesting
from a combinatorial point of view.

Examples
permutahedron: vertices are in a bijective correspondence with
permutations
associahedron: vertices are in a bijective correspondence with
correct parenthesizations of a string
Birkhoff polytope: vertices are permutation matrices

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 2 / 31



Combinatorial polytopes

A polytope is the convex hull of a finite number of points in Rn

(equivalently, a bounded intersection of closed halfspaces).

Combinatorial polytopes are families of polytopes that are interesting
from a combinatorial point of view.

Examples
permutahedron: vertices are in a bijective correspondence with
permutations
associahedron: vertices are in a bijective correspondence with
correct parenthesizations of a string
Birkhoff polytope: vertices are permutation matrices

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 2 / 31



Preview of coming attractions
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Cayley’s theorem and Braun’s conjecture

Theorem (Cayley, 1857)
The number of integer sequences (a1, . . . ,an) such that 1 ≤ a1 ≤ 2
and 1 ≤ ai ≤ 2ai−1 for i = 2, . . . ,n, is equal to the total number of
partitions of integers N ∈ {0,1, . . . ,2n − 1} into parts 1,2,4, . . . ,2n−1.

Conjecture (Braun, 2011)
Define the Cayley polytope Cn ⊆ Rn by inequalities

1 ≤ x1 ≤ 2, and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . ,n.

Then n! vol Cn is equal to the number of connected graphs on n + 1
nodes.
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Main result

Theorem (K-Pak)
Define the Tutte polytope Tn(q, t) ⊆ Rn (by inequalities or by vertices),
Tn(0,1) = Cn. Then

n! vol Tn(q, t) =
∑

qk(G)−1t |E(G)|,

where the sum is over all graphs on n + 1 nodes, and k(G) is the
number of connected components of G.

In other words, n! vol Tn(q, t) = tnTKn+1(1 + q/t ,1 + t), where TH(x , y)
denotes the Tutte polynomial of the graph H.

When t = 1, q → 0, the Tutte polytope becomes the Cayley polytope,
so the theorem in particular implies Braun’s conjecture.

We call n! vol P the normalized volume of P ⊆ Rn.
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Triangulation of Cayley polytope

Conjecture (Braun, 2011)
Define the Cayley polytope Cn ⊆ Rn by inequalities

1 ≤ x1 ≤ 2, and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . ,n.

Then the normalized volume of Cn is equal to the number of connected
graphs on n + 1 nodes.

We will define:
a map from connected graphs to (labeled) trees
a map from trees to simplices

so that:
the simplices triangulate Cn

the normalized volume of each simplex is equal to the number of
graphs that map into the corresponding tree
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Connected graphs to trees: neighbors first search

the node with the maximal label is the first active node and the
0-th visited node
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Connected graphs to trees: neighbors first search

visit the unvisited neighbors of the active node in decreasing order
of labels; the one with the smallest label becomes active
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Connected graphs to trees: neighbors first search

if all the neighbors of the active node have been visited, backtrack
to the last visited node that has not been an active node

7

2

6

5

4

3

1

12

11

10

9

8

7

2

6

5

4

3

1

12

11

10

9

8

7

2

6

5

4

3

1

12

11

10

9

8

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 9 / 31



Connected graphs to trees: neighbors first search

if all the neighbors of the active node have been visited, backtrack
to the last visited node that has not been an active node

7

2

6

5

4

3

1

12

11

10

9

8

7

2

6

5

4

3

1

12

11

10

9

8

7

2

6

5

4

3

1

12

11

10

9

8

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 9 / 31



Connected graphs to trees: neighbors first search

if all the neighbors of the active node have been visited, backtrack
to the last visited node that has not been an active node

7

2

6

5

4

3

1

12

11

10

9

8

7

2

6

5

4

3

1

12

11

10

9

8

7

2

6

5

4

3

1

12

11

10

9

8

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 9 / 31



Connected graphs to trees: neighbors first search

the result is an ordering of the nodes and a search tree
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This is a variant of the neighbors first search introduced by Gessel and
Sagan (1996).
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Cane paths

A cane path is an up-up-. . .-up-down right path.

Fact
Number of graphs with neighbors-first search tree T is 2α(T ), where
α(T ) is the number of cane paths in T .
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Coordinates of nodes in a tree
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Fact
If the node v is visited i-th in the neighbors first search and j is the
number of cane paths starting in v , then the coordinate of v is xi/2j .
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Trees to simplices
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Trees to simplices

1 ≤ x8

16
≤ x10

4
≤ x7

8
≤ x9

2
≤ x11 ≤

x3

4
≤ x5

8
≤ x4

4
≤ x6

8
≤ x2

2
≤ x1 ≤ 2

The result is a Schläfli orthoscheme with normalized volume equal to
2α(T ).

The resulting simplices triangulate Cayley’s polytope. So this proves
Braun’s conjecture.
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Triangulation of C3
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Another subdivision of C3
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Sketch of proof

The Cayley polytope consists of all points (x1, . . . , xn) for which
1 ≤ x1 ≤ 2 and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . ,n. The main idea of the
proof is to divide these inequalities into “narrower” inequalities.

Since 1 ≤ x2 ≤ 2x1 and 2x1 ≥ 2, we have either 1 ≤ x2 ≤ 2 or
2 ≤ x2 ≤ 2x1.

If 1 ≤ x2 ≤ 2, then either 1 ≤ x3 ≤ 2 or 2 ≤ x3 ≤ 2x2.

On the other hand, if 2 ≤ x2 ≤ 2x1, then 2x2 ≥ 4, so we have
1 ≤ x3 ≤ 2, 2 ≤ x3 ≤ 4 or 4 ≤ x3 ≤ 2x2.
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Sketch of proof

1 ≤ x1 ≤ 2 1 ≤ x2 ≤ 2 1 ≤ x3 ≤ 2 1 ≤ x4 ≤ 2
2 ≤ x4 ≤ 2x3

2 ≤ x3 ≤ 2x2 1 ≤ x4 ≤ 2
2 ≤ x4 ≤ 4

4 ≤ x4 ≤ 2x3

2 ≤ x2 ≤ 2x1 1 ≤ x3 ≤ 2 1 ≤ x4 ≤ 2
2 ≤ x4 ≤ 2x3

2 ≤ x3 ≤ 4 1 ≤ x4 ≤ 2
2 ≤ x4 ≤ 4

4 ≤ x4 ≤ 2x3

4 ≤ x3 ≤ 2x2 1 ≤ x4 ≤ 2
2 ≤ x4 ≤ 4
4 ≤ x4 ≤ 8

8 ≤ x4 ≤ 2x3
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Sketch of proof

This subdivides the polytope into subpolytopes (which are not
simplices). The number of subpolytopes for n = 1,2,3,4,5 is
1,2,5,14,42.

We recognize the Catalan numbers

Cn =
1

n + 1

(
2n
n

)
,

which enumerate many important combinatorial objects:
parenthesizations, triangulations of polygons, Dyck paths, plane trees
etc.

It turns out that each subpolytope corresponds to a unique plane tree
(unlabelled rooted tree).
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Example

P =


(x1, . . . , x11) : 1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 2 x1,
4 ≤ x3 ≤ 2 x2, 4 ≤ x4 ≤ 8, 8 ≤ x5 ≤ 2 x4,
8 ≤ x6 ≤ 16, 8 ≤ x7 ≤ 16, 16 ≤ x8 ≤ 2 x7,
2 ≤ x9 ≤ 4, 4 ≤ x10 ≤ 2 x9, 1 ≤ x11 ≤ 2



Let k be the largest integer so that the inequalities for xi , i = 2, . . . , k ,
are of the form 2i−1 ≤ xi ≤ 2xi−1. In our case, k = 3.

There exist unique integers a1,a2, . . . ,ak ≥ 0 so that among the
inequalities for xk+1, . . . , xn, the first a1 inequalities have at least 2k−1

on the left, the next a2 inequalities have at least 2k−2 on the left, etc. In
our case, a1 = 5, a2 = 2, a3 = 1.

These inequalities determine polytopes 2k−1P1,2k−2P2, and P1,P2, . . .
give plane trees by induction. Attach these trees to a new root.
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From a subdivision to a triangulation

Every such P can be easily subdivided into simplices.

As an example, take 1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 2x1, 2 ≤ x3 ≤ 4,
4 ≤ x4 ≤ 2x3.

This is equivalent to inequalities

1 ≤ x2

2
≤ x1 ≤ 2, 1 ≤ x4

4
≤ x3

2
≤ 2.

To get a simplex, we have to pick an ordering of x1, x2/2, x3/2, x4/4
that is consistent with these inequalities, for example

1 ≤ x4

4
≤ x2

2
≤ x1 ≤

x3

2
≤ 2.

This corresponds to a labeling of the plane tree.
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Gayley polytope

Cayley polytope Cn:

1 ≤ x1 ≤ 2, and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . ,n

Its normalized volume is the number of connected graphs on n + 1
nodes.

Gayley polytope Gn:

0 ≤ x1 ≤ 2, and 0 ≤ xi ≤ 2xi−1 for i = 2, . . . ,n

It is an orthoscheme with sides 2,4, . . . ,2n, so its normalized volume is
2(

n+1
2 ), i.e. the number of all graphs on n + 1 nodes.

Charles Mills Gayley (1858 – 1932), professor of English and Classics
at UC Berkeley
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Triangulation of Gayley polytope

Neighbors first search on a general graph: arrange connected
components so that their maximal labels are decreasing from left to
right, perform neighbors first search on each tree from left to right.

Coordinates:

1

x1−1x2
2
−1

x3
4
−1

x4
4
−1

x5
2
−1x6

4
−1 x7−1

x8

x9−x8
x10
2

−x8
x11
4

−x8

1

2

3

4
5

6 7

8

9

10
11

12

0 ≤ x11

4
− x8 ≤

x6

4
− 1 ≤ x10

2
− x8 ≤

x5

2
− 1 ≤ x7 − 1 ≤

≤ x3

4
− 1 ≤ x9 − x8 ≤

x4

4
− 1 ≤ x8 ≤

x2

2
− 1 ≤ x1 − 1 ≤ 1.
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t-Cayley and t-Gayley polytope

Replace powers of 2 by powers of 1 + t , t > 0:

t-Cayley polytope Cn(t):

1 ≤ x1 ≤ 1 + t , and 1 ≤ xi ≤ (1 + t)xi−1 for i = 2, . . . ,n

t-Gayley polytope Gn(t):

0 ≤ x1 ≤ 1 + t , and 0 ≤ xi ≤ (1 + t)xi−1 for i = 2, . . . ,n

coordinates of the form xi/2j−xl become xi/(1 + t)j−xl

coordinates of the form xl (for roots) become txl
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Normalized volumes

Theorem
The normalized volume of Cn(t) is∑

t |E(G)|,

where the sum is over all connected graphs G on n + 1 nodes.
The normalized volume of Gn(t) is∑

t |E(G)|,

where the sum is over all graphs G on n + 1 nodes, i.e. (1 + t)(
n+1

2 ).
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Tutte polytope: hyperplanes

Take 0 < q ≤ 1 and t > 0. Define the Tutte polytope Tn(q, t) by

xn ≥ 1− q,

qxi ≤ q(1 + t)xi−1 − t(1− q)(1− xj−1),

where 1 ≤ j ≤ i ≤ n and x0 = 1.

Theorem
The normalized volume of the Tutte polytope is∑

qk(G)−1t |E(G)|,

where the sum is over all graphs on n + 1 nodes.
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t-Cayley polytope: vertices

Define Vn(t) as the set of points with properties x1 ∈ {1,1 + t},
xi ∈ {1, (1 + t)xi−1} for i = 2, . . . ,n.

1 + t (1 + t)2 (1 + t)3

1 + t (1 + t)2 1
1 + t 1 1 + t
1 + t 1 1

1 1 + t (1 + t)2

1 1 + t 1
1 1 1 + t
1 1 1

It is easy to see that Vn(t) is the set of vertices of Cn(t).
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Tutte polytope: vertices

Replace the trailing 1’s of each point in Vn(t) by 1− q, denote the
resulting set Vn(q, t).

1 + t (1 + t)2 (1 + t)3

1 + t (1 + t)2 1− q
1 + t 1 1 + t
1 + t 1− q 1− q

1 1 + t (1 + t)2

1 1 + t 1− q
1 1 1 + t

1− q 1− q 1− q

Then Vn(q, t) is the set of vertices of Tn(q, t).
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Triangulation of T2(q, t)

1

3

2

1

3

2

3

2

2

1

3

2

1

3

2

1

3

2

1

1

3

1− q

1− q

1

1

qt

qt

qt

t2
t2

t2(1 + t)

1 + t

1 + t

(1 + t)2

q2
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Future work

Can something be said about the Ehrhart polynomial or the
h∗-vector of the Cayley polytope?

What is the f -vector of the Tutte polytope?

Can we find a nice shelling?

Can anything similar be done for other graphs (instead of the
complete graph)? For some families of graphs?

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 31 / 31



Future work

Can something be said about the Ehrhart polynomial or the
h∗-vector of the Cayley polytope?

What is the f -vector of the Tutte polytope?

Can we find a nice shelling?

Can anything similar be done for other graphs (instead of the
complete graph)? For some families of graphs?

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 31 / 31



Future work

Can something be said about the Ehrhart polynomial or the
h∗-vector of the Cayley polytope?

What is the f -vector of the Tutte polytope?

Can we find a nice shelling?

Can anything similar be done for other graphs (instead of the
complete graph)? For some families of graphs?

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 31 / 31



Future work

Can something be said about the Ehrhart polynomial or the
h∗-vector of the Cayley polytope?

What is the f -vector of the Tutte polytope?

Can we find a nice shelling?

Can anything similar be done for other graphs (instead of the
complete graph)? For some families of graphs?

Matjaž Konvalinka (University of Ljubljana) Tutte polytope February 2013 31 / 31


