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Distance-regular graphs

I Let Γ be a graph of diameter d with vertex set V Γ, and
Γi (u) be the set of vertices of Γ at distance i from u ∈ V Γ.

I For u, v ∈ V Γ with ∂(u, v) = h, denote

ph
ij(u, v) := |Γi (u) ∩ Γj(v)| .

I The graph Γ is distance-regular if the values of ph
ij(u, v)

only depend on the choice of h, i , j and
not on the particular vertices u, v .

I We call the numbers ph
ij := ph

ij(u, v) (0 ≤ h, i , j ≤ d)
intersection numbers.



Introduction
Infinite families

Problems
Bibliography

Distance-regular graphs
Codes in distance-regular graphs
Triple intersection numbers

Distance-regular graphs

I Distance-regular graphs are regular with valency k = p0
11.

I All intersection numbers can be determined from the
intersection array

{k , b1, . . . , bd−1; 1, c2, . . . , cd} ,

where ai := pi
1,i , bi := pi

1,i+1, ci := pi
1,i−1

and ai + bi + ci = k (0 ≤ i ≤ d).

I Distance-regular graphs of diameter d ≤ 2 are precisely
the connected strongly regular graphs.

I Problem: Does a graph with a given intersection array exist?
If so, is it unique? Can we determine all such graphs?
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A small example

I Take the entries of the multiplication table
of the Klein four-group as vertices.

I Two distinct vertices are adjacent if they are
in the same row or column or if they share the value.

I The resulting graph is strongly regular and
distance-regular with intersection array {9, 4; 1, 6}.

0 1 a b

1 0 b a

a b 0 1

b a 1 0
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Distance-regular graphs of diameter 3

I When d = 3, the intersection array is

{k , b1, b2; 1, c2, c3}.

I Examples:
I cycles C6, C7,

I Hamming graphs H(n, 3),

I Johnson graphs J(n, 3), n ≥ 6,

I generalized hexagons GH(s, t),

I odd graph on 7 points,

I Sylvester graph,

I and others.
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Bose-Mesner algebra

I Let A0,A1, . . .Ad be binary matrices indexed by V Γ
with (Ai )uv = 1 iff ∂(u, v) = i .

I These matrices can be diagonalized simultaneously and
they share d + 1 eigenspaces.

I Let P be a (d + 1)× (d + 1) matrix with Pij being the
eigenvalue of Aj corresponding to the i-th eigenspace.

I Let Q be such that PQ = |V Γ|I .

I We call P the eigenmatrix, and Q the dual eigenmatrix.

I The matrices {A0,A1, . . .Ad} are the basis of the
Bose-Mesner algebra M, which has a second basis
{E0,E1, . . .Ed} of minimal idempotents for each eigenspace.
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Krein parameters

I In the Bose-Mesner algebra M,
the following relations are satisfied:

Aj =
d∑

i=0

PijEi and Ej =
1

n

d∑
i=0

QijAi .

I We also have

AiAj =
d∑

h=0

ph
ijAh and Ei ◦ Ej =

1

n

d∑
h=0

qh
ijEh ,

where ◦ is the entrywise matrix product.

I The numbers qh
ij are called the Krein parameters and are

nonnegative algebraic real numbers.
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Codes in distance-regular graphs

I An e-code C in a graph Γ is a set of vertices with
∂(u, v) ≥ 2e + 1 for any distinct u, v ∈ C .

I The size of the code C in a distance-regular graph is
limited by the sphere packing bound:

|C |
e∑

i=0

ki ≤ |V Γ|

I If equality holds in the above bound,
we call C a perfect e-code.
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More bounds

I Let Γ be a distance-regular graph of diameter d = 2e + 1
and C an e-code in Γ.

I Then we have |C | ≤ pd
dd + 2.

If equality holds, C is a maximal e-code.

I If a maximal code C exists, then adpd
dd ≤ cd .

If equality holds, C is a locally regular e-code.

I Another bound:

(|C | − 1)
e∑

i=0

pd
id ≤ kd

I If equality holds,
C is a last subconstituent perfect e-code.
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Triple intersection numbers

I In a distance regular graph, the intersection numbers
ph
ij = |Γi (u) ∩ Γj(v)| only depend on h = ∂(u, v).

I Let u, v ,w ∈ V Γ with
∂(u, v) = W , ∂(u,w) = V and ∂(v ,w) = U.

I We define triple intersection numbers as[
u v w
i j h

]
:= |Γi (u) ∩ Γj(v) ∩ Γh(w)|

I
[

u v w
i j h

]
may depend on

the particular choice of u, v ,w !

I When u, v ,w are fixed,

we abbreviate
[

u v w
i j h

]
as [i j h].

phij

u v

[i j h]

u v

w

h

i j

i j

h

W

UV
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Codes and triple intersection numbers

I Proposition: Let Γ be a distance-regular graph
of diameter d = 2e + 1 with a locally regular e-code C .

I Then, for u, v ,w with u ∼ v , ∂(u,w) = d − 1 and v ,w ∈ C ,[
u v w
d d d

]
= 1

holds.
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Infinite family 1

I We will study an infinite family of
distance-regular graphs Γ with intersection array

{(2r 2 − 1)(2r + 1), 4r(r 2 − 1), 2r 2; 1, 2(r 2 − 1), r(4r 2 − 2)}, r > 1. (1)

I Eigenvalues are

k = θ0 = (2r 2 − 1)(2r + 1), θ1 = 2r 2 + 2r − 1, θ2 = −1, θ3 = −2r 2 + 1.

I θ2 = −1 suggests that Γ might contain a perfect 1-code.

I The first two examples r = 2, 3:

{35, 24, 8; 1, 6, 28} and {119, 96, 18; 1, 16, 102}

appear in the list of feasible intersection arrays by
Brouwer et al. [BCN89, pp. 425–431].
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Infinite family 2

I Another infinite family we study is that of
distance-regular graphs Γ with intersection array

{2r 2(2r + 1), (2r − 1)(2r 2 + r + 1), 2r 2; 1, 2r 2, r(4r 2 − 1)}, r ≥ 1. (2)

I Eigenvalues are

k = θ0 = 2r 2(2r + 1), θ1 = r(2r + 1), θ2 = 0, θ3 = −r(2r + 1).

I Since θ1 = a3, these graphs are Shilla graphs [KP10].

I For r = 1 we have the Hamming graph H(3, 3).

I The next example r = 2:

{40, 33, 8; 1, 8, 30}

appears in the list of feasible intersection arrays by
Brouwer et al. [BCN89, pp. 425–431].
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Common properties

I Let Γ be a graph with intersection array (1) or (2).

I Then Γ has diameter 3 and is formally self-dual.

I The Krein parameters q3
11, q

1
13, q

1
31 of Γ vanish.

I Lemma: Let u, v be vertices of Γ with ∂(u, v) = 3.
Then there exists a unique locally regular 1-code C
such that u, v ∈ C .

I Theorem: For r > 1, Γ does not exist.
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Computing triple intersection numbers

I We have 3d2 equations connecting
triple intersection numbers to ph

ij :
d∑
`=1

[` j h] = pU
jh − [0 j h],

d∑
`=1

[i ` h] = pV
ih − [i 0 h],

d∑
`=1

[i j `] = pW
ij − [i j 0].

I All triple intersection numbers
are nonnegative integers.
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Computing triple intersection numbers (2)

[ 1 1 1 ] = 0 [ 1 2 1 ] = 0 [ 1 3 1 ] = 0
∆ ∆ ∆

[ 1 1 2 ] = 0 [ 1 2 2 ] = [ 1 3 2 ] =
∆ α

c3 − α

[ 1 1 3 ] = 0 [ 1 2 3 ] = [ 1 3 3 ] =
∆

c3 − α a3 − c3 + α

[ 2 1 1 ] = 0 [ 2 2 1 ] = [ 2 3 1 ] =
∆ γ

c3 − γ

[ 2 1 2 ] = [ 2 2 2 ] = [ 2 3 2 ] =
β

p3
22 − γ − [ 2 2 3 ] p3

23 − c3 + γ − [ 2 3 3 ]

[ 2 1 3 ] = [ 2 2 3 ] = [ 2 3 3 ] =

c3 − β p3
23 − c3 + α− [ 3 2 3 ] p3

33 + c3 − a3 − 1 − α− δ

[ 3 1 1 ] = 0 [ 3 2 1 ] = [ 3 3 1 ] =
∆

c3 − γ a3 − c3 + γ

[ 3 1 2 ] = [ 3 2 2 ] = [ 3 3 2 ] =

c3 − β p3
32−c3 +β−[ 3 3 2 ] p3

33 +c3−a3−1−γ−δ

[ 3 1 3 ] = [ 3 2 3 ] = [ 3 3 3 ] =

a3−c3 +β p3
33 +c3−a3−1−β−δ

δ
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Krein condition

I Theorem ([BCN89, Theorem 2.3.2], [CJ08, Theorem 3]):
Let Γ be a distance-regular graph of diameter d ,
Q its dual eigenmatrix, and qh

ij its Krein parameters.

I qh
ij = 0 iff for all triples u, v ,w ∈ V Γ:

d∑
r ,s,t=0

QriQsjQth

[
u v w
r s t

]
= 0

I This gives a new equation
in terms of triple intersection numbers.
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The case U = V = W = 3

u

v

w

I Let Γ be a distance-regular graph
with intersection array (1) or (2).

I If we choose u, v ,w ∈ V Γ such that
∂(u, v) = ∂(u,w) = ∂(v ,w) = 3,
we obtain a single solution with[

u v w
1 3 3

]
=

[
u v w
3 1 3

]
=

[
u v w
3 3 1

]
= 0,[

u v w
2 3 3

]
=

[
u v w
3 2 3

]
=

[
u v w
3 3 2

]
= 0,[

u v w
3 3 3

]
= p3

33 − 1.

I As c3 = a3p3
33, there is a locally regular 1-code C in Γ

with u, v ,w ∈ C .
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The case {U ,V ,W } = {1, 2, 3}

u′

v

w

I Let C be a locally regular 1-code in Γ
containing vertices v and w .

I For any u′ ∈ V Γ with u′ ∼ v and ∂(u′,w) = 2

we have
[

u′ v w
3 3 3

]
= 1.

I If Γ has intersection array (1), then there is
no solution and Γ does not exist.

I If Γ has intersection array (2), then there is

a single solution with
[

u′ v w
1 1 3

]
= r .
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The case U = V = W = 1

I Let Γ be a distance-regular graph with intersection array (2).

I We obtain two solutions:

u′

v

0 1 2

1 0 2r2 − r − 1

1 r 2r2 − 2r − 1

1 2

2r2 −
r − 1

2r(2r2 −
r + 1)

2r2 −
2r − 1

r(4r2 −
2r + 3)

1 2

2r2 −
r − 1

2r(2r2 −
r + 1)

2r2 −
2r − 1

r(4r2 −
2r + 3)

1 2 3

2r(2r2 −
r + 1)

8r4−12r3+
6r2 − 7r + 5

4r3 −
2r2+2r−4

r(4r2 −
2r + 3)

8r4−12r3+
6r2 − 7r + 6

4r3 −
2r2 +r−5

2 3

4r3 − 2r2 + 2r − 4 2r2 − r + 3

4r3 − 2r2 + r − 5 2r2 + 4

2 3

4r3 − 2r2 + 2r − 4 2r2 − r + 3

4r3 − 2r2 + r − 5 2r2 + 4

2 3

2r2 − r + 3 2r − 2

2r2 + 4 r − 3
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Counting solutions

I Let t and a1 − t be the numbers of vertices w ′a and w ′b such

that
[

u′ v w ′a
2 3 3

]
= 2r 2 − r + 3 and

[
u′ v w ′b
2 3 3

]
= 2r 2 + 4.

u′

v

w′a w′b

x′

∂(w, x′) = 3

r

w

x

α ∂(w′
α, x) = 3

a) 2r2 − r + 3

b) 2r2 + 4

3

I By comparing counts of pairs (w , x ′) and (w ′α, x), α ∈ {a, b}

of vertices at distance 3, we obtain t =
r(2r − 1)(3− r)

r + 1
.
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Ruling out family 2

I Case r = 2: we have a1 − t = 4 vertices w ′b, but[
u′ v w ′b
3 3 3

]
= r − 3 < 0, so the graph does not exist.

I Case r = 3: as a1 = 15 and t = 0, for all neighbours w ′ of u′

and v we have
[

u′ v w ′
1 1 1

]
= r = 3, so Λ(u′, v) does not exist.

I Case r > 3: t < 0, contradiction.
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Families with codes

I Proposition: Let Γ be a distance-regular graph of diameter 3
with a 1-code C that is locally regular and
last subconstituent perfect.

I Set a := a3, p := p3
33 and c := c2.

Then Γ has intersection array

a) {a(p + 1), cp, a + 1; 1, c , ap}, or

b) {a(p + 1), (a + 1)p, c ; 1, c , ap}.

I Conjecture: A distance regular graph with
intersection array a) is a subgraph of a Moore graph
or has a = c + 1.
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Examples

intersection array status intersection array status
{5, 4, 2; 1, 1, 4} ! Sylvester {6, 4, 2; 1, 2, 3} ! H(3, 3)
{35, 24, 8; 1, 6, 28} 6 ∃ {12, 10, 2; 1, 2, 8} ?
{44, 30, 5; 1, 3, 40} 6∃ [KP10] {12, 10, 3; 1, 3, 8} ! Doro
{48, 35, 9; 1, 7, 40} ? {18, 10, 4; 1, 4, 9} ! J(9, 3)
{49, 36, 8; 1, 6, 42} ? {24, 21, 3; 1, 3, 18} ?
{54, 40, 7; 1, 5, 48} ? {25, 24, 3; 1, 3, 20} ?
{55, 54, 2; 1, 1, 54} ? in Moore(57) {30, 28, 2; 1, 2, 24} ?
{63, 48, 10; 1, 8, 54} ? {40, 33, 3; 1, 3, 30} ?
{80, 63, 11; 1, 9, 70} ? {40, 33, 8; 1, 8, 30} 6 ∃
{99, 80, 12; 1, 10, 88} ? {50, 44, 5; 1, 5, 40} ?
{119, 96, 18; 1, 16, 102} 6 ∃ {60, 52, 10; 1, 10, 48} ?

{65, 56, 5; 1, 5, 52} ?
{72, 70, 8; 1, 8, 63} ?
{75, 64, 8; 1, 8, 60} ?
{80, 63, 12; 1, 12, 60} ?
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An open case: {80, 63, 12; 1, 12, 60}

I We have much
information about
the structure.

I No costruction
or proof of
nonexistence
is known.

I The third
subconstituent is
antipodal with
intersection array
{20, 15, 1; 1, 5, 20} –
also an open case.

u

v
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