# Extremal 1-codes in distance-regular graphs of diameter 3

#### Janoš Vidali

#### Joint work with Aleksandar Jurišić

University of Ljubljana Faculty of Computer and Information Science

February 25, 2013

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### Distance-regular graphs

- ► Let  $\Gamma$  be a graph of diameter d with vertex set  $V\Gamma$ , and  $\Gamma_i(u)$  be the set of vertices of  $\Gamma$  at distance i from  $u \in V\Gamma$ .
- For  $u, v \in V\Gamma$  with  $\partial(u, v) = h$ , denote

 $p_{ij}^h(u,v) := |\Gamma_i(u) \cap \Gamma_j(v)|$ .

- The graph Γ is distance-regular if the values of p<sup>h</sup><sub>ij</sub>(u, v) only depend on the choice of h, i, j and not on the particular vertices u, v.
- We call the numbers p<sup>h</sup><sub>ij</sub> := p<sup>h</sup><sub>ij</sub>(u, v) (0 ≤ h, i, j ≤ d) intersection numbers.

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### Distance-regular graphs

- Distance-regular graphs are regular with valency  $k = p_{11}^0$ .
- All intersection numbers can be determined from the intersection array

$$\{k, b_1, \ldots, b_{d-1}; 1, c_2, \ldots, c_d\}$$
,

where  $a_i := p_{1,i}^i$ ,  $b_i := p_{1,i+1}^i$ ,  $c_i := p_{1,i-1}^i$ and  $a_i + b_i + c_i = k$   $(0 \le i \le d)$ .

- ► Distance-regular graphs of diameter d ≤ 2 are precisely the connected strongly regular graphs.
- Problem: Does a graph with a given intersection array exist? If so, is it unique? Can we determine all such graphs?

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### A small example

- Take the entries of the multiplication table of the Klein four-group as vertices.
- Two distinct vertices are adjacent if they are in the same row or column or if they share the value.
- The resulting graph is strongly regular and distance-regular with intersection array {9,4;1,6}.



Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### Distance-regular graphs of diameter 3

• When d = 3, the intersection array is

 $\{k, b_1, b_2; 1, c_2, c_3\}.$ 

- Examples:
  - cycles  $C_6$ ,  $C_7$ ,
  - Hamming graphs H(n, 3),
  - Johnson graphs J(n,3),  $n \ge 6$ ,
  - generalized hexagons GH(s, t),
  - odd graph on 7 points,
  - Sylvester graph,
  - and others.

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### Bose-Mesner algebra

- Let A<sub>0</sub>, A<sub>1</sub>,... A<sub>d</sub> be binary matrices indexed by VΓ with (A<sub>i</sub>)<sub>uv</sub> = 1 iff ∂(u, v) = i.
- ► These matrices can be diagonalized simultaneously and they share d + 1 eigenspaces.
- ► Let P be a (d + 1) × (d + 1) matrix with P<sub>ij</sub> being the eigenvalue of A<sub>i</sub> corresponding to the *i*-th eigenspace.
- Let Q be such that  $PQ = |V\Gamma|I$ .
- ▶ We call *P* the *eigenmatrix*, and *Q* the *dual eigenmatrix*.
- ► The matrices {A<sub>0</sub>, A<sub>1</sub>,..., A<sub>d</sub>} are the basis of the Bose-Mesner algebra M, which has a second basis {E<sub>0</sub>, E<sub>1</sub>,..., E<sub>d</sub>} of minimal idempotents for each eigenspace.

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### Krein parameters

In the Bose-Mesner algebra *M*, the following relations are satisfied:

$$A_j = \sum_{i=0}^d P_{ij}E_i$$
 and  $E_j = rac{1}{n}\sum_{i=0}^d Q_{ij}A_i$  .

We also have

$$A_i A_j = \sum_{h=0}^d p^h_{ij} A_h$$
 and  $E_i \circ E_j = rac{1}{n} \sum_{h=0}^d q^h_{ij} E_h$ ,

where o is the entrywise matrix product.

 The numbers q<sup>h</sup><sub>ij</sub> are called the Krein parameters and are nonnegative algebraic real numbers.

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

## Codes in distance-regular graphs

- ► An *e*-code *C* in a graph  $\Gamma$  is a set of vertices with  $\partial(u, v) \ge 2e + 1$  for any distinct  $u, v \in C$ .
- The size of the code C in a distance-regular graph is limited by the sphere packing bound:

$$|C|\sum_{i=0}^{e}k_{i}\leq |V\Gamma|$$

 If equality holds in the above bound, we call C a perfect e-code.



Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### More bounds

- Let Γ be a distance-regular graph of diameter d = 2e + 1 and C an e-code in Γ.
- ► Then we have |C| ≤ p<sup>d</sup><sub>dd</sub> + 2. If equality holds, C is a maximal e-code.
- ► If a maximal code C exists, then a<sub>d</sub>p<sup>d</sup><sub>dd</sub> ≤ c<sub>d</sub>. If equality holds, C is a *locally regular e*-code.
- Another bound:

$$(|C|-1)\sum_{i=0}^e p_{id}^d \le k_d$$

If equality holds,
 C is a *last subconstituent perfect e-code*.



Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

## Triple intersection numbers

- ▶ In a distance regular graph, the intersection numbers  $p_{ij}^h = |\Gamma_i(u) \cap \Gamma_j(v)|$  only depend on  $h = \partial(u, v)$ .
- Let  $u, v, w \in V\Gamma$  with  $\partial(u, v) = W$ ,  $\partial(u, w) = V$  and  $\partial(v, w) = U$ .
- We define triple intersection numbers as  $\begin{bmatrix} u & v & w \\ i & j & h \end{bmatrix} := |\Gamma_i(u) \cap \Gamma_j(v) \cap \Gamma_h(w)|$
- $\begin{bmatrix} u & v & w \\ i & j & h \end{bmatrix}$  may depend on the particular choice of u, v, w!



h

Distance-regular graphs Codes in distance-regular graphs Triple intersection numbers

#### Codes and triple intersection numbers

- ► Proposition: Let Γ be a distance-regular graph of diameter d = 2e + 1 with a locally regular e-code C.
- ▶ Then, for u, v, w with  $u \sim v$ ,  $\partial(u, w) = d 1$  and  $v, w \in C$ ,

$$\left[\begin{array}{cc} u & v & w \\ d & d & d \end{array}\right] = 1$$

holds.

Main result Computing triple intersection numbers Krein condition Proof

# Infinite family 1

 We will study an infinite family of distance-regular graphs Γ with intersection array

 $\{(2r^2-1)(2r+1), 4r(r^2-1), 2r^2; 1, 2(r^2-1), r(4r^2-2)\}, r > 1.$  (1)

#### Eigenvalues are

 $k = \theta_0 = (2r^2 - 1)(2r + 1), \ \theta_1 = 2r^2 + 2r - 1, \ \theta_2 = -1, \ \theta_3 = -2r^2 + 1.$ 

•  $\theta_2 = -1$  suggests that  $\Gamma$  might contain a perfect 1-code.

► The first two examples r = 2, 3:

 $\{35, 24, 8; 1, 6, 28\}$  and  $\{119, 96, 18; 1, 16, 102\}$ 

appear in the list of feasible intersection arrays by Brouwer et al. [BCN89, pp. 425–431].

Main result Computing triple intersection numbers Krein condition Proof

# Infinite family 2

 Another infinite family we study is that of distance-regular graphs Γ with intersection array

 ${2r^{2}(2r+1), (2r-1)(2r^{2}+r+1), 2r^{2}; 1, 2r^{2}, r(4r^{2}-1)}, r \geq 1.$  (2)

Eigenvalues are

$$k = \theta_0 = 2r^2(2r+1), \quad \theta_1 = r(2r+1), \quad \theta_2 = 0, \quad \theta_3 = -r(2r+1).$$

- Since  $\theta_1 = a_3$ , these graphs are Shilla graphs [KP10].
- For r = 1 we have the Hamming graph H(3,3).
- ► The next example r = 2:

 $\{40, 33, 8; 1, 8, 30\}$ 

appears in the list of feasible intersection arrays by Brouwer et al. [BCN89, pp. 425–431].

Main result Computing triple intersection numbers Krein condition Proof

#### Common properties

- ▶ Let  $\Gamma$  be a graph with intersection array (1) or (2).
- Then Γ has diameter 3 and is formally self-dual.
- The Krein parameters  $q_{11}^3, q_{13}^1, q_{31}^1$  of  $\Gamma$  vanish.
- Lemma: Let u, v be vertices of Γ with ∂(u, v) = 3. Then there exists a unique locally regular 1-code C such that u, v ∈ C.
- **Theorem**: For r > 1,  $\Gamma$  does not exist.

Main result Computing triple intersection numbers Krein condition Proof

- ▶ We have  $3d^2$  equations connecting triple intersection numbers to  $p_{ij}^h$ :  $\sum_{\ell=1}^{d} [\ell \ j \ h] = p_{jh}^U - [0 \ j \ h],$  $\sum_{\ell=1}^{d} [i \ \ell \ h] = p_{ih}^V - [i \ 0 \ h],$ 1 $\sum_{\ell=1}^{d} [i \ j \ \ell] = p_{ij}^W - [i \ j \ 0].$  $p_{20}^3$
- All triple intersection numbers are nonnegative integers.



Main result Computing triple intersection numbers Krein condition Proof

| [1 1 1] = 0       | $[1 \ 2 \ 1] = 0$ | $[1 \ 3 \ 1] = 0$ |
|-------------------|-------------------|-------------------|
| Δ                 | Δ                 | Δ                 |
| $[1 \ 1 \ 2] = 0$ | [122] =           | [132] =           |
| Δ                 | lpha              |                   |
| [1 1 3] = 0       | [123] =           | [133] =           |
| Δ                 |                   |                   |
| $[2 \ 1 \ 1] = 0$ | [221] =           | [231] =           |
| Δ                 | $\gamma$          |                   |
| [212] =           | [222] =           | [232] =           |
| $\beta$           |                   |                   |
| [2 1 3] =         | [223] =           | [233] =           |
|                   |                   |                   |
| [3 1 1] = 0       | [321] =           | [3 3 1] =         |
| Δ                 |                   |                   |
| [312] =           | [322] =           | [332] =           |
|                   |                   | -                 |
| [313] =           | [323] =           | [3 3 3] =         |
|                   |                   | δ                 |

Main result Computing triple intersection numbers Krein condition Proof

| $[1 \ 1 \ 1] = 0$ | [121]=0        | [1 3 1] = 0  |
|-------------------|----------------|--------------|
| Δ                 | Δ              | Δ            |
| [1 1 2] = 0       | [122] =        | [132] =      |
| Δ                 | $\alpha$       | $c_3 - lpha$ |
| [1 1 3] = 0       | [123] =        | [133] =      |
| Δ                 | $c_3 - \alpha$ |              |
| $[2 \ 1 \ 1] = 0$ | [221] =        | [231] =      |
| Δ                 | $\gamma$       | $c_3-\gamma$ |
| [212] =           | [222] =        | [232] =      |
| $\beta$           |                |              |
| [213]=            | [223] =        | [233] =      |
| $c_3 - \beta$     |                |              |
| [3 1 1] = 0       | [321] =        | [331] =      |
| Δ                 | $c_3-\gamma$   |              |
| [312] =           | [322] =        | [332] =      |
| $c_3 - \beta$     |                |              |
| [313] =           | [323] =        | [333] =      |
|                   |                | δ            |

Main result Computing triple intersection numbers Krein condition Proof

| $[1 \ 1 \ 1] = 0$ | [121]=0        | [131]=0            |  |
|-------------------|----------------|--------------------|--|
| Δ                 | Δ              | Δ                  |  |
| [1 1 2] = 0       | [122] =        | [132] =            |  |
| Δ                 | $\alpha$       | $c_3 - lpha$       |  |
| [1 1 3] = 0       | [1 2 3] =      | [133] =            |  |
| Δ                 | $c_3 - \alpha$ | $a_3 - c_3 + lpha$ |  |
| $[2 \ 1 \ 1] = 0$ | [221] =        | [231] =            |  |
| Δ                 | $\gamma$       | $c_3 - \gamma$     |  |
| [212] =           | [222] =        | [232] =            |  |
| β                 |                |                    |  |
| [213]=            | [223] =        | [233] =            |  |
| $c_3 - \beta$     |                |                    |  |
| [3 1 1] = 0       | [321] =        | [331] =            |  |
| Δ                 | $c_3 - \gamma$ | $a_3-c_3+\gamma$   |  |
| [312] =           | [322] =        | [332] =            |  |
| $c_3 - \beta$     |                |                    |  |
| [313] =           | [3 2 3] =      | [3 3 3] =          |  |
| $a_3-c_3+\beta$   |                | δ                  |  |

Main result Computing triple intersection numbers Krein condition Proof

| $[1 \ 1 \ 1 \ ] = 0$ | $[1 \ 2 \ 1] = 0$                           | [1 3 1] = 0                                  |  |
|----------------------|---------------------------------------------|----------------------------------------------|--|
| Δ                    | Δ                                           | Δ                                            |  |
| [1 1 2] = 0          | [122] =                                     | [132] =                                      |  |
| Δ                    | $\alpha$                                    | $c_3 - \alpha$                               |  |
| [1 1 3] = 0          | [1 2 3] =                                   | [1 3 3] =                                    |  |
| Δ                    | $c_3 - \alpha$                              | $a_3 - c_3 + \alpha$                         |  |
| $[2 \ 1 \ 1] = 0$    | [221] =                                     | [231] =                                      |  |
| Δ                    | $\gamma$                                    | $c_3 - \gamma$                               |  |
| [212] =              | [222] =                                     | [232] =                                      |  |
| β                    |                                             |                                              |  |
| [2 1 3] =            | [223] =                                     | [233] =                                      |  |
| $c_3 - \beta$        |                                             | $p_{33}^3 + c_3 - a_3 - 1 - \alpha - \delta$ |  |
| [3 1 1] = 0          | [321] =                                     | [331] =                                      |  |
| Δ                    | $c_3 - \gamma$                              | $a_3-c_3+\gamma$                             |  |
| [312] =              | [322] =                                     | [332] =                                      |  |
| $c_3 - \beta$        |                                             | $p_{33}^3+c_3-a_3-1-\gamma-\delta$           |  |
| [313] =              | [323] =                                     | [333] =                                      |  |
| $a_3-c_3+\beta$      | $p_{33}^3 + c_3 - a_3 - 1 - \beta - \delta$ | δ                                            |  |

Main result Computing triple intersection numbers Krein condition Proof

| $[1 \ 1 \ 1] = 0$ | [121]=0                               | [1 3 1] = 0                                  |  |
|-------------------|---------------------------------------|----------------------------------------------|--|
| Δ                 | Δ                                     | Δ                                            |  |
| [1 1 2] = 0       | [122] =                               | [132] =                                      |  |
| Δ                 | $\alpha$                              | $c_3 - lpha$                                 |  |
| [1 1 3] = 0       | [1 2 3] =                             | [1 3 3] =                                    |  |
| Δ                 | $c_3 - \alpha$                        | $a_3 - c_3 + \alpha$                         |  |
| $[2 \ 1 \ 1] = 0$ | [221] =                               | [231] =                                      |  |
| Δ                 | $\gamma$                              | $c_3-\gamma$                                 |  |
| [212] =           | [222] =                               | [232] =                                      |  |
| β                 |                                       | $p_{23}^3 - c_3 + \gamma - [2 \ 3 \ 3]$      |  |
| [2 1 3] =         | [223] =                               | [233] =                                      |  |
| $c_3 - \beta$     | $p_{23}^3 - c_3 + \alpha - [3\ 2\ 3]$ | $p_{33}^3 + c_3 - a_3 - 1 - \alpha - \delta$ |  |
| [3 1 1] = 0       | [321] =                               | [331] =                                      |  |
| Δ                 | $c_3 - \gamma$                        | $a_3 - c_3 + \gamma$                         |  |
| [312] =           | [322] =                               | [332] =                                      |  |
| $c_3 - \beta$     | $p_{32}^3 - c_3 + \beta - [3 3 2]$    | $p_{33}^3+c_3-a_3-1-\gamma-\delta$           |  |
| [313] =           | [3 2 3] =                             | [333] =                                      |  |
|                   | $-3$ $-1$ $\rho$ S                    | 2<br>A                                       |  |

Main result Computing triple intersection numbers Krein condition Proof

| [1 1 1] = 0       | [121] - 0                                                     | [131] - 0                                    |  |
|-------------------|---------------------------------------------------------------|----------------------------------------------|--|
|                   | [121]=0                                                       |                                              |  |
|                   | $\Delta$                                                      |                                              |  |
| [1 1 2] = 0       | [122] =                                                       | [132] =                                      |  |
| Δ                 | α                                                             | $c_3 - \alpha$                               |  |
| [1 1 3] = 0       | [1 2 3] =                                                     | [133] =                                      |  |
| Δ                 | $c_3 - \alpha$                                                | $a_3 - c_3 + \alpha$                         |  |
| $[2 \ 1 \ 1] = 0$ | [221] =                                                       | [231] =                                      |  |
| Δ                 | $\gamma$                                                      | $c_3 - \gamma$                               |  |
| [212] =           | [222] =                                                       | [232] =                                      |  |
| β                 | $p_{22}^3 - \gamma - [2\ 2\ 3]$                               | $p_{23}^3 - c_3 + \gamma - [2 \ 3 \ 3]$      |  |
| [213]=            | [223] =                                                       | [233] =                                      |  |
| $c_3 - \beta$     | $p_{23}^3 - c_3 + \alpha - [3\ 2\ 3]$                         | $p_{33}^3 + c_3 - a_3 - 1 - \alpha - \delta$ |  |
| [3 1 1] = 0       | [321] =                                                       | [331] =                                      |  |
| Δ                 | $c_3 - \gamma$                                                | $a_3-c_3+\gamma$                             |  |
| [312] =           | [322] =                                                       | [332] =                                      |  |
| $c_3 - \beta$     | $p_{32}^3 - c_3 + \beta - [3 3 2]$                            | $p_{33}^3+c_3-a_3-1-\gamma-\delta$           |  |
| [313] =           | [3 2 3] =                                                     | [333] =                                      |  |
| $1 2 - c + \beta$ | $n_{\alpha}^3 + c_{\alpha} - a_{\alpha} - 1 - \beta - \delta$ | δ                                            |  |

Main result Computing triple intersection numbers Krein condition Proof

## Krein condition

- ► Theorem ([BCN89, Theorem 2.3.2], [CJ08, Theorem 3]): Let Γ be a distance-regular graph of diameter d, Q its dual eigenmatrix, and q<sup>h</sup><sub>ii</sub> its Krein parameters.
- $q_{ij}^h = 0$  iff for all triples  $u, v, w \in V\Gamma$ :

$$\sum_{r,s,t=0}^{d} Q_{ri} Q_{sj} Q_{th} \begin{bmatrix} u & v & w \\ r & s & t \end{bmatrix} = 0$$

 This gives a new equation in terms of triple intersection numbers.

Main result Computing triple intersection numbers Krein condition Proof

Ш

v

#### The case U = V = W = 3

- ▶ Let  $\Gamma$  be a distance-regular graph with intersection array (1) or (2).
- ▶ If we choose  $u, v, w \in V\Gamma$  such that  $\partial(u, v) = \partial(u, w) = \partial(v, w) = 3,$ we obtain a single solution with

$$\begin{bmatrix} u & v & w \\ 1 & 3 & 3 \end{bmatrix} = \begin{bmatrix} u & v & w \\ 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} u & v & w \\ 3 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 0, \\ u & v & w \\ 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} u & v & w \\ 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} u & v & w \\ 3 & 3 & 2 \end{bmatrix} = 0, \quad v$$

$$\begin{bmatrix} u & v & w \\ 3 & 3 & 3 \end{bmatrix} = p_{33}^3 - 1.$$

• As  $c_3 = a_3 p_{33}^3$ , there is a locally regular 1-code C in  $\Gamma$ with  $u, v, w \in C$ .

Main result Computing triple intersection numbers Krein condition Proof

The case 
$$\{U, V, W\} = \{1, 2, 3\}$$

 Let C be a locally regular 1-code in Γ containing vertices v and w.



For any  $u' \in V\Gamma$  with  $u' \sim v$  and  $\partial(u', w) = 2$ we have  $\begin{bmatrix} u' & v & w \\ 3 & 3 & 3 \end{bmatrix} = 1$ .

- If Γ has intersection array (1), then there is no solution and Γ does not exist.

Main result Computing triple intersection numbers Krein condition Proof

#### The case U = V = W = 1

- ► Let  $\Gamma$  be a distance-regular graph with intersection array (2).
- We obtain two solutions:



Main result Computing triple intersection numbers Krein condition Proof

#### Counting solutions

- Let t and  $a_1 t$  be the numbers of vertices  $w'_a$  and  $w'_b$  such that  $\begin{bmatrix} u' & v & w'_a \\ 2 & 3 & 3 \end{bmatrix} = 2r^2 - r + 3$  and  $\begin{bmatrix} u' & v & w'_b \\ 2 & 3 & 3 \end{bmatrix} = 2r^2 + 4$ . **o** x  $\partial(w'_{\alpha}, x) = 3$ u' $2r^2 - r + 3$ a)  $2r^2 + 4$ b) 0 w 3 0 r' n
- ▶ By comparing counts of pairs (w, x') and  $(w'_{\alpha}, x)$ ,  $\alpha \in \{a, b\}$  of vertices at distance 3, we obtain  $t = \frac{r(2r-1)(3-r)}{r+1}$ .

Main result Computing triple intersection numbers Krein condition Proof

#### Ruling out family 2

• Case 
$$r = 2$$
: we have  $a_1 - t = 4$  vertices  $w'_b$ , but  $\begin{bmatrix} u' & v & w'_b \\ 3 & 3 & 3 \end{bmatrix} = r - 3 < 0$ , so the graph does not exist

► Case r = 3: as  $a_1 = 15$  and t = 0, for all neighbours w' of u'and v we have  $\begin{bmatrix} u' & v & w' \\ 1 & 1 & 1 \end{bmatrix} = r = 3$ , so  $\Lambda(u', v)$  does not exist.

• Case r > 3: t < 0, contradiction.

Families with codes An open case

#### Families with codes

- ► Proposition: Let Γ be a distance-regular graph of diameter 3 with a 1-code C that is locally regular and last subconstituent perfect.
- Set a := a<sub>3</sub>, p := p<sub>33</sub><sup>3</sup> and c := c<sub>2</sub>.
   Then Γ has intersection array
  - a)  $\{a(p+1), cp, a+1; 1, c, ap\}$ , or b)  $\{a(p+1), (a+1)p, c; 1, c, ap\}$ .
- Conjecture: A distance regular graph with intersection array a) is a subgraph of a Moore graph or has a = c + 1.

Families with codes An open case

#### Examples

| intersection array            | status         | intersection array          | status   |
|-------------------------------|----------------|-----------------------------|----------|
| $\{5, 4, 2; 1, 1, 4\}$        | ! Sylvester    | {6, 4, 2; 1, 2, 3}          | ! H(3,3) |
| {35, 24, 8; 1, 6, 28}         | ₽              | {12, 10, 2; 1, 2, 8}        | ?        |
| {44, 30, 5; 1, 3, 40}         | ∄ [KP10]       | {12, 10, 3; 1, 3, 8}        | ! Doro   |
| {48, 35, 9; 1, 7, 40}         | ?              | {18, 10, 4; 1, 4, 9}        | ! J(9,3) |
| $\{49, 36, 8; 1, 6, 42\}$     | ?              | {24, 21, 3; 1, 3, 18}       | ?        |
| {54, 40, 7; 1, 5, 48}         | ?              | {25, 24, 3; 1, 3, 20}       | ?        |
| $\{55, 54, 2; 1, 1, 54\}$     | ? in Moore(57) | {30, 28, 2; 1, 2, 24}       | ?        |
| {63, 48, 10; 1, 8, 54}        | ?              | {40, 33, 3; 1, 3, 30}       | ?        |
| {80, 63, 11; 1, 9, 70}        | ?              | {40, 33, 8; 1, 8, 30}       | ₹        |
| $\{99, 80, 12; 1, 10, 88\}$   | ?              | {50, 44, 5; 1, 5, 40}       | ?        |
| $\{119, 96, 18; 1, 16, 102\}$ | ₽              | {60, 52, 10; 1, 10, 48}     | ?        |
|                               |                | {65, 56, 5; 1, 5, 52}       | ?        |
|                               |                | {72,70,8;1,8,63}            | ?        |
|                               |                | {75,64,8;1,8,60}            | ?        |
|                               |                | $\{80, 63, 12; 1, 12, 60\}$ | ?        |

Families with codes An open case

## An open case: {80, 63, 12; 1, 12, 60}

- We have much information about the structure.
- No costruction or proof of nonexistence is known.
- The third subconstituent is antipodal with intersection array {20, 15, 1; 1, 5, 20} – also an open case.





Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier.

Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.



Kris Coolsaet and Aleksandar Jurišić.

Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs.

J. Combin. Theory Ser. A, 115(6):1086–1095, 2008.

Jack Koolen and Jongyook Park.

Shilla distance-regular graphs.

European J. Combin., 31(8):2064–2073, 2010.