Extremal 1-codes in distance-regular graphs of diameter 3

Janoš Vidali
Joint work with Aleksandar Jurišić
University of Ljubljana
Faculty of Computer and Information Science

February 25, 2013

Distance-regular graphs

- Let Γ be a graph of diameter d with vertex set $V \Gamma$, and $\Gamma_{i}(u)$ be the set of vertices of Γ at distance i from $u \in V \Gamma$.
- For $u, v \in V \Gamma$ with $\partial(u, v)=h$, denote

$$
p_{i j}^{h}(u, v):=\left|\Gamma_{i}(u) \cap \Gamma_{j}(v)\right| .
$$

- The graph Γ is distance-regular if the values of $p_{i j}^{h}(u, v)$ only depend on the choice of h, i, j and not on the particular vertices u, v.
- We call the numbers $p_{i j}^{h}:=p_{i j}^{h}(u, v)(0 \leq h, i, j \leq d)$ intersection numbers.

Distance-regular graphs

- Distance-regular graphs are regular with valency $k=p_{11}^{0}$.
- All intersection numbers can be determined from the intersection array

$$
\left\{k, b_{1}, \ldots, b_{d-1} ; 1, c_{2}, \ldots, c_{d}\right\}
$$

where $a_{i}:=p_{1, i}^{i}, b_{i}:=p_{1, i+1}^{i}, c_{i}:=p_{1, i-1}^{i}$ and $a_{i}+b_{i}+c_{i}=k(0 \leq i \leq d)$.

- Distance-regular graphs of diameter $d \leq 2$ are precisely the connected strongly regular graphs.
- Problem: Does a graph with a given intersection array exist? If so, is it unique? Can we determine all such graphs?

A small example

- Take the entries of the multiplication table of the Klein four-group as vertices.
- Two distinct vertices are adjacent if they are in the same row or column or if they share the value.
- The resulting graph is strongly regular and distance-regular with intersection array $\{9,4 ; 1,6\}$.

0	1	a	b
1	0	b	a
a	b	0	1
b	a	1	0

Distance-regular graphs of diameter 3

- When $d=3$, the intersection array is

$$
\left\{k, b_{1}, b_{2} ; 1, c_{2}, c_{3}\right\} .
$$

- Examples:
- cycles C_{6}, C_{7},
- Hamming graphs $H(n, 3)$,
- Johnson graphs $J(n, 3), n \geq 6$,
- generalized hexagons $G H(s, t)$,
- odd graph on 7 points,
- Sylvester graph,
- and others.

Bose-Mesner algebra

- Let $A_{0}, A_{1}, \ldots A_{d}$ be binary matrices indexed by $V \Gamma$ with $\left(A_{i}\right)_{u v}=1$ iff $\partial(u, v)=i$.
- These matrices can be diagonalized simultaneously and they share $d+1$ eigenspaces.
- Let P be a $(d+1) \times(d+1)$ matrix with $P_{i j}$ being the eigenvalue of A_{j} corresponding to the i-th eigenspace.
- Let Q be such that $P Q=|V \Gamma| I$.
- We call P the eigenmatrix, and Q the dual eigenmatrix.
- The matrices $\left\{A_{0}, A_{1}, \ldots A_{d}\right\}$ are the basis of the Bose-Mesner algebra \mathcal{M}, which has a second basis $\left\{E_{0}, E_{1}, \ldots E_{d}\right\}$ of minimal idempotents for each eigenspace.

Krein parameters

- In the Bose-Mesner algebra \mathcal{M}, the following relations are satisfied:

$$
A_{j}=\sum_{i=0}^{d} P_{i j} E_{i} \quad \text { and } \quad E_{j}=\frac{1}{n} \sum_{i=0}^{d} Q_{i j} A_{i} .
$$

- We also have

$$
A_{i} A_{j}=\sum_{h=0}^{d} p_{i j}^{h} A_{h} \quad \text { and } \quad E_{i} \circ E_{j}=\frac{1}{n} \sum_{h=0}^{d} q_{i j}^{h} E_{h},
$$

where \circ is the entrywise matrix product.

- The numbers $q_{i j}^{h}$ are called the Krein parameters and are nonnegative algebraic real numbers.

Codes in distance-regular graphs

- An e-code C in a graph Γ is a set of vertices with $\partial(u, v) \geq 2 e+1$ for any distinct $u, v \in C$.
- The size of the code C in a distance-regular graph is limited by the sphere packing bound:

$$
|C| \sum_{i=0}^{e} k_{i} \leq|V \Gamma|
$$

- If equality holds in the above bound, we call C a perfect e-code.

More bounds

- Let Γ be a distance-regular graph of diameter $d=2 e+1$ and C an e-code in Γ.
- Then we have $|C| \leq p_{d d}^{d}+2$. If equality holds, C is a maximal e-code.
- If a maximal code C exists, then $a_{d} p_{d d}^{d} \leq c_{d}$. If equality holds, C is a locally regular e-code.
- Another bound:

$$
(|C|-1) \sum_{i=0}^{e} p_{i d}^{d} \leq k_{d}
$$

- If equality holds,
C is a last subconstituent perfect e-code.

Triple intersection numbers

- In a distance regular graph, the intersection numbers $p_{i j}^{h}=\left|\Gamma_{i}(u) \cap \Gamma_{j}(v)\right|$ only depend on $h=\partial(u, v)$.
- Let $u, v, w \in V \Gamma$ with

$$
\partial(u, v)=W, \partial(u, w)=V \text { and } \partial(v, w)=U
$$

- We define triple intersection numbers as

$$
\left[\begin{array}{lll}
u & v & w \\
i & j & h
\end{array}\right]:=\left|\Gamma_{i}(u) \cap \Gamma_{j}(v) \cap \Gamma_{h}(w)\right|
$$

- $\left[\begin{array}{lll}u & v & w \\ i & j & h\end{array}\right]$ may depend on the particular choice of u, v, w !
- When u, v, w are fixed, we abbreviate $\left[\begin{array}{ccc}u & v & w \\ i & j & h\end{array}\right]$ as $[i \quad j h$.

Codes and triple intersection numbers

- Proposition: Let 「 be a distance-regular graph of diameter $d=2 e+1$ with a locally regular e-code C.
- Then, for u, v, w with $u \sim v, \partial(u, w)=d-1$ and $v, w \in C$,

$$
\left[\begin{array}{lll}
u & v & w \\
d & d & d
\end{array}\right]=1
$$

holds.

Infinite family 1

- We will study an infinite family of distance-regular graphs Γ with intersection array

$$
\begin{equation*}
\left\{\left(2 r^{2}-1\right)(2 r+1), 4 r\left(r^{2}-1\right), 2 r^{2} ; 1,2\left(r^{2}-1\right), r\left(4 r^{2}-2\right)\right\}, \quad r>1 \tag{1}
\end{equation*}
$$

- Eigenvalues are
$k=\theta_{0}=\left(2 r^{2}-1\right)(2 r+1), \theta_{1}=2 r^{2}+2 r-1, \theta_{2}=-1, \theta_{3}=-2 r^{2}+1$.
- $\theta_{2}=-1$ suggests that Γ might contain a perfect 1-code.
- The first two examples $r=2,3$:

$$
\{35,24,8 ; 1,6,28\} \quad \text { and } \quad\{119,96,18 ; 1,16,102\}
$$

appear in the list of feasible intersection arrays by Brouwer et al. [BCN89, pp. 425-431].

Infinite family 2

- Another infinite family we study is that of distance-regular graphs Γ with intersection array

$$
\begin{equation*}
\left\{2 r^{2}(2 r+1),(2 r-1)\left(2 r^{2}+r+1\right), 2 r^{2} ; 1,2 r^{2}, r\left(4 r^{2}-1\right)\right\}, \quad r \geq 1 \tag{2}
\end{equation*}
$$

- Eigenvalues are

$$
k=\theta_{0}=2 r^{2}(2 r+1), \quad \theta_{1}=r(2 r+1), \quad \theta_{2}=0, \quad \theta_{3}=-r(2 r+1)
$$

- Since $\theta_{1}=a_{3}$, these graphs are Shilla graphs [KP10].
- For $r=1$ we have the Hamming graph $H(3,3)$.
- The next example $r=2$:

$$
\{40,33,8 ; 1,8,30\}
$$

appears in the list of feasible intersection arrays by Brouwer et al. [BCN89, pp. 425-431].

Common properties

- Let Γ be a graph with intersection array (1) or (2).
- Then Γ has diameter 3 and is formally self-dual.
- The Krein parameters $q_{11}^{3}, q_{13}^{1}, q_{31}^{1}$ of Γ vanish.
- Lemma: Let u, v be vertices of Γ with $\partial(u, v)=3$. Then there exists a unique locally regular 1-code C such that $u, v \in C$.
- Theorem: For $r>1, \Gamma$ does not exist.

Computing triple intersection numbers

- We have $3 d^{2}$ equations connecting triple intersection numbers to $p_{i j}^{h}$:

$$
\begin{aligned}
& \sum_{\ell=1}^{d}\left[\begin{array}{ll}
\ell & j
\end{array}\right]=p_{j h}^{U}-\left[\begin{array}{lll}
0 & j & h
\end{array}\right] \\
& \sum_{\ell=1}^{d}\left[\begin{array}{ll}
i & \ell
\end{array}\right]=p_{i h}^{V}-\left[\begin{array}{lll}
i & 0 & h
\end{array}\right] \\
& \sum_{\ell=1}^{d}\left[\begin{array}{lll}
i & j & \ell
\end{array}\right]=p_{i j}^{W}-\left[\begin{array}{lll}
i & j & 0
\end{array}\right] .
\end{aligned}
$$

- All triple intersection numbers
 are nonnegative integers.

Introduction

Bibliography

Computing triple intersection numbers (2)

$\left.\begin{array}{|c|c|c|}\hline\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=0 \\ \Delta\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=0 \quad\left[\begin{array}{ll}1 & 3 \\ \hline\end{array}\right]=0$

Introduction

Bibliography

Computing triple intersection numbers (2)

$\left.\begin{array}{|c|c|c|}\hline\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=0 \\ \Delta\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=0 \quad\left[\begin{array}{ll}1 & 3 \\ \Delta\end{array}\right]=0$

Introduction

Bibliography

Computing triple intersection numbers (2)

$\left.\begin{array}{|c|c|c|}\hline\left[\begin{array}{ccc}1 & 1 & 1\end{array}\right]=0 \\ \Delta\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=0 \quad\left[\begin{array}{lll}1 & 3 & 1\end{array}\right]=0$

Computing triple intersection numbers (2)

$\left.\begin{array}{|c|c|c|}\hline\left[\begin{array}{ccc}1 & 1 & 1\end{array}\right]=0 \\ \Delta\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=0 \quad\left[\begin{array}{ll}1 & 3 \\ \Delta\end{array}\right]=0$

Computing triple intersection numbers (2)

$\left.\begin{array}{|c|c|c|}\hline\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=0 \\ \Delta\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=0 \quad\left[\begin{array}{lll}1 & 3 & 1\end{array}\right]=0$

Computing triple intersection numbers (2)

$\left.\begin{array}{|c|c|c|}\hline\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=0 \\ \Delta\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=0 \quad\left[\begin{array}{lll}1 & 3 & 1\end{array}\right]=0$

Krein condition

- Theorem ([BCN89, Theorem 2.3.2], [CJ08, Theorem 3]): Let Γ be a distance-regular graph of diameter d, Q its dual eigenmatrix, and $q_{i j}^{h}$ its Krein parameters.
- $q_{i j}^{h}=0$ iff for all triples $u, v, w \in V \Gamma$:

$$
\sum_{r, s, t=0}^{d} Q_{r i} Q_{s j} Q_{t h}\left[\begin{array}{ccc}
u & v & w \\
r & s & t
\end{array}\right]=0
$$

- This gives a new equation in terms of triple intersection numbers.

The case $U=V=W=3$

- Let Γ be a distance-regular graph with intersection array (1) or (2).
- If we choose $u, v, w \in V \Gamma$ such that $\partial(u, v)=\partial(u, w)=\partial(v, w)=3$, we obtain a single solution with

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll}
u & v & w \\
1 & 3 & 3
\end{array}\right]=} & {\left[\begin{array}{lll}
u & v & w \\
3 & 1 & 3
\end{array}\right]=}
\end{array} \begin{array}{lll}
u & v & w \\
2 & 3 & 3
\end{array}\right]=\left[\begin{array}{lll}
u & v & w \\
3 & v & w \\
3 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
u & v & w \\
3 & 3 & 2
\end{array}\right]=0, \quad v^{\prime}, ~\left[\begin{array}{lll}
u & v & w \\
3 & 3 & 3
\end{array}\right]=p_{33}^{3}-1 .
$$

- As $c_{3}=a_{3} p_{33}^{3}$, there is a locally regular 1-code C in 「 with $u, v, w \in C$.

The case $\{U, V, W\}=\{1,2,3\}$

- Let C be a locally regular 1-code in 「 containing vertices v and w.

- For any $u^{\prime} \in V \Gamma$ with $u^{\prime} \sim v$ and $\partial\left(u^{\prime}, w\right)=2$ we have $\left[\begin{array}{lll}u^{\prime} & v & w \\ 3 & 3 & 3\end{array}\right]=1$.
- If Γ has intersection array (1), then there is no solution and Γ does not exist.
- If Γ has intersection array (2), then there is a single solution with $\left[\begin{array}{lll}u^{\prime} & v & w \\ 1 & 1 & 3\end{array}\right]=r$.

The case $U=V=W=1$

- Let Γ be a distance-regular graph with intersection array (2).
- We obtain two solutions:

Counting solutions

- Let t and $a_{1}-t$ be the numbers of vertices w_{a}^{\prime} and w_{b}^{\prime} such that $\left[\begin{array}{ccc}u^{\prime} & v & w_{a}^{\prime} \\ 2 & 3 & 3\end{array}\right]=2 r^{2}-r+3$ and $\left[\begin{array}{ccc}u^{\prime} & v & w_{b}^{\prime} \\ 2 & 3 & 3\end{array}\right]=2 r^{2}+4$.

- By comparing counts of pairs $\left(w, x^{\prime}\right)$ and $\left(w_{\alpha}^{\prime}, x\right), \alpha \in\{a, b\}$ of vertices at distance 3 , we obtain $t=\frac{r(2 r-1)(3-r)}{r+1}$.

Ruling out family 2

- Case $r=2$: we have $a_{1}-t=4$ vertices w_{b}^{\prime}, but $\left[\begin{array}{ccc}u^{\prime} & v & w_{b}^{\prime} \\ 3 & 3 & 3^{\prime}\end{array}\right]=r-3<0$, so the graph does not exist.
- Case $r=3$: as $a_{1}=15$ and $t=0$, for all neighbours w^{\prime} of u^{\prime} and v we have $\left[\begin{array}{ccc}u^{\prime} & v & w^{\prime} \\ 1 & 1 & 1\end{array}\right]=r=3$, so $\Lambda\left(u^{\prime}, v\right)$ does not exist.
- Case $r>3: t<0$, contradiction.

Families with codes

- Proposition: Let Γ be a distance-regular graph of diameter 3 with a 1-code C that is locally regular and last subconstituent perfect.
- Set $a:=a_{3}, p:=p_{33}^{3}$ and $c:=c_{2}$. Then Γ has intersection array
a) $\{a(p+1), c p, a+1 ; 1, c, a p\}$, or
b) $\{a(p+1),(a+1) p, c ; 1, c, a p\}$.
- Conjecture: A distance regular graph with intersection array a) is a subgraph of a Moore graph or has $a=c+1$.

Examples

intersection array	status	intersection array	status
$\{5,4,2 ; 1,1,4\}$	$!$ Sylvester	$\{6,4,2 ; 1,2,3\}$	$!H(3,3)$
$\{35,24,8 ; 1,6,28\}$	\nexists	$\{12,10,2 ; 1,2,8\}$	$?$
$\{44,30,5 ; 1,3,40\}$	$\nexists[$ KP10]	$\{12,10,3 ; 1,3,8\}$	$!$ Doro
$\{48,35,9 ; 1,7,40\}$	$?$	$\{18,10,4 ; 1,4,9\}$	$!J(9,3)$
$\{49,36,8 ; 1,6,42\}$	$?$	$\{24,21,3 ; 1,3,18\}$	$?$
$\{54,40,7 ; 1,5,48\}$	$?$	$\{25,24,3 ; 1,3,20\}$	$?$
$\{55,54,2 ; 1,1,54\}$	$?$ in Moore(57)	$\{30,28,2 ; 1,2,24\}$	$?$
$\{63,48,10 ; 1,8,54\}$	$?$	$\{40,33,3 ; 1,3,30\}$	$?$
$\{80,63,11 ; 1,9,70\}$	$?$	$\{40,33,8 ; 1,8,30\}$	\nexists
$\{99,80,12 ; 1,10,88\}$	$?$	$\{50,44,5 ; 1,5,40\}$	$?$
$\{119,96,18 ; 1,16,102\}$	\nexists	$\{60,52,10 ; 1,10,48\}$	$?$
		$\{65,56,5 ; 1,5,52\}$	$?$
		$\{72,70,8 ; 1,8,63\}$	$?$
	$\{75,64,8 ; 1,8,60\}$	$?$	
		$\{80,63,12 ; 1,12,60\}$	$?$

An open case: $\{80,63,12 ; 1,12,60\}$

- We have much information about the structure.
- No costruction or proof of nonexistence is known.
- The third subconstituent is antipodal with intersection array

$$
\begin{aligned}
& \{20,15,1 ; 1,5,20\}- \\
& \text { also an open case. }
\end{aligned}
$$

T Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier.
Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.Kris Coolsaet and Aleksandar Jurišić.
Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs.
J. Combin. Theory Ser. A, 115(6):1086-1095, 2008.

T
Jack Koolen and Jongyook Park.
Shilla distance-regular graphs.
European J. Combin., 31(8):2064-2073, 2010.

