Half-arc-transitive graphs of particular orders

Iva Antončič

UP FAMNIT

May 16. 2012

Iva Antončič Half-arc-transitive graphs of particular orders

Definition

Let X be a graph (without multiple edges, loops or semi-edges) with vertex set V(X), edge set E(X) and arc set A(X). X is said to be vertex-transitive (VT), edge-transitive (ET) and arc-transitive (AT) if the automorphism group Aut(X) is transitive on V(X), E(X) and A(X) respectively.

Definition

A graph X is said to be half-arc-transitive (HAT) if it is VT and ET but not AT.

A VT and ET graph X is a HAT graph iff for all $\{u, v\} \in E(X)$ there exists no $\alpha \in Aut(X)$ that interchanges u and v.

- - E + - E +

A VT and ET graph X is a HAT graph iff for all $\{u, v\} \in E(X)$ there exists no $\alpha \in Aut(X)$ that interchanges u and v.

Theorem (Tutte; 1966)

A VT and ET graph with odd valency is also AT.

I ≡ → I

A VT and ET graph X is a HAT graph iff for all $\{u, v\} \in E(X)$ there exists no $\alpha \in Aut(X)$ that interchanges u and v.

Theorem (Tutte; 1966)

A VT and ET graph with odd valency is also AT.

Proposition (Marušič; 1998)

Let X be a graph having an automorphism ρ with two orbits U, V of length $n \ge 2$ such that $\{U, V\}$ is a bipartition of X. Then X is not a HAT graph.

There is no HAT graph with less then 27 vertices.

Figure: Doyle-Holt graph

э

Definition

Let G be a group and $S \subseteq G \setminus \{1\}$ inverse closed. Cayley graph X = Cay(G; S) is a graph with vertex set V(X) = G and $g \sim gs$ $\forall g \in G, s \in S$. Since S is inverse closed, X really is a graph.

Figure: $Cay(D_8; \{\tau, \rho, \rho^{-1}\})$

Proposition (Feng, Wang, Zhou; 2007)

Let X = Cay(G; S) be a HAT graph. Then there is no involution in S and no $\alpha \in Aut(G, S) = \{\alpha \in Aut(G); S^{\alpha} = S\}$ such that $s^{\alpha} = s^{-1}$ for any $s \in S$.

Proposition (Alspach, Marušič, Nowitz; 1994)

Every ET Cayley graph on an abelian group is also AT.

Definition

Let $m \ge 1$ and $n \ge 2$ be integers. An automorphism of a graph is called (m, n)-semiregular if it has m orbits of size n and no other orbits on the vertices of the graph.

Definition

We call a graph X(m, n)-metacirculant if

- **(**) there exists a (m, n)-semiregular automorphism ρ of X;
- **②** ∃σ ∈ Aut(X) : σ⁻¹ρσ = ρ^r for some r ∈ Z^{*}_n which cyclically permutes the orbits of ρ in such a way that there is a vertex of X fixed by σ^m and σ has one orbit on the set of orbits of ρ.

□ ▶ ▲ □ ▶ ▲ □

Vertex set:
$$V(X) = \{x_i^j; i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$$

 $x_i^j = (x_0^0)^{\sigma^i \rho^j}, 0 \le i \le m - 1 \Rightarrow (x_i^j)^\rho = x_i^{j+1} \text{ and } (x_i^j)^\sigma = x_{i+1}^{rj}$
Edge set: $S_i = \{s \in \mathbb{Z} \mid s^0 \ge i \le m - 1\}$

Edge set:
$$S_i = \{s \in \mathbb{Z}_n | x_0^o \sim x_i^s\}, 0 \le i \le m - 1.$$

Every metacirculant is completely determined by the tuple $(m, n, r; S_0, \ldots, S_{m-1})$ which we call the *symbol* of X.

Metacirculants

Example

For each $m, n \ge 3$ and for each $r \in \mathbb{Z}_n^*$, where $r^m = \pm 1$, let X(m, n; r) be a graph with $V(X) = \{x_i^j; i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$ and $E(X) = \{\{x_i^j, x_{i+1}^{j\pm r^i}\}; i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$. X(m, n; r) is an (m, n)-metacirculant for $S_i = \emptyset \ \forall i \ne 1$ and $S_1 = \{1, -1\}$.

Figure: Doyle-Holt graph as a metacirculant X(3, 9; 2)

- *p* prime;
- np, p prime, n > 1 integer;
- p^n , p prime, n > 1 integer;
- $2p^2$, *p* prime.

Lemma (Alspach, Marušič, Nowitz; 1994)

There are no HAT graphs of order *p*.

Proof

Let X be a VT and ET graph of order p. Take g of order p in Aut(X). Then $\langle g \rangle \leq Aut(X)$ is a regular subgroup and therefore X is a Cayley graph. Since all Cayley graphs of an abelian group are AT, there are no HAT graphs of prime order.

Classified:

- 2p, 3p, 4p;
- *pq*, 2*pq*, *q < p* prime.

-

Theorem (Cheng, Oxley; 1985)

All graphs that are VT and ET of order 2p, where p is a prime are also AT.

Idea of proof

Find all graphs of order 2*p* that are VT and ET \Rightarrow find automorphism groups of graphs \Rightarrow chech that it acts transitively on the arcs in every case.

HAT graphs of order 3p

Theorem (Alspach, Xu; 1994)

A graph of order 3p is a tetravalent HAT iff it is a metacirculant graph X(3, p; r), where p > 7, 3|p - 1 and $r \in \mathbb{Z}_p^* \setminus \{\pm 1\}$. It is also a Cayley graph.

Figure: X(3, 13; 3).

Theorem (Feng, Wang, Zhou; 2006)

X is a tetravalent HAT graph of order 4p iff it is isomorphic to X(4, p; r) where $r \in \mathbb{Z}_p^*$ and $r^4 = -1$. Note that such a graph exists for a given p iff 8|p-1.

Theorem (Wang; 1994)

Suppose that $5 \le q < p$ are primes such that q|p-1. Then X is a tetravalent HAT graph of order pq iff X = X(q, p; r), with $(q, p) \ne (5, 11), (11, 23)$ and $r \in \mathbb{Z}_p^* \setminus \{\pm 1\}.$

Theorem (Feng, Kwak, Wang, Zhou; 2010)

Let p, q be odd primes, q < p and X a tetravalent connected graph of order 2pq. Then X is HAT iff $X \cong X(2q, p; r^k)$ where:

• Cayley case:
$$(p, q) \neq (7, 3)$$
 and $q|p-1$ and
 $X \cong Cay(G; \{cb^k, cb^{-k}, cb^ka, (cb^ka)^{-1}\})$ for
 $G = \langle a, b, c | a^p = b^q = c^2 = 1, a^b = a^r, ac = ca, bc = cb \rangle,$
 $k \in \mathbb{Z}_q^*, 1 \le k \le \frac{q-1}{2}$ and $r \in \mathbb{Z}_p^*$ of order q or

Idea of proof

- X(3, p; r), X(4, p; r), X(q, p; r) and X(2q, p; r^k) (with mentioned conditions) are HAT.
- The automorphism group of the corresponding HAT graph has a normal *p*-Sylow subgroup ⟨g⟩ of order *p* whose generator *g* is a semiregular automorphism. By analyzing the quotient graph with orbits of ⟨g⟩ as points and edges between these points whenever at least two points of corresponding orbits are connected in *X*, we can find automorphism σ ∈ Aut(*X*) which cyclically permutes the orbits of ⟨g⟩ and satisfies all other conditions for being a metacirculant of described type.

伺 ト イ ヨ ト イ ヨ ト

Classified: p^2 , p^3 , p^4 .

Idea of proof

Show that all graphs of order p^2 , p^3 , p^4 are Cayley graphs. Use that there is no HAT Cayley graph for an abelian group. Then look at the classification of groups for non-abelian groups of chosen order and for each of them check if there is a Cayley graph for one of them that is HAT.

HAT graphs of order p^2

Theorem (Marušič; 1985)

There are no HAT graphs of order p^2 .

Proof

Let X be a VT and ET graph of order p^2 . Aut(X) has a p-Sylow subgroup P where P is transitive on V(X) by Wielandt and $\forall g \in P : g^{p^2} = 1$.

- If there is $g \in P$ of order p^2 , $\langle g \rangle$ acts regularly on V(X) and therefore X is a Cayley graph of a cyclic group. So X is AT.
- ∀g ∈ P g^p = 1. Take 1 ≠ h ∈ Z(P). Aut(X) acts faithfully on V(X) so h has at least one orbit of length p, say v^(h). Take u ∉ v^(h). Since P is transitive on V(X) there ∃g ∈ P v^g = u and ⟨g, h⟩ is transitive on V(X). Since h ∈ Z(P) ⟨g, h⟩ is an abelian group of order p² and it's action on V(X) is regular. So X is a Cayley graph for an abelian group and therefore AT.

Theorem (Xu; 1992):

X is a tetravalent HAT graph of order p^3 , p > 2 iff it is isomorphic to a Cayley graph $Cay(G; \{b^ia, b^ia^{-1}, (b^ia)^{-1}, (b^ia^{-1})^{-1}\})$ for $1 \le i \le \frac{p-1}{2}$, where $G = \langle a, b | a^{p^2} = b^p = 1, a^b = a^{1+p} \rangle$. They are all metacirculants.

Figure: Doyle-Holt graph

It turns out that all tetravalent HAT graphs on p^4 vertices are metacirculant and are also Cayley graphs for groups:

$$egin{aligned} G_1(p) &= \left< a, \; b | \; a^{p^3} = b^p = 1, \; [a, \; b] = a^{p^2}
ight> ext{ and } \ G_2(p) &= \left< a, \; b | \; a^{p^2} = b^{p^2} = 1, \; [a, \; b] = a^p
ight>. \end{aligned}$$

Theorem (Feng, Kwak, Xu, Zhou; 2007):

A connected tetravalent graph of order p^4 , p odd prime, is HAT iff $p \ge 3$ and it is isomorphic to one of the Cayley graphs $Cay(G_1(p), \{a, a^{-1}b^i, a^{-1}, (a^{-1}b^i)^{-1}\})$ and $Cay(G_2(p), \{b^i, ab^i, b^{-i}, (ab^i)^{-1}\}), 1 \le i \le (p-1)/2.$

Theorem (Wang, Feng; 2010):

There are no tetravalent HAT graphs of order $2p^2$.

Idea of proof

Let X be a tetravalent HAT graph of order $2p^2$. As before Aut(X) has a normal *p*-Sylow subgroup and it can be shown that X is a bipartite Cayley graph. With some calculations we see that every VT and ET Cayley graph of order $2p^2$ is also AT.

V(X)	all tetravalent HAT graphs
р	/
2 <i>p</i>	
3 <i>p</i>	$X(3, p; r); p \neq 7, 3 p-1, r \neq 1, r^3 = \pm 1$ (all Cayley)
4 <i>p</i>	$X(4, p; r); r^4 = -1$ and $8 p - 1$ (none Cayley)
qp	$X(q, p; r); (q, p) \neq (5, 11), (11, 23), q p-1, r^q = \pm 1$
2qp	$X(2q, p; r^k)$ Cayley case: $(q, p) \neq (3, 7), q p-1$
	non-Cayley case: $4q p-1, 1 \leq k \leq q-1$
<i>p</i> ²	/
<i>p</i> ³	Cay(G; $\{b^{i}a, b^{i}a^{-1}, (b^{i}a)^{-1}, (b^{i}a^{-1})^{-1}\}$)
p^4	$Cay(G_1(p), \{a, a^{-1}b^i, a^{-1}, (a^{-1}b^i)^{-1}\})$
	$ Cay(G_2(p), \{b^i, ab^i, b^{-i}, (ab^i)^{-1}\}), 1 \le i \le (p-1)/2.$
$2p^{2}$	/

Thank you!

æ