A matrix problem and a geometry problem

György Pál Gehér

> University of Szeged, Bolyai Institute and

MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen

Seminar

University of Primorska, Koper

Theorem (L. Molnár and W. Timmermann, 2011)

Let \mathcal{H} be a complex separable Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$. Assume $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ is a bijection such that

$$
\|[\phi(A), \phi(B)]\|=\|[A, B]\| \quad\left(A, B \in \mathcal{B}_{s}(\mathcal{H})\right)
$$

Theorem (L. Molnár and W. Timmermann, 2011)

Let \mathcal{H} be a complex separable Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$.
Assume $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ is a bijection such that

$$
\|[\phi(A), \phi(B)]\|=\|[A, B]\| \quad\left(A, B \in \mathcal{B}_{s}(\mathcal{H})\right) .
$$

Then there exist either a unitary or an antiunitary operator U on \mathcal{H} and a function $f: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathbb{R}$ such that

$$
\phi(A)= \pm U A U^{*}+f(A) I \quad\left(A \in \mathcal{B}_{s}(\mathcal{H})\right) .
$$

The proof uses the following theorem:

Theorem (L. Molnár and P. Šemrl, 2005)

Let \mathcal{H} be a complex separable Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$ and let $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ be a bijective transformation which preserves commutativity in both directions.

The proof uses the following theorem:

Theorem (L. Molnár and P. Šemrl, 2005)

Let \mathcal{H} be a complex separable Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$ and let $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ be a bijective transformation which preserves commutativity in both directions. Then there exists either a unitary or an antiunitary operator U on \mathcal{H} and for every operator $A \in \mathcal{B}_{s}(\mathcal{H})$ there is a real valued bounded Borel function f_{A} on $\sigma(A)$ such that

$$
\phi(A)=U f_{A}(A) U^{*} \quad\left(A \in \mathcal{B}_{s}(\mathcal{H})\right) .
$$

The proof uses the following theorem:

Theorem (L. Molnár and P. Šemrl, 2005)

Let \mathcal{H} be a complex separable Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$ and let $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ be a bijective transformation which preserves commutativity in both directions. Then there exists either a unitary or an antiunitary operator U on \mathcal{H} and for every operator $A \in \mathcal{B}_{s}(\mathcal{H})$ there is a real valued bounded Borel function f_{A} on $\sigma(A)$ such that

$$
\phi(A)=U f_{A}(A) U^{*} \quad\left(A \in \mathcal{B}_{s}(\mathcal{H})\right) .
$$

Question

What happens in two dimensions?

Commutativity preservers on $\mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$

Two linearly independent operators $A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ commute
 $\exists \alpha, \beta \in \mathbb{R}$ s.t. $\alpha A+\beta B=I$.

Commutativity preservers on $\mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$

Two linearly independent operators $A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ commute
 $\exists \alpha, \beta \in \mathbb{R}$ s.t. $\alpha A+\beta B=I$.
E.g. if $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ is non-singular and linear, then ϕ preserves commutativity in both directions
 $\phi(I) \in(\mathbb{R} \backslash\{0\}) \cdot I$.

Commutativity preservers on $\mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$

Two linearly independent operators $A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ commute \qquad $\exists \alpha, \beta \in \mathbb{R}$ s.t. $\alpha A+\beta B=I$.
E.g. if $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ is non-singular and linear, then ϕ preserves commutativity in both directions
 $\phi(I) \in(\mathbb{R} \backslash\{0\}) \cdot I$.

So the preservation of commutativity provides too few information.

The first step: linear commutativity preservers

Theorem (with G. Nagy, 2014)

Suppose that $d \in \mathbb{N},\| \| \cdot \| \mid$ is an arbitrary unitarily invariant norm and $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)$ is a (real-)linear transformation such that

$$
\|\|[\phi(A), \phi(B)]\|\|=\| \|[A, B]\| \| \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right)
$$

The first step: linear commutativity preservers

Theorem (with G. Nagy, 2014)

Suppose that $d \in \mathbb{N},\| \| \cdot \| \mid$ is an arbitrary unitarily invariant norm and $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)$ is a (real-)linear transformation such that

$$
\|\|[\phi(A), \phi(B)]\|\|=\| \|[A, B]\| \| \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right)
$$

Then there exist either a unitary or an antiunitary operator U on \mathbb{C}^{d} and a linear functional $f: \mathcal{B}_{s}\left(\mathbb{C}^{d}\right) \rightarrow \mathbb{R}$ such that

$$
\phi(A)=U A U^{*}+f(A) I \quad\left(A \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right)
$$

or

$$
\phi(A)=-U A U^{*}+f(A) I \quad\left(A \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right)
$$

What can we do in general?

Problem (Reformulation)
Characterize those maps $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ s.t.

$$
\operatorname{det}[A, B]=\operatorname{det}[\phi(A), \phi(B)] \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)\right)
$$

What can we do in general?

Problem (Reformulation)

Characterize those maps $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ s.t.

$$
\operatorname{det}[A, B]=\operatorname{det}[\phi(A), \phi(B)] \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)\right)
$$

Let $Z_{2}:=\left\{A \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right): \operatorname{Tr} A=0\right\}$ and

$$
\tilde{\phi}: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow Z_{2} \subseteq \mathcal{B}_{s}\left(\mathbb{C}^{2}\right), \quad \tilde{\phi}(A)=\phi(A)-\frac{\operatorname{Tr} \phi(A)}{2} \cdot I
$$

What can we do in general?

Problem (Reformulation)

Characterize those maps $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ s.t.

$$
\operatorname{det}[A, B]=\operatorname{det}[\phi(A), \phi(B)] \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)\right)
$$

Let $Z_{2}:=\left\{A \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right): \operatorname{Tr} A=0\right\}$ and

$$
\tilde{\phi}: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow Z_{2} \subseteq \mathcal{B}_{s}\left(\mathbb{C}^{2}\right), \quad \tilde{\phi}(A)=\phi(A)-\frac{\operatorname{Tr} \phi(A)}{2} \cdot /
$$

We define the following mapping:

$$
\psi:=\tilde{\phi} \mid Z_{2}: Z_{2} \rightarrow Z_{2}
$$

What can we do in general?

Problem (Reformulation)

Characterize those maps $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)$ s.t.

$$
\operatorname{det}[A, B]=\operatorname{det}[\phi(A), \phi(B)] \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)\right)
$$

Let $Z_{2}:=\left\{A \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right): \operatorname{Tr} A=0\right\}$ and

$$
\tilde{\phi}: \mathcal{B}_{s}\left(\mathbb{C}^{2}\right) \rightarrow Z_{2} \subseteq \mathcal{B}_{s}\left(\mathbb{C}^{2}\right), \quad \tilde{\phi}(A)=\phi(A)-\frac{\operatorname{Tr} \phi(A)}{2} \cdot I
$$

We define the following mapping:

$$
\psi:=\tilde{\phi} \mid Z_{2}: Z_{2} \rightarrow Z_{2}
$$

We can prove the following:

$$
\tilde{\phi}(A)= \pm \psi\left(A-\frac{\operatorname{Tr} A}{2} /\right) \quad\left(A \in \mathcal{B}_{s}\left(\mathbb{C}^{2}\right)\right)
$$

Now, we identify elements of Z_{2} with vectors of \mathbb{R}^{3} using the vector space isomorphism

$$
\iota: \mathbb{R}^{3} \rightarrow Z_{2}, \quad(a, b, c) \mapsto\left(\begin{array}{cc}
a & b+i c \\
b-i c & -a
\end{array}\right)
$$

Now, we identify elements of Z_{2} with vectors of \mathbb{R}^{3} using the vector space isomorphism

$$
\iota: \mathbb{R}^{3} \rightarrow Z_{2}, \quad(a, b, c) \mapsto\left(\begin{array}{cc}
a & b+i c \\
b-i c & -a
\end{array}\right),
$$

and we define the following transformation:

$$
\xi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \xi=\iota^{-1} \circ \psi \circ \iota .
$$

Now, we identify elements of Z_{2} with vectors of \mathbb{R}^{3} using the vector space isomorphism

$$
\iota: \mathbb{R}^{3} \rightarrow Z_{2}, \quad(a, b, c) \mapsto\left(\begin{array}{cc}
a & b+i c \\
b-i c & -a
\end{array}\right)
$$

and we define the following transformation:

$$
\xi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \xi=\iota^{-1} \circ \psi \circ \iota
$$

A rather simple calculation shows the following two equations:

$$
\operatorname{det}\left[\iota\left(a_{1}, b_{1}, c_{1}\right), \iota\left(a_{2}, b_{2}, c_{2}\right)\right]=4\left|\left(a_{1}, b_{1}, c_{1}\right) \times\left(a_{2}, b_{2}, c_{2}\right)\right|^{2}
$$

and

Now, we identify elements of Z_{2} with vectors of \mathbb{R}^{3} using the vector space isomorphism

$$
\iota: \mathbb{R}^{3} \rightarrow Z_{2}, \quad(a, b, c) \mapsto\left(\begin{array}{cc}
a & b+i c \\
b-i c & -a
\end{array}\right),
$$

and we define the following transformation:

$$
\xi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \xi=\iota^{-1} \circ \psi \circ \iota .
$$

A rather simple calculation shows the following two equations:

$$
\operatorname{det}\left[\iota\left(a_{1}, b_{1}, c_{1}\right), \iota\left(a_{2}, b_{2}, c_{2}\right)\right]=4\left|\left(a_{1}, b_{1}, c_{1}\right) \times\left(a_{2}, b_{2}, c_{2}\right)\right|^{2}
$$

and

$$
\left|\xi\left(a_{1}, b_{1}, c_{1}\right) \times \xi\left(a_{2}, b_{2}, c_{2}\right)\right|=\left|\left(a_{1}, b_{1}, c_{1}\right) \times\left(a_{2}, b_{2}, c_{2}\right)\right| .
$$

Problem (Reformulation \#2)

Characterize those maps $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t.

$$
\forall(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad\left(\forall \vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

where $(\vec{a}, \vec{b})=|\vec{a} \times \vec{b}|=$

Problem (Reformulation \#2)

Characterize those maps $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t.

$$
\forall(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad\left(\forall \vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

where $(\vec{a}, \vec{b})=|\vec{a} \times \vec{b}|=\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=$

Problem (Reformulation \#2)

Characterize those maps $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t.

$$
\forall(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad\left(\forall \vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

where $(\vec{a}, \vec{b})=|\vec{a} \times \vec{b}|=\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=$

$$
\underbrace{\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\frac{1}{4}\left(|\vec{a}-\vec{b}|^{2}-|\vec{a}|^{2}-|\vec{b}|^{2}\right)^{2}}}_{\text {Heron's formula }}
$$

Problem (Reformulation \#2)

Characterize those maps $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t.

$$
\diamond(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad\left(\forall \vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

where $(\vec{a}, \vec{b})=|\vec{a} \times \vec{b}|=\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=$

$$
\underbrace{\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\frac{1}{4}\left(|\vec{a}-\vec{b}|^{2}-|\vec{a}|^{2}-|\vec{b}|^{2}\right)^{2}}}_{\text {Heron's formula }} .
$$

Of course, the similar question could be asked for an arbitrary real Hilbert space E. This is the Rassias-Wagner problem.

Problem (Reformulation \#2)

Characterize those maps $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t.

$$
\forall(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad\left(\forall \vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

where $(\vec{a}, \vec{b})=|\vec{a} \times \vec{b}|=\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=$

$$
\underbrace{\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\frac{1}{4}\left(|\vec{a}-\vec{b}|^{2}-|\vec{a}|^{2}-|\vec{b}|^{2}\right)^{2}}}_{\text {Heron's formula }} .
$$

Of course, the similar question could be asked for an arbitrary real Hilbert space E. This is the Rassias-Wagner problem.
(Beckmann-Quarles; Lester-Martin, linear R-W)

Theorem (G.)

Let E be a real (not necessarily separable) Hilbert space and $\phi: E \rightarrow E$ be an arbitrary transformation such that

$$
\begin{equation*}
(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad(\forall \vec{a}, \vec{b} \in E) \tag{1}
\end{equation*}
$$

Theorem (G.)

Let E be a real (not necessarily separable) Hilbert space and $\phi: E \rightarrow E$ be an arbitrary transformation such that

$$
\begin{equation*}
(\vec{a}, \vec{b})=(\phi(\vec{a}), \phi(\vec{b})) \quad(\forall \vec{a}, \vec{b} \in E) \tag{1}
\end{equation*}
$$

(i) If $\operatorname{dim} E=2$, then there exists a linear operator $A: E \rightarrow E$ with $|\operatorname{det} A|=1$ such that the following holds:

$$
\begin{equation*}
\phi(\vec{a})= \pm A \vec{a} \quad(\vec{a} \in E) . \tag{2}
\end{equation*}
$$

Theorem (G. continued)

(ii) If $2<\operatorname{dim} E<\infty$, then there exists an orthogonal linear operator $R: E \rightarrow E$ such that

$$
\phi(\vec{a})= \pm R \vec{a} \quad(\vec{a} \in E)
$$

is satisfied.

Theorem (G. continued)

(ii) If $2<\operatorname{dim} E<\infty$, then there exists an orthogonal linear operator $R: E \rightarrow E$ such that

$$
\phi(\vec{a})= \pm R \vec{a} \quad(\vec{a} \in E)
$$

is satisfied.
(iii) If $\operatorname{dim} E=\infty$ and in addition ϕ is assumed to be bijective, then there exists a linear, surjective isometry $R: E \rightarrow E$ such that we have

$$
\phi(\vec{a})= \pm R \vec{a} \quad(\vec{a} \in E) .
$$

Outline of the proof for $n=3$

Let us consider the projectivised \mathbb{R}^{3} which will be denoted by $\mathcal{P}\left(\mathbb{R}^{3}\right)$. The subspace generated by \vec{v} will be denoted by [$\left.\vec{v}\right]$. Let

$$
g_{\phi}: \mathcal{P}\left(\mathbb{R}^{3}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{3}\right), \quad g_{\phi}([\vec{v}])=[\phi(\vec{v})](\vec{v} \neq \overrightarrow{0})
$$

Note that $\phi(\vec{v})=\overrightarrow{0} \Longleftrightarrow \vec{v}=\overrightarrow{0}$.

Outline of the proof for $n=3$

Let us consider the projectivised \mathbb{R}^{3} which will be denoted by $\mathcal{P}\left(\mathbb{R}^{3}\right)$. The subspace generated by \vec{v} will be denoted by [$\left.\vec{v}\right]$. Let

$$
g_{\phi}: \mathcal{P}\left(\mathbb{R}^{3}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{3}\right), \quad g_{\phi}([\vec{v}])=[\phi(\vec{v})](\vec{v} \neq \overrightarrow{0})
$$

Note that $\phi(\vec{v})=\overrightarrow{0} \Longleftrightarrow \vec{v}=\overrightarrow{0}$.
STEP 1: We prove that g_{ϕ} is a homeomorphism.

STEP 2: We consider two linearly independent vectors $\vec{a}, \vec{b} \in E$ and let

$$
C_{\vec{a}, \vec{b}}:=\{\vec{v} \in E \backslash\{0\}:(\vec{v}, \vec{a})=(\vec{v}, \vec{b})\} \subseteq E
$$

(note that $C_{\vec{a}, \vec{b}}$ is a plane iff $|\vec{a}|=|\vec{b}|$)

STEP 2: We consider two linearly independent vectors $\vec{a}, \vec{b} \in E$ and let

$$
C_{\vec{a}, \vec{b}}:=\{\vec{v} \in E \backslash\{0\}:(\vec{v}, \vec{a})=(\vec{v}, \vec{b})\} \subseteq E
$$

(note that $C_{\vec{a}, \vec{b}}$ is a plane iff $|\vec{a}|=|\vec{b}|$) and

$$
P C_{\vec{a}, \vec{b}}:=\left\{[\vec{v}] \in \mathcal{P}\left(\mathbb{R}^{3}\right): \vec{v} \in C_{\vec{a}, \vec{b}}\right\} .
$$

STEP 2: We consider two linearly independent vectors $\vec{a}, \vec{b} \in E$ and let

$$
C_{\vec{a}, \vec{b}}:=\{\vec{v} \in E \backslash\{0\}:(\vec{v}, \vec{a})=(\vec{v}, \vec{b})\} \subseteq E
$$

(note that $C_{\vec{a}, \vec{b}}$ is a plane iff $|\vec{a}|=|\vec{b}|$) and

$$
P C_{\vec{a}, \vec{b}}:=\left\{[\vec{v}] \in \mathcal{P}\left(\mathbb{R}^{3}\right): \vec{v} \in C_{\vec{a}, \vec{b}}\right\} .
$$

We can show that $P C_{\vec{a}, \vec{b}}$ contains a loop $\gamma:[0,1] \rightarrow P C_{\vec{a}, \vec{b}}$ not homotopic to the trivial loop $\delta:[0,1] \rightarrow P C_{\vec{a}, \vec{b}}, \delta \equiv \gamma(0)$ if and only if $|\vec{a}|=|\vec{b}|$ holds.

STEP 3: Using that g_{ϕ} is a homeomorphism, we obtain that

$$
|\phi(\vec{a})|=\lambda_{\phi}|\vec{a}| \quad\left(\vec{a} \in \mathbb{R}^{3}\right)
$$

holds with some $\lambda_{\phi}>0$.

STEP 3: Using that g_{ϕ} is a homeomorphism, we obtain that

$$
|\phi(\vec{a})|=\lambda_{\phi}|\vec{a}| \quad\left(\vec{a} \in \mathbb{R}^{3}\right)
$$

holds with some $\lambda_{\phi}>0$. We prove that $\lambda_{\phi}=1$, using that g_{ϕ} is a homeomorphism.

STEP 3: Using that g_{ϕ} is a homeomorphism, we obtain that

$$
|\phi(\vec{a})|=\lambda_{\phi}|\vec{a}| \quad\left(\vec{a} \in \mathbb{R}^{3}\right)
$$

holds with some $\lambda_{\phi}>0$. We prove that $\lambda_{\phi}=1$, using that g_{ϕ} is a homeomorphism.
STEP 4: Since

$$
\begin{gathered}
\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=(\vec{a}, \vec{b}) \\
=(\phi(\vec{a}), \phi(\vec{b}))=\sqrt{|\phi(\vec{a})|^{2} \cdot|\phi(\vec{b})|^{2}-\langle\phi(\vec{a}), \phi(\vec{b})\rangle^{2}} \quad\left(\vec{a}, \vec{b} \in \mathbb{R}^{3}\right),
\end{gathered}
$$

STEP 3: Using that g_{ϕ} is a homeomorphism, we obtain that

$$
|\phi(\vec{a})|=\lambda_{\phi}|\vec{a}| \quad\left(\vec{a} \in \mathbb{R}^{3}\right)
$$

holds with some $\lambda_{\phi}>0$. We prove that $\lambda_{\phi}=1$, using that g_{ϕ} is a homeomorphism.
STEP 4: Since

$$
\begin{gathered}
\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=(\vec{a}, \vec{b}) \\
=(\phi(\vec{a}), \phi(\vec{b}))=\sqrt{|\phi(\vec{a})|^{2} \cdot|\phi(\vec{b})|^{2}-\langle\phi(\vec{a}), \phi(\vec{b})\rangle^{2}} \quad\left(\vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
\end{gathered}
$$

we obtain

$$
|\langle\vec{a}, \vec{b}\rangle|=|\langle\phi(\vec{a}), \phi(\vec{b})\rangle| \quad\left(\vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

STEP 3: Using that g_{ϕ} is a homeomorphism, we obtain that

$$
|\phi(\vec{a})|=\lambda_{\phi}|\vec{a}| \quad\left(\vec{a} \in \mathbb{R}^{3}\right)
$$

holds with some $\lambda_{\phi}>0$. We prove that $\lambda_{\phi}=1$, using that g_{ϕ} is a homeomorphism.
STEP 4: Since

$$
\begin{gathered}
\sqrt{|\vec{a}|^{2} \cdot|\vec{b}|^{2}-\langle\vec{a}, \vec{b}\rangle^{2}}=(\vec{a}, \vec{b}) \\
=(\phi(\vec{a}), \phi(\vec{b}))=\sqrt{|\phi(\vec{a})|^{2} \cdot|\phi(\vec{b})|^{2}-\langle\phi(\vec{a}), \phi(\vec{b})\rangle^{2}} \quad\left(\vec{a}, \vec{b} \in \mathbb{R}^{3}\right),
\end{gathered}
$$

we obtain

$$
|\langle\vec{a}, \vec{b}\rangle|=|\langle\phi(\vec{a}), \phi(\vec{b})\rangle| \quad\left(\vec{a}, \vec{b} \in \mathbb{R}^{3}\right)
$$

Finally, we apply Wigner's theorem.

Back to the Molnár-Timmermann problem

Theorem (G.)

Fix a unitarily invariant norm $\left\|\|\cdot\| \mid\right.$ on $\mathbb{C}^{d \times d}$ where $d \geq 2$. Let $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)$ be an arbitrary transformation for which the following holds:

$$
\begin{equation*}
\|\|[A, B]\|\|=\| \|[\phi(A), \phi(B)]\| \| \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right) . \tag{3}
\end{equation*}
$$

Back to the Molnár-Timmermann problem

Theorem (G.)

Fix a unitarily invariant norm $\left\|\|\cdot\| \mid\right.$ on $\mathbb{C}^{d \times d}$ where $d \geq 2$. Let $\phi: \mathcal{B}_{s}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)$ be an arbitrary transformation for which the following holds:

$$
\begin{equation*}
\|\|[A, B]\|\|=\| \|[\phi(A), \phi(B)]\| \| \quad\left(A, B \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right) . \tag{3}
\end{equation*}
$$

Then there exist a function $f: \mathcal{B}_{s}\left(\mathbb{C}^{d}\right) \rightarrow \mathbb{R}$ and a unitary or antiunitary operator U such that

$$
\phi(A)= \pm U A U^{*}+f(A) I \quad\left(A \in \mathcal{B}_{s}\left(\mathbb{C}^{d}\right)\right)
$$

is satisfied.

Back to the Molnár-Timmermann problem (cont.)

Theorem (G.)

Let \mathcal{H} be a separable Hilbert space and fix a unitarily invariant norm ||| $\left|\left|\mid\right.\right.$ on $\mathcal{B}(\mathcal{H})$. Let $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ be a bijection for which the following holds:

$$
\|\|[A, B]\|\|=\|[\phi(A), \phi(B)]\| \| \quad\left(A, B \in H_{d}\right)
$$

Back to the Molnár-Timmermann problem (cont.)

Theorem (G.)

Let \mathcal{H} be a separable Hilbert space and fix a unitarily invariant norm ||| ||| on $\mathcal{B}(\mathcal{H})$. Let $\phi: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathcal{B}_{s}(\mathcal{H})$ be a bijection for which the following holds:

$$
\|\|[A, B]\|\|=\| \|[\phi(A), \phi(B)]\| \| \quad\left(A, B \in H_{d}\right)
$$

Then there exist a function $f: \mathcal{B}_{s}(\mathcal{H}) \rightarrow \mathbb{R}$ and a unitary or antiunitary operator U such that

$$
\phi(A)= \pm U A U^{*}+f(A) I \quad\left(A \in \mathcal{B}_{s}(\mathcal{H})\right)
$$

is satisfied.

k-parallelepipeds

For any k vectors $\vec{a}_{1}, \ldots \vec{a}_{k} \in E$ let us denote the k-dimensional volume of the parallelepiped spanned by them by the symbol $\rangle_{k}\left(\vec{a}_{1}, \ldots \vec{a}_{k}\right)$.

k-parallelepipeds

For any k vectors $\vec{a}_{1}, \ldots \vec{a}_{k} \in E$ let us denote the k-dimensional volume of the parallelepiped spanned by them by the symbol $\rangle_{k}\left(\vec{a}_{1}, \ldots \vec{a}_{k}\right)$.

Theorem (G.)

Let E be a real (not necessarily separable) Hilbert space, $2<k<\infty, k \leq \operatorname{dim} E$ and $\phi: E \rightarrow E$ be a transformation such that

$$
\begin{equation*}
\boldsymbol{v}_{k}\left(\vec{a}_{1}, \ldots \vec{a}_{k}\right)=\left(\phi\left(\vec{a}_{1}\right), \ldots \phi\left(\vec{a}_{k}\right)\right) \quad\left(\forall \vec{a}_{1}, \ldots \vec{a}_{k} \in E\right) . \tag{5}
\end{equation*}
$$

Theorem (G., cont.)

(i) If $\operatorname{dim} E=k$, then there exists a linear operator $A: E \rightarrow E$ with $|\operatorname{det} A|=1$ such that the following holds:

$$
\begin{equation*}
\phi(\vec{a})= \pm A \vec{a} \quad(\vec{a} \in E) . \tag{6}
\end{equation*}
$$

Theorem (G., cont.)

(i) If $\operatorname{dim} E=k$, then there exists a linear operator $A: E \rightarrow E$ with $|\operatorname{det} A|=1$ such that the following holds:

$$
\begin{equation*}
\phi(\vec{a})= \pm A \vec{a} \quad(\vec{a} \in E) . \tag{6}
\end{equation*}
$$

(ii) If $2<k<\operatorname{dim} E(\leq \infty)$, then there exists a linear (not necessarily surjective) isometry $R: E \rightarrow E$ such that

$$
\phi(\vec{a})= \pm R \vec{a} \quad(\vec{a} \in E)
$$

is satisfied.

The proof is a straightforward consequence of the fundamental theorem of projective geometry.

Back to the parallelogram case

Note that if we knew that $[\vec{c}] \subseteq[\vec{a}, \vec{b}]$, then we could use the fundamental theorem of projective geometry and drop the bijectivity condition.

Back to the parallelogram case

Note that if we knew that $[\vec{c}] \subseteq[\vec{a}, \vec{b}]$, then we could use the fundamental theorem of projective geometry and drop the bijectivity condition.

Question

If $\operatorname{dim} E=\infty$, is the condition

$$
[\vec{c}] \subseteq[\vec{a}, \vec{b}] \Longrightarrow[\phi(\vec{c})] \subseteq[\phi(\vec{a}), \phi(\vec{b})]
$$

satisfied?

Back to the parallelogram case

Note that if we knew that $[\vec{c}] \subseteq[\vec{a}, \vec{b}]$, then we could use the fundamental theorem of projective geometry and drop the bijectivity condition.

Question

If $\operatorname{dim} E=\infty$, is the condition

$$
[\vec{c}] \subseteq[\vec{a}, \vec{b}] \Longrightarrow[\phi(\vec{c})] \subseteq[\phi(\vec{a}), \phi(\vec{b})]
$$

satisfied?

Problem

Let E be an arbitrary real Hilbert space. Characterize those transformations $\phi: \mathbb{R}^{2} \rightarrow E$ which preservers the area of parallelograms.

Problem

Describe those transformations $\phi: E \rightarrow E$ s. t.

$$
\diamond(\vec{a}, \vec{b})=1 \Longrightarrow(\phi(\vec{a}), \phi(\vec{b}))=1
$$

holds.

Problem

Describe those transformations $\phi: E \rightarrow E$ s. t.

$$
\diamond(\vec{a}, \vec{b})=1 \Longrightarrow(\phi(\vec{a}), \phi(\vec{b}))=1
$$

holds.

Problem

Characterize those transformations $\phi: E \rightarrow E$ s. t.

$$
\checkmark(\vec{a}, \vec{b})=0 \Longrightarrow(\phi(\vec{a}), \phi(\vec{b}))=0
$$

and

$$
\diamond(\vec{a}, \vec{b})=1 \Longrightarrow(\phi(\vec{a}), \phi(\vec{b}))=1
$$

are satisfied.

囯 Gy．P．Gehér，An elementary proof for the non－bijective version of Wigner＇s theorem，Phys．Lett．A， 378 （2014），2054－2057．

击 Gy．P．Gehér and G．Nagy，Maps on classes of Hilbert space operators preserving measure of commutativity，Linear Alg．Appl．， 463 （2014），205－227．
國 Gy．P．Gehér，Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self－adjoint operators，J．Math．Anal．Appl．，to appear（published online）．

䍰 J．A．Lester，Martin＇s theorem for Euclidean n－space and a generalization to the perimeter case，J．Geom． 27 （1986）， no．1，29－35．
：F．S．Beckman and D．A．Quarles，On isometries of Euclidean spaces，Proc．of the AMS， 4 （1953）810－815．
E. L. Molnár and P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), 589-595.
圊 L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857-3863.

围 T. M. Rassias and P. Wagner, Volume preserving mappings in the spirit of the Mazur-Ulam theorem, Aequationes Math. 66 (2003), no. 1-2, 85-89.
P. Šemrl, Nonlinear commutativity-preserving maps on Hermitian matrices, Proc. Roy. Soc. Edinburgh, 138A (2008), 157-168.

This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 'National Excellence Program'

Thank You for Your Kind Attention

