## A matrix problem and a geometry problem

#### György Pál Gehér

### University of Szeged, Bolyai Institute and

## MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen

#### Seminar

#### University of Primorska, Koper

(□) (@) (E) (E) E

#### Theorem (L. Molnár and W. Timmermann, 2011)

Let  $\mathcal{H}$  be a complex separable Hilbert space with dim  $\mathcal{H} \geq 3$ . Assume  $\phi: \mathcal{B}_s(\mathcal{H}) \to \mathcal{B}_s(\mathcal{H})$  is a bijection such that

 $\|[\phi(A),\phi(B)]\| = \|[A,B]\| \quad (A,B \in \mathcal{B}_{s}(\mathcal{H})).$ 

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### Theorem (L. Molnár and W. Timmermann, 2011)

Let  $\mathcal{H}$  be a complex separable Hilbert space with dim  $\mathcal{H} \geq 3$ . Assume  $\phi: \mathcal{B}_s(\mathcal{H}) \to \mathcal{B}_s(\mathcal{H})$  is a bijection such that

 $\|[\phi(A),\phi(B)]\| = \|[A,B]\| \quad (A,B \in \mathcal{B}_{s}(\mathcal{H})).$ 

Then there exist either a unitary or an antiunitary operator U on  $\mathcal{H}$ and a function  $f: \mathcal{B}_s(\mathcal{H}) \to \mathbb{R}$  such that

 $\phi(A) = \pm UAU^* + f(A)I \quad (A \in \mathcal{B}_s(\mathcal{H})).$ 

イロト イポト イヨト イヨト

The proof uses the following theorem:

### Theorem (L. Molnár and P. Šemrl, 2005)

Let  $\mathcal{H}$  be a complex separable Hilbert space with dim  $\mathcal{H} \geq 3$  and let  $\phi: \mathcal{B}_s(\mathcal{H}) \rightarrow \mathcal{B}_s(\mathcal{H})$  be a bijective transformation which preserves commutativity in both directions.

The proof uses the following theorem:

### Theorem (L. Molnár and P. Šemrl, 2005)

Let  $\mathcal{H}$  be a complex separable Hilbert space with dim  $\mathcal{H} \geq 3$  and let  $\phi: \mathcal{B}_s(\mathcal{H}) \to \mathcal{B}_s(\mathcal{H})$  be a bijective transformation which preserves commutativity in both directions. Then there exists either a unitary or an antiunitary operator U on  $\mathcal{H}$  and for every operator  $A \in \mathcal{B}_s(\mathcal{H})$  there is a real valued bounded Borel function  $f_A$  on  $\sigma(A)$  such that

$$\phi(A) = Uf_A(A)U^* \quad (A \in \mathcal{B}_s(\mathcal{H})).$$

The proof uses the following theorem:

### Theorem (L. Molnár and P. Šemrl, 2005)

Let  $\mathcal{H}$  be a complex separable Hilbert space with dim  $\mathcal{H} \geq 3$  and let  $\phi: \mathcal{B}_s(\mathcal{H}) \to \mathcal{B}_s(\mathcal{H})$  be a bijective transformation which preserves commutativity in both directions. Then there exists either a unitary or an antiunitary operator U on  $\mathcal{H}$  and for every operator  $A \in \mathcal{B}_s(\mathcal{H})$  there is a real valued bounded Borel function  $f_A$  on  $\sigma(A)$  such that

$$\phi(A) = Uf_A(A)U^* \quad (A \in \mathcal{B}_s(\mathcal{H})).$$

#### Question

What happens in two dimensions?

# Commutativity preservers on $\mathcal{B}_s(\mathbb{C}^2)$

Two linearly independent operators  $A, B \in \mathcal{B}_s(\mathbb{C}^2)$  commute  $\iff \exists \alpha, \beta \in \mathbb{R} \text{ s.t. } \alpha A + \beta B = I.$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

# Commutativity preservers on $\mathcal{B}_s(\mathbb{C}^2)$

Two linearly independent operators  $A, B \in \mathcal{B}_s(\mathbb{C}^2)$  commute  $\iff \exists \alpha, \beta \in \mathbb{R} \text{ s.t. } \alpha A + \beta B = I.$ 

E.g. if  $\phi: \mathcal{B}_s(\mathbb{C}^2) \to \mathcal{B}_s(\mathbb{C}^2)$  is non-singular and linear, then  $\phi$  preserves commutativity in both directions  $\iff \phi(I) \in (\mathbb{R} \setminus \{0\}) \cdot I$ .

マロト イラト イラト

# Commutativity preservers on $\mathcal{B}_s(\mathbb{C}^2)$

Two linearly independent operators  $A, B \in \mathcal{B}_{s}(\mathbb{C}^{2})$  commute  $\iff \exists \alpha, \beta \in \mathbb{R} \text{ s.t. } \alpha A + \beta B = I.$ 

E.g. if  $\phi: \mathcal{B}_s(\mathbb{C}^2) \to \mathcal{B}_s(\mathbb{C}^2)$  is non-singular and linear, then  $\phi$  preserves commutativity in both directions  $\iff \phi(I) \in (\mathbb{R} \setminus \{0\}) \cdot I$ .

So the preservation of commutativity provides too few information.

イロト イポト イラト イラト

# The first step: linear commutativity preservers

#### Theorem (with G. Nagy, 2014)

Suppose that  $d \in \mathbb{N}$ ,  $||| \cdot |||$  is an arbitrary unitarily invariant norm and  $\phi \colon \mathcal{B}_s(\mathbb{C}^d) \to \mathcal{B}_s(\mathbb{C}^d)$  is a (real-)linear transformation such that

 $\left|\left|\left|\left[\phi(A),\phi(B)\right]\right|\right|\right| = \left|\left|\left|\left[A,B\right]\right|\right|\right| \quad (A,B \in \mathcal{B}_{s}(\mathbb{C}^{d})).$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# The first step: linear commutativity preservers

#### Theorem (with G. Nagy, 2014)

Suppose that  $d \in \mathbb{N}$ ,  $||| \cdot |||$  is an arbitrary unitarily invariant norm and  $\phi \colon \mathcal{B}_s(\mathbb{C}^d) \to \mathcal{B}_s(\mathbb{C}^d)$  is a (real-)linear transformation such that

 $\left|\left|\left|\left[\phi(A),\phi(B)\right]\right|\right|\right| = \left|\left|\left|\left[A,B\right]\right|\right|\right| \quad (A,B\in\mathcal{B}_{s}(\mathbb{C}^{d})).$ 

Then there exist either a unitary or an antiunitary operator U on  $\mathbb{C}^d$  and a linear functional  $f: \mathcal{B}_s(\mathbb{C}^d) \to \mathbb{R}$  such that

$$\phi(A) = UAU^* + f(A)I \quad (A \in \mathcal{B}_s(\mathbb{C}^d))$$

or

$$\phi(A) = -UAU^* + f(A)I \quad (A \in \mathcal{B}_s(\mathbb{C}^d)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Problem (Reformulation)

Characterize those maps 
$$\phi \colon \mathcal{B}_{s}(\mathbb{C}^{2}) \to \mathcal{B}_{s}(\mathbb{C}^{2})$$
 s.t.

 $det[A, B] = det[\phi(A), \phi(B)]$   $(A, B \in \mathcal{B}_{s}(\mathbb{C}^{2})).$ 

イロト イポト イヨト イヨト

#### Problem (Reformulation)

Characterize those maps 
$$\phi \colon \mathcal{B}_{s}(\mathbb{C}^{2}) \to \mathcal{B}_{s}(\mathbb{C}^{2})$$
 s.t.

 $det[A, B] = det[\phi(A), \phi(B)]$   $(A, B \in \mathcal{B}_{s}(\mathbb{C}^{2})).$ 

Let  $Z_2 := \{A \in \mathcal{B}_s(\mathbb{C}^2) : \operatorname{Tr} A = 0\}$  and  $\tilde{\phi} : \mathcal{B}_s(\mathbb{C}^2) \to Z_2 \subseteq \mathcal{B}_s(\mathbb{C}^2), \quad \tilde{\phi}(A) = \phi(A) - \frac{\operatorname{Tr} \phi(A)}{2} \cdot I.$ 

イロト イポト イヨト イヨト

#### Problem (Reformulation)

Characterize those maps 
$$\phi \colon \mathcal{B}_{s}(\mathbb{C}^{2}) \to \mathcal{B}_{s}(\mathbb{C}^{2})$$
 s.t.

 $det[A, B] = det[\phi(A), \phi(B)]$   $(A, B \in \mathcal{B}_{s}(\mathbb{C}^{2})).$ 

Let 
$$Z_2 := \{A \in \mathcal{B}_s(\mathbb{C}^2) : \operatorname{Tr} A = 0\}$$
 and  
 $\tilde{\phi} : \mathcal{B}_s(\mathbb{C}^2) \to Z_2 \subseteq \mathcal{B}_s(\mathbb{C}^2), \quad \tilde{\phi}(A) = \phi(A) - \frac{\operatorname{Tr} \phi(A)}{2} \cdot I.$ 

We define the following mapping:

$$\psi := \tilde{\phi} | Z_2 \colon Z_2 \to Z_2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

### Problem (Reformulation)

Characterize those maps 
$$\phi \colon \mathcal{B}_{s}(\mathbb{C}^{2}) \to \mathcal{B}_{s}(\mathbb{C}^{2})$$
 s.t.

$$\det[A,B] = \det[\phi(A),\phi(B)] \qquad (A,B\in \mathcal{B}_s(\mathbb{C}^2)).$$

Let 
$$Z_2 := \{A \in \mathcal{B}_s(\mathbb{C}^2) : \operatorname{Tr} A = 0\}$$
 and  
 $\tilde{\phi} : \mathcal{B}_s(\mathbb{C}^2) \to Z_2 \subseteq \mathcal{B}_s(\mathbb{C}^2), \quad \tilde{\phi}(A) = \phi(A) - \frac{\operatorname{Tr} \phi(A)}{2} \cdot I.$ 

We define the following mapping:

$$\psi := \tilde{\phi} | Z_2 \colon Z_2 \to Z_2.$$

We can prove the following:

$$\tilde{\phi}(A) = \pm \psi \left( A - \frac{\operatorname{Tr} A}{2} I \right) \qquad (A \in \mathcal{B}_{\mathcal{S}}(\mathbb{C}^2)).$$
György Pál Gehér A matrix problem and a geometry problem

Now, we identify elements of  $Z_2$  with vectors of  $\mathbb{R}^3$  using the vector space isomorphism

$$\iota \colon \mathbb{R}^3 \to Z_2, \qquad (a, b, c) \mapsto \begin{pmatrix} a & b + ic \\ b - ic & -a \end{pmatrix},$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Now, we identify elements of  $Z_2$  with vectors of  $\mathbb{R}^3$  using the vector space isomorphism

$$\iota \colon \mathbb{R}^3 \to Z_2, \qquad (a,b,c) \mapsto egin{pmatrix} a & b+ic \ b-ic & -a \end{pmatrix},$$

and we define the following transformation:

$$\xi \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad \xi = \iota^{-1} \circ \psi \circ \iota.$$

化原因 化原因

an

Now, we identify elements of  $Z_2$  with vectors of  $\mathbb{R}^3$  using the vector space isomorphism

$$\iota \colon \mathbb{R}^3 \to Z_2, \qquad (a, b, c) \mapsto \begin{pmatrix} a & b + ic \\ b - ic & -a \end{pmatrix},$$

and we define the following transformation:

$$\xi \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad \xi = \iota^{-1} \circ \psi \circ \iota.$$

A rather simple calculation shows the following two equations:

$$\det[\iota(a_1,b_1,c_1),\iota(a_2,b_2,c_2)]=4|(a_1,b_1,c_1) imes(a_2,b_2,c_2)|^2$$
d

Now, we identify elements of  $Z_2$  with vectors of  $\mathbb{R}^3$  using the vector space isomorphism

$$\iota \colon \mathbb{R}^3 \to Z_2, \qquad (a, b, c) \mapsto \begin{pmatrix} a & b + ic \\ b - ic & -a \end{pmatrix},$$

and we define the following transformation:

$$\xi \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad \xi = \iota^{-1} \circ \psi \circ \iota.$$

A rather simple calculation shows the following two equations:

$$\det[\iota(a_1,b_1,c_1),\iota(a_2,b_2,c_2)]=4|(a_1,b_1,c_1)\times(a_2,b_2,c_2)|^2$$
 and

$$|\xi(a_1, b_1, c_1) \times \xi(a_2, b_2, c_2)| = |(a_1, b_1, c_1) \times (a_2, b_2, c_2)|.$$

Characterize those maps  $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$  s.t.

$$igl(ec{a},ec{b})=igl(\phi(ec{a}),\phi(ec{b})) \qquad (\forall \ ec{a},ec{b}\in\mathbb{R}^3)$$

where  $igl(ec{a},ec{b}) = |ec{a} imes ec{b}| =$ 

< □ > < □ > < □ >

Characterize those maps  $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$  s.t.

$$igathinspace{(\vec{a},\vec{b}) = igothinspace{(\phi(\vec{a}),\phi(\vec{b}))} (orall \ ec{a},ec{b} \in \mathbb{R}^3)$$
where  $igothinspace{(\vec{a},ec{b}) = |ec{a} imes ec{b}| = \sqrt{|ec{a}|^2 \cdot |ec{b}|^2 - \langle ec{a},ec{b} 
angle^2} =$ 

イロト イポト イヨト イヨト

Characterize those maps  $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$  s.t.

$$\begin{split} & \blacklozenge(\vec{a},\vec{b}) = \blacklozenge(\phi(\vec{a}),\phi(\vec{b})) \qquad (\forall \ \vec{a},\vec{b} \in \mathbb{R}^3) \\ & \text{where } \blacklozenge(\vec{a},\vec{b}) = |\vec{a} \times \vec{b}| = \sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - \langle \vec{a},\vec{b} \rangle^2} = \\ & \underbrace{\sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - \frac{1}{4}(|\vec{a} - \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2)^2}}_{Heron's \ formula} \end{split}$$

Characterize those maps  $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$  s.t.

$$\begin{split} & \blacklozenge(\vec{a},\vec{b}) = \diamondsuit(\phi(\vec{a}),\phi(\vec{b})) \qquad (\forall \ \vec{a},\vec{b} \in \mathbb{R}^3) \\ & \text{where } \diamondsuit(\vec{a},\vec{b}) = |\vec{a} \times \vec{b}| = \sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - \langle \vec{a},\vec{b} \rangle^2} = \\ & \underbrace{\sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - \frac{1}{4}(|\vec{a} - \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2)^2}}_{Heron's \ formula} \end{split}$$

Of course, the similar question could be asked for an arbitrary real Hilbert space *E*. This is the Rassias-Wagner problem.

同下 イヨト イヨト

Characterize those maps  $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$  s.t.

$$\begin{split} & \blacklozenge(\vec{a},\vec{b}) = \blacklozenge(\phi(\vec{a}),\phi(\vec{b})) \qquad (\forall \ \vec{a},\vec{b} \in \mathbb{R}^3) \\ & \text{where } \blacklozenge(\vec{a},\vec{b}) = |\vec{a} \times \vec{b}| = \sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - \langle \vec{a},\vec{b} \rangle^2} = \\ & \underbrace{\sqrt{|\vec{a}|^2 \cdot |\vec{b}|^2 - \frac{1}{4}(|\vec{a} - \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2)^2}}_{Heron's \ formula} \end{split}$$

Of course, the similar question could be asked for an arbitrary real Hilbert space *E*. This is the Rassias-Wagner problem.

(Beckmann-Quarles; Lester-Martin, linear R-W)

・吊り ・ ヨト・・ ヨト

#### Theorem (G.)

Let *E* be a real (not necessarily separable) Hilbert space and  $\phi: E \to E$  be an arbitrary transformation such that

$$\blacklozenge(\vec{a},\vec{b}) = \diamondsuit(\phi(\vec{a}),\phi(\vec{b})) \qquad (\forall \ \vec{a},\vec{b} \in E).$$
(1)

(日) (同) (三) (三)

#### Theorem (G.)

Let *E* be a real (not necessarily separable) Hilbert space and  $\phi: E \to E$  be an arbitrary transformation such that

$$\mathbf{(\vec{a},\vec{b})} = \mathbf{(\phi(\vec{a}),\phi(\vec{b}))} \qquad (\forall \ \vec{a},\vec{b}\in E). \tag{1}$$

(i) If dim E = 2, then there exists a linear operator  $A: E \to E$ with  $|\det A| = 1$  such that the following holds:

$$\phi(\vec{a}) = \pm A\vec{a} \qquad (\vec{a} \in E). \tag{2}$$

イロト イポト イラト イラト

#### Theorem (G. continued)

(ii) If  $2 < \dim E < \infty$ , then there exists an orthogonal linear operator  $R: E \rightarrow E$  such that

$$\phi(\vec{a}) = \pm R\vec{a} \qquad (\vec{a} \in E)$$

is satisfied.

(日) (同) (三) (三)

#### Theorem (G. continued)

(ii) If  $2 < \dim E < \infty$ , then there exists an orthogonal linear operator  $R: E \rightarrow E$  such that

$$\phi(\vec{a}) = \pm R\vec{a} \qquad (\vec{a} \in E)$$

is satisfied.

(iii) If dim  $E = \infty$  and in addition  $\phi$  is assumed to be bijective, then there exists a linear, surjective isometry  $R: E \to E$  such that we have

$$\phi(\vec{a}) = \pm R\vec{a} \qquad (\vec{a} \in E).$$

イロト イポト イラト イ

# Outline of the proof for n = 3

Let us consider the projectivised  $\mathbb{R}^3$  which will be denoted by  $\mathcal{P}(\mathbb{R}^3)$ . The subspace generated by  $\vec{v}$  will be denoted by  $[\vec{v}]$ . Let

$$g_{\phi} \colon \mathcal{P}(\mathbb{R}^3) \to \mathcal{P}(\mathbb{R}^3), \quad g_{\phi}([\vec{v}]) = [\phi(\vec{v})] \; (\vec{v} \neq \vec{0}).$$

Note that  $\phi(\vec{v}) = \vec{0} \iff \vec{v} = \vec{0}$ .

# Outline of the proof for n = 3

Let us consider the projectivised  $\mathbb{R}^3$  which will be denoted by  $\mathcal{P}(\mathbb{R}^3)$ . The subspace generated by  $\vec{v}$  will be denoted by  $[\vec{v}]$ . Let

$$g_\phi\colon \mathcal{P}(\mathbb{R}^3) o \mathcal{P}(\mathbb{R}^3), \quad g_\phi([ec{v}])=[\phi(ec{v})] \ (ec{v}
eq ec{0}).$$

Note that  $\phi(\vec{v}) = \vec{0} \iff \vec{v} = \vec{0}$ .

STEP 1: We prove that  $g_{\phi}$  is a homeomorphism.

STEP 2: We consider two linearly independent vectors  $\vec{a}, \vec{b} \in E$  and let

$$\mathcal{C}_{ec{a},ec{b}} := \left\{ec{v} \in E \setminus \{0\} \colon ig (ec{v},ec{a}) = ig (ec{v},ec{b})
ight\} \subseteq E
ight\}$$

(note that  $C_{\vec{a},\vec{b}}$  is a plane iff  $|\vec{a}| = |\vec{b}|$ )

• = • •

STEP 2: We consider two linearly independent vectors  $\vec{a}, \vec{b} \in E$  and let

$$\mathcal{C}_{ec{a},ec{b}} := \left\{ec{v} \in E \setminus \{0\} \colon ig (ec{v},ec{a}) = ig (ec{v},ec{b})
ight\} \subseteq E
ight\}$$

(note that  $C_{ec{a},ec{b}}$  is a plane iff  $|ec{a}|=|ec{b}|)$  and

$$PC_{\vec{a},\vec{b}} := \left\{ [\vec{v}] \in \mathcal{P}(\mathbb{R}^3) \colon \vec{v} \in C_{\vec{a},\vec{b}} \right\}.$$

• = • •

STEP 2: We consider two linearly independent vectors  $\vec{a}, \vec{b} \in E$  and let

$$C_{ec{a},ec{b}} := \left\{ ec{v} \in E \setminus \{0\} : \ igle(ec{v},ec{a}) = igle(ec{v},ec{b}) 
ight\} \subseteq E$$

(note that  $C_{ec{a},ec{b}}$  is a plane iff  $|ec{a}|=|ec{b}|)$  and

$$\mathsf{PC}_{\vec{a},\vec{b}} := \left\{ [\vec{v}] \in \mathcal{P}(\mathbb{R}^3) \colon \vec{v} \in C_{\vec{a},\vec{b}} \right\}.$$

We can show that  $PC_{\vec{a},\vec{b}}$  contains a loop  $\gamma \colon [0,1] \to PC_{\vec{a},\vec{b}}$  not homotopic to the trivial loop  $\delta \colon [0,1] \to PC_{\vec{a},\vec{b}}$ ,  $\delta \equiv \gamma(0)$  if and only if  $|\vec{a}| = |\vec{b}|$  holds.

STEP 3: Using that  $g_{\phi}$  is a homeomorphism, we obtain that

$$|\phi(ec{a})| = \lambda_{\phi} |ec{a}| \qquad (ec{a} \in \mathbb{R}^3)$$

holds with some  $\lambda_{\phi} > 0$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

STEP 3: Using that  $g_{\phi}$  is a homeomorphism, we obtain that

$$|\phi(ec{a})| = \lambda_{\phi}|ec{a}| \qquad (ec{a} \in \mathbb{R}^3)$$

holds with some  $\lambda_{\phi}>$  0. We prove that  $\lambda_{\phi}=$  1, using that  $g_{\phi}$  is a homeomorphism.

伺 と く ヨ と く ヨ と

STEP 3: Using that  $g_{\phi}$  is a homeomorphism, we obtain that

$$|\phi(ec{a})| = \lambda_{\phi} |ec{a}| \qquad (ec{a} \in \mathbb{R}^3)$$

holds with some  $\lambda_{\phi}>$  0. We prove that  $\lambda_{\phi}=$  1, using that  $g_{\phi}$  is a homeomorphism.

STEP 4: Since

$$\sqrt{ert ec a ert^2 \cdot ec b ec a^2} = igl(ec a, ec b)^2 = igl(ec a, ec b)$$

$$=igl(\phi(ec{a}),\phi(ec{b}))=\sqrt{|\phi(ec{a})|^2\cdot|\phi(ec{b})|^2-\langle\phi(ec{a}),\phi(ec{b})
angle^2}\qquad(ec{a},ec{b}\in\mathbb{R}^3),$$

- E - - E -

STEP 3: Using that  $g_{\phi}$  is a homeomorphism, we obtain that

$$|\phi(ec{a})| = \lambda_{\phi} |ec{a}| \qquad (ec{a} \in \mathbb{R}^3)$$

holds with some  $\lambda_\phi>$  0. We prove that  $\lambda_\phi=$  1, using that  $g_\phi$  is a homeomorphism.

STEP 4: Since

$$\sqrt{ert ec a ert^2 \cdot ec b ert^2 - \langle ec a, ec b 
angle^2} = igle(ec a, ec b)$$

$$= \blacklozenge(\phi(\vec{a}),\phi(\vec{b})) = \sqrt{|\phi(\vec{a})|^2 \cdot |\phi(\vec{b})|^2 - \langle \phi(\vec{a}),\phi(\vec{b})\rangle^2} \qquad (\vec{a},\vec{b}\in\mathbb{R}^3),$$

we obtain

$$|\langle ec{a},ec{b}
angle| = |\langle \phi(ec{a}), \phi(ec{b})
angle| \qquad (ec{a},ec{b}\in\mathbb{R}^3).$$

向下 イラト イラト

STEP 3: Using that  $g_{\phi}$  is a homeomorphism, we obtain that

$$|\phi(ec{a})| = \lambda_{\phi} |ec{a}| \qquad (ec{a} \in \mathbb{R}^3)$$

holds with some  $\lambda_{\phi}>$  0. We prove that  $\lambda_{\phi}=$  1, using that  $g_{\phi}$  is a homeomorphism.

STEP 4: Since

$$\sqrt{ert ec a ert^2 \cdot ec b ert^2 - \langle ec a, ec b 
angle^2} = igle(ec a, ec b)$$

$$= \blacklozenge(\phi(\vec{a}), \phi(\vec{b})) = \sqrt{|\phi(\vec{a})|^2 \cdot |\phi(\vec{b})|^2 - \langle \phi(\vec{a}), \phi(\vec{b}) \rangle^2} \qquad (\vec{a}, \vec{b} \in \mathbb{R}^3),$$

we obtain

$$|\langle ec{a},ec{b}
angle| = |\langle \phi(ec{a}), \phi(ec{b})
angle| \qquad (ec{a},ec{b}\in\mathbb{R}^3).$$

Finally, we apply Wigner's theorem. ■

(日) (局) (王) (王)

## Back to the Molnár-Timmermann problem

#### Theorem (G.)

Fix a unitarily invariant norm  $||| \cdot |||$  on  $\mathbb{C}^{d \times d}$  where  $d \ge 2$ . Let  $\phi: \mathcal{B}_s(\mathbb{C}^d) \to \mathcal{B}_s(\mathbb{C}^d)$  be an arbitrary transformation for which the following holds:

$$|||[A,B]||| = |||[\phi(A),\phi(B)]||| \qquad (A,B \in \mathcal{B}_{s}(\mathbb{C}^{d})).$$
(3)

38 b

## Back to the Molnár-Timmermann problem

#### Theorem (G.)

Fix a unitarily invariant norm  $||| \cdot |||$  on  $\mathbb{C}^{d \times d}$  where  $d \ge 2$ . Let  $\phi: \mathcal{B}_s(\mathbb{C}^d) \to \mathcal{B}_s(\mathbb{C}^d)$  be an arbitrary transformation for which the following holds:

$$|||[A,B]||| = |||[\phi(A),\phi(B)]||| \qquad (A,B \in \mathcal{B}_{s}(\mathbb{C}^{d})).$$
(3)

Then there exist a function  $f: \mathcal{B}_s(\mathbb{C}^d) \to \mathbb{R}$  and a unitary or antiunitary operator U such that

$$\phi(A) = \pm UAU^* + f(A)I \qquad (A \in \mathcal{B}_s(\mathbb{C}^d))$$

is satisfied.

## Back to the Molnár-Timmermann problem (cont.)

#### Theorem (G.)

Let  $\mathcal{H}$  be a separable Hilbert space and fix a unitarily invariant norm  $||| \cdot |||$  on  $\mathcal{B}(\mathcal{H})$ . Let  $\phi \colon \mathcal{B}_s(\mathcal{H}) \to \mathcal{B}_s(\mathcal{H})$  be a bijection for which the following holds:

$$|||[A,B]||| = |||[\phi(A),\phi(B)]||| \qquad (A,B \in H_d).$$

38 b

## Back to the Molnár-Timmermann problem (cont.)

#### Theorem (G.)

Let  $\mathcal{H}$  be a separable Hilbert space and fix a unitarily invariant norm  $||| \cdot |||$  on  $\mathcal{B}(\mathcal{H})$ . Let  $\phi \colon \mathcal{B}_s(\mathcal{H}) \to \mathcal{B}_s(\mathcal{H})$  be a bijection for which the following holds:

$$|||[A,B]||| = |||[\phi(A),\phi(B)]||| \qquad (A,B \in H_d).$$

Then there exist a function  $f: \mathcal{B}_s(\mathcal{H}) \to \mathbb{R}$  and a unitary or antiunitary operator U such that

$$\phi(A) = \pm UAU^* + f(A)I \qquad (A \in \mathcal{B}_s(\mathcal{H}))$$

is satisfied.

## *k*-parallelepipeds

For any k vectors  $\vec{a_1}, \ldots \vec{a_k} \in E$  let us denote the k-dimensional volume of the parallelepiped spanned by them by the symbol  $\oint_k (\vec{a_1}, \ldots \vec{a_k})$ .

- 4 昂 ト 4 戸 ト 4 戸 ト

## *k*-parallelepipeds

For any k vectors  $\vec{a_1}, \ldots, \vec{a_k} \in E$  let us denote the k-dimensional volume of the parallelepiped spanned by them by the symbol  $\oint_k (\vec{a_1}, \ldots, \vec{a_k})$ .

#### Theorem (G.)

Let E be a real (not necessarily separable) Hilbert space,  $2 < k < \infty$ ,  $k \le \dim E$  and  $\phi: E \to E$  be a transformation such that

$$\blacklozenge_k(\vec{a}_1,\ldots\vec{a}_k)=\diamondsuit_k(\phi(\vec{a}_1),\ldots\phi(\vec{a}_k))\qquad (\forall \ \vec{a}_1,\ldots\vec{a}_k\in E).$$
(5)

イロト イポト イラト イラト

#### Theorem (G., cont.)

(i) If dim E = k, then there exists a linear operator  $A: E \to E$ with  $|\det A| = 1$  such that the following holds:

$$\phi(\vec{a}) = \pm A\vec{a} \qquad (\vec{a} \in E).$$
 (6)

イロト イポト イヨト イ

#### Theorem (G., cont.)

(i) If dim E = k, then there exists a linear operator  $A: E \to E$ with  $|\det A| = 1$  such that the following holds:

$$\phi(\vec{a}) = \pm A\vec{a} \qquad (\vec{a} \in E).$$
 (6)

(ii) If  $2 < k < \dim E(\leq \infty)$ , then there exists a linear (not necessarily surjective) isometry  $R: E \to E$  such that

$$\phi(\vec{a}) = \pm R\vec{a} \qquad (\vec{a} \in E)$$

is satisfied.

・ 同 ト ・ ヨ ト ・

The proof is a straightforward consequence of the fundamental theorem of projective geometry.

## Back to the parallelogram case

Note that if we knew that  $[\vec{c}] \subseteq [\vec{a}, \vec{b}]$ , then we could use the fundamental theorem of projective geometry and drop the bijectivity condition.

## Back to the parallelogram case

Note that if we knew that  $[\vec{c}] \subseteq [\vec{a}, \vec{b}]$ , then we could use the fundamental theorem of projective geometry and drop the bijectivity condition.

# Question If dim $E = \infty$ , is the condition $[\vec{c}] \subseteq [\vec{a}, \vec{b}] \Longrightarrow [\phi(\vec{c})] \subseteq [\phi(\vec{a}), \phi(\vec{b})]$

satisfied?

## Back to the parallelogram case

Note that if we knew that  $[\vec{c}] \subseteq [\vec{a}, \vec{b}]$ , then we could use the fundamental theorem of projective geometry and drop the bijectivity condition.

#### Question

If dim  $E = \infty$ , is the condition

$$[\vec{c}] \subseteq [\vec{a}, \vec{b}] \Longrightarrow [\phi(\vec{c})] \subseteq [\phi(\vec{a}), \phi(\vec{b})]$$

satisfied?

#### Problem

Let E be an arbitrary real Hilbert space. Characterize those transformations  $\phi \colon \mathbb{R}^2 \to E$  which preservers the area of parallelograms.

#### Problem

Describe those transformations  $\phi \colon E \to E$  s. t.

$$(\vec{a}, \vec{b}) = 1 \Longrightarrow (\phi(\vec{a}), \phi(\vec{b})) = 1$$

holds.

イロト イポト イヨト イヨト

Э

#### Problem

Describe those transformations  $\phi \colon E \to E$  s. t.

$$(\vec{a}, \vec{b}) = 1 \Longrightarrow (\phi(\vec{a}), \phi(\vec{b})) = 1$$

holds.

#### Problem

Characterize those transformations  $\phi \colon E \to E$  s. t.

$$\blacklozenge(\vec{a},\vec{b})=0 \Longrightarrow \blacklozenge(\phi(\vec{a}),\phi(\vec{b}))=0$$

and

$$(\vec{a}, \vec{b}) = 1 \Longrightarrow (\phi(\vec{a}), \phi(\vec{b})) = 1$$

are satisfied.

イロト 不得下 イヨト イヨト

- Gy. P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem, *Phys. Lett. A*, **378** (2014), 2054–2057.
- Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, *Linear Alg. Appl.*, **463** (2014), 205–227.
- Gy. P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, *J. Math. Anal. Appl.*, to appear (published online).
- J. A. Lester, Martin's theorem for Euclidean n-space and a generalization to the perimeter case, *J. Geom.* 27 (1986), no. 1, 29–35.
- F. S. Beckman and D. A. Quarles, On isometries of Euclidean spaces, *Proc. of the AMS*, **4** (1953) 810–815.

イロト イポト イラト イラト

- L. Molnár and P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, *Quart. J. Math.* 56 (2005), 589–595.
- L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857-3863.
- T. M. Rassias and P. Wagner, Volume preserving mappings in the spirit of the Mazur-Ulam theorem, *Aequationes Math.* **66** (2003), no. 1–2, 85–89.
- P. Šemrl, Nonlinear commutativity-preserving maps on Hermitian matrices, Proc. Roy. Soc. Edinburgh, 138A (2008), 157–168.

This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 'National Excellence Program'

《曰》 《聞》 《臣》 《臣》 三臣

## Thank You for Your Kind Attention

