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Clique cover

Task: Cover all the vertices of a graph by cliques.

Goal: Minimize the number of cliques (MCC).

Complexity: NP-hard in general.

Lower bound: Maximum stable set (MSS).
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Perfect graphs

The values of a MCC and a MSS are not always the same....

A graph is perfect if and only if MCC = MSS for every induced subgraph (Perfect
Graph Theorem, Lóvasz 1972). Perfect graphs were defined by Berge in 1960 as
the graphs such that the clique number and chromatic number are equal for every
induced subgraph.
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Graph Theorem, Lóvasz 1972). Perfect graphs were defined by Berge in 1960 as
the graphs such that the clique number and chromatic number are equal for every
induced subgraph.

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 3 / 39



The weighted version

Maximum weighted stable set (MWSS): Given a graph G (V ,E ) with a
nonnegative weight function on the vertices w , find a set of pairwise nonadjacent
vertices maximizing the sum of their weight.

Not always it is of maximum cardinality.
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Minimum weight clique cover (MWCC)

Given a graph G (V ,E ) with a nonnegative weight function on the vertices w , find
a collection of cliques K and a non negative value yK for each clique K ∈ K such
that

∑
K :v∈K yK ≥ w(v) for every vertex v ∈ V and

∑
K∈K yK is minimum.

Not always it is of minimum cardinality.
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Integrality

Not always the integral optimum is the fractional optimum...
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Stable set and clique cover in perfect graphs

The MWCC is the dual of the linear relaxation of the clique formulation for
the MWSS.

max
∑
v∈V

w(v)xv∑
v∈K

xv ≤ 1 ∀K ∈ K(G )

xv ≥ 0 ∀v ∈ V

min
∑

K∈K(G)

yK

∑
K∈K(G):v∈K

yK ≥ w(v) ∀v ∈ V

yK ≥ 0 ∀K ∈ K(G )

For perfect graphs, the weights of a MWSS and a MWCC are equal and,
moreover, for an integer weight function w , there is a MWCC where the
weight of each clique is integer (Fulkerson, 1973).

Both problems can be solved in polytime in perfect graphs through the
ellipsoid method and using the Lovász ϑ-function (Grötschel, Lovász, and
Schrijver, 1981–1988). What about combinatorial algorithms?
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Crucial clique

A clique that intersects every M(W)SS of the graph.

G perfect ⇒ has a crucial clique

every clique in a M(W)CC of a perfect graph is crucial (otherwise we’ve used
a clique and still have a stable set of maximum weight to cover!)

Algorithm:

find a crucial clique K
assign as weight αw (G)− αw (G − K).

Problem: We don’t know in general how to find crucial cliques of perfect
graphs. :)
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Crucial cliques of chordal graphs

v simplicial vertex with w(v) > 0 ⇒ N[v ] crucial clique

Weight: we can assign w(v) (we will possibly give further weight to N(v))
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Crucial cliques in distance simplicial graphs

A graph is distance simplicial w.r.t. a clique K if N(K ),N2(K ), . . . ,N j(K ), . . .
are cliques.

 

 

 

Which other classes admit combinatorial algorithms?
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Line graphs

G L(G)
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Maximum weighted stable set on line graphs

This problem is equivalent to maximum weighted matching in the root graph.
Edmonds’ algorithm (1965) can run in O(

√
nm) time, and there is an algorithm

by Mucha and Sankowski based on matrix multiplication that is O(n2.376).
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On line graphs....

If G = L(H) then a MWCC of G is composed by stars and triangles of H.

Moreover, if H is bipartite, just stars appear and it is equivalent to minimum
weighted vertex cover. So, the result by Fulkerson generalizes the Kőnig-Egerváry
property for line graphs of bipartite graphs.
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MCC and MWCC on line graphs

To solve the MWCC on the line graph of a bipartite graph the Hungarian method
(Kuhn ’55) gives a O(n3)-time primal-dual algorithm.

To solve the MWCC on a perfect line graph G , there is a primal-dual algorithm by
Gabow (1990) that solves concurrently a maximum weighted matching on the
root graph of G and a covering of it by stars and triangles (i.e., cliques of G ) in
O(n2 log(n)).

For the unweighted case, a previous (similar) algorithm by Trotter (1977) was
known.
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Minimal forbidden induced subgraphs for line graphs
(Beineke, 1970)
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Claw-free graphs

claw
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MSS and MWSS on claw-free graphs (not necessarily
perfect)

Combinatorial algorithms:

Minty 1980, Nakamura and Tamura 2001: based on augmenting paths and
reductions (O(n6)).

Oriolo, Pietropaoli and Stauffer 2008: based on graph decomposition
(O(n4)).

Nobili and Sassano 2011: based on Lovász-Plummer clique reduction and
augmenting paths in line graphs (O(n4 log(n))).

Faenza, Oriolo and Stauffer 2010: based on a strip decomposition of
claw-free graphs (O(n3)).
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MCC and MWCC on claw-free perfect graphs

Combinatorial algorithms:

Hsu and Nemhauser 1981, 1982: building upon a solution of several instances
of M(W)SS in order to find crucial cliques (O(n5)).

Combination of results by Whitesides 1982, Chvátal and Sbihi 1988 and
Maffray and Reed 1999 on clique cutsets and claw-free perfect graphs
(O(n4 log(n)), only for the unweighted case).

B., Oriolo and Snels 2012: based on strip decomposition combined with
clique cutsets decomposition (O(n3)).

B, Oriolo, Snels and Stauffer 2013: building upon a reformulation and ‘nice’
polyhedra, solved by 2-sat and shortest paths (O(n3)).

All of them are strongly based on perfection: the MCC and MWCC problems are
NP-complete on claw-free graphs, e.g. from vertex cover in triangle-free graphs
(Garey, Johnson and Stockmeyer, 1976), or coloring in triangle-free graphs
(Maffray and Preissmann, 1996).
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Stable set and clique cover in perfect graphs

Given a perfect graph and a MWSS S and a MWCC y of it, every clique with
strictly positive weight intersects S and

∑
K :v∈K yK = w(v) for every vertex

v ∈ S .

In the unweighted case, there is exactly one clique containing each vertex of S .
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Outline of Hsu and Nemhauser’s algorithm

Compute a MWSS S of G .

Fix a vertex v ∈ S

For each vertex z ∈ N(v), compute the MWSS S ′ such that S ′ ∩ N[v ] = {z};
if w(S ′) = w(S), mark the vertex z .
for each nonedge zt ∈ N(v), compute the MWSS S ′ such that
S ′ ∩ N[v ] = {z , t}; if w(S ′) = w(S), mark the nonedge zt.

Compute a clique K containing v , all the marked vertices in N(v), and one
endpoint of each marked nonedge in N(v): this will be a crucial clique.

Compute the weight yK = w(S)− αw (G − K ) and redefine
w(z) := w(z)− yK for every vertex in K .

Repeat until w(v) = 0 and then proceed with another vertex of S .
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Algorithms based on decompositions

In 1982, Whitesides describes a combinatorial algorithm for MWSS on graphs that
can be decomposed by clique cutsets into pieces in which one can solve MWSS in
a combinatorial way.

She also describes such an algorithm for MWCC on perfect graphs that can be
decomposed by clique cutsets into pieces in which one can solve MWCC in a
combinatorial way.

The ideas are not far from those used by Faenza et. al for MWSS on strip
composed graphs and those used by B., Oriolo and Snels for MWCC on strip
composed perfect graphs.

Nevertheless, the case of clique cutsets is simpler because of its tree-like structure.
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Strip composition

A graph G is strip composed if G is a composition of some set of strips w.r.t.
some partition P.

A strip H = (G ,A) is a graph G (not necessarily connected) with a
multi-family A of either one or two designated non-empty cliques of G . The
cliques in A are called the extremities of H.

This generalizes line graphs, where each strip is a single vertex.
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Strip composition

Each class of the partition of the extremities defines a clique of the composed
graph, and is called a partition-clique.

A strip satisfies property Π when the graph obtained by adding, for each
extremity, a vertex complete to it, satisfies property Π.

The composition of line (claw-free, quasi-line) strips is a line (claw-free,
quasi-line) graph.

The composition of perfect strips is not necessary a perfect graph.
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Strip decomposition theorems for claw-free graphs

Existence Theorem (Chudnovsky and Seymour, 2005)

G claw-free, α(G) ≥ 4:

1. either G is the composition of fuzzy linear interval strips

2. or G is a fuzzy circular interval graph.

Algorithmic Theorem (Faenza, Oriolo and Stauffer, 2010)

G claw-free, α(G) ≥ 4:

1. either G is the composition of distance simplicial strips

2. or G is distance claw-free and net-free.
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MWSS of strip composed graphs (Faenza, Oriolo and
Stauffer)

Replace every strip with a weighted simple line strip (a gadget), and obtain a
line graph G ′ as the composition of the gadgets, such that
αw (G ) = f (αw (G ′)) and we know f .

In order to find a MWSS of G ′, find a maximum weighted matching in the
root graph of G ′.

The vertices in the MWSS S of G ′ represent a guideline to choose a suitable
stable set in each strip that forms a MWSS of G .

They use it for the strip decomposable claw-free graphs and solve the case of
distance claw-free graphs separately.
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Extending it to the MWCC on strip composed perfect
graphs

We borrow the MWSS idea, but...

The original gadgets do not preserve perfection. We introduced four different
gadgets depending on the parity of the strips (non-trivial theorems to prove
the reduction and the perfection).

Even knowing how to solve MWCC on strips (in the claw-free case they are
distance simplicial) and on the line graph G ′, sometimes it is not trivial to
deduce a MWCC of G from one of G ′. Some cliques of G ′ do not translate
straightforward into a clique of G . We have to deal with seven different cases.
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The perfection problem

New gadget strips (still line strips)
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MWCC on strip composed perfect graphs

The outline of the algorithm is the following:

Find a strip decomposition of the graph (Faenza et al.)

Compute the values of an MWCC on four suitable induced subgraphs of each
strip.

Replace in the composition each strip by a weighted gadget (the weight of
the vertices will be a function of the values computed in 2., and the gadgets
will depend on some parity issues in order to preserve perfection)

Obtain a weighted perfect line graph, and solve the MWCC using, for
instance, the primal-dual algorithm for maximum weight matching by Gabow
(1990).

Using this clique cover and the ability of computing a MWCC on a strip,
reconstruct a MWCC of the original graph (analyzing the different cases).
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What if the graph is not strip composed? Get back to
clique cutsets...

A set C is a clique cutset of a graph G [C ] is complete and G [V (G ) \ C ] has more
connected components than G .

If G1, . . . ,Gk are the connected components of G [V (G ) \ C ], then C decomposes
G into the graphs G [G1 ∪ C ], . . . , G [Gk ∪ C ] (not disjoint, they all have C in
common).
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Claw-free perfect graphs decomposition by clique cutsets

Chvátal and Sbihi in 1988 proved that a claw-free perfect graphs can be
decomposed via clique cutsets into peculiar and elementary graphs.

Peculiar graphs have a very simple structure, and the MWCC problem can be
solved on them in a similar fashion than on distance simplicial graphs (i.e.,
iteratively computing crucial cliques).
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Claw-free perfect graphs decomposition by clique cutsets

Maffray and Reed in 1999 showed that elementary graphs are indeed strip
composed: they arise by replacing some particular edges of the line graph of a
bipartite graph by the complement of a bipartite graph.

They in fact show how to solve the unweighted MCC on that class (the reduction
is similar to ours, in the very particular case in which all the cliques involved in a
MCC are partition cliques).

So, using the algorithm by Whitesides together with this results and our approach
for the weighted case on elementary graphs, leads to an O(n4 log(n)) algorithm
for MWCC on claw-free perfect graphs.

But... why not to apply it just to the non-strip-composed case?

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 32 / 39



Claw-free perfect graphs decomposition by clique cutsets

Maffray and Reed in 1999 showed that elementary graphs are indeed strip
composed: they arise by replacing some particular edges of the line graph of a
bipartite graph by the complement of a bipartite graph.

They in fact show how to solve the unweighted MCC on that class (the reduction
is similar to ours, in the very particular case in which all the cliques involved in a
MCC are partition cliques).

So, using the algorithm by Whitesides together with this results and our approach
for the weighted case on elementary graphs, leads to an O(n4 log(n)) algorithm
for MWCC on claw-free perfect graphs.

But... why not to apply it just to the non-strip-composed case?

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 32 / 39



{claw,net}-free line graphs

Brandstädt and Dragan in 2003 characterized {claw,net}-free graphs, and this
structure was used by Faenza et al. to deal in the MWSS problem with the case
of non-strip composed claw-free graphs, but we could not adapt these ideas to the
MWCC.

M. Safe in 2011 gave a more detailed characterization (but with the same flavour)
for the case of {claw,net}-free line graphs. Namely, they are mainly line graphs of
linear or circular concatenations of certain small graphs.

net
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{claw,net}-free line graphs

By using this last characterization restricted to the extra-conditions given by the
elementary graphs description, we can improve the complexity of the clique-cutset
based algorithm to O(n3) for the case of {claw,net}-free perfect graphs, so we
cover our remaining case.
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Outline of our last algorithm

First compute a MWSS S of G . Then compute all at once, for each vertex
z ∈ V \ S and each neighbor v ∈ S of z , how much of the weight of z will be
covered with cliques containing v .

Then we solve a MWCC problem on N[v ] for
each v ∈ S , using the weights defined above.

2

11

1

1

1
1

1

Note that if G is claw-free, each vertex in V \ S has at most two neighbors in S.
Also, if G is claw-free perfect, the graph induced by N[v ] is the complement of a
bipartite graph.
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Clique cover in perfect graphs: Reformulation

All cliques intersect S so we can aggregate the cliques taking s ∈ S
→ yvs : covering of v by cliques picking s

∑
s∈N(v)∩S

yvs ≥ w(v), ∀v ∈ V \ S∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

y integer

⇒ a feasible clique cover yK , K ∈ K(G ) yields a feasible solution to the new
reformulation with yvs :=

∑
K∈K(G):v ,s∈K yK

⇐ vice-versa, the second conditions imply that {s} is a maximum weighted
stable set of G [s ∪ N(s)] with weight w ′

v = yvs for all v ∈ N(s). But because
the graph G [s ∪ N(s)] is perfect, there is a clique cover of same weight w(s).
We take the union of all those ‘local’ clique covers.

It’s not obvious how to recover yK efficiently in general.
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Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S
∨

s∈N(u)∩S

yvs∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)
∨
v∈T

¬yvs

y integer yvs ∈ {0, 1}
For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)

Flavia Bonomo Minimum clique cover in claw-free perfect graphs University of Primorska, Koper, 2014 37 / 39



Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
Each inequality has at most two variables.∑

s∈N(u)∩S

yvs ≥ w(v), ∀v ∈ V \ S

∨
s∈N(u)∩S

yvs

∑
v∈T

yvs ≤ w(s), ∀s ∈ S , ∀T stable set of N(s)

∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}

For the unweighted case is just 2-sat and one gets directly the cliques!
Feasible integer solutions of systems where each inequality has at most two
variables can be solved combinatorially in polynomial time:

Schrijver 1991: adapting Fourier-Motzkin (O(n3))
Jaffar, Maher, Stuckey and Yap 1994: shortest path and rounding
(O(n2 log n + nm))
Peis 2007: shortest path + 2-SAT

For this particular case, shortest paths give upper and lower bounds and one
can choose upper or lower by a 2-SAT instance equivalent to the unweighted
MCC formulation in the graph where free vertices where removed.
Recovering the yK variables is easy (locally the graph is co-bipartite, so
distance simplicial)
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Clique cover in claw-free perfect graphs: Reformulation

Reformulation for claw-free perfect graphs.
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s∈N(u)∩S
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∨
s∈N(u)∩S

yvs

∑
v∈T
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∨
v∈T

¬yvs

y integer

yvs ∈ {0, 1}
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Further results

For the unweighted case, if one starts in an arbitrary claw-free graph G with a
maximal (not necessarily maximum) stable set S , from the digraph associated
with the 2-SAT instance (Aspvall, Plass and Tarjan algorithm, 1979), one can
obtain either:

A clique covering of G with the same cardinality of S (thus S was
maximum), or

an augmenting path for S , so we can iterate, or

an odd hole or an odd antihole (so G is not perfect).
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Combinatorial algorithms for MCC and MWCC on
claw-free perfect graphs

Hsu and Nemhauser 1981, 1982: building upon a solution of several instances
of M(W)SS in order to find crucial cliques (O(n5)).

Combination of results by Whitesides 1982, Chvátal and Sbihi 1988 and
Maffray and Reed 1999 on clique cutsets and claw-free perfect graphs
(O(n4 log(n)), only for the unweighted case).

B., Oriolo and Snels 2012: based on strip decomposition for combined with
clique cutsets decomposition (O(n3)).

B, Oriolo, Snels and Stauffer 2013: building upon a reformulation and ‘nice’
polyhedra, solved by 2-sat and shortest paths (O(n3)).
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