Quadratization of Pseudo-Boolean Functions

Endre Boros

RUTCOR, Rutgers University

University of Primorska, November 19, 2012^{1}
${ }^{1}$ Joint work with A. Fix, A. Gruber, G. Tavares and R. Zabih运
(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular FunctionsQuadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals

- Variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}$.

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals

- Variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}$.
- Negations: $\bar{x}_{i}=1-x_{i} \in\{0,1\}$ for $i=1, \ldots, n$

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals

- Variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}$.
- Negations: $\bar{x}_{i}=1-x_{i} \in\{0,1\}$ for $i=1, \ldots, n$
- Literals: $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals

- Variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}$.
- Negations: $\bar{x}_{i}=1-x_{i} \in\{0,1\}$ for $i=1, \ldots, n$
- Literals: $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

Quadratic Pseudo-Boolean Function (QPBF): $\quad f:\{0,1\}^{n} \rightarrow \mathbb{R}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=c_{0}+\sum_{j=1}^{n} c_{j} x_{j}+\sum_{1 \leq i<j \leq n} c_{i j} x_{i} x_{j}
$$

Quadratic Unconstrained Binary Optimization (QUBO)

Variables and Literals

- Variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}$.
- Negations: $\bar{x}_{i}=1-x_{i} \in\{0,1\}$ for $i=1, \ldots, n$
- Literals: $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

Quadratic Pseudo-Boolean Function (QPBF): $\quad f:\{0,1\}^{n} \rightarrow \mathbb{R}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=c_{0}+\sum_{j=1}^{n} c_{j} x_{j}+\sum_{1 \leq i<j \leq n} c_{i j} x_{i} x_{j}
$$

Quadratic Unconstrained Binary Optimization (QUBO)

$$
\min _{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} f\left(x_{1}, \ldots, x_{n}\right)
$$

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(3) What is Quadratization?
- Quadratization
- Submodular FunctionsQuadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
f=-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \quad \mathrm{QPBF}
$$

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
f & =-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-5+\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
\end{aligned}
$$

QPBF
quadratic posiform

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
f & =-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-5+\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-4+\bar{x}_{3}+\bar{x}_{1} \bar{x}_{2}+x_{1} x_{3}+x_{2} x_{3}
\end{aligned}
$$

QPBF
quadratic posiform quadratic posiform

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
f & =-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-5+\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-4+\bar{x}_{3}+\bar{x}_{1} \bar{x}_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-\mathbf{3}+x_{1} x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}
\end{aligned}
$$

QPBF quadratic posiform quadratic posiform cubic posiform

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
f & =-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-5+\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-4+\bar{x}_{3}+\bar{x}_{1} \bar{x}_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-3+x_{1} x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}
\end{aligned}
$$

QPBF

 quadratic posiform quadratic posiform cubic posiform
Roof Dual Bound: $C_{2}(f) \leq f$

(Hammer, Hansen and Simeone, 1984)
$\mathrm{C}_{2}(f)=$ largest C s.t. $f=C+\phi$ for some quadratic posiform ϕ.

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
f & =-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-5+\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-4+\bar{x}_{3}+\bar{x}_{1} \bar{x}_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-\mathbf{3}+x_{1} x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}
\end{aligned}
$$

QPBF

quadratic posiform quadratic posiform cubic posiform

Roof Dual Bound: $C_{2}(f) \leq f$
(Hammer, Hansen and Simeone, 1984)
$\mathrm{C}_{2}(f)=$ largest C s.t. $f=C+\phi$ for some quadratic posiform ϕ.

Cubic Dual Bound: $C_{3}(f) \leq f$

(Boros, Crama and Hammer, 1992)
$\mathbf{C}_{3}(f)=$ largest C s.t. $f=C+\psi$ for some cubic posiform ψ.

Representations and Bounds

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in $2 n$ literals $x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}$

$$
\begin{aligned}
f & =-2-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-5+\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-4+\bar{x}_{3}+\bar{x}_{1} \bar{x}_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& =-\mathbf{3}+x_{1} x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}
\end{aligned}
$$

QPBF
quadratic posiform quadratic posiform cubic posiform

Roof Dual Bound: $C_{2}(f) \leq f$
(Hammer, Hansen and Simeone, 1984)
$\mathrm{C}_{2}(f)=$ largest C s.t. $f=C+\phi$ for some quadratic posiform ϕ.

Cubic Dual Bound: $C_{3}(f) \leq f$

(Boros, Crama and Hammer, 1992)
$\mathbf{C}_{3}(f)=$ largest C s.t. $f=C+\psi$ for some cubic posiform ψ.

$$
\mathrm{C}_{2}(f) \leq \mathrm{C}_{3}(f) \leq \cdots \leq \mathrm{C}_{\mathrm{n}}(f)=\min f
$$

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular FunctionsQuadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathbf{x}_{1}+7 \mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{3}-2 \mathbf{x}_{2} \mathbf{x}_{3} \\
& =
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.(Doit Yourself, anytime)

- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
f & =4-\mathbf{x}_{1}+7 \mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{3}-2 \mathrm{x}_{2} \mathrm{x}_{3} \\
& =4 \bar{x}_{1}+5 \mathrm{x}_{2}+3 \mathrm{x}_{1} \bar{x}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \bar{x}_{3}
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

\square - A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)

- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathrm{x}_{1}+7 \mathrm{x}_{2}+\mathrm{x}_{3}-3 \mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{x}_{1} \mathrm{x}_{3}-2 \mathrm{x}_{2} \mathrm{x}_{3} \\
& =4 \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3} \\
& =4 \mathrm{~s} \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2} \overline{\mathrm{t}}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3}
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathrm{x}_{1}+7 \mathrm{x}_{2}+\mathrm{x}_{3}-3 \mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{x}_{1} \mathrm{x}_{3}-2 \mathrm{x}_{2} \mathrm{x}_{3} \\
& =4 \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3} \\
& =4 \mathrm{~s} \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2} \overline{\mathrm{t}}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3}
\end{aligned}
$$

t

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
& \mathbf{f}=4-\mathbf{x}_{1}+7 \mathrm{x}_{2}+\mathrm{x}_{3}-\mathbf{3} \mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{x}_{1} \mathrm{x}_{3}-2 \mathrm{x}_{2} \mathrm{x}_{3} \\
& =4 \bar{x}_{1}+5 \times_{2}+3 x_{1} \bar{x}_{2}+\bar{x}_{1} \mathbf{x}_{3}+2 \times_{2} \bar{x}_{3} \\
& =4 \mathrm{~s} \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2} \overline{\mathrm{t}}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3}
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathbf{x}_{1}+7 \mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{3}-2 \mathbf{x}_{2} \mathbf{x}_{3} \\
& =4 \bar{x}_{1}+5 \mathbf{x}_{2}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3} \\
& =4 \mathbf{s} \bar{x}_{1}+5 \mathbf{x}_{2} \overline{\mathbf{t}}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3}
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathbf{x}_{1}+7 \mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{3}-2 \mathbf{x}_{2} \mathbf{x}_{3} \\
& =4 \bar{x}_{1}+5 \mathbf{x}_{2}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3} \\
& =4 \mathbf{s} \bar{x}_{1}+5 \mathbf{x}_{2} \overline{\mathbf{t}}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \times_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3}
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathbf{x}_{1}+7 \mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{3}-2 \mathbf{x}_{2} \mathbf{x}_{3} \\
& =4 \bar{x}_{1}+5 \mathbf{x}_{2}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3} \\
& =4 \mathbf{s} \bar{x}_{1}+5 \mathbf{x}_{2} \overline{\mathbf{t}}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3}
\end{aligned}
$$

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathbf{f} & =4-\mathbf{x}_{1}+7 \mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{3}-2 \mathbf{x}_{2} \times_{3} \\
& =4 \bar{x}_{1}+5 \mathbf{x}_{2}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \overline{\mathbf{x}}_{3} \\
& =4 \mathbf{s} \bar{x}_{1}+5 \mathbf{x}_{2} \overline{\mathbf{t}}+3 \mathbf{x}_{1} \overline{\mathbf{x}}_{2}+\overline{\mathbf{x}}_{1} \mathbf{x}_{3}+2 \mathbf{x}_{2} \bar{x}_{3}
\end{aligned}
$$

- There is a one-to-one correspondence between values of f and $s-t$ cut values of G_{f}.
(Hammer, 1965)

Network Model for Submodular QUBO (Hammer, 1965)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive.
(Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_{f} as follows

$$
\begin{aligned}
\mathrm{f} & =4-\mathrm{x}_{1}+7 \mathrm{x}_{2}+\mathrm{x}_{3}-3 \mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{x}_{1} \mathrm{x}_{3}-2 \mathrm{x}_{2} \mathrm{x}_{3} \\
& =4 \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3} \\
& =4 \mathrm{~s} \overline{\mathrm{x}}_{1}+5 \mathrm{x}_{2} \overline{\mathrm{t}}+3 \mathrm{x}_{1} \overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \overline{\mathrm{x}}_{3}
\end{aligned}
$$

- There is a one-to-one correspondence between values of f and $s-t$ cut values of G_{f}.
(Hammer, 1965)

$$
\mathbf{f}(\mathbf{0}, \mathbf{1}, \mathbf{0})=\mathbf{C}(\{\mathbf{s}, \mathbf{2}\},\{\mathbf{1}, \mathbf{3}, \mathbf{t}\})=\mathbf{1 1}
$$

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular Functions
(1) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Implication Networks (Boros, Hammer, Sun, 1989, 1992)

To a quadratic posiform

$$
\phi=2+2 \bar{x}_{1}+6 \bar{x}_{2}+4 \bar{x}_{3}+8 x_{1} x_{2}+6 x_{1} x_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \times_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \times_{0}+4 \overline{\mathrm{x}}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \times_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.

To a quadratic posiform

$$
\phi=2 x_{0} x_{0}+2 \bar{x}_{1} x_{0}+6 \bar{x}_{2} x_{0}+4 \bar{x}_{3} x_{0}+8 x_{1} x_{2}+6 x_{1} x_{3}+2 x_{2} x_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \times_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \times_{0}+4 \bar{x}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \times_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \times_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \times_{0}+4 \bar{x}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \times_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \times_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \times_{0}+4 \bar{x}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \times_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \mathrm{x}_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \mathrm{x}_{0}+4 \bar{x}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \mathrm{x}_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \mathrm{x}_{0}+4 \bar{x}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.

To a quadratic posiform

$$
\phi=2 \times_{0} \times_{0}+2 \bar{x}_{1} x_{0}+6 \bar{x}_{2} \times_{0}+4 \bar{x}_{3} \times_{0}+8 x_{1} \times_{2}+6 x_{1} \times_{3}+2 \times_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

- Homogenize it by x_{0}.
- Associate to each term $\alpha u v(u \neq v)$ two $\operatorname{arcs}(u, \bar{v})$ and (v, \bar{u}) with capacities $c(u, \bar{v})=c(v, \bar{u})=\alpha / 2$.
- Associate to $\gamma x_{0} x_{0}$ one arc $\left(x_{0}, \bar{x}_{0}\right)$ with capacity $c\left(x_{0}, \bar{x}_{0}\right)=\gamma$ and add arc $\left(\bar{x}_{0}, x_{0}\right)$ with capacity $c\left(\bar{x}_{0}, x_{0}\right)=+\infty$.

To a quadratic posiform

$$
\phi=2 x_{0} x_{0}+2 \bar{x}_{1} x_{0}+6 \bar{x}_{2} x_{0}+4 \bar{x}_{3} x_{0}+8 x_{1} x_{2}+6 x_{1} x_{3}+2 x_{2} x_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

N_{ϕ} is a symmetric network: twin pair of paths, cycles and flows

- If $u_{0}, u_{1}, \ldots, u_{k}$ is a directed path (cycle) in N_{ϕ} then so is $\bar{u}_{k}, \bar{u}_{k-1}, \ldots, \bar{u}_{1}, \bar{u}_{0}$.

Implication Networks (Boros, Hammer, Sun, 1989, 1992)

To a quadratic posiform

$$
\phi=2 x_{0} x_{0}+2 \bar{x}_{1} x_{0}+6 \bar{x}_{2} x_{0}+4 \bar{x}_{3} x_{0}+8 x_{1} x_{2}+6 x_{1} x_{3}+2 x_{2} x_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

N_{ϕ} is a symmetric network: twin pair of paths, cycles and flows

- If $u_{0}, u_{1}, \ldots, u_{k}$ is a directed path (cycle) in N_{ϕ} then so is $\bar{u}_{k}, \bar{u}_{k-1}, \ldots, \bar{u}_{1}, \bar{u}_{0}$.

To a quadratic posiform

$$
\phi=2 \mathrm{x}_{0} \mathrm{x}_{0}+2 \overline{\mathrm{x}}_{1} \mathrm{x}_{0}+6 \overline{\mathrm{x}}_{2} \mathrm{x}_{0}+4 \bar{x}_{3} \mathrm{x}_{0}+8 \mathrm{x}_{1} \mathrm{x}_{2}+6 \mathrm{x}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

N_{ϕ} is a symmetric network: twin pair of paths, cycles and flows

- If $u_{0}, u_{1}, \ldots, u_{k}$ is a directed path (cycle) in N_{ϕ} then so is $\bar{u}_{k}, \bar{u}_{k-1}, \ldots, \bar{u}_{1}, \bar{u}_{0}$.
- Every feasible circulation in N_{ϕ} has its symmetric twin also feasible, and hence their convex combination is a feasible symmetric circulation.

To a quadratic posiform

$$
\phi=2 \times_{0} \times_{0}+2 \bar{x}_{1} x_{0}+6 \bar{x}_{2} \times_{0}+4 \bar{x}_{3} \times_{0}+8 x_{1} \times_{2}+6 x_{1} \times_{3}+2 \times_{2} \times_{3}
$$

we associate a directed network N_{ϕ} on vertex set

$$
V\left(N_{\phi}\right)=\left\{x_{0}, \bar{x}_{0}, x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right\} \quad\left(x_{0} \equiv 1\right)
$$

N_{ϕ} is a symmetric network: twin pair of paths, cycles and flows

- If $u_{0}, u_{1}, \ldots, u_{k}$ is a directed path (cycle) in N_{ϕ} then so is $\bar{u}_{k}, \bar{u}_{k-1}, \ldots, \bar{u}_{1}, \bar{u}_{0}$.
- Every feasible circulation in N_{ϕ} has its symmetric twin also feasible, and hence their convex combination is a feasible symmetric circulation.
-

$$
\begin{aligned}
\bar{x}_{1}+\mathrm{x}_{1} x_{3}+\bar{x}_{3} & =x_{0} \bar{x}_{1}+\mathrm{x}_{1} x_{3}+\bar{x}_{3} x_{0}+\bar{x}_{0} \bar{x}_{0} \\
& =\bar{x}_{0} x_{1}+\bar{x}_{1} \bar{x}_{3}+x_{3} \bar{x}_{0}+x_{0} x_{0} \\
& =x_{1} x_{3}+1
\end{aligned}
$$

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.
- The roof dual value $\mathrm{C}_{2}(f)$ is the maximum flow value on $\operatorname{arc}\left(\bar{x}_{0}, x_{0}\right)$ in a feasible circulation in N_{ϕ}, where ϕ is an arbitrary quadratic posiform of f.

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.
- The roof dual value $\mathrm{C}_{2}(f)$ is the maximum flow value on arc (\bar{x}_{0}, x_{0}) in a feasible circulation in N_{ϕ}, where ϕ is an arbitrary quadratic posiform of f.

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.
- The roof dual value $\mathrm{C}_{2}(f)$ is the maximum flow value on arc (\bar{x}_{0}, x_{0}) in a feasible circulation in N_{ϕ}, where ϕ is an arbitrary quadratic posiform of f.

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.
- The roof dual value $\mathrm{C}_{2}(f)$ is the maximum flow value on $\operatorname{arc}\left(\bar{x}_{0}, x_{0}\right)$ in a feasible circulation in N_{ϕ}, where ϕ is an arbitrary quadratic posiform of f.
- If N_{ψ} is the residual network corresponding to such a maximum circulation, then the strong components of $N_{\psi} \backslash\left\{\left(x_{0}, \bar{x}_{0}\right)\right\}$ induce a decomposition of f, in which each component can be minimized independently of the others to obtain a minimum of f.

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.
- The roof dual value $\mathrm{C}_{2}(f)$ is the maximum flow value on arc (\bar{x}_{0}, x_{0}) in a feasible circulation in N_{ϕ}, where ϕ is an arbitrary quadratic posiform of f.
- If N_{ψ} is the residual network corresponding to such a maximum circulation, then the strong components of $N_{\psi} \backslash\left\{\left(x_{0}, \bar{x}_{0}\right)\right\}$ induce a decomposition of f, in which each component can be minimized independently of the others to obtain a minimum of f.
cf. persistency (Hammer, Hansen and Simeone, 1984) cf. decomposition (Billionet and Sutter, 1992)

Claims

- Two quadratic posiforms ϕ and ψ represent the same QPBF if and only if N_{ψ} is the residual network of N_{ϕ} corresponding to a symmetric feasible circulation.
- The roof dual value $\mathrm{C}_{2}(f)$ is the maximum flow value on $\operatorname{arc}\left(\bar{x}_{0}, x_{0}\right)$ in a feasible circulation in N_{ϕ}, where ϕ is an arbitrary quadratic posiform of f.
- If N_{ψ} is the residual network corresponding to such a maximum circulation, then the strong components of $N_{\psi} \backslash\left\{\left(x_{0}, \bar{x}_{0}\right)\right\}$ induce a decomposition of f, in which each component can be minimized independently of the others to obtain a minimum of f.
cf. persistency (Hammer, Hansen and Simeone, 1984) cf. decomposition (Billionet and Sutter, 1992)
- Recursive application of roof-duality does not provide further improvements!

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular FunctionsQuadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

The purpose of the preprocessing algorithm is to fix some of the variables at their optimum values and decompose the remaining problem into several smaller problems which do not share variables.

The purpose of the preprocessing algorithm is to fix some of the variables at their optimum values and decompose the remaining problem into several smaller problems which do not share variables.

- Build implication network

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of the variables at their optimum values and decompose the remaining problem into several smaller problems which do not share variables.

- Build implication network
- Compute maximum flow; fix variables by persistency (increase capacities of some arcs)

The purpose of the preprocessing algorithm is to fix some of the variables at their optimum values and decompose the remaining problem into several smaller problems which do not share variables.

- Build implication network
- Compute maximum flow; fix variables by persistency (increase capacities of some arcs)
- Probe remaining variables and repeat all of the above as long as there is some change.

The purpose of the preprocessing algorithm is to fix some of the variables at their optimum values and decompose the remaining problem into several smaller problems which do not share variables.

- Build implication network
- Compute maximum flow; fix variables by persistency (increase capacities of some arcs)
- Probe remaining variables and repeat all of the above as long as there is some change.
- Output remaining strong components, if any.

Components of the Algorithm

The purpose of the preprocessing algorithm is to fix some of the variables at their optimum values and decompose the remaining problem into several smaller problems which do not share variables.

- Build implication network
- Compute maximum flow; fix variables by persistency (increase capacities of some arcs)
- Probe remaining variables and repeat all of the above as long as there is some change.
- Output remaining strong components, if any.

If the input QPBF is submodular, then the above procedure will fix all the variables at their optimal values in the first round, without any probing.

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(3) What is Quadratization?
- Quadratization
- Submodular Functions
(4) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Via Minimization in VLSI Design

Problem ${ }^{1}$	n	Percentage of Variables Fixed by					Time (sec)
		Roof Duality		Probing		$\begin{gathered} \text { ALL } \\ \text { TOOLS } \end{gathered}$	
		(strong)	(weak)	(forcing)	(equalities)		
via.c1y	829	93.6\%	6.4\%	0\%	0\%	100\%	0.03
via.c2y	981	94.7\%	5.3\%	0\%	0\%	100\%	0.06
via.c3y	1328	94.6\%	5.4\%	0\%	0\%	100\%	0.09
via.c4y	1367	96.4\%	3.6\%	0\%	0\%	100\%	0.09
via.c5y	1203	93.1\%	6.9\%	0\%	0\%	100\%	0.08
via.c1n	828	57.4\%	9.6\%	32.4\%	0.6\%	100\%	0.49
via.c2n	980	12.4\%	4.4\%	83.1\%	0.1\%	100\%	7.14
via.c3n	1327	6.8\%	5.7\%	87.3\%	0.2\%	100\%	18.17
via.c4n	1366	11.1\%	1.3\%	87.6\%	0\%	100\%	23.08
via.c5n	1202	3.4\%	1.4\%	95.0\%	0.2\%	100\%	17.13

1 S. Homer and M. Peinado. Design and performance of parallel and distributed approximation algorithms for maxcut. Journal of Parallel and Distributed Computing 46 (1997) 48-61.

Vertex Cover in Planar Graphs

	Averages for 100 graphs in each of the 4 groups			
	Variables 2 Fixed (\%)		Time (sec)	
n	A. D. N. ${ }^{2}$	QUBO 3	A. D. N. ${ }^{2}$	QUBO 3
1000	68.4	$\mathbf{1 0 0}$	4.06	$\mathbf{0 . 0 5}$
2000	67.4	$\mathbf{1 0 0}$	12.24	$\mathbf{0 . 1 6}$
3000	65.5	$\mathbf{1 0 0}$	30.90	$\mathbf{0 . 2 7}$
4000	62.7	$\mathbf{1 0 0}$	60.45	$\mathbf{0 . 5 3}$

${ }^{2}$ Alber, Dorn, Niedermeier. Experimental evaluation of a tree decomposition based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145 (2005) 219-231; 750 GHz , Linux PC, 720 MB
${ }^{3}$ Pentium 4, 2.8 GHz, Windows XP, 512 MB

Jumbo Vertex Cover in Planar Graphs

Vertices	Computing Times (min)		
	Planar Density		
	10%	50%	90%
50,000	0.7	2.3	0.9
100,000	2.9	10.2	3.9
250,000	19.5	69.8	26.3
500,000	79.3	277.3	106.9

4 Averages over 3 experiments on a Xeon 3.06 GHz , XP, 3.5 GB RAM; ALL problems had 100% of their variables fixed.

One Dimensional Ising Models

σ		Average Computing Time (s)		
	Number of Spins	Branch, Cut \& Price	Biq Maq 5	QUBO 6
	100	699	68	$\mathbf{1}$
	150	92079	388	$\mathbf{3}$
	200	$\mathrm{~N} / \mathrm{A}$	993	$\mathbf{9}$
	250	$\mathrm{~N} / \mathrm{A}$	6567	$\mathbf{1 4}$
	300	$\mathrm{~N} / \mathrm{A}$	34572	$\mathbf{2 1}$
3.0	100	256	59	$\mathbf{1}$
	150	13491	293	$\mathbf{2}$
	200	61271	1034	$\mathbf{3}$
	250	55795	3594	$\mathbf{4}$
	300	55528	8496	$\mathbf{5}$

${ }^{5}$ F. Rendl, G. Rinaldi, A. Wiegele. (2007). Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations.

6 ALL problems were solved by QUBO.

Larger One Dimensional Ising Models

		Average of 3 Problems	
σ	n	Variables not fixed	QUBO Time (s)
2.5	500	$\mathbf{5}$	$\mathbf{1 3}$
	750	$\mathbf{2 2}$	$\mathbf{3 0}$
	1000	$\mathbf{2 4}$	$\mathbf{5 3}$
	1250	$\mathbf{2 0}$	$\mathbf{8 1}$
	1500	$\mathbf{3 2}$	$\mathbf{1 2 4}$
3.0	500	$\mathbf{0}$	$\mathbf{4}$
	750	$\mathbf{0}$	$\mathbf{1 2}$
	1000	$\mathbf{0}$	$\mathbf{2 3}$
	1250	$\mathbf{0}$	$\mathbf{3 7}$
	1500	$\mathbf{0}$	$\mathbf{5 9}$

${ }^{7}$ Pentium M, 1.6 GHz 760 MB RAM

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(3) What is Quadratization?
- Quadratization
- Submodular Functions

4 Quadratization Techniques

- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n} .
$$

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n} .
$$

\& Keep m small!

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n} .
$$

\& Keep m small!
Have g as submodular as possible!

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n}
$$

\& Keep m small!
Have g as submodular as possible!
\bigcirc Do not introduce large coefficients!

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n}
$$

\& Keep m small!
Have g as submodular as possible!
\bigcirc Do not introduce large coefficients!
© Have it ALL!

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n} .
$$

\& Keep m small!
\diamond Have g as submodular as possible!
\bigcirc Do not introduce large coefficients!
© Have it ALL!
Rosenberg, 1975: All PBFs have polynomial sized quadratizations.

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n} .
$$

\% Keep m small!
\diamond Have g as submodular as possible!
\bigcirc Do not introduce large coefficients!
© Have it ALL!
Rosenberg, 1975: All PBFs have polynomial sized quadratizations.
Zivny, Cohen and Jeavons, 2009: Not all submodular PBFs have submodular quadratizations.

Quadratization of PBFs

- Given $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ find quadratic $g:\{0,1\}^{n+m} \rightarrow \mathbb{R}$ such that

$$
f(\mathrm{x})=\min _{\mathrm{y} \in\{0,1\}^{m}} g(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in\{0,1\}^{n} .
$$

\% Keep m small!
\diamond Have g as submodular as possible!
\bigcirc Do not introduce large coefficients!
© Have it ALL!
Rosenberg, 1975: All PBFs have polynomial sized quadratizations.
Zivny, Cohen and Jeavons, 2009: Not all submodular PBFs have submodular quadratizations.
Ishikawa, 2009, 2011: All PBFs have small quadratizations with no large coefficients.

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(3) What is Quadratization?
- Quadratization
- Submodular Functions
(1) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

- Polynomial recognition if $\operatorname{deg}(f) \leq 3$.
(Billionnet and Minoux, 1985)

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

- Polynomial recognition if $\operatorname{deg}(f) \leq 3$.
(Billionnet and Minoux, 1985)
- Recognition is NP-hard if $\operatorname{deg}(f) \geq 4$.
(Gallo and Simeone, 1989; Crama 1989)

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

- Polynomial recognition if $\operatorname{deg}(f) \leq 3$.
(Billionnet and Minoux, 1985)
- Recognition is NP-hard if $\operatorname{deg}(f) \geq 4$.
(Gallo and Simeone, 1989; Crama 1989)
- A QPBF is submodular iff it has no positive quadratic terms.
(Nemhauser and Wolsey, 1981)

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

- Polynomial recognition if $\operatorname{deg}(f) \leq 3$.
(Billionnet and Minoux, 1985)
- Recognition is NP-hard if $\operatorname{deg}(f) \geq 4$.
(Gallo and Simeone, 1989; Crama 1989)
- A QPBF is submodular iff it has no positive quadratic terms.
(Nemhauser and Wolsey, 1981)
- A submodular QPBO is solved by the network based preprocessing.
(Hammer, 1965)

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

- Polynomial recognition if $\operatorname{deg}(f) \leq 3$.
(Billionnet and Minoux, 1985)
- Recognition is NP-hard if $\operatorname{deg}(f) \geq 4$.
(Gallo and Simeone, 1989; Crama 1989)
- A QPBF is submodular iff it has no positive quadratic terms.
(Nemhauser and Wolsey, 1981)
- A submodular QPBO is solved by the network based preprocessing.
(Hammer, 1965)
- Which PBFs have submodular quadratization?

Submodular PBFs

- A PBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(\mathrm{x} \wedge \mathrm{y})+f(\mathrm{x} \vee \mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in\{0,1\}^{n}
$$

- Polynomial recognition if $\operatorname{deg}(f) \leq 3$.
(Billionnet and Minoux, 1985)
- Recognition is NP-hard if $\operatorname{deg}(f) \geq 4$.
(Gallo and Simeone, 1989; Crama 1989)
- A QPBF is submodular iff it has no positive quadratic terms.
(Nemhauser and Wolsey, 1981)
- A submodular QPBO is solved by the network based preprocessing.
(Hammer, 1965)
- Which PBFs have submodular quadratization?
- How to recognize if a PBF has a submodular quadratization?

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular Functions
(4) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Rosenberg's Penalty Functions Method (1975)

$$
p(x, y, w)=x y-2 x w-2 y w+3 w=\left\{\begin{array}{l}
=0 \text { if } w=x y \\
\geq 1 \text { if } w \neq x y
\end{array}\right.
$$

Rosenberg's Penalty Functions Method (1975)

$$
\begin{array}{r}
p(x, y, w)=x y-2 x w-2 y w+3 w=\left\{\begin{array}{l}
=0 \text { if } w=x y \\
\geq 1 \text { if } w \neq x y
\end{array}\right. \\
f(x, y, \ldots)=x y A+B=\min _{w \in\{0,1\}} w A+B+M p(x, y, w) \\
\text { if } M \text { is large enough. }
\end{array}
$$

Rosenberg's Penalty Functions Method (1975)

$$
\begin{array}{r}
p(x, y, w)=x y-2 x w-2 y w+3 w=\left\{\begin{array}{l}
=0 \text { if } w=x y \\
\geq 1 \text { if } w \neq x y
\end{array}\right. \\
f(x, y, \ldots)=x y A+B=\min _{w \in\{0,1\}} w A+B+M p(x, y, w) \\
\text { if } M \text { is large enough. }
\end{array}
$$

- Many positive quadratic terms with large coefficients (recursion!), even if the input is subodular.
- NP-hard to find a quadratization in this way with the minimum number of new variables.
- Not possible to substitute the product of 3 or more variables with a single new variable.

Rosenberg's Penalty Functions Method (1975)

$$
\begin{array}{r}
p(x, y, w)=x y-2 x w-2 y w+3 w=\left\{\begin{array}{l}
=0 \text { if } w=x y \\
\geq 1 \text { if } w \neq x y
\end{array}\right. \\
f(x, y, \ldots)=x y A+B=\min _{w \in\{0,1\}} w A+B+M p(x, y, w) \\
\text { if } M \text { is large enough. }
\end{array}
$$

- Many positive quadratic terms with large coefficients (recursion!), even if the input is subodular.
- NP-hard to find a quadratization in this way with the minimum number of new variables.

Rosenberg's Penalty Functions Method (1975)

$$
\begin{array}{r}
p(x, y, w)=x y-2 x w-2 y w+3 w=\left\{\begin{array}{l}
=0 \text { if } w=x y \\
\geq 1 \text { if } w \neq x y
\end{array}\right. \\
f(x, y, \ldots)=x y A+B=\min _{w \in\{0,1\}} w A+B+M p(x, y, w) \\
\text { if } M \text { is large enough. }
\end{array}
$$

- Many positive quadratic terms with large coefficients (recursion!), even if the input is subodular.
- NP-hard to find a quadratization in this way with the minimum number of new variables.
- Not possible to substitute the product of 3 or more variables with a single new variable.

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular Functions
(4) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Negative Terms

- Kolmogorov and Zabih (2004), Fredman and Drineas (2005):

$$
-x_{1} x_{2} \cdots x_{d}=\min _{w \in\{0,1\}} w\left(d-1-x_{1}-x_{2} \cdots-x_{d}\right)
$$

- Rother, Kohli, Feng and Jia (2009):

Negative Terms

- Kolmogorov and Zabih (2004), Fredman and Drineas (2005):

$$
-x_{1} x_{2} \cdots x_{d}=\min _{w \in\{0,1\}} w\left(d-1-x_{1}-x_{2} \cdots-x_{d}\right)
$$

- Rother, Kohli, Feng and Jia (2009):

$$
-\prod_{j \in N} \bar{x}_{j} \prod_{j \in P} x_{j}=\min _{u, v \in\{0,1\}}-u v+u \sum_{j \in N} x_{j}+v \sum_{j \in P} \bar{x}_{j}
$$

Negative Terms

- Kolmogorov and Zabih (2004), Fredman and Drineas (2005):

$$
-x_{1} x_{2} \cdots x_{d}=\min _{w \in\{0,1\}} w\left(d-1-x_{1}-x_{2} \cdots-x_{d}\right)
$$

- Rother, Kohli, Feng and Jia (2009):

$$
-\prod_{j \in N} \bar{x}_{j} \prod_{j \in P} x_{j}=\min _{u, v \in\{0,1\}}-u v+u \sum_{j \in N} x_{j}+v \sum_{j \in P} \bar{x}_{j}
$$

- Only one or two new variables per term; at most one positive quadratic term; no large coefficients.

Negative Terms

- Kolmogorov and Zabih (2004), Fredman and Drineas (2005):

$$
-x_{1} x_{2} \cdots x_{d}=\min _{w \in\{0,1\}} w\left(d-1-x_{1}-x_{2} \cdots-x_{d}\right)
$$

- Rother, Kohli, Feng and Jia (2009):

$$
-\prod_{j \in N} \bar{x}_{j} \prod_{j \in P} x_{j}=\min _{u, v \in\{0,1\}}-u v+u \sum_{j \in N} x_{j}+v \sum_{j \in P} \bar{x}_{j}
$$

- Only one or two new variables per term; at most one positive quadratic term; no large coefficients.

Theorem (vs. Billionet and Minoux (1985))

Cubic submodular functions have submodular quadratization of polynomial size with no large coefficients.

Positive Terms

- Ishikawa (2009, 2011):

$$
\prod_{j=1}^{d} x_{j}=S_{2}(\mathbf{x})+\min _{\mathbf{w} \in\{0,1\}^{k}} B(\mathbf{w})-2 A(\mathbf{w}) S_{1}(\mathbf{x})+\rho\left[S_{1}(\mathbf{x})-d+1\right]
$$

where $d=2 k+2-\rho, \rho \in\{0,1\}$, and

$$
\begin{array}{ll}
S_{1}(\mathrm{x})=\sum_{j=1}^{d} x_{j} & S_{2}(\mathrm{x})=\sum_{1 \leq i<j \leq d} x_{i} x_{j} \\
A(\mathbf{w})=\sum_{j=1}^{k} w_{j} & B(\mathbf{w})=\sum_{j=1}^{k}(4 j-1) w_{j}
\end{array}
$$

Positive Terms

- Ishikawa (2009, 2011):

$$
\prod_{j=1}^{d} x_{j}=S_{2}(\mathrm{x})+\min _{\mathbf{w} \in\{0,1\}^{k}} B(\mathbf{w})-2 A(\mathbf{w}) S_{1}(\mathbf{x})+\rho\left[S_{1}(\mathbf{x})-d+1\right]
$$

where $d=2 k+2-\rho, \rho \in\{0,1\}$, and

$$
\begin{array}{ll}
S_{1}(\mathrm{x})=\sum_{j=1}^{d} x_{j} & S_{2}(\mathrm{x})=\sum_{1 \leq i<j \leq d} x_{i} x_{j} \\
A(\mathbf{w})=\sum_{j=1}^{k} w_{j} & B(\mathbf{w})=\sum_{j=1}^{k}(4 j-1) w_{j}
\end{array}
$$

- Only $\approx d / 2$ new variables per term; no large coefficients; many positive quadratic terms.

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular Functions

44 Quadratization Techniques

- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Multiple Splits

Assume that $\phi_{i}(\mathbf{w}) \in\{0,1\}$ for $i \in[q], \mathbf{w} \in\{0,1\}^{p}$ such that

$$
\begin{gathered}
\min _{\mathbf{w} \in\{0,1\}^{p}} \sum_{i=1}^{q} \phi_{i}(\mathbf{w})=1, \quad \text { and } \\
\forall I \varsubsetneqq[q] \quad \exists \mathbf{w}^{*} \in\{0,1\}^{p} \quad \text { s.t. } \quad \sum_{i \in I} \phi_{i}\left(\mathbf{w}^{*}\right)=0 .
\end{gathered}
$$

Multiple Splits

Assume that $\phi_{i}(\mathbf{w}) \in\{0,1\}$ for $i \in[q], \mathbf{w} \in\{0,1\}^{p}$ such that

$$
\begin{gathered}
\min _{\mathbf{w} \in\{0,1\}^{p}} \sum_{i=1}^{q} \phi_{i}(\mathbf{w})=1, \quad \text { and } \\
\forall I \varsubsetneqq[q] \quad \exists \mathbf{w}^{*} \in\{0,1\}^{p} \quad \text { s.t. } \quad \sum_{i \in I} \phi_{i}\left(\mathbf{w}^{*}\right)=0 .
\end{gathered}
$$

For instance $\phi_{1}=w_{1}, \phi_{2}=w_{2}$, and $\phi_{3}=\bar{w}_{1} \bar{w}_{2}$ is such a system.

Multiple Splits

Assume that $\phi_{i}(\mathbf{w}) \in\{0,1\}$ for $i \in[q], \mathbf{w} \in\{0,1\}^{p}$ such that

$$
\begin{gathered}
\min _{\mathbf{w} \in\{0,1\}^{p}} \sum_{i=1}^{q} \phi_{i}(\mathbf{w})=1, \quad \text { and } \\
\forall I \varsubsetneqq[q] \quad \exists \mathbf{w}^{*} \in\{0,1\}^{p} \quad \text { s.t. } \quad \sum_{i \in I} \phi_{i}\left(\mathbf{w}^{*}\right)=0 .
\end{gathered}
$$

For instance $\phi_{1}=w_{1}, \phi_{2}=w_{2}$, and $\phi_{3}=\bar{w}_{1} \bar{w}_{2}$ is such a system.

Theorem

If $P_{i}, i \in[q]$ are subsets of indices covering $[d]$, then we have

$$
\prod_{j=1}^{d} x_{j}=\min _{\mathbf{w} \in\{0,1\}^{p}} \sum_{i=1}^{q} \phi_{i}(\mathbf{w}) \prod_{j \in P_{i}} x_{j}
$$

Multiple Splits

Assume that $\phi_{i}(\mathbf{w}) \in\{0,1\}$ for $i \in[q], \mathbf{w} \in\{0,1\}^{p}$ such that

$$
\begin{gathered}
\min _{\mathbf{w} \in\{0,1\}^{p}} \sum_{i=1}^{q} \phi_{i}(\mathbf{w})=1, \quad \text { and } \\
\forall I \subsetneq[q] \quad \exists \mathbf{w}^{*} \in\{0,1\}^{p} \quad \text { s.t. } \quad \sum_{i \in I} \phi_{i}\left(\mathbf{w}^{*}\right)=0 .
\end{gathered}
$$

For instance $\phi_{1}=w_{1}, \phi_{2}=w_{2}$, and $\phi_{3}=\bar{w}_{1} \bar{w}_{2}$ is such a system.

Theorem

If $P_{i}, i \in[q]$ are subsets of indices covering $[d]$, then we have

$$
\prod_{j=1}^{d} x_{j}=\min _{\mathbf{w} \in\{0,1\}^{p}} \sum_{i=1}^{q} \phi_{i}(\mathbf{w}) \prod_{j \in P_{i}} x_{j} .
$$

With $p=\lceil\log q\rceil$ new variables we can split a degree $d=k q$ term into q terms of degree $k+p$.

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular Functions
(4) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Let $C \subseteq[n], \mathcal{H} \subseteq 2^{[n] \backslash C}$, and consider the following fragment of a pseudo-Boolean function:

$$
g(\mathrm{x})=\sum_{H \in \mathcal{H}} \alpha_{H} \prod_{j \in C \cup H} x_{j},
$$

where $\alpha_{H} \geq 0$ for all $H \in \mathcal{H}$.

Let $C \subseteq[n], \mathcal{H} \subseteq 2^{[n] \backslash C}$, and consider the following fragment of a pseudo-Boolean function:

$$
g(\mathrm{x})=\sum_{H \in \mathcal{H}} \alpha_{H} \prod_{j \in C \cup H} x_{j}
$$

where $\alpha_{H} \geq 0$ for all $H \in \mathcal{H}$.

Theorem (Set of Positive Terms)

$$
g(\mathrm{x})=\min _{w \in\{0,1\}}\left(\sum_{H \in \mathcal{H}} \alpha_{H}\right) w \prod_{j \in C} x_{j}+\sum_{H \in \mathcal{H}} \alpha_{H} \bar{w} \prod_{j \in H} x_{j} .
$$

Let $C \subseteq[n], \mathcal{H} \subseteq 2^{[n] \backslash C}$, and consider the following fragment of a pseudo-Boolean function:

$$
g(\mathrm{x})=\sum_{H \in \mathcal{H}} \alpha_{H} \prod_{j \in C \cup H} x_{j},
$$

where $\alpha_{H} \geq 0$ for all $H \in \mathcal{H}$.

Theorem (Set of Positive Terms)

$$
g(\mathrm{x})=\min _{w \in\{0,1\}}\left(\sum_{H \in \mathcal{H}} \alpha_{H}\right) w \prod_{j \in C} x_{j}+\sum_{H \in \mathcal{H}} \alpha_{H} \bar{w} \prod_{j \in H} x_{j} .
$$

Theorem (Set of Negative Terms)

Outline

(1) Quadratic Unconstrained Binary Optimization

- Quadratic Pseudo-Boolean Functions
- Representations and Bounds
- Origin of Graph Cut Models
- Network Model for General QUBO
(2) Polynomial Time Preprocessing
- Components of the Algorithm
- Computational Results
(8) What is Quadratization?
- Quadratization
- Submodular Functions
(4) Quadratization Techniques
- Penalty Function
- Termwise Quadratization
- Multiple Split of Terms
- Splitting Off Common Parts
- Results

Corollary

A PBF in n variables, with t terms of degree d has a quadratization with $\approx n+k\binom{n}{k}+\frac{t d}{k}$ new variables and with at most $n-1$ positive quadratic terms, for any $k \geq 1$.
\qquad and $\max \left\{\binom{n}{2}, t\binom{d}{2}\right\}$ positive quadratic terms

\qquad
\qquad

Corollary

A PBF in n variables, with t terms of degree d has a quadratization with $\approx n+k\binom{n}{k}+\frac{t d}{k}$ new variables and with at most $n-1$ positive quadratic terms, for any $k \geq 1$.

Ishikawa's method provides a quadratization with $\approx n+\frac{t d}{2}$ new variables and $\max \left\{\binom{n}{2}, t\binom{d}{2}\right\}$ positive quadratic terms.

Corollary

A PBF in n variables, with t terms of degree d has a quadratization with $\approx n+k\binom{n}{k}+\frac{t d}{k}$ new variables and with at most $n-1$ positive quadratic terms, for any $k \geq 1$.

Ishikawa's method provides a quadratization with $\approx n+\frac{t d}{2}$ new variables and $\max \left\{\binom{n}{2}, t\binom{d}{2}\right\}$ positive quadratic terms.

	New variables	\# positive terms	\# terms	\% fixed by QPBO
Ishikawa	224,346	421,897	$1,133,811$	80.4%
Our method	236,806	38,343	677,183	96.1%
Δ	$+6 \%$	-90%	-40%	$+20 \%$

Figure : Performance comparison of reductions, on Ishikawa's benchmarks. Relative performance of our method is shown as Δ. (Joint work with Alexander Fix and Ramin Zabih (Cornell University).)

