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Geometry

Focus on “geometrical” or “physical” spaces.

Smooth manifold: topological space such that every point has a
neighbourhood (chart).

 smooth functions on M, (tangent) vectors, etc.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.
It serves to pose (and solve) analytical problems on manifolds.

Relevant examples are:

Riemannian metrics.
g : TpM × TpM → R, scalar product at each point.
Complex structure. The charts are on the complex space Cd

 notion of holomorphic functions.
Symplectic structures. Allow to compute areas:
ω : TpM × TpM → R antisymmetric.
ω ∈ Ω2(M), dω = 0, ωd 6= 0, dim M = 2d .

Main focus
Classify smooth (compact) manifolds with a given structure.
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Topological obstructions

Question
Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?

If (M, ω) is symplectic, ω ∈ Ω2(M), dω = 0, ωd 6= 0, dim M = 2d .
=⇒ Ω = ωd is a volume form that can be integrated.
Then

∫
M ωd > 0.

So [ω]d 6= 0 ∈ H2d (M),
hence [ω] 6= 0 ∈ H2(M) and b2k (M) = dim H2k (M) > 0, k = 1, . . . ,d .

This is an example of a number of topological obstructions for
admitting a geometrical structure.

Topology Geometry.
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Algebraic Geometry

Consider the ambient space Cn.
Take F1, . . . ,Fm ∈ C[z1, . . . , zn].
S = V (F1, . . . ,Fm) = {z ∈ Cn |F1(z) = . . . = Fm(z) = 0} ⊂ Cn.

Suppose rk
(
∂Fi
∂zj

)
= n − d = constant.

Then S is a smooth complex manifold of dimC S = d .

For compact examples, take the ambient space
CPn = {[z0 : z1 : . . . : zn]} = (Cn+1 − {0})/C∗
[z0 : z1 : . . . : zn] = [λz0 : λz1 : . . . : λzn], λ 6= 0.
CPn = S2n+1/S1 is compact.

S = V (F1, . . . ,Fm), Fi(z0, . . . , zn) homogeneous polynomials, is a
compact complex manifold (called projective variety).
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Algebraic varieties

U(n + 1) acts on S2n+1 ⊂ Cn+1 − {0}.

There is an invariant hermitian metric h : TpCPn × TpCPn → C,
h(v ,u) = h(u, v) (Fubini-Study metric).

Write h = g + i ω. Then

g Riemannian metric.
ω is a 2-form.
ω is symplectic, ωn = det(g) 6= 0, dω = 0 by homogeneity.
ω(u, v) = g(u, Jv), Jv = i v (compatibility of ω and J).

Let S ⊂ CPn be a smooth algebraic variety. Take gS = g|S, ωS = ω|S.
Then S is complex and symplectic manifold.

Algebra Geometry.
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Kähler manifolds

Definition
A manifold S is Kähler if it is complex and it has a hermitian metric
h = g + i ω, with dω = 0.

Kodaira (1954). Smooth algebraic variety S ⊂ CPn ⇐⇒ S is
Kähler and [ω] ∈ H2(S,Z) ⊂ H2(S).
S is Kähler ⇐⇒ S is a Riemannian manifold with holonomy
contained in U(d).
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Kähler, complex and symplectic

In particular,
(M, J, ω) Kähler manifold =⇒ (M, J) complex manifold.

(M, J, ω) Kähler manifold =⇒ (M, ω) symplectic manifold.

Question

If M is a complex manifold, does it admit a Kähler structure?
If M is a symplectic manifold, does it admit a Kähler structure?
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Hodge theory

Analysis (PDEs) on manifolds Topology.

De Rham’s theorem. d : Ωk (M)→ Ωk+1(M) exterior differential.
De Rham cohomology:
Hk (M) = {α∈Ωk (M)|dα=0}

{α=dβ|β∈Ωk−1(M)} .

(M,g) Riemannian manifold.
Take d∗ : Ωk+1(M)→ Ωk (M) adjoint operator to d .
4 = dd∗ + d∗d Laplacian.
〈4α, α〉 = 〈dd∗α, α〉+ 〈d∗dα, α〉 = 〈d∗α,d∗α〉+ 〈dα,dα〉 =

= ||d∗α||2 + ||dα||2.
Hence 4α = 0 ⇐⇒ dα = 0,d∗α = 0.

Harmonic forms:
Hk (M) = {α ∈ Ωk (M)|4α = 0} = {α|dα = 0,d∗α = 0} ∼=
∼= {α|dα=0}
{α=dβ} = Hk (M).
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Hodge theory for complex manifolds

(M, J) complex manifold.

k -forms: α =
∑

fI(x1, . . . , x2d )dxi1 ∧ . . . dxik
Complex coordinates: zj = x2j−1 + i x2j , j = 1, . . . ,d .
dzj = dx2j−1 + i x2j , dz̄j = dx2j−1 − i x2j
(p,q)-forms: α =

∑
fIJ dzi1 ∧ . . . dzip ∧ dz̄j1 ∧ . . . dz̄jq

Ωk (M) =
⊕

p+q=k Ωp,q(M).

dα =
∑ ∂fIJ

∂zi
dzi ∧ dzi1 ∧ . . . dzip ∧ dz̄j1 ∧ . . . dz̄jq +

+
∑ ∂fIJ

∂z̄j
dz̄j ∧ dzi1 ∧ . . . dzip ∧ dz̄j1 ∧ . . . dz̄jq

dα = ∂α + ∂̄α
∂ : Ωp,q(M)→ Ωp+1,q(M),
∂̄ : Ωp,q(M)→ Ωp,q+1(M).

Dolbeault cohomology: Hp,q(M) = {α∈Ωp,q(M) | ∂̄α=0}
{α=∂̄β|β∈Ωp,q−1(M)} .
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Hodge theory for Kähler manifolds

(M, J,g) Kähler.

Then 4 : Ωp,q(M)→ Ωp,q(M).
Hk (M) =

⊕
p+q=k Hp,q(M).

Hodge decomposition: Hk (M) =
⊕

p+q=k Hp,q(M).
Hp,q(M) ∼= Hq,p(M).

In particular, the Betti numbers satisfy:
bk = dim Hk (M) =

∑
hp,q, and hp,q = hq,p.

Corollary
If M is a Kähler manifold then b2k+1 is even.

b2k+1 = h2k+1,0 + . . .+ hk+1,k + hk ,k+1 + . . .+ h0,2k+1 ≡ 0 (mod 2).

Analysis on manifolds Topology.
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Kodaira-Thurston manifold

Kodaira, 1964
Complex manifold with b1 = 3. It is given as

KT =


 1 z w

0 1 z̄
0 0 1

 | (z,w) ∈ C2

 /(Z + Z i)2

For complex surfaces, b1(X ) even ⇐⇒ X admits a Kähler structure
(Enriques-Kodaira classification).

Thurston, 1976
Symplectic manifold with b1 = 3. Take the Heisenberg manifold

H =


 1 a c

0 1 b
0 0 1

 | (a,b, c) ∈ R3

 /Z3. Then S1 → H → T 2,

(a,b, c) 7→ (a,b). Let α = da, β = db ∈ Ω1(T 2).
Connection 1-form: η = dc − b da ∈ Ω1(H), dη = α ∧ β.
Let KT = H × S1, γ = dθ. Symplectic form: ω = α ∧ γ + β ∧ η.
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Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

b2k+1 are even.

∧ωd−k : Hk (M)
∼=−→ H2d−k (M) (hard-Lefschetz).

Rational homotopy type πk (M)⊗Q is determined by Hk (M)
(formality).
Kähler (fundamental) groups.

Question
Does it exist a (compact) manifold M satisfying some topological
property (e.g. b2k+1 even) admitting complex/symplectic structure but
not admitting a Kähler structure?
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Constructions of (compact) symplectic manifolds

(Gompf, 1995) Connected sums along codimension 2 symplectic
submanifolds.

(McDuff, 1984) Symplectic blow-ups.
(Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

Non simply-connected. Gompf (1995): any fundamental group
can happen for a symplectic manifold.
Simply-connected. McDuff (1984): There are symplectic
simply-connected manifolds with b3 odd.
Hard-Lefschetz. Cavalcanti (2007): There are non-formal
hard-Lefschetz symplectic manifolds.
Non-formal. Babenko-Taimanov (2000): non-formal
simply-connected symplectic manifolds for dimension ≥ 10.
Fernández-Muñoz (2008): non-formal simply-connected
symplectic manifolds for dimension 8.
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Rational homotopy

Rational homotopy deals with spaces up rational homotopy
equivalence, in particular, with

Rational homotopy groups: πn(X )⊗Q.

Rational (co)homology: Hn(X ,Q), Hn(X ,Q).
(Here, Q may be replaced by R or C)

If X is a smooth manifold, we consider the differential forms (ΩX ,d).
This is a graded-commutative differential algebra (GCDA for short).

We extract an “invariant” from it:
Consider the equivalence relation ∼ between GCDAs generated by
quasi-isomorphisms, ψ : (A1,d1) −→ (A2,d2), i.e. morphisms inducing
isomorphisms

ψ : H(A1,d1)
∼=−→ H(A2,d2).

Then associate to (ΩX ,d) its class in (GCDAs/ ∼).
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Minimal models

Minimal model
There is a canonical representative, called the minimal model, for any
(A,d). The minimal model (M,d) of (A,d) satisfies:

M =
∧

(x1, x2, . . .) is free.∧
means the “graded-commutative algebra freely generated by”

dxi ∈
∧

(x1, . . . , xi−1).
dxi contains no linear term.
(M,d) −→ (A,d) is a quasi-isomorphism.

A minimal model (MX ,d) for X is a minimal model for (ΩX ,d).
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Minimal models

Theorem (Sullivan, 1977)
If either X is simply-connected or X is a nilpotent space, then the
minimal model (MX ,d) −→ (ΩX ,d) codifies the rational homotopy of
X . More specifically,MX =

∧
V, V =

⊕
n≥1 V n, where V n is the

vector space given by the degree n generators. Then

V n ∼= (πn(X )⊗ R)∗ ,

and
Hn(

∧
V ,d) = Hn(Ω(X ),d) = Hn(X ).
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Formality

Definition
A CDGA (A,d) is formal if (A,d) ∼ (H,0).

Clearly, it is H = H(A,d). So there are quasi-isomorphisms

(M,d)
↙ ↘

(A,d) (H,0)

So the minimal model can be deduced formally from H = H(A,d).
All rational homotopy information is in the cohomology algebra.

A space X is formal if (ΩX ,d) is formal.
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Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.

H =

A =

 1 a c
0 1 b
0 0 1

 | (a,b, c) ∈ R3

 /Z3

KT = H × S1.
α = da, β = db, η = dc − b da, γ = dθ, dη = α ∧ β.
The minimal model is (Λ(α, β, γ, η),d).
H∗(H) = H∗(Λ(α, β, η),d) = 〈1, [α], [β], [α ∧ η], [β ∧ η], [α ∧ β ∧ η]〉.

There is no quasi-isomorphism

(Λ(α, β, η),d) −→ H∗(Λ(α, β, η),d)

α 7→ [α],

β 7→ [β],

η 7→ x [α] + y [β],

α ∧ η 7→ x [α] ∧ [α] + y [α] ∧ [β] = 0 ???

Hence KT is non-formal.
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Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.

A nilmanifold is a quotient M = G/Γ, d = dim M
G is a nilpotent group: G0 = G, Gi = [G,Gi−1], i ≥ 1, and Gd = 0.
Γ ⊂ G is a co-compact discrete subgroup.

Nilmanifolds are not simply-connected: π1(M) = Γ.
The minimal model of M is (

∧
(x1, x2, . . . , xd ),d) with deg xi = 1.

dxi =
∑

j,k<i aijkxj · xk .

Nilmanifolds are never formal, unless they are tori.

There are non-formal nilmanifolds which admit both complex and
symplectic structures.
They cannot be Kähler.
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Main results

Theorem [Fernández-Muñoz, 2008]
There is a simply-connected 8-dimensional symplectic manifold which
is not formal. Hence it does not admit Kähler structures.

Theorem [Bazzoni-Muñoz, 2014]
The previous manifold admits a complex structure.

Theorem [Bazzoni-Fernández-Muñoz, 2014]
There is a simply-connected 6-dimensional manifold complex and
symplectic which is not hard-Lefschetz. Hence it does not admit Kähler
structures.
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Non-formal 8-dimensional orbifold

Let H =

A =

 1 a c
0 1 b
0 0 1

 |a,b, c ∈ C


Γ = {A ∈ H |a,b, c ∈ Λ}
Λ = Z + ξZ, ξ = e2πi/3

Let M = H/Γ× C/Λ is an 8-dimensional nilmanifold.

C/Λ→ H/Γ→ (C/Λ)× (C/Λ), (a,b, c) 7→ (a,b).
α = da, β = db, η = dc − b da, γ = dz.
α = α1 + iα2, β = β1 + iβ2, η = η1 + iη2, γ = γ1 + iγ2.

The minimal model is (
∧

(α, ᾱ, β, β̄, η, η̄, γ, γ̄),d), dη = α ∧ β.

M = H/Γ× C/Λ is 8-dimensional and non-formal but not
simply-connected.
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Non-formal 8-dimensional orbifold

Let Z3 act on M by (a,b, c, z) 7→ (ξa, ξb, ξ2c, ξz),
so (α, β, η, γ) 7→ (ξα, ξβ, ξ2η, ξγ).

M̂ = M/Z3 is an orbifold with 34 = 81 singular points.
It is simply-connected.

ω̂ = −iα ∧ ᾱ + η ∧ β + η̄ ∧ β̄ − iγ ∧ γ̄, Z3-equivariant symplectic form.
(M̂, ω̂) is a symplectic orbifold.
(M̂, Ĵ) is a complex orbifold.

The CDGA of M̂ is (
∧

(α, ᾱ, β, β̄, η, η̄, γ, γ̄)Z3 ,d).
=⇒ M̂ is non-formal.
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Symplectic resolution of singularities

Local model around a singular point: B∼= (B(0,1)/〈(ξ, ξ, ξ2, ξ)〉, ω̂).
With change of variables (a′,b′, c′, z ′) = (a,b − i c̄, b̄ − ic, z),
ω̂ = −ida′ ∧ dā′ − idb′ ∧ db̄′ − idc′ ∧ dc̄′ − idz ′ ∧ dz̄ ′.
ψ : B

∼=−→ (B(0,1)/〈(ξ, ξ, ξ2, ξ)〉, ωstd ).

Take a standard complex resolution π : B̃ → B,

The symplectic resolution is M̃s = (M̂ − {0}) ∪ψ B̃.
Glue the symplectic forms on M̂ and B̃ to get (M̃s, ω̃).
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Non-formal symplectic and complex 8-manifold

The complex resolution is M̃c = (M̂ − {0}) ∪ϕ B̃.
ϕ : B

∼=−→ (B(0,1)/〈(ξ, ξ, ξ2, ξ)〉, Jstd ), with variables (a,b, c, z).

Locally, the symplectic and complex resolutions coincide, but using
different charts!

M̃s and M̃c are diffeomrophic.
Hence M̃s admit complex and symplectic structures.

M̃s is non-formal. So it does not admit Kähler structures.

QED
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