Complex, symplectic and Kähler geometry

Vicente Muñoz

Universidad Complutense de Madrid

University of Koper, Slovenia 27 November 2017

Geometry

Focus on "geometrical" or "physical" spaces.

Geometry

Focus on "geometrical" or "physical" spaces. Smooth manifold: topological space such that every point has a neighbourhood (chart).

Geometry

Focus on "geometrical" or "physical" spaces.
Smooth manifold: topological space such that every point has a neighbourhood (chart).

\rightsquigarrow smooth functions on M, (tangent) vectors, etc.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics.
$g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics. $g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d}

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics. $g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d}

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics. $g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d} \rightsquigarrow notion of holomorphic functions.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics.
$g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d} \rightsquigarrow notion of holomorphic functions.
- Symplectic structures. Allow to compute areas:
$\omega: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ antisymmetric.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics.
$g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d} \rightsquigarrow notion of holomorphic functions.
- Symplectic structures. Allow to compute areas:
$\omega: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ antisymmetric.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics.
$g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d} \rightsquigarrow notion of holomorphic functions.
- Symplectic structures. Allow to compute areas:
$\omega: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ antisymmetric.
$\omega \in \Omega^{2}(M), d \omega=0, \omega^{d} \neq 0, \operatorname{dim} M=2 d$.

Geometrical structures

A geometrical structure is an extra structure on a smooth manifold. It serves to pose (and solve) analytical problems on manifolds. Relevant examples are:

- Riemannian metrics.
$g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^{d} \rightsquigarrow notion of holomorphic functions.
- Symplectic structures. Allow to compute areas:
$\omega: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ antisymmetric.
$\omega \in \Omega^{2}(M), d \omega=0, \omega^{d} \neq 0, \operatorname{dim} M=2 d$.

Main focus

Classify smooth (compact) manifolds with a given structure.

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^{2}(M)$, $d \omega=0, \omega^{d} \neq 0$, $\operatorname{dim} M=2 d$.

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^{2}(M), d \omega=0, \omega^{d} \neq 0$, $\operatorname{dim} M=2 d$.
$\Longrightarrow \Omega=\omega^{d}$ is a volume form that can be integrated.
Then $\int_{M} \omega^{d}>0$.

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^{2}(M)$, $d \omega=0, \omega^{d} \neq 0$, $\operatorname{dim} M=2 d$.
$\Longrightarrow \Omega=\omega^{d}$ is a volume form that can be integrated.
Then $\int_{M} \omega^{d}>0$.
So $[\omega]^{d} \neq 0 \in H^{2 d}(M)$,

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^{2}(M), d \omega=0, \omega^{d} \neq 0$, $\operatorname{dim} M=2 d$.
$\Longrightarrow \Omega=\omega^{d}$ is a volume form that can be integrated.
Then $\int_{M} \omega^{d}>0$.
So $[\omega]^{d} \neq 0 \in H^{2 d}(M)$, hence $[\omega] \neq 0 \in H^{2}(M)$ and $b_{2 k}(M)=\operatorname{dim} H^{2 k}(M)>0, k=1, \ldots, d$.

Topological obstructions

Question

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^{2}(M)$, $d \omega=0, \omega^{d} \neq 0$, $\operatorname{dim} M=2 d$.
$\Longrightarrow \Omega=\omega^{d}$ is a volume form that can be integrated.
Then $\int_{M} \omega^{d}>0$.
So $[\omega]^{d} \neq 0 \in H^{2 d}(M)$, hence $[\omega] \neq 0 \in H^{2}(M)$ and $b_{2 k}(M)=\operatorname{dim} H^{2 k}(M)>0, k=1, \ldots, d$.

This is an example of a number of topological obstructions for admitting a geometrical structure.
Topology \rightsquigarrow Geometry.

Algebraic Geometry

Consider the ambient space \mathbb{C}^{n}.
Take $F_{1}, \ldots, F_{m} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
$S=V\left(F_{1}, \ldots, F_{m}\right)=\left\{z \in \mathbb{C}^{n} \mid F_{1}(z)=\ldots=F_{m}(z)=0\right\} \subset \mathbb{C}^{n}$.

Algebraic Geometry

Consider the ambient space \mathbb{C}^{n}.
Take $F_{1}, \ldots, F_{m} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
$S=V\left(F_{1}, \ldots, F_{m}\right)=\left\{z \in \mathbb{C}^{n} \mid F_{1}(z)=\ldots=F_{m}(z)=0\right\} \subset \mathbb{C}^{n}$.
Suppose rk $\left(\frac{\partial F_{i}}{\partial z_{j}}\right)=n-d=$ constant.
Then S is a smooth complex manifold of $\operatorname{dim}_{\mathbb{C}} S=d$.

Algebraic Geometry

Consider the ambient space \mathbb{C}^{n}.
Take $F_{1}, \ldots, F_{m} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
$S=V\left(F_{1}, \ldots, F_{m}\right)=\left\{z \in \mathbb{C}^{n} \mid F_{1}(z)=\ldots=F_{m}(z)=0\right\} \subset \mathbb{C}^{n}$.
Suppose rk $\left(\frac{\partial F_{i}}{\partial z_{j}}\right)=n-d=$ constant.
Then S is a smooth complex manifold of $\operatorname{dim}_{\mathbb{C}} S=d$.
For compact examples, take the ambient space
$\mathbb{C} \mathbb{P}^{n}=\left\{\left[z_{0}: z_{1}: \ldots: z_{n}\right]\right\}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}$
$\left[z_{0}: z_{1}: \ldots: z_{n}\right]=\left[\lambda z_{0}: \lambda z_{1}: \ldots: \lambda z_{n}\right], \lambda \neq 0$.

Algebraic Geometry

Consider the ambient space \mathbb{C}^{n}.
Take $F_{1}, \ldots, F_{m} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
$S=V\left(F_{1}, \ldots, F_{m}\right)=\left\{z \in \mathbb{C}^{n} \mid F_{1}(z)=\ldots=F_{m}(z)=0\right\} \subset \mathbb{C}^{n}$.
Suppose rk $\left(\frac{\partial F_{i}}{\partial z_{j}}\right)=n-d=$ constant.
Then S is a smooth complex manifold of $\operatorname{dim}_{\mathbb{C}} S=d$.
For compact examples, take the ambient space
$\mathbb{C P}^{n}=\left\{\left[z_{0}: z_{1}: \ldots: z_{n}\right]\right\}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}$
$\left[z_{0}: z_{1}: \ldots: z_{n}\right]=\left[\lambda z_{0}: \lambda z_{1}: \ldots: \lambda z_{n}\right], \lambda \neq 0$.
$\mathbb{C P}^{n}=S^{2 n+1} / S^{1}$ is compact.

Algebraic Geometry

Consider the ambient space \mathbb{C}^{n}.
Take $F_{1}, \ldots, F_{m} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
$S=V\left(F_{1}, \ldots, F_{m}\right)=\left\{z \in \mathbb{C}^{n} \mid F_{1}(z)=\ldots=F_{m}(z)=0\right\} \subset \mathbb{C}^{n}$.
Suppose rk $\left(\frac{\partial F_{i}}{\partial z_{j}}\right)=n-d=$ constant.
Then S is a smooth complex manifold of $\operatorname{dim}_{\mathbb{C}} S=d$.
For compact examples, take the ambient space
$\mathbb{C P}^{n}=\left\{\left[z_{0}: z_{1}: \ldots: z_{n}\right]\right\}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}$
$\left[z_{0}: z_{1}: \ldots: z_{n}\right]=\left[\lambda z_{0}: \lambda z_{1}: \ldots: \lambda z_{n}\right], \lambda \neq 0$.
$\mathbb{C P}^{n}=S^{2 n+1} / S^{1}$ is compact.
$S=V\left(F_{1}, \ldots, F_{m}\right), F_{i}\left(z_{0}, \ldots, z_{n}\right)$ homogeneous polynomials, is a compact complex manifold (called projective variety).

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.
- ω is a 2 -form.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.
- ω is a 2 -form.
- ω is symplectic, $\omega^{n}=\operatorname{det}(g) \neq 0, d \omega=0$ by homogeneity.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^{n}=\operatorname{det}(g) \neq 0, d \omega=0$ by homogeneity.
- $\omega(u, v)=g(u, J v), J v=i v$ (compatibility of ω and $J)$.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^{n}=\operatorname{det}(g) \neq 0, d \omega=0$ by homogeneity.
- $\omega(u, v)=g(u, J v), J v=i v$ (compatibility of ω and $J)$.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^{n}=\operatorname{det}(g) \neq 0, d \omega=0$ by homogeneity.
- $\omega(u, v)=g(u, J v), J v=i v$ (compatibility of ω and J).

Let $S \subset \mathbb{C P}^{n}$ be a smooth algebraic variety. Take $g_{S}=g\left|S, \omega_{S}=\omega\right| S$.
Then S is complex and symplectic manifold.

Algebraic varieties

$U(n+1)$ acts on $S^{2 n+1} \subset \mathbb{C}^{n+1}-\{0\}$.
There is an invariant hermitian metric $h: T_{p} \mathbb{C P}^{n} \times T_{p} \mathbb{C P}^{n} \rightarrow \mathbb{C}$, $h(v, u)=\overline{h(u, v)}$ (Fubini-Study metric).

Write $h=g+i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^{n}=\operatorname{det}(g) \neq 0, d \omega=0$ by homogeneity.
- $\omega(u, v)=g(u, J v), J v=i v$ (compatibility of ω and J).

Let $S \subset \mathbb{C P}^{n}$ be a smooth algebraic variety. Take $g_{S}=g\left|S, \omega_{S}=\omega\right| S$.
Then S is complex and symplectic manifold.
Algebra \rightsquigarrow Geometry.

Kähler manifolds

Definition

A manifold S is Kähler if it is complex and it has a hermitian metric $h=g+i \omega$, with $d \omega=0$.

Kähler manifolds

Definition

A manifold S is Kähler if it is complex and it has a hermitian metric $h=g+i \omega$, with $d \omega=0$.

- Kodaira (1954). Smooth algebraic variety $S \subset \mathbb{C P}^{n} \Longleftrightarrow S$ is Kähler and $[\omega] \in H^{2}(S, \mathbb{Z}) \subset H^{2}(S)$.

Kähler manifolds

Definition

A manifold S is Kähler if it is complex and it has a hermitian metric $h=g+i \omega$, with $d \omega=0$.

- Kodaira (1954). Smooth algebraic variety $S \subset \mathbb{C P}^{n} \Longleftrightarrow S$ is Kähler and $[\omega] \in H^{2}(S, \mathbb{Z}) \subset H^{2}(S)$.
- S is Kähler $\Longleftrightarrow S$ is a Riemannian manifold with holonomy contained in $U(d)$.

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\Longrightarrow(M, \omega)$ symplectic manifold.

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\Longrightarrow(M, \omega)$ symplectic manifold.

Question

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\Longrightarrow(M, \omega)$ symplectic manifold.

Question

- If M is a complex manifold, does it admit a Kähler structure?

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\Longrightarrow(M, \omega)$ symplectic manifold.

Question

- If M is a complex manifold, does it admit a Kähler structure?
- If M is a symplectic manifold, does it admit a Kähler structure?

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\Longrightarrow(M, \omega)$ symplectic manifold.

Question

- If M is a complex manifold, does it admit a Kähler structure?
- If M is a symplectic manifold, does it admit a Kähler structure?

Kähler, complex and symplectic

In particular,

- (M, J, ω) Kähler manifold $\Longrightarrow(M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\Longrightarrow(M, \omega)$ symplectic manifold.

Question

- If M is a complex manifold, does it admit a Kähler structure?
- If M is a symplectic manifold, does it admit a Kähler structure?

Hodge theory

Analysis (PDEs) on manifolds \rightsquigarrow Topology.

Hodge theory

Analysis (PDEs) on manifolds \rightsquigarrow Topology.
De Rham's theorem. $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ exterior differential.
De Rham cohomology:
$H^{k}(M)=\frac{\left\{\alpha \in \Omega^{k}(M) \mid d \alpha=0\right\}}{\left\{\alpha=d \beta \mid \beta \in \Omega^{k-1}(M)\right\}}$.

Hodge theory

Analysis (PDEs) on manifolds \rightsquigarrow Topology.
De Rham's theorem. $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ exterior differential.
De Rham cohomology:
$H^{k}(M)=\frac{\left\{\alpha \in \Omega^{k}(M) \mid d \alpha=0\right\}}{\left\{\alpha=d \beta \mid \beta \in \Omega^{k-1}(M)\right\}}$.
(M, g) Riemannian manifold.
Take $d^{*}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(M)$ adjoint operator to d.
$\triangle=d d^{*}+d^{*} d$ Laplacian.

Hodge theory

Analysis (PDEs) on manifolds \rightsquigarrow Topology.
De Rham's theorem. $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ exterior differential.
De Rham cohomology:
$H^{k}(M)=\frac{\left\{\alpha \in \Omega^{k}(M) \mid d \alpha=0\right\}}{\left\{\alpha=d \beta \mid \beta \in \Omega^{k-1}(M)\right\}}$.
(M, g) Riemannian manifold.
Take $d^{*}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(M)$ adjoint operator to d.
$\triangle=d d^{*}+d^{*} d$ Laplacian.

$$
\begin{aligned}
& \langle\Delta \alpha, \alpha\rangle=\left\langle d d^{*} \alpha, \alpha\right\rangle+\left\langle d^{*} d \alpha, \alpha\right\rangle=\left\langle d^{*} \alpha, d^{*} \alpha\right\rangle+\langle d \alpha, d \alpha\rangle= \\
& \quad=\left\|d^{*} \alpha\right\|^{2}+\|d \alpha\|^{2}
\end{aligned}
$$

Hodge theory

Analysis (PDEs) on manifolds \rightsquigarrow Topology.
De Rham's theorem. $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ exterior differential.
De Rham cohomology:
$H^{k}(M)=\frac{\left\{\alpha \in \Omega^{k}(M) \mid d \alpha=0\right\}}{\left\{\alpha=d \beta \mid \beta \in \Omega^{k-1}(M)\right\}}$.
(M, g) Riemannian manifold.
Take $d^{*}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(M)$ adjoint operator to d.
$\triangle=d d^{*}+d^{*} d$ Laplacian.
$\langle\triangle \alpha, \alpha\rangle=\left\langle d d^{*} \alpha, \alpha\right\rangle+\left\langle d^{*} d \alpha, \alpha\right\rangle=\left\langle d^{*} \alpha, d^{*} \alpha\right\rangle+\langle d \alpha, d \alpha\rangle=$ $=\left\|d^{*} \alpha\right\|^{2}+\|d \alpha\|^{2}$.
Hence $\triangle \alpha=0 \Longleftrightarrow d \alpha=0, d^{*} \alpha=0$.

Hodge theory

Analysis (PDEs) on manifolds \rightsquigarrow Topology.
De Rham's theorem. $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ exterior differential. De Rham cohomology:
$H^{k}(M)=\frac{\left\{\alpha \in \Omega^{k}(M) \mid d \alpha=0\right\}}{\left\{\alpha=d \beta \mid \beta \in \Omega^{k-1}(M)\right\}}$.
(M, g) Riemannian manifold.
Take $d^{*}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(M)$ adjoint operator to d.
$\triangle=d d^{*}+d^{*} d$ Laplacian.
$\langle\triangle \alpha, \alpha\rangle=\left\langle d d^{*} \alpha, \alpha\right\rangle+\left\langle d^{*} d \alpha, \alpha\right\rangle=\left\langle d^{*} \alpha, d^{*} \alpha\right\rangle+\langle d \alpha, d \alpha\rangle=$
$=\left\|d^{*} \alpha\right\|^{2}+\|d \alpha\|^{2}$.
Hence $\triangle \alpha=0 \Longleftrightarrow d \alpha=0, d^{*} \alpha=0$.
Harmonic forms:
$\mathcal{H}^{k}(M)=\left\{\alpha \in \Omega^{k}(M) \mid \triangle \alpha=0\right\}=\left\{\alpha \mid d \alpha=0, d^{*} \alpha=0\right\} \cong$

$$
\cong \frac{\{\alpha \mid d \alpha=0\}}{\{\alpha=d \beta\}}=H^{k}(M)
$$

Hodge theory for complex manifolds

(M, J) complex manifold.

Hodge theory for complex manifolds

(M, J) complex manifold.
k-forms: $\alpha=\sum f_{l}\left(x_{1}, \ldots, x_{2 d}\right) d x_{i_{1}} \wedge \ldots d x_{i_{k}}$
Complex coordinates: $z_{j}=x_{2 j-1}+i x_{2 j}, j=1, \ldots, d$. $d z_{j}=d x_{2 j-1}+i x_{2 j}, \quad d \bar{z}_{j}=d x_{2 j-1}-i x_{2 j}$
(p, q)-forms: $\alpha=\sum f_{I J} d z_{i_{1}} \wedge \ldots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \ldots d \bar{z}_{j_{q}}$ $\Omega^{k}(M)=\oplus_{p+q=k} \Omega^{p, q}(M)$.

Hodge theory for complex manifolds

(M, J) complex manifold.
k-forms: $\alpha=\sum f_{l}\left(x_{1}, \ldots, x_{2 d}\right) d x_{i_{1}} \wedge \ldots d x_{i_{k}}$
Complex coordinates: $z_{j}=x_{2 j-1}+i x_{2 j}, j=1, \ldots, d$.
$d z_{j}=d x_{2 j-1}+i x_{2 j}, \quad d \bar{z}_{j}=d x_{2 j-1}-i x_{2 j}$
(p, q)-forms: $\alpha=\sum f_{l /} d z_{i_{1}} \wedge \ldots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \ldots d \bar{z}_{j_{q}}$
$\Omega^{k}(M)=\bigoplus_{p+q=k} \Omega^{p, q}(M)$.
$d \alpha=\sum \frac{\partial f_{l_{J}}}{\partial z_{i}} d z_{i} \wedge d z_{i_{1}} \wedge \ldots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \ldots d \bar{z}_{j_{q}}+$
$+\sum \frac{\partial f_{J_{J}}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{i_{1}} \wedge \ldots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \ldots d \bar{z}_{j_{q}}$
$d \alpha=\partial \alpha+\bar{\partial} \alpha$
$\partial: \Omega^{p, q}(M) \rightarrow \Omega^{p+1, q}(M)$,
$\bar{\partial}: \Omega^{p, q}(M) \rightarrow \Omega^{p, q+1}(M)$.
Dolbeault cohomology: $H^{p, q}(M)=\frac{\left\{\alpha \in \Omega^{p, q}(M) \mid \bar{\partial} \alpha=0\right\}}{\left\{\alpha=\bar{\partial} \beta \mid \beta \in \Omega^{p, q-1}(M)\right\}}$.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.
Hodge decomposition: $H^{k}(M)=\bigoplus_{p+q=k} H^{p, q}(M)$.
$\overline{H^{p, q}(M)} \cong H^{q, p}(M)$.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.
Hodge decomposition: $H^{k}(M)=\bigoplus_{p+q=k} H^{p, q}(M)$.
$\overline{H^{p, q}(M)} \cong H^{q, p}(M)$.
In particular, the Betti numbers satisfy:
$b_{k}=\operatorname{dim} H^{k}(M)=\sum h^{p, q}$, and $h^{p, q}=h^{q, p}$.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.
Hodge decomposition: $H^{k}(M)=\bigoplus_{p+q=k} H^{p, q}(M)$.
$\overline{H^{p, q}(M)} \cong H^{q, p}(M)$.
In particular, the Betti numbers satisfy:
$b_{k}=\operatorname{dim} H^{k}(M)=\sum h^{p, q}$, and $h^{p, q}=h^{q, p}$.

Corollary

If M is a Kähler manifold then $b_{2 k+1}$ is even.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.
Hodge decomposition: $H^{k}(M)=\bigoplus_{p+q=k} H^{p, q}(M)$.
$\overline{H^{p, q}(M)} \cong H^{q, p}(M)$.
In particular, the Betti numbers satisfy:
$b_{k}=\operatorname{dim} H^{k}(M)=\sum h^{p, q}$, and $h^{p, q}=h^{q, p}$.

Corollary

If M is a Kähler manifold then $b_{2 k+1}$ is even.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.
Hodge decomposition: $H^{k}(M)=\bigoplus_{p+q=k} H^{p, q}(M)$.
$\overline{H^{p, q}(M)} \cong H^{q, p}(M)$.
In particular, the Betti numbers satisfy:
$b_{k}=\operatorname{dim} H^{k}(M)=\sum h^{p, q}$, and $h^{p, q}=h^{q, p}$.

Corollary

If M is a Kähler manifold then $b_{2 k+1}$ is even.
$b_{2 k+1}=h^{2 k+1,0}+\ldots+h^{k+1, k}+h^{k, k+1}+\ldots+h^{0,2 k+1} \equiv 0(\bmod 2)$.

Hodge theory for Kähler manifolds

(M, J, g) Kähler.
Then $\triangle: \Omega^{p, q}(M) \rightarrow \Omega^{p, q}(M)$.
$\mathcal{H}^{k}(M)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(M)$.
Hodge decomposition: $H^{k}(M)=\bigoplus_{p+q=k} H^{p, q}(M)$.
$\overline{H^{p, q}(M)} \cong H^{q, p}(M)$.
In particular, the Betti numbers satisfy:
$b_{k}=\operatorname{dim} H^{k}(M)=\sum h^{p, q}$, and $h^{p, q}=h^{q, p}$.

Corollary

If M is a Kähler manifold then $b_{2 k+1}$ is even.
$b_{2 k+1}=h^{2 k+1,0}+\ldots+h^{k+1, k}+h^{k, k+1}+\ldots+h^{0,2 k+1} \equiv 0(\bmod 2)$.
Analysis on manifolds \rightsquigarrow Topology.

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$
For complex surfaces, $b_{1}(X)$ even $\Longleftrightarrow X$ admits a Kähler structure (Enriques-Kodaira classification).

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$
For complex surfaces, $b_{1}(X)$ even $\Longleftrightarrow X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_{1}=3$. Take the Heisenberg manifold $H=\left\{\left.\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$. Then $S^{1} \rightarrow H \rightarrow T^{2}$, $(a, b, c) \mapsto(a, b)$.

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$
For complex surfaces, $b_{1}(X)$ even $\Longleftrightarrow X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_{1}=3$. Take the Heisenberg manifold $H=\left\{\left.\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$. Then $S^{1} \rightarrow H \rightarrow T^{2}$, $(a, b, c) \mapsto(a, b)$.

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$
For complex surfaces, $b_{1}(X)$ even $\Longleftrightarrow X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_{1}=3$. Take the Heisenberg manifold $H=\left\{\left.\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$. Then $S^{1} \rightarrow H \rightarrow T^{2}$, $(a, b, c) \mapsto(a, b)$. Let $\alpha=d a, \beta=d b \in \Omega^{1}\left(T^{2}\right)$.
Connection 1-form: $\eta=d c-b d a \in \Omega^{1}(H), d \eta=\alpha \wedge \beta$.

Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with $b_{1}=3$. It is given as
$K T=\left\{\left.\left(\begin{array}{ccc}1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(z, w) \in \mathbb{C}^{2}\right\} /(\mathbb{Z}+\mathbb{Z} i)^{2}$
For complex surfaces, $b_{1}(X)$ even $\Longleftrightarrow X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_{1}=3$. Take the Heisenberg manifold $H=\left\{\left.\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$. Then $S^{1} \rightarrow H \rightarrow T^{2}$, $(a, b, c) \mapsto(a, b)$. Let $\alpha=d a, \beta=d b \in \Omega^{1}\left(T^{2}\right)$.
Connection 1-form: $\eta=d c-b d a \in \Omega^{1}(H), d \eta=\alpha \wedge \beta$. Let $K T=H \times S^{1}, \gamma=d \theta$. Symplectic form: $\omega=\alpha \wedge \gamma+\beta \wedge \eta$.

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

- $b_{2 k+1}$ are even.

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

- $b_{2 k+1}$ are even.
- $\wedge \omega^{d-k}: H^{k}(M) \xrightarrow{\cong} H^{2 d-k}(M)$ (hard-Lefschetz).

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

- $b_{2 k+1}$ are even.
- $\wedge \omega^{d-k}: H^{k}(M) \xrightarrow{\cong} H^{2 d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_{k}(M) \otimes \mathbb{Q}$ is determined by $H^{k}(M)$ (formality).

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

- $b_{2 k+1}$ are even.
- $\wedge \omega^{d-k}: H^{k}(M) \xrightarrow{\cong} H^{2 d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_{k}(M) \otimes \mathbb{Q}$ is determined by $H^{k}(M)$ (formality).
- Kähler (fundamental) groups.

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

- $b_{2 k+1}$ are even.
- $\wedge \omega^{d-k}: H^{k}(M) \xrightarrow{\cong} H^{2 d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_{k}(M) \otimes \mathbb{Q}$ is determined by $H^{k}(M)$ (formality).
- Kähler (fundamental) groups.

Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

- $b_{2 k+1}$ are even.
- $\wedge \omega^{d-k}: H^{k}(M) \xrightarrow{\cong} H^{2 d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_{k}(M) \otimes \mathbb{Q}$ is determined by $H^{k}(M)$ (formality).
- Kähler (fundamental) groups.

Question

Does it exist a (compact) manifold M satisfying some topological property (e.g. $b_{2 k+1}$ even) admitting complex/symplectic structure but not admitting a Kähler structure?

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with b_{3} odd.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with b_{3} odd.
- Hard-Lefschetz. Cavalcanti (2007): There are non-formal hard-Lefschetz symplectic manifolds.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with b_{3} odd.
- Hard-Lefschetz. Cavalcanti (2007): There are non-formal hard-Lefschetz symplectic manifolds.
- Non-formal. Babenko-Taimanov (2000): non-formal simply-connected symplectic manifolds for dimension ≥ 10.

Constructions of (compact) symplectic manifolds

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with b_{3} odd.
- Hard-Lefschetz. Cavalcanti (2007): There are non-formal hard-Lefschetz symplectic manifolds.
- Non-formal. Babenko-Taimanov (2000): non-formal simply-connected symplectic manifolds for dimension ≥ 10.
- Fernández-Muñoz (2008): non-formal simply-connected symplectic manifolds for dimension 8.

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_{n}(X, \mathbb{Q}), H^{n}(X, \mathbb{Q})$.

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_{n}(X, \mathbb{Q}), H^{n}(X, \mathbb{Q})$.

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_{n}(X, \mathbb{Q}), H^{n}(X, \mathbb{Q})$.
(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_{n}(X, \mathbb{Q}), H^{n}(X, \mathbb{Q})$.
(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})
If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short).

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_{n}(X, \mathbb{Q}), H^{n}(X, \mathbb{Q})$.
(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})
If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it:

Rational homotopy

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_{n}(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_{n}(X, \mathbb{Q}), H^{n}(X, \mathbb{Q})$. (Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short).
We extract an "invariant" from it:
Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi:\left(A_{1}, d_{1}\right) \longrightarrow\left(A_{2}, d_{2}\right)$, i.e. morphisms inducing isomorphisms

$$
\psi: H\left(A_{1}, d_{1}\right) \xrightarrow{\cong} H\left(A_{2}, d_{2}\right) .
$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M}=\bigwedge\left(x_{1}, x_{2}, \ldots\right)$ is free.
\wedge means the "graded-commutative algebra freely generated by"

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M}=\bigwedge\left(x_{1}, x_{2}, \ldots\right)$ is free.
\bigwedge means the "graded-commutative algebra freely generated by"
- $d x_{i} \in \bigwedge\left(x_{1}, \ldots, x_{i-1}\right)$.

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M}=\bigwedge\left(x_{1}, x_{2}, \ldots\right)$ is free.
\bigwedge means the "graded-commutative algebra freely generated by"
- $d x_{i} \in \bigwedge\left(x_{1}, \ldots, x_{i-1}\right)$.
- $d x_{i}$ contains no linear term.

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M}=\bigwedge\left(x_{1}, x_{2}, \ldots\right)$ is free.
\bigwedge means the "graded-commutative algebra freely generated by"
- $d x_{i} \in \bigwedge\left(x_{1}, \ldots, x_{i-1}\right)$.
- $d x_{i}$ contains no linear term.
- $(\mathcal{M}, d) \longrightarrow(A, d)$ is a quasi-isomorphism.

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M}=\bigwedge\left(x_{1}, x_{2}, \ldots\right)$ is free.
\bigwedge means the "graded-commutative algebra freely generated by"
- $d x_{i} \in \bigwedge\left(x_{1}, \ldots, x_{i-1}\right)$.
- $d x_{i}$ contains no linear term.
- $(\mathcal{M}, d) \longrightarrow(A, d)$ is a quasi-isomorphism.

Minimal models

Minimal model

There is a canonical representative, called the minimal model, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M}=\bigwedge\left(x_{1}, x_{2}, \ldots\right)$ is free.
\bigwedge means the "graded-commutative algebra freely generated by"
- $d x_{i} \in \bigwedge\left(x_{1}, \ldots, x_{i-1}\right)$.
- $d x_{i}$ contains no linear term.
- $(\mathcal{M}, d) \longrightarrow(A, d)$ is a quasi-isomorphism.

A minimal model $\left(\mathcal{M}_{X}, d\right)$ for X is a minimal model for $(\Omega X, d)$.

Minimal models

Theorem (Sullivan, 1977)

If either X is simply-connected or X is a nilpotent space, then the minimal model $\left(\mathcal{M}_{X}, d\right) \longrightarrow(\Omega X, d)$ codifies the rational homotopy of X. More specifically, $\mathcal{M}_{X}=\Lambda V, V=\bigoplus_{n \geq 1} V^{n}$, where V^{n} is the vector space given by the degree n generators. Then

$$
V^{n} \cong\left(\pi_{n}(X) \otimes \mathbb{R}\right)^{*}
$$

and

$$
H^{n}(\bigwedge V, d)=H^{n}(\Omega(X), d)=H^{n}(X) .
$$

Formality

Definition

A CDGA (A, d) is formal if $(A, d) \sim(H, 0)$.

Formality

Definition

A CDGA (A, d) is formal if $(A, d) \sim(H, 0)$.

Formality

Definition

A CDGA (A, d) is formal if $(A, d) \sim(H, 0)$.
Clearly, it is $H=H(A, d)$.

Formality

Definition

A CDGA (A, d) is formal if $(A, d) \sim(H, 0)$.
Clearly, it is $H=H(A, d)$. So there are quasi-isomorphisms

Formality

Definition

A CDGA (A, d) is formal if $(A, d) \sim(H, 0)$.
Clearly, it is $H=H(A, d)$. So there are quasi-isomorphisms

So the minimal model can be deduced formally from $H=H(A, d)$. All rational homotopy information is in the cohomology algebra.

Formality

Definition

A CDGA (A, d) is formal if $(A, d) \sim(H, 0)$.
Clearly, it is $H=H(A, d)$. So there are quasi-isomorphisms

So the minimal model can be deduced formally from $H=H(A, d)$. All rational homotopy information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.
$H=\left\{\left.A=\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$
$K T=H \times S^{1}$.
$\alpha=d a, \beta=d b, \eta=d c-b d a, \gamma=d \theta, d \eta=\alpha \wedge \beta$.
The minimal model is $(\Lambda(\alpha, \beta, \gamma, \eta), d)$.
$H^{*}(H)=H^{*}(\Lambda(\alpha, \beta, \eta), d)=\langle 1,[\alpha],[\beta],[\alpha \wedge \eta],[\beta \wedge \eta],[\alpha \wedge \beta \wedge \eta]\rangle$.

Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.
$H=\left\{\left.A=\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$
$K T=H \times S^{1}$.
$\alpha=d a, \beta=d b, \eta=d c-b d a, \gamma=d \theta, d \eta=\alpha \wedge \beta$.
The minimal model is $(\Lambda(\alpha, \beta, \gamma, \eta), d)$.
$H^{*}(H)=H^{*}(\wedge(\alpha, \beta, \eta), d)=\langle 1,[\alpha],[\beta],[\alpha \wedge \eta],[\beta \wedge \eta],[\alpha \wedge \beta \wedge \eta]\rangle$.
There is no quasi-isomorphism

$$
\begin{aligned}
(\wedge(\alpha, \beta, \eta), d) & \longrightarrow H^{*}(\wedge(\alpha, \beta, \eta), d) \\
\alpha & \mapsto[\alpha] \\
\beta & \mapsto[\beta] \\
\eta & \mapsto x[\alpha]+y[\beta], \\
\alpha \wedge \eta & \mapsto x[\alpha] \wedge[\alpha]+y[\alpha] \wedge[\beta]=0 \quad ? ? ?
\end{aligned}
$$

Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.
$H=\left\{\left.A=\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\,(a, b, c) \in \mathbb{R}^{3}\right\} / \mathbb{Z}^{3}$
$K T=H \times S^{1}$.
$\alpha=d a, \beta=d b, \eta=d c-b d a, \gamma=d \theta, d \eta=\alpha \wedge \beta$.
The minimal model is $(\Lambda(\alpha, \beta, \gamma, \eta), d)$.
$H^{*}(H)=H^{*}(\wedge(\alpha, \beta, \eta), d)=\langle 1,[\alpha],[\beta],[\alpha \wedge \eta],[\beta \wedge \eta],[\alpha \wedge \beta \wedge \eta]\rangle$.
There is no quasi-isomorphism

$$
\begin{aligned}
(\wedge(\alpha, \beta, \eta), d) & \longrightarrow H^{*}(\Lambda(\alpha, \beta, \eta), d) \\
\alpha & \mapsto[\alpha] \\
\beta & \mapsto[\beta] \\
\eta & \mapsto x[\alpha]+y[\beta], \\
\alpha \wedge \eta & \mapsto x[\alpha] \wedge[\alpha]+y[\alpha] \wedge[\beta]=0 \quad ? ? ?
\end{aligned}
$$

Hence KT is non-formal.

Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.

Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.
A nilmanifold is a quotient $M=G / \Gamma, d=\operatorname{dim} M$
G is a nilpotent group: $G_{0}=G, G_{i}=\left[G, G_{i-1}\right], i \geq 1$, and $G_{d}=0$.
$\Gamma \subset G$ is a co-compact discrete subgroup.

Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.
A nilmanifold is a quotient $M=G / \Gamma, d=\operatorname{dim} M$
G is a nilpotent group: $G_{0}=G, G_{i}=\left[G, G_{i-1}\right], i \geq 1$, and $G_{d}=0$.
$\Gamma \subset G$ is a co-compact discrete subgroup.
Nilmanifolds are not simply-connected: $\pi_{1}(M)=\Gamma$.

Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.
A nilmanifold is a quotient $M=G / \Gamma, d=\operatorname{dim} M$
G is a nilpotent group: $G_{0}=G, G_{i}=\left[G, G_{i-1}\right], i \geq 1$, and $G_{d}=0$.
$\Gamma \subset G$ is a co-compact discrete subgroup.
Nilmanifolds are not simply-connected: $\pi_{1}(M)=\Gamma$.
The minimal model of M is $\left(\bigwedge\left(x_{1}, x_{2}, \ldots, x_{d}\right), d\right)$ with $\operatorname{deg} x_{i}=1$. $d x_{i}=\sum_{j, k<i} a_{i j k} x_{j} \cdot x_{k}$.

Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.
A nilmanifold is a quotient $M=G / \Gamma, d=\operatorname{dim} M$
G is a nilpotent group: $G_{0}=G, G_{i}=\left[G, G_{i-1}\right], i \geq 1$, and $G_{d}=0$.
$\Gamma \subset G$ is a co-compact discrete subgroup.
Nilmanifolds are not simply-connected: $\pi_{1}(M)=\Gamma$.
The minimal model of M is $\left(\bigwedge\left(x_{1}, x_{2}, \ldots, x_{d}\right), d\right)$ with $\operatorname{deg} x_{i}=1$. $d x_{i}=\sum_{j, k<i} a_{i j k} x_{j} \cdot x_{k}$.
Nilmanifolds are never formal, unless they are tori.

Nilmanifolds

The Kodaira-Thurston manifold is a nilmanifold.
A nilmanifold is a quotient $M=G / \Gamma, d=\operatorname{dim} M$
G is a nilpotent group: $G_{0}=G, G_{i}=\left[G, G_{i-1}\right], i \geq 1$, and $G_{d}=0$.
$\Gamma \subset G$ is a co-compact discrete subgroup.
Nilmanifolds are not simply-connected: $\pi_{1}(M)=\Gamma$.
The minimal model of M is $\left(\bigwedge\left(x_{1}, x_{2}, \ldots, x_{d}\right), d\right)$ with deg $x_{i}=1$. $d x_{i}=\sum_{j, k<i} a_{i j k} x_{j} \cdot x_{k}$.
Nilmanifolds are never formal, unless they are tori.
There are non-formal nilmanifolds which admit both complex and symplectic structures.
They cannot be Kähler.

Main results

Theorem [Fernández-Muñoz, 2008]

There is a simply-connected 8-dimensional symplectic manifold which is not formal. Hence it does not admit Kähler structures.

Main results

Theorem [Fernández-Muñoz, 2008]

There is a simply-connected 8-dimensional symplectic manifold which is not formal. Hence it does not admit Kähler structures.

Theorem [Bazzoni-Muñoz, 2014]

The previous manifold admits a complex structure.

Main results

Theorem [Fernández-Muñoz, 2008]

There is a simply-connected 8-dimensional symplectic manifold which is not formal. Hence it does not admit Kähler structures.

Theorem [Bazzoni-Muñoz, 2014]

The previous manifold admits a complex structure.

Theorem [Bazzoni-Fernández-Muñoz, 2014]

There is a simply-connected 6 -dimensional manifold complex and symplectic which is not hard-Lefschetz. Hence it does not admit Kähler structures.

Non-formal 8-dimensional orbifold

$$
\begin{aligned}
& \text { Let } H=\left\{\left.A=\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} \\
& \Gamma=\{A \in H \mid a, b, c \in \Lambda\} \\
& \Lambda=\mathbb{Z}+\xi \mathbb{Z}, \xi=e^{2 \pi i / 3} \\
& \text { Let } M=H / \Gamma \times \mathbb{C} / \Lambda \text { is an 8-dimensional nilmanifold. }
\end{aligned}
$$

Non-formal 8-dimensional orbifold

Let $H=\left\{\left.A=\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\}$
$\Gamma=\{A \in H \mid a, b, c \in \Lambda\}$
$\Lambda=\mathbb{Z}+\xi \mathbb{Z}, \xi=e^{2 \pi i / 3}$
Let $M=H / \Gamma \times \mathbb{C} / \Lambda$ is an 8-dimensional nilmanifold.
$\mathbb{C} / \Lambda \rightarrow H / \Gamma \rightarrow(\mathbb{C} / \Lambda) \times(\mathbb{C} / \Lambda),(a, b, c) \mapsto(a, b)$.
$\alpha=d a, \beta=d b, \eta=d c-b d a, \gamma=d z$.
$\alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}, \eta=\eta_{1}+i \eta_{2}, \gamma=\gamma_{1}+i \gamma_{2}$.
The minimal model is $(\wedge(\alpha, \bar{\alpha}, \beta, \bar{\beta}, \eta, \bar{\eta}, \gamma, \bar{\gamma}), \boldsymbol{d}), d \eta=\alpha \wedge \beta$.

Non-formal 8-dimensional orbifold

Let $H=\left\{\left.A=\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\}$
$\Gamma=\{A \in H \mid a, b, c \in \Lambda\}$
$\Lambda=\mathbb{Z}+\xi \mathbb{Z}, \xi=e^{2 \pi i / 3}$
Let $M=H / \Gamma \times \mathbb{C} / \Lambda$ is an 8-dimensional nilmanifold.
$\mathbb{C} / \Lambda \rightarrow H / \Gamma \rightarrow(\mathbb{C} / \Lambda) \times(\mathbb{C} / \Lambda),(a, b, c) \mapsto(a, b)$.
$\alpha=d a, \beta=d b, \eta=d c-b d a, \gamma=d z$.
$\alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}, \eta=\eta_{1}+i \eta_{2}, \gamma=\gamma_{1}+i \gamma_{2}$.
The minimal model is $(\bigwedge(\alpha, \bar{\alpha}, \beta, \bar{\beta}, \eta, \bar{\eta}, \gamma, \bar{\gamma}), d), d \eta=\alpha \wedge \beta$.
$M=H / \Gamma \times \mathbb{C} / \Lambda$ is 8-dimensional and non-formal but not simply-connected.

Non-formal 8-dimensional orbifold

Let \mathbb{Z}_{3} act on M by $(a, b, c, z) \mapsto\left(\xi a, \xi b, \xi^{2} c, \xi z\right)$,
so $(\alpha, \beta, \eta, \gamma) \mapsto\left(\xi \alpha, \xi \beta, \xi^{2} \eta, \xi \gamma\right)$.
$\widehat{M}=M / \mathbb{Z}_{3}$ is an orbifold with $3^{4}=81$ singular points.
It is simply-connected.

Non-formal 8-dimensional orbifold

Let \mathbb{Z}_{3} act on M by $(a, b, c, z) \mapsto\left(\xi a, \xi b, \xi^{2} c, \xi z\right)$,
so $(\alpha, \beta, \eta, \gamma) \mapsto\left(\xi \alpha, \xi \beta, \xi^{2} \eta, \xi \gamma\right)$.
$\widehat{M}=M / \mathbb{Z}_{3}$ is an orbifold with $3^{4}=81$ singular points.
It is simply-connected.
$\hat{\omega}=-i \alpha \wedge \bar{\alpha}+\eta \wedge \beta+\bar{\eta} \wedge \bar{\beta}-i \gamma \wedge \bar{\gamma}, \mathbb{Z}_{3}$-equivariant symplectic form.

Non-formal 8-dimensional orbifold

Let \mathbb{Z}_{3} act on M by $(a, b, c, z) \mapsto\left(\xi a, \xi b, \xi^{2} c, \xi z\right)$,
so $(\alpha, \beta, \eta, \gamma) \mapsto\left(\xi \alpha, \xi \beta, \xi^{2} \eta, \xi \gamma\right)$.
$\widehat{M}=M / \mathbb{Z}_{3}$ is an orbifold with $3^{4}=81$ singular points.
It is simply-connected.
$\hat{\omega}=-i \alpha \wedge \bar{\alpha}+\eta \wedge \beta+\bar{\eta} \wedge \bar{\beta}-i \gamma \wedge \bar{\gamma}, \mathbb{Z}_{3}$-equivariant symplectic form.
$(\hat{M}, \hat{\omega})$ is a symplectic orbifold.
(\hat{M}, \hat{J}) is a complex orbifold.

Non-formal 8-dimensional orbifold

Let \mathbb{Z}_{3} act on M by $(a, b, c, z) \mapsto\left(\xi a, \xi b, \xi^{2} c, \xi z\right)$,
so $(\alpha, \beta, \eta, \gamma) \mapsto\left(\xi \alpha, \xi \beta, \xi^{2} \eta, \xi \gamma\right)$.
$\widehat{M}=M / \mathbb{Z}_{3}$ is an orbifold with $3^{4}=81$ singular points.
It is simply-connected.
$\hat{\omega}=-i \alpha \wedge \bar{\alpha}+\eta \wedge \beta+\bar{\eta} \wedge \bar{\beta}-i \gamma \wedge \bar{\gamma}, \mathbb{Z}_{3}$-equivariant symplectic form.
$(\hat{M}, \hat{\omega})$ is a symplectic orbifold.
(\hat{M}, \hat{J}) is a complex orbifold.
The CDGA of \hat{M} is $\left(\bigwedge(\alpha, \bar{\alpha}, \beta, \bar{\beta}, \eta, \bar{\eta}, \gamma, \bar{\gamma})^{\mathbb{Z}_{3}}, d\right)$.
$\Longrightarrow \hat{M}$ is non-formal.

Symplectic resolution of singularities

Local model around a singular point: $B \cong\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, \hat{\omega}\right)$.
With change of variables $\left(a^{\prime}, b^{\prime}, c^{\prime}, z^{\prime}\right)=(a, b-i \bar{c}, \bar{b}-i c, z)$,
$\hat{\omega}=-i d a^{\prime} \wedge d \bar{a}^{\prime}-i d b^{\prime} \wedge d \bar{b}^{\prime}-i d c^{\prime} \wedge d \bar{c}^{\prime}-i d z^{\prime} \wedge d \bar{z}^{\prime}$.
$\psi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, \omega_{s t d}\right)$.

Symplectic resolution of singularities

Local model around a singular point: $B \cong\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, \hat{\omega}\right)$.
With change of variables $\left(a^{\prime}, b^{\prime}, c^{\prime}, z^{\prime}\right)=(a, b-i \bar{c}, \bar{b}-i c, z)$,
$\hat{\omega}=-i d a^{\prime} \wedge d \bar{a}^{\prime}-i d b^{\prime} \wedge d \bar{b}^{\prime}-i d c^{\prime} \wedge d \bar{c}^{\prime}-i d z^{\prime} \wedge d \bar{z}^{\prime}$.
$\psi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, \omega_{s t d}\right)$.
Take a standard complex resolution $\pi: \widetilde{B} \rightarrow B$,

The symplectic resolution is $\widetilde{M}_{s}=(\widehat{M}-\{0\}) \cup_{\psi} \widetilde{B}$.
Glue the symplectic forms on \widehat{M} and \widetilde{B} to get $\left(\widetilde{M}_{s}, \tilde{\omega}\right)$.

Symplectic resolution of singularities

Local model around a singular point: $B \cong\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, \hat{\omega}\right)$.
With change of variables $\left(a^{\prime}, b^{\prime}, c^{\prime}, z^{\prime}\right)=(a, b-i \bar{c}, \bar{b}-i c, z)$,
$\hat{\omega}=-i d a^{\prime} \wedge d \bar{a}^{\prime}-i d b^{\prime} \wedge d \bar{b}^{\prime}-i d c^{\prime} \wedge d \bar{c}^{\prime}-i d z^{\prime} \wedge d \bar{z}^{\prime}$.
$\psi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, \omega_{s t d}\right)$.
Take a standard complex resolution $\pi: \widetilde{B} \rightarrow B$,

The symplectic resolution is $\widetilde{M}_{s}=(\widehat{M}-\{0\}) \cup_{\psi} \widetilde{B}$.
Glue the symplectic forms on \widehat{M} and \widetilde{B} to get $\left(\widetilde{M}_{s}, \tilde{\omega}\right)$.

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_{c}=(\widehat{M}-\{0\}) \cup_{\varphi} \widetilde{B}$.
$\varphi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, J_{s t d}\right)$, with variables (a, b, c, z).

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_{c}=(\widehat{M}-\{0\}) \cup_{\varphi} \widetilde{B}$.
$\varphi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, J_{s t d}\right)$, with variables (a, b, c, z).
Locally, the symplectic and complex resolutions coincide, but using different charts!

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_{c}=(\widehat{M}-\{0\}) \cup_{\varphi} \widetilde{B}$.
$\varphi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, J_{s t d}\right)$, with variables (a, b, c, z).
Locally, the symplectic and complex resolutions coincide, but using different charts!

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_{c}=(\widehat{M}-\{0\}) \cup_{\varphi} \widetilde{B}$.
$\varphi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, J_{s t d}\right)$, with variables (a, b, c, z).
Locally, the symplectic and complex resolutions coincide, but using different charts!
\widetilde{M}_{s} and \widetilde{M}_{c} are diffeomrophic. Hence \widetilde{M}_{s} admit complex and symplectic structures.

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_{c}=(\widehat{M}-\{0\}) \cup_{\varphi} \widetilde{B}$.
$\varphi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, J_{s t d}\right)$, with variables (a, b, c, z).
Locally, the symplectic and complex resolutions coincide, but using different charts!
\widetilde{M}_{s} and \widetilde{M}_{c} are diffeomrophic. Hence \widetilde{M}_{s} admit complex and symplectic structures.
\widetilde{M}_{s} is non-formal. So it does not admit Kähler structures.

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_{c}=(\widehat{M}-\{0\}) \cup_{\varphi} \widetilde{B}$.
$\varphi: B \xrightarrow{\cong}\left(B(0,1) /\left\langle\left(\xi, \xi, \xi^{2}, \xi\right)\right\rangle, J_{s t d}\right)$, with variables (a, b, c, z).
Locally, the symplectic and complex resolutions coincide, but using different charts!
\widetilde{M}_{s} and \widetilde{M}_{c} are diffeomrophic. Hence \widetilde{M}_{s} admit complex and symplectic structures.
\widetilde{M}_{s} is non-formal. So it does not admit Kähler structures.
QED

