Complex, symplectic and Kähler geometry

Vicente Muñoz

Universidad Complutense de Madrid

University of Koper, Slovenia 27 November 2017

Focus on "geometrical" or "physical" spaces.

크

Focus on "geometrical" or "physical" spaces.

Smooth manifold: topological space such that every point has a neighbourhood (chart).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Focus on "geometrical" or "physical" spaces.

Smooth manifold: topological space such that every point has a neighbourhood (chart).

 \rightsquigarrow smooth functions on *M*, (tangent) vectors, etc.

A .

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^d

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space \mathbb{C}^d

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space C^d
 → notion of holomorphic functions.

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space C^d
 → notion of holomorphic functions.
- Symplectic structures. Allow to compute areas: $\omega: T_p M \times T_p M \rightarrow \mathbb{R}$ antisymmetric.

4 A N

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space C^d
 → notion of holomorphic functions.
- Symplectic structures. Allow to compute areas: $\omega: T_p M \times T_p M \rightarrow \mathbb{R}$ antisymmetric.

4 A N

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space C^d
 → notion of holomorphic functions.
- Symplectic structures. Allow to compute areas:
 ω : T_pM × T_pM → ℝ antisymmetric.
 ω ∈ Ω²(M), dω = 0, ω^d ≠ 0, dim M = 2d.

- Riemannian metrics.
 - $g: T_{\rho}M \times T_{\rho}M \rightarrow \mathbb{R}$, scalar product at each point.
- Complex structure. The charts are on the complex space C^d
 → notion of holomorphic functions.
- Symplectic structures. Allow to compute areas: $\omega : T_p M \times T_p M \rightarrow \mathbb{R}$ antisymmetric. $\omega \in \Omega^2(M), d\omega = 0, \omega^d \neq 0, \dim M = 2d.$

Main focus

Classify smooth (compact) manifolds with a given structure.

Given a smooth (compact) manifold *M*, does it admit a complex or a symplectic structure?

Given a smooth (compact) manifold *M*, does it admit a complex or a symplectic structure?

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^2(M)$, $d\omega = 0$, $\omega^d \neq 0$, dim M = 2d.

4 D N 4 B N 4 B N 4 B

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^2(M)$, $d\omega = 0$, $\omega^d \neq 0$, dim M = 2d. $\implies \Omega = \omega^d$ is a volume form that can be integrated. Then $\int_M \omega^d > 0$.

A (10) > A (10) > A (10)

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^2(M)$, $d\omega = 0$, $\omega^d \neq 0$, dim M = 2d. $\implies \Omega = \omega^d$ is a volume form that can be integrated. Then $\int_M \omega^d > 0$. So $[\omega]^d \neq 0 \in H^{2d}(M)$,

4 A N

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^2(M)$, $d\omega = 0$, $\omega^d \neq 0$, dim M = 2d. $\implies \Omega = \omega^d$ is a volume form that can be integrated. Then $\int_M \omega^d > 0$. So $[\omega]^d \neq 0 \in H^{2d}(M)$, hence $[\omega] \neq 0 \in H^2(M)$ and $b_{2k}(M) = \dim H^{2k}(M) > 0$, k = 1, ..., d.

Given a smooth (compact) manifold M, does it admit a complex or a symplectic structure?

If (M, ω) is symplectic, $\omega \in \Omega^2(M)$, $d\omega = 0$, $\omega^d \neq 0$, dim M = 2d. $\implies \Omega = \omega^d$ is a volume form that can be integrated. Then $\int_M \omega^d > 0$. So $[\omega]^d \neq 0 \in H^{2d}(M)$, hence $[\omega] \neq 0 \in H^2(M)$ and $b_{2k}(M) = \dim H^{2k}(M) > 0$, k = 1, ..., d.

This is an example of a number of topological obstructions for admitting a geometrical structure.

Topology ~>> Geometry.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the ambient space \mathbb{C}^n . Take $F_1, \ldots, F_m \in \mathbb{C}[z_1, \ldots, z_n]$. $S = V(F_1, \ldots, F_m) = \{z \in \mathbb{C}^n | F_1(z) = \ldots = F_m(z) = 0\} \subset \mathbb{C}^n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the ambient space \mathbb{C}^n .

Take $F_1, \ldots, F_m \in \mathbb{C}[z_1, \ldots, z_n]$. $S = V(F_1, \ldots, F_m) = \{z \in \mathbb{C}^n | F_1(z) = \ldots = F_m(z) = 0\} \subset \mathbb{C}^n$. Suppose rk $\left(\frac{\partial F_i}{\partial z_j}\right) = n - d$ = constant. Then *S* is a smooth complex manifold of dim_C *S* = *d*. Consider the ambient space \mathbb{C}^n . Take $F_1, \ldots, F_m \in \mathbb{C}[z_1, \ldots, z_n]$. $S = V(F_1, \ldots, F_m) = \{z \in \mathbb{C}^n | F_1(z) = \ldots = F_m(z) = 0\} \subset \mathbb{C}^n$. Suppose rk $\left(\frac{\partial F_i}{\partial z_j}\right) = n - d$ = constant. Then *S* is a smooth complex manifold of dim_{\mathbb{C}} S = d.

For compact examples, take the ambient space $\mathbb{CP}^n = \{[z_0 : z_1 : \ldots : z_n]\} = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$ $[z_0 : z_1 : \ldots : z_n] = [\lambda z_0 : \lambda z_1 : \ldots : \lambda z_n], \lambda \neq 0.$

イロト イヨト イヨト

Consider the ambient space \mathbb{C}^n .

Take $F_1, \ldots, F_m \in \mathbb{C}[z_1, \ldots, z_n]$. $S = V(F_1, \ldots, F_m) = \{z \in \mathbb{C}^n | F_1(z) = \ldots = F_m(z) = 0\} \subset \mathbb{C}^n$. Suppose $\operatorname{rk}\left(\frac{\partial F_i}{\partial z_j}\right) = n - d = \operatorname{constant.}$ Then *S* is a smooth complex manifold of dim_C *S* = *d*.

For compact examples, take the ambient space $\mathbb{CP}^n = \{[z_0 : z_1 : \ldots : z_n]\} = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$ $[z_0 : z_1 : \ldots : z_n] = [\lambda z_0 : \lambda z_1 : \ldots : \lambda z_n], \lambda \neq 0.$ $\mathbb{CP}^n = S^{2n+1}/S^1$ is compact.

Consider the ambient space \mathbb{C}^n .

Take $F_1, \ldots, F_m \in \mathbb{C}[z_1, \ldots, z_n]$. $S = V(F_1, \ldots, F_m) = \{z \in \mathbb{C}^n | F_1(z) = \ldots = F_m(z) = 0\} \subset \mathbb{C}^n$. Suppose $\operatorname{rk}\left(\frac{\partial F_i}{\partial z_j}\right) = n - d = \operatorname{constant.}$ Then *S* is a smooth complex manifold of dim_C *S* = *d*.

For compact examples, take the ambient space $\mathbb{CP}^n = \{[z_0 : z_1 : \ldots : z_n]\} = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$ $[z_0 : z_1 : \ldots : z_n] = [\lambda z_0 : \lambda z_1 : \ldots : \lambda z_n], \lambda \neq 0.$ $\mathbb{CP}^n = S^{2n+1}/S^1$ is compact.

 $S = V(F_1, ..., F_m)$, $F_i(z_0, ..., z_n)$ homogeneous polynomials, is a compact complex manifold (called *projective variety*).

U(n+1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$.

3

(a)

U(n + 1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h : T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

U(n + 1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h : T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

• g Riemannian metric.

< ロ > < 同 > < 回 > < 回 >

U(n + 1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h : T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.

< ロ > < 同 > < 回 > < 回 >

U(n + 1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h : T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^n = \det(g) \neq 0$, $d\omega = 0$ by homogeneity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

U(n+1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h: T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^n = \det(g) \neq 0$, $d\omega = 0$ by homogeneity.
- $\omega(u, v) = g(u, Jv), Jv = i v$ (compatibility of ω and J).

U(n+1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h: T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^n = \det(g) \neq 0$, $d\omega = 0$ by homogeneity.
- $\omega(u, v) = g(u, Jv), Jv = i v$ (compatibility of ω and J).

U(n + 1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h : T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^n = \det(g) \neq 0$, $d\omega = 0$ by homogeneity.
- $\omega(u, v) = g(u, Jv), Jv = i v$ (compatibility of ω and J).

Let $S \subset \mathbb{CP}^n$ be a smooth algebraic variety. Take $g_S = g|S, \omega_S = \omega|S$. Then *S* is complex and symplectic manifold.

U(n + 1) acts on $S^{2n+1} \subset \mathbb{C}^{n+1} - \{0\}$. There is an invariant hermitian metric $h : T_p \mathbb{CP}^n \times T_p \mathbb{CP}^n \to \mathbb{C}$, $h(v, u) = \overline{h(u, v)}$ (Fubini-Study metric).

Write $h = g + i \omega$. Then

- g Riemannian metric.
- ω is a 2-form.
- ω is symplectic, $\omega^n = \det(g) \neq 0$, $d\omega = 0$ by homogeneity.
- $\omega(u, v) = g(u, Jv), Jv = i v$ (compatibility of ω and J).

Let $S \subset \mathbb{CP}^n$ be a smooth algebraic variety. Take $g_S = g|S, \omega_S = \omega|S$. Then *S* is complex and symplectic manifold.

Algebra ~> Geometry.

Definition

A manifold *S* is Kähler if it is complex and it has a hermitian metric $h = g + i \omega$, with $d\omega = 0$.

Definition

A manifold *S* is Kähler if it is complex and it has a hermitian metric $h = g + i \omega$, with $d\omega = 0$.

 Kodaira (1954). Smooth algebraic variety S ⊂ CPⁿ ⇔ S is Kähler and [ω] ∈ H²(S, Z) ⊂ H²(S).

A (10) A (10) A (10)
Definition

A manifold *S* is Kähler if it is complex and it has a hermitian metric $h = g + i \omega$, with $d\omega = 0$.

- Kodaira (1954). Smooth algebraic variety S ⊂ CPⁿ ⇔ S is Kähler and [ω] ∈ H²(S, Z) ⊂ H²(S).
- S is K\u00e4hler ⇐⇒ S is a Riemannian manifold with holonomy contained in U(d).

.

4 A N

In particular,

• (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.

In particular,

- (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\implies (M, \omega)$ symplectic manifold.

< ロ > < 同 > < 回 > < 回 >

In particular,

- (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\implies (M, \omega)$ symplectic manifold.

Question

Vicente Muñoz (UCM)

不同 いんきいんき

In particular,

- (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\implies (M, \omega)$ symplectic manifold.

Question

• If M is a complex manifold, does it admit a Kähler structure?

In particular,

- (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\implies (M, \omega)$ symplectic manifold.

Question

- If *M* is a complex manifold, does it admit a Kähler structure?
- If M is a symplectic manifold, does it admit a K\u00e4hler structure?

In particular,

- (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\implies (M, \omega)$ symplectic manifold.

Question

- If *M* is a complex manifold, does it admit a Kähler structure?
- If M is a symplectic manifold, does it admit a K\u00e4hler structure?

In particular,

- (M, J, ω) Kähler manifold $\implies (M, J)$ complex manifold.
- (M, J, ω) Kähler manifold $\implies (M, \omega)$ symplectic manifold.

Question

- If M is a complex manifold, does it admit a K\u00e4hler structure?
- If M is a symplectic manifold, does it admit a K\u00e4hler structure?

Hodge theory

Analysis (PDEs) on manifolds ~>> Topology.

æ

イロト イポト イヨト イヨト

Hodge theory

Analysis (PDEs) on manifolds ~-> Topology.

De Rham's theorem. $d : \Omega^k(M) \to \Omega^{k+1}(M)$ exterior differential. De Rham cohomology:

 $H^{k}(M) = \frac{\{\alpha \in \Omega^{k}(M) | d\alpha = 0\}}{\{\alpha = d\beta | \beta \in \Omega^{k-1}(M)\}}.$

Analysis (PDEs) on manifolds ~-> Topology.

De Rham's theorem. $d : \Omega^k(M) \to \Omega^{k+1}(M)$ exterior differential. De Rham cohomology: $H^k(M) = \frac{\{\alpha \in \Omega^k(M) | d\alpha = 0\}}{\{\alpha = d\beta | \beta \in \Omega^{k-1}(M)\}}.$

(M,g) Riemannian manifold. Take $d^* : \Omega^{k+1}(M) \to \Omega^k(M)$ adjoint operator to d. $\triangle = dd^* + d^*d$ Laplacian.

Analysis (PDEs) on manifolds ~>> Topology.

De Rham's theorem. $d : \Omega^k(M) \to \Omega^{k+1}(M)$ exterior differential. De Rham cohomology: $H^k(M) = \frac{\{\alpha \in \Omega^k(M) | d\alpha = 0\}}{\{\alpha = d\beta | \beta \in \Omega^{k-1}(M)\}}.$

$$(M, g)$$
 Riemannian manifold.
Take $d^* : \Omega^{k+1}(M) \to \Omega^k(M)$ adjoint operator to d .
 $\triangle = dd^* + d^*d$ Laplacian.
 $\langle \triangle \alpha, \alpha \rangle = \langle dd^* \alpha, \alpha \rangle + \langle d^*d\alpha, \alpha \rangle = \langle d^* \alpha, d^* \alpha \rangle + \langle d\alpha, d\alpha \rangle =$
 $= ||d^* \alpha||^2 + ||d\alpha||^2$.

Analysis (PDEs) on manifolds ~-> Topology.

De Rham's theorem. $d : \Omega^k(M) \to \Omega^{k+1}(M)$ exterior differential. De Rham cohomology: $H^k(M) = \frac{\{\alpha \in \Omega^k(M) | d\alpha = 0\}}{\{\alpha = d\beta | \beta \in \Omega^{k-1}(M)\}}.$

 $\begin{array}{l} (M,g) \mbox{ Riemannian manifold.} \\ \mbox{Take } d^*: \Omega^{k+1}(M) \to \Omega^k(M) \mbox{ adjoint operator to } d. \\ \bigtriangleup = dd^* + d^*d \mbox{ Laplacian.} \\ \langle \bigtriangleup \alpha, \alpha \rangle = \langle dd^*\alpha, \alpha \rangle + \langle d^*d\alpha, \alpha \rangle = \langle d^*\alpha, d^*\alpha \rangle + \langle d\alpha, d\alpha \rangle = \\ = ||d^*\alpha||^2 + ||d\alpha||^2. \\ \mbox{Hence } \bigtriangleup \alpha = 0 \iff d\alpha = 0, d^*\alpha = 0. \end{array}$

Analysis (PDEs) on manifolds ~>> Topology.

De Rham's theorem. $d : \Omega^k(M) \to \Omega^{k+1}(M)$ exterior differential. De Rham cohomology: $H^k(M) = \frac{\{\alpha \in \Omega^k(M) | d\alpha = 0\}}{\{\alpha = d\beta | \beta \in \Omega^{k-1}(M)\}}.$

$$(M, g)$$
 Riemannian manifold.
Take $d^* : \Omega^{k+1}(M) \to \Omega^k(M)$ adjoint operator to d .
 $\triangle = dd^* + d^*d$ Laplacian.
 $\langle \triangle \alpha, \alpha \rangle = \langle dd^* \alpha, \alpha \rangle + \langle d^* d\alpha, \alpha \rangle = \langle d^* \alpha, d^* \alpha \rangle + \langle d\alpha, d\alpha \rangle =$
 $= ||d^* \alpha||^2 + ||d\alpha||^2$.
Hence $\triangle \alpha = 0 \iff d\alpha = 0, d^* \alpha = 0$.

Harmonic forms:

$$\begin{aligned} \mathcal{H}^{k}(\boldsymbol{M}) &= \{ \alpha \in \Omega^{k}(\boldsymbol{M}) | \triangle \alpha = \mathbf{0} \} = \{ \alpha | \boldsymbol{d}\alpha = \mathbf{0}, \boldsymbol{d}^{*}\alpha = \mathbf{0} \} \cong \\ &\cong \frac{\{ \alpha | \boldsymbol{d}\alpha = \mathbf{0} \}}{\{ \alpha = \boldsymbol{d}\beta \}} = \boldsymbol{H}^{k}(\boldsymbol{M}). \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >

Hodge theory for complex manifolds

(M, J) complex manifold.

Vicente Muñoz (UCM)

< ロ > < 同 > < 回 > < 回 >

Hodge theory for complex manifolds

(M, J) complex manifold.

k-forms: $\alpha = \sum f_l(x_1, \ldots, x_{2d}) dx_{i_1} \wedge \ldots dx_{i_k}$ Complex coordinates: $z_j = x_{2j-1} + i x_{2j}, j = 1, \ldots, d$. $dz_j = dx_{2j-1} + i x_{2j}, \quad d\overline{z}_j = dx_{2j-1} - i x_{2j}$ (p, q)-forms: $\alpha = \sum f_{lJ} dz_{i_1} \wedge \ldots dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \ldots d\overline{z}_{j_q}$ $\Omega^k(M) = \bigoplus_{p+q=k} \Omega^{p,q}(M).$

3

Hodge theory for complex manifolds

(M, J) complex manifold.

k-forms: $\alpha = \sum f_l(x_1, \ldots, x_{2d}) dx_{i_1} \wedge \ldots dx_{i_k}$ Complex coordinates: $z_j = x_{2j-1} + i x_{2j}, j = 1, \ldots, d$. $dz_j = dx_{2j-1} + i x_{2j}, \quad d\overline{z}_j = dx_{2j-1} - i x_{2j}$ (p, q)-forms: $\alpha = \sum f_{lJ} dz_{i_1} \wedge \ldots dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \ldots d\overline{z}_{j_q}$ $\Omega^k(M) = \bigoplus_{p+q=k} \Omega^{p,q}(M).$

$$egin{aligned} dlpha &= \sum rac{\partial f_{lJ}}{\partial z_i} dz_i \wedge dz_{i_1} \wedge \ldots dz_{i_p} \wedge dar{z}_{j_1} \wedge \ldots dar{z}_{j_q} + \ &+ \sum rac{\partial f_{LJ}}{\partial ar{z}_j} dar{z}_j \wedge dz_{i_1} \wedge \ldots dz_{i_p} \wedge dar{z}_{j_1} \wedge \ldots dar{z}_{j_q} \end{aligned}$$

 $\begin{aligned} & \boldsymbol{d}\alpha = \partial \alpha + \bar{\partial}\alpha \\ & \partial : \Omega^{p,q}(\boldsymbol{M}) \to \Omega^{p+1,q}(\boldsymbol{M}), \\ & \bar{\partial} : \Omega^{p,q}(\boldsymbol{M}) \to \Omega^{p,q+1}(\boldsymbol{M}). \end{aligned}$

Dolbeault cohomology: $H^{p,q}(M) = \frac{\{\alpha \in \Omega^{p,q}(M) \mid \bar{\partial}\alpha = 0\}}{\{\alpha = \bar{\partial}\beta \mid \beta \in \Omega^{p,q-1}(M)\}}.$

(M, J, g) Kähler.

э

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \to \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \rightarrow \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

Hodge decomposition: $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. $\overline{H^{p,q}(M)} \cong H^{q,p}(M)$.

3

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \rightarrow \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

Hodge decomposition: $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. $\overline{H^{p,q}(M)} \cong H^{q,p}(M)$.

In particular, the Betti numbers satisfy: $b_k = \dim H^k(M) = \sum h^{p,q}$, and $h^{p,q} = h^{q,p}$.

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \rightarrow \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

Hodge decomposition: $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. $\overline{H^{p,q}(M)} \cong H^{q,p}(M)$.

In particular, the Betti numbers satisfy: $b_k = \dim H^k(M) = \sum h^{p,q}$, and $h^{p,q} = h^{q,p}$.

Corollary

If *M* is a Kähler manifold then b_{2k+1} is even.

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \rightarrow \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

Hodge decomposition: $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. $\overline{H^{p,q}(M)} \cong H^{q,p}(M)$.

In particular, the Betti numbers satisfy: $b_k = \dim H^k(M) = \sum h^{p,q}$, and $h^{p,q} = h^{q,p}$.

Corollary

If *M* is a Kähler manifold then b_{2k+1} is even.

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \rightarrow \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

Hodge decomposition: $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. $\overline{H^{p,q}(M)} \cong H^{q,p}(M)$.

In particular, the Betti numbers satisfy: $b_k = \dim H^k(M) = \sum h^{p,q}$, and $h^{p,q} = h^{q,p}$.

Corollary

If *M* is a Kähler manifold then b_{2k+1} is even.

$$b_{2k+1} = h^{2k+1,0} + \ldots + h^{k+1,k} + h^{k,k+1} + \ldots + h^{0,2k+1} \equiv 0 \pmod{2}.$$

(M, J, g) Kähler. Then $\triangle : \Omega^{p,q}(M) \rightarrow \Omega^{p,q}(M)$. $\mathcal{H}^{k}(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.

Hodge decomposition: $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$. $\overline{H^{p,q}(M)} \cong H^{q,p}(M)$.

In particular, the Betti numbers satisfy: $b_k = \dim H^k(M) = \sum h^{p,q}$, and $h^{p,q} = h^{q,p}$.

Corollary

If *M* is a Kähler manifold then b_{2k+1} is even.

$$b_{2k+1} = h^{2k+1,0} + \ldots + h^{k+1,k} + h^{k,k+1} + \ldots + h^{0,2k+1} \equiv 0 \pmod{2}.$$

Analysis on manifolds ~> Topology.

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

< ロ > < 同 > < 回 > < 回 >

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

< ロ > < 同 > < 回 > < 回 >

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

For complex surfaces, $b_1(X)$ even $\iff X$ admits a Kähler structure (Enriques-Kodaira classification).

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

For complex surfaces, $b_1(X)$ even $\iff X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_1 = 3$. Take the Heisenberg manifold $H = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3. \text{ Then } S^1 \to H \to T^2,$ $(a, b, c) \mapsto (a, b).$

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

For complex surfaces, $b_1(X)$ even $\iff X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_1 = 3$. Take the Heisenberg manifold $H = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3. \text{ Then } S^1 \to H \to T^2,$ $(a, b, c) \mapsto (a, b).$

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

For complex surfaces, $b_1(X)$ even $\iff X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_1 = 3$. Take the Heisenberg manifold $H = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3. \text{ Then } S^1 \to H \to T^2,$ $(a, b, c) \mapsto (a, b). \text{ Let } \alpha = da, \beta = db \in \Omega^1(T^2).$ Connection 1-form: $\eta = dc - b \, da \in \Omega^1(H), \, d\eta = \alpha \land \beta.$

Kodaira, 1964

Complex manifold with $b_1 = 3$. It is given as

$$KT = \left\{ \left(\begin{array}{ccc} 1 & z & w \\ 0 & 1 & \bar{z} \\ 0 & 0 & 1 \end{array} \right) \mid (z, w) \in \mathbb{C}^2 \right\} / (\mathbb{Z} + \mathbb{Z}i)^2$$

For complex surfaces, $b_1(X)$ even $\iff X$ admits a Kähler structure (Enriques-Kodaira classification).

Thurston, 1976

Symplectic manifold with $b_1 = 3$. Take the Heisenberg manifold $H = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3. \text{ Then } S^1 \to H \to T^2,$ $(a, b, c) \mapsto (a, b). \text{ Let } \alpha = da, \beta = db \in \Omega^1(T^2).$ Connection 1-form: $\eta = dc - b \, da \in \Omega^1(H), \, d\eta = \alpha \wedge \beta.$ Let $KT = H \times S^1, \, \gamma = d\theta.$ Symplectic form: $\omega = \alpha \wedge \gamma + \beta \wedge \eta.$

Vicente Muñoz (UCM)

Topological properties of Kähler manifolds

< 17 ▶

Topological properties of Kähler manifolds

• b_{2k+1} are even.

Vicente Muñoz (UCM)

A (10) > A (10) > A (10)

Topological properties of Kähler manifolds

• b_{2k+1} are even.

•
$$\wedge \omega^{d-k} : H^k(M) \xrightarrow{\cong} H^{2d-k}(M)$$
 (hard-Lefschetz).

Topological properties of Kähler manifolds

- b_{2k+1} are even.
- $\wedge \omega^{d-k} : H^k(M) \xrightarrow{\cong} H^{2d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type π_k(M) ⊗ Q is determined by H^k(M) (formality).

Image: A matrix and a matrix
Topological properties of Kähler manifolds

- b_{2k+1} are even.
- $\wedge \omega^{d-k} : H^k(M) \xrightarrow{\cong} H^{2d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_k(M) \otimes \mathbb{Q}$ is determined by $H^k(M)$ (formality).
- Kähler (fundamental) groups.

Topological properties of Kähler manifolds

- b_{2k+1} are even.
- $\wedge \omega^{d-k} : H^k(M) \xrightarrow{\cong} H^{2d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_k(M) \otimes \mathbb{Q}$ is determined by $H^k(M)$ (formality).
- Kähler (fundamental) groups.

Topological properties of Kähler manifolds

- b_{2k+1} are even.
- $\wedge \omega^{d-k} : H^k(M) \xrightarrow{\cong} H^{2d-k}(M)$ (hard-Lefschetz).
- Rational homotopy type $\pi_k(M) \otimes \mathbb{Q}$ is determined by $H^k(M)$ (formality).
- Kähler (fundamental) groups.

Question

Does it exist a (compact) manifold *M* satisfying some topological property (e.g. b_{2k+1} even) admitting complex/symplectic structure but not admitting a Kähler structure?

 (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.

12 N 4 12

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

• Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.

A D b 4 A b 4

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with *b*₃ odd.

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with *b*₃ odd.
- Hard-Lefschetz. Cavalcanti (2007): There are non-formal hard-Lefschetz symplectic manifolds.

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with *b*₃ odd.
- Hard-Lefschetz. Cavalcanti (2007): There are non-formal hard-Lefschetz symplectic manifolds.
- Non-formal. Babenko-Taimanov (2000): non-formal simply-connected symplectic manifolds for dimension ≥ 10.

- (Gompf, 1995) Connected sums along codimension 2 symplectic submanifolds.
- (McDuff, 1984) Symplectic blow-ups.
- (Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Results:

- Non simply-connected. Gompf (1995): any fundamental group can happen for a symplectic manifold.
- Simply-connected. McDuff (1984): There are symplectic simply-connected manifolds with *b*₃ odd.
- Hard-Lefschetz. Cavalcanti (2007): There are non-formal hard-Lefschetz symplectic manifolds.
- Non-formal. Babenko-Taimanov (2000): non-formal simply-connected symplectic manifolds for dimension ≥ 10.
- Fernández-Muñoz (2008): non-formal simply-connected symplectic manifolds for dimension 8.

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

• Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, $\mathbb Q$ may be replaced by $\mathbb R$ or $\mathbb C)$

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short).

・ロト ・ 同ト ・ ヨト ・ ヨ

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short).

We extract an "invariant" from it:

・ロト ・ 同ト ・ ヨト ・ ヨ

Rational homotopy deals with spaces up rational homotopy equivalence, in particular, with

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short).

We extract an "invariant" from it:

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ ~).

3

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.
 - \wedge means the "graded-commutative algebra freely generated by"

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \wedge means the "graded-commutative algebra freely generated by"

• $dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \wedge means the "graded-commutative algebra freely generated by"

- $dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$
- *dx_i* contains no linear term.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

•
$$\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$$
 is free.

 \wedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

•
$$\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$$
 is free.

 \wedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

•
$$\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$$
 is free.

 \wedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

Theorem (Sullivan, 1977)

If either X is simply-connected or X is a nilpotent space, then the minimal model $(\mathcal{M}_X, d) \longrightarrow (\Omega X, d)$ codifies the rational homotopy of X. More specifically, $\mathcal{M}_X = \bigwedge V$, $V = \bigoplus_{n \ge 1} V^n$, where V^n is the vector space given by the degree n generators. Then

$$V^n\cong (\pi_n(X)\otimes\mathbb{R})^*$$
,

and

$$H^n(\bigwedge V, d) = H^n(\Omega(X), d) = H^n(X).$$

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

æ

イロト イポト イヨト イヨト

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

æ

イロト イポト イヨト イヨト

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d).

æ

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

3

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All rational homotopy information is in the cohomology algebra.

< ロ > < 同 > < 回 > < 回 >

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All rational homotopy information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.

$$\begin{split} H &= \left\{ A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3 \\ KT &= H \times S^1. \\ \alpha &= da, \beta = db, \eta = dc - b \, da, \gamma = d\theta, \, d\eta = \alpha \wedge \beta. \\ \text{The minimal model is } (\Lambda(\alpha, \beta, \gamma, \eta), d). \\ H^*(H) &= H^*(\Lambda(\alpha, \beta, \eta), d) = \langle 1, [\alpha], [\beta], [\alpha \wedge \eta], [\beta \wedge \eta], [\alpha \wedge \beta \wedge \eta] \rangle. \end{split}$$

Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.

$$\begin{split} H &= \left\{ A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3 \\ KT &= H \times S^1. \\ \alpha &= da, \beta = db, \eta = dc - b \, da, \gamma = d\theta, \, d\eta = \alpha \wedge \beta. \\ \text{The minimal model is } (\Lambda(\alpha, \beta, \gamma, \eta), d). \\ H^*(H) &= H^*(\Lambda(\alpha, \beta, \eta), d) = \langle 1, [\alpha], [\beta], [\alpha \wedge \eta], [\beta \wedge \eta], [\alpha \wedge \beta \wedge \eta] \rangle. \\ \text{There is no quasi-isomorphism} \end{split}$$

$$\begin{split} & (\Lambda(\alpha,\beta,\eta),\boldsymbol{d}) \longrightarrow H^*(\Lambda(\alpha,\beta,\eta),\boldsymbol{d}) \\ & \alpha \mapsto [\alpha], \\ & \beta \mapsto [\beta], \\ & \eta \mapsto \boldsymbol{x}[\alpha] + \boldsymbol{y}[\beta], \\ & \alpha \wedge \eta \mapsto \boldsymbol{x}[\alpha] \wedge [\alpha] + \boldsymbol{y}[\alpha] \wedge [\beta] = \boldsymbol{0} \end{split}$$

< 17 ▶

Non-formal symplectic manifolds

The Kodaira-Thurston manifold is non-formal.

$$\begin{split} H &= \left\{ A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid (a, b, c) \in \mathbb{R}^3 \right\} / \mathbb{Z}^3 \\ KT &= H \times S^1. \\ \alpha &= da, \beta = db, \eta = dc - b \, da, \gamma = d\theta, \, d\eta = \alpha \wedge \beta. \\ \text{The minimal model is } (\Lambda(\alpha, \beta, \gamma, \eta), d). \\ H^*(H) &= H^*(\Lambda(\alpha, \beta, \eta), d) = \langle 1, [\alpha], [\beta], [\alpha \wedge \eta], [\beta \wedge \eta], [\alpha \wedge \beta \wedge \eta] \rangle. \\ \text{There is no quasi-isomorphism} \end{split}$$

$$\begin{array}{c} (\Lambda(\alpha,\beta,\eta),\boldsymbol{d}) \longrightarrow H^*(\Lambda(\alpha,\beta,\eta),\boldsymbol{d}) \\ \alpha \mapsto [\alpha], \\ \beta \mapsto [\beta], \\ \eta \mapsto \boldsymbol{x}[\alpha] + \boldsymbol{y}[\beta], \\ \alpha \wedge \eta \mapsto \boldsymbol{x}[\alpha] \wedge [\alpha] + \boldsymbol{y}[\alpha] \wedge [\beta] = \boldsymbol{0} \end{array}$$

Hence KT is non-formal.

Vicente Muñoz (UCM)

3 > 4 3
æ

イロト イポト イヨト イヨト

A nilmanifold is a quotient $M = G/\Gamma$, $d = \dim M$ *G* is a nilpotent group: $G_0 = G$, $G_i = [G, G_{i-1}]$, $i \ge 1$, and $G_d = 0$. $\Gamma \subset G$ is a co-compact discrete subgroup.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A nilmanifold is a quotient $M = G/\Gamma$, $d = \dim M$ *G* is a nilpotent group: $G_0 = G$, $G_i = [G, G_{i-1}]$, $i \ge 1$, and $G_d = 0$. $\Gamma \subset G$ is a co-compact discrete subgroup.

Nilmanifolds are not simply-connected: $\pi_1(M) = \Gamma$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A nilmanifold is a quotient $M = G/\Gamma$, $d = \dim M$ *G* is a nilpotent group: $G_0 = G$, $G_i = [G, G_{i-1}]$, $i \ge 1$, and $G_d = 0$. $\Gamma \subset G$ is a co-compact discrete subgroup.

Nilmanifolds are not simply-connected: $\pi_1(M) = \Gamma$. The minimal model of M is $(\bigwedge(x_1, x_2, \dots, x_d), d)$ with deg $x_i = 1$. $dx_i = \sum_{j,k < i} a_{ijk} x_j \cdot x_k$.

3

A nilmanifold is a quotient $M = G/\Gamma$, $d = \dim M$ *G* is a nilpotent group: $G_0 = G$, $G_i = [G, G_{i-1}]$, $i \ge 1$, and $G_d = 0$. $\Gamma \subset G$ is a co-compact discrete subgroup.

Nilmanifolds are not simply-connected: $\pi_1(M) = \Gamma$. The minimal model of M is $(\bigwedge(x_1, x_2, \dots, x_d), d)$ with deg $x_i = 1$. $dx_i = \sum_{j,k < i} a_{ijk} x_j \cdot x_k$.

Nilmanifolds are never formal, unless they are tori.

3

A nilmanifold is a quotient $M = G/\Gamma$, $d = \dim M$ *G* is a nilpotent group: $G_0 = G$, $G_i = [G, G_{i-1}]$, $i \ge 1$, and $G_d = 0$. $\Gamma \subset G$ is a co-compact discrete subgroup.

Nilmanifolds are not simply-connected: $\pi_1(M) = \Gamma$. The minimal model of M is $(\bigwedge(x_1, x_2, \dots, x_d), d)$ with deg $x_i = 1$. $dx_i = \sum_{j,k < i} a_{ijk} x_j \cdot x_k$.

Nilmanifolds are never formal, unless they are tori.

There are non-formal nilmanifolds which admit both complex and symplectic structures.

They cannot be Kähler.

-

Theorem [Fernández-Muñoz, 2008]

There is a simply-connected 8-dimensional symplectic manifold which is not formal. Hence it does not admit Kähler structures.

.∃ **) (** 3

A .

Theorem [Fernández-Muñoz, 2008]

There is a simply-connected 8-dimensional symplectic manifold which is not formal. Hence it does not admit Kähler structures.

Theorem [Bazzoni-Muñoz, 2014]

The previous manifold admits a complex structure.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem [Fernández-Muñoz, 2008]

There is a simply-connected 8-dimensional symplectic manifold which is not formal. Hence it does not admit Kähler structures.

Theorem [Bazzoni-Muñoz, 2014]

The previous manifold admits a complex structure.

Theorem [Bazzoni-Fernández-Muñoz, 2014]

There is a simply-connected 6-dimensional manifold complex and symplectic which is not hard-Lefschetz. Hence it does not admit Kähler structures.

Non-formal 8-dimensional orbifold

Let
$$H = \left\{ A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}$$

 $\Gamma = \{ A \in H \mid a, b, c \in \Lambda \}$
 $\Lambda = \mathbb{Z} + \xi \mathbb{Z}, \xi = e^{2\pi i/3}$
Let $M = H/\Gamma \times \mathbb{C}/\Lambda$ is an 8-dimensional nilmanifold.

æ

Non-formal 8-dimensional orbifold

Let
$$H = \left\{ A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}$$

 $\Gamma = \{A \in H \mid a, b, c \in \Lambda\}$
 $\Lambda = \mathbb{Z} + \xi \mathbb{Z}, \xi = e^{2\pi i/3}$
Let $M = H/\Gamma \times \mathbb{C}/\Lambda$ is an 8-dimensional nilmanifold.
 $\mathbb{C}/\Lambda \rightarrow H/\Gamma \rightarrow (\mathbb{C}/\Lambda) \times (\mathbb{C}/\Lambda), (a, b, c) \mapsto (a, b).$
 $\alpha = da, \beta = db, \eta = dc - b da, \gamma = dz.$
 $\alpha = \alpha_1 + i\alpha_2, \beta = \beta_1 + i\beta_2, \eta = \eta_1 + i\eta_2, \gamma = \gamma_1 + i\gamma_2.$
The minimal model is $(\Lambda(\alpha, \bar{\alpha}, \beta, \bar{\beta}, \eta, \bar{\eta}, \gamma, \bar{\gamma}), d), d\eta = \alpha \wedge \beta.$

2

(a) < (a) < (b) < (b)

Let
$$H = \left\{ A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}$$

 $\Gamma = \{A \in H \mid a, b, c \in \Lambda\}$
 $\Lambda = \mathbb{Z} + \xi \mathbb{Z}, \xi = e^{2\pi i/3}$
Let $M = H/\Gamma \times \mathbb{C}/\Lambda$ is an 8-dimensional nilmanifold.
 $\mathbb{C}/\Lambda \to H/\Gamma \to (\mathbb{C}/\Lambda) \times (\mathbb{C}/\Lambda), (a, b, c) \mapsto (a, b).$
 $\alpha = da, \beta = db, \eta = dc - b da, \gamma = dz.$
 $\alpha = \alpha_1 + i\alpha_2, \beta = \beta_1 + i\beta_2, \eta = \eta_1 + i\eta_2, \gamma = \gamma_1 + i\gamma_2.$
The minimal model is $(\Lambda(\alpha, \bar{\alpha}, \beta, \bar{\beta}, \eta, \bar{\eta}, \gamma, \bar{\gamma}), d), d\eta = \alpha \land \beta.$
 $M = H/\Gamma \times \mathbb{C}/\Lambda$ is 8-dimensional and non-formal but not
simply-connected.

-2

A D F A B F A B F A B F

 $\widehat{M} = M/\mathbb{Z}_3$ is an orbifold with $3^4 = 81$ singular points. It is simply-connected.

 $\widehat{M} = M/\mathbb{Z}_3$ is an orbifold with $3^4 = 81$ singular points. It is simply-connected.

 $\hat{\omega} = -i\alpha \wedge \bar{\alpha} + \eta \wedge \beta + \bar{\eta} \wedge \bar{\beta} - i\gamma \wedge \bar{\gamma}, \mathbb{Z}_3$ -equivariant symplectic form.

 $\widehat{M} = M/\mathbb{Z}_3$ is an orbifold with $3^4 = 81$ singular points. It is simply-connected.

 $\hat{\omega} = -i\alpha \wedge \bar{\alpha} + \eta \wedge \beta + \bar{\eta} \wedge \bar{\beta} - i\gamma \wedge \bar{\gamma}, \mathbb{Z}_3$ -equivariant symplectic form. $(\hat{M}, \hat{\omega})$ is a symplectic orbifold. (\hat{M}, \hat{J}) is a complex orbifold.

 $\widehat{M} = M/\mathbb{Z}_3$ is an orbifold with $3^4 = 81$ singular points. It is simply-connected.

 $\hat{\omega} = -i\alpha \wedge \bar{\alpha} + \eta \wedge \beta + \bar{\eta} \wedge \bar{\beta} - i\gamma \wedge \bar{\gamma}, \mathbb{Z}_3$ -equivariant symplectic form. $(\hat{M}, \hat{\omega})$ is a symplectic orbifold. (\hat{M}, \hat{J}) is a complex orbifold.

The CDGA of \hat{M} is $(\bigwedge (\alpha, \bar{\alpha}, \beta, \bar{\beta}, \eta, \bar{\eta}, \gamma, \bar{\gamma})^{\mathbb{Z}_3}, d)$. $\implies \hat{M}$ is non-formal.

Symplectic resolution of singularities

Local model around a singular point: $B \cong (B(0, 1)/\langle (\xi, \xi, \xi^2, \xi) \rangle, \hat{\omega})$. With change of variables $(a', b', c', z') = (a, b - i\bar{c}, \bar{b} - ic, z)$, $\hat{\omega} = -ida' \wedge d\bar{a}' - idb' \wedge d\bar{b}' - idc' \wedge d\bar{c}' - idz' \wedge d\bar{z}'$. $\psi : B \xrightarrow{\cong} (B(0, 1)/\langle (\xi, \xi, \xi^2, \xi) \rangle, \omega_{std})$.

Symplectic resolution of singularities

Local model around a singular point: $B \cong (B(0,1)/\langle (\xi,\xi,\xi^2,\xi)\rangle,\hat{\omega})$. With change of variables $(a',b',c',z') = (a,b-i\bar{c},\bar{b}-ic,z)$, $\hat{\omega} = -ida' \wedge d\bar{a}' - idb' \wedge d\bar{b}' - idc' \wedge d\bar{c}' - idz' \wedge d\bar{z}'$. $\psi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi)\rangle, \omega_{std})$.

Take a standard complex resolution $\pi: \widetilde{B} \to B$,

The symplectic resolution is $\widetilde{M}_s = (\widehat{M} - \{0\}) \cup_{\psi} \widetilde{B}$. Glue the symplectic forms on \widehat{M} and \widetilde{B} to get $(\widetilde{M}_s, \widetilde{\omega})$.

Symplectic resolution of singularities

Local model around a singular point: $B \cong (B(0,1)/\langle (\xi,\xi,\xi^2,\xi)\rangle,\hat{\omega})$. With change of variables $(a',b',c',z') = (a,b-i\bar{c},\bar{b}-ic,z)$, $\hat{\omega} = -ida' \wedge d\bar{a}' - idb' \wedge d\bar{b}' - idc' \wedge d\bar{c}' - idz' \wedge d\bar{z}'$. $\psi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi)\rangle, \omega_{std})$.

Take a standard complex resolution $\pi: \widetilde{B} \to B$,

The symplectic resolution is $\widetilde{M}_s = (\widehat{M} - \{0\}) \cup_{\psi} \widetilde{B}$. Glue the symplectic forms on \widehat{M} and \widetilde{B} to get $(\widetilde{M}_s, \widetilde{\omega})$.

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_c = (\widehat{M} - \{0\}) \cup_{\varphi} \widetilde{B}$. $\varphi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi) \rangle, J_{std})$, with variables (a,b,c,z).

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_c = (\widehat{M} - \{0\}) \cup_{\varphi} \widetilde{B}$. $\varphi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi) \rangle, J_{std})$, with variables (a,b,c,z).

Locally, the symplectic and complex resolutions coincide, but using different charts!

Non-formal symplectic and complex 8-manifold

The complex resolution is $\widetilde{M}_c = (\widehat{M} - \{0\}) \cup_{\varphi} \widetilde{B}$. $\varphi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi) \rangle, J_{std})$, with variables (a,b,c,z).

Locally, the symplectic and complex resolutions coincide, but using different charts!

The complex resolution is $\widetilde{M}_c = (\widehat{M} - \{0\}) \cup_{\varphi} \widetilde{B}$. $\varphi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi)\rangle, J_{std})$, with variables (a, b, c, z).

Locally, the symplectic and complex resolutions coincide, but using different charts!

 \widetilde{M}_s and \widetilde{M}_c are diffeomrophic. Hence \widetilde{M}_s admit complex and symplectic structures. The complex resolution is $\widetilde{M}_c = (\widehat{M} - \{0\}) \cup_{\varphi} \widetilde{B}$. $\varphi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi) \rangle, J_{std})$, with variables (a, b, c, z).

Locally, the symplectic and complex resolutions coincide, but using different charts!

 \widetilde{M}_s and \widetilde{M}_c are diffeomrophic.

Hence M_s admit complex and symplectic structures.

 \widetilde{M}_s is non-formal. So it does not admit Kähler structures.

The complex resolution is $\widetilde{M}_c = (\widehat{M} - \{0\}) \cup_{\varphi} \widetilde{B}$. $\varphi : B \xrightarrow{\cong} (B(0,1)/\langle (\xi,\xi,\xi^2,\xi) \rangle, J_{std})$, with variables (a, b, c, z).

Locally, the symplectic and complex resolutions coincide, but using different charts!

 \widetilde{M}_s and \widetilde{M}_c are diffeomrophic.

Hence \widetilde{M}_s admit complex and symplectic structures.

 \widetilde{M}_s is non-formal. So it does not admit Kähler structures.

QED