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In 1933 S. Ulam posed and K. Borsuk (Charles Badger) showed
that if n > m
then it is impossible to map f : Sn → Sm

preserving symmetry: f (−x) = −f (x) .

Next in 1954-55, C. T. Yang, and D. Bourgin, showed that if
f : Sn → Rm+1 preserves this symmetry then

dim f −1(0) ≥ n −m − 1.

We will present versions of the latter for some other groups of
symmetries and also discuss the case n =∞.
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Abstract

Let V and W be orthogonal representations of a compact Lie
group G with V G = W G = {0}.

Let S(V ) be the sphere of V and f : S(V )→W be a
G -equivariant mapping.

We estimate the dimension of set Zf = f −1{0} in terms of
dim V and dim W , if G is the torus Tk , the p-torus Zk

p , or the
cyclic group Zpk , p-prime.

Finally, we show that for any p-toral group:
e ↪→ Tk ↪→ G → P → e, P a finite p-group,

and a G -map f : S(V )→W , with dim V =∞ and
dim W <∞, we have dim Zf =∞.
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Proof of the Borsuk-Ulam

Suppose that f : S(Rn+1)
Z2→ S(Rm+1) and n > m is such a map.

Let ι : Rm+1  Rn+1 natural embedding.

Then:

i) deg (ι ◦ f ) = 0, since if factorizes through Sm  Sn;

ii) deg(ι ◦ f ) ∼= 1 mod (2), more difficult !.

i) and ii) lead to a contradiction. �
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Applications

Theorem (Consequences of B-U theorem)

a) No subset of Rn is homeomorphic to Sn.

b) The Lusternik-Schnirelmann theorem: If the sphere Sn is
covered by n + 1 open sets, then one of these sets contains a
pair (x ,−x) of antipodal points.
This is equivalent to the Borsuk-Ulam theorem

c) The Ham sandwich theorem: For any compact sets
A1, . . . ,An in Rn we can always find a hyperplane dividing
each of them into two subsets of equal measure.

d) The Brouwer fixed-point theorem.

Bourgin-Yang theorems for the p-toral groups
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Example

d) Common practical applications: The case n = 2:
∃ (x ,−x) on the Earth’s surface s.t. T (x) = T (−x),
P(x) = P(−x)

e) The case n = 1: there always ∃ a pair of opposite points on
the earth’s equator with the same temperature.
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Necklace splitting problem

Suppose a necklace, open at the clasp, has k · n beads,
k · ai beads of colour i , 1 ≤ i ≤ t.

Then the necklace splitting problem: find a partition of the
necklace into k parts (not necessarily contiguous),
each with exactly ai beads of colour i ; called a k-split.

If colours are contiguous then any k splitting must contain at least
k − 1 cuts, so the size is at least (k − 1)t.

N. Alon and D.B.West used the Borsuk-Ulam theorem:
k-splitting can always be achieved with this number of cuts.

Bourgin-Yang theorems for the p-toral groups
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The Kneser graph: KGn,k : vertices correspond to the k-element
subsets of a set of n elements,
two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture:
the chromatic number of KGn,k is exactly n − 2k + 2

László Lovász (1978) proved this using topological methods.

Imre Bárány (1978) gave a simple proof, using the Borsuk-Ulam t.
and a lemma of David Gale.

Bourgin-Yang theorems for the p-toral groups
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Imre Bárány (1978) gave a simple proof, using the Borsuk-Ulam t.
and a lemma of David Gale.

Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Roots
Abstract
Borsuk-Ulam theorem
Applications of B-U to Combinatorics
Borsuk-Ulam versus Bourgin-Yang

The Kneser graph: KGn,k : vertices correspond to the k-element
subsets of a set of n elements,
two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture:
the chromatic number of KGn,k is exactly n − 2k + 2

László Lovász (1978) proved this using topological methods.
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Theorem (Ham sandwich theorem for measures)

Let µ1, µ2, ..., µd be finite Borel measures on Rd such that every
hyperplane has measure 0 for each of the µi (we refer to such
measures as mass distributions).
Then there exists a hyperplane h such that µi (h+) = 1

2µi (R
d) for

i = 1, 2, .., d, where h+ denotes one of the half-spaces defined by h.

Theorem (Ham sandwich theorem for point sets)

Let A1,A2, ...,Ad ⊂ Rd be finite point sets. Then there exists a
hyperplane h that simultaneously bisects A1,A2, ...,Ad .

The idea of proof is very simple: replace the points of Ai by tiny
balls and apply the ham sandwich theorem for measures. But there
are some subtleties along the way.
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Borsuk-Ulam

The ham-sandwich theorem in R3 with three ingredients

The pancakes theorem in R2 with two ingredients = each of
distinct cake.
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Bourgin-Yang

The pancakes theorem in R3: two pancakes ⊂ R2 ⊂ R3

Each plane cutting R2 along the line of solution in R2 gives a
solution in R3. Their unit normal vectors form Zf = S1 ⊂ S(R3)
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Borsuk-Ulam: Hundreds of generalizations & several applications

See the article of Steinlein [25] for generalizations

Fibrewise setting: f : S(E ) ⊂ E −→ E ′ over B.
1981- Jaworowski [12];
1988 - Dold [10] for G = Z2;
1989 - Nakaoka [23] for G = Z2, Zp and S1;
1990 - Izydorek and Rybcki [11] for G = Zp;
1995 - Kosta-Mramor [19] for Banach vector bundles;
2007 - de Mattos and dos Santos [9] for G = Zp, and a
product of spheres;

Applications:
Nonlinear Analysis: SeeTopological Methods for Variational
Problems with Symmetries of T. Bartsch [3]
Combinatorics: See Using the Borsuk-Ulam Theorem of J.
Matousek [18]
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”Classical” Bourgin-Yang theorem

– Bourgin-Yang theorem for the mappings of spheres

representation f : S(V )
G→W

2012 - W. M. , de Mattos and dos Santos [16]
for G = Zpk , a use of equivariant K -theory;

2013-2015 - W. M., de Mattos and dos Santos [17]
for G = (Zp)k , (Z2)k , (S1)k , a use of Borel cohomology;

– 2016 - W.M., B laszczyk, Singh [4] for a general setting: X ,Y
more general,
a combination of methods.
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The classical Bourgin-Yang problem studied here is
similar but different than the Bourgin-Yang, or correspondingly
Borsuk-Ulam problem for coincidence points along an orbit.

The latter studied for G = Zpk by Munkholm and for G = Zk
p by

Volovikov in several papers (cf. [20, 21, 22] and respectively
[26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively Bourgin-Yang type theorem.

It studies

dim A(f ) = {x ∈ X : | f (x) = f (gx), for all g ∈ G}

for a map (not equivariant in general) f : X → Y of G -spaces X
and Y .

There are relations but not direct - we will not discuss the latter.
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Idea od proof

Theorem (Yang, Bourgin)

If f : S(Rn+1)
Z2−→Rm+1 then dim Zf ≥ n −m − 1.

An invariant of free Z2-space. Put G = Z2

X a free G -space (metric, CW-complex),
φ : X/G → BG = RP(∞) a map classifying p : X → X/G .
γ ∈ H1(BG ; F2) , here H∗(BG ; F2) = F2[γ].
Definition:

iG (X ) = smallest k : φ∗(γk) = 0

Properties:

iG (Y ∪ X ) ≤ iG (Y ) + iG (X ); f : X
G→Y =⇒ iG (X ) ≤ iG (Y );

∀ A = clA ∃ U
G
⊃A , U open, s.t. iG (U) = iG (A)

iG (Sn,−) = n + 1; iG (X ) ≤ coh dim X + 1.
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Proof of Bourgin-Yang

Proof: Take V = S(Rn+1) \ Zf , and Zf
G
⊂U s.t. iG (U) = iG (Zf ).

By the first two properties of iG :

n + 1 = iG (S(Rn+1)) ≤ iG (V ) + iG (U) ,

But iG (V ) ≤ iG (S(Rm+1)) = m + 1,

because f : V → Rm+1 \ {0} ∼ S(Rm+1).

It gives
iG (Zf ) = iG (U) ≥ n + 1−m + 1,

and using the last property we get

coh.dimZf ≥ n −m − 1 .
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Notation

dim X : the covering dimension of X and coh.dimX the
cohomological dimension of a space X , i.e.,

coh.dimX = max{n | Ȟn(X ) 6= 0}

where Ȟn(−) denotes the Čech cohomology with coefficients
F = Zp or F = Q, depending on whether G = Zk

p or G = Tk .

We have coh.dimX ≤ dim X .

Also, H∗(−), H∗(−) (H̃∗(−), H̃∗(−)) the (reduced) singular
(co)homology with coefficients F = Zp or F = Q, depending on
whether G = Zk

p or G = Tk .
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where Ȟn(−) denotes the Čech cohomology with coefficients
F = Zp or F = Q, depending on whether G = Zk

p or G = Tk .

We have coh.dimX ≤ dim X .

Also, H∗(−), H∗(−) (H̃∗(−), H̃∗(−)) the (reduced) singular
(co)homology with coefficients F = Zp or F = Q, depending on
whether G = Zk

p or G = Tk .

Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for G = (Zp)

k and G = (S1)k
Generalization
Characterization of p-toral groups
Bourgin-Yang for the cyclic group G = Z

pk

Recall that for G = Zk
p , with p prime odd, and G = Tk ∀

nontrivial irreducible orthogonal representation
is even dimensional and admits the complex structure,
=⇒ V and W admit it too.

Denote d(V ) = dimC V = 1
2 dimR V , and correspondingly

d(W ) = dimC W = 1
2 dimR W .

If G = Zk
2 and V ,W are orthogonal representations of G , then

denote d(V ) = dimR V , and respectively d(W ) = dimR W .

For a G -map f : S(V )→W we study the set

Zf := f −1(0) ⊂ S(V )
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Let A be a set of G -spaces, h∗ a multiplicative equivariant
cohomology theory, and I ⊆ h∗(pt) an ideal.

Definition

The (A, h∗, I )-length of a G -space X is defined to be the smallest
integer k ≥ 1 such that there exist A1, . . . , Ak ∈ A with the
property that for any αi ∈ I ∩ ker

[
h∗(pt)→ h∗(Ai )

]
, 1 ≤ i ≤ k ,

p∗X (α1) ^ · · ·^ p∗X (αk) = 0,

where pX : X → pt.
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Theorem ([3, Theorem 4.7])

The length has the following properties:

(1) If there ∃ an h∗-functorial G -equivariant map X → Y , then
`(X ) ≤ `(Y ).

(2) Let A, B ⊆ X be G -invariant subspaces such that
h∗(X ,A)× h∗(X ,B)

^−→ h∗(X ,A ∪ B)
is defined. If A ∪ B = X , then `(X ) ≤ `(A) + `(B).

(3) If h∗ = H∗G , I is noetherian and X is paracompact, then any
GA = A, clA = A ⊆ X has an open G-neighborhood U ⊆ X
such that `(U) = `(A).

Depending on the group G , we set:

(1) if G = (Z2)k : h∗ = H∗G (−;Z2), I = H∗G (pt;Z2),
(2) if G = (Zp)k , p > 2: h∗ = H∗G (−;Zp), I = (c1, . . . , ck),
(3) if G = (S1)k : h∗ = H∗G (−;Q), I = H∗G (pt;Q).
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Not difficult to repeat and get

`(Zf ) ≥ `(S(V ))− `(S(W )) = d(V )− d(W )

For G = (Z2)k , or correspondingly G = Zp, p > 2, and G = S1
one can show that any G -invariant closed set

`(Z ) ≤ coh.dimZ + 1 , or respectively 2`(Z ) ≤ coh.dimZ + 1 .

The case G = (S1)k can be reduced to G = S1. However it is not
possible to compare `(Z ) and coh.dimZ for the group G = (Zp)k ,
p > 2.
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Theorem

Let V , W be two orth. representations of G = Zk
p or G = Tk such

that V G = W G = {0}. If f : S(V )
G→W is G -map, then

coh.dimZf ≥ dimR V − dimR W − 1 .

In part., if dimR W < dimR V , then 6 ∃ G -map f : S(V )→ S(W ).

Corollary

Let G = Zk
p with p > 2, or G = Tk and V , W as above. Then for

any f : S(V )
G→W dimR V > dimR W implies coh.dimZf ≥ 1 .

Indeed, dimR V − dimR W − 1 = 2d(V )− 2d(W )− 1
is integral, positive and odd.
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Let V , W be two orth. representations of G = Zk
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that V G = W G = {0}. If f : S(V )
G→W is G -map, then
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We shall use a most general version of the Borsuk-Ulam theorem
by Assadi in [2, page 23] (for p-torus) and Clapp and Puppe in [8,
Theorem 6.4] for the torus and p-torus

Theorem

Let G be a p-torus or a torus. Let X and Y be G -spaces with
fixed-points-free actions; moreover, in the case of a torus action
assume additionally that Y has finitely many orbit types. Suppose
that H̃j(X ) = H̃ j(X ) = 0 for j < n, Y is compact or paracompact
and finite-dimensional, and Hj(Y ) = H j(Y ) = 0 for j ≥ n. Then
there exists no G -equivariant map of X into Y .
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Proof: Denote m = dimR V and n = dimR W and suppose

coh.dimZf < m − n − 1.

Then,
Ȟ i (Zf ) = 0, for any i > m − n − 2.

By using Poincaré-Alexander-Lefschetz duality and the long exact
sequence of the pair
(SV ,SV \ Zf ), we conclude

0 = Ȟ i (Zf ) = Hm−1−i (SV ,SV \Zf ) = H̃m−i−2(SV \Zf ), for j = m−i−2 < n, i.e.,

H̃j(SV \ Zf ) = 0, for j < n.
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On the other hand, we have

Hj(W \ {0}) = Hj(SW ) = 0, for j ≥ n.

However,
f : SV \ Zf →W \ {0}

is a G -equivariant map, which contradicts Theorem 4.
In particular, if dimR V > dimR W , for a G -map
f : S(V )→W \ {0} ⊂W it implies that coh.dimZf ≥ 0 and,
consequently, Zf 6= ∅, which gives a contradiction.
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Theorem

Let G = (Z2)k , (Zp)k or (S1)k , with k ≥ 1.

- Let X be a G -space and a K -orientable closed topological
manifold such that H̃ i (X ) = 0 for i < n − 1.

- Let Y be a G-space and A ⊂ Y a G -subspace such that
Y −A is compact (or paracompact and finite dimensional) and

H i (Y − A) = 0 for i ≥ m.

Additionally (Y − A)G = ∅.
In the case p = 0, i.e. the torus, suppose Y has finitely many
orbit type.

If f : X −→ Y is a G-map, then

dim f −1(A) ≥ n −m − 1.
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Theorem (Characterization of p-toral groups, WM/DM/ES (12))

a) Let G be a p-toral group 1 ↪→ Tk → G → P → 1.
Then for the sphere S(V ) of a G-Hilbert space (orthogonal
representation) V , V G = {0}, dim V =∞ , and finite
dimensional orthogonal representation W of G such that
W G = {0}, and a G -map f : S(V )→W we have

dim Zf = l(Zf ) = ∞ .

b) If G is not p-toral then ∃ an infinite-dim. fixed point free
G -Hilbert space V , a finite dimensional representation W of
G with W G = {0} and a G-map f : S(V )→W such that

Zf = ∅, e.g. dim Zf = −1 <∞ .
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An adaptation of proof of a B-U theorem of Bartsch, Clapp & D.
Puppe, based on the Borel cohomology of stable cohomotopy
theory and used the Segal conjecture (G. Carlson)

Â(G ) = π0st(BG ).

i) Equivariant cohomology theory h∗G (X ) = ω0
st(X ×G EG ) the

Borel construction for the stable cohomotopy theory;

ii) By the mentioned theorem

h∗G (pt) = h0
G (pt) = ω0

st(BG ) = π0st(BG ) = Â(G ),
where the completion is taken with respect to the ideal
I := ker dim : A(G )→ Z.

iii) Next, one should use the fact that the completion map

A(G )→ Â(G ) is injective if P is a finite p-group (E. Laitinen).
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Let `(X ) be the G -length with respect the above h∗G (X )

Take X = S(V ), V infinite-dimensional Hilbert space. Known [3]
that `(X ) = `(pt) if X is contractible G -space.

On the other hand for any finite G there exists an element
α ∈ A(G ) such that αn 6= 0 for every n ∈ N (T. tom Dieck).

Consequently, its image α̂ ∈ Â(G ) = ω0
st(BG ) = h0

G (pt) has the
same property for a p-group. This shows that `(pt) =∞.

From it follows that for every G -map f : S(V )→W

`(Zf ) ≥ `(S(V ))− `(S(W )) =∞

as `(S(W )) <∞. The remaining task is to adapt it for any toral
p-group and show that also dim Zf =∞.
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Bourgin-Yang for the cyclic group Zpk , k ≥ 2

V an orthogonal repr. of G = Zpk such that V G = {0}.

Notation: d(V ) =

{
dimR if p = 2

dimC = 1
2 dimR if p is odd

For given two powers 1 ≤ m ≤ n ≤ pk−1

let Am,n := {G/H |H ⊂ G ; m ≤ |H| ≤ n }, (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V , W two orthogonal representations of G = Zpk , p prime,

k ≥ 1, such that V G = W G = {0}. Let f : S(V )
G→ W .

If AS(V ) ⊂ Am,n and AS(W ) ⊂ Am,n then

dim(Zf ) ≥ 2
([(d(V )− 1)m

n

]
− d(W )

)
:= φ(V ,W ).

Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for G = (Zp)

k and G = (S1)k
Generalization
Characterization of p-toral groups
Bourgin-Yang for the cyclic group G = Z

pk

Bourgin-Yang for the cyclic group Zpk , k ≥ 2

V an orthogonal repr. of G = Zpk such that V G = {0}.

Notation: d(V ) =

{
dimR if p = 2

dimC = 1
2 dimR if p is odd

For given two powers 1 ≤ m ≤ n ≤ pk−1

let Am,n := {G/H |H ⊂ G ; m ≤ |H| ≤ n }, (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V , W two orthogonal representations of G = Zpk , p prime,

k ≥ 1, such that V G = W G = {0}. Let f : S(V )
G→ W .

If AS(V ) ⊂ Am,n and AS(W ) ⊂ Am,n then

dim(Zf ) ≥ 2
([(d(V )− 1)m

n

]
− d(W )

)
:= φ(V ,W ).

Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for G = (Zp)

k and G = (S1)k
Generalization
Characterization of p-toral groups
Bourgin-Yang for the cyclic group G = Z

pk

Bourgin-Yang for the cyclic group Zpk , k ≥ 2

V an orthogonal repr. of G = Zpk such that V G = {0}.

Notation: d(V ) =

{
dimR if p = 2

dimC = 1
2 dimR if p is odd

For given two powers 1 ≤ m ≤ n ≤ pk−1

let Am,n := {G/H |H ⊂ G ; m ≤ |H| ≤ n }, (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V , W two orthogonal representations of G = Zpk , p prime,

k ≥ 1, such that V G = W G = {0}. Let f : S(V )
G→ W .

If AS(V ) ⊂ Am,n and AS(W ) ⊂ Am,n then

dim(Zf ) ≥ 2
([(d(V )− 1)m

n

]
− d(W )

)
:= φ(V ,W ).

Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for G = (Zp)

k and G = (S1)k
Generalization
Characterization of p-toral groups
Bourgin-Yang for the cyclic group G = Z

pk

Bourgin-Yang for the cyclic group Zpk , k ≥ 2

V an orthogonal repr. of G = Zpk such that V G = {0}.

Notation: d(V ) =

{
dimR if p = 2

dimC = 1
2 dimR if p is odd

For given two powers 1 ≤ m ≤ n ≤ pk−1

let Am,n := {G/H |H ⊂ G ; m ≤ |H| ≤ n }, (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V , W two orthogonal representations of G = Zpk , p prime,

k ≥ 1, such that V G = W G = {0}. Let f : S(V )
G→ W .

If AS(V ) ⊂ Am,n and AS(W ) ⊂ Am,n then

dim(Zf ) ≥ 2
([(d(V )− 1)m

n

]
− d(W )

)
:= φ(V ,W ).

Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for G = (Zp)

k and G = (S1)k
Generalization
Characterization of p-toral groups
Bourgin-Yang for the cyclic group G = Z

pk

Bourgin-Yang for the cyclic group Zpk , k ≥ 2

V an orthogonal repr. of G = Zpk such that V G = {0}.

Notation: d(V ) =

{
dimR if p = 2

dimC = 1
2 dimR if p is odd

For given two powers 1 ≤ m ≤ n ≤ pk−1

let Am,n := {G/H |H ⊂ G ; m ≤ |H| ≤ n }, (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V , W two orthogonal representations of G = Zpk , p prime,

k ≥ 1, such that V G = W G = {0}. Let f : S(V )
G→ W .

If AS(V ) ⊂ Am,n and AS(W ) ⊂ Am,n then

dim(Zf ) ≥ 2
([(d(V )− 1)m

n

]
− d(W )

)
:= φ(V ,W ).Bourgin-Yang theorems for the p-toral groups



Introduction
Main theorems

References

Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for G = (Zp)

k and G = (S1)k
Generalization
Characterization of p-toral groups
Bourgin-Yang for the cyclic group G = Z

pk

Corollaries

Corollary (already from Bartsch B–U for G = Zpk )

In particular, if d(W ) < d(V )/pk−1, then dim Zf ≥ 0,
=⇒ no G -equivariant map f : S(V )→ S(W ).

Example given by T. Bartsch

If 1 ↪→ G0 ↪→ G → Γ→ 1 is a compact Lie group
and Γ has an element of order p2, then there exist V ,W
orthogonal repr. V G = {0} = W G , dim W < dim V
and a G -equivariant map f : S(V )→ S(W ).

In particular if G = Γ a finite group with an element of order p2.
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Tools

An index of type iZ2 for a Zpk spaces but defined by use of the
equivariant K ∗G theory.
Its definition, thus the value, depends on the orbits in X .

ln(X ) = (Am,n,K
∗
G ,R)− length index of (X ) . (2)

We use the family Am,n but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of G = Zpk with V G = {0}. Fix
m, n two powers of p as above. Then

ln(S(V )) ≥

1 +
[
(d−1)m

n

]
if AS(V ) ⊂ Am,n,

∞ if AS(V ) * A1,n ,

Moreover, if AS(V ) ⊂ An,n, then ln(S(V )) = d .
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