Bourgin-Yang theorems for the p-toral groups

from Wacław Marzantowicz at

to Univerza na Primorskem

Thursday 09.06.2016; under the spirit of
In 1933 S. Ulam posed and K. Borsuk (Charles Badger) showed that if $n > m$ then it is impossible to map $f : S^n \to S^m$ preserving symmetry: $f(-x) = -f(x)$.

Next in 1954-55, C. T. Yang, and D. Bourgin, showed that if $f : S^n \to \mathbb{R}^{m+1}$ preserves this symmetry then

$$\dim f^{-1}(0) \geq n - m - 1.$$

We will present versions of the latter for some other groups of symmetries and also discuss the case $n = \infty$.
Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^G = W^G = \{0\}$.
Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^G = W^G = \{0\}$.

Let $S(V)$ be the sphere of V and $f : S(V) \to W$ be a G-equivariant mapping.
Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^G = W^G = \{0\}$.

Let $S(V)$ be the sphere of V and $f : S(V) \to W$ be a G-equivariant mapping.

We estimate the dimension of set $Z_f = f^{-1}\{0\}$ in terms of $\dim V$ and $\dim W$, if G is the torus \mathbb{T}^k, the p-torus \mathbb{Z}_p^k, or the cyclic group \mathbb{Z}_p^k, p-prime.
Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^G = W^G = \{0\}$.

Let $S(V)$ be the sphere of V and $f : S(V) \rightarrow W$ be a G-equivariant mapping.

We estimate the dimension of set $Z_f = f^{-1}\{0\}$ in terms of $\dim V$ and $\dim W$, if G is the torus \mathbb{T}^k, the p-torus \mathbb{Z}_p^k, or the cyclic group \mathbb{Z}_{p^k}, p-prime.

Finally, we show that for any p-toral group:

$e \hookrightarrow \mathbb{T}^k \twoheadrightarrow G \twoheadrightarrow P \twoheadrightarrow e$, P a finite p-group,

and a G-map $f : S(V) \rightarrow W$, with $\dim V = \infty$ and $\dim W < \infty$, we have $\dim Z_f = \infty$.
Proof of the Borsuk-Ulam

Suppose that $f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and $n > m$ is such a map. Let $\iota : \mathbb{R}^{m+1} \subset \mathbb{R}^{n+1}$ natural embedding.

\[\text{□}\]
Suppose that $f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and $n > m$ is such a map. Let $\iota : \mathbb{R}^{m+1} \subset \mathbb{R}^{n+1}$ natural embedding.

Then:

i) $\deg (\iota \circ f) = 0$, since if factorizes through $S^m \subset S^n$;
Proof of the Borsuk-Ulam

Suppose that \(f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1}) \) and \(n > m \) is such a map. Let \(\iota : \mathbb{R}^{m+1} \subsetneq \mathbb{R}^{n+1} \) natural embedding.

Then:

i) \(\deg (\iota \circ f) = 0 \), since if factorizes through \(S^m \subsetneq S^n \);

ii) \(\deg (\iota \circ f) \cong 1 \mod (2) \), more difficult !.
Proof of the Borsuk-Ulam

Suppose that $f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and $n > m$ is such a map.

Let $\iota : \mathbb{R}^{m+1} \varsubsetneq \mathbb{R}^{n+1}$ natural embedding.

Then:

i) $\deg(\iota \circ f) = 0$, since if factorizes through $S^m \varsubsetneq S^n$;

ii) $\deg(\iota \circ f) \cong 1 \mod (2)$, more difficult !.

i) and ii) lead to a contradiction.
Applications

Theorem (Consequences of B-U theorem)

a) *No subset of* \(\mathbb{R}^n \) *is homeomorphic to* \(S^n \).
Applications

Theorem (Consequences of B-U theorem)

a) No subset of \mathbb{R}^n is homeomorphic to S^n.

b) The Lusternik-Schnirelmann theorem: If the sphere S^n is covered by $n + 1$ open sets, then one of these sets contains a pair $(x, -x)$ of antipodal points. This is equivalent to the Borsuk-Ulam theorem.
Theorem (Consequences of B-U theorem)

a) No subset of \mathbb{R}^n is homeomorphic to S^n.

b) The Lusternik-Schnirelmann theorem: If the sphere S^n is covered by $n + 1$ open sets, then one of these sets contains a pair $(x, -x)$ of antipodal points. This is equivalent to the Borsuk-Ulam theorem.

c) The Ham sandwich theorem: For any compact sets A_1, \ldots, A_n in \mathbb{R}^n we can always find a hyperplane dividing each of them into two subsets of equal measure.
Applications

Theorem (Consequences of B-U theorem)

a) *No subset of* \mathbb{R}^n *is homeomorphic to* S^n.

b) *The Lusternik-Schnirelmann theorem: If the sphere* S^n *is covered by* $n + 1$ *open sets, then one of these sets contains a pair* $(x, -x)$ *of antipodal points. This is equivalent to the Borsuk-Ulam theorem*

c) *The Ham sandwich theorem: For any compact sets* A_1, \ldots, A_n *in* \mathbb{R}^n *we can always find a hyperplane dividing each of them into two subsets of equal measure.*

d) *The Brouwer fixed-point theorem.*
Example

d) Common practical applications: The case $n = 2$:

$\exists (x, -x)$ on the Earth's surface s.t. $T(x) = T(-x)$,
$P(x) = P(-x)$
Example

d) Common practical applications: The case $n = 2$:
$\exists (x, -x)$ on the Earth’s surface s.t. $T(x) = T(-x)$, $P(x) = P(-x)$

e) The case $n = 1$: there always \exists a pair of opposite points on the earth’s equator with the same temperature.
Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour i, $1 \leq i \leq t$.
Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour i, $1 \leq i \leq t$.

Then the necklace splitting problem: find a partition of the necklace into k parts (not necessarily contiguous), each with exactly a_i beads of colour i; called a k-split.
Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour i, $1 \leq i \leq t$.

Then the necklace splitting problem: find a partition of the necklace into k parts (not necessarily contiguous), each with exactly a_i beads of colour i; called a k-split.

If colours are contiguous then any k splitting must contain at least $k - 1$ cuts, so the size is at least $(k - 1)t$.
Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour i, $1 \leq i \leq t$.

Then the necklace splitting problem: find a partition of the necklace into k parts (not necessarily contiguous), each with exactly a_i beads of colour i; called a k-split.

If colours are contiguous then any k splitting must contain at least $k - 1$ cuts, so the size is at least $(k - 1)t$.
The Kneser graph: $KG_{n,k}$: vertices correspond to the k-element subsets of a set of n elements, two vertices are adjacent iff the corresponding sets are disjoint.
The Kneser graph: $KG_{n,k}$: vertices correspond to the k-element subsets of a set of n elements, two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture: the chromatic number of $KG_{n,k}$ is exactly $n - 2k + 2$
The Kneser graph: $KG_{n,k}$: vertices correspond to the k-element subsets of a set of n elements, two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture:
the chromatic number of $KG_{n,k}$ is exactly $n - 2k + 2$

László Lovász (1978) proved this using topological methods.
The Kneser graph: $KG_{n,k}$: vertices correspond to the k-element subsets of a set of n elements, two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture: the chromatic number of $KG_{n,k}$ is exactly $n - 2k + 2$

László Lovász (1978) proved this using topological methods.

Imre Bárány (1978) gave a simple proof, using the Borsuk-Ulam t. and a lemma of David Gale.
Theorem (Ham sandwich theorem for measures)

Let \(\mu_1, \mu_2, \ldots, \mu_d \) be finite Borel measures on \(\mathbb{R}^d \) such that every hyperplane has measure 0 for each of the \(\mu_i \) (we refer to such measures as mass distributions).

Then there exists a hyperplane \(h \) such that \(\mu_i(h_+) = \frac{1}{2} \mu_i(\mathbb{R}^d) \) for \(i = 1, 2, \ldots, d \), where \(h_+ \) denotes one of the half-spaces defined by \(h \).
Theorem (Ham sandwich theorem for measures)

Let $\mu_1, \mu_2, ..., \mu_d$ be finite Borel measures on \mathbb{R}^d such that every hyperplane has measure 0 for each of the μ_i (we refer to such measures as mass distributions).

Then there exists a hyperplane h such that $\mu_i(h_+) = \frac{1}{2} \mu_i(\mathbb{R}^d)$ for $i = 1, 2, \ldots, d$, where h_+ denotes one of the half-spaces defined by h.

Theorem (Ham sandwich theorem for point sets)

Let $A_1, A_2, ..., A_d \subset \mathbb{R}^d$ be finite point sets. Then there exists a hyperplane h that simultaneously bisects $A_1, A_2, ..., A_d$.

The idea of proof is very simple: replace the points of A_i by tiny balls and apply the ham sandwich theorem for measures. But there are some subtleties along the way.
Borsuk-Ulam

The ham-sandwich theorem in \mathbb{R}^3 with three ingredients

The pancakes theorem in \mathbb{R}^2 with two ingredients = each of distinct cake.

Bourgin-Yang theorems for the p-toral groups
Borsuk-Ulam

The ham-sandwich theorem in \mathbb{R}^3 with three ingredients

The pancakes theorem in \mathbb{R}^2 with two ingredients — each of distinct cake.
The pancakes theorem in \mathbb{R}^3: two pancakes $\subset \mathbb{R}^2 \subset \mathbb{R}^3$
The pancakes theorem in \mathbb{R}^3: two pancakes $\subset \mathbb{R}^2 \subset \mathbb{R}^3$

Each plane cutting \mathbb{R}^2 along the line of solution in \mathbb{R}^2 gives a solution in \mathbb{R}^3. Their unit normal vectors form $Z_f = S^1 \subset S(\mathbb{R}^3)$
Borsuk-Ulam: Hundreds of generalizations & several applications

See the article of Steinlein [25] for generalizations
Borsuk-Ulam: Hundreds of generalizations & several applications

See the article of Steinlein [25] for generalizations

Fibrewise setting: \(f : S(E) \subset E \rightarrow E' \) over \(B \).

1981 - Jaworowski [12];
1988 - Dold [10] for \(G = \mathbb{Z}_2 \);
1989 - Nakaoka [23] for \(G = \mathbb{Z}_2, \mathbb{Z}_p \) and \(S^1 \);
2007 - de Mattos and dos Santos [9] for \(G = \mathbb{Z}_p \), and a product of spheres;
Borsuk-Ulam: Hundreds of generalizations & several applications

See the article of Steinlein [25] for generalizations

Fibrewise setting: $f : S(E) \subset E \rightarrow E'$ over B.

1981 - Jaworowski [12];
1988 - Dold [10] for $G = \mathbb{Z}_2$;
1989 - Nakaoka [23] for $G = \mathbb{Z}_2$, \mathbb{Z}_p and S^1;
2007 - de Mattos and dos Santos [9] for $G = \mathbb{Z}_p$, and a product of spheres;

Applications:

Nonlinear Analysis: See *Topological Methods for Variational Problems with Symmetries* of T. Bartsch [3]

Combinatorics: See *Using the Borsuk-Ulam Theorem* of J. Matousek [18]
”Classical” Bourgin-Yang theorem

- Bourgin-Yang theorem for the mappings of spheres
 representation $f : S(V) \stackrel{G}{\to} W$

2012 - W. M., de Mattos and dos Santos [16]
for $G = \mathbb{Z}_{p^k}$, a use of equivariant K-theory;

2013-2015 - W. M., de Mattos and dos Santos [17]
for $G = (\mathbb{Z}_p)^k, (\mathbb{Z}_2)^k, (S^1)^k$, a use of Borel cohomology;
"Classical" Bourgin-Yang theorem

- Bourgin-Yang theorem for the mappings of spheres representation $f : S(V)^G \rightarrow W$

2012 - W. M. de Mattos and dos Santos [16] for $G = \mathbb{Z}_p^k$, a use of equivariant K-theory;

2013-2015 - W. M., de Mattos and dos Santos [17] for $G = (\mathbb{Z}_p)^k, (\mathbb{Z}_2)^k, (S^1)^k$, a use of Borel cohomology;

- 2016 - W.M., Błaszczyk, Singh [4] for a general setting: X, Y more general, a combination of methods.
The classical Bourgin-Yang problem studied here is similar but different than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem for coincidence points along an orbit.
The classical Bourgin-Yang problem studied here is similar but different than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem for coincidence points along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).
The classical Bourgin-Yang problem studied here is similar but different than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem for coincidence points along an orbit.

The latter studied for \(G = \mathbb{Z}_{p^k} \) by Munkholm and for \(G = \mathbb{Z}_p^k \) by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively Bourgin-Yang type theorem.
The classical Bourgin-Yang problem studied here is similar but different than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem for coincidence points along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively Bourgin-Yang type theorem.

It studies

$$\dim A(f) = \{x \in X : | f(x) = f(gx), \text{ for all } g \in G\}$$

for a map (not equivariant in general) $f : X \to Y$ of G-spaces X and Y.
The classical Bourgin-Yang problem studied here is similar but different than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem for coincidence points along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively Bourgin-Yang type theorem.

It studies

$$\dim A(f) = \{ x \in X : | f(x) = f(gx), \text{ for all } g \in G \}$$

for a map (not equivariant in general) $f : X \to Y$ of G-spaces X and Y.

There are relations but not direct - we will not discuss the latter.
Idea of proof

Theorem (Yang, Bourgin)

If \(f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1} \) then \(\dim Z_f \geq n - m - 1 \).

An invariant of free \(\mathbb{Z}_2 \)-space. Put \(G = \mathbb{Z}_2 \).
Idea od proof

Theorem (Yang, Bourgin)

If \(f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1} \) then \(\dim Z_f \geq n - m - 1 \).

An invariant of free \(\mathbb{Z}_2 \)-space. Put \(G = \mathbb{Z}_2 \)

\(X \) a free \(G \)-space (metric, CW-complex),

\(\phi : X/G \to BG = \mathbb{R}P(\infty) \) a map classifying \(p : X \to X/G \).

\(\gamma \in H^1(BG; F_2) \), here \(H^*(BG; F_2) = F_2[\gamma] \).

Definition:

\(i_G(X) = \text{smallest } k : \phi^*(\gamma^k) = 0 \)
Idea of proof

Theorem (Yang, Bourgin)

If \(f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1} \) then \(\dim Z_f \geq n - m - 1 \).

An invariant of free \(\mathbb{Z}_2 \)-space. Put \(G = \mathbb{Z}_2 \)

\(X \) a free \(G \)-space (metric, CW-complex),
\(\phi : X/G \to BG = \mathbb{R}P(\infty) \) a map classifying \(p : X \to X/G \).
\(\gamma \in H^1(BG; F_2) \), here \(H^*(BG; F_2) = F_2[\gamma] \).

Definition:
\[
i_G(X) = \text{smallest } k : \phi^*(\gamma^k) = 0
\]

Properties:
\[
i_G(Y \cup X) \leq i_G(Y) + i_G(X); \quad f : X \xrightarrow{G} Y \implies i_G(X) \leq i_G(Y);
\]
Idea od proof

Theorem (Yang, Bourgin)

If \(f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1} \) then \(\dim \mathbb{Z}_f \geq n - m - 1 \).

An invariant of free \(\mathbb{Z}_2 \)-space. Put \(G = \mathbb{Z}_2 \)

\(X \) a free \(G \)-space (metric, CW-complex),
\(\phi : X/G \to BG = \mathbb{R} P(\infty) \) a map classifying \(p : X \to X/G \).

\(\gamma \in H^1(BG; F_2) \), here \(H^*(BG; F_2) = F_2[\gamma] \).

Definition:

\[i_G(X) = \text{smallest } k : \phi^*(\gamma^k) = 0 \]

Properties:

\[i_G(Y \cup X) \leq i_G(Y) + i_G(X) ; \quad f : X \overset{G}{\to} Y \iff i_G(X) \leq i_G(Y) ; \]

\[\forall \ A = \text{cl}A \ \exists \ U \supseteq A , \ U \ \text{open, s.t.} \quad i_G(U) = i_G(A) \]
Idea of proof

Theorem (Yang, Bourgin)

If \(f : S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1} \) then \(\dim \mathbb{Z}_f \geq n - m - 1 \).

An invariant of free \(\mathbb{Z}_2 \)-space. Put \(G = \mathbb{Z}_2 \)

\(X \) a free \(G \)-space (metric, CW-complex),
\(\phi : X/G \rightarrow BG = \mathbb{R}P(\infty) \) a map classifying \(p : X \rightarrow X/G \).
\(\gamma \in H^1(BG; F_2) \), here \(H^*(BG; F_2) = F_2[\gamma] \).

Definition:

\[i_G(X) = \text{smallest } k : \phi^*(\gamma^k) = 0 \]

Properties:

\[i_G(Y \cup X) \leq i_G(Y) + i_G(X); \quad f : X \xrightarrow{G} Y \implies i_G(X) \leq i_G(Y); \]
\[\forall \ A = \text{cl} A \ \exists \ U \supseteq A, \ U \text{ open, s.t. } i_G(U) = i_G(A) \]
\[i_G(S^n) = n + 1; \quad i_G(Y) \leq \text{coh dim } Y + 1 \]

Bourgin-Yang theorems for the \(p \)-toral groups
Proof of Bourgin-Yang

Proof: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \overset{G}{\subset} U$ s.t. $i_G(U) = i_G(Z_f)$.
Proof of Bourgin-Yang

Proof: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \subset U$ s.t. $i_G(U) = i_G(Z_f)$.

By the first two properties of i_G:

$$n + 1 = i_G(S(\mathbb{R}^{n+1})) \leq i_G(V) + i_G(U),$$
Proof of Bourgin-Yang

Proof: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \overset{G}{\subset} U$ s.t. $i_G(U) = i_G(Z_f)$.

By the first two properties of i_G:

$$n + 1 = i_G(S(\mathbb{R}^{n+1})) \leq i_G(V) + i_G(U),$$

But $i_G(V) \leq i_G(S(\mathbb{R}^{m+1})) = m + 1$,

because $f : V \to \mathbb{R}^{m+1} \setminus \{0\} \sim S(\mathbb{R}^{m+1})$.

Bourgin-Yang theorems for the p-toral groups
Proof of Bourgin-Yang

Proof: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \subset U$ s.t. $i_G(U) = i_G(Z_f)$.

By the first two properties of i_G:

$$n + 1 = i_G(S(\mathbb{R}^{n+1})) \leq i_G(V) + i_G(U),$$

But $i_G(V) \leq i_G(S(\mathbb{R}^{m+1})) = m + 1$,

because $f : V \to \mathbb{R}^{m+1} \setminus \{0\} \sim S(\mathbb{R}^{m+1}).$

It gives

$$i_G(Z_f) = i_G(U) \geq n + 1 - m + 1,$$

and using the last property we get
Proof of Bourgin-Yang

Proof: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \subseteq U$ s.t. $i_G(U) = i_G(Z_f)$. By the first two properties of i_G:

$$n + 1 = i_G(S(\mathbb{R}^{n+1})) \leq i_G(V) + i_G(U),$$

But $i_G(V) \leq i_G(S(\mathbb{R}^{m+1})) = m + 1$,

because $f : V \rightarrow \mathbb{R}^{m+1} \setminus \{0\} \sim S(\mathbb{R}^{m+1})$.

It gives

$$i_G(Z_f) = i_G(U) \geq n + 1 - m + 1,$$

and using the last property we get

$$\text{coh.dim} Z_f \geq n - m - 1. \Box$$
Notation

dim \ X: the covering dimension of \ X and coh.dim \ X the cohomological dimension of a space \ X, i.e.,

$$\text{coh.dim} \ X = \max\{n \mid \check{H}^n(\ X) \neq 0\}$$

where \(\check{H}^n(\cdot) \) denotes the Čech cohomology with coefficients \(F = \mathbb{Z}_p \) or \(F = \mathbb{Q} \), depending on whether \(G = \mathbb{Z}_p^k \) or \(G = \mathbb{T}^k \).
Notation

\(\dim X \): the covering dimension of \(X \) and \(\text{coh.dim} X \) the cohomological dimension of a space \(X \), i.e.,

\[
\text{coh.dim} X = \max\{n \mid \check{H}^n(X) \neq 0\}
\]

where \(\check{H}^n(_ _ _) \) denotes the Čech cohomology with coefficients \(\mathbb{F} = \mathbb{Z}_p \) or \(\mathbb{F} = \mathbb{Q} \), depending on whether \(G = \mathbb{Z}_p^k \) or \(G = \mathbb{T}^k \).

We have \(\text{coh.dim} X \leq \dim X \).
Notation

dim X: the covering dimension of X and \(\text{coh.dim} X \) the cohomological dimension of a space X, i.e.,

\[\text{coh.dim} X = \max \{ n \mid \check{H}^n(X) \neq 0 \} \]

where \(\check{H}^n(\cdot) \) denotes the Čech cohomology with coefficients \(F = \mathbb{Z}_p \) or \(F = \mathbb{Q} \), depending on whether \(G = \mathbb{Z}_p^k \) or \(G = \mathbb{T}^k \).

We have \(\text{coh.dim} X \leq \dim X \).

Also, \(H_*(-) \), \(H^*(-) \) (\(\tilde{H}_*(-) \), \(\tilde{H}^*(-) \)) the (reduced) singular (co)homology with coefficients \(F = \mathbb{Z}_p \) or \(F = \mathbb{Q} \), depending on whether \(G = \mathbb{Z}_p^k \) or \(G = \mathbb{T}^k \).
Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k \forall$ nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.
Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k$ any nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.

Denote $d(V) = \dim \mathbb{C} V = \frac{1}{2} \dim \mathbb{R} V$, and correspondingly $d(W) = \dim \mathbb{C} W = \frac{1}{2} \dim \mathbb{R} W$.
Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k \forall$ nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.

Denote $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$, and correspondingly $d(W) = \dim_{\mathbb{C}} W = \frac{1}{2} \dim_{\mathbb{R}} W$.

If $G = \mathbb{Z}_2^k$ and V, W are orthogonal representations of G, then denote $d(V) = \dim_{\mathbb{R}} V$, and respectively $d(W) = \dim_{\mathbb{R}} W$.

Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k$ all nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, \implies V and W admit it too.

Denote $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$, and correspondingly $d(W) = \dim_{\mathbb{C}} W = \frac{1}{2} \dim_{\mathbb{R}} W$.

If $G = \mathbb{Z}_2^k$ and V, W are orthogonal representations of G, then denote $d(V) = \dim_{\mathbb{R}} V$, and respectively $d(W) = \dim_{\mathbb{R}} W$.

For a G-map $f : S(V) \to W$ we study the set

$$Z_f := f^{-1}(0) \subset S(V)$$
Let \mathcal{A} be a set of G-spaces, h^* a multiplicative equivariant cohomology theory, and $I \subseteq h^*(pt)$ an ideal.

Definition

The (\mathcal{A}, h^*, I)-length of a G-space X is defined to be the smallest integer $k \geq 1$ such that there exist $A_1, \ldots, A_k \in \mathcal{A}$ with the property that for any $\alpha_i \in I \cap \ker [h^*(pt) \to h^*(A_i)]$, $1 \leq i \leq k$,

$$p^*_X(\alpha_1) \sim \cdots \sim p^*_X(\alpha_k) = 0,$$

where $p_X : X \to pt$.

Bourgin-Yang theorems for the p-toral groups
Theorem ([3, Theorem 4.7])

The length has the following properties:

1. If there exists an h^*-functorial G-equivariant map $X \rightarrow Y$, then $\ell(X) \leq \ell(Y)$.

2. Let $A, B \subseteq X$ be G-invariant subspaces such that $h^*(X, A) \times h^*(X, B) \sim h^*(X, A \cup B)$ is defined. If $A \cup B = X$, then $\ell(X) \leq \ell(A) + \ell(B)$.

3. If $h^* = H^*_G$, I is noetherian and X is paracompact, then any $GA = A$, $\text{cl} A = A \subseteq X$ has an open G-neighborhood $U \subseteq X$ such that $\ell(U) = \ell(A)$.
Theorem ([3, Theorem 4.7])

The length has the following properties:

(1) If there \exists an h^*-functorial G-equivarient map $X \to Y$, then $\ell(X) \leq \ell(Y)$.

(2) Let $A, B \subseteq X$ be G-invariant subspaces such that $h^*(X, A) \times h^*(X, B) \xrightarrow{\sim} h^*(X, A \cup B)$ is defined. If $A \cup B = X$, then $\ell(X) \leq \ell(A) + \ell(B)$.

(3) If $h^* = H^*_G$, I is noetherian and X is paracompact, then any $GA = A, \text{cl } A = A \subseteq X$ has an open G-neighborhood $U \subseteq X$ such that $\ell(U) = \ell(A)$.

Depending on the group G, we set:

(1) if $G = (\mathbb{Z}_2)^k$: $h^* = H^*_G(-; \mathbb{Z}_2), I = H^*_G(\text{pt}; \mathbb{Z}_2)$,
(2) if $G = (\mathbb{Z}_p)^k, p > 2$: $h^* = H^*_G(-; \mathbb{Z}_p), I = (c_1, \ldots, c_k)$,
(3) if $G = (S^1)^k$: $h^* = H^*(pt; \mathbb{R}), I = H^*(pt; \mathbb{R})$.
Not difficult to repeat and get

\[\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = d(V) - d(W) \]
Not difficult to repeat and get

$$\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = d(V) - d(W)$$

For $G = (\mathbb{Z}_2)^k$, or correspondingly $G = \mathbb{Z}_p$, $p > 2$, and $G = S^1$ one can show that any G-invariant closed set

$$\ell(Z) \leq \text{coh.dim}Z + 1,$$

or respectively

$$2\ell(Z) \leq \text{coh.dim}Z + 1.$$
Not difficult to repeat and get

\[\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = d(V) - d(W) \]

For \(G = (\mathbb{Z}_2)^k \), or correspondingly \(G = \mathbb{Z}_p, \ p > 2 \), and \(G = S^1 \) one can show that any \(G \)-invariant closed set

\[\ell(Z) \leq \text{coh.dim} Z + 1, \ \text{or respectively} \ 2\ell(Z) \leq \text{coh.dim} Z + 1. \]

The case \(G = (S^1)^k \) can be reduced to \(G = S^1 \). However it is not possible to compare \(\ell(Z) \) and \(\text{coh.dim} Z \) for the group \(G = (\mathbb{Z}_p)^k, \ p > 2 \).
Theorem

Let V, W be two orth. representations of $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$ such that $V^G = W^G = \{0\}$. If $f : S(V) \xrightarrow{G} W$ is G-map, then

$$\text{coh.dim} Z_f \geq \dim_{\mathbb{R}} V - \dim_{\mathbb{R}} W - 1.$$
Theorem

Let V, W be two orth. representations of $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$ such that $V^G = W^G = \{0\}$. If $f : S(V) \rightarrow W$ is G-map, then

$$\text{coh. dim } \mathbb{Z}_f \geq \dim \mathbb{R} V - \dim \mathbb{R} W - 1.$$

In part., if $\dim \mathbb{R} W < \dim \mathbb{R} V$, then \nexists G-map $f : S(V) \rightarrow S(W)$.
Theorem

Let V, W be two orth. representations of $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$ such that $V^G = W^G = \{0\}$. If $f : S(V) \to W$ is G-map, then

$$\text{coh.dim} \mathbb{Z}_f \geq \dim \mathbb{R} V - \dim \mathbb{R} W - 1.$$

In part., if $\dim \mathbb{R} W < \dim \mathbb{R} V$, then \nexists G-map $f : S(V) \to S(W)$.

Corollary

Let $G = \mathbb{Z}_p^k$ with $p > 2$, or $G = \mathbb{T}^k$ and V, W as above. Then for any $f : S(V) \to W \dim \mathbb{R} V > \dim \mathbb{R} W$ implies $\text{coh.dim} \mathbb{Z}_f \geq 1$.

Indeed, $\dim \mathbb{R} V - \dim \mathbb{R} W - 1 = 2d(V) - 2d(W) - 1$

is integral, positive and odd. \qed
We shall use a most general version of the Borsuk-Ulam theorem by Assadi in [2, page 23] (for p-torus) and Clapp and Puppe in [8, Theorem 6.4] for the torus and p-torus
We shall use a most general version of the Borsuk-Ulam theorem by Assadi in [2, page 23] (for p-torus) and Clapp and Puppe in [8, Theorem 6.4] for the torus and p-torus

Theorem

Let G be a p-torus or a torus. Let X and Y be G-spaces with fixed-points-free actions; moreover, in the case of a torus action assume additionally that Y has finitely many orbit types. Suppose that $\tilde{H}_j(X) = \tilde{H}_j(X) = 0$ for $j < n$, Y is compact or paracompact and finite-dimensional, and $H_j(Y) = H_j(Y) = 0$ for $j \geq n$. Then there exists no G-equivariant map of X into Y.
Proof: Denote $m = \dim_{\mathbb{R}} V$ and $n = \dim_{\mathbb{R}} W$ and suppose

$$\text{coh.dim} Z_f < m - n - 1.$$

Then,

$$\check{H}^i(Z_f) = 0, \text{ for any } i > m - n - 2.$$
Proof: Denote $m = \dim_{\mathbb{R}} V$ and $n = \dim_{\mathbb{R}} W$ and suppose

$$\text{coh.dim} Z_f < m - n - 1.$$

Then,

$$\check{H}^i(Z_f) = 0, \text{ for any } i > m - n - 2.$$

By using Poincaré-Alexander-Lefschetz duality and the long exact sequence of the pair $(SV, SV \setminus Z_f)$, we conclude

$$0 = \check{H}^i(Z_f) = H_{m-1-i}(SV, SV \setminus Z_f) = \check{H}_{m-i-2}(SV \setminus Z_f), \text{ for } j = m-i-2.$$

$$\check{H}_j(SV \setminus Z_f) = 0, \text{ for } j < n.$$
On the other hand, we have

\[H_j(W \setminus \{0\}) = H_j(SW) = 0, \text{ for } j \geq n. \]
On the other hand, we have

\[H_j(W \setminus \{0\}) = H_j(SW) = 0, \text{ for } j \geq n. \]

However,

\[f : SV \setminus Z_f \to W \setminus \{0\} \]

is a \(G \)-equivariant map, which contradicts Theorem 4.
On the other hand, we have

\[H_j(W \setminus \{0\}) = H_j(SW) = 0, \text{ for } j \geq n. \]

However,

\[f : SV \setminus Z_f \to W \setminus \{0\} \]

is a G-equivariant map, which contradicts Theorem 4. In particular, if $\dim \mathbb{R} V > \dim \mathbb{R} W$, for a G-map $f : S(V) \to W \setminus \{0\} \subset W$ it implies that $\text{coh.dim} Z_f \geq 0$ and, consequently, $Z_f \neq \emptyset$, which gives a contradiction.\[\square \]
Let $G = (\mathbb{Z}_2)^k, (\mathbb{Z}_p)^k$ or $(\mathbb{S}^1)^k$, with $k \geq 1$.

- Let X be a G-space and a K-orientable closed topological manifold such that $\tilde{H}^i(X) = 0$ for $i < n - 1$.

Bourgin-Yang theorems for the p-toral groups
Let $G = (\mathbb{Z}_2)^k, (\mathbb{Z}_p)^k$ or $(\mathbb{S}^1)^k$, with $k \geq 1$.

- Let X be a G-space and a K-orientable closed topological manifold such that $\tilde{H}^i(X) = 0$ for $i < n - 1$.

- Let Y be a G-space and $A \subset Y$ a G-subspace such that $Y - A$ is compact (or paracompact and finite dimensional) and $H^i(Y - A) = 0$ for $i \geq m$.

Additionally $(Y - A)^G = \emptyset$.

In the case $p = 0$, i.e. the torus, suppose Y has finitely many orbit type.
Theorem

Let $G = (\mathbb{Z}_2)^k, (\mathbb{Z}_p)^k$ or $(\mathbb{S}^1)^k$, with $k \geq 1$.

- Let X be a G-space and a K-orientable closed topological manifold such that $\tilde{H}^i(X) = 0$ for $i < n - 1$.

- Let Y be a G-space and $A \subset Y$ a G-subspace such that $Y - A$ is compact (or paracompact and finite dimensional) and $H^i(Y - A) = 0$ for $i \geq m$.

Additionally $(Y - A)^G = \emptyset$.

In the case $p = 0$, i.e. the torus, suppose Y has finitely many orbit type.

If $f : X \to Y$ is a G-map, then

$$\dim f^{-1}(A) \geq n - m - 1.$$
Theorem (Characterization of \(p \)-toral groups, WM/DM/ES (12))

a) Let \(G \) be a \(p \)-toral group \(1 \hookrightarrow \mathbb{T}^k \to G \to P \to 1 \). Then for the sphere \(S(V) \) of a \(G \)-Hilbert space (orthogonal representation) \(V \), \(V^G = \{0\} \), \(\dim V = \infty \), and finite dimensional orthogonal representation \(W \) of \(G \) such that \(W^G = \{0\} \), and a \(G \)-map \(f : S(V) \to W \) we have \(\dim Z_f = l(Z_f) = \infty \).
Theorem (Characterization of p-toral groups, WM/DM/ES (12))

a) Let G be a p-toral group $1 \hookrightarrow \mathbb{T}^k \rightarrow G \twoheadrightarrow P \twoheadrightarrow 1$. Then for the sphere $S(V)$ of a G-Hilbert space (orthogonal representation) V, $V^G = \{0\}$, $\dim V = \infty$, and finite dimensional orthogonal representation W of G such that $W^G = \{0\}$, and a G-map $f : S(V) \rightarrow W$ we have

$$\dim Z_f = l(Z_f) = \infty.$$

b) If G is not p-toral then \exists an infinite-dim. fixed point free G-Hilbert space V, a finite dimensional representation W of G with $W^G = \{0\}$ and a G-map $f : S(V) \rightarrow W$ such that $Z_f = \emptyset$, e.g. $\dim Z_f = -1 < \infty$.

Bourgin-Yang theorems for the p-toral groups
An adaptation of proof of a B-U theorem of Bartsch, Clapp & D. Puppe, based on the Borel cohomology of stable cohomotopy theory and used the Segal conjecture (G. Carlson)

\(\hat{\text{A}}(G) = \pi^0_{st}(BG) \).
An adaptation of proof of a B-U theorem of Bartsch, Clapp & D. Puppe, based on the Borel cohomology of stable cohomotopy theory and used the Segal conjecture (G. Carlson) \(\widehat{A}(G) = \pi^0_{st}(BG) \).

i) Equivariant cohomology theory \(h^*_G(X) = \omega^0_{st}(X \times_G EG) \) the Borel construction for the stable cohomotopy theory;
An adaptation of proof of a B-U theorem of Bartsch, Clapp & D. Puppe, based on the Borel cohomology of stable cohomotopy theory and used the Segal conjecture (G. Carlson)
\[\hat{A}(G) = \pi^0_{st}(BG). \]

i) Equivariant cohomology theory \(h^*_G(X) = \omega^0_{st}(X \times_G EG) \) the Borel construction for the stable cohomotopy theory;

ii) By the mentioned theorem
\[
 h^*_G(pt) = h^0_G(pt) = \omega^0_{st}(BG) = \pi^0_{st}(BG) = \hat{A}(G),
\]
where the completion is taken with respect to the ideal
\[I := \ker \dim : A(G) \to \mathbb{Z}. \]
An adaptation of proof of a B-U theorem of Bartsch, Clapp & D. Puppe, based on the Borel cohomology of stable cohomotopy theory and used the Segal conjecture (G. Carlson) $\hat{A}(G) = \pi^0_{\text{st}}(BG)$.

i) Equivariant cohomology theory $h^*_G(X) = \omega^0_{\text{st}}(X \times_G EG)$ the Borel construction for the stable cohomotopy theory;

ii) By the mentioned theorem

$$h^*_G(pt) = h^0_G(pt) = \omega^0_{\text{st}}(BG) = \pi^0_{\text{st}}(BG) = \hat{A}(G),$$

where the completion is taken with respect to the ideal $I : = \ker \dim : A(G) \to \mathbb{Z}$.

iii) Next, one should use the fact that the completion map $A(G) \to \hat{A}(G)$ is injective if P is a finite p-group (E. Laitinen).
Let $\ell(X)$ be the G-length with respect the above $h^*_G(X)$.

Bourgin-Yang theorems for the p-toral groups
Let $\ell(X)$ be the G-length with respect the above $h^*_G(X)$

Take $X = S(V)$, V infinite-dimensional Hilbert space. Known [3] that $\ell(X) = \ell(pt)$ if X is contractible G-space.
Let $\ell(X)$ be the G-length with respect the above $h^*_G(X)$.

Take $X = S(V)$, V infinite-dimensional Hilbert space. Known [3] that $\ell(X) = \ell(pt)$ if X is contractible G-space.

On the other hand for any finite G there exists an element $\alpha \in A(G)$ such that $\alpha^n \neq 0$ for every $n \in \mathbb{N}$ (T. tom Dieck).

Consequently, its image $\hat{\alpha} \in \widehat{A(G)} = \omega^0_{st}(BG) = h^0_G(pt)$ has the same property for a p-group. This shows that $\ell(pt) = \infty$.
Let $\ell(X)$ be the G-length with respect the above $h^*_G(X)$
Take $X = S(V)$, V infinite-dimensional Hilbert space. Known [3] that $\ell(X) = \ell(pt)$ if X is contractible G-space.
On the other hand for any finite G there exists an element $\alpha \in A(G)$ such that $\alpha^n \neq 0$ for every $n \in \mathbb{N}$ (T. tom Dieck).
Consequently, its image $\hat{\alpha} \in \widehat{A(G)} = \omega^0_{st}(BG) = h^0_G(pt)$ has the same property for a p-group. This shows that $\ell(pt) = \infty$.
From it follows that for every G-map $f : S(V) \to W$

$$\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = \infty$$

as $\ell(S(W)) < \infty$. The remaining task is to adapt it for any toral p-group and show that also $\dim Z_f = \infty$. □
Bourgin-Yang for the cyclic group \(\mathbb{Z}_{p^k}, k \geq 2 \)

\(V \) an orthogonal repr. of \(G = \mathbb{Z}_{p^k} \) such that \(V^G = \{0\} \).
Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k}, $k \geq 2$

V an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ such that $V^G = \{0\}$.

Notation: $d(V) = \begin{cases} \dim_{\mathbb{R}} & \text{if } p = 2 \\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} & \text{if } p \text{ is odd} \end{cases}$
Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k}, $k \geq 2$

V an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ such that $V^G = \{0\}$.

Notation: $d(V) = \begin{cases} \dim_{\mathbb{R}} & \text{if } p = 2 \\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} & \text{if } p \text{ is odd} \end{cases}$

For given two powers $1 \leq m \leq n \leq p^{k-1}$

let $\mathcal{A}_{m,n} := \{ G/H \mid H \subset G; m \leq |H| \leq n \}$, \hspace{1cm} (1)
Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k}, $k \geq 2$

V an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ such that $V^G = \{0\}$.

Notation: $d(V) = \begin{cases} \dim_{\mathbb{R}} & \text{if } p = 2 \\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} & \text{if } p \text{ is odd} \end{cases}$

For given two powers $1 \leq m \leq n \leq p^{k-1}$

let $\mathcal{A}_{m,n} := \{ G/H \mid H \subset G; \ m \leq |H| \leq n \}$, \hfill (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V, W two orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, $k \geq 1$, such that $V^G = W^G = \{0\}$. Let $f : S(V) \rightarrow W$.

If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$ then
Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k}, $k \geq 2$

V an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ such that $V^G = \{0\}$.

Notation: $d(V) = \begin{cases} \dim_{\mathbb{R}} & \text{if } p = 2 \\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} & \text{if } p \text{ is odd} \end{cases}$

For given two powers $1 \leq m \leq n \leq p^{k-1}$

let $\mathcal{A}_{m,n} := \{ G/H \mid H \subset G; \ m \leq |H| \leq n \}$, \hspace{1cm} (1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V, W two orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, $k \geq 1$, such that $V^G = W^G = \{0\}$. Let $f : S(V) \rightarrow W$.

If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$ then

$$\dim(Z(f)) \geq \left\lfloor (d(V) - 1)m \right\rfloor$$
Corollary (already from Bartsch B–U for $G = \mathbb{Z}_{p^k}$)

In particular, if $d(W) < d(V)/p^{k-1}$, then $\dim Z_f \geq 0$, \implies no G-equivariant map $f : S(V) \to S(W)$.
Corollary (already from Bartsch B–U for $G = \mathbb{Z}_{p^k}$)

In particular, if $d(W) < d(V)/p^{k-1}$, then $\dim Z_f \geq 0$, \implies no G-equivariant map $f : S(V) \to S(W)$.

Example given by T. Bartsch

If $1 \hookrightarrow G_0 \hookrightarrow G \twoheadrightarrow \Gamma \twoheadrightarrow 1$ is a compact Lie group and Γ has an element of order p^2, then there exist V, W orthogonal repr. $V^G = \{0\} = W^G$, $\dim W < \dim V$ and a G-equivariant map $f : S(V) \to S(W)$.
Corollaries

Corollary (already from Bartsch B–U for \(G = \mathbb{Z}_{p^k} \))

In particular, if \(d(W) < d(V)/p^{k-1} \), then \(\dim \mathbb{Z}_f \geq 0 \),\[\implies \text{no } G\text{-equivariant map } f : S(V) \to S(W).\]

Example given by T. Bartsch

If \(1 \hookrightarrow G_0 \hookrightarrow G \to \Gamma \to 1 \) is a compact Lie group and \(\Gamma \) has an element of order \(p^2 \), then there exist \(V, W \) orthogonal repr. \(V^G = \{0\} = W^G \), \(\dim W < \dim V \) and a \(G \)-equivariant map \(f : S(V) \to S(W) \).

In particular if \(G = \Gamma \) a finite group with an element of order \(p^2 \).
Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K_G^* theory. Its definition, thus the value, depends on the orbits in X.

$$l_n(X) = (A_{m,n}, K_G^*, R) - \text{length index of } (X).$$ (2)

We use the family $A_{m,n}$ but the invariant does not depend on n.

Bourgin-Yang theorems for the p-toral groups
Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K^*_G theory.

Its definition, thus the value, depends on the orbits in X.

$$l_n(X) = (A_{m,n}, K^*_G, R) - \text{length index of } (X). \quad (2)$$

We use the family $A_{m,n}$ but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$. Fix m, n two powers of p as above. Then
Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_p^k spaces but defined by use of the equivariant K_G^* theory.
Its definition, thus the value, depends on the orbits in X.

\[l_n(X) = (A_{m,n}, K_G^*, R) - \text{length index of } (X). \]

(2)

We use the family $A_{m,n}$ but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of $G = \mathbb{Z}_p^k$ with $V^G = \{0\}$. Fix m, n two powers of p as above. Then

\[l_n(S(V)) \geq \begin{cases}
1 + \left[\frac{(d-1)m}{n}\right] & \text{if } A_S(V) \subset A_{m,n}, \\
\infty & \text{if } A_S(V) \not\subset A_{1,n}.
\end{cases} \]
An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K^*_G theory.
Its definition, thus the value, depends on the orbits in X.

$$l_n(X) = (\mathcal{A}_{m,n}, K^*_G, R) - \text{length index of } (X). \quad (2)$$

We use the family $\mathcal{A}_{m,n}$ but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left\lceil \frac{(d-1)m}{n} \right\rceil & \text{if } \mathcal{A}_S(V) \subset \mathcal{A}_{m,n}, \\ \infty & \text{if } \mathcal{A}_S(V) \not\subset \mathcal{A}_{1,n}, \end{cases}$$

Bourgin-Yang theorems for the p-toral groups
References

M. Nakaoka, Parametrized Borsuk-Ulam theorems and characteristic polynomials. Topological fixed point theory and Bourgin-Yang theorems for the p-torus.

