Bourgin-Yang theorems for the *p*-toral groups

from Wacław Marzantowicz at

to Univerza na Primorskem

Thursday 09.06.2016; under the spirit of

3

In 1933 S. Ulam posed and K. Borsuk (Charles Badger) showed that if n > mthen **it is impossible** to map $f : S^n \to S^m$

preserving symmetry:
$$f(-x) = -f(x)$$
.

Next in 1954-55, C. T. Yang, and D. Bourgin, showed that if $f: \mathbb{S}^n \to \mathbb{R}^{m+1}$ preserves this symmetry then

dim
$$f^{-1}(0) \ge n - m - 1$$
.

We will present versions of the latter for some other groups of symmetries and also discuss the case $n = \infty$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()・

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^{G} = W^{G} = \{0\}.$

Bourgin-Yang theorems for the *p*-tora

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^{G} = W^{G} = \{0\}.$

Let S(V) be the sphere of V and $f: S(V) \to W$ be a *G*-equivariant mapping.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^{G} = W^{G} = \{0\}.$

Let S(V) be the sphere of V and $f : S(V) \to W$ be a G-equivariant mapping.

We estimate the dimension of set $Z_f = f^{-1}\{0\}$ in terms of dim V and dim W, if G is the torus \mathbb{T}^k , the *p*-torus \mathbb{Z}_p^k , or the cyclic group \mathbb{Z}_{p^k} , *p*-prime.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Abstract

Let V and W be orthogonal representations of a compact Lie group G with $V^{G} = W^{G} = \{0\}.$

Let S(V) be the sphere of V and $f : S(V) \to W$ be a G-equivariant mapping.

We estimate the dimension of set $Z_f = f^{-1}\{0\}$ in terms of dim V and dim W, if G is the torus \mathbb{T}^k , the *p*-torus \mathbb{Z}_p^k , or the cyclic group \mathbb{Z}_{p^k} , *p*-prime.

Finally, we show that for any *p*-toral group: $e \hookrightarrow \mathbb{T}^k \hookrightarrow G \to \mathcal{P} \to e, P$ a finite *p*-group, and a *G*-map $f : S(V) \to W$, with dim $V = \infty$ and dim $W < \infty$, we have dim $Z_f = \infty$.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Proof of the Borsuk-Ulam

Suppose that $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and n > m is such a map.

Let $\iota : \mathbb{R}^{m+1} \subsetneq \mathbb{R}^{n+1}$ natural embedding.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Proof of the Borsuk-Ulam

Suppose that $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and n > m is such a map. Let $\iota: \mathbb{R}^{m+1} \subsetneq \mathbb{R}^{n+1}$ natural embedding.

Then:

i) deg $(\iota \circ f) = 0$, since if factorizes through $S^m \subsetneq S^n$;

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Proof of the Borsuk-Ulam

Suppose that $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and n > m is such a map. Let $\iota: \mathbb{R}^{m+1} \subsetneq \mathbb{R}^{n+1}$ natural embedding.

Then:

i) deg $(\iota \circ f) = 0$, since if factorizes through $S^m \subsetneq S^n$;

ii) $deg(\iota \circ f) \cong 1 \mod (2)$, more difficult !.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Proof of the Borsuk-Ulam

Suppose that $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} S(\mathbb{R}^{m+1})$ and n > m is such a map. Let $\iota: \mathbb{R}^{m+1} \subsetneq \mathbb{R}^{n+1}$ natural embedding.

Then:

i) deg $(\iota \circ f) = 0$, since if factorizes through $S^m \subsetneq S^n$;

ii) $deg(\iota \circ f) \cong 1 \mod (2)$, more difficult !.

i) and ii) lead to a contradiction.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Applications

Theorem (Consequences of B-U theorem)

a) No subset of \mathbb{R}^n is homeomorphic to S^n .

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Applications

Theorem (Consequences of B-U theorem)

- a) No subset of \mathbb{R}^n is homeomorphic to S^n .
- b) <u>The Lusternik-Schnirelmann theorem</u>: If the sphere Sⁿ is covered by n + 1 open sets, then one of these sets contains a pair (x, -x) of antipodal points. This is equivalent to the Borsuk-Ulam theorem

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Applications

Theorem (Consequences of B-U theorem)

- a) No subset of \mathbb{R}^n is homeomorphic to S^n .
- b) <u>The Lusternik-Schnirelmann theorem</u>: If the sphere Sⁿ is covered by n + 1 open sets, then one of these sets contains a pair (x, -x) of antipodal points. This is equivalent to the Borsuk-Ulam theorem
- c) <u>The Ham sandwich theorem</u>: For any compact sets A_1, \ldots, A_n in \mathbb{R}^n we can always find a hyperplane dividing each of them into two subsets of equal measure.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Applications

Theorem (Consequences of B-U theorem)

- a) No subset of \mathbb{R}^n is homeomorphic to S^n .
- b) <u>The Lusternik-Schnirelmann theorem</u>: If the sphere Sⁿ is covered by n + 1 open sets, then one of these sets contains a pair (x, -x) of antipodal points. This is equivalent to the Borsuk-Ulam theorem
- c) <u>The Ham sandwich theorem</u>: For any compact sets A_1, \ldots, A_n in \mathbb{R}^n we can always find a hyperplane dividing each of them into two subsets of equal measure.
- d) The Brouwer fixed-point theorem.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Example

d) Common practical applications: The case n = 2: $\exists (x, -x)$ on the Earth's surface s.t. T(x) = T(-x), P(x) = P(-x)

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Example

- d) Common practical applications: The case n = 2: $\exists (x, -x)$ on the Earth's surface s.t. T(x) = T(-x), P(x) = P(-x)
- e) The case n = 1: there always \exists a pair of opposite points on the earth's equator with the same temperature.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour $i, 1 \leq i \leq t$.

Bourgin-Yang theorems for the *p*-tora

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour $i, 1 \le i \le t$.

Then the necklace splitting problem: find a partition of the necklace into k parts (not necessarily contiguous), each with exactly a_i beads of colour i; called a k-split.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour $i, 1 \le i \le t$.

Then the necklace splitting problem: find a partition of the necklace into k parts (not necessarily contiguous), each with exactly a_i beads of colour i; called a k-split.

If colours are contiguous then any k splitting must contain at least k-1 cuts, so the size is at least (k-1)t.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Necklace splitting problem

Suppose a necklace, open at the clasp, has $k \cdot n$ beads, $k \cdot a_i$ beads of colour $i, 1 \le i \le t$.

Then the necklace splitting problem: find a partition of the necklace into k parts (not necessarily contiguous), each with exactly a_i beads of colour i; called a k-split.

If colours are contiguous then any k splitting must contain at least k-1 cuts, so the size is at least (k-1)t.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

The Kneser graph: $KG_{n,k}$: vertices correspond to the *k*-element subsets of a set of *n* elements, two vertices are adjacent iff the corresponding sets are disjoint.

(ロ) (同) (E) (E) (E)

<u>The Kneser graph</u>: $KG_{n,k}$: vertices correspond to the *k*-element subsets of a set of *n* elements, two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture: the chromatic number of $KG_{n,k}$ is exactly n - 2k + 2

The Kneser graph: $KG_{n,k}$: vertices correspond to the *k*-element subsets of a set of *n* elements, two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture: the chromatic number of $KG_{n,k}$ is exactly n - 2k + 2

László Lovász (1978) proved this using topological methods.

The Kneser graph: $KG_{n,k}$: vertices correspond to the *k*-element subsets of a set of *n* elements, two vertices are adjacent iff the corresponding sets are disjoint.

Martin Kneser (1955) conjecture: the chromatic number of $KG_{n,k}$ is exactly n - 2k + 2

László Lovász (1978) proved this using topological methods.

Imre Bárány (1978) gave a simple proof, using the Borsuk-Ulam t. and a lemma of David Gale.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Theorem (Ham sandwich theorem for measures)

Let $\mu_1, \mu_2, ..., \mu_d$ be finite Borel measures on \mathbb{R}^d such that every hyperplane has measure 0 for each of the μ_i (we refer to such measures as mass distributions).

Then there exists a hyperplane h such that $\mu_i(h_+) = \frac{1}{2}\mu_i(\mathbb{R}^d)$ for i = 1, 2, ..., d, where h_+ denotes one of the half-spaces defined by h.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Theorem (Ham sandwich theorem for measures)

Let $\mu_1, \mu_2, ..., \mu_d$ be finite Borel measures on \mathbb{R}^d such that every hyperplane has measure 0 for each of the μ_i (we refer to such measures as mass distributions).

Then there exists a hyperplane h such that $\mu_i(h_+) = \frac{1}{2}\mu_i(\mathbb{R}^d)$ for i = 1, 2, ..., d, where h_+ denotes one of the half-spaces defined by h.

Theorem (Ham sandwich theorem for point sets)

Let $A_1, A_2, ..., A_d \subset \mathbb{R}^d$ be finite point sets. Then there exists a hyperplane h that simultaneously bisects $A_1, A_2, ..., A_d$.

The idea of proof is very simple: replace the points of A_i by tiny balls and apply the ham sandwich theorem for measures. But there are some subtleties along the way.

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Borsuk-Ulam

Bourgin-Yang theorems for the *p*-tora

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

The ham-sandwich theorem in \mathbb{R}^3 with three ingredients

The pancakes theorem in \mathbb{R}^2 with two ingredients = each of distinct cake.

Bourgin-Yang theorems for the *p*-tora

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Bourgin-Yang theorems for the *p*-tora

◆□> ◆□> ◆目> ◆目> ◆目 ● の Q @ >

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Bourgin-Yang

Each plane cutting \mathbb{R}^2 along the line of solution in \mathbb{R}^2 gives a solution in \mathbb{R}^3 . Their unit normal vectors form $Z_f = \mathbb{S}^1 \subset \mathbb{S}(\mathbb{R}^3)$

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

Borsuk-Ulam: Hundreds of generalizations & several applications See the article of Steinlein [25] for generalizations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Borsuk-Ulam: Hundreds of generalizations & several applications

See the article of Steinlein [25] for generalizations Fibrewise setting: $f: S(E) \subset E \longrightarrow E'$ over B. 1981- Jaworowski [12]; 1988 - Dold [10] for $G = \mathbb{Z}_2$; 1989 - Nakaoka [23] for $G = \mathbb{Z}_2$, \mathbb{Z}_p and S^1 ; 1990 - Izydorek and Rybcki [11] for $G = \mathbb{Z}_p$; 1995 - Kosta-Mramor [19] for Banach vector bundles; 2007 - de Mattos and dos Santos [9] for $G = \mathbb{Z}_p$, and a product of spheres;

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Borsuk-Ulam: Hundreds of generalizations & several applications

See the article of Steinlein [25] for generalizations Fibrewise setting: $f: S(E) \subset E \longrightarrow E'$ over B. 1981- Jaworowski [12]; 1988 - Dold [10] for $G = \mathbb{Z}_2$; 1989 - Nakaoka [23] for $G = \mathbb{Z}_2$, \mathbb{Z}_p and S^1 ; 1990 - Izydorek and Rybcki [11] for $G = \mathbb{Z}_p$; 1995 - Kosta-Mramor [19] for Banach vector bundles; 2007 - de Mattos and dos Santos [9] for $G = \mathbb{Z}_p$, and a product of spheres;

Applications:

Nonlinear Analysis: See Topological Methods for Variational Problems with Symmetries of T. Bartsch [3] Combinatorics: See Using the Borsuk-Ulam Theorem of J. Matousek [18]

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

"Classical" Bourgin-Yang theorem

- Bourgin-Yang theorem for the mappings of spheres representation $f: S(V) \xrightarrow{G} W$

2012 - W. M., de Mattos and dos Santos [16] for $G = \mathbb{Z}_{p^k}$, a use of equivariant *K*-theory; 2013-2015 - W. M., de Mattos and dos Santos [17] for $G = (\mathbb{Z}_p)^k$, $(\mathbb{Z}_2)^k$, $(S^1)^k$, a use of Borel cohomology;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

"Classical" Bourgin-Yang theorem

- Bourgin-Yang theorem for the mappings of spheres representation $f: S(V) \xrightarrow{G} W$

2012 - W. M., de Mattos and dos Santos [16] for $G = \mathbb{Z}_{p^k}$, a use of equivariant *K*-theory; 2013-2015 - W. M., de Mattos and dos Santos [17] for $G = (\mathbb{Z}_p)^k$, $(\mathbb{Z}_2)^k$, $(S^1)^k$, a use of Borel cohomology;

 2016 - W.M., Błaszczyk, Singh [4] for a general setting: X, Y more general,

a combination of methods.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()・

Roots Abstract Borsuk-Ulam theorem Applications of B-U to Combinatorics Borsuk-Ulam versus Bourgin-Yang

The classical Bourgin-Yang problem studied here is <u>similar but different</u> than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem **for coincidence points** along an orbit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

The classical Bourgin-Yang problem studied here is <u>similar but different</u> than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem **for coincidence points** along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

The classical Bourgin-Yang problem studied here is <u>similar but different</u> than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem **for coincidence points** along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively *Bourgin-Yang type* theorem.

The classical Bourgin-Yang problem studied here is <u>similar but different</u> than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem **for coincidence points** along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively *Bourgin-Yang type* theorem. It studies

 $\dim A(f) = \{x \in X : | f(x) = f(gx), \text{ for all } g \in G\}$

for a map (not equivariant in general) $f : X \to Y$ of *G*-spaces *X* and *Y*.

Bourgin-Yang theorems for the *p*-tora

The classical Bourgin-Yang problem studied here is <u>similar but different</u> than the Bourgin-Yang, or correspondingly Borsuk-Ulam problem **for coincidence points** along an orbit.

The latter studied for $G = \mathbb{Z}_{p^k}$ by Munkholm and for $G = \mathbb{Z}_p^k$ by Volovikov in several papers (cf. [20, 21, 22] and respectively [26, 27, 28] with references there).

Called Borsuk-Ulam, or respectively *Bourgin-Yang type* theorem. It studies

 $\dim A(f) = \{x \in X : | f(x) = f(gx), \text{ for all } g \in G\}$

for a map (not equivariant in general) $f : X \to Y$ of *G*-spaces *X* and *Y*.

There are relations but not direct - we will not discuss the latter.

Bourgin-Yang theorems for the *p*-tora

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Idea od proof

Theorem (Yang, Bourgin)

If $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1}$ then dim $Z_f \ge n-m-1$.

An invariant of free \mathbb{Z}_2 -space. Put $G = \mathbb{Z}_2$

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Idea od proof

Theorem (Yang, Bourgin)

If $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1}$ then dim $Z_f \ge n-m-1$.

An invariant of free \mathbb{Z}_2 -space. Put $G = \mathbb{Z}_2$

X a free G-space (metric, CW-complex), $\phi: X/G \rightarrow BG = \mathbb{R}P(\infty)$ a map classifying $p: X \rightarrow X/G$. $\gamma \in H^1(BG; F_2)$, here $H^*(BG; F_2) = F_2[\gamma]$. <u>Definition</u>:

$$i_G(X)={ t smallest}\;k:\phi^*(\gamma^k)=0$$

Bourgin-Yang theorems for the *p*-tora

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Idea od proof

Theorem (Yang, Bourgin)

If $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1}$ then dim $Z_f \ge n-m-1$.

An invariant of free \mathbb{Z}_2 -space. Put $G = \mathbb{Z}_2$

X a free G-space (metric, CW-complex), $\phi: X/G \rightarrow BG = \mathbb{R}P(\infty)$ a map classifying $p: X \rightarrow X/G$. $\gamma \in H^1(BG; F_2)$, here $H^*(BG; F_2) = F_2[\gamma]$. <u>Definition</u>:

$$i_{\mathcal{G}}(X)=$$
 smallest k : $\phi^*(\gamma^k)=$ 0

Properties:

 $i_{\mathcal{G}}(Y \cup X) \leq i_{\mathcal{G}}(Y) + i_{\mathcal{G}}(X); \quad f: X \xrightarrow{\mathcal{G}} Y \Longrightarrow i_{\mathcal{G}}(X) \leq i_{\mathcal{G}}(Y);$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Idea od proof

Theorem (Yang, Bourgin)

If $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1}$ then dim $Z_f \ge n-m-1$.

An invariant of free \mathbb{Z}_2 -space. Put $G = \mathbb{Z}_2$

X a free G-space (metric, CW-complex), $\phi: X/G \rightarrow BG = \mathbb{R}P(\infty)$ a map classifying $p: X \rightarrow X/G$. $\gamma \in H^1(BG; F_2)$, here $H^*(BG; F_2) = F_2[\gamma]$. <u>Definition</u>:

$$i_{\mathcal{G}}(X)=$$
 smallest $k:\phi^*(\gamma^k)=0$

Properties:

$$i_{G}(Y \cup X) \leq i_{G}(Y) + i_{G}(X); \quad f : X \xrightarrow{G} Y \Longrightarrow i_{G}(X) \leq i_{G}(Y);$$

$$\forall A = clA \quad \exists U \xrightarrow{G} A, U \text{ open, s.t.} \quad i_{G}(U) = i_{G}(A)$$

Bourgin-Yang theorems for the *p*-tora

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Idea od proof

Theorem (Yang, Bourgin)

If $f: S(\mathbb{R}^{n+1}) \xrightarrow{\mathbb{Z}_2} \mathbb{R}^{m+1}$ then dim $Z_f \ge n-m-1$.

An invariant of free \mathbb{Z}_2 -space. Put $G = \mathbb{Z}_2$

X a free G-space (metric, CW-complex), $\phi: X/G \rightarrow BG = \mathbb{R}P(\infty)$ a map classifying $p: X \rightarrow X/G$. $\gamma \in H^1(BG; F_2)$, here $H^*(BG; F_2) = F_2[\gamma]$. <u>Definition</u>:

$$i_{G}(X)=$$
 smallest $k:\phi^{*}(\gamma^{k})=$ 0

Properties:

$$i_{G}(Y \cup X) \leq i_{G}(Y) + i_{G}(X); \quad f : X \xrightarrow{G} Y \Longrightarrow i_{G}(X) \leq i_{G}(Y);$$

$$\forall A = clA \exists U \xrightarrow{G} A, U \text{ open, s.t.} \quad i_{G}(U) = i_{G}(A);$$

$$i_{G}(Y) = i_{G}(A) = i_{G}(A);$$

Bourgin-Yang theorems for the *p*-tora

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and G = (SGeneralization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{-k}$

Proof of Bourgin-Yang

<u>Proof</u>: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \stackrel{G}{\subset} U$ s.t. $i_G(U) = i_G(Z_f)$.

Bourgin-Yang theorems for the *p*-tora

Introduction Main theorems References Classical proof of Bourgin-Yang theoremThe length in equivariant cohomology theory $Bourgin-Yang theorem for <math>G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Proof of Bourgin-Yang

<u>Proof</u>: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \stackrel{\mathsf{G}}{\subset} U$ s.t. $i_{\mathsf{G}}(U) = i_{\mathsf{G}}(Z_f)$.

By the first two properties of i_G :

$$n+1 = i_G(S(\mathbb{R}^{n+1})) \le i_G(V) + i_G(U),$$

Introduction Main theorems References $\begin{array}{l}
\text{Classical proof of Bourgin-Yang theorem} \\
\text{The length in equivariant cohomology theory} \\
\text{Bourgin-Yang theorem for } G = (\mathbb{Z}_p)^k \text{ and } G = (\mathbb{S}^1)^k \\
\text{Generalization} \\
\text{Characterization of } p\text{-toral groups} \\
\text{Bourgin-Yang for the cyclic group } G = \mathbb{Z}_{p^k}
\end{array}$

Proof of Bourgin-Yang <u>Proof</u>: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \stackrel{G}{\subset} U$ s.t. $i_G(U) = i_G(Z_f)$.

By the first two properties of i_G :

$$n+1=i_G(S(\mathbb{R}^{n+1}))\leq i_G(V)+i_G(U),$$

$$\begin{array}{l} \text{But } i_G(V) \leq i_G(S(\mathbb{R}^{m+1})) = m+1, \\ \text{because } f: V \rightarrow \mathbb{R}^{m+1} \setminus \{0\} \sim S(\mathbb{R}^{m+1}). \end{array}$$

Bourgin-Yang theorems for the *p*-tora

Introduction Main theorems References Classical proof of Bourgin-Yang theoremThe length in equivariant cohomology theory $Bourgin-Yang theorem for <math>G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Proof of Bourgin-Yang <u>Proof</u>: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \stackrel{G}{\subset} U$ s.t. $i_G(U) = i_G(Z_f)$.

By the first two properties of i_G :

$$n+1=i_G(S(\mathbb{R}^{n+1}))\leq i_G(V)+i_G(U),$$

$$ext{But } i_G(V) \leq i_G(S(\mathbb{R}^{m+1})) = m+1,$$

because $f: V o \mathbb{R}^{m+1} \setminus \{0\} \sim S(\mathbb{R}^{m+1}).$

It gives

$$i_G(Z_f) = i_G(U) \ge n+1-m+1,$$

and using the last property we get

Introduction Main theorems References Classical proof of Bourgin-Yang theorem Tor length in equivariant cohomology theory $Bourgin-Yang theorem for <math>G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Proof of Bourgin-Yang <u>Proof</u>: Take $V = S(\mathbb{R}^{n+1}) \setminus Z_f$, and $Z_f \stackrel{G}{\subset} U$ s.t. $i_G(U) = i_G(Z_f)$.

By the first two properties of i_G :

$$n+1=i_G(S(\mathbb{R}^{n+1}))\leq i_G(V)+i_G(U),$$

$$ext{But } i_G(V) \leq i_G(S(\mathbb{R}^{m+1})) = m+1,$$

because $f: V o \mathbb{R}^{m+1} \setminus \{0\} \sim S(\mathbb{R}^{m+1}).$

It gives

$$i_G(Z_f) = i_G(U) \ge n + 1 - m + 1,$$

and using the last property we get

$$\operatorname{coh.dim} Z_f \geq n-m-1$$
. \Box

Bourgin-Yang theorems for the *p*-tora

Notation

dim X: the covering dimension of X and $\operatorname{coh.dim} X$ the cohomological dimension of a space X, i.e.,

 $\operatorname{coh.dim} X = \max\{n \mid \check{H}^n(X) \neq 0\}$

where $\check{H}^n(-)$ denotes the Čech cohomology with coefficients $\mathbb{F} = \mathbb{Z}_p$ or $\mathbb{F} = \mathbb{Q}$, depending on whether $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$.

Notation

dim X: the covering dimension of X and $\operatorname{coh.dim} X$ the cohomological dimension of a space X, i.e.,

 $\operatorname{coh.dim} X = \max\{n \mid \check{H}^n(X) \neq 0\}$

where $\check{H}^n(-)$ denotes the Čech cohomology with coefficients $\mathbb{F} = \mathbb{Z}_p$ or $\mathbb{F} = \mathbb{Q}$, depending on whether $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$.

We have $\operatorname{coh.dim} X \leq \dim X$.

Notation

dim X: the covering dimension of X and $\operatorname{coh.dim} X$ the cohomological dimension of a space X, i.e.,

$$\operatorname{coh.dim} X = \max\{n \mid \check{H}^n(X) \neq 0\}$$

where $\check{H}^n(-)$ denotes the Čech cohomology with coefficients $\mathbb{F} = \mathbb{Z}_p$ or $\mathbb{F} = \mathbb{Q}$, depending on whether $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$.

We have $\operatorname{coh.dim} X \leq \dim X$.

Also, $H_*(-)$, $H^*(-)$ ($\tilde{H}_*(-)$, $\tilde{H}^*(-)$) the (reduced) singular (co)homology with coefficients $\mathbb{F} = \mathbb{Z}_p$ or $\mathbb{F} = \mathbb{Q}$, depending on whether $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$.

Bourgin-Yang theorems for the *p*-tora

Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k \forall$ nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k \forall$ nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.

Denote $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$, and correspondingly $d(W) = \dim_{\mathbb{C}} W = \frac{1}{2} \dim_{\mathbb{R}} W$.

Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k \forall$ nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.

Denote $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$, and correspondingly $d(W) = \dim_{\mathbb{C}} W = \frac{1}{2} \dim_{\mathbb{R}} W$.

If $G = \mathbb{Z}_2^k$ and V, W are orthogonal representations of G, then denote $d(V) = \dim_{\mathbb{R}} V$, and respectively $d(W) = \dim_{\mathbb{R}} W$.

Introduction Main theorems References Classical proof of Bourgin-Yang theoremThe length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Recall that for $G = \mathbb{Z}_p^k$, with p prime odd, and $G = \mathbb{T}^k \forall$ nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure, $\implies V$ and W admit it too.

Denote $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$, and correspondingly $d(W) = \dim_{\mathbb{C}} W = \frac{1}{2} \dim_{\mathbb{R}} W$.

If $G = \mathbb{Z}_2^k$ and V, W are orthogonal representations of G, then denote $d(V) = \dim_{\mathbb{R}} V$, and respectively $d(W) = \dim_{\mathbb{R}} W$.

For a G-map $f: S(V) \rightarrow W$ we study the set

$$Z_f := f^{-1}(0) \subset S(V)$$

Bourgin-Yang theorems for the *p*-tora

Let \mathcal{A} be a set of G-spaces, h^* a multiplicative equivariant cohomology theory, and $I \subseteq h^*(\text{pt})$ an ideal.

Definition

The (\mathcal{A}, h^*, I) -length of a *G*-space *X* is defined to be the smallest integer $k \ge 1$ such that there exist $A_1, \ldots, A_k \in \mathcal{A}$ with the property that for any $\alpha_i \in I \cap \ker[h^*(\mathsf{pt}) \to h^*(A_i)], 1 \le i \le k$,

$$p_X^*(\alpha_1) \smile \cdots \smile p_X^*(\alpha_k) = 0,$$

where $p_X : X \to pt$.

Bourgin-Yang theorems for the *p*-tora

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Theorem ([3, Theorem 4.7])

The length has the following properties:

- (1) If there \exists an h^* -functorial G-equivariant map $X \to Y$, then $\ell(X) \leq \ell(Y)$.
- (2) Let $A, B \subseteq X$ be G-invariant subspaces such that $h^*(X, A) \times h^*(X, B) \xrightarrow{\smile} h^*(X, A \cup B)$ is defined. If $A \cup B = X$, then $\ell(X) \le \ell(A) + \ell(B)$.
- (3) If $h^* = H^*_G$, I is noetherian and X is paracompact, then any GA = A, $cl A = A \subseteq X$ has an open G-neighborhood $\mathcal{U} \subseteq X$ such that $\ell(\mathcal{U}) = \ell(A)$.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Theorem ([3, Theorem 4.7])

The length has the following properties:

- (1) If there \exists an h^* -functorial G-equivariant map $X \to Y$, then $\ell(X) \leq \ell(Y)$.
- (2) Let A, $B \subseteq X$ be G-invariant subspaces such that $h^*(X, A) \times h^*(X, B) \xrightarrow{\smile} h^*(X, A \cup B)$ is defined. If $A \cup B = X$, then $\ell(X) \le \ell(A) + \ell(B)$.
- (3) If $h^* = H^*_G$, I is noetherian and X is paracompact, then any GA = A, $cl A = A \subseteq X$ has an open G-neighborhood $\mathcal{U} \subseteq X$ such that $\ell(\mathcal{U}) = \ell(A)$.

Depending on the group
$$G$$
, we set:
(1) if $G = (\mathbb{Z}_2)^k$: $h^* = H^*_G(-;\mathbb{Z}_2)$, $I = H^*_G(\mathsf{pt};\mathbb{Z}_2)$,
(2) if $G = (\mathbb{Z}_p)^k$, $p > 2$: $h^* = H^*_G(-;\mathbb{Z}_p)$, $I = (c_1, \ldots, c_k)$,
(2) if $G = (\mathbb{S}^1)^k$, $h^* = U^*(-;\mathbb{C}^n)$
Bourgin-Yang theorems for the *p*-toral

Introduction Main theorems References References Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Not difficult to repeat and get

 $\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = d(V) - d(W)$

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Not difficult to repeat and get

 $\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = d(V) - d(W)$

For $G = (\mathbb{Z}_2)^k$, or correspondingly $G = \mathbb{Z}_p$, p > 2, and $G = \mathbb{S}^1$ one can show that any *G*-invariant closed set

 $\ell(Z) \leq \operatorname{coh.dim} Z + 1$, or respectively $2\ell(Z) \leq \operatorname{coh.dim} Z + 1$.

Not difficult to repeat and get

 $\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = d(V) - d(W)$

For $G = (\mathbb{Z}_2)^k$, or correspondingly $G = \mathbb{Z}_p$, p > 2, and $G = \mathbb{S}^1$ one can show that any *G*-invariant closed set

 $\ell(Z) \leq \operatorname{coh.dim} Z + 1$, or respectively $2\ell(Z) \leq \operatorname{coh.dim} Z + 1$.

The case $G = (\mathbb{S}^1)^k$ can be reduced to $G = \mathbb{S}^1$. However it is not possible to compare $\ell(Z)$ and $\operatorname{coh.dim} Z$ for the group $G = (\mathbb{Z}_p)^k$, p > 2.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory **Bourgin-Yang theorem for** $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Theorem

Let V, W be two orth. representations of $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$ such that $V^G = W^G = \{0\}$. If $f : S(V) \xrightarrow{G} W$ is G-map, then $\operatorname{coh.dim} Z_f \ge \dim_{\mathbb{R}} V - \dim_{\mathbb{R}} W - 1$.

Introduction

Main theorems References

Bourgin-Yang theorems for the *p*-tora

Introduction Main theorems References Classical proof of Bourgin-Yang theoremThe length in equivariant cohomology theory $Bourgin-Yang theorem for <math>G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Theorem

Let V, W be two orth. representations of $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$ such that $V^G = W^G = \{0\}$. If $f : S(V) \xrightarrow{G} W$ is G-map, then $\operatorname{coh.dim} Z_f \ge \dim_{\mathbb{R}} V - \dim_{\mathbb{R}} W - 1$. In part., if $\dim_{\mathbb{R}} W < \dim_{\mathbb{R}} V$, then \nexists G-map $f : S(V) \to S(W)$.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory **Bourgin-Yang theorem for** $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Theorem

Let V, W be two orth. representations of $G = \mathbb{Z}_p^k$ or $G = \mathbb{T}^k$ such that $V^G = W^G = \{0\}$. If $f : S(V) \xrightarrow{G} W$ is G-map, then $\operatorname{coh.dim} Z_f \ge \dim_{\mathbb{R}} V - \dim_{\mathbb{R}} W - 1$. In part., if $\dim_{\mathbb{R}} W < \dim_{\mathbb{R}} V$, then \nexists G-map $f : S(V) \to S(W)$.

Corollary

Let $G = \mathbb{Z}_p^k$ with p > 2, or $G = \mathbb{T}^k$ and V, W as above. Then for any $f : S(V) \xrightarrow{G} W \dim_{\mathbb{R}} V > \dim_{\mathbb{R}} W$ implies $\operatorname{coh.dim} Z_f \ge 1$.

Indeed, $\dim_{\mathbb{R}} V - \dim_{\mathbb{R}} W - 1 = 2d(V) - 2d(W) - 1$ is integral, positive and odd.

Introduction

Main theorems References

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

We shall use a most general version of the Borsuk-Ulam theorem by Assadi in [2, page 23] (for p-torus) and Clapp and Puppe in [8, Theorem 6.4] for the torus and p-torus

(ロ) (同) (E) (E) (E)

We shall use a most general version of the Borsuk-Ulam theorem by Assadi in [2, page 23] (for p-torus) and Clapp and Puppe in [8, Theorem 6.4] for the torus and p-torus

Theorem

Let G be a p-torus or a torus. Let X and Y be G-spaces with fixed-points-free actions; moreover, in the case of a torus action assume additionally that Y has finitely many orbit types. Suppose that $\tilde{H}_j(X) = \tilde{H}^j(X) = 0$ for j < n, Y is compact or paracompact and finite-dimensional, and $H_j(Y) = H^j(Y) = 0$ for $j \ge n$. Then there exists no G-equivariant map of X into Y.

Introduction Main theorems References	Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of <i>p</i> -toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Proof: Denote $m = \dim_{\mathbb{R}} V$ and $n = \dim_{\mathbb{R}} W$ and suppose

 $\operatorname{coh.dim} Z_f < m - n - 1.$

Then,

$$\check{H}^i(Z_f)=0, ext{ for any } i>m-n-2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Introduction
Main theorems
References
References
Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for
$$G = (\mathbb{Z}_p)^k$$
 and $G = (S^1)^k$
Generalization
Characterization of *p*-toral groups
Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Proof: Denote $m = \dim_{\mathbb{R}} V$ and $n = \dim_{\mathbb{R}} W$ and suppose

 $\operatorname{coh.dim} Z_f < m - n - 1.$

Then,

$$\check{H}^i(Z_f)=0, ext{ for any } i>m-n-2.$$

By using Poincaré-Alexander-Lefschetz duality and the long exact sequence of the pair

 $(SV, SV \setminus Z_f)$, we conclude

$$0 = \check{H}^{i}(Z_{f}) = H_{m-1-i}(SV, SV \setminus Z_{f}) = \tilde{H}_{m-i-2}(SV \setminus Z_{f}), \text{ for } j = m-i-2$$

$$\widetilde{H}_j(SV \setminus Z_f) = 0$$
, for $j < n$.

Bourgin-Yang theorems for the *p*-tora

Introduction Main theorems References	Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of <i>p</i> -toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

On the other hand, we have

$$H_j(W \setminus \{0\}) = H_j(SW) = 0$$
, for $j \ge n$.

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

Introduction
Main theorems
References
Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for
$$G = (\mathbb{Z}_p)^k$$
 and $G = (\mathbb{S}^1)^k$
Generalization
Characterization of *p*-toral groups
Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

On the other hand, we have

$$H_j(W \setminus \{0\}) = H_j(SW) = 0$$
, for $j \ge n$.

However,

$$f: SV \setminus Z_f \to W \setminus \{0\}$$

is a G-equivariant map, which contradicts Theorem 4.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○
Introduction
Main theorems
References
Classical proof of Bourgin-Yang theorem
The length in equivariant cohomology theory
Bourgin-Yang theorem for
$$G = (\mathbb{Z}_p)^k$$
 and $G = (\mathbb{S}^1)^k$
Generalization
Characterization of *p*-toral groups
Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

On the other hand, we have

$$H_j(W \setminus \{0\}) = H_j(SW) = 0$$
, for $j \ge n$.

However,

$$f:SV\setminus Z_f\to W\setminus\{0\}$$

is a *G*-equivariant map, which contradicts Theorem 4. In particular, if dim_{\mathbb{R}} $V > \dim_{\mathbb{R}} W$, for a *G*-map $f : S(V) \to W \setminus \{0\} \subset W$ it implies that $\operatorname{coh.dim} Z_f \ge 0$ and, consequently, $Z_f \neq \emptyset$, which gives a contradiction.

| ◆ □ ▶ ◆ 三 ▶ → 三 = → ○ < ○

Introduction Main theorems References Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Theorem

Let
$$G = (\mathbb{Z}_2)^k$$
, $(\mathbb{Z}_p)^k$ or $(\mathbb{S}^1)^k$, with $k \ge 1$.

 Let X be a G-space and a K-orientable closed topological manifold such that H
ⁱ(X) = 0 for i < n − 1.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Theorem

Let $G = (\mathbb{Z}_2)^k$, $(\mathbb{Z}_p)^k$ or $(\mathbb{S}^1)^k$, with $k \ge 1$.

 Let X be a G-space and a K-orientable closed topological manifold such that H
ⁱ(X) = 0 for i < n − 1.

Introduction

References

Main theorems

- Let Y be a G-space and $A \subset Y$ a G-subspace such that Y - A is compact (or paracompact and finite dimensional) and

$$H^i(Y - A) = 0$$
 for $i \ge m$.

Additionally $(Y - A)^G = \emptyset$.

In the case p = 0, i.e. the torus, suppose Y has finitely many orbit type.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Theorem

Let
$$G = (\mathbb{Z}_2)^k$$
, $(\mathbb{Z}_p)^k$ or $(\mathbb{S}^1)^k$, with $k \ge 1$.

 Let X be a G-space and a K-orientable closed topological manifold such that H
ⁱ(X) = 0 for i < n − 1.

Introduction

References

Main theorems

- Let Y be a G-space and $A \subset Y$ a G-subspace such that Y - A is compact (or paracompact and finite dimensional) and

$$H^i(Y-A)=0$$
 for $i\geq m$.

Additionally $(Y - A)^G = \emptyset$. In the case p = 0, i.e. the torus, suppose Y has finitely many orbit type.

If $f: X \longrightarrow Y$ is a G-map, then

dim $f^{-1}(A) \ge n - m - 1$.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization **Characterization of** *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{nk}$

Theorem (Characterization of p-toral groups, WM/DM/ES (12))

a) Let G be a p-toral group $1 \hookrightarrow \mathbb{T}^k \to G \to P \to 1$. Then for the sphere S(V) of a G-Hilbert space (orthogonal representation) V, $V^G = \{0\}$, dim $V = \infty$, and finite dimensional orthogonal representation W of G such that $W^G = \{0\}$, and a G-map $f : S(V) \to W$ we have dim $Z_f = I(Z_f) = \infty$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization **Characterization of** *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{nk}$

Theorem (Characterization of p-toral groups, WM/DM/ES (12))

- a) Let G be a p-toral group $1 \hookrightarrow \mathbb{T}^k \to G \to P \to 1$. Then for the sphere S(V) of a G-Hilbert space (orthogonal representation) V, $V^G = \{0\}$, dim $V = \infty$, and finite dimensional orthogonal representation W of G such that $W^G = \{0\}$, and a G-map $f : S(V) \to W$ we have dim $Z_f = I(Z_f) = \infty$.
- b) If G is not p-toral then \exists an infinite-dim. fixed point free G-Hilbert space V, a finite dimensional representation W of G with $W^G = \{0\}$ and a G-map $f : S(V) \to W$ such that $Z_f = \emptyset$, e.g. dim $Z_f = -1 < \infty$.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ �� ◆

i) Equivariant cohomology theory $h_G^*(X) = \omega_{st}^0(X \times_G EG)$ the Borel construction for the stable cohomotopy theory;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- i) Equivariant cohomology theory $h_G^*(X) = \omega_{st}^0(X \times_G EG)$ the Borel construction for the stable cohomotopy theory;
- ii) By the mentioned theorem

 $h_G^*(pt) = h_G^0(pt) = \omega_{st}^0(BG) = \pi_{st}^0(BG) = \widehat{A(G)},$ where the completion is taken with respect to the ideal $I := \ker \dim : A(G) \to \mathbb{Z}.$

- i) Equivariant cohomology theory $h_G^*(X) = \omega_{st}^0(X \times_G EG)$ the Borel construction for the stable cohomotopy theory;
- ii) By the mentioned theorem

 $h_G^*(pt) = h_G^0(pt) = \omega_{st}^0(BG) = \pi_{st}^0(BG) = \widehat{A(G)},$ where the completion is taken with respect to the ideal $I := \ker \dim : A(G) \to \mathbb{Z}.$

iii) Next, one should use the fact that the completion map $A(G) \rightarrow \widehat{A(G)}$ is injective if \mathcal{P} is a finite *p*-group (E. Laitinen).

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization **Characterization of** *p***-toral groups** Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Let $\ell(X)$ be the *G*-length with respect the above $h_G^*(X)$

Bourgin-Yang theorems for the *p*-tora

◆□> ◆□> ◆目> ◆目> ◆目 ● の Q @ >

Let $\ell(X)$ be the *G*-length with respect the above $h_G^*(X)$ Take X = S(V), *V* infinite-dimensional Hilbert space. Known [3] that $\ell(X) = \ell(pt)$ if *X* is contractible *G*-space.

Let $\ell(X)$ be the *G*-length with respect the above $h_G^*(X)$ Take X = S(V), *V* infinite-dimensional Hilbert space. Known [3] that $\ell(X) = \ell(pt)$ if *X* is contractible *G*-space.

On the other hand for any finite *G* there exists an element $\alpha \in A(G)$ such that $\alpha^n \neq 0$ for every $n \in \mathbb{N}$ (T. tom Dieck). Consequently, its image $\widehat{\alpha} \in \widehat{A(G)} = \omega_{st}^0(BG) = h_G^0(pt)$ has the same property for a *p*-group. This shows that $\ell(pt) = \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Let $\ell(X)$ be the *G*-length with respect the above $h_G^*(X)$ Take X = S(V), *V* infinite-dimensional Hilbert space. Known [3] that $\ell(X) = \ell(pt)$ if *X* is contractible *G*-space.

On the other hand for any finite G there exists an element $\alpha \in A(G)$ such that $\alpha^n \neq 0$ for every $n \in \mathbb{N}$ (T. tom Dieck). Consequently, its image $\widehat{\alpha} \in \widehat{A(G)} = \omega_{st}^0(BG) = h_G^0(pt)$ has the same property for a p-group. This shows that $\ell(pt) = \infty$. From it follows that for every G-map $f : S(V) \to W$

$$\ell(Z_f) \geq \ell(S(V)) - \ell(S(W)) = \infty$$

as $\ell(S(W)) < \infty$. The remaining task is to adapt it for any toral *p*-group and show that also dim $Z_f = \infty$.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k} , $k \geq 2$

V an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ such that $V^G = \{0\}$.

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k} , $k \geq 2$

 $V \text{ an orthogonal repr. of } G = \mathbb{Z}_{p^k} \text{ such that } V^G = \{0\}.$ $\underline{\text{Notation}}: \ d(V) = \begin{cases} \dim_{\mathbb{R}} \text{ if } p = 2\\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} \text{ if } p \text{ is odd} \end{cases}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k} , $k \geq 2$

 $V \text{ an orthogonal repr. of } G = \mathbb{Z}_{p^k} \text{ such that } V^G = \{0\}.$ $\underline{\text{Notation}}: \ d(V) = \begin{cases} \dim_{\mathbb{R}} \text{ if } p = 2\\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} \text{ if } p \text{ is odd} \end{cases}$ For given two powers $1 \le m \le n \le p^{k-1}$ $\text{let } \mathcal{A}_{m,n} := \{G/H \mid H \subset G; \ m \le |H| \le n\}, \tag{1}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k} , $k \geq 2$

$$V \text{ an orthogonal repr. of } G = \mathbb{Z}_{p^k} \text{ such that } V^G = \{0\}.$$

$$\underline{\text{Notation}}: \ d(V) = \begin{cases} \dim_{\mathbb{R}} \text{ if } p = 2\\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} \text{ if } p \text{ is odd} \end{cases}$$
For given two powers $1 \le m \le n \le p^{k-1}$

$$\text{let } \mathcal{A}_{m,n} := \{G/H \mid H \subset G; \ m \le |H| \le n\},$$
(1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V, W two orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, $k \ge 1$, such that $V^G = W^G = \{0\}$. Let $f : S(V) \xrightarrow{G} W$. If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$ then

Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{pk}$

Bourgin-Yang for the cyclic group \mathbb{Z}_{p^k} , $k \geq 2$

$$V \text{ an orthogonal repr. of } G = \mathbb{Z}_{p^k} \text{ such that } V^G = \{0\}.$$

$$\underbrace{\text{Notation:}}_{\text{Interval of } d(V) = \begin{cases} \dim_{\mathbb{R}} & \text{if } p = 2\\ \dim_{\mathbb{C}} = \frac{1}{2} \dim_{\mathbb{R}} & \text{if } p \text{ is odd} \end{cases}$$
For given two powers $1 \le m \le n \le p^{k-1}$

$$\det \mathcal{A}_{m,n} := \{G/H \mid H \subset G; \ m \le |H| \le n\},$$
(1)

Theorem (D. de Mattos, E. dos Santos, WM (12))

Let V, W two orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, $k \ge 1$, such that $V^G = W^G = \{0\}$. Let $f : S(V) \xrightarrow{G} W$. If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$ then

$$d(V) - 1)m_1$$

Bourgin-Yang theorems for the

p-tora

Introduction Main theorems References
Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Corollaries

Corollary (already from Bartsch B–U for $G = \mathbb{Z}_{p^k}$)

In particular, if $d(W) < d(V)/p^{k-1}$, then dim $Z_f \ge 0$, \implies **no** *G*-equivariant map $f : S(V) \rightarrow S(W)$.

Bourgin-Yang theorems for the *p*-tora

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Introduction Main theorems References Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Corollaries

Corollary (already from Bartsch B–U for $G = \mathbb{Z}_{p^k}$)

In particular, if $d(W) < d(V)/p^{k-1}$, then dim $Z_f \ge 0$, \implies **no** *G*-equivariant map $f : S(V) \rightarrow S(W)$.

Example given by T. Bartsch

If $1 \hookrightarrow G_0 \hookrightarrow G \to \Gamma \to 1$ is a compact Lie group and Γ has an element of order p^2 , then there exist V, Worthogonal repr. $V^G = \{0\} = W^G$, dim $W < \dim V$ and a *G*-equivariant map $f : S(V) \to S(W)$.

Bourgin-Yang theorems for the *p*-tora

Introduction Main theorems References
Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Corollaries

Corollary (already from Bartsch B–U for $G = \mathbb{Z}_{p^k}$)

In particular, if $d(W) < d(V)/p^{k-1}$, then dim $Z_f \ge 0$, \implies **no** *G*-equivariant map $f : S(V) \rightarrow S(W)$.

Example given by T. Bartsch

If $1 \hookrightarrow G_0 \hookrightarrow G \to \Gamma \to 1$ is a compact Lie group and Γ has an element of order p^2 , then there exist V, Worthogonal repr. $V^G = \{0\} = W^G$, dim $W < \dim V$ and a *G*-equivariant map $f : S(V) \to S(W)$.

In particular if $G = \Gamma$ a finite group with an element of order p^2 .

Bourgin-Yang theorems for the *p*-tora

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Introduction Main theorems References Classical proof of Bourgin-Yang theorem The length in equivariant cohomology theory Bourgin-Yang theorem for $G = (\mathbb{Z}_p)^k$ and $G = (\mathbb{S}^1)^k$ Generalization Characterization of *p*-toral groups Bourgin-Yang for the cyclic group $G = \mathbb{Z}_{p^k}$

Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K_G^* theory. Its definition, thus the value, depends on the orbits in X.

 $I_n(X) = (\mathcal{A}_{m,n}, K_G^*, R) - \text{length index of } (X).$ (2)

We use the family $A_{m,n}$ but the invariant does not depend on n.

Bourgin-Yang theorems for the *p*-tora

Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K_G^* theory. Its definition, thus the value, depends on the orbits in X.

 $I_n(X) = (\mathcal{A}_{m,n}, K_G^*, R) - \text{length index of } (X).$ (2)

We use the family $A_{m,n}$ but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$. Fix m, n two powers of p as above. Then

Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K_G^* theory. Its definition, thus the value, depends on the orbits in X.

 $I_n(X) = (\mathcal{A}_{m,n}, K_G^*, R) - \text{length index of } (X).$ (2)

We use the family $A_{m,n}$ but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$. Fix m, n two powers of p as above. Then

$$I_n(S(V)) \geq egin{cases} 1+\left[rac{(d-1)m}{n}
ight] & \textit{if } \mathcal{A}_{S(V)}\subset \mathcal{A}_{m,n}, \ \infty & \textit{if } \mathcal{A}_{S(V)}
ot \subseteq \mathcal{A}_{1,n}, \end{cases}$$

Tools

An index of type $i_{\mathbb{Z}_2}$ for a \mathbb{Z}_{p^k} spaces but defined by use of the equivariant K_G^* theory. Its definition, thus the value, depends on the orbits in X.

 $I_n(X) = (\mathcal{A}_{m,n}, K_G^*, R) - \text{length index of } (X).$ (2)

We use the family $A_{m,n}$ but the invariant does not depend on n.

Theorem (T. Bartsch (90) - fine computation)

Let V be an orthogonal repr. of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$. Fix m, n two powers of p as above. Then

$$I_n(S(V)) \geq egin{cases} 1+\left[rac{(d-1)m}{n}
ight] & \textit{if } \mathcal{A}_{S(V)}\subset \mathcal{A}_{m,n}, \ \infty & \textit{if } \mathcal{A}_{S(V)}
ot \subseteq \mathcal{A}_{1,n}, \end{cases}$$

References

- C. Allday e V. Puppe, Cohomological Methods in Transformation Groups. Cambridge Studies in Advanced Mathematics 32, Cambridge University Press, (1993).
- A. H. Assadi, *Varieties in finite transformation groups*. Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 459-463.
- T. Bartsch, *Topological Methods for Variational Problems with Symmetries*. Lecture Notes in Mathematics 1560, Springer-Verlag Berlin Heidelberg (1993).
- Blaszczyk, Z., Marzantowicz, W. e Singh, M., *General Bourgin-Yang theorems*. arxiv:1512.02399 (2015).
- A. Borel, *Seminar on transformation Groups*. Princeton: Princeton University Press (1960).

- K. Borsuk. *Drei Sätze Über die n-dimensionale euklidische Sphäre*, Fund. Math. 20 177-190, (1933).
- D. G. Bourgin, *On some separation and mapping theorems*. Comment. Math. Helv. 29 (1955), 199-214.
- M. Clapp e D. Puppe, *Critical point theory with symmetries*. J. reine angew. Math. **418** (1991), 1-29.
- D. de Mattos and E. L. dos Santos, A parametrized Borsuk-Ulam theorem for a product of spheres with free Z_p-action and free S¹-action, Algebraic and Geometric Topology 7 (2007) 1791-1804.
- A. Dold, Parametrized Borsuk-Ulam theorems. Comment. Math. Helv. 63 (1988) n. 2, 275-285.

- M. Izydorek e S. Rybicki, On parametrized Borsuk-Ulam theorem for free ℤ_p-action. Algebraic topology (San Feliu de Guixols 1990) 227-234, Lecture Notes in Math., 1509, Springer, Berlin, (1992).
- J. Jaworowski, A continuous version of the Borsuk-Ulam theorem. Proc. Amer. Math. Soc., 82(1):112-114, (1981).
- J. Jaworowski, *Fibre-preserving maps of sphere-bundles into vector space bundles.* In Fixed point theory (Sherbrooke, Que., 1980), Lecture Notes in Math. 886, pages 154-162. Springer, (1981).
- J. Jaworowski, *Bundles with periodic maps and* mod *p Chern polynomial*. Proc. of the Amer. Math. Soc. 132, no. 4, (2004) 1223-1228.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- W. Marzatowicz e M. Izydorek, *Equivariant maps between cohomology spheres*. Topol. Methods Nonlinear Anal. **5** (1995), 279-290.
- W. Marzantowicz, D. de Mattos and E. L. dos Santos, Bourgin-Yang version of the Borsuk-Ulam theorem for Z_p^k -equivariant maps. Algebraic and Geometric Topology 12 (2012) 2146-2158.
- W. Marzantowicz, D. de Mattos e E. L. dos Santos, Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups. arXiv:1302:1494 (2014).
- J. Matousek, *Using the Borsuk-Ulam Theorem*. Universitext, Springer-Verlag,(2002).

Bourgin-Yang theorems for the *p*-tora

- N. Mramor-Kosta, A parametrized Borsuk-Ulam theorem for Banach bundles. Glas. Mat. Ser. III 30(50) (1995), no. 1, 111-127.
- H. J. Munkholm, A Borsuk-Ulam theorem for maps from a sphere to a compact topological manifold. Illinois J. Math. 13 (1969), 116-124.
- H. J. Munkholm, Borsuk-Ulam type theorems for proper Z_p -actions on (mod p homology) n- spheres, Math. Scand. 24 (1969), 167-185.
- H. J. Munkholm, On the Borsuk-Ulam theorem for \mathbb{Z}_{p^k} -actions on S^{2n-1} and maps $S^{2n-1} \longrightarrow \mathbb{R}^n$. Math. Scand. 24 (1969), 167-185.
 - M. Nakaoka, Parametrized Borsuk-Ulam theorems and characteristic polynomials. Topological fixed point theory and Bourgin-Yang theorems for the p-tora

applications (Tianjin, 1988), 155-170. Lecture Notes in Math. 1411, Springer, Berlin, (1989).

- G. Segal, *Equivariant K-theory*. Publ. Math. IHES **34** (1968) 129-151.
- H. Steinlein, *Borsuk's antipodal theorem and its generalizations and applications: a survey.* Topological methods in nonlinear analysis, 166-235, Sm. Math. Sup. 95, Presses Univ. Montreal, Montreal, QC, (1985).
- A. Volovikov, *The Bourgin-Yang theorem*, Uspekhi Mat. Nauk 35 (1980), 159-162 (Russian).
- A. Volovikov, A theorem of Bourgin-Yang type for (Z_p)ⁿ-actions, Mat. Sb. 183 (1992), 115-144. (Russian; English translation in Russia Acad. Sci. Sb.

- A. Y. Volovikov, On a topological generalization of Tveberg's theorem, (Russian) Mat. Zametki 59 (1996), n. 3, 454-456; translation in Math. Notes 59 (1996), n. 3-4, 324-325.
- C. T. Yang, On the theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, I. Ann. of Math. 60:2, 262-282 (1954).
- C. T. Yang, On Theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, II. Annals of Mathematics, Second Series, Vol. 62, No. 2 (Sep., 1955), pp. 271-283.

Bourgin-Yang theorems for the *p*-tora