On the complexity of some packing and covering problems in certain graph classes

Andreas Brandstädt, University of Rostock, Germany (with various coauthors)

G = (V,E) - a finite undirected graph. $U \subseteq V$ is a *vertex cover* of *G* if for every edge *e* of *G*, *U* contains at least one vertex of *e*.

Problem [GT1] of [Garey, Johnson, 1979]: **INSTANCE**: Graph G=(V, E), positive integer $K \le |V|$. **QUESTION**: Is there a vertex cover of size *K*

or less for *G*?

Vertex cover versus other problems

Observation.

- (1) *U* is a vertex cover of $G \Leftrightarrow$
- V U is an independent vertex set in G.
- (2) *U* is an \subseteq maximal independent set in *G* \Leftrightarrow *U* is an independent dominating set in *G*.

	1	2	3	4	5	6	7	8	9
1	?			?					?
2									
3	?								
4		?		?			?		
5				?					
6									
7				?					?

reconfigurable arrays

	1	2	3	4	5	6	7	8	9
1									
2									
3		1		1	1	1	1	1	
4									
5		1							
6									
7									

	1	2	3	4	5	6	7	8	9
1									
2									
3									
4									
5									
6									
7									

	1	2	3	4	5	6	7	8	9
1									
2									
3									
4									
5									
6									
7									

	1	2	3	4	5	6	7	8	9
1	?			?					?
2									
3	?								
4		?		?			?		
5				?					
6									
7				?					?

 $x_1 \bullet$

 $x_1 \bullet$ $x_3 \bullet \bullet y_2$

 $x_5 \bullet \bullet y_7$

 $x_7 \bullet$

Theorem [D. König, 1930] In a bipartite graph B = (X, Y, E), minimum size of a vertex cover = maximum size of a matching.

Maximum Independent Sets

G = (V,E) - a finite undirected graph, w - a vertex weight function on V. $U \subseteq V$ is stable or independent if all vertices of U are pairwise nonadjacent. $\alpha(G) = \max size$ of a stable vertex set in G

 $\alpha_w(G) = \max weight$ of a stable vertex set in G

Maximum Independent Set

Problem [GT20] of [Garey, Johnson, 1979]: INSTANCE: Graph G=(V,E), integer *K*. QUESTION: Does *G* contain an independent set of size *K* or more? Let MIS (MWIS, resp.) denote the unweighted

(vertex-weighted, resp.) problem.

Exact Cover by 3-Sets (X3C)

Problem [SP2] of [Garey, Johnson, 1979]: **INSTANCE:** A finite set X with |X| = 3q and a collection C of 3-element subsets of X. **QUESTION:** Does *C* contain an *exact cover* for X, that is, a subcollection D of C such that every element of X occurs in exactly one member of *D*?

Let G = (V, E) be a finite undirected graph. A vertex v *is dominated* by itself and its neighbors, i.e., v *dominates* N[v]. [Bange, Barkauskas, Slater 1988]: D is an *efficient dominating* (e.d.) set in G if (1) it is dominating in G and (2) every vertex is dominated exactly once.

Efficient dominating sets in *G* are also called *independent perfect dominating sets*.

Let $G^2 = (V, E^2)$ with $xy \in G^2$ if the distance between x and y in G is at most 2.

Fact. Let N(G) denote the closed neighborhood hypergraph of G. Then:

 $G^2 = L(N(G))$ holds.

Fact. The following are equivalent for $D \subseteq V$: (1) *D* is an e.d. set in *G*. (2) *D* dominating in *G* and independent in G^2 . (3) the closed neighborhoods $N[v], v \in D$, are an *exact cover of* N(G).

Corollary. *G* has an e.d. $\Leftrightarrow N(G)$ has an exact cover.

Efficient Domination (ED) Problem

INSTANCE: A finite graph G = (V, E). **QUESTION:** Does *G* have an e.d. set?

Theorem [Yen, Lee 1996]

The ED Problem is NP-complete for bipartite graphs and for chordal graphs.

Proof by simple reduction from X3C:

Theorem [Lu, Tang 2002]

The ED problem is NP-complete for chordal bipartite graphs.

(proof by complicated reduction from 1-in-3 3SAT)

Recall: *D* is an efficient dominating set in *G* \Leftrightarrow *D* is dominating in *G* and independent in *G*².

- Let w(v) := |N[v]|. Then:
- (i) *D* dominating in $G \Rightarrow |V| \le w(D)$.
- (ii) *D* independent set in $G^2 \Rightarrow w(D) \le |V|$.

Recall: w(v) := |N[v]|. **Fact 1** [Leitert, 2012] D is an e.d. set in $G \Leftrightarrow D$ is a minimum weight dominating set in G with w(D) = |V|. Fact 2 [Leitert; Milanič, 2012] D is an e.d. set in $G \Leftrightarrow D$ is a maximum weight independent set in G^2 with w(D) = |V|.

Corollary. Let *C* be a graph class. If the MWIS problem is solvable in polynomial time for G^2 , for all $G \in C$, then the ED problem is solvable in polynomial time on *C*.

Examples:

dually chordal graphs: squares are chordal.

AT-free graphs: squares are co-comparability.

Corollary. The ED problem is solvable in polynomial time for dually chordal graphs and thus also for strongly chordal graphs.

Open [Lu, Tang 2002]

Complexity of ED for convex bipartite graphs and for strongly chordal graphs.

Recall:

 $G \text{ strongly chordal} \Rightarrow G \text{ dually chordal}$ $G \text{ convex bipartite} \Rightarrow G \text{ interval bigraph}$ $\Rightarrow G \text{ chordal bipartite}$

Theorem [Bui-Xuan, Telle, Vatshelle, 2011] If for a graph class, boolean width is at most O(log *n*) then the Minimum Weight Dominating Set problem can be solved in polynomial time.

Theorem [Keil, 2012] Boolean width of interval bigraphs is at most 2 log *n*.

Corollary.

For interval bigraphs, the ED problem can be solved in polynomial time.

Recall:

G convex bipartite \Rightarrow *G* interval bigraph

[Grinstead, Slater, Sherwani, Holmes, 1993]: $M \subseteq E$ is an *efficient edge dominating* (*e.e.d.*) *set* in *G* if *M* is dominating in *L*(*G*) and every edge of *E* is dominated exactly once in *L*(*G*) (that is, *M* is an efficient dominating set in *L*(*G*)).

Not every graph (not every tree !) has an efficient edge dominating set:

Efficient Edge Domination (EED) Problem

INSTANCE: A finite graph G = (V, E). **QUESTION:** Does *G* have an e.e.d. set? **Theorem** [Grinstead, Slater, Sherwani, Holmes, 1993] The EED Problem is NP-complete.

Efficient edge dominating sets are also called dominating induced matchings (d.i.m.): **Fact.** *M* is an e.e.d. in graph $G = (V,E) \Leftrightarrow$ (1) *M* is an *induced matching* in *G* (that is, pairwise distance of edges in M at least 2), (2) every edge in E is intersected by exactly one edge from M.

Theorem [Lu, Tang 1998, Lu, Ko, Tang 2002] EED is NP-complete for bipartite graphs, and is solvable in linear time for bipartite permutation graphs, generalized series-parallel graphs and for chordal graphs.

Theorem [Lu, Tang 1998, Lu, Ko, Tang 2002] EED is NP-complete for bipartite graphs, and is solvable in linear time for bipartite permutation graphs, generalized series-parallel graphs and for chordal graphs.

Open [Lu, Ko, Tang 2002]

Complexity of EED for weakly chordal graphs and for permutation graphs.

Theorem [Cardoso, Lozin 2008] EED is NP-complete for (very special) bipartite graphs, and is polynomial time solvable for claw-free graphs.

Open [Cardoso, Korpelainen, Lozin 2011] Complexity of EED for

- P_k -free graphs, k > 4
- chordal bipartite graphs
- weakly chordal graphs

Theorem [B., Hundt, Nevries 2009, LATIN 2010] The EED problem is solvable in

- linear time for chordal bipartite graphs,
- polynomial time for hole-free graphs, and
- is NP-complete for planar bipartite graphs with maximum degree 3.

Theorem [B., Mosca, ISAAC 2011] EED in linear time for P₇ -free graphs in a robust way.

Theorem [B., Mosca, ISAAC 2011] EED in linear time for P₇ -free graphs in a robust way.

EED in Monadic Second Order Logic:

Fact. G = (V, E) has an e.e.d. \Leftrightarrow

 $\exists E' \subseteq E \ \forall e \in E \ \exists ! e' \in E' \ (e \cap e' \neq \emptyset)$

Recall: *D* is an efficient edge dominating set in $G \Leftrightarrow D$ is dominating in L(G) and independent in $L(G)^2$, i.e., *D* is an e.d. set in L(G).

Let w(e) := |N[e]| (neighborhood w.r.t. L(G)). **Fact.** *M* is an efficient edge dominating set in $G \Leftrightarrow M$ is a maximum weight independent set in $L(G)^2$ with w(M) = |E|.

Squares of Line Graphs

- *G* chordal $\Rightarrow L(G)^2$ chordal [Cameron 1989]
- *G* circular-arc $\Rightarrow L(G)^2$ circular-arc [Golumbic, Laskar 1993]
- *G* co-comparability $\Rightarrow L(G)^2$ co-comparability [Golumbic, Lewenstein 2000]
- *G* weakly chordal $\Rightarrow L(G)^2$ weakly chordal [Cameron, Sritharan, Tang 2003]
- stronger result for AT-free graphs [J.-M. Chang 2004]

Recall: If the MWIS problem is solvable in polynomial time for the squares of the line graphs of all graphs in *C* then the EED problem is solvable in polynomial time on *C*. **Corollary.**

EED in polynomial time for weakly chordal graphs and for permutation graphs.

ED for hypergraphs

- H = (V,E) a finite hypergraph. $D \subseteq V$ is an *e.d. set* in *H* if *D* is an e.d. set in 2sec(H).
- **Theorem.** The ED problem is NP-complete for α -acyclic hypergraphs, and is solvable in polynomial time for hypertrees.

EED for hypergraphs

- H = (V,E) a finite hypergraph. $M \subseteq E$ is an *e.e.d. set* in *H* if *M* is an e.e.d. set in L(H).
- **Theorem.** The EED problem is solvable in polynomial time for α -acyclic hypergraphs, and is NP-complete for hypertrees.

Maximum induced matchings for hypergraphs

H = (V,E) - a finite hypergraph. $M \subseteq E$ is an *induced matching* in *H* if *M* is an independent node set in $L(H)^2$.

Theorem. The MIM problem is solvable in polynomial time for α -acyclic hypergraphs, and is NP-complete for hypertrees.

Exact Cover for hypergraphs

Theorem. The Exact Cover problem is NPcomplete for α -acyclic hypergraphs, and is solvable in polynomial time for hypertrees.

	chordal	dually chordal	acyclic hyp.	hypertrees
ED	NP-c. []	lin.	NP-c.	pol.
EED	lin. []	lin.	pol.	NP-c.
MIM	pol. []	NP-c.	pol.	NP-c.
XC			NP-c.	pol.

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Exact Cover

Let H = (V, E) be a hypergraph, *C* a collection of hyperedges, and let w(e) := |e|. If the edges in *C* are pairwise disjoint then $w(C) \le |V|$. **Fact.** The following are equivalent:

- *C* is an exact cover of *V*.
- edges in C pairwise disjoint and w(C)=|V|.
- *C* maximum independent in L(H), w(C)=|V|.

Exact Cover

Corollary. Exact Cover is solvable in polynomial time for every class *C* of hypergraphs for which MWIS is solvable in polynomial time on the line graphs of *C*.
Example. Exact Cover is solvable in polynomial time for *hypertrees*: Their line

graphs are chordal.

Hypertrees

A hypergraph *H* is a *hypertree* if there is a tree *T* such that every hyperedge of *H* induces a connected subgraph in *T*.

Theorem [Duchet, Flament, Slater 1976] *H* is a hypertree \Leftrightarrow *H* is Helly and *L*(*H*) is chordal.

Dually chordal graphs

Let N(G) denote the *closed neighborhood hypergraph* of graph *G*.

A graph G is *dually chordal* if N(G) is a hypertree.

Fact.

 $G^2 = L(N(G)).$

Dually chordal graphs

Theorem [B., Dragan, Chepoi, Voloshin1994] *G* is dually chordal $\Leftrightarrow G^2$ is chordal and N(G)has the Helly property \Leftrightarrow its clique hypergraph is a hypertree.

(and various other characterizations in [BDCV 1994], [Szwarcfiter, Bornstein1994], [Gutierrez, Oubina 1996] ...

Dually chordal graphs

Theorem [B., Dragan, Chepoi, Voloshin1994] *G* is strongly chordal \Leftrightarrow *G* is hereditarily dually chordal.

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Strongly chordal graphs

G is *strongly chordal* if *G* is sun-free (i.e., S_k – free for any $k \ge 3$) and chordal.

Theorem.

G is strongly chordal \Leftrightarrow it is hereditarily dually chordal.

(and many other characterizations ...)

Theorem [Lubiw 1982; Dahlhaus, Duchet 1987; Raychaudhuri 1992] For every $k \ge 2$: *G* strongly chordal \Rightarrow *G*^{*k*} strongly chordal.

Tree Structure of Hypergraphs

Let H=(V, E) be a hypergraph.

T is a *join tree* of *H* if *E* is the set of nodes of *T* and for all vertices $v \in V$, the occurencies of *v* in nodes of *T* form subtrees of *T*.

H is α -acyclic if *H* has a join tree.

Chordal graphs

Theorem [Walter, Gavril, Buneman 1972] *G* is chordal \Leftrightarrow *G* is the intersection graph of subtrees of a tree.

Corollary. *G* is chordal \Leftrightarrow the hypergraph of its \subseteq -maximal cliques has a join tree (which is called *clique tree* for graphs).

Tree Structure

Let H=(V, E) be a hypergraph. H is *conformal* if every maximal clique of its 2-section graph is contained in a hyperedge. **Theorem** [Duchet, Flament, Slater 1976] H is α -acyclic \Leftrightarrow H is conformal and its 2-section graph is chordal.

Tree Structure

Fact. H is a hypertree \Leftrightarrow its dual is α -acyclic. **Theorem** [Duchet, Flament, Slater 1976] *H* is a hypertree \Leftrightarrow *H* is Helly and its line graph is chordal.