Normal basis

Amela Muratovic-Ribic
University of Sarajevo,
Department of mathematics

10.10.2013

Finite fields

- Let \mathbb{F}_{q} be a finite field of the characteristic p-prime, $q=p^{n}$.
- \mathbb{F}_{q} contains \mathbb{Z}_{p} as a subfield. \mathbb{F}_{q} is an extension field of \mathbb{Z}_{p}.
- n is the degree of the extension \mathbb{F}_{q} when it is considered as a vector space over its subfield \mathbb{Z}_{p}.
- If K is a subfield of \mathbb{F}_{q} then the order of K is p^{m} where m is a positive divisor of n. There exists exactly one such subfield.

Finite fields

- Set $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$ is a cyclic group with respect to the multiplication.
- Generator of this cyclic group, ψ, is called a primitive element of \mathbb{F}_{q}.
- If ψ is the primitive element, then ψ^{k} is also the primitive element whenever $g . c . d(k, q-1)=1$
- and therefore \mathbb{F}_{q} contains $\phi(q-1)$ primitive elements where ϕ is Euler's function.

Finite fields

- Set $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$ is a cyclic group with respect to the multiplication.
- Generator of this cyclic group, ψ, is called a primitive element of \mathbb{F}_{q}.
- If ψ is the primitive element, then ψ^{k} is also the primitive element whenever $g . c . d(k, q-1)=1$
- and therefore \mathbb{F}_{q} contains $\phi(q-1)$ primitive elements where ϕ is Euler's function.

Finite fields

- Generally to form an extension $\mathbb{F}_{q^{m}}$ of the finite field \mathbb{F}_{q} we use an irreducible polynomial $f(x)$ of the degree m over \mathbb{F}_{q}
- for a zero ζ of $f(x)$ we define a field

$$
\mathbb{F}_{q^{m}}=\left\{a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\ldots+a_{n-1} \zeta^{n-1} \mid a_{1}, a_{1}, \ldots, a_{n-1} \in \mathbb{F}_{q}\right\} .
$$

- Field $\mathbb{F}_{q^{m}}$ we usually denote by $\mathbb{F}_{q}(\zeta)$ and we call ζ a defining element of $\mathbb{F}_{q^{m}}$.
- $\mathbb{F}_{q}(\zeta)$ is the least extension of \mathbb{F}_{q} that contains the element ζ
- Operations of additions is performed in usual way while operation of multiplication is done modulo $f(\zeta)=0$.

Finite fields

- every primitive element of \mathbb{F}_{q} can serve as a defining element of $\mathbb{F}_{q^{r}}$ over \mathbb{F}_{q}.
- for and finite field \mathbb{F}_{q} and every positive integer n there exists an irreducible polynomial of the degree n.
- If $f(x)$ is irreducible polynomial in $\mathbb{F}_{q}[x]$ of degree m, then it has a root in $\mathbb{F}_{q^{m}}$. Furthermore, all the roots of f are simple and are given by the m distinct elements $\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}$ of $\mathbb{F}_{q^{m}}$.

Finite fields

- Therefore, splitting field of f over \mathbb{F}_{q} is given by $\mathbb{F}_{q^{m}}$.
- If we have two irreducible polynomials of the same degree then they have isomorphic splitting fields.
- Isomorphism can be obtained by sending a root of one polynomial to some root of the other polynomial.
- Definition

Let $\mathbb{F}_{q^{m}}$ be an extension of \mathbb{F}_{q} and let $\alpha \in \mathbb{F}_{q^{m}}$. Then the elements $\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{m-1}}$ are called conjugates of α with respect to \mathbb{F}_{q}.

Conjugates

- The conjugates of $\alpha \in \mathbb{F}_{q^{m}}$ with respect to \mathbb{F}_{q} are distinct if and only if the minimal polynomial of α over \mathbb{F}_{q} has degree m.
- Otherwise, the degree d of this minimal polynomial is a proper divisor of m, and then the conjugates of α with respect to \mathbb{F}_{q} are distinct elements $\alpha, \alpha^{q}, \ldots, \alpha^{q^{d-1}}$, each repeated $\frac{m}{d}$ times.
- Since every power of q is relatively prime to the $q^{m}-1$ all conjugates of the element α have the same order in multiplicative group \mathbb{F}_{q}^{*}.

Conjugates

- Let $\mathbb{F}_{q^{m}}$ be an extension of \mathbb{F}_{q}. By an automorphism σ over $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} we mean an automorphism of $\mathbb{F}_{q^{m}}$ that fixes the elements of \mathbb{F}_{q}.
- Thus σ is one-to one mapping of $\mathbb{F}_{q^{m}}$ to itself such that

$$
\begin{aligned}
\sigma(x+y) & =\sigma(x)+\sigma(y) \\
\sigma(x y) & =\sigma(x) \sigma(y)
\end{aligned}
$$

for all $x, y \in \mathbb{F}_{q^{m}}$.

- Theorem

The distinct automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} are exactly mappings $\sigma_{0}, \sigma_{1}, \sigma_{m-1}$ defined by $\sigma_{j}(x)=x^{q^{j}}$ for all $x \in \mathbb{F}_{q^{m}}$ and $0 \leq j \leq m-1$.

- Now all conjugates of $\alpha \in \mathbb{F}_{q^{m}}$ with respect to \mathbb{F}_{q} are obtained by applying all automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} to the element α.

Normal basis

- The automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} form a cyclic group with the operation being the usual compositions of mappings. This is cyclic group of order m generated by σ_{1}.

Normal basis

- The automorphisms of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} form a cyclic group with the operation being the usual compositions of mappings. This is cyclic group of order m generated by σ_{1}.
- Definition

Lek $K=\mathbb{F}_{q}$ and $F=\mathbb{F}_{q^{m}}$. Then a basis of F over K of the form $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}\right\}$, consisting of a suitable element $\alpha \in F$ and its conjugates with respect to K, is called a normal basis of F over K.

Normal basis

- Let $\alpha \in \mathbb{F}_{8}$ be a root of the irreducible polynomial $x^{3}+x^{2}+1 \in \mathbb{F}_{2}[x]$.
- Then $\left.\alpha, \alpha^{2},{ }^{1}+\alpha+\alpha^{2}\right\}$ is a basis of \mathbb{F}_{8} over \mathbb{F}_{2}.
- On the other hand $\alpha^{4}=\alpha \cdot \alpha^{3}=\alpha \cdot\left(\alpha^{2}+1\right)=\alpha^{2}+\alpha+1$.
- Therefore this is a normal basis.

Normal basis

- Theorem (Normal basis theorem)

For any finite field K and any extension F of K, there exists a normal basis of F over K.

- With a normal basis we have associated trace and a norm functions:

Definition
For $\alpha \in F$, the trace $\operatorname{Tr}_{F / K}(\alpha)$ of α over K is defined by

$$
\operatorname{Tr}_{F / K}(\alpha)=\alpha+\alpha^{q}+\cdots+\alpha^{q^{m-1}}
$$

Trace

- Therefore, Trace of α is the sum of α and its conjugates.
- Let $f(x) \in K[x]$ be a minimal polynomial of $\alpha \in F$ with the degree $d \mid m$. Polynomial $g(x)=f(x)^{m / d} \in K[x]$ is called the characteristic polynomial of α over K.

Trace

- Therefore, Trace of α is the sum of α and its conjugates.
- Let $f(x) \in K[x]$ be a minimal polynomial of $\alpha \in F$ with the degree $d \mid m$. Polynomial $g(x)=f(x)^{m / d} \in K[x]$ is called the characteristic polynomial of α over K. Roots of $f(x)$ are given by $\alpha, \alpha^{q}, \ldots, \alpha^{q^{d-1}}$ and roots of $g(x)$ are exactly conjugates of α with respect to K.
- Therefore coefficient with x^{m-1} in $g(x)$ equals to the $-\operatorname{Tr}_{F / K}(\alpha)$.

Discriminant

- Definition

Discriminant $\Delta_{F / K}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ of the elements $\alpha_{1}, \ldots, \alpha_{m} \in F$ is defiend by the determinant of order m given by

$$
\Delta_{F / K}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)=
$$

$$
\left[\begin{array}{cccc}
\operatorname{Tr}_{F / K}\left(\alpha_{1} \alpha_{1}\right) & \operatorname{Tr}_{F / K}\left(\alpha_{1} \alpha_{2}\right) & \ldots & \operatorname{Tr}_{F / K}\left(\alpha_{1} \alpha_{m}\right) \\
\operatorname{Tr}_{F / K}\left(\alpha_{2} \alpha_{1}\right) & \operatorname{Tr}_{F / K}\left(\alpha_{2} \alpha_{2}\right) & \ldots & \operatorname{Tr}_{F / K}\left(\alpha_{2} \alpha_{m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Tr}_{F / K}\left(\alpha_{m} \alpha_{1}\right) & \operatorname{Tr}_{F / K}\left(\alpha_{m} \alpha_{2}\right) & \ldots & \operatorname{Tr}_{F / K}\left(\alpha_{m} \alpha_{m}\right)
\end{array}\right] .
$$

Discriminant is always an element of K.

Discriminant

- Theorem

Let $K<F$ and $\alpha_{1}, \ldots, \alpha_{m} \in F$. Then $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a basis of F over K if and only if $\Delta_{F / K}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \neq 0$.

- Corollary

Let $\alpha_{1}, \ldots, \alpha_{m} \in F$. Then $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a basis of F over K if and only if

$$
\left[\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{m} \\
\alpha_{1}^{q} & \alpha_{2}^{q} & \ldots & \alpha_{m}^{q} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{q^{m-1}} & \alpha_{2}^{q^{m-1}} & \ldots & \alpha_{m}^{q^{m-1}}
\end{array}\right] \neq 0 .
$$

Corollaries

- Theorem (Hensel)

For $\alpha \in \mathbb{F}_{q^{m}},\left\{\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{m-1}}\right\}$ is a normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} if and only if the polynomials $x^{m}-1$ and $\alpha x^{m-1}+\alpha^{q} x^{m-2}+\cdots+\alpha^{q^{m-2}} x+\alpha^{q^{m-1}}$ in $\mathbb{F}_{q^{m}}[x]$ are relatively prime.

Corollaries

- Theorem (Hensel)

For $\alpha \in \mathbb{F}_{q^{m}},\left\{\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{m-1}}\right\}$ is a normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} if and only if the polynomials $x^{m}-1$ and $\alpha x^{m-1}+\alpha^{q} x^{m-2}+\cdots+\alpha^{q^{m-2}} x+\alpha^{q^{m-1}}$ in $\mathbb{F}_{q^{m}}[x]$ are relatively prime.

- Theorem

Let $\alpha \in \mathbb{F}_{q^{m}}, \alpha_{i}=\alpha^{q^{i}}$, and $t_{i}=\operatorname{Tr}_{F / K}\left(\alpha_{0} \alpha_{i}\right), 0 \leq i \leq n-1$. Then α generates a normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} if and only if the polynomial $N(x)=\sum_{i=0}^{n-1} t_{i} x^{i} \in \mathbb{F}_{q}[x]$ is relatively prime to $x^{m}-1$.

Characterizatzion of normal basis

- Theorem (Perlis)

Net $N=\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ be a normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}. Then an element $\gamma=\sum_{i=0}^{n-1} a_{i} \alpha_{i}$, where $a_{i} \in \mathbb{F}_{q}$ is a normal element if and only if the polynomial $\gamma(x)=\sum_{i=0}^{n-1} a_{i} x \in \mathbb{F}_{q}[x]$ is relatively prime to $x^{n}-1$.

Characterizatzion of normal basis

- Theorem (Perlis)

Net $N=\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ be a normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}. Then an element $\gamma=\sum_{i=0}^{n-1} a_{i} \alpha_{i}$, where $a_{i} \in \mathbb{F}_{q}$ is a normal element if and only if the polynomial $\gamma(x)=\sum_{i=0}^{n-1} a_{i} x \in \mathbb{F}_{q}[x]$ is relatively prime to $x^{n}-1$.

- Definition

For $\alpha \in F=\mathbb{F}_{q^{m}}$ and $K=\mathbb{F}_{q}$, them norm $N_{F / K}(\alpha)$ of α over K is defined by

$$
N_{F / K}(\alpha)=\alpha \cdot \alpha^{q} \cdots \alpha^{q^{m-1}}=\alpha^{\left(q^{m}-1\right) /(q-1)}
$$

Dual basis

- Definition

Let $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $B=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ be bases of F over K. Then B is dual basis of A if $\operatorname{Tr}_{F / K}\left(\alpha_{i} \beta_{j}\right)=\delta_{i}^{j}, \quad 1 \leq i, j \leq n$.

- Dual basis is unique.
- Theorem

The dual basis of a normal basis is normal basis.

- Theorem

Net $N=\left\{\alpha_{0}, \alpha_{1}, \alpha_{n-1}\right\}$ be a normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}. Let $t_{i}=\operatorname{Tr}_{F / K}\left(\alpha_{0} \alpha_{i}\right)$, and $N(x)=\sum_{i=0}^{n-1} t_{i} x i$. Furthermore, let $D(x)=\sum_{i=0}^{n-1} d_{i} x^{i}, d_{i} \in \mathbb{F}_{q}$, be the unique polynomial such that $N(x) D(x)=1\left(\left(\bmod x^{n}\right)-1\right)$. Then the dual basis of N is generated by $\beta=\sum_{i=0}^{n-1} d_{i} \alpha_{i}$.

Composition of normal basis

Theorem (Perlis)

Let t and v be an positive integers. If α is a normal element of $\mathbb{F}_{q^{v t}}$ over \mathbb{F}_{q} then $\gamma=T R_{q^{v t} \mid q^{t}}(\alpha)$ is a normal element of $\mathbb{F}_{q^{t}}$ over \mathbb{F}_{q}. Moreover, if α is self-dual normal then so is γ.

Theorem (Pincin, Semaev)
Let $n=v t$ with v and t relatively prime. Then, for $\alpha \in \mathbb{F}_{q^{v}}$ and $\beta \in \mathbb{F}_{q^{t}}, \gamma=\alpha \beta$ is a normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} if and only if α and β are normal elements of $\mathbb{F}_{q^{v}}$ and $\mathbb{F}_{q^{t}}$, respectively, over \mathbb{F}_{q}. If α and β generates self-dual normal basis the γ generates a self-dual normal basis too.

Composition of normal basis

Let $m=n_{1} p^{e}$ with $\operatorname{gcd}\left(p, n_{1}\right)=1, t=p^{e}$. Suppose factorization in K

$$
x^{m}-1=\left(f_{1}(x) f_{2}(x) \ldots f_{r}(x)\right)^{t}
$$

Denote by

$$
\phi_{i}(x)=\left(x^{m}-1\right) / f_{i}(x)
$$

Theorem (Schwarz)
An element $\alpha \in F$ is a normal element if and only if $\Phi_{i}(\sigma)(\alpha) \neq 0, \quad i=1,2, \ldots, r$.

Corollary (Perlis)
Let $m=p^{e}$. Then $\alpha \in \mathbb{F}_{q^{m}}$ is a normal over \mathbb{F}_{q} if and only if $\operatorname{Tr}_{r^{\prime} K}(\alpha) \neq 0$

Number of normal basis

For a polynomial $f \in \mathbb{F}_{q}[x]$ define $\Phi_{q}(f)$ as a number of polynomials that are of smaller degree then $f(x)$ and relatively prime to the $f(x)$.

Lemma

The function $\Phi_{q}(f)$ defined for polynomials in $\mathbb{F}_{q}[x]$ has the following properties:

- (i) $\Phi_{q}(f)=1$ iff $\operatorname{deg}(f)=0$;
- (ii) $\Phi_{q}(f g)=\Phi_{q}(f) \Phi_{q}(g)$ whenever f and g are relatively prime;
- (iii) if $\operatorname{deg}(f)=n \geq 1$ then

$$
\Phi_{q}(f)=q^{n}\left(1-q^{-n_{1}}\right)\left(1-q^{-n_{2}}\right) \ldots\left(1-q^{-n_{r}}\right)
$$

where are $n_{1}, n_{2}, \ldots, n_{r}$ the degrees of the distinct irreducible monic polynomials that appears in the canonical factorization of $f(x)$ in $\mathbb{F}_{q}[x]$.

Number of normal basis

- Theorem

In $\mathbb{F}_{q^{m}}$ there are precisely $\Phi_{q}\left(x^{m}-1\right)$ elements ζ such that $\left\{\zeta, \zeta,^{q}, \ldots, \zeta^{q^{m-1}}\right\}$ forms a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.

- Since the elements $\zeta, \zeta^{q}, \ldots, \zeta^{q^{m-1}}$ generates the same normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} there are precisely $\frac{\Phi_{q}\left(x^{m}-1\right)}{m}$ normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.

Number of normal basis

- Theorem

In $\mathbb{F}_{q^{m}}$ there are precisely $\Phi_{q}\left(x^{m}-1\right)$ elements ζ such that $\left\{\zeta, \zeta,^{q}, \ldots, \zeta^{q^{m-1}}\right\}$ forms a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.

- Since the elements $\zeta, \zeta^{q}, \ldots, \zeta^{q^{m-1}}$ generates the same normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} there are precisely $\frac{\Phi_{q}\left(x^{m}-1\right)}{m}$ normal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.
- If $n=n_{1} p^{e}$ then this number is

$$
q^{n-n_{1}} \prod_{d \mid n_{1}}\left(q^{t(d)}-1\right)^{\Phi(d) / t(d)}
$$

where $t(d)$ is order of q modulo d and $\Phi(d)$ is Euler totient function.

N -polynomials

- Normal N-polynomial is irrudicible polynomial whose zeors are normal elements.
- Determining normal elements is equivalent to the determining N -polynomials.
- Theorem (Schwarz)

Let $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q} and α a root of it. Let $x^{m}-1$ factor as before. Then $f(x)$ is an N-polynomial if and only if $L_{\Phi_{i}}(\alpha) \neq 0$ for each $i=1,2, \ldots, r$, where $L_{\Phi_{i}}(x)$ is linearized polynomial, defined by $L_{\Phi_{i}}(x)=\sum_{i=0}^{m} t_{i} x^{q^{i}}$ if $\Phi_{i}(x)=\sum_{i=0}^{m} t_{i} x^{i}$.

N -polynomials

- Corollary (Perlis)

Let $m=p^{e}$ and $f(x)=x^{m}+a_{1} x^{m-1}+\ldots+a_{m}$ be an irreducible polynomial over \mathbb{F}_{q}. Then $f(x)$ is an N-polynomial if and only if $a_{1} \neq 0$.

- Irreducible quadratic polynomial $x^{2}+a_{1} x+a_{2}$ is N-polynomial iff $a_{1} \neq 0$.

Normal basis

- Corollary

Let r be a prime different from p and q is a primitive element modulo r. Then irreducible polynomial
$f(x)=x^{r}+a_{1} x^{r-1}+\ldots+a_{r}$ is an N-polynomial over \mathbb{F}_{q} iff $a_{1} \neq 0$.

- Corollary

Let $m=p^{e} r$ where r is a prime different from p and q is primitive element modulo r. Let $f(x)=x^{m}+a_{1} x^{m-1}+\ldots+a_{m}$ be an irreducible polynomial over \mathbb{F}_{q} and α a root of $f(x)$. Let $u=\sum_{i=0}^{p^{e}-1} \alpha^{q^{i r}}$. Then $f(x)$ is an N-polynomial if and only if $a_{1} \neq 0$ and $u \notin \mathbb{F}_{q}$.

Normal basis

- Randomised algorithms
- Theorem (Artin)

Let $f(x)$ be an irreducible polynomial of degree m over \mathbb{F}_{q} and α a root of $f(x)$. Let

$$
g(x)=\frac{f(x)}{(x-\alpha) f^{\prime}(\alpha)}
$$

Then there are at least $q-m(m-1)$ elements u in \mathbb{F}_{q} such that $g(u)$ is a normal element of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.

- If $q>2 m(m-1)$, an arrbitrary element in $\mathbb{F}_{q^{m}}$ is normal with probability $\geq 1 / 2$. Generally, this probability is at least $\left(1-q^{-1}\right) /\left(e\left(1+\log _{q}(m)\right)\right)$.

Deterministic algoritms

- If $\sigma^{k}(\theta)=\sum_{i=0}^{k-1} c_{i} \sigma^{k}(\theta)$ then $\operatorname{Ord}_{\theta}(x)=x^{k}-\sum_{i=0}^{k-1} c_{i} x^{i}$.can be computed in polynomial time in n and $\log \mathrm{q}$.
- Luneburg's algorithm: For each $i=0,1, \ldots, n-1$ compute $f_{i}=\operatorname{Ord}_{\alpha^{i}}(x)$. Then $x^{n}-1=\operatorname{lcm}\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$.
- Now apply factor refinement to the list of polynomials f_{0}, \ldots, f_{n-1} to obtain relatively prime polynomials $g_{1}, g_{2}, \ldots, g_{r}$ and integers $e_{i j}, 0 \leq i \leq n-1,1 \leq j \leq r$ such that

$$
f_{i}=\prod_{j=1}^{r} g_{j}^{e_{i j}} / g_{j}^{e_{i(j) j}}
$$

and take $\beta_{j}=h_{j}(\sigma)\left(\alpha^{i(j)}\right)$. Then $\beta=\sum_{j=1}^{r} \beta_{j}$ is normal in $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

- $O\left(\left(n^{2}+\log q\right)(n \log q)^{2}\right)$ bit operations.

Lenstra's algoritm

- 1. Take any element $\theta \in \mathbb{F}_{q^{m}}$, and determine $\operatorname{Ord}_{\theta}(x)$.
- 2.If $\operatorname{Ord}_{\theta}(x)=x^{m}-1$ algorithm stops.
- 3.Calculate $g(x)=\left(x^{m}-1\right) / \operatorname{Ord}_{\theta}(x)$ and solve the system of linear equations $g(\sigma(\beta))=\theta$ for β.
- 4. Determine $\operatorname{Ord}_{\beta}(x)$. If $\operatorname{deg}\left(\operatorname{Ord}_{\beta}(x)\right)>\operatorname{deg}\left(\operatorname{Ord}_{\theta}(x)\right)$ replace θ by β and go to the step 2. Otherwise find the nonzero element μ such that $g(\sigma) \mu=0$, replace θ by $\theta+\mu$ and go the the step 1 .
- same complexity

All normal elements

- $x^{n}-1=\left(f_{1}(x) \ldots f_{r}(x)\right)^{t}$ - canonical factorization
- not known for large p
- Theorem

Let W_{i} be a null space of f_{i}^{t} and \tilde{W}_{i} be a null space of $f_{i}^{t-1}(x)$. Let \bar{W}_{i} be any subspace such that $W_{i}=\bar{W}_{i}+\tilde{W}_{i}$. Then $\mathbb{F}_{q^{n}}=\sum_{i=1}^{r} \bar{W}_{i}+\tilde{W}_{i}$ is a direct sum where \bar{W}_{i} has dimension d_{i} and \tilde{W}_{i} has dimension $(t-1) d_{j}$. Element $\alpha=\sum_{i=1}^{r}\left(\bar{\alpha}_{i}+\tilde{\alpha}_{i}\right) \in \mathbb{F}_{q^{n}}$ is a normal over \mathbb{F}_{q} if $\bar{\alpha}_{i} \neq 0$ for each $i=1,2, \ldots, r$.

Optimal normal basis

- Addition is by components in any basis
- Multiplication is problem
- Assume elements

$$
\begin{aligned}
& A=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right), B=\left(b_{0}, \ldots, b_{n-1}\right) \in \mathbb{F}_{q^{n}} \text { and } \\
& C=A B=\left(c_{0}, \ldots, c_{n-1}\right) .
\end{aligned}
$$

- Suppose

$$
\alpha_{i} \alpha_{j}=\sum_{k=0}^{n-1} t_{i j}^{(k)} \alpha_{k}, \quad t_{i j}^{(k)} \in \mathbb{F}_{q} .
$$

- Then $c_{k}=\sum_{i, j} a_{i} b_{j} t_{i j}^{(k)}$
- Matrix $T_{k}=\left(t_{i j}^{(k)}\right)$ is called a multiplication table.

Optimal normal basis

- $A^{q}=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right)$-cyclic shift
- If $p=2$ using repeated square and multiply method exponenation is fast - important in cryptosystems
- In normal basis $t_{i j}^{(I)}=t_{i-l, j-/}^{(0)}$
- Let $\alpha \alpha_{i}=\sum_{j=0}^{n-1} t_{i j} \alpha_{j}, 0 \leq i \leq n-1, t_{i j} \in \mathbb{F}_{q}$. Let $T=\left(t_{i j}\right)$.
- Then $t_{i j}^{(k)}=t_{i-j, k-j}$.

Optimal normal basis

- Number of nonzero elements in T_{k} is same for each k.
- It is called the complexity of normal basis N denoted by c_{N}.
- Theorem

For any normal basis $c_{N} \geq 2 n-1$.

- A normal basis is called optimal if $c_{N}=2 n-1$.

Optimal normal basis

- Number of nonzero elements in T_{k} is same for each k.
- It is called the complexity of normal basis N denoted by c_{N}.
- Theorem

For any normal basis $c_{N} \geq 2 n-1$.

- A normal basis is called optimal if $c_{N}=2 n-1$.
- Theorem

Suppose $n+1$ is a prime and q is primitive in \mathbb{Z}_{n+1}, where q is prime or prime power. Then the n nonunit $(n+1)$ th roots of unity are linearly independent and they form an optimal normal basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Optimal normal basis

- Theorem

Let $2 n+1$ be a prime and assume that either

- (1) 2 is primitive in $\mathbb{Z}_{2 n+1}$, or
- (2) $2 n+1=3(\bmod 4)$ and 2 generates the quadratic residues in $\mathbb{Z}_{2 n+1}$.
Then $\alpha=\gamma+\gamma^{-1}$ generates an optimal normal basis of $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2}, where γ is a primitive $(2 n+1)$ th root of unity.
- If $p=2$ these two types of normal basis are the only optimal normal basis.
- The two basis N and a N are called equivalent if $a N=\{a \alpha: \alpha \in N\}$.
- All optimal normal basis are equivalent to the normal basis mentioned above.

Self-dual normal basis

- Finite field $\mathbb{F}_{q^{n}}$ has self-dual normal basis if and only if both n and q are odd or q is even and n is not divisible by 4 .
- Theorem

For any $\beta \in \mathbb{F}_{q}^{*}$ with $\operatorname{Tr}_{q / p}(\beta)=1, x^{p}-x^{p-1}-\beta^{p-1}$ is irreducible over \mathbb{F}_{q} and its roots form a self-dual normal basis of $\mathbb{F}_{q^{p}}$ over \mathbb{F}_{q} with complexity at most $3 p-2$.

Self-dual normal basis

Theorem
Let n be an odd factor of $q-1$ and $\psi \in \mathbb{F}_{q}$ of multiplicative order n. Then there exists $u<\in \mathbb{F}_{q}$ such that $\left(u^{2}\right)^{(q-1) / n}=\psi$. Let $x_{0}=(1+u) / n$ and $x_{1}=(1+u) /(n u)$. Then the monic polynomial $\frac{1}{1-u^{2}}\left(\left(x-x_{0}\right)^{n}-u^{2}\left(x-x_{1}\right)^{n}\right)$ is irreducible over \mathbb{F}_{q} and its roots form a self-dual normal basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.

Literature

-R. Lidl and H. Niderreiter, Introduction to Finite Fields and their Applications, Cambrige University Press, 1986
-R. Lidl and H. Niderreiter, Finite Fields, Addison-Wesley, 1983
-L. Lempel and M.J.Weinberger, Self-complementary normal basis in finite fields,SIAM J. Disc. Math.,1 (1988)193-198
-D.W.Ash, I.F. Blake and S.A. Vanstone, Low complexity normal basis, Discrete Applied Math.,25(1989),191-210
-E.Bayer-Fluckiger, Self-dual normal bases, Indag.
Math.51(1989),397-383
-T.R.Berger and I. Reiner, A proof of the normal basis theorem,
Amer. Math. Monthly, 82(1975),915-918.
-H.F. Kreimer, Normal basis for Galios p-extensions of rings,
Notices Amer. Mat, Soc., 24 (1977),A-268
-Normal basis over Finite Fields, PhD theses, Shuhong Gao, University of Waterloo.

Thank you

