Amela Muratovic-Ribic University of Sarajevo, Department of mathematics

10.10.2013

<ロト<問ト<臣ト<臣ト 1/43

- Let \mathbb{F}_q be a finite field of the characteristic *p*-prime, $q = p^n$.
- \mathbb{F}_q contains \mathbb{Z}_p as a subfield. \mathbb{F}_q is an extension field of \mathbb{Z}_p .
- *n* is the degree of the extension 𝔽_q when it is considered as a vector space over its subfield ℤ_p.
- If K is a subfield of \mathbb{F}_q then the order of K is p^m where m is a positive divisor of n. There exists exactly one such subfield.

<ロト < 副 ト < 臣 ト < 臣 ト 臣 2000 2/43

- Set 𝔽^{*}_q = 𝔽_q \ {0} is a cyclic group with respect to the multiplication.
- Generator of this cyclic group, ψ , is called a primitive element of \mathbb{F}_q .
- If ψ is the primitive element, then ψ^k is also the primitive element whenever g.c.d(k, q-1) = 1
- and therefore \mathbb{F}_q contains $\phi(q-1)$ primitive elements where ϕ is Euler's function.

- Set 𝔽^{*}_q = 𝔽_q \ {0} is a cyclic group with respect to the multiplication.
- Generator of this cyclic group, ψ , is called a primitive element of \mathbb{F}_q .
- If ψ is the primitive element, then ψ^k is also the primitive element whenever g.c.d(k, q-1) = 1
- and therefore \mathbb{F}_q contains $\phi(q-1)$ primitive elements where ϕ is Euler's function.

<ロ > < 回 > < 国 > < 国 > < 国 > 目 2000 4/43

- Generally to form an extension 𝔽_{q^m} of the finite field 𝔽_q we use an irreducible polynomial f(x) of the degree m over 𝔽_q
- for a zero ζ of f(x) we define a field

$$\mathbb{F}_{q^m} = \{a_0 + a_1\zeta + a_2\zeta^2 + \ldots + a_{n-1}\zeta^{n-1} | a_1, a_1, \ldots, a_{n-1} \in \mathbb{F}_q\}.$$

- Field 𝔽_{q^m} we usually denote by 𝔽_q(ζ) and we call ζ a defining element of 𝔽_{q^m}.
- $\mathbb{F}_q(\zeta)$ is the least extension of \mathbb{F}_q that contains the element ζ

<ロト < 団 > < 臣 > < 臣 > 臣 2000 5/43

 Operations of additions is performed in usual way while operation of multiplication is done modulo f(ζ) = 0.

- every primitive element of 𝔽_q can serve as a defining element of 𝔽_{q^r} over 𝔽_q.
- for and finite field \mathbb{F}_q and every positive integer *n* there exists an irreducible polynomial of the degree *n*.
- If f(x) is irreducible polynomial in F_q[x] of degree m, then it has a root in F_q^m. Furthermore, all the roots of f are simple and are given by the m distinct elements α, α^q,..., α^{q^{m-1}} of F_{q^m}.

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > () のの

- Therefore, splitting field of f over \mathbb{F}_q is given by \mathbb{F}_{q^m} .
- If we have two irreducible polynomials of the same degree then they have isomorphic splitting fields.
- Isomorphism can be obtained by sending a root of one polynomial to some root of the other polynomial.

• Definition

Let \mathbb{F}_{q^m} be an extension of \mathbb{F}_q and let $\alpha \in \mathbb{F}_{q^m}$. Then the elements $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-1}}$ are called conjugates of α with respect to \mathbb{F}_q .

<ロト < 聞 ト < 臣 ト < 臣 ト 臣 ??43

Conjugates

- The conjugates of α ∈ 𝔽_{q^m} with respect to 𝔽_q are distinct if and only if the minimal polynomial of α over 𝔽_q has degree m.
- Otherwise, the degree d of this minimal polynomial is a proper divisor of m, and then the conjugates of α with respect to \mathbb{F}_q are distinct elements $\alpha, \alpha^q, \ldots, \alpha^{q^{d-1}}$, each repeated $\frac{m}{d}$ times.
- Since every power of q is relatively prime to the q^m − 1 all conjugates of the element α have the same order in multiplicative group 𝔽^{*}_q.

<ロト < 団 ト < 臣 ト < 臣 ト 三 8/43

Conjugates

- Let \mathbb{F}_{q^m} be an extension of \mathbb{F}_q . By an automorphism σ over \mathbb{F}_{q^m} over \mathbb{F}_q we mean an automorphism of \mathbb{F}_{q^m} that fixes the elements of \mathbb{F}_q .
- Thus σ is one-to one mapping of \mathbb{F}_{q^m} to itself such that

$$\sigma(x + y) = \sigma(x) + \sigma(y)$$
$$\sigma(xy) = \sigma(x)\sigma(y)$$

for all $x, y \in \mathbb{F}_{q^m}$.

• Theorem

The distinct automorphisms of \mathbb{F}_{q^m} over \mathbb{F}_q are exactly mappings $\sigma_0, \sigma_1, \sigma_{m-1}$ defined by $\sigma_j(x) = x^{q^j}$ for all $x \in \mathbb{F}_{q^m}$ and $0 \le j \le m-1$.

Now all conjugates of α ∈ 𝔽_{q^m} with respect to 𝔽_q are obtained by applying all automorphisms of 𝔽_{q^m} over 𝔽_q to the element α.

 The automorphisms of F_q^m over F_q form a cyclic group with the operation being the usual compositions of mappings. This is cyclic group of order m generated by σ₁.

> <ロト < 回 > < 目 > < 目 > 目 2000 10/43

 The automorphisms of F_q^m over F_q form a cyclic group with the operation being the usual compositions of mappings. This is cyclic group of order m generated by σ₁.

• Definition

Lek $K = \mathbb{F}_q$ and $F = \mathbb{F}_{q^m}$. Then a basis of F over K of the form $\{\alpha, \alpha^q, \ldots, \alpha^{q^{m-1}}\}$, consisting of a suitable element $\alpha \in F$ and its conjugates with respect to K, is called a normal basis of F over K.

<ロト < 副 ト < 臣 ト < 臣 ト 三 2000 11/43

- Let α ∈ 𝔽₈ be a root of the irreducible polynomial x³ + x² + 1 ∈ 𝔽₂[x].
- Then $\alpha, \alpha^2, 1 + \alpha + \alpha^2$ is a basis of \mathbb{F}_8 over \mathbb{F}_2 .
- On the other hand $\alpha^4 = \alpha \cdot \alpha^3 = \alpha \cdot (\alpha^2 + 1) = \alpha^2 + \alpha + 1$.

<ロト < 団 > < 臣 > < 臣 > 三 2000 12/43

• Therefore this is a normal basis.

• Theorem (Normal basis theorem)

For any finite field K and any extension F of K, there exists a normal basis of F over K.

• With a normal basis we have associated trace and a norm functions:

Definition

For $\alpha \in F$, the trace $Tr_{F/K}(\alpha)$ of α over K is defined by

$$Tr_{F/K}(\alpha) = \alpha + \alpha^q + \dots + \alpha^{q^{m-1}}$$

Trace

- Therefore, Trace of α is the sum of α and its conjugates.
- Let f(x) ∈ K[x] be a minimal polynomial of α ∈ F with the degree d | m. Polynomial g(x) = f(x)^{m/d} ∈ K[x] is called the characteristic polynomial of α over K.

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > 14/43

Trace

- Therefore, Trace of α is the sum of α and its conjugates.
- Let f(x) ∈ K[x] be a minimal polynomial of α ∈ F with the degree d | m. Polynomial g(x) = f(x)^{m/d} ∈ K[x] is called the characteristic polynomial of α over K. Roots of f(x) are given by α, α^q,..., α^{q^{d-1}} and roots of g(x) are exactly conjugates of α with respect to K.

<ロト < 副 ト < 臣 ト < 臣 ト 三 2000 15/43

• Therefore coefficient with x^{m-1} in g(x) equals to the $-Tr_{F/K}(\alpha)$.

Discriminant

 Definition
 Discriminant Δ_{F/K}(α₁, α₂,..., α_m) of the elements
 α₁,..., α_m ∈ F is defiend by the determinant of order m given by

$$\Delta_{F/K}(\alpha_1,\alpha_2,\ldots,\alpha_m) =$$

<u>\</u>

<ロト < 団 > < 臣 > < 臣 > 三 2000 16/43

$$\begin{bmatrix} Ir_{F/K}(\alpha_{1}\alpha_{1}) & Ir_{F/K}(\alpha_{1}\alpha_{2}) & \dots & Ir_{F/K}(\alpha_{1}\alpha_{m}) \\ Tr_{F/K}(\alpha_{2}\alpha_{1}) & Tr_{F/K}(\alpha_{2}\alpha_{2}) & \dots & Tr_{F/K}(\alpha_{2}\alpha_{m}) \\ \vdots & \vdots & \ddots & \vdots \\ Tr_{F/K}(\alpha_{m}\alpha_{1}) & Tr_{F/K}(\alpha_{m}\alpha_{2}) & \dots & Tr_{F/K}(\alpha_{m}\alpha_{m}) \end{bmatrix}$$

Discriminant is always an element of K.

Discriminant

Theorem

Let K < F and $\alpha_1, \ldots, \alpha_m \in F$. Then $\{\alpha_1, \ldots, \alpha_m\}$ is a basis of F over K if and only if $\Delta_{F/K}(\alpha_1, \alpha_2, \ldots, \alpha_m) \neq 0$.

Corollary

Let $\alpha_1, \ldots, \alpha_m \in F$. Then $\{\alpha_1, \ldots, \alpha_m\}$ is a basis of F over K if and only if

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_m \\ \alpha_1^q & \alpha_2^q & \dots & \alpha_m^q \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{q^{m-1}} & \alpha_2^{q^{m-1}} & \dots & \alpha_m^{q^{m-1}} \end{bmatrix} \neq \mathbf{0}.$$

Corollaries

• Theorem (Hensel)

For $\alpha \in \mathbb{F}_{q^m}$, $\{\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}\}$ is a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q if and only if the polynomials $x^m - 1$ and $\alpha x^{m-1} + \alpha^q x^{m-2} + \dots + \alpha^{q^{m-2}} x + \alpha^{q^{m-1}}$ in $\mathbb{F}_{q^m}[x]$ are relatively prime.

<ロト < 団 > < 目 > < 目 > 目 2000 18/43

Corollaries

• Theorem (Hensel)

For $\alpha \in \mathbb{F}_{q^m}$, $\{\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{m-1}}\}$ is a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q if and only if the polynomials $x^m - 1$ and $\alpha x^{m-1} + \alpha^q x^{m-2} + \dots + \alpha^{q^{m-2}} x + \alpha^{q^{m-1}}$ in $\mathbb{F}_{q^m}[x]$ are relatively prime.

Theorem

Let $\alpha \in \mathbb{F}_{q^m}$, $\alpha_i = \alpha^{q^i}$, and $t_i = Tr_{F/K}(\alpha_0 \alpha_i)$, $0 \le i \le n-1$. Then α generates a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q if and only if the polynomial $N(x) = \sum_{i=0}^{n-1} t_i x^i \in \mathbb{F}_q[x]$ is relatively prime to $x^m - 1$.

<ロト < 団 > < 臣 > < 臣 > 三 19/43

Characterizatzion of normal basis

• Theorem (Perlis)

Net $N = \{\alpha_0, \ldots, \alpha_{n-1}\}$ be a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Then an element $\gamma = \sum_{i=0}^{n-1} a_i \alpha_i$, where $a_i \in \mathbb{F}_q$ is a normal element if and only if the polynomial $\gamma(x) = \sum_{i=0}^{n-1} a_i x \in \mathbb{F}_q[x]$ is relatively prime to $x^n - 1$.

<ロト < 団 ト < 臣 ト < 臣 ト 三 20/43

Characterizatzion of normal basis

• Theorem (Perlis)

Net $N = \{\alpha_0, \ldots, \alpha_{n-1}\}$ be a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Then an element $\gamma = \sum_{i=0}^{n-1} a_i \alpha_i$, where $a_i \in \mathbb{F}_q$ is a normal element if and only if the polynomial $\gamma(x) = \sum_{i=0}^{n-1} a_i x \in \mathbb{F}_q[x]$ is relatively prime to $x^n - 1$.

• Definition

For $\alpha \in F = \mathbb{F}_{q^m}$ and $K = \mathbb{F}_q$, them norm $N_{F/K}(\alpha)$ of α over K is defined by

$$N_{F/K}(\alpha) = \alpha \cdot \alpha^q \cdots \alpha^{q^{m-1}} = \alpha^{(q^m-1)/(q-1)}.$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 2000 21/43

Dual basis

• Definition

Let $A = \{\alpha_1, \dots, \alpha_n\}$ and $B = \{\beta_1, \dots, \beta_n\}$ be bases of F over K. Then B is dual basis of A if $Tr_{F/K}(\alpha_i\beta_j) = \delta_i^j$, $1 \le i, j \le n$.

Dual basis is unique.

Theorem

The dual basis of a normal basis is normal basis.

Theorem

Net $N = \{\alpha_0, \alpha_1, \alpha_{n-1}\}$ be a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Let $t_i = Tr_{F/K}(\alpha_0\alpha_i)$, and $N(x) = \sum_{i=0}^{n-1} t_i x_i$. Furthermore, let $D(x) = \sum_{i=0}^{n-1} d_i x^i$, $d_i \in \mathbb{F}_q$, be the unique polynomial such that $N(x)D(x) = 1(\pmod{x^n} - 1)$. Then the dual basis of N is generated by $\beta = \sum_{i=0}^{n-1} d_i \alpha_i$.

Composition of normal basis

Theorem (Perlis)

Let t and v be an positive integers. If α is a normal element of $\mathbb{F}_{q^{vt}}$ over \mathbb{F}_q then $\gamma = TR_{q^{vt}|q^t}(\alpha)$ is a normal element of \mathbb{F}_{q^t} over \mathbb{F}_q . Moreover, if α is self-dual normal then so is γ .

Theorem (Pincin, Semaev)

Let n = vt with v and t relatively prime. Then, for $\alpha \in \mathbb{F}_{q^v}$ and $\beta \in \mathbb{F}_{q^t}$, $\gamma = \alpha\beta$ is a normal element of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if α and β are normal elements of \mathbb{F}_{q^v} and \mathbb{F}_{q^t} , respectively, over \mathbb{F}_q . If α and β generates self-dual normal basis the γ generates a self-dual normal basis too.

<ロト < 副 ト < 臣 ト < 臣 ト 三 23/43

Composition of normal basis

Let $m = n_1 p^e$ with $gcd(p, n_1) = 1$, $t = p^e$. Suppose factorization in K

$$x^m - 1 = (f_1(x)f_2(x)\ldots f_r(x))^t$$

Denote by

$$\phi_i(x) = (x^m - 1)/f_i(x).$$

Theorem (Schwarz)

An element $\alpha \in F$ is a normal element if and only if $\Phi_i(\sigma)(\alpha) \neq 0$, i = 1, 2, ..., r.

Corollary (Perlis)

Let $m = p^e$. Then $\alpha \in \mathbb{F}_{q^m}$ is a normal over \mathbb{F}_q if and only if $Tr_{F/K}(\alpha) \neq 0$

Number of normal basis

For a polynomial $f \in \mathbb{F}_q[x]$ define $\Phi_q(f)$ as a number of polynomials that are of smaller degree then f(x) and relatively prime to the f(x).

Lemma

The function $\Phi_q(f)$ defined for polynomials in $\mathbb{F}_q[x]$ has the following properties:

• (i)
$$\Phi_q(f) = 1$$
 iff $deg(f) = 0;$

- (ii) $\Phi_q(fg) = \Phi_q(f)\Phi_q(g)$ whenever f and g are relatively prime;
- (iii) if $\deg(f) = n \ge 1$ then

$$\Phi_q(f) = q^n (1 - q^{-n_1}) (1 - q^{-n_2}) \dots (1 - q^{-n_r})$$

where are $n_1, n_2, ..., n_r$ the degrees of the distinct irreducible monic polynomials that appears in the canonical factorization of f(x) in $\mathbb{F}_q[x]$.

Number of normal basis

Theorem

In \mathbb{F}_{q^m} there are precisely $\Phi_q(x^m - 1)$ elements ζ such that $\{\zeta, \zeta, q, \ldots, \zeta^{q^{m-1}}\}$ forms a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

• Since the elements $\zeta, \zeta^q, \dots, \zeta^{q^{m-1}}$ generates the same normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q there are precisely $\frac{\Phi_q(x^m-1)}{m}$ normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Number of normal basis

Theorem

In \mathbb{F}_{q^m} there are precisely $\Phi_q(x^m - 1)$ elements ζ such that $\{\zeta, \zeta, q, \ldots, \zeta^{q^{m-1}}\}$ forms a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

• Since the elements $\zeta, \zeta^q, \dots, \zeta^{q^{m-1}}$ generates the same normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q there are precisely $\frac{\Phi_q(x^m-1)}{m}$ normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

• If $n = n_1 p^e$ then this number is

$$q^{n-n_1}\prod_{d|n_1}(q^{t(d)}-1)^{\Phi(d)/t(d)}$$

where t(d) is order of q modulo d and $\Phi(d)$ is Euler totient function.

<ロト < 副 ト < 直 ト < 直 ト 三 27/43

N-polynomials

- Normal N-polynomial is irrudicible polynomial whose zeors are normal elements.
- Determining normal elements is equivalent to the determining N-polynomials.
- Theorem (Schwarz)

Let f(x) be an irreducible polynomial of degree n over \mathbb{F}_q and α a root of it. Let $x^m - 1$ factor as before. Then f(x) is an N-polynomial if and only if $L_{\Phi_i}(\alpha) \neq 0$ for each i = 1, 2, ..., r, where $L_{\Phi_i}(x)$ is linearized polynomial, defined by $L_{\Phi_i}(x) = \sum_{i=0}^m t_i x^{q^i}$ if $\Phi_i(x) = \sum_{i=0}^m t_i x^i$.

<ロト<回ト<三ト<三ト<三ト<三、28/43

N-polynomials

• Corollary (Perlis)

Let $m = p^e$ and $f(x) = x^m + a_1 x^{m-1} + \ldots + a_m$ be an irreducible polynomial over \mathbb{F}_q . Then f(x) is an N-polynomial if and only if $a_1 \neq 0$.

<ロト < 団 ト < 臣 ト < 臣 ト 三 29/43

 Irreducible quadratic polynomial x² + a₁x + a₂ is N-polynomial iff a₁ ≠ 0.

• Corollary

Let *r* be a prime different from *p* and *q* is a primitive element modulo *r*. Then irreducible polynomial $f(x) = x^r + a_1x^{r-1} + \ldots + a_r$ is an *N*-polynomial over \mathbb{F}_q iff $a_1 \neq 0$.

• Corollary

Let $m = p^e r$ where r is a prime different from p and q is primitive element modulo r. Let $f(x) = x^m + a_1 x^{m-1} + \ldots + a_m$ be an irreducible polynomial over \mathbb{F}_q and α a root of f(x). Let $u = \sum_{i=0}^{p^e-1} \alpha^{q^{ir}}$. Then f(x) is an N-polynomial if and only if $a_1 \neq 0$ and $u \notin \mathbb{F}_q$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Randomised algorithms
- Theorem (Artin)

Let f(x) be an irreducible polynomial of degree m over \mathbb{F}_q and α a root of f(x). Let

$$g(x) = \frac{f(x)}{(x-\alpha)f'(\alpha)}$$

Then there are at least q - m(m-1) elements u in \mathbb{F}_q such that g(u) is a normal element of \mathbb{F}_{q^m} over \mathbb{F}_q .

• If q > 2m(m-1), an arrbitrary element in \mathbb{F}_{q^m} is normal with probability $\geq 1/2$. Generally, this probability is at least $(1-q^{-1})/(e(1+\log_q(m)))$.

Deterministic algoritms

- If $\sigma^k(\theta) = \sum_{i=0}^{k-1} c_i \sigma^k(\theta)$ then $Ord_{\theta}(x) = x^k \sum_{i=0}^{k-1} c_i x^i$. can be computed in polynomial time in n and log q.
- Luneburg's algorithm: For each i = 0, 1, ..., n-1 compute $f_i = Ord_{\alpha^i}(x)$. Then $x^n 1 = lcm(f_0, f_1, ..., f_{n-1})$.
- Now apply factor refinement to the list of polynomials f_0, \ldots, f_{n-1} to obtain relatively prime polynomials g_1, g_2, \ldots, g_r and integers e_{ij} , $0 \le i \le n-1$, $1 \le j \le r$ such that

$$f_i = \prod_{j=1}^r g_j^{e_{ij}} / g_j^{e_{i(j)j}}$$

and take $\beta_j = h_j(\sigma)(\alpha^{i(j)})$. Then $\beta = \sum_{j=1}^r \beta_j$ is normal in \mathbb{F}_{q^n} over \mathbb{F}_q .

<ロト < 副 ト < 臣 ト < 臣 ト 三 32/43

• $O((n^2 + logq)(nlogq)^2)$ bit operations.

Lenstra's algoritm

- 1. Take any element $\theta \in \mathbb{F}_{q^m}$, and determine $Ord_{\theta}(x)$.
- 2.If $Ord_{\theta}(x) = x^m 1$ algorithm stops.
- 3.Calculate g(x) = (x^m − 1)/Ord_θ(x) and solve the system of linear equations g(σ(β)) = θ for β.
- 4. Determine Ord_β(x). If deg(Ord_β(x)) > deg(Ord_θ(x)) replace θ by β and go to the step 2. Otherwise find the nonzero element μ such that g(σ)μ = 0, replace θ by θ + μ and go the the step 1.

<ロト < 団 ト < 臣 ト < 臣 ト 三 33/43

same complexity

All normal elements

- $x^n 1 = (f_1(x) \dots f_r(x))^t$ canonical factorization
- not known for large p
- Theorem

Let W_i be a null space of f_i^t and \tilde{W}_i be a null space of $f_i^{t-1}(x)$. Let \bar{W}_i be any subspace such that $W_i = \bar{W}_i + \tilde{W}_i$. Then $\mathbb{F}_{q^n} = \sum_{i=1}^r \bar{W}_i + \tilde{W}_i$ is a direct sum where \bar{W}_i has dimension d_i and \tilde{W}_i has dimension $(t-1)d_i$. Element $\alpha = \sum_{i=1}^r (\bar{\alpha}_i + \tilde{\alpha}_i) \in \mathbb{F}_{q^n}$ is a normal over \mathbb{F}_q if $\bar{\alpha}_i \neq 0$ for each i = 1, 2, ..., r.

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > 34/43

- Addition is by components in any basis
- Multiplication is problem
- Assume elements

$$A = (a_0, a_1, \dots, a_{n-1}), B = (b_0, \dots, b_{n-1}) \in \mathbb{F}_{q^n}$$
 and
 $C = AB = (c_0, \dots, c_{n-1}).$

Suppose

$$\alpha_i \alpha_j = \sum_{k=0}^{n-1} t_{ij}^{(k)} \alpha_k, \qquad t_{ij}^{(k)} \in \mathbb{F}_q.$$

<ロト < 副 ト < 直 ト < 亘 ト 三 32,000 35/43

- Then $c_k = \sum_{i,j} a_i b_j t_{ij}^{(k)}$
- Matrix $T_k = (t_{ij}^{(k)})$ is called a multiplication table.

- $A^q = (a_{n-1}, a_0, \dots, a_{n-2})$ -cyclic shift
- If *p* = 2 using repeated square and multiply method exponenation is fast important in cryptosystems
- In normal basis $t_{ij}^{(l)} = t_{i-l,j-l}^{(0)}$
- Let $\alpha \alpha_i = \sum_{j=0}^{n-1} t_{ij} \alpha_j$, $0 \le i \le n-1$, $t_{ij} \in \mathbb{F}_q$. Let $T = (t_{ij})$.

<ロト < 団 ト < 臣 ト < 臣 ト 三 36/43

• Then $t_{ij}^{(k)} = t_{i-j,k-j}$.

- Number of nonzero elements in T_k is same for each k.
- It is called the complexity of normal basis N denoted by c_N .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Theorem

For any normal basis $c_N \ge 2n - 1$.

• A normal basis is called optimal if $c_N = 2n - 1$.

- Number of nonzero elements in T_k is same for each k.
- It is called the complexity of normal basis N denoted by c_N .
- Theorem

For any normal basis $c_N \ge 2n - 1$.

- A normal basis is called optimal if $c_N = 2n 1$.
- Theorem

Suppose n + 1 is a prime and q is primitive in \mathbb{Z}_{n+1} , where q is prime or prime power. Then the n nonunit (n+1)th roots of unity are linearly independent and they form an optimal normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q .

<ロト < 回 ト < 直 ト < 直 ト 三 38/43

Theorem

Let 2n + 1 be a prime and assume that either

- (1) 2 is primitive in \mathbb{Z}_{2n+1} , or
- (2) 2n + 1 = 3(mod4) and 2 generates the quadratic residues in ℤ_{2n+1}.

Then $\alpha = \gamma + \gamma^{-1}$ generates an optimal normal basis of \mathbb{F}_{2^n} over \mathbb{F}_2 , where γ is a primitive (2n + 1)th root of unity.

- If *p* = 2 these two types of normal basis are the only optimal normal basis.
- The two basis N and aN are called equivalent if aN = {aα : α ∈ N}.
- All optimal normal basis are equivalent to the normal basis mentioned above.

Self-dual normal basis

 Finite field 𝔽_{qⁿ} has self-dual normal basis if and only if both n and q are odd or q is even and n is not divisible by 4.

• Theorem

For any $\beta \in \mathbb{F}_q^*$ with $Tr_{q/p}(\beta) = 1$, $x^p - x^{p-1} - \beta^{p-1}$ is irreducible over \mathbb{F}_q and its roots form a self-dual normal basis of \mathbb{F}_{q^p} over \mathbb{F}_q with complexity at most 3p - 2.

Self-dual normal basis

Theorem

Let n be an odd factor of q-1 and $\psi \in \mathbb{F}_q$ of multiplicative order n. Then there exists $u \leq \mathbb{F}_q$ such that $(u^2)^{(q-1)/n} = \psi$. Let $x_0 = (1+u)/n$ and $x_1 = (1+u)/(nu)$. Then the monic polynomial $\frac{1}{1-u^2}((x-x_0)^n - u^2(x-x_1)^n)$ is irreducible over \mathbb{F}_q and its roots form a self-dual normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q .

> <ロト < 回 > < 目 > < 目 > 目 2000 41/43

Literature

-R. Lidl and H. Niderreiter, Introduction to Finite Fields and their Applications, Cambride University Press, 1986 -R. Lidl and H. Niderreiter, Finite Fields, Addison-Wesley, 1983 -L. Lempel and M.J.Weinberger, Self-complementary normal basis in finite fields, SIAM J. Disc. Math., 1 (1988) 193-198 -D.W.Ash, I.F. Blake and S.A. Vanstone, Low complexity normal basis, Discrete Applied Math., 25(1989), 191-210 -E.Bayer-Fluckiger, Self-dual normal bases, Indag. Math.51(1989),397-383 -T.R.Berger and I. Reiner, A proof of the normal basis theorem, Amer. Math. Monthly, 82(1975),915-918. -H.F. Kreimer, Normal basis for Galios p-extensions of rings, Notices Amer. Mat, Soc., 24 (1977), A-268 -Normal basis over Finite Fields, PhD theses, Shuhong Gao, University of Waterloo.

Thank you