Approach of lazy calculations in application to topological graph indices in Sage. Introduction to a new molecular class.

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

May 17, 2012

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

The Sage Project

Mission Statement

Create a viable free open source alternative to Magma, Maple, Mathematica, and Matlab

A "viable alternative" will have ...

- The mathematical features of Magma, Maple, Mathematica, and Matlab with comparable speed.
- Beautiful interactive 2d and 3d graphics.
- A notebook interface and an IDE.
- Many books and Commercial support (e.g., customized notebook servers)

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

What is Sage

- A self-contained distribution of over 90 open source packages that is easy to build from source.
- Interfaces that smoothly tie together all these libraries and packages.
- A new library that implements novel algorithms. About a half million lines of code written by a worldwide community of about 200 people over the last 6 years.

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Sage in use

Command Line Sage

```
sage-4.8.alpha5 - python - 80×24
                                                                     No
MacBook-Pro-Alexander-Vasilyev:sage-4.8.alpha5 Hamster3d$ ./sage
 Sage Version 4.8.alpha5, Release Date: 2011-12-22
| Type notebook() for the GUI, and license() for information.
* Warning: this is a prerelease version, and it may be unstable.
Loading Sage library. Current Mercurial branch is: my
sage:
sage: factor(2012)
2^2 * 503
sage: f = 1/sqrt(x^2 + 2*x - 1); f
1/sart(x^2 + 2*x - 1)
sage: f^2
1/(x^2 + 2x - 1)
sage: f.integrate(x)
log(2*x + 2*sart(x^2 + 2*x - 1) + 2)
sage:
```

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Sage in use Sage notebook

🖲 🔍 🕑 🛐 \ sage intro demo Sage 🛛 😣 😥
← → C 🔇 localhost:8000/home/admin/4/ 😭 🖸 🤻
📙 Словари английског 🛛 Google Переводчик 🥡 словарь Мультитран 🦳 Банк 🔚 Погода 🛛 🔹 🔪 Другие закладкі
Summer Largebast The Sage Notebook admin Toggle Home Published Log Settings Help Report a Problem Sign out
sage intro demo Save Save Quit Discard & quit Liscard & quit Liscard & quit Discard & quit
File + Action + Data + sage + Typeset Print Worksheet Edit Text Undo Share Publish
maxima('2 + 2')
4
$f = maxima('1/sqrt(x^2 + 2*x - 1)'); f$
$\frac{1}{\sqrt{z^2+2}z-1}$
f.integrate(x)
$\log\left(2\sqrt{x^2+2x-1}+2x+2\right)$
<pre>maxima.plot2d('cos(2*x) + 2*exp(-x)', '[x,0,1]',</pre>

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Try Sage

Sage is crossplatform. Supported platforms:

- Linux
- Apple Mac OS X
- Solaris
- Microsoft Windows (run on virtual machine with Linux)
- Live CD

The best way to try Sage is using on-line Sage notebook.

Links

Sage homepage www.sagemath.c Sage Notebook www.sagenb.org Sage documentation www.sagemath.c Bug report and contribution trac.sagemath.org

www.sagemath.org www.sagenb.org www.sagemath.org/help.html trac.sagemath.org/sage_trac/report

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Math Chemistry package will include:

Atom-Bond Connectivity Index; Balaban J Index; Balaban-like indices; Degree Distance; Reverse Degree Distance; Detour Index; Hyper-Detour Index; Wiener Index; Hyper-Wiener Indices; Reverse Wiener Index; Modified Wiener index; Variable Wiener index; Terminal Wiener index; Edge Wiener index; y-Wiener index; Reciprocal complimentary Wiener index; Reciprocal reverse Wiener index; Estrada Index; Laplacian Estrada index; Distance Estrada index; Eccentric Connectivity Index; Eccentric Distance Sum; (Schultz) Molecular Topological Index; Reciprocal Molecular Topological Index; Randic Index; (Zeroth-order) General Randic Index; Variable Randic Index; Augmented Zagreb Index; M1, M2 Zagreb index; Path-Zagreb index; Zagreb Coindices; Reformulated Zagreb indices; Edge-Szeged index; Szeged Index; Revised Szeged Index; (Padmakar-Ivan) PI Index; Vertex PI Index; Connectivity Index; Matching number; Number of perfect matchings; 1th,2th,3th Geometric-Arithmetic index; Harary Index; Kirchhoff Index; Hosoya index; Merrifield-Simmons Indices; Spectrum, spread, spectral moments, characteristic polynomial, Energy (Adjacency, Laplacian, Detour, Distance, Reciprocal distance, Normalized laplacian, Signless laplacian, Resistance distance, Harary); Polynomials (Hosoya, Omega, Eccentric connectivity, Wiener, PI, Szeged, Edge-Szeged); Anti-Kekule number; Anti-Forcing Number;

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

First attempt: classical object-oriented approach

Molecule class inherited from the Sage Graph class

Sage Graph class

Molecule class

+ Advantages

- Easy to develop
- Inherited methods such as
 - Graph.show() \rightarrow Molecule.show()
 - Graph.spectrum() → Molecule.spectrum()
 - Graph.min_cut() → Molecule.min_cut()

• The package could be included into main Sage repository

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

First attempt: classical object-oriented approach

Molecule class inherited from the Sage Graph class

Sage Graph class

Molecule class

+ Advantages

• Easy to develop

. . .

- Inherited methods such as
 - $Graph.show() \rightarrow Molecule.show()$
 - Graph.spectrum()
 ightarrow Molecule.spectrum()
 - $Graph.min_cut() \rightarrow Molecule.min_cut()$

• The package could be included into main Sage repository

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

First attempt: classical object-oriented approach

Molecule class inherited from the Sage Graph class

Sage Graph class

Molecule class

- Disadvantages

- Performance
- Dependence on the framework

Alexander Vasilyev

Jniversity of Primorska. Andrej Marušič Institute.

Second attempt: lazy calculations

We calculate data only when it is needed and then we save the results.

Sage Graph class

Mol class

+ Advantages

• Performance

• Independence on the framework (the package can be used in any Python-based project)

Disadvantages

- Hard to code, easy to get bugs
- The package will not be included into main Sage boundle

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Second attempt: lazy calculations

We calculate data only when it is needed and then we save the results.

Sage Graph class

Mol class

 $+ \ \mathsf{Advantages}$

- Performance
- Independence on the framework (the package can be used in any Python-based project)

– Disadvantages

- Hard to code, easy to get bugs
- The package will not be included into main Sage boundle

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Second attempt: lazy calculations

We calculate data only when it is needed and then we save the results.

Sage Graph class

Mol class

+ Advantages

- Performance
- Independence on the framework (the package can be used in any Python-based project)

Disadvantages

- Hard to code, easy to get bugs
- The package will not be included into main Sage boundle

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Tests

Graphs for test: all connected simple graps of 7, 8, 9 vertices

	7c	8c	9c
number of graphs	853	11117	261080

1. Zagreb M1 and M2 indices:

$$M1 = \sum_{v \in V(G)} d_v^2 \quad M2 = \sum_{u \sim v \in V(G)} d_v d_u \tag{1}$$

 Molecular Topological Index MTI, Degree Distance DD, Reverse Degree Distance rDD:

$$MTI = \sum_{v \in V(G)} (A+D)d_v \quad DD = \sum_{v \in V(G)} d_v \sum_{u \in V(G)} d_{u,v}$$

$$rDD = 2(n-1)md_G - DD$$
 (2)

Where d_v is degree of v, A is adjacency matrix, D is distance matrix, $d_{u,v}$ is distance between u and v, d_G is diameter of G, n is number of vertices, m is number of edges

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Tests

Graphs for test: all connected simple graps of 7, 8, 9 vertices

	7c	8c	9c
number of graphs	853	11117	261080

1. Zagreb M1 and M2 indices:

$$M1 = \sum_{v \in V(G)} d_v^2 \qquad M2 = \sum_{u \sim v \in V(G)} d_v d_u \tag{1}$$

 Molecular Topological Index MTI, Degree Distance DD, Reverse Degree Distance rDD:

$$MTI = \sum_{v \in V(G)} (A+D)d_v \quad DD = \sum_{v \in V(G)} d_v \sum_{u \in V(G)} d_{u,v}$$

$$rDD = 2(n-1)md_G - DD$$
 (2)

Where d_v is degree of v, A is adjacency matrix, D is distance matrix, $d_{u,v}$ is distance between u and v, d_G is diameter of G, n is number of vertices, m is number of edges

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Tests

Graphs for test: all connected simple graps of 7, 8, 9 vertices

	7c	8c	9c
number of graphs	853	11117	261080

1. Zagreb M1 and M2 indices:

$$M1 = \sum_{v \in V(G)} d_v^2 \qquad M2 = \sum_{u \sim v \in V(G)} d_v d_u \tag{1}$$

2. Molecular Topological Index MTI, Degree Distance DD, Reverse Degree Distance rDD:

$$MTI = \sum_{v \in V(G)} (A+D)d_v \quad DD = \sum_{v \in V(G)} d_v \sum_{u \in V(G)} d_{u,v}$$
$$rDD = 2(n-1)md_G - DD$$
(2)

Where d_v is degree of v, A is adjacency matrix, D is distance matrix, $d_{u,v}$ is distance between u and v, d_G is diameter of G, n is number of vertices, m is number of edges

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Tests. First test.

Performance test of *Molecule* and *Mol* classes. Time (in seconds) of calculation Zagreb M1 and M2 indeces for all connected graphs of 7, 8, 9 vertices.

	7c	8c	9c
Molecule	0.48	7.36	206.7
Mol	0.07	1.17	33.0

The new *Mol* class is $pprox \mathbf{6}$ times faster

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Tests. First test.

Performance test of *Molecule* and *Mol* classes. Time (in seconds) of calculation Zagreb M1 and M2 indeces for all connected graphs of 7, 8, 9 vertices.

	7c	8c	9c
Molecule	0.48	7.36	206.7
Mol	0.07	1.17	33.0
multiplier	6.85	6.29	6.26

The new *Mol* class is \approx **6** times faster

University of Primorska. Andrej Marušič Institute.

Approach of lazy calculations in application to topological graph indices in Sage. Introduction to a new molecular class.

Alexander Vasilyev

Tests. Second test.

Performance test of *Molecule* and *Mol* classes. Time (in seconds) of calculation Molecular Topological Index, Degree Distance, Reverse Degree Distance for all connected graphs of 7, 8, 9 vertices.

	7c	8c	9c
Molecule	0.86	12.72	336.34
Mol	0.75	10.33	263.07

The new *Mol* class is \approx **1.2 times** faster

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Tests. Second test.

Performance test of *Molecule* and *Mol* classes. Time (in seconds) of calculation Molecular Topological Index, Degree Distance, Reverse Degree Distance for all connected graphs of 7, 8, 9 vertices.

	7c	8c	9c
Molecule	0.86	12.72	336.34
Mol	0.75	10.33	263.07
multiplie	r 1.14	1.23	1.27

The new Mol class is ≈ 1.2 times faster

University of Primorska. Andrej Marušič Institute.

Approach of lazy calculations in application to topological graph indices in Sage. Introduction to a new molecular class.

Alexander Vasilyev

Easy link to Sage and NetworkX

Mol().sage_graph()
Mol().NX_graph()

Alexander Vasilyev

University of Primorska. Andrej Marušič Institute.

Thank you!

Alexander Vasilyev

Jniversity of Primorska. Andrej Marušič Institute