INVARIANT SUBSPACE PROBLEM AND HYPERREFLEXIVITY

Michal Zajac
Slovak University of Technology, Bratislava

It is well-known that any matrix $A \in \mathbb{C}^{n \times n}$ is similar to its Jordan canonical form, or equivalently there exists an ordered basis of $C^{n \times 1}$ consisting of (chains of) generalized eigenvectors of A. This basis generates a system of subspaces invariant for the operator (matrix) A. If, moreover, $A^{*} A=A A^{*}$, i.e. A is a normal matrix, then A is unitarily equivalent to a diagonal matrix. The latter result has a generalization to infinite dimensional complex Hilbert spaces, the well-known spectral theorem.

The set of all closed subspaces invariant for a given operator T forms a lattice Lat T. Generally, it is not known whether there exists a bounded linear operator T on a complex separable Hilbert H space for which

$$
\operatorname{Lat} T=\{\{0\}, H\} .
$$

This question, open since 1930th, is known as the Invariant subspace problem.
The closure in weak operator topology of the set of all polynomials in an operator T is denoted by $\operatorname{Alg} T$. Clearly $A \in \operatorname{Alg} T \Longrightarrow \operatorname{Lat} T \subset \operatorname{Lat} A$. If there exist many invariant subspaces for T in the sense

$$
\{A: \operatorname{Lat} T \subset \operatorname{Lat} A\}=\operatorname{Alg} T
$$

then T is said to be reflexive (Sarason, 1966). The notion of reflexive operator was generalized to linear subspaces of operators Shulman, 1972), and a stronger quantitative notion, hyperreflexivity, was defined and studied first by Arveson (1975).

In the lecture, first, some known examples of operators for which the existence of non-trivial invariant spaces is known will be considered. Then reflexivity and hyperreflexivity in finite dimensional spaces will be considered in more detail.

